WorldWideScience

Sample records for albicans biofilms identification

  1. Mixed biofilms formed by C. albicans and non-albicans species: a study of microbial interactions.

    Science.gov (United States)

    Santos, Jéssica Diane dos; Piva, Elisabete; Vilela, Simone Furgeri Godinho; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2016-01-01

    Most Candida infections are related to microbial biofilms often formed by the association of different species. The objective of this study was to evaluate the interactions between Candida albicans and non-albicans species in biofilms formed in vitro. The non-albicans species studied were:Candida tropicalis, Candida glabrata and Candida krusei. Single and mixed biofilms (formed by clinical isolates of C. albicans and non-albicans species) were developed from standardized suspensions of each strain (10(7) cells/mL), on flat-bottom 96-well microtiter plates for 48 hour. These biofilms were analyzed by counting colony-forming units (CFU/mL) in Candida HiChrome agar and by determining cell viability, using the XTT 2,3-bis (2-methoxy-4-nitro-5-sulphophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide colorimetric assay. The results for both the CFU/mL count and the XTT colorimetric assay showed that all the species studied were capable of forming high levels of in vitro biofilm. The number of CFU/mL and the metabolic activity of C. albicans were reduced in mixed biofilms with non-albicans species, as compared with a single C. albicans biofilm. Among the species tested, C. krusei exerted the highest inhibitory action against C. albicans. In conclusion, C. albicans established antagonistic interactions with non-albicans Candida species in mixed biofilms.

  2. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms.

    Science.gov (United States)

    Martins, Margarida; Uppuluri, Priya; Thomas, Derek P; Cleary, Ian A; Henriques, Mariana; Lopez-Ribot, José L; Oliveira, Rosário

    2010-05-01

    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.

  3. Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression

    Directory of Open Access Journals (Sweden)

    Řičicová Markéta

    2010-04-01

    Full Text Available Abstract Background Candida albicans infections are often associated with biofilm formation. Previous work demonstrated that the expression of HWP1 (hyphal wall protein and of genes belonging to the ALS (agglutinin-like sequence, SAP (secreted aspartyl protease, PLB (phospholipase B and LIP (lipase gene families is associated with biofilm growth on mucosal surfaces. We investigated using real-time PCR whether genes encoding potential virulence factors are also highly expressed in biofilms associated with abiotic surfaces. For this, C. albicans biofilms were grown on silicone in microtiter plates (MTP or in the Centres for Disease Control (CDC reactor, on polyurethane in an in vivo subcutaneous catheter rat (SCR model, and on mucosal surfaces in the reconstituted human epithelium (RHE model. Results HWP1 and genes belonging to the ALS, SAP, PLB and LIP gene families were constitutively expressed in C. albicans biofilms. ALS1-5 were upregulated in all model systems, while ALS9 was mostly downregulated. ALS6 and HWP1 were overexpressed in all models except in the RHE and MTP, respectively. The expression levels of SAP1 were more pronounced in both in vitro models, while those of SAP2, SAP4 and SAP6 were higher in the in vivo model. Furthermore, SAP5 was highly upregulated in the in vivo and RHE models. For SAP9 and SAP10 similar gene expression levels were observed in all model systems. PLB genes were not considerably upregulated in biofilms, while LIP1-3, LIP5-7 and LIP9-10 were highly overexpressed in both in vitro models. Furthermore, an elevated lipase activity was detected in supernatans of biofilms grown in the MTP and RHE model. Conclusions Our findings show that HWP1 and most of the genes belonging to the ALS, SAP and LIP gene families are upregulated in C. albicans biofilms. Comparison of the fold expression between the various model systems revealed similar expression levels for some genes, while for others model-dependent expression

  4. Candida/Candida biofilms. First description of dual-species Candida albicans/C. rugosa biofilm.

    Science.gov (United States)

    Martins, Carlos Henrique Gomes; Pires, Regina Helena; Cunha, Aline Oliveira; Pereira, Cristiane Aparecida Martins; Singulani, Junya de Lacorte; Abrão, Fariza; Moraes, Thais de; Mendes-Giannini, Maria José Soares

    2016-04-01

    Denture liners have physical properties that favour plaque accumulation and colonization by Candida species, irritating oral tissues and causing denture stomatitis. To isolate and determine the incidence of oral Candida species in dental prostheses, oral swabs were collected from the dental prostheses of 66 patients. All the strains were screened for their ability to form biofilms; both monospecies and dual-species combinations were tested. Candida albicans (63 %) was the most frequently isolated microorganism; Candida tropicalis (14 %), Candida glabrata (13 %), Candida rugosa (5 %), Candida parapsilosis (3 %), and Candida krusei (2 %) were also detected. The XTT assay showed that C. albicans SC5314 possessed a biofilm-forming ability significantly higher (p albicans Candida strains, after 6 h 37 °C. The total C. albicans CFU from a dual-species biofilm was less than the total CFU of a monospecies C. albicans biofilm. In contrast to the profuse hyphae verified in monospecies C. albicans biofilms, micrographies showed that the C. albicans/non-albicans Candida biofilms consisted of sparse yeast forms and profuse budding yeast cells that generated a network. These results suggested that C. albicans and the tested Candida species could co-exist in biofilms displaying apparent antagonism. The study provide the first description of C. albicans/C. rugosa mixed biofilm.

  5. AI-2 of Aggregatibacter actinomycetemcomitans Inhibits Candida albicans Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Endang W. Bachtiar

    2014-07-01

    Full Text Available Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium, and Candida albicans, a polymorphic fungus, are both commensals of the oral cavity but both are opportunistic pathogens that can cause oral diseases. A. actinomycetemcomitans produces a quorum-sensing molecule called autoinducer-2 (AI-2, synthesized by LuxS, that plays an important role in expression of virulence factors, in intra- but also in interspecies communication. The aim of this study was to investigate the role of AI-2 based signaling in the interactions between C. albicans and A. actinomycetemcomitans. A. actinomycetemcomitans adhered to C. albicans and inhibited biofilm formation by means of a molecule that was secreted during growth. C. albicans biofilm formation increased significantly when co-cultured with A. actinomycetemcomitans luxS, lacking AI-2 production. Addition of wild-type-derived spent medium or synthetic AI-2 to spent medium of the luxS strain, restored inhibition of C. albicans biofilm formation to wild-type levels. Addition of synthetic AI-2 significantly inhibited hypha formation of C. albicans possibly explaining the inhibition of biofilm formation. AI-2 of A. actinomycetemcomitans is synthesized by LuxS, accumulates during growth and inhibits C. albicans hypha- and biofilm formation. Identifying the molecular mechanisms underlying the interaction between bacteria and fungi may provide important insight into the balance within complex oral microbial communities.

  6. Production of Tyrosol by Candida albicans Biofilms and Its Role in Quorum Sensing and Biofilm Development▿

    OpenAIRE

    Alem, M.A.S.; Oteef, M.D.Y.; Flowers, T; Douglas, L J

    2006-01-01

    Tyrosol and farnesol are quorum-sensing molecules produced by Candida albicans which accelerate and block, respectively, the morphological transition from yeasts to hyphae. In this study, we have investigated the secretion of tyrosol by C. albicans and explored its likely role in biofilm development. Both planktonic (suspended) cells and biofilms of four C. albicans strains, including three mutants with defined defects in the Efg 1 and Cph 1 morphogenetic signaling pathways, synthesized extra...

  7. Hyphal content determines the compression strength of Candida albicans biofilms

    NARCIS (Netherlands)

    Paramonova, Ekaterina; Krom, Bastiaan P.; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant K.

    2009-01-01

    Candida albicans is the most frequently isolated human fungal pathogen among species causing biofilm-related clinical infections. Mechanical properties of Candida biofilms have hitherto been given no attention, despite the fact that mechanical properties are important for selection of treatment or d

  8. An expanded regulatory network temporally controls Candida albicans biofilm formation.

    Science.gov (United States)

    Fox, Emily P; Bui, Catherine K; Nett, Jeniel E; Hartooni, Nairi; Mui, Michael C; Andes, David R; Nobile, Clarissa J; Johnson, Alexander D

    2015-06-01

    Candida albicans biofilms are composed of highly adherent and densely arranged cells with properties distinct from those of free-floating (planktonic) cells. These biofilms are a significant medical problem because they commonly form on implanted medical devices, are drug resistant and are difficult to remove. C. albicans biofilms are not static structures; rather they are dynamic and develop over time. Here we characterize gene expression in biofilms during their development, and by comparing them to multiple planktonic reference states, we identify patterns of gene expression relevant to biofilm formation. In particular, we document time-dependent changes in genes involved in adhesion and metabolism, both of which are at the core of biofilm development. Additionally, we identify three new regulators of biofilm formation, Flo8, Gal4, and Rfx2, which play distinct roles during biofilm development over time. Flo8 is required for biofilm formation at all time points, and Gal4 and Rfx2 are needed for proper biofilm formation at intermediate time points.

  9. Development of a high-throughput Candida albicans biofilm chip.

    Directory of Open Access Journals (Sweden)

    Anand Srinivasan

    Full Text Available We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B. Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  10. Development of a high-throughput Candida albicans biofilm chip.

    Science.gov (United States)

    Srinivasan, Anand; Uppuluri, Priya; Lopez-Ribot, Jose; Ramasubramanian, Anand K

    2011-04-22

    We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B). Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip) is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  11. Polymicrobial biofilm formation by Candida albicans, Actinomyces naeslundii, and Streptococcus mutans is Candida albicans strain and medium dependent.

    Science.gov (United States)

    Arzmi, Mohd Hafiz; Alnuaimi, Ali D; Dashper, Stuart; Cirillo, Nicola; Reynolds, Eric C; McCullough, Michael

    2016-11-01

    Oral biofilms comprise of extracellular polysaccharides and polymicrobial microorganisms. The objective of this study was to determine the effect of polymicrobial interactions of Candida albicans, Actinomyces naeslundii, and Streptococcus mutans on biofilm formation with the hypotheses that biofilm biomass and metabolic activity are both C. albicans strain and growth medium dependent. To study monospecific biofilms, C. albicans, A. naeslundii, and S. mutans were inoculated into artificial saliva medium (ASM) and RPMI-1640 in separate vials, whereas to study polymicrobial biofilm formation, the inoculum containing microorganisms was prepared in the same vial prior inoculation into a 96-well plate followed by 72 hours incubation. Finally, biofilm biomass and metabolic activity were measured using crystal violet and XTT assays, respectively. Our results showed variability of monospecies and polymicrobial biofilm biomass between C. albicans strains and growth medium. Based on cut-offs, out of 32, seven RPMI-grown biofilms had high biofilm biomass (HBB), whereas, in ASM-grown biofilms, 14 out of 32 were HBB. Of the 32 biofilms grown in RPMI-1640, 21 were high metabolic activity (HMA), whereas in ASM, there was no biofilm had HMA. Significant differences were observed between ASM and RPMI-grown biofilms with respect to metabolic activity (P biofilm biomass and metabolic activity were both C. albicans strain and growth medium dependent.

  12. Rat indwelling urinary catheter model of Candida albicans biofilm infection.

    Science.gov (United States)

    Nett, Jeniel E; Brooks, Erin G; Cabezas-Olcoz, Jonathan; Sanchez, Hiram; Zarnowski, Robert; Marchillo, Karen; Andes, David R

    2014-12-01

    Indwelling urinary catheters are commonly used in the management of hospitalized patients. Candida can adhere to the device surface and propagate as a biofilm. These Candida biofilm communities differ from free-floating Candida, exhibiting high tolerance to antifungal therapy. The significance of catheter-associated candiduria is often unclear, and treatment may be problematic considering the biofilm drug-resistant phenotype. Here we describe a rodent model for the study of urinary catheter-associated Candida albicans biofilm infection that mimics this common process in patients. In the setting of a functioning, indwelling urinary catheter in a rat, Candida proliferated as a biofilm on the device surface. Characteristic biofilm architecture was observed, including adherent, filamentous cells embedded in an extracellular matrix. Similar to what occurs in human patients, animals with this infection developed candiduria and pyuria. Infection progressed to cystitis, and a biofilmlike covering was observed over the bladder surface. Furthermore, large numbers of C. albicans cells were dispersed into the urine from either the catheter or bladder wall biofilm over the infection period. We successfully utilized the model to test the efficacy of antifungals, analyze transcriptional patterns, and examine the phenotype of a genetic mutant. The model should be useful for future investigations involving the pathogenesis, diagnosis, therapy, prevention, and drug resistance of Candida biofilms in the urinary tract.

  13. Chloroquine sensitizes biofilms of Candida albicans to antifungal azoles

    Directory of Open Access Journals (Sweden)

    Ravikumar Bapurao Shinde

    2013-08-01

    Full Text Available Biofilms formed by Candida albicans, a human pathogen, are known to be resistant to different antifungal agents. Novel strategies to combat the biofilm associated Candida infections like multiple drug therapy are being explored. In this study, potential of chloroquine to be a partner drug in combination with four antifungal agents, namely fluconazole, voriconazole, amphotericin B, and caspofungin, was explored against biofilms of C. albicans. Activity of various concentrations of chloroquine in combination with a particular antifungal drug was analyzed in a checkerboard format. Growth of biofilm in presence of drugs was analyzed by XTT-assay, in terms of relative metabolic activity compared to that of drug free control. Results obtained by XTT-metabolic assay were confirmed by scanning electron microscopy. The interactions between chloroquine and four antifungal drugs were determined by calculating fractional inhibitory concentration indices. Azole resistance in biofilms was reverted significantly (p < 0.05 in presence of 250 µg/mL of chloroquine, which resulted in inhibition of biofilms at very low concentrations of antifungal drugs. No significant alteration in the sensitivity of biofilms to caspofungin and amphotericin B was evident in combination with chloroquine. This study for the first time indicates that chloroquine potentiates anti-biofilm activity of fluconazole and voriconazole.

  14. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.

    Science.gov (United States)

    Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D

    2014-10-20

    The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival.

  15. Effects of ambroxol on Candida albicans growth and biofilm formation.

    Science.gov (United States)

    Rene, Hernandez-Delgadillo; José, Martínez-Sanmiguel Juan; Isela, Sánchez-Nájera Rosa; Claudio, Cabral-Romero

    2014-04-01

    Typically, the onset of candidiasis is characterised by the appearance of a biofilm of Candida albicans, which is associated with several diseases including oral candidiasis in young and elderly people. The objective of this work was to investigate the in vitro fungicidal activity as well as the antibiofilm activity of ambroxol (AMB) against C. albicans growth. In the present investigation, the fungicidal activity of AMB was established using the cell viability 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Also the minimum inhibitory concentration (MIC) of AMB required to inhibit the fungal growth was determined. Simultaneously, the antibiofilm activity of AMB was evaluated using fluorescence microscopy. The study revealed that 2 mg ml(-1) of AMB exhibited higher fungicidal activity than 3.3 mg ml(-1) of terbinafine, one of most common commercial antifungals. A MIC of 1 mg ml(-1) was determined for AMB to interfere with C. albicans growth. Furthermore, AMB was found to be effective in inhibiting the biofilm formation of C. albicans and exerted its fungicidal activity against the fungal cells interspersed in the preformed biofilm. The study suggests a potential role of the mucolytic agent, AMB, as an interesting therapeutic alternative in the treatment of oral candidiasis.

  16. Integrating Candida albicans metabolism with biofilm heterogeneity by transcriptome mapping

    Science.gov (United States)

    Rajendran, Ranjith; May, Ali; Sherry, Leighann; Kean, Ryan; Williams, Craig; Jones, Brian L.; Burgess, Karl V.; Heringa, Jaap; Abeln, Sanne; Brandt, Bernd W.; Munro, Carol A.; Ramage, Gordon

    2016-10-01

    Candida albicans biofilm formation is an important virulence factor in the pathogenesis of disease, a characteristic which has been shown to be heterogeneous in clinical isolates. Using an unbiased computational approach we investigated the central metabolic pathways driving biofilm heterogeneity. Transcripts from high (HBF) and low (LBF) biofilm forming isolates were analysed by RNA sequencing, with 6312 genes identified to be expressed in these two phenotypes. With a dedicated computational approach we identified and validated a significantly differentially expressed subnetwork of genes associated with these biofilm phenotypes. Our analysis revealed amino acid metabolism, such as arginine, proline, aspartate and glutamate metabolism, were predominantly upregulated in the HBF phenotype. On the contrary, purine, starch and sucrose metabolism was generally upregulated in the LBF phenotype. The aspartate aminotransferase gene AAT1 was found to be a common member of these amino acid pathways and significantly upregulated in the HBF phenotype. Pharmacological inhibition of AAT1 enzyme activity significantly reduced biofilm formation in a dose-dependent manner. Collectively, these findings provide evidence that biofilm phenotype is associated with differential regulation of metabolic pathways. Understanding and targeting such pathways, such as amino acid metabolism, is potentially useful for developing diagnostics and new antifungals to treat biofilm-based infections.

  17. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development.

    Science.gov (United States)

    Alem, Mohammed A S; Oteef, Mohammed D Y; Flowers, T Hugh; Douglas, L Julia

    2006-10-01

    Tyrosol and farnesol are quorum-sensing molecules produced by Candida albicans which accelerate and block, respectively, the morphological transition from yeasts to hyphae. In this study, we have investigated the secretion of tyrosol by C. albicans and explored its likely role in biofilm development. Both planktonic (suspended) cells and biofilms of four C. albicans strains, including three mutants with defined defects in the Efg 1 and Cph 1 morphogenetic signaling pathways, synthesized extracellular tyrosol during growth at 37 degrees C. There was a correlation between tyrosol production and biomass for both cell types. However, biofilm cells secreted at least 50% more tyrosol than did planktonic cells when tyrosol production was related to cell dry weight. The addition of exogenous farnesol to a wild-type strain inhibited biofilm formation by up to 33% after 48 h. Exogenous tyrosol appeared to have no effect, but scanning electron microscopy revealed that tyrosol stimulated hypha production during the early stages (1 to 6 h) of biofilm development. Experiments involving the simultaneous addition of tyrosol and farnesol at different concentrations suggested that the action of farnesol was dominant, and 48-h biofilms formed in the presence of both compounds consisted almost entirely of yeast cells. When biofilm supernatants were tested for their abilities to inhibit or enhance germ tube formation by planktonic cells, the results indicated that tyrosol activity exceeds that of farnesol after 14 h, but not after 24 h, and that farnesol activity increases significantly during the later stages (48 to 72 h) of biofilm development. Overall, our results support the conclusion that tyrosol acts as a quorum-sensing molecule for biofilms as well as for planktonic cells and that its action is most significant during the early and intermediate stages of biofilm formation.

  18. Modulation of Candida albicans virulence by bacterial biofilms on titanium surfaces.

    Science.gov (United States)

    Cavalcanti, Yuri Wanderley; Wilson, Melanie; Lewis, Michael; Del-Bel-Cury, Altair Antoninha; da Silva, Wander José; Williams, David W

    2016-01-01

    Whilst Candida albicans occurs in peri-implant biofilms, its role in peri-implantitis remains unclear. This study therefore examined the virulence of C. albicans in mixed-species biofilms on titanium surfaces. Biofilms of C. albicans (Ca), C. albicans with streptococci (Streptococcus sanguinis, S. mutans) (Ca-Ss-Sm) and those incorporating Porphyromonas gingivalis (Ca-Pg and Ca-Ss-Sm-Pg) were developed. Expression of C. albicans genes associated with adhesion (ALS1, ALS3, HWP1) and hydrolytic enzymes (SAP2, SAP4, SAP6, PLD1) was measured and hyphal production by C. albicans quantified. Compared with Ca biofilms, significant (palbicans expressed virulence factors in biofilms that could contribute to peri-implantitis, but this was dependent on associated bacterial species.

  19. Multi-species biofilm of Candida albicans and non-Candida albicans Candida species on acrylic substrate

    Directory of Open Access Journals (Sweden)

    Apurva K Pathak

    2012-02-01

    Full Text Available OBJECTIVE: In polymicrobial biofilms bacteria extensively interact with Candida species, but the interaction among the different species of the Candida is yet to be completely evaluated. In the present study, the difference in biofilm formation ability of clinical isolates of four species of Candida in both single-species and multi-species combinations on the surface of dental acrylic resin strips was evaluated. MATERIAL AND METHODS: The species of Candida, isolated from multiple species oral candidiasis of the neutropenic patients, were used for the experiment. Organisms were cultured on Sabouraud dextrose broth with 8% glucose (SDB. Biofilm production on the acrylic resins strips was determined by crystal violet assay. Student's t-test and ANOVA were used to compare in vitro biofilm formation for the individual species of Candida and its different multi-species combinations. RESULTS: In the present study, differences between the mean values of the biofilm-forming ability of individual species (C. glabrata>C. krusei>C. tropicalis>C. albicans and in its multi-species' combinations (the highest for C. albicans with C. glabrata and the lowest for all the four species combination were reported. CONCLUSIONS: The findings of this study showed that biofilm-forming ability was found greater for non-Candida albicans Candida species (NCAC than for C. albicans species with intra-species variation. Presence of C. albicans in multi-species biofilms increased, whereas; C. tropicalis decreased the biofilm production with all other NCAC species.

  20. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans.

    Science.gov (United States)

    Raut, Jayant S; Shinde, Ravikumar B; Chauhan, Nitin M; Karuppayil, S Mohan

    2013-01-01

    Biofilm-related infections caused by Candida albicans and associated drug resistant micro-organisms are serious problems for immunocompromised populations. Molecules which can prevent or remove biofilms are needed. Twenty-eight terpenoids of plant origin were analysed for their activity against growth, virulence attributes, and biofilms of C. albicans. Eighteen molecules exhibited minimum inhibitory concentrations of terpenoids resulted in significant (p terpenoids were identified as inhibitors of mature biofilms. This study demonstrated the antibiofilm potential of terpenoids, which need to be further explored as therapeutic strategy against biofilm associated infections of C. albicans.

  1. Miltefosine inhibits Candida albicans and non-albicans Candida spp. biofilms and impairs the dispersion of infectious cells.

    Science.gov (United States)

    Vila, Taissa; Ishida, Kelly; Seabra, Sergio Henrique; Rozental, Sonia

    2016-11-01

    Candida spp. can adhere to and form biofilms over different surfaces, becoming less susceptible to antifungal treatment. Resistance of biofilms to antifungal agents is multifactorial and the extracellular matrix (ECM) appears to play an important role. Among the few available antifungals for treatment of candidaemia, only the lipid formulations of amphotericin B (AmB) and the echinocandins are effective against biofilms. Our group has previously demonstrated that miltefosine has an important effect against Candida albicans biofilms. Thus, the aim of this work was to expand the analyses of the in vitro antibiofilm activity of miltefosine to non-albicans Candida spp. Miltefosine had significant antifungal activity against planktonic cells and the development of biofilms of C. albicans, Candida parapsilosis, Candida tropicalis and Candida glabrata. The activity profile in biofilms was superior to fluconazole and was similar to that of AmB and caspofungin. Biofilm-derived cells with their ECM extracted became as susceptible to miltefosine as planktonic cells, confirming the importance of the ECM in the biofilm resistant behaviour. Miltefosine also inhibited biofilm dispersion of cells at the same concentration needed to inhibit planktonic cell growth. The data obtained in this work reinforce the potent inhibitory activity of miltefosine on biofilms of the four most pathogenic Candida spp. and encourage further studies for the utilisation of this drug and/or structural analogues on biofilm-related infections.

  2. Modulation of Candida albicans Biofilm by Different Carbon Sources.

    Science.gov (United States)

    Pemmaraju, Suma C; Pruthi, Parul A; Prasad, R; Pruthi, Vikas

    2016-06-01

    In the present investigation, the role of carbon sources (glucose, lactate, sucrose, and arabinose) on Candida albicans biofilm development and virulence factors was studied on polystyrene microtiter plates. Besides this, structural changes in cell wall component β-glucan in presence of different carbon sources have also been highlighted. Biofilm formation was analyzed by XTT (2,3-bis[2-Methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay. Glucose-grown cells exhibited the highest metabolic activity during adhesion among all carbon sources tested (p roughness measurements by atomic force microscopy. Exposure to lactate induced hyphal structures with the highest proteinase activity while arabinose-grown cells formed pseudohyphal structures possessing the highest phospholipase activity. Structural changes in β-glucan characterized by Fourier transform infrared (FTIR) spectroscopy displayed characteristic band of β-glucan at 892 cm(-1) in all carbon sources tested. The β(1→6) to β(1→3) glucan ratio calculated as per the band area of the peak was less in lactate (1.15) as compared to glucose (1.73), sucrose (1.62), and arabinose (2.85). These results signify that carbon sources influence C. albicans biofilm development and modulate virulence factors and structural organization of cell wall component β-glucan.

  3. A novel assay of biofilm antifungal activity reveals that amphotericin B and caspofungin lyse Candida albicans cells in biofilms.

    Science.gov (United States)

    DiDone, Louis; Oga, Duana; Krysan, Damian J

    2011-08-01

    The ability of Candida albicans to form drug-resistant biofilms is an important factor in its contribution to human disease. Assays to identify and characterize molecules with activity against fungal biofilms are crucial for the development of drugs with improved anti-biofilm activity. Here we report the application of an adenylate kinase (AK)-based cytotoxicity assay of fungal cell lysis to the characterization of agents active against C. albicans biofilms. We have developed three protocols for the AK assay. The first measures AK activity in the supernatants of biofilms treated with antifungal drugs and can be performed in parallel with a standard 2,3-bis-(2-methoxy-4-nitro-5-sulphophenyl)-2H-tetrazolium-5-caboxanilide-based biofilm susceptibility assay; a second, more sensitive protocol measures the AK activity present within the biofilm matrix; and a third procedure allows the direct visualization of lytic activity toward biofilms formed on catheter material. Amphotericin B and caspofungin, the two most effective anti-biofilm drugs currently used to treat fungal infections, both directly lyse planktonic C. albicans cells in vitro, leading to the release of AK into the culture medium. These studies serve to validate the AK-based lysis assay as a useful addition to the methods for the characterization of antifungal agents active toward biofilms and provide insights into the mode of action of amphotericin B and caspofungin against C. albicans biofilms.

  4. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth.

    Science.gov (United States)

    Haque, Farazul; Alfatah, Md; Ganesan, K; Bhattacharyya, Mani Shankar

    2016-03-31

    Candida albicans causes superficial and life-threatening systemic infections. These are difficult to treat often due to drug resistance, particularly because C. albicans biofilms are inherently resistant to most antifungals. Sophorolipid (SL), a glycolipid biosurfactant, has been shown to have antimicrobial and anticancer properties. In this study, we investigated the effect of SL on C. albicans biofilm formation and preformed biofilms. SL was found to inhibit C. albicans biofilm formation as well as reduce the viability of preformed biofilms. Moreover, SL, when used along with amphotericin B (AmB) or fluconazole (FLZ), was found to act synergistically against biofilm formation and preformed biofilms. Effect of SL on C. albicans biofilm formation was further visualized by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), which revealed absence of hyphae, typical biofilm architecture and alteration in the morphology of biofilm cells. We also found that SL downregulates the expression of hypha specific genes HWP1, ALS1, ALS3, ECE1 and SAP4, which possibly explains the inhibitory effect of SL on hyphae and biofilm formation.

  5. Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant.

    Science.gov (United States)

    James, K M; MacDonald, K W; Chanyi, R M; Cadieux, P A; Burton, J P

    2016-04-01

    Oral candidiasis is a disease caused by opportunistic species of Candida that normally reside on human mucosal surfaces. The transition of Candida from budding yeast to filamentous hyphae allows for covalent attachment to oral epithelial cells, followed by biofilm formation, invasion and tissue damage. In this study, combinations of Lactobacillus plantarum SD5870, Lactobacillus helveticus CBS N116411 and Streptococcus salivarius DSM 14685 were assessed for their ability to inhibit the formation of and disrupt Candida albicans biofilms. Co-incubation with probiotic supernatants under hyphae-inducing conditions reduced C. albicans biofilm formation by >75 % in all treatment groups. Likewise, combinations of live probiotics reduced biofilm formation of C. albicans by >67 %. When live probiotics or their supernatants were overlaid on preformed C. albicans biofilms, biofilm size was reduced by >63 and >65 % respectively. Quantitative real-time PCR results indicated that the combined supernatants of SD5870 and CBS N116411 significantly reduced the expression of several C. albicans genes involved in the yeast-hyphae transition: ALS3 (adhesin/invasin) by 70 % (P biofilm formation) by >99 % (P formation of and removing preformed C. albicans biofilms. Our novel results point to the downregulation of several Candida genes critical to the yeast-hyphae transition, biofilm formation, tissue invasion and cellular damage.

  6. Candida albicans biofilm on titanium: effect of peroxidase precoating

    Directory of Open Access Journals (Sweden)

    Mohamed Ahariz

    2010-08-01

    Full Text Available Mohamed Ahariz1, Philippe Courtois1,21Laboratory of Experimental Hormonology, Université Libre de Bruxelles, Brussels, 2UER de Biologie Médicale, Haute Ecole Francisco Ferrer, Brussels, BelgiumAbstract: The present study aimed to document Candida albicans biofilm development on titanium and its modulation by a peroxidase-precoated material which can generate antimicrobials, such as hypoiodite or hypothiocyanite, from hydrogen peroxide, iodide, or thiocyanate. For this purpose, titanium (powder or foil was suspended in Sabouraud liquid medium inoculated with C. albicans ATCC10231. After continuous stirring for 2–21 days at room temperature, the supernatant was monitored by turbidimetry at 600 nm and titanium washed three times in sterile Sabouraud broth. Using the tetrazolium salt MTT-formazan assay, the titanium-adherent fungal biomass was measured as 7.50 ± 0.60 × 106 blastoconidia per gram of titanium powder (n = 30 and 0.50 ± 0.04 × 106 blastoconidia per cm² of titanium foil (n = 12. The presence of yeast on the surface of titanium was confirmed by microscopy both on fresh preparations and after calcofluor white staining. However, in the presence of peroxidase systems (lactoperoxidase with substrates such as hydrogen peroxide donor, iodide, or thiocyanate, Candida growth in both planktonic and attached phases appeared to be inhibited. Moreover, this study demonstrates the possible partition of peroxidase systems between titanium material (peroxidase-precoated and liquid environment (containing peroxidase substrates to limit C. albicans biofilm formation.Keywords: adhesion, material, oral, yeast

  7. The effect of Streptococcus mutans and Candida glabrata on Candida albicans biofilms formed on different surfaces

    NARCIS (Netherlands)

    Pereira-Cenci, T.; Deng, D.M.; Kraneveld, E.A.; Manders, E.M.M.; Del Bel Cury, A.A.; ten Cate, J.M.; Crielaard, W.

    2008-01-01

    Although Candida containing biofilms contribute to the development of oral candidosis, the characteristics of multi-species Candida biofilms and how oral bacteria modulate these biofilms is poorly understood. The aim of this study was to investigate interactions between Candida albicans and either C

  8. Genetic control of conventional and pheromone-stimulated biofilm formation in Candida albicans.

    Science.gov (United States)

    Lin, Ching-Hsuan; Kabrawala, Shail; Fox, Emily P; Nobile, Clarissa J; Johnson, Alexander D; Bennett, Richard J

    2013-01-01

    Candida albicans can stochastically switch between two phenotypes, white and opaque. Opaque cells are the sexually competent form of C. albicans and therefore undergo efficient polarized growth and mating in the presence of pheromone. In contrast, white cells cannot mate, but are induced - under a specialized set of conditions - to form biofilms in response to pheromone. In this work, we compare the genetic regulation of such "pheromone-stimulated" biofilms with that of "conventional" C. albicans biofilms. In particular, we examined a network of six transcriptional regulators (Bcr1, Brg1, Efg1, Tec1, Ndt80, and Rob1) that mediate conventional biofilm formation for their potential roles in pheromone-stimulated biofilm formation. We show that four of the six transcription factors (Bcr1, Brg1, Rob1, and Tec1) promote formation of both conventional and pheromone-stimulated biofilms, indicating they play general roles in cell cohesion and biofilm development. In addition, we identify the master transcriptional regulator of pheromone-stimulated biofilms as C. albicans Cph1, ortholog of Saccharomyces cerevisiae Ste12. Cph1 regulates mating in C. albicans opaque cells, and here we show that Cph1 is also essential for pheromone-stimulated biofilm formation in white cells. In contrast, Cph1 is dispensable for the formation of conventional biofilms. The regulation of pheromone- stimulated biofilm formation was further investigated by transcriptional profiling and genetic analyses. These studies identified 196 genes that are induced by pheromone signaling during biofilm formation. One of these genes, HGC1, is shown to be required for both conventional and pheromone-stimulated biofilm formation. Taken together, these observations compare and contrast the regulation of conventional and pheromone-stimulated biofilm formation in C. albicans, and demonstrate that Cph1 is required for the latter, but not the former.

  9. Sensitization of Candida albicans biofilms to fluconazole by terpenoids of plant origin.

    Science.gov (United States)

    Doke, Sonali Kashinath; Raut, Jayant Shankar; Dhawale, Shashikant; Karuppayil, Sankunny Mohan

    2014-01-01

    Infections associated with the biofilms of Candida albicans are a challenge to antifungal treatment. Combinatorial therapy involving plant molecules with antifungal drugs would be an effective complementary approach against drug-resistant Candida biofilms. The aim of this study was to evaluate the efficacy of three bioactive terpenoids (carvacrol, eugenol and thymol) in combination with fluconazole against planktonic cells, biofilm development and mature biofilms of C. albicans. Activities of the selected molecules were tested using a microplate-based methodology, while their combinations with fluconazole were performed in a checkerboard format. Biofilms were quantitated by XTT-metabolic assay and confirmed by microscopic observations. Combinations of carvacrol and eugenol with fluconazole were found synergistic against planktonic growth of C. albicans, while that of thymol with fluconazole did not have any interaction. Biofilm development and mature biofilms were highly resistant to fluconazole, but susceptible to three terpenoids. Sensitization of cells by sub-inhibitory concentrations of carvacrol and eugenol resulted in prevention of biofilm formation at low fluconazole concentrations, i.e. 0.032 and 0.002 mg ml(-1), respectively. Addition of thymol could not potentiate activity of fluconazole against biofilm formation by C. albicans. Fractional inhibitory concentration indices (FICI) for carvacrol-fluconazole and eugenol-fluconazole combinations for biofilm formation were 0.311 and 0.25, respectively. The FICI value of 1.003 indicated a status of indifference for the combination of thymol and fluconazole against biofilm formation. Eugenol and thymol combinations with fluconazole did not have useful interaction against mature biofilms of C. albicans, but the presence of 0.5 mg ml(-1) of carvacrol caused inhibition of mature biofilms at a significantly low concentration (i.e. 0.032 mg ml(-1)) of fluconazole. The study indicated that carvacrol and eugenol

  10. Protocol for Determination of the Persister Subpopulation in Candida Albicans Biofilms.

    Science.gov (United States)

    De Brucker, Katrijn; De Cremer, Kaat; Cammue, Bruno P A; Thevissen, Karin

    2016-01-01

    In contrast to planktonic cultures of the human fungal pathogen Candida albicans, C. albicans biofilms can contain a persister subpopulation that is tolerant to high concentrations of currently used antifungals. In this chapter, the method to determine the persister fraction in a C. albicans biofilm treated with an antifungal compound is described. To this end, a mature biofilm is developed and subsequently treated with a concentration series of the antifungal compound of interest. Upon incubation, the fraction of surviving biofilm cells is determined by plating and plotted versus the used concentrations of the antifungal compound. If a persister subpopulation in the biofilm is present, the dose-dependent killing of the biofilm cells results in a biphasic killing pattern.

  11. A sticky situation: untangling the transcriptional network controlling biofilm development in Candida albicans.

    Science.gov (United States)

    Fox, Emily P; Nobile, Clarissa J

    2012-01-01

    Candida albicans is a commensal microorganism of the human microbiome; it is also the most prevalent fungal pathogen of humans. Many infections caused by C. albicans are a direct consequence of its proclivity to form biofilms--resilient, surface-associated communities of cells where individual cells acquire specialized properties that are distinct from those observed in suspension cultures. We recently identified the transcriptional network that orchestrates the formation of biofilms in C. albicans. These results set the stage for understanding how biofilms are formed and, once formed, how the specialized properties of biofilms are elaborated. This information will provide new insight for understanding biofilms in more detail and may lead to improvements in preventing and treating biofilm-based infections in the future.

  12. Commensal Protection of Staphylococcus aureus against Antimicrobials by Candida albicans Biofilm Matrix

    Science.gov (United States)

    Kong, Eric F.; Tsui, Christina; Kucharíková, Sona; Andes, David

    2016-01-01

    ABSTRACT Biofilm-associated polymicrobial infections, particularly those involving fungi and bacteria, are responsible for significant morbidity and mortality and tend to be challenging to treat. Candida albicans and Staphylococcus aureus specifically are considered leading opportunistic fungal and bacterial pathogens, respectively, mainly due to their ability to form biofilms on catheters and indwelling medical devices. However, the impact of mixed-species biofilm growth on therapy remains largely understudied. In this study, we investigated the influence of C. albicans secreted cell wall polysaccharides on the response of S. aureus to antibacterial agents in biofilm. Results demonstrated significantly enhanced tolerance for S. aureus to drugs in the presence of C. albicans or its secreted cell wall polysaccharide material. Fluorescence confocal time-lapse microscopy revealed impairment of drug diffusion through the mixed biofilm matrix. Using C. albicans mutant strains with modulated cell wall polysaccharide expression, exogenous supplementation, and enzymatic degradation, the C. albicans-secreted β-1,3-glucan cell wall component was identified as the key matrix constituent providing the bacteria with enhanced drug tolerance. Further, antibody labeling demonstrated rapid coating of the bacteria by the C. albicans matrix material. Importantly, via its effect on the fungal biofilm matrix, the antifungal caspofungin sensitized the bacteria to the drugs. Understanding such symbiotic interactions with clinical relevance between microbial species in biofilms will greatly aid in overcoming the limitations of current therapies and in defining potential new targets for treating polymicrobial infections. PMID:27729510

  13. Commensal Protection of Staphylococcus aureus against Antimicrobials by Candida albicans Biofilm Matrix

    Directory of Open Access Journals (Sweden)

    Eric F. Kong

    2016-10-01

    Full Text Available Biofilm-associated polymicrobial infections, particularly those involving fungi and bacteria, are responsible for significant morbidity and mortality and tend to be challenging to treat. Candida albicans and Staphylococcus aureus specifically are considered leading opportunistic fungal and bacterial pathogens, respectively, mainly due to their ability to form biofilms on catheters and indwelling medical devices. However, the impact of mixed-species biofilm growth on therapy remains largely understudied. In this study, we investigated the influence of C. albicans secreted cell wall polysaccharides on the response of S. aureus to antibacterial agents in biofilm. Results demonstrated significantly enhanced tolerance for S. aureus to drugs in the presence of C. albicans or its secreted cell wall polysaccharide material. Fluorescence confocal time-lapse microscopy revealed impairment of drug diffusion through the mixed biofilm matrix. Using C. albicans mutant strains with modulated cell wall polysaccharide expression, exogenous supplementation, and enzymatic degradation, the C. albicans-secreted β-1,3-glucan cell wall component was identified as the key matrix constituent providing the bacteria with enhanced drug tolerance. Further, antibody labeling demonstrated rapid coating of the bacteria by the C. albicans matrix material. Importantly, via its effect on the fungal biofilm matrix, the antifungal caspofungin sensitized the bacteria to the drugs. Understanding such symbiotic interactions with clinical relevance between microbial species in biofilms will greatly aid in overcoming the limitations of current therapies and in defining potential new targets for treating polymicrobial infections.

  14. Prostaglandin E2 from Candida albicans Stimulates the Growth of Staphylococcus aureus in Mixed Biofilms.

    Directory of Open Access Journals (Sweden)

    Jan Krause

    Full Text Available Previous studies showed that Staphylococcus aureus and Candida albicans interact synergistically in dual species biofilms resulting in enhanced mortality in animal models.The aim of the current study was to test possible candidate molecules which might mediate this synergistic interaction in an in vitro model of mixed biofilms, such as farnesol, tyrosol and prostaglandin (PG E2. In mono-microbial and dual biofilms of C.albicans wild type strains PGE2 levels between 25 and 250 pg/mL were measured. Similar concentrations of purified PGE2 significantly enhanced S.aureus biofilm formation in a mode comparable to that observed in dual species biofilms. Supernatants of the null mutant deficient in PGE2 production did not stimulate the proliferation of S.aureus and the addition of the cyclooxygenase inhibitor indomethacin blocked the S.aureus biofilm formation in a dose-dependent manner. Additionally, S. aureus biofilm formation was boosted by low and inhibited by high farnesol concentrations. Supernatants of the farnesol-deficient C. albicans ATCC10231 strain significantly enhanced the biofilm formation of S. aureus but at a lower level than the farnesol producer SC5314. However, C. albicans ATCC10231 also produced PGE2 but amounts were significantly lower compared to SC5314.In conclision, we identified C. albicans PGE2 as a key molecule stimulating the growth and biofilm formation of S. aureus in dual S. aureus/C. albicans biofilms, although C. albicans derived farnesol, but not tyrosol, may also contribute to this effect but to a lesser extent.

  15. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines.

    Science.gov (United States)

    Morales, Diana K; Grahl, Nora; Okegbe, Chinweike; Dietrich, Lars E P; Jacobs, Nicholas J; Hogan, Deborah A

    2013-01-29

    Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentrations of any of three different phenazines (pyocyanin, phenazine methosulfate, and phenazine-1-carboxylate) allowed growth but affected the development of C. albicans wrinkled colony biofilms and inhibited the fungal yeast-to-filament transition. Phenazines impaired C. albicans growth on nonfermentable carbon sources and led to increased production of fermentation products (ethanol, glycerol, and acetate) in glucose-containing medium, leading us to propose that phenazines specifically inhibited respiration. Methylene blue, another inhibitor of respiration, also prevented the formation of structured colony biofilms. The inhibition of filamentation and colony wrinkling was not solely due to lowered extracellular pH induced by fermentation. Compared to smooth, unstructured colonies, wrinkled colony biofilms had higher oxygen concentrations within the colony, and wrinkled regions of these colonies had higher levels of respiration. Together, our data suggest that the structure of the fungal biofilm promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by bacterial molecules such as phenazines or compounds with similar activities disrupts these pathways. These findings may suggest new ways to limit fungal biofilms in the context of disease. IMPORTANCE Many of the infections caused by Candida albicans, a major human opportunistic fungal pathogen, involve both morphological transitions and the formation of surface-associated biofilms. Through the

  16. Contact-Free Inactivation of Candida albicans Biofilms by Cold Atmospheric Air Plasma

    OpenAIRE

    Maisch, Tim; Shimizu, Tetsuji; Isbary, Georg; Heinlin, Julia; Karrer, Sigrid; Klämpfl, Tobias G.; Li, Yang-Fang; Morfill, Gregor; Julia L Zimmermann

    2012-01-01

    Candida albicans is one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivating C. albicans growing in biofilms without thermally damagi...

  17. Exopolysaccharide matrix of developed candida albicans biofilms after exposure to antifungal agents

    OpenAIRE

    2012-01-01

    This study aimed to evaluate the effects of fluconazole or nystatin exposure on developed Candida albicans biofilms regarding their exopolysaccharide matrix. The minimal inhibitory concentration (MIC) against fluconazole or nystatin was determined for C. albicans reference strain (ATCC 90028). Poly(methlymethacrylate) resin (PMMA) specimens were fabricated according to the manufacturer's instructions and had their surface roughness measured. Biofilms were developed on specimens surfaces for 4...

  18. Virulence and pathogenicity of Candida albicans is enhanced in biofilms containing oral bacteria.

    Science.gov (United States)

    Cavalcanti, Yuri Wanderley; Morse, Daniel James; da Silva, Wander José; Del-Bel-Cury, Altair Antoninha; Wei, Xiaoqing; Wilson, Melanie; Milward, Paul; Lewis, Michael; Bradshaw, David; Williams, David Wynne

    2015-01-01

    This study examined the influence of bacteria on the virulence and pathogenicity of candidal biofilms. Mature biofilms (Candida albicans-only, bacteria-only, C. albicans with bacteria) were generated on acrylic and either analysed directly, or used to infect a reconstituted human oral epithelium (RHOE). Analyses included Candida hyphae enumeration and assessment of Candida virulence gene expression. Lactate dehydrogenase (LDH) activity and Candida tissue invasion following biofilm infection of the RHOE were also measured. Candida hyphae were more prevalent (p biofilms also containing bacteria, with genes encoding secreted aspartyl-proteinases (SAP4/SAP6) and hyphal-wall protein (HWP1) up-regulated (p biofilm infections of RHOE. Multi-species infections exhibited higher hyphal proportions (p biofilms promoted Candida virulence, consideration should be given to the bacterial component when managing denture biofilm associated candidoses.

  19. The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans.

    Science.gov (United States)

    Hsu, Chih-Chieh; Lai, Wen-Lin; Chuang, Kuei-Chin; Lee, Meng-Hwan; Tsai, Ying-Chieh

    2013-07-01

    Candida spp. are part of the natural human microbiota, but they also represent important opportunistic human pathogens. Biofilm-associated Candida albicans infections are clinically relevant due to their high levels of resistance to traditional antifungal agents. In this study, we investigated the ability of linalool to inhibit the formation of C. albicans biofilms and reduce existing C. albicans biofilms. Linalool exhibited antifungal activity against C. albicans ATCC 14053, with a minimum inhibitory concentration (MIC) of 8 mM. Sub-MIC concentrations of linalool also inhibited the formation of germ tubes and biofilms in that strain. The defective architecture composition of C. albicans biofilms exposed to linalool was characterized by scanning electron microscopy. The expression levels of the adhesin genes HWP1 and ALS3 were downregulated by linalool, as assessed by real-time RT-PCR. The expression levels of CYR1 and CPH1, which encode components of the cAMP-PKA and MAPK hyphal formation regulatory pathways, respectively, were also suppressed by linalool, as was the gene encoding their upstream regulator, Ras1. The expression levels of long-term hyphae maintenance associated genes, including UME6, HGC1, and EED1, were all suppressed by linalool. These results indicate that linalool may have therapeutic potential in the treatment of candidiasis associated with medical devices because it interferes with the morphological switch and biofilm formation of C. albicans.

  20. Bioactivity and architecture of Candida albicans biofilms developed on poly(methyl methacrylate) resin surface.

    Science.gov (United States)

    da Silva, Wander José; Seneviratne, Jayampath; Samaranayake, Lakshman Perera; Del Bel Cury, Altair Antoninha

    2010-07-01

    The aim of this study was to evaluate the bioactivity and architecture of Candida albicans biofilms developed on the surface of poly(methyl methacrylate) (PMMA) resin. To do this, surface roughness (SR) and surface free energy of PMMA specimens were measured. Next, the biofilms of two different C. albicans strains (ATCC 90028 and SC5314) were allowed to develop on the PMMA surface and evaluated at 24, 48, and 72 h after adhesion. The bioactivity of the biofilms was measured by the XTT reduction assay. Biofilm topography was evaluated by scanning electron microscopy. Confocal microscopy was used to evaluate the architectural properties of bio-volume, average thickness, biofilm roughness, surface area/volume ratio and the proportion of live/dead cells in the different biofilm development stages. SR and SFE had no influence on biofilm development. Each strain exhibited a different biofilm activity (P < 0.001). Confocal images showed different architectures for the different biofilm development stages. We conclude that the main differences detected in biofilm bioactivity and architecture were related to the characteristics of each C. albicans strain and to biofilm development time.

  1. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.

    Directory of Open Access Journals (Sweden)

    Mikko T Nieminen

    Full Text Available The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH. ACH is also an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of biomass. Biofilms were visualised by scanning electron microscopy (SEM. ACH levels were measured by gas chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The mean metabolic activity and biomass of all pre-grown (4, 24, 48 h biofilms were significantly reduced after exposure to HICA (p40 µM of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no ACH production was detected from D-glucose in the presence of HICA at acidic pH (p<0.05. Expression of genes responsible for ACH catabolism was up-regulated by HICA but down-regulated by caspofungin. SEM showed aberrant hyphae and collapsed hyphal structures during incubation with HICA at acidic pH. We conclude that HICA has potential as an antifungal agent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm infections.

  2. The Structure-Activity Relationship of Pterostilbene Against Candida albicans Biofilms

    Directory of Open Access Journals (Sweden)

    Dan-Dan Hu

    2017-02-01

    Full Text Available Candida albicans biofilms contribute to invasive infections and dramatic drug resistance, and anti-biofilm agents are urgently needed in the clinic. Pterostilbene (PTE is a natural plant product with potentials to be developed as an anti-biofilm agent. In this study, we evaluated the structure-activity relationship (SAR of PTE analogues against C. albicans biofilms. XTT (Sodium 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxanilide inner salt reduction assay was used to evaluate the activity of the analogues against C. albicans biofilms. Knowing that hyphal formation is essential for C. albicans biofilms, anti-hyphal assay was further carried out. By comparing a series of compounds tested in this study, we found that compounds with para-hydroxy (–OH in partition A exhibited better activity than those with other substituents in the para position, and the double bond in partition B and meta-dimethoxy (–OCH3 in partition C both contributed to the best activity. Consistent results were obtained by anti-hyphal assay. Collectively, para-hydroxy (–OH, double bond and meta-dimethoxy (–OCH3 are all needed for the best activity of PTE against C. albicans biofilms.

  3. Streptococcus mutans Can Modulate Biofilm Formation and Attenuate the Virulence of Candida albicans.

    Science.gov (United States)

    Barbosa, Júnia Oliveira; Rossoni, Rodnei Dennis; Vilela, Simone Furgeri Godinho; de Alvarenga, Janaína Araújo; Velloso, Marisol dos Santos; Prata, Márcia Cristina de Azevedo; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2016-01-01

    Streptococcus mutans and Candida albicans are found together in the oral biofilms on dental surfaces, but little is known about the ecological interactions between these species. Here, we studied the effects of S. mutans UA159 on the growth and pathogencity of C. albicans. Initially, the effects of S. mutans on the biofilm formation and morphogenesis of C. albicans were tested in vitro. Next, we investigate the influence of S. mutans on pathogenicity of C. albicans using in vivo host models, in which the experimental candidiasis was induced in G. mellonella larvae and analyzed by survival curves, C. albicans count in hemolymph, and quantification of hyphae in the host tissues. In all the tests, we evaluated the direct effects of S. mutans cells, as well as the indirect effects of the subproducts secreted by this microorganism using a bacterial culture filtrate. The in vitro analysis showed that S. mutans cells favored biofilm formation by C. albicans. However, a reduction in biofilm viable cells and inhibition of hyphal growth was observed when C. albicans was in contact with the S. mutans culture filtrate. In the in vivo study, injection of S. mutans cells or S. mutans culture filtrate into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, a reduction in hyphal formation was observed in larval tissues when C. albicans was associated with S. mutans culture filtrate. These findings suggest that S. mutans can secrete subproducts capable to inhibit the biofilm formation, morphogenesis and pathogenicity of C. albicans, attenuating the experimental candidiasis in G. mellonella model.

  4. Influence of pH of Candida albicans biofilm in the susceptibility to fluconazole

    OpenAIRE

    2012-01-01

    Resumo: Na cavidade oral, a colonização por Candida albicans em nichos com valores distintos de pH contribui para o desenvolvimento de candidose associada ao uso de prótese. O tratamento dessa infecção tem sido facilitado utilizando-se o fluconazol (FLZ). Entretanto, não está claro se o pH dos biofilmes de C. albicans interfere na susceptibilidade destes ao FLZ. Dessa forma, neste trabalho foi avaliada a influência do pH de biofilmes de C. albicans na susceptibilidade ao FLZ. Testes de suscep...

  5. O-mannosylation in Candida albicans enables development of interkingdom biofilm communities.

    Science.gov (United States)

    Dutton, Lindsay C; Nobbs, Angela H; Jepson, Katy; Jepson, Mark A; Vickerman, M Margaret; Aqeel Alawfi, Sami; Munro, Carol A; Lamont, Richard J; Jenkinson, Howard F

    2014-04-15

    Candida albicans is a fungus that colonizes oral cavity surfaces, the gut, and the genital tract. Streptococcus gordonii is a ubiquitous oral bacterium that has been shown to form biofilm communities with C. albicans. Formation of dual-species S. gordonii-C. albicans biofilm communities involves interaction of the S. gordonii SspB protein with the Als3 protein on the hyphal filament surface of C. albicans. Mannoproteins comprise a major component of the C. albicans cell wall, and in this study we sought to determine if mannosylation in cell wall biogenesis of C. albicans was necessary for hyphal adhesin functions associated with interkingdom biofilm development. A C. albicans mnt1Δ mnt2Δ mutant, with deleted α-1,2-mannosyltransferase genes and thus defective in O-mannosylation, was abrogated in biofilm formation under various growth conditions and produced hyphal filaments that were not recognized by S. gordonii. Cell wall proteomes of hypha-forming mnt1Δ mnt2Δ mutant cells showed growth medium-dependent alterations, compared to findings for the wild type, in a range of protein components, including Als1, Als3, Rbt1, Scw1, and Sap9. Hyphal filaments formed by mnt1Δ mnt2Δ mutant cells, unlike wild-type hyphae, did not interact with C. albicans Als3 or Hwp1 partner cell wall proteins or with S. gordonii SspB partner adhesin, suggesting defective functionality of adhesins on the mnt1Δ mnt2Δ mutant. These observations imply that early stage O-mannosylation is critical for activation of hyphal adhesin functions required for biofilm formation, recognition by bacteria such as S. gordonii, and microbial community development. IMPORTANCE In the human mouth, microorganisms form communities known as biofilms that adhere to the surfaces present. Candida albicans is a fungus that is often found within these biofilms. We have focused on the mechanisms by which C. albicans becomes incorporated into communities containing bacteria, such as Streptococcus. We find that

  6. Characteristics of Candida albicans biofilms grown in a synthetic urine medium.

    Science.gov (United States)

    Uppuluri, Priya; Dinakaran, Hemamalini; Thomas, Derek P; Chaturvedi, Ashok K; Lopez-Ribot, Jose L

    2009-12-01

    Urinary tract infections (UTIs) are the most common type of nosocomial infection, and Candida albicans is the most frequent organism causing fungal UTIs. Presence of an indwelling urinary catheter represents a significant risk factor for UTIs. Furthermore, these infections are frequently associated with the formation of biofilms on the surface of these catheters. Here, we describe the characterization of C. albicans biofilms formed in vitro using synthetic urine (SU) medium and the frequently used RPMI medium and compare the results. Biofilms of C. albicans strain SC5314 were formed in 96-well microtiter plates and on silicon elastomer pieces using both SU and RPMI media. Biofilm formation was monitored by microscopy and a colorimetric XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction assay. As in biofilms grown in RPMI medium, time course studies revealed that biofilm formation using SU medium occurred after an initial adherence phase, followed by growth, proliferation, and maturation. However, microscopy techniques revealed that the architectural complexity of biofilms formed in SU medium was lower than that observed for those formed using RPMI medium. In particular, the level of filamentation of cells within the biofilms formed in SU medium was diminished compared to those in the biofilms grown in RPMI medium. This observation was also corroborated by expression profiling of five filamentation-associated genes using quantitative real-time reverse transcriptase PCR. Sessile C. albicans cells were resistant to fluconazole and amphotericin B, irrespective of the medium used to form the biofilms. However, caspofungin exhibited potent in vitro activity at therapeutic levels against C. albicans biofilms grown in both SU and RPMI media.

  7. Sensitization of Candida albicans biofilms to various antifungal drugs by cyclosporine A

    Directory of Open Access Journals (Sweden)

    Shinde Ravikumar B

    2012-10-01

    Full Text Available Abstract Background Biofilms formed by Candida albicans are resistant towards most of the available antifungal drugs. Therefore, infections associated with Candida biofilms are considered as a threat to immunocompromised patients. Combinatorial drug therapy may be a good strategy to combat C. albicans biofilms. Methods Combinations of five antifungal drugs- fluconazole (FLC, voriconazole (VOR, caspofungin (CSP, amphotericin B (AmB and nystatin (NYT with cyclosporine A (CSA were tested in vitro against planktonic and biofilm growth of C. albicans. Standard broth micro dilution method was used to study planktonic growth, while biofilms were studied in an in vitro biofilm model. A chequerboard format was used to determine fractional inhibitory concentration indices (FICI of combination effects. Biofilm growth was analyzed using XTT-metabolic assay. Results MICs of various antifungal drugs for planktonic growth of C. albicans were lowered in combination with CSA by 2 to 16 fold. Activity against biofilm development with FIC indices of 0.26, 0.28, 0.31 and 0.25 indicated synergistic interactions between FLC-CSA, VOR-CSA, CSP-CSA and AmB-CSA, respectively. Increase in efficacy of the drugs FLC, VOR and CSP against mature biofilms after addition of 62.5 μg/ml of CSA was evident with FIC indices 0.06, 0.14 and 0.37, respectively. Conclusions The combinations with CSA resulted in increased susceptibility of biofilms to antifungal drugs. Combination of antifungal drugs with CSA would be an effective prophylactic and therapeutic strategy against biofilm associated C. albicans infections.

  8. Biofilm formation and Candida albicans morphology on the surface of denture base materials.

    Science.gov (United States)

    Susewind, Sabine; Lang, Reinhold; Hahnel, Sebastian

    2015-12-01

    Fungal biofilms may contribute to the occurrence of denture stomatitis. The objective of the study was to investigate the biofilm formation and morphology of Candida albicans in biofilms on the surface of denture base materials. Specimens were prepared from different denture base materials. After determination of surface properties and salivary pellicle formation, mono- and multispecies biofilm formation including Candida albicans ATCC 10231 was initiated. Relative amounts of adherent cells were determined after 20, 44, 68 and 188 h; C. albicans morphology was analysed employing selective fluorescence microscopic analysis. Significant differences were identified in the relative amount of cells adherent to the denture base materials. Highest blastospore/hyphae index suggesting an increased percentage of hyphae was observed in mono- and multispecies biofilms on the soft denture liner, which did not necessarily respond to the highest relative amount of adherent cells. For both biofilm models, lowest relative amount of adherent cells was identified on the methacrylate-based denture base material, which did not necessarily relate to a significantly lower blastospore/hyphae index. The results indicate that there are significant differences in both biofilm formation as well as the morphology of C. albicans cells in biofilms on the surface of different denture base materials.

  9. Candida species biofilm and Candida albicans ALS3 polymorphisms in clinical isolates

    Directory of Open Access Journals (Sweden)

    Ariane Bruder-Nascimento

    2014-12-01

    Full Text Available Over the last decades, there have been important changes in the epidemiology of Candida infections. In recent years, Candida species have emerged as important causes of invasive infections mainly among immunocompromised patients. This study analyzed Candida spp. isolates and compared the frequency and biofilm production of different species among the different sources of isolation: blood, urine, vulvovaginal secretions and peritoneal dialysis fluid. Biofilm production was quantified in 327 Candida isolates obtained from patients attended at a Brazilian tertiary public hospital (Botucatu, Sao Paulo. C. albicans ALS3 gene polymorphism was also evaluated by determining the number of repeated motifs in the central domain. Of the 198 total biofilm-positive isolates, 72 and 126 were considered as low and high biofilm producers, respectively. Biofilm production by C. albicans was significantly lower than that by non-albicans isolates and was most frequently observed in C. tropicalis. Biofilm production was more frequent among bloodstream isolates than other clinical sources,in urine, the isolates displayed a peculiar distribution by presenting two distinct peaks, one containing biofilm-negative isolates and the other containing isolates with intense biofilm production. The numbers of tandem-repeat copies per allele were not associated with biofilm production, suggesting the evolvement of other genetic determinants.

  10. In vitro activity of Caspofungin combined with Fluconazole on mixed Candida albicans and Candida glabrata biofilm.

    Science.gov (United States)

    Pesee, Siripen; Angkananuwat, Chayanit; Tancharoensukjit, Sudarat; Muanmai, Somporn; Sirivan, Pattaraporn; Bubphawas, Manita; Tanarerkchai, Nissara

    2016-05-01

    The objective of this study was to evaluate the antifungal effect of caspofungin (CAS) combined with fluconazole (FLU) on the biofilm biomass and cultivable viability and microstructure of Candida albicans and Candida glabrata mixed biofilm in vitro.Biofilms were formed in a 96-well microtiter plate for crystal violet assay and colony forming unit (CFU) method and grown on plastic coverslip disks for scanning electron microscopy. MIC50 of CAS and FLU against single Candida spp.and mixed Candida spp.biofilms were evaluated using crystal violet assay. Additional,C. albicans and C. glabrata mixed biofilms were incubated with subinhibitory CAS concentration plus FLU and their percentages of Candida biofilm reduction were calculated. We found that percentages of biofilm reduction were significantly decreased when CAS at 0.25MIC and FLU (0.25 or 0.5MIC) were combined (PCandida glabrata were demonstrated in every group, the total viable cells derived from CAS/FLU combination-treated biofilms at any ratio were not significantly different from positive control. Overall, CAS/FLU combinations appeared to affect the quantity and cell architecture, but number of viable cell, of Candida albicans and Candida glabrata mixed biofilm. This antifungal effect was CAS concentration dependent.

  11. Candida species biofilm and Candida albicans ALS3 polymorphisms in clinical isolates.

    Science.gov (United States)

    Bruder-Nascimento, Ariane; Camargo, Carlos Henrique; Mondelli, Alessandro Lia; Sugizaki, Maria Fátima; Sadatsune, Terue; Bagagli, Eduardo

    2014-01-01

    Over the last decades, there have been important changes in the epidemiology of Candida infections. In recent years, Candida species have emerged as important causes of invasive infections mainly among immunocompromised patients. This study analyzed Candida spp. isolates and compared the frequency and biofilm production of different species among the different sources of isolation: blood, urine, vulvovaginal secretions and peritoneal dialysis fluid. Biofilm production was quantified in 327 Candida isolates obtained from patients attended at a Brazilian tertiary public hospital (Botucatu, Sao Paulo). C. albicans ALS3 gene polymorphism was also evaluated by determining the number of repeated motifs in the central domain. Of the 198 total biofilm-positive isolates, 72 and 126 were considered as low and high biofilm producers, respectively. Biofilm production by C. albicans was significantly lower than that by non-albicans isolates and was most frequently observed in C. tropicalis. Biofilm production was more frequent among bloodstream isolates than other clinical sources, in urine, the isolates displayed a peculiar distribution by presenting two distinct peaks, one containing biofilm-negative isolates and the other containing isolates with intense biofilm production. The numbers of tandem-repeat copies per allele were not associated with biofilm production, suggesting the evolvement of other genetic determinants.

  12. Co-occurence of filamentation defects and impaired biofilms in Candida albicans protein kinase mutants.

    Science.gov (United States)

    Konstantinidou, Nina; Morrissey, John Patrick

    2015-12-01

    Pathogenicity of Candida albicans is linked with its developmental stages, notably the capacity switch from yeast-like to hyphal growth, and to form biofilms on surfaces. To better understand the cellular processes involved in C. albicans development, a collection of 63 C. albicans protein kinase mutants was screened for biofilm formation in a microtitre plate assay. Thirty-eight mutants displayed some degree of biofilm impairment, with 20 categorised as poor biofilm formers. All the poor biofilm formers were also defective in the switch from yeast to hyphae, establishing it as a primary defect. Five genes, VPS15, IME2, PKH3, PGA43 and CEX1, encode proteins not previously reported to influence hyphal development or biofilm formation. Network analysis established that individual components of some processes, most interestingly MAP kinase pathways, are not required for biofilm formation, most likely indicating functional redundancy. Mutants were also screened for their response to bacterial supernatants and it was found that Pseudomonas aeruginosa supernatants inhibited biofilm formation in all mutants, regardless of the presence of homoserine lactones (HSLs). In contrast, Candida morphology was only affected by supernatant containing HSLs. This confirms the distinct HSL-dependent inhibition of filamentation and the HSL-independent impairment of biofilm development by P. aeruginosa.

  13. Thiazolidinedione-8 alters symbiotic relationship in C. albicans-S. mutans dual species biofilm

    Directory of Open Access Journals (Sweden)

    Mark eFeldman

    2016-02-01

    Full Text Available The small molecule, thiazolidinedione-8 (S-8 was shown to impair biofilm formation of various microbial pathogens, including the fungus Candida albicans and Streptococcus mutans. Previously, we have evaluated the specific molecular mode of S-8 action against C. albicans biofilm-associated pathogenicity. In this study we investigated the influence of S-8 on dual species, C. albicans-S. mutans biofilm. We show that in the presence of S-8 a reduction of the co-species biofilm formation occurred with a major effect on C. albicans. Biofilm biomass and exopolysaccharide (EPS production were significantly reduced by S-8. Moreover, the agent caused oxidative stress associated with a strong induction of reactive oxygen species (ROS and hydrogen peroxide uptake inhibition by a mixed biofilm. In addition, S-8 altered symbiotic relationship between these species by a complex mechanism. Streptococcal genes associated with quorum sensing (comDE and luxS, EPS production (gtfBCD and gbpB, as well as genes related to protection against oxidative stress (nox and sodA were markedly upregulated by S-8. In contrast, fungal genes related to hyphae formation (hwp1, adhesion (als3, hydrophobicity (csh1 and oxidative stress response (sod1, sod2 and cat1 were downregulated in the presence of S-8. In addition, ywp1 gene associated with yeast form of C. albicans was induced by S-8, which is correlated with appearance of mostly yeast cells in S-8 treated dual species biofilms. We concluded that S-8 disturbs symbiotic balance between C. albicans and S. mutans in dual species biofilm.

  14. Thiazolidinedione-8 Alters Symbiotic Relationship in C. albicans-S. mutans Dual Species Biofilm.

    Science.gov (United States)

    Feldman, Mark; Ginsburg, Isaac; Al-Quntar, Abed; Steinberg, Doron

    2016-01-01

    The small molecule, thiazolidinedione-8 (S-8) was shown to impair biofilm formation of various microbial pathogens, including the fungus Candida albicans and Streptococcus mutans. Previously, we have evaluated the specific molecular mode of S-8 action against C. albicans biofilm-associated pathogenicity. In this study we investigated the influence of S-8 on dual species, C. albicans-S. mutans biofilm. We show that in the presence of S-8 a reduction of the co-species biofilm formation occurred with a major effect on C. albicans. Biofilm biomass and exopolysaccharide (EPS) production were significantly reduced by S-8. Moreover, the agent caused oxidative stress associated with a strong induction of reactive oxygen species and hydrogen peroxide uptake inhibition by a mixed biofilm. In addition, S-8 altered symbiotic relationship between these species by a complex mechanism. Streptococcal genes associated with quorum sensing (QS) (comDE and luxS), EPS production (gtfBCD and gbpB), as well as genes related to protection against oxidative stress (nox and sodA) were markedly upregulated by S-8. In contrast, fungal genes related to hyphae formation (hwp1), adhesion (als3), hydrophobicity (csh1), and oxidative stress response (sod1, sod2, and cat1) were downregulated in the presence of S-8. In addition, ywp1 gene associated with yeast form of C. albicans was induced by S-8, which is correlated with appearance of mostly yeast cells in S-8 treated dual species biofilms. We concluded that S-8 disturbs symbiotic balance between C. albicans and S. mutans in dual species biofilm.

  15. Differential effects of antifungal agents on expression of genes related to formation of Candida albicans biofilms.

    Science.gov (United States)

    Chatzimoschou, Athanasios; Simitsopoulou, Maria; Antachopoulos, Charalampos; Walsh, Thomas J; Roilides, Emmanuel

    2016-01-01

    The purpose of this study was to analyse specific molecular mechanisms involved in the intrinsic resistance of C. albicans biofilms to antifungals. We investigated the transcriptional profile of three genes (BGL2, SUN41, ECE1) involved in Candida cell wall formation in response to voriconazole or anidulafungin after the production of intermediate and mature biofilms. C. albicans M61, a well-documented biofilm producer strain, was used for the development of intermediate (12 h and 18 h) and completely mature biofilms (48 h). After exposure of cells from each biofilm growth mode to voriconazole (128 and 512 mg l(-1)) or anidulafungin (0.25 and 1 mg l(-1)) for 12-24 h, total RNA samples extracted from biofilm cells were analysed by RT-PCR. The voriconazole and anidulafungin biofilm MIC was 512 and 0.5 mg l(-1) respectively. Anidulafungin caused significant up-regulation of SUN41 (3.7-9.3-fold) and BGL2 (2.2-2.8 fold) in intermediately mature biofilms; whereas, voriconazole increased gene expression in completely mature biofilms (SUN41 2.3-fold, BGL2 2.1-fold). Gene expression was primarily down-regulated by voriconazole in intermediately, but not completely mature biofilms. Both antifungals caused down-regulation of ECE1 in intermediately mature biofilms.

  16. In vitro activity of xanthorrhizol isolated from the rhizome of Javanese turmeric (Curcuma xanthorrhiza Roxb.) against Candida albicans biofilms.

    Science.gov (United States)

    Rukayadi, Yaya; Hwang, Jae-Kwan

    2013-07-01

    The purpose of this study was to investigate the activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. on Candida albicans biofilms at adherent, intermediate, and mature phase of growth. C. albicans biofilms were formed in flat-bottom 96-well microtiter plates. The biofilms of C. albicans at different phases of development were exposed to xanthorrhizol at different concentrations (0.5 µg/mL-256 µg/mL) for 24 h. The metabolic activity of cells within the biofilms was quantified using the XTT reduction assay. Sessile minimum inhibitory concentrations (SMICs) were determined at 50% and 80% reduction in the biofilm OD₄₉₀ compared to the control wells. The SMIC₅₀ and SMIC₈₀ of xanthorrhizol against 18 C. albicans biofilms were 4--16 µg/mL and 8--32 µg/mL, respectively. The results demonstrated that the activity of xanthorrhizol in reducing C. albicans biofilms OD₄₉₀ was dependent on the concentration and the phase of growth of biofilm. Xanthorrhizol at concentration of 8 µg/mL completely reduced in biofilm referring to XTT-colorimetric readings at adherent phase, whereas 32 µg/mL of xanthorrhizol reduced 87.95% and 67.48 % of biofilm referring to XTT-colorimetric readings at intermediate and mature phases, respectively. Xanthorrhizol displayed potent activity against C. albicans biofilms in vitro and therefore might have potential therapeutic implication for biofilm-associated candidal infections.

  17. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Jiyoti Verma-Gaur

    2015-10-01

    Full Text Available The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease.

  18. Dodonaea viscosa var. angustifolia Inhibits Germ Tube and Biofilm Formation by C. albicans

    Directory of Open Access Journals (Sweden)

    Serisha Devi Naicker

    2013-01-01

    Full Text Available The virulence factors of Candida albicans are germ tube and biofilm formation, adherence to host tissues, and production of hydrolytic enzymes. This study investigated the effect of Dodonaea viscosa var. angustifolia extract on the germ tube and biofilm formation of C. albicans. Serum containing the three subinhibitory concentrations of leaf extract was inoculated with C. albicans, incubated, and viewed under a light microscope. Number of cells with germ tube was recorded and the results were analysed using Scheffe test for pairwise comparison. Biofilms were grown on coverslips in the presence of plant extracts and processed for scanning electron microscopy (SEM. Planktonic cells were grown in the presence of plant extract for 6 h and processed for electron microscopy (TEM. The crude plant extract significantly (P<0.01 reduced the germ tube formation of C. albicans at 3.125 (85.36%, 1.56 (61.91%, and 0.78 mg/mL (26.27% showing a concentration dependent effect. SEM results showed concentration dependent reduction in biofilm and hyphae formation. TEM results showed that the plant extract caused damage to the cell wall and cell membrane. DVA extract has ability to reduce virulence of C. albicans by inhibiting germ tube and biofilm formation through damage to the cell wall. Therefore, it has therapeutic potential.

  19. Candida albicans biofilm inhibition by synergistic action of terpenes and fluconazole.

    Science.gov (United States)

    Pemmaraju, Suma C; Pruthi, Parul A; Prasad, R; Pruthi, Vikas

    2013-11-01

    The current treatment options for Candida albicans biofilm-device related infections are very scarce due to their intrinsic increased tolerance to antimycotics. The aim of this work was to study synergistic action of terpenes (eugenol, menthol and thymol) with fluconazole (FLA) on C. albicans biofilm inhibition. The minimum inhibitory concentration (MIC) assayed using CLSI M27-A3 broth micro-dilution method showed antifungal activity against C. albicans MTCC 227 at a concentration of 0.12 % (v/v) for both thymol and eugenol as compared to 0.25 % (v/v) for menthol. FLA was taken as positive control. The effect of these terpenes on metabolic activity of preformed C. albicans biofilm cells was evaluated using 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay in 96-well polystyrene microtiter plate. Thymol and eugenol were more effective at lower concentrations of > or = 1.0 % (v/v) than menthol. Synergistic studies using checkerboard micro-dilution assay showed fractional inhibitory concentration index (sigma FIC = 0.31) between thymol/FLA followed by eugenol/FLA (sigma FIC = 0.37) and menthol/FLA (sigma FIC terpenes with fluconazole on C. albicans biofilm, which could be future medications for biofilm infections.

  20. An easy and economical in vitro method for the formation of Candida albicans biofilms under continuous conditions of flow.

    Science.gov (United States)

    Uppuluri, Priya; Lopez-Ribot, Jose L

    2010-01-01

    Candida albicans can develop biofilms on medical devices and these biofilms are most often nourished by a continuous flow of body fluids and subjected to shear stress forces. While many C. albicans biofilm studies have been carried out using in vitro static models, more limited information is available for biofilms developed under conditions of flow. We have previously described a simple flow biofilm model (SFB) for the development of C. albicans biofilms under conditions of continuous media flow. Here, we recount in detail from a methodological perspective, this model that can be assembled easily using materials commonly available in most microbiological laboratories. The entire procedure takes approximately two days to complete. Biofilms developed using this system are robust, and particularly suitable for studies requiring large amounts of biofilm cells for downstream analyses. This methodology simplifies biofilm formation under continuous replenishment of nutrients. Moreover, this technique mimics in vivo flow conditions, thereby making it physiologically more relevant than the currently dominant static models.

  1. Arachidonic acid affects biofilm formation and PGE2 level in Candida albicans and non-albicans species in presence of subinhibitory concentration of fluconazole and terbinafine.

    Science.gov (United States)

    Mishra, Nripendra Nath; Ali, Shakir; Shukla, Praveen K

    2014-01-01

    Candida albicans utilizes arachidonic acid (AA) released during the course of infection (Candidiasis) from phospholipids of infected host cell membranes and synthesizes extracellular prostaglandin(s) which play an important role in hyphae formation and host cell damage. C. albicans biofilms secrete significantly more prostaglandin(s) and evidence suggests that Candida biofilms have dramatically reduced susceptibility to majority of antifungal drugs. AA influences the saturation level of lipids and fluidity of yeast cell membranes. Therefore the aim of this study was to evaluate the effect of AA alone or in combination with antifungal agents on biofilm formation and production of prostaglandin (PGE2) in C. albicans, C. parapsilosis, C. glabrata, C. tropicalis, and C. albicans amphotericin B resistant strain (AmBR). Maximum biofilm formation was found to be in the case of C. albicans compared to C. non-albicans species. However, among the non-albicans species C. tropicalis exhibited highest biofilm formation. Treatment with AA in combination with subinhibitory concentrations of fluconazole and terbinafine separately exhibited significant (p<0.05) reduction in biofilm formation against C. glabrata, C. parapsilosis, C. tropicalis and AmBR as compared to their individual effect. Further, these two antifungal agents in combination with AA caused an increase in production of prostaglandin from fungal cell itself which was significant (p<0.05) in case of all the strains tested.

  2. Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans.

    Science.gov (United States)

    Rautela, Ria; Singh, Anil Kumar; Shukla, Abha; Cameotra, Swaranjit Singh

    2014-05-01

    The ability of the human fungal pathogen Candida albicans to reversibly switch between different morphological forms and establish biofilms is crucial for establishing infection. Targeting phenotypic plasticity and biofilm formation in C. albicans represents a new concept for antifungal drug discovery. The present study evaluated the influence of cyclic lipopeptide biosurfactant produced by Bacillus amyloliquefaciens strain AR2 on C. albicans biofilms. The biosurfactant was characterized as a mixture of iturin and fengycin by MALDI-TOF and amino acid analysis. The biosurfactant exhibited concentration dependent growth inhibition and fungicidal activity. The biosurfactant at sub-minimum growth inhibition concentration decreased cell surface hydrophobicity, hindered germ tube formation and reduced the mRNA expression of hyphae-specific gene HWP1 and ALS3 without exhibiting significant growth inhibition. The biosurfactants inhibited biofilm formation in the range of 46-100 % depending upon the concentration and Candida strains. The biosurfactant treatment dislodged 25-100 % of preformed biofilm from polystyrene plates. The biosurfactant retained its antifungal and antibiofilm activity even after exposure to extreme temperature. By virtue of the ability to inhibit germ tube and biofilm formation, two important traits of C. albicans involved in establishing infection, lipopeptides from strain AR2 may represent a potential candidate for developing heat stable anti-Candida drugs.

  3. Application of benzo[a]phenoxazinium chlorides in Antimicrobial Photodynamic Therapy of Candida albicans biofilms.

    Science.gov (United States)

    Lopes, Marisa; Alves, Carlos Tiago; Rama Raju, B; Gonçalves, M Sameiro T; Coutinho, Paulo J G; Henriques, Mariana; Belo, Isabel

    2014-12-01

    The use of Antimicrobial Photodynamic Therapy (APDT) as a new approach to treat localized Candida infections is an emerging and promising field nowadays. The aim of this study was to verify the efficacy of photodynamic therapy using two new benzo[a]phenoxazinium photosensitizers against Candida albicans biofilms: N-(5-(3-hydroxypropylamino)-10-methyl-9H-benzo[a]phenoxazin-9-ylidene)ethanaminium chloride (FSc) and N-(5-(11-hydroxyundecylamino)-10-methyl-9H-benzo[a]phenoxazin-9-ylidene)ethanaminium chloride (FSd). The photodynamic activity of dyes against C. albicans biofilms was evaluated by incubating biofilms with dyes in the range of 100-300 μM for 3 or 18 h followed by illumination at 12 or 36 J cm(-2), using a xenon arc lamp (600 ± 2 nm). A total photoinactivation of C. albicans biofilm cells was achieved using 300 μM of FSc with 18 h of incubation, followed by illumination at 36 J cm(-2). Contrarily, FSd had insignificant effect on biofilms inactivation by APDT. The higher uptake of FSc than FSd dye by biofilms during the dark incubation may explain the greater photodynamic effectiveness achieved with FSc. The results obtained stresses out the FSc-mediated APDT potential use to treat C. albicans infections.

  4. Effect of ferrocene-substituted porphyrin RL-91 on Candida albicans biofilm formation.

    Science.gov (United States)

    Lippert, Rainer; Vojnovic, Sandra; Mitrovic, Aleksandra; Jux, Norbert; Ivanović-Burmazović, Ivana; Vasiljevic, Branka; Stankovic, Nada

    2014-08-01

    Ferrocene-substituted porphyrin RL-91 exhibits antifungal activity against opportune human pathogen Candida albicans. RL-91 efficiently inhibits growth of both planktonic C. albicans cells and cells within biofilms without photoactivation. The minimal inhibitory concentration for plankton form (PMIC) was established to be 100 μg/mL and the same concentration killed 80% of sessile cells in the mature biofilm (SMIC80). Furthermore PMIC of RL-91 efficiently prevents C. albicans biofilm formation. RL-91 is cytotoxic for human fibroblasts in vitro in concentration of 10 μg/mL, however it does not cause hemolysis in concentrations of up to 50 μg/mL. These findings open possibility for application of RL-91 as an antifungal agent for external antibiofilm treatment of medical devices as well as a scaffold for further development of porphyrin based systemic antifungals.

  5. Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition.

    Science.gov (United States)

    Silva, Sónia; Henriques, Mariana; Martins, António; Oliveira, Rosário; Williams, David; Azeredo, Joana

    2009-11-01

    Most cases of candidiasis have been attributed to C. albicans, but recently, non- Candida albicans Candida (NCAC) species have been identified as common pathogens. The ability of Candida species to form biofilms has important clinical repercussions due to their increased resistance to antifungal therapy and the ability of yeast cells within the biofilms to withstand host immune defenses. Given this clinical importance of the biofilm growth form, the aim of this study was to characterize biofilms produced by three NCAC species, namely C. parapsilosis, C. tropicalis and C. glabrata. The biofilm forming ability of clinical isolates of C. parapsilosis, C. tropicalis and C. glabrata recovered from different sources, was evaluated by crystal violet staining. The structure and morphological characteristics of the biofilms were also assessed by scanning electron microscopy and the biofilm matrix composition analyzed for protein and carbohydrate content. All NCAC species were able to form biofilms although these were less extensive for C. glabrata compared with C. parapsilosis and C. tropicalis. It was evident that C. parapsilosis biofilm production was highly strain dependent, a feature not evident with C. glabrata and C. tropicalis. Scanning electron microscopy revealed structural differences for biofilms with respect to cell morphology and spatial arrangement. Candida parapsilosis biofilm matrices had large amounts of carbohydrate with less protein. Conversely, matrices extracted from C. tropicalis biofilms had low amounts of carbohydrate and protein. Interestingly, C. glabrata biofilm matrix was high in both protein and carbohydrate content. The present work demonstrates that biofilm forming ability, structure and matrix composition are highly species dependent with additional strain variability occurring with C. parapsilosis.

  6. Antibiofilm activity of carboxymethyl chitosan on the biofilms of non-Candida albicans Candida species.

    Science.gov (United States)

    Tan, Yulong; Leonhard, Matthias; Moser, Doris; Schneider-Stickler, Berit

    2016-09-20

    Although most cases of candidiasis have been attributed to Candida albicans, non-C. albicans Candida species have been isolated in increasing numbers in patients. In this study, we determined the inhibition of carboxymethyl chitosan (CM-chitosan) on single and mixed species biofilm of non-albicans Candida species, including Candida tropicalis, Candida parapsilosis, Candida krusei and Candida glabrata. Biofilm by all tested species in microtiter plates were inhibited nearly 70%. CM-chitosan inhibited mixed species biofilm in microtiter plates and also on medical materials surfaces. To investigate the mechanism, the effect of CM-chitosan on cell viability and biofilm growth was employed. CM-chitosan inhibited Candida planktonic growth as well as adhesion. Further biofilm formation was inhibited with CM-chitosan added at 90min, 12h or 24h after biofilm initiation. CM-chitosan was not only able to inhibit the metabolic activity of Candida cells, but was also active upon the establishment and the development of biofilms.

  7. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation.

    Science.gov (United States)

    Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P

    2016-05-01

    Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms.

  8. Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development.

    Science.gov (United States)

    Bandara, H M H N; K Cheung, B P; Watt, R M; Jin, L J; Samaranayake, L P

    2013-02-01

    Elucidation of bacterial and fungal interactions in multispecies biofilms will have major impacts on understanding the pathophysiology of infections. The objectives of this study were to (i) evaluate the effect of Pseudomonas aeruginosa lipopolysaccharide (LPS) on Candida albicans hyphal development and transcriptional regulation, (ii) investigate protein expression during biofilm formation, and (iii) propose likely molecular mechanisms for these interactions. The effect of LPS on C. albicans biofilms was assessed by XTT-reduction and growth curve assays, light microscopy, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Changes in candidal hypha-specific genes (HSGs) and transcription factor EFG1 expression were assessed by real-time polymerase chain reaction and two-dimensional gel electrophoresis, respectively. Proteome changes were examined by mass spectrometry. Both metabolic activities and growth rates of LPS-treated C. albicans biofilms were significantly lower (P GDH1), CaO19.11135(PGK1), CaO19.9877(HNT1) by P. aeruginosa LPS. Our data imply that bacterial LPS inhibit C. albicans biofilm formation and hyphal development. The P. aeruginosa LPS likely target glycolysis-associated mechanisms during candidal filamentation.

  9. Antifungal effects of undecylenic acid on the biofilm formation of Candida albicans.

    Science.gov (United States)

    Shi, Dongmei; Zhao, Yaxin; Yan, Hongxia; Fu, Hongjun; Shen, Yongnian; Lu, Guixia; Mei, Huan; Qiu, Ying; Li, Dongmei; Liu, Weida

    2016-05-01

    Undecylenic acid can effectively control skin fungal infection, but the mechanism of its fungal inhibition is unclear. Hyphal growth of Candida albicans (C. albicans) and biofilm formation have been well recognized as important virulence factors for the initiation of skin infection and late development of disseminated infection. In this study, we seek to investigate antifungal mechanisms of undecylenic acid by evaluating the virulence factors of C. albicans during biofilm formation. We found that undecylenic acid inhibits biofilm formation of C. albicans effectively with optimal concentration above 3 mM. In the presence of this compound, the morphological transition from yeast to filamentous phase is abolished ultimately when the concentration of undecylenic acid is above 4 mM. Meanwhile, the cell surface is crumpled, and cells display an atrophic appearance under scanning electron microscopy even with low concentration of drug treatment. On the other hand, the drug treatment decreases the transcriptions of hydrolytic enzymes such as secreted aspartic protease, lipase, and phospholipase. Hyphal formation related genes, like HWP1, are significantly reduced in transcriptional level in drug-treated biofilm condition as well. The down-regulated profile of these genes leads to a poorly organized biofilm in undecylenic acid treated environment.

  10. A Candida albicans early stage biofilm detachment event in rich medium

    Directory of Open Access Journals (Sweden)

    Nantel Andre

    2009-02-01

    Full Text Available Abstract Background Dispersal from Candida albicans biofilms that colonize catheters is implicated as a primary factor in the link between contaminated catheters and life threatening blood stream infections (BSI. Appropriate in vitro C. albicans biofilm models are needed to probe factors that induce detachment events. Results Using a flow through system to culture C. albicans biofilms we characterized a detachment process which culminates in dissociation of an entire early stage biofilm from a silicone elastomer surface. We analyzed the transcriptome response at time points that bracketed an abrupt transition in which a strong adhesive association with the surface is weakened in the initial stages of the process, and also compared batch and biofilm cultures at relevant time points. K means analysis of the time course array data revealed categories of genes with similar patterns of expression that were associated with adhesion, biofilm formation and glycoprotein biosynthesis. Compared to batch cultures the biofilm showed a pattern of expression of metabolic genes that was similar to the C. albicans response to hypoxia. However, the loss of strong adhesion was not obviously influenced by either the availability of oxygen in the medium or at the silicone elastomer surface. The detachment phenotype of mutant strains in which selected genes were either deleted or overexpressed was characterized. The microarray data indicated that changes associated with the detachment process were complex and, consistent with this assessment, we were unable to demonstrate that transcriptional regulation of any single gene was essential for loss of the strong adhesive association. Conclusion The massive dispersal of the early stage biofilm from a biomaterial surface that we observed is not orchestrated at the level of transcriptional regulation in an obvious manner, or is only regulated at this level by a small subpopulation of cells that mediate adhesion to the

  11. In Vitro and In Vivo Antifungal Activity of Lichochalcone-A against Candida albicans Biofilms

    Science.gov (United States)

    Seleem, Dalia; Benso, Bruna; Noguti, Juliana; Pardi, Vanessa; Murata, Ramiro Mendonça

    2016-01-01

    Oral candidiasis (OC) is an opportunistic fungal infection with high prevalence among immunocompromised patients. Candida albicans is the most common fungal pathogen responsible for OC, often manifested in denture stomatitis and oral thrush. Virulence factors, such as biofilms formation and secretion of proteolytic enzymes, are key components in the pathogenicity of C. albicans. Given the limited number of available antifungal therapies and the increase in antifungal resistance, demand the search for new safe and effective antifungal treatments. Lichochalcone-A is a polyphenol natural compound, known for its broad protective activities, as an antimicrobial agent. In this study, we investigated the antifungal activity of lichochalcone-A against C. albicans biofilms both in vitro and in vivo. Lichochalcone-A (625 μM; equivalent to 10x MIC) significantly reduced C. albicans (MYA 2876) biofilm growth compared to the vehicle control group (1% ethanol), as indicated by the reduction in the colony formation unit (CFU)/ml/g of biofilm dry weight. Furthermore, proteolytic enzymatic activities of proteinases and phospholipases, secreted by C. albicans were significantly decreased in the lichochalcone-A treated biofilms. In vivo model utilized longitudinal imaging of OC fungal load using a bioluminescent-engineered C. albicans (SKCa23-ActgLUC) and coelenterazine substrate. Mice treated with lichochalcone-A topical treatments exhibited a significant reduction in total photon flux over 4 and 5 days post-infection. Similarly, ex vivo analysis of tongue samples, showed a significant decrease in CFU/ml/mg in tongue tissue sample of lichochalcone-A treated group, which suggest the potential of lichochalcone-A as a novel antifungal agent for future clinical use. PMID:27284694

  12. Exopolysaccharide matrix of developed Candida albicans biofilms after exposure to antifungal agents.

    Science.gov (United States)

    da Silva, Wander José; Gonçalves, Letícia Machado; Seneviratne, Jayampath; Parahitiyawa, Nipuna; Samaranayake, Lakshman Perera; Del Bel Cury, Altair Antoninha

    2012-01-01

    This study aimed to evaluate the effects of fluconazole or nystatin exposure on developed Candida albicans biofilms regarding their exopolysaccharide matrix. The minimal inhibitory concentration (MIC) against fluconazole or nystatin was determined for C. albicans reference strain (ATCC 90028). Poly(methlymethacrylate) resin (PMMA) specimens were fabricated according to the manufacturer's instructions and had their surface roughness measured. Biofilms were developed on specimens surfaces for 48 h and after that were exposed during 24 h to fluconazole or nystatin prepared in a medium at MIC, 10 x MIC or 100 x MIC. Metabolic activity was evaluated using an XTT assay. Production of soluble and insoluble exopolysaccharide and intracellular polysaccharides was evaluated by the phenol-sulfuric method. Confocal laser scanning microscope was used to evaluate biofilm architecture and percentage of dead/live cells. Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. The presence of fluconazole or nystatin at concentrations higher than MIC results in a great reduction of metabolic activity (p0.05). The exposure to nystatin also did not alter the exopolysaccharide matrix at all the tested concentrations (p>0.05). Biofilm architecture was not affected by either of the antifungal agents (p>0.05). Nystatin promoted higher proportion of dead cells (p<0.05). It may be concluded that fluconazole and nystatin above the MIC concentration reduced the metabolic activity of C. albicans biofilms; however, they were not able to alter the exopolysaccharide matrix and biofilm architecture.

  13. Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata.

    Science.gov (United States)

    Monteiro, D R; Gorup, L F; Silva, S; Negri, M; de Camargo, E R; Oliveira, R; Barbosa, D B; Henriques, M

    2011-08-01

    The aim of this study was to evaluate the effect of silver nanoparticles (SN) against Candida albicans and Candida glabrata adhered cells and biofilms. SN (average diameter 5 nm) were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. Minimal inhibitory concentration (MIC) tests were performed for C. albicans (n = 2) and C. glabrata (n = 2) grown in suspension following the Clinical Laboratory Standards Institute microbroth dilution method. SN were applied to adhered cells (2 h) or biofilms (48 h) and after 24 h of contact their effect was assessed by enumeration of colony forming units (CFUs) and quantification of total biomass (by crystal violet staining). The MIC results showed that SN were fungicidal against all strains tested at very low concentrations (0.4-3.3 μg ml(-1)). Furthermore, SN were more effective in reducing biofilm biomass when applied to adhered cells (2 h) than to pre-formed biofilms (48 h), with the exception of C. glabrata ATCC, which in both cases showed a reduction ∼90%. Regarding cell viability, SN were highly effective on adhered C. glabrata and respective biofilms. On C. albicans the effect was not so evident but there was also a reduction in the number of viable biofilm cells. In summary, SN may have the potential to be an effective alternative to conventional antifungal agents for future therapies in Candida-associated denture stomatitis.

  14. Miltefosine is effective against Candida albicans and Fusarium oxysporum nail biofilms in vitro.

    Science.gov (United States)

    Machado Vila, Taissa Vieira; Sousa Quintanilha, Natália; Rozental, Sonia

    2015-11-01

    Onychomycosis is a fungal nail infection that represents ∼50 % of all nail disease cases worldwide. Clinical treatment with standard antifungals frequently requires long-term systemic therapy to avoid chronic disease. Onychomycosis caused by non-dermatophyte moulds, such as Fusarium spp., and yeasts, such as Candida spp., is particularly difficult to treat, possibly due to the formation of drug-resistant fungal biofilms on affected areas. Here, we show that the alkylphospholipid miltefosine, used clinically against leishmaniasis and cutaneous breast metastases, has potent activity against biofilms of Fusarium oxysporum and Candida albicans formed on human nail fragments in vitro. Miltefosine activity was compared with that of commercially available antifungals in the treatment of biofilms at two distinct developmental phases: formation and maturation (pre-formed biofilms). Drug activity towards biofilms formed on nail fragments and on microplate surfaces (microdilution assays) was evaluated using XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assays, and drug effects on fingernail biofilms were analysed by scanning electron microscopy (SEM). For F. oxysporum, miltefosine at 8 μg ml- 1 inhibited biofilm formation by 93%, whilst 256 μg ml- 1 reduced the metabolic activity of pre-formed nail biofilms by 93%. Treatment with miltefosine at 1000 μg ml- 1 inhibited biofilm formation by 89% and reduced the metabolic activity of pre-formed C. albicans biofilms by 99%. SEM analyses of biofilms formed on fingernail fragments showed a clear reduction in biofilm biomass after miltefosine treatment, in agreement with XTT results. Our results show that miltefosine has potential as a therapeutic agent against onychomycosis and should be considered for in vivo efficacy studies, especially in topical formulations for refractory disease treatment.

  15. Competitive Interactions between C. albicans, C. glabrata and C. krusei during Biofilm Formation and Development of Experimental Candidiasis.

    Science.gov (United States)

    Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; Vilela, Simone Furgeri Godinho; dos Santos, Jéssica Diane; de Barros, Patrícia Pimentel; Prata, Márcia Cristina de Azevedo; Anbinder, Ana Lia; Fuchs, Beth Burgwyn; Jorge, Antonio Olavo Cardoso; Mylonakis, Eleftherios; Junqueira, Juliana Campos

    2015-01-01

    In this study, we evaluated the interactions between Candida albicans, Candida krusei and Candida glabrata in mixed infections. Initially, these interactions were studied in biofilms formed in vitro. CFU/mL values of C. albicans were lower in mixed biofilms when compared to the single biofilms, verifying 77% and 89% of C. albicans reduction when this species was associated with C. glabrata and C. krusei, respectively. After that, we expanded this study for in vivo host models of experimental candidiasis. G. mellonella larvae were inoculated with monotypic and heterotypic Candida suspensions for analysis of survival rate and quantification of fungal cells in the haemolymph. In the groups with single infections, 100% of the larvae died within 18 h after infection with C. albicans. However, interaction groups achieved 100% mortality after 72 h of infection by C. albicans-C. glabrata and 96 h of infection by C. albicans-C. krusei. C. albicans CFU/mL values from larvae hemolymph were lower in the interacting groups compared with the monoespecies group after 12 h of infection. In addition, immunosuppressed mice were also inoculated with monotypic and heterotypic microbial suspensions to induce oral candidiasis. C. albicans CFU/mL values recovered from oral cavity of mice were higher in the group with single infection by C. albicans than the groups with mixed infections by C. albicans-C. glabrata and C. albicans-C. krusei. Moreover, the group with single infection by C. albicans had a higher degree of hyphae and epithelial changes in the tongue dorsum than the groups with mixed infections. We concluded that single infections by C. albicans were more harmful for animal models than mixed infections with non-albicans species, suggesting that C. albicans establish competitive interactions with C. krusei and C. glabrata during biofilm formation and development of experimental candidiasis.

  16. Cyclosporine A decreases the fluconazole minimum inhibitory concentration of Candida albicans clinical isolates but not biofilm formation and cell growth.

    Science.gov (United States)

    Wibawa, T; Nurrokhman; Baly, I; Daeli, P R; Kartasasmita, G; Wijayanti, N

    2015-03-01

    Among the genus Candida, Candida albicans is the most abundant species in humans. One of the virulent factors of C. albicans is its ability to develop biofilm. Biofilm forming microbes are characterized by decreasing of its susceptibility to antibiotics and antifungal. The fungicidal effect of fluconazole may be enhanced by cyclosporine A in laboratory engineered C. albicans strains. The aim of this work is to analyze the synergistic effect of cyclosporine A with fluconazole in C. albicans clinical isolates and the effect of cycolsporine A alone in the biofilm formation. Six fluconazole resistant and six sensitive C. albicans clinical isolates were analyzed for its minimum inhibitory concentration (MICs), biofilm formation, and cell growths. A semi-quantitative XTT [2,3-bis(2-methoxy-4-nitro-5- sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] reduction assay was conducted to measure the biofilm formation. Cyclosporine A has synergistic effect with fluconazole that was shown by decreasing MICs of both fluconazole resistant and sensitive C. albicans clinical isolates. However, cyclosporine A alone did not influence the biofilm formation and cell growth of both fluconazole resistant and sensitive C. albicans clinical isolates. These results indicated that cyclosporine A might be a promising candidate of adjuvant therapy for fluconazole against both fluconazole resistant and sensitive C. albicans clinical isolates.

  17. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella.

    Science.gov (United States)

    Vilela, Simone F G; Barbosa, Júnia O; Rossoni, Rodnei D; Santos, Jéssica D; Prata, Marcia C A; Anbinder, Ana Lia; Jorge, Antonio O C; Junqueira, Juliana C

    2015-01-01

    Probiotic strains of Lactobacillus have been studied for their inhibitory effects on Candida albicans. However, few studies have investigated the effect of these strains on biofilm formation, filamentation and C. albicans infection. The objective of this study was to evaluate the influence of Lactobacillus acidophilus ATCC 4356 on C. albicans ATCC 18804 using in vitro and in vivo models. In vitro analysis evaluated the effects of L. acidophilus on the biofilm formation and on the capacity of C. albicans filamentation. For in vivo study, Galleria mellonella was used as an infection model to evaluate the effects of L. acidophilus on candidiasis by survival analysis, quantification of C. albicans CFU/mL, and histological analysis. The direct effects of L. acidophilus cells on C. albicans, as well as the indirect effects using only a Lactobacillus culture filtrate, were evaluated in both tests. The in vitro results showed that both L. acidophilus cells and filtrate were able to inhibit C. albicans biofilm formation and filamentation. In the in vivo study, injection of L. acidophilus into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, the number of C. albicans CFU/mL recovered from the larval hemolymph was lower in the group inoculated with L. acidophilus compared to the control group. In conclusion, L. acidophilus ATCC 4356 inhibited in vitro biofilm formation by C. albicans and protected G. mellonella against experimental candidiasis in vivo.

  18. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella

    Science.gov (United States)

    Vilela, Simone FG; Barbosa, Júnia O; Rossoni, Rodnei D; Santos, Jéssica D; Prata, Marcia CA; Anbinder, Ana Lia; Jorge, Antonio OC; Junqueira, Juliana C

    2015-01-01

    Probiotic strains of Lactobacillus have been studied for their inhibitory effects on Candida albicans. However, few studies have investigated the effect of these strains on biofilm formation, filamentation and C. albicans infection. The objective of this study was to evaluate the influence of Lactobacillus acidophilus ATCC 4356 on C. albicans ATCC 18804 using in vitro and in vivo models. In vitro analysis evaluated the effects of L. acidophilus on the biofilm formation and on the capacity of C. albicans filamentation. For in vivo study, Galleria mellonella was used as an infection model to evaluate the effects of L. acidophilus on candidiasis by survival analysis, quantification of C. albicans CFU/mL, and histological analysis. The direct effects of L. acidophilus cells on C. albicans, as well as the indirect effects using only a Lactobacillus culture filtrate, were evaluated in both tests. The in vitro results showed that both L. acidophilus cells and filtrate were able to inhibit C. albicans biofilm formation and filamentation. In the in vivo study, injection of L. acidophilus into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, the number of C. albicans CFU/mL recovered from the larval hemolymph was lower in the group inoculated with L. acidophilus compared to the control group. In conclusion, L. acidophilus ATCC 4356 inhibited in vitro biofilm formation by C. albicans and protected G. mellonella against experimental candidiasis in vivo. PMID:25654408

  19. A recently evolved transcriptional network controls biofilm development in Candida albicans.

    Science.gov (United States)

    Nobile, Clarissa J; Fox, Emily P; Nett, Jeniel E; Sorrells, Trevor R; Mitrovich, Quinn M; Hernday, Aaron D; Tuch, Brian B; Andes, David R; Johnson, Alexander D

    2012-01-20

    A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits.

  20. Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Anna Murzyn

    Full Text Available Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and

  1. Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone.

    Science.gov (United States)

    Ceresa, Chiara; Rinaldi, Maurizio; Chiono, Valeria; Carmagnola, Irene; Allegrone, Gianna; Fracchia, Letizia

    2016-10-01

    Candida albicans is the major fungus that colonises medical implants, causing device-associated infections with high mortality. Antagonistic bacterial products with interesting biological properties, such as biosurfactants, have recently been considered for biofilm prevention. This study investigated the activity of lipopeptide biosurfactant produced by Bacillus subtilis AC7 (AC7 BS) against adhesion and biofilm formation of C. albicans on medical-grade silicone elastomeric disks (SEDs). Chemical analysis, stability, surface activities of AC7 BS crude extract and physicochemical characterisation of the coated silicone disk surfaces were also carried out. AC7 BS showed a good reduction of water surface tension, low critical micelle concentration, good emulsification activity, thermal resistance and pH stability. Co-incubation with 2 mg ml(-1) AC7 BS significantly reduced adhesion and biofilm formation of three C. albicans strains on SEDs in a range of 67-69 % and of 56-57 %, respectively. On pre-coated SEDs, fungal adhesion and biofilm formation were reduced by 57-62 % and 46-47 %, respectively. Additionally, AC7 BS did not inhibit viability of C. albicans strains in both planktonic and sessile form. Chemical analysis of the crude extract revealed the presence of two families of lipopeptides, principally surfactin and a lower percentage of fengycin. The evaluation of surface wettability indicated that AC7 BS coating of SEDs surface was successful although uneven. AC7 BS significantly prohibits the initial deposition of C. albicans and slows biofilm growth, suggesting a potential role of biosurfactant coatings for preventing fungal infection associated with silicone medical devices.

  2. Garcinia xanthochymus Benzophenones Promote Hyphal Apoptosis and Potentiate Activity of Fluconazole against Candida albicans Biofilms.

    Science.gov (United States)

    Jackson, Desmond N; Yang, Lin; Wu, ShiBiao; Kennelly, Edward J; Lipke, Peter N

    2015-10-01

    Xanthochymol and garcinol, isoprenylated benzophenones purified from Garcinia xanthochymus fruits, showed multiple activities against Candida albicans biofilms. Both compounds effectively prevented emergence of fungal germ tubes and were also cytostatic, with MICs of 1 to 3 μM. The compounds therefore inhibited development of hyphae and subsequent biofilm maturation. Xanthochymol treatment of developing and mature biofilms induced cell death. In early biofilm development, killing had the characteristics of apoptosis, including externalization of phosphatidyl serine and DNA fragmentation, as evidenced by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) fluorescence. These activities resulted in failure of biofilm maturation and hyphal death in mature biofilms. In mature biofilms, xanthochymol and garcinol caused the death of biofilm hyphae, with 50% effective concentrations (EC50s) of 30 to 50 μM. Additionally, xanthochymol-mediated killing was complementary with fluconazole against mature biofilms, reducing the fluconazole EC50 from >1,024 μg/ml to 13 μg/ml. Therefore, xanthochymol has potential as an adjuvant for antifungal treatments as well as in studies of fungal apoptosis.

  3. Influence of substratum position and acquired pellicle on Candida albicans biofilm

    Directory of Open Access Journals (Sweden)

    Indira Moraes Gomes Cavalcanti

    2013-11-01

    Full Text Available The purpose of this study was to evaluate the influence of the substratum position and the saliva acquired pellicle (AP on Candida albicans biofilm development. Poly(methylmethacrylate (PMMA disks were fabricated and randomly allocated to experimental groups: HNP (disks placed in a horizontal position and uncoated by pellicle, VNP (disks placed in a vertical position and uncoated by pellicle, HCP (disks placed in a horizontal position and coated by pellicle, and VCP (disks placed in a vertical position and coated by pellicle. Disks were placed in a 24-well plate and a suspension of 107 cells/mL of Candida albicans was added to each well for biofilm development. The plates were aerobically incubated at 35°C. The biofilms were evaluated at 1.5 (adhesion time point, 24, 48, 72, and 96 hours. The number of viable cells was quantified in terms of the colony-forming units per milliliter (CFU/mL. Metabolic activity was measured by the XTT assay. The biofilm structure was analyzed by scanning electron microscopy. The data were analyzed by three-way ANOVA followed by Tukey's test, with significance set at 5%. The vertical groups showed less biofilm formation and lower metabolic activity than the horizontal groups (ppp > 0.05. It can be concluded that the substratum position influenced biofilm development.

  4. Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites

    Science.gov (United States)

    Kim, Dongyeop; Sengupta, Arjun; Niepa, Tagbo H. R.; Lee, Byung-Hoo; Weljie, Aalim; Freitas-Blanco, Veronica S.; Murata, Ramiro M.; Stebe, Kathleen J.; Lee, Daeyeon; Koo, Hyun

    2017-01-01

    Candida albicans is frequently detected with heavy infection of Streptococcus mutans in plaque-biofilms from children affected with early-childhood caries, a prevalent and costly oral disease. The presence of C. albicans enhances S. mutans growth within biofilms, yet the chemical interactions associated with bacterial accumulation remain unclear. Thus, this study was conducted to investigate how microbial products from this cross-kingdom association modulate S. mutans build-up in biofilms. Our data revealed that bacterial-fungal derived conditioned medium (BF-CM) significantly increased the growth of S. mutans and altered biofilm 3D-architecture in a dose-dependent manner, resulting in enlarged and densely packed bacterial cell-clusters (microcolonies). Intriguingly, BF-CM induced S. mutans gtfBC expression (responsible for Gtf exoenzymes production), enhancing Gtf activity essential for microcolony development. Using a recently developed nanoculture system, the data demonstrated simultaneous microcolony growth and gtfB activation in situ by BF-CM. Further metabolites/chromatographic analyses of BF-CM revealed elevated amounts of formate and the presence of Candida-derived farnesol, which is commonly known to exhibit antibacterial activity. Unexpectedly, at the levels detected (25–50 μM), farnesol enhanced S. mutans-biofilm cell growth, microcolony development, and Gtf activity akin to BF-CM bioactivity. Altogether, the data provide new insights on how extracellular microbial products from cross-kingdom interactions stimulate the accumulation of a bacterial pathogen within biofilms. PMID:28134351

  5. Candida albicans and non-C. albicans Candida species: comparison of biofilm production and metabolic activity in biofilms, and putative virulence properties of isolates from hospital environments and infections.

    Science.gov (United States)

    Ferreira, A V; Prado, C G; Carvalho, R R; Dias, K S T; Dias, A L T

    2013-04-01

    Candida albicans and, more recently, non-C. albicans Candida spp. are considered the most frequent fungi in hospitals. This study analyzed Candida spp. isolates and compared the frequency of different species, that is, C. albicans and non-C. albicans Candida spp., and the origins of isolates, that is, from hospital environments or infections. Yeast virulence factors were evaluated based on biofilm production and metabolic activity. Hemolysin production and the antifungal susceptibility profiles of isolates were also evaluated. Candida spp. were highly prevalent in samples collected from hospital environments, which may provide a reservoir for continuous infections with these yeasts. There were no differences in the biofilm productivity levels and metabolic activities of the environmental and clinical isolates, although the metabolic activities of non-C. albicans Candida spp. biofilms were greater than those of the C. albicans biofilms (p albicans Candida spp. predominated in samples collected from hospital environments and infections (p albicans, which may explain the increased incidence of fungal infections with these yeasts during recent years.

  6. Propolis Is an Efficient Fungicide and Inhibitor of Biofilm Production by Vaginal Candida albicans

    Science.gov (United States)

    Capoci, Isis Regina Grenier; Bonfim-Mendonça, Patrícia de Souza; Arita, Glaucia Sayuri; Pereira, Raphaela Regina de Araújo; Consolaro, Marcia Edilaine Lopes; Negri, Melyssa; Svidzinski, Terezinha Inez Estivalet

    2015-01-01

    Vulvovaginal candidiasis (VVC) is one of the most common genital infections in women. The therapeutic arsenal remains restricted, and some alternatives to VVC treatment are being studied. The present study evaluated the influence of a propolis extractive solution (PES) on biofilm production by Candida albicans isolated from patients with VVC. Susceptibility testing was used to verify the minimum inhibitory concentration (MIC) of PES, with fluconazole and nystatin as controls. The biofilm formation of 29 vaginal isolates of C. albicans and a reference strain that were exposed to PES was evaluated using crystal violet staining. Colony-forming units were evaluated, proteins and carbohydrates of the matrix biofilm were quantified, and scanning electron microscopy was performed. The MIC of PES ranged from 68.35 to 546.87 μg/mL of total phenol content in gallic acid. A concentration of 546.87 μg/mL was able to cause the death of 75.8% of the isolates. PES inhibited biofilm formation by C. albicans from VVC. Besides antifungal activity, PES appears to present important antibiofilm activity on abiotic surfaces, indicating that it may have an additional beneficial effect in the treatment of VVC. PMID:25815029

  7. Al-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation

    NARCIS (Netherlands)

    Bachtiar, Endang W.; Bachtiar, Boy M.; Jarosz, Lucja M.; Amir, Lisa R.; Sunarto, Hari; Ganin, Hadas; Meijler, Michael M.; Krom, Bastiaan P.

    2014-01-01

    Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium, and Candida albicans, a polymorphic fungus, are both commensals of the oral cavity but both are opportunistic pathogens that can cause oral diseases. A. actinomycetemcomitans produces a quorum-sensing molecule called autoinducer-2 (Al

  8. Candida albicans biofilm chip (CaBChip) for high-throughput antifungal drug screening.

    Science.gov (United States)

    Srinivasan, Anand; Lopez-Ribot, Jose L; Ramasubramanian, Anand K

    2012-07-18

    Candida albicans remains the main etiological agent of candidiasis, which currently represents the fourth most common nosocomial bloodstream infection in US hospitals. These opportunistic infections pose a growing threat for an increasing number of compromised individuals, and carry unacceptably high mortality rates. This is in part due to the limited arsenal of antifungal drugs, but also to the emergence of resistance against the most commonly used antifungal agents. Further complicating treatment is the fact that a majority of manifestations of candidiasis are associated with the formation of biofilms, and cells within these biofilms show increased levels of resistance to most clinically-used antifungal agents. Here we describe the development of a high-density microarray that consists of C. albicans nano-biofilms, which we have named CaBChip. Briefly, a robotic microarrayer is used to print yeast cells of C. albicans onto a solid substrate. During printing, the yeast cells are enclosed in a three dimensional matrix using a volume as low as 50 nL and immobilized on a glass substrate with a suitable coating. After initial printing, the slides are incubated at 37 °C for 24 hours to allow for biofilm development. During this period the spots grow into fully developed "nano-biofilms" that display typical structural and phenotypic characteristics associated with mature C. albicans biofilms (i.e. morphological complexity, three dimensional architecture and drug resistance). Overall, the CaBChip is composed of ~750 equivalent and spatially distinct biofilms; with the additional advantage that multiple chips can be printed and processed simultaneously. Cell viability is estimated by measuring the fluorescent intensity of FUN1 metabolic stain using a microarray scanner. This fungal chip is ideally suited for use in true high-throughput screening for antifungal drug discovery. Compared to current standards (i.e. the 96-well microtiter plate model of biofilm formation

  9. Antifungal susceptibility of Candida albicans biofilms on titanium discs with different surface roughness.

    Science.gov (United States)

    Tsang, C S P; Ng, H; McMillan, A S

    2007-12-01

    Although it is well known that fungal biofilms have increased resistance to antimicrobial agents, limited information is available on the formation of candidal biofilms on implant surfaces with different surface roughness and their resistance to conventional antifungal therapy. In the current study, the effect of increasing the surface roughness of titanium discs on the susceptibility of Candida albicans biofilms to amphotericin B was determined. Grade I commercially pure titanium discs were sandblasted with 99.6% aluminium oxide of different grit sizes, producing surface roughness of 0.90, 1.88 and 3.82 microm (Groups A, B and C), respectively (P XTT assay. The 50% reduction in metabolic activity (50% RMA) of planktonic C. albicans (0.5 microg/mL) was much lower than those from Groups A, B and C (2, 16, 2 microg/mL, respectively), while the 50% RMA from Group B was three-fold higher than those from Groups A and C. In conclusion, difference in titanium surface roughness was associated with variations in the antifungal resistance of the candidal biofilm. Group C appeared to have an optimum surface roughness for biofilm resistance.

  10. Candida albicans SUR7 contributes to secretion, biofilm formation, and macrophage killing

    Directory of Open Access Journals (Sweden)

    Bernardo Stella M

    2010-04-01

    Full Text Available Abstract Background Candida albicans SUR7 has been shown to be required for plasma membrane organization and cell wall synthesis, but its role in virulence is not known. Using a bioinformatics strategy, we previously identified several novel putative secretion pathway proteins potentially involved in virulence, including the C. albicans homolog of the Saccharomyces cerevisiae endocytosis-related protein Sur7p. We therefore generated a C. albicans sur7Δ null mutant and examined its contribution to key virulence attributes. Results Structurally, the C. albicans sur7Δ mutant was impaired in response to filamentation-inducing conditions, and formed aberrant hyphae with extensive accumulation of plasma membrane-derived structures within the cell. Absence of SUR7 resulted in a temperature-sensitive growth defect at high temperatures (42°C, which was partially rescued by addition of NaCl. We next examined the role of the SUR7 paralog C. albicans FMP45 in this temperature-sensitive phenotype. Analysis of C. albicans Fmp45p-GFP demonstrated co-localization of Fmp45p with Sur7p and increased fluorescence in the plasma membrane in the presence of high salt. We next focused on key virulence-related phenotypes. The C. albicans sur7Δ null mutant exhibited secretory defects: reduced lipase secretion, and increased levels of secreted Sap2p. The null mutant was hyper-susceptible to sub-inhibitory concentrations of caspofungin, but not amphotericin B and 5-fluorocytosine. Functionally, the sur7Δ mutant demonstrated increased adhesion to polystyrene and of note, was markedly defective in biofilm formation. In an in vitro macrophage model of virulence, the sur7Δ mutant was impaired in macrophage killing. Conclusions Plasma membrane and cell wall organization are important for cell morphology, and alterations of these structures contributed to impairment of several key virulence-associated phenotypes in the C. albicans sur7Δ mutant.

  11. In vitro evaluation of antifungal activity of monolaurin against Candida albicans biofilms

    OpenAIRE

    Seleem, Dalia; Chen, Emily; Benso, Bruna; Pardi, Vanessa; Murata, Ramiro M.

    2016-01-01

    Monolaurin (also known as glycerol monolaurate) is a natural compound found in coconut oil and is known for its protective biological activities as an antimicrobial agent. The nature of oral candidiasis and the increased antifungal resistance demand the search for novel antifungal therapeutic agents. In this study, we examine the antifungal activity of monolaurin against Candida albicans biofilms (strain ATCC:SC5314/MYA2876) in vitro and investigate whether monolaurin can alter gene expressio...

  12. Biofilms of Candida albicans serotypes A and B differ in their sensitivity to photodynamic therapy.

    Science.gov (United States)

    Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; de Oliveira, Felipe Eduardo; de Oliveira, Luciane Dias; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2014-09-01

    Candida albicans is classified into different serotypes according to cell wall mannan composition and cell surface hydrophobicity. Since the effectiveness of photodynamic therapy (PDT) depends on the cell wall structure of microorganisms, the objective of this study was to compare the sensitivity of in vitro biofilms of C. albicans serotypes A and B to antimicrobial PDT. Reference strains of C. albicans serotype A (ATCC 36801) and serotype B (ATCC 36802) were used for the assays. A gallium-aluminum-arsenide laser (660 nm) was used as the light source and methylene blue (300 μM) as the photosensitizer. After biofilm formation on the bottom of a 96-well microplate for 48 h, each Candida strain was submitted to assays: PDT consisting of laser and photosensitizer application (L + P+), laser application alone (L + P-), photosensitizer application alone (L-P+), and application of saline as control (L-P-). After treatment, biofilm cells were scraped off and transferred to tubes containing PBS. The content of the tubes was homogenized, diluted, and seeded onto Sabouraud agar plates to determine the number of colony-forming units (CFU/mL). The results were compared by analysis of variance and Tukey test (p < 0.05). The two strains studied were sensitive to PDT (L + P+), with a log reduction of 0.49 for serotype A and of 2.34 for serotype B. Laser application alone only reduced serotype B cells (0.53 log), and the use of the photosensitizer alone had no effect on the strains tested. It can be concluded that in vitro biofilms of C. albicans serotype B were more sensitive to PDT.

  13. Biofilm formation by Candida albicans and Streptococcus mutans in the presence of farnesol: a quantitative evaluation.

    Science.gov (United States)

    Fernandes, Renan Aparecido; Monteiro, Douglas Roberto; Arias, Laís Salomão; Fernandes, Gabriela Lopes; Delbem, Alberto Carlos Botazzo; Barbosa, Debora Barros

    2016-01-01

    The aim of this study was to evaluate the effect of the QS molecule farnesol on single and mixed species biofilms formed by Candida albicans and Streptococcus mutans. The anti-biofilm effect of farnesol was assessed through total biomass quantification, counting of colony forming units (CFUs) and evaluation of metabolic activity. Biofilms were also analyzed by scanning electron microscopy (SEM). It was observed that farnesol reduced the formation of single and mixed biofilms, with significant reductions of 37% to 90% and 64% to 96%, respectively, for total biomass and metabolic activity. Regarding cell viability, farnesol treatment promoted significant log reductions in the number of CFUs, ie 1.3-4.2 log10 and 0.67-5.32 log10, respectively, for single and mixed species biofilms. SEM images confirmed these results, showing decreases in the number of cells in all biofilms. In conclusion, these findings highlight the role of farnesol as an alternative agent with the potential to reduce the formation of pathogenic biofilms.

  14. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation.

    Science.gov (United States)

    Matsubara, Victor Haruo; Wang, Yi; Bandara, H M H N; Mayer, Marcia Pinto Alves; Samaranayake, Lakshman P

    2016-07-01

    We evaluated the inhibitory effects of the probiotic Lactobacillus species on different phases of Candida albicans biofilm development. Quantification of biofilm growth and ultrastructural analyses were performed on C. albicans biofilms treated with Lactobacillus rhamnosus, Lactobacillus casei, and Lactobacillus acidophilus planktonic cell suspensions as well as their supernatants. Planktonic lactobacilli induced a significant reduction (p  0.05), but significantly reduced the early stages of Candida biofilm formation (p Candida hyphal differentiation, leading to a predominance of budding growth. All lactobacilli negatively impacted C. albicans yeast-to-hyphae differentiation and biofilm formation. The inhibitory effects of the probiotic Lactobacillus on C. albicans entailed both cell-cell interactions and secretion of exometabolites that may impact on pathogenic attributes associated with C. albicans colonization on host surfaces and yeast filamentation. This study clarifies, for the first time, the mechanics of how Lactobacillus species may antagonize C. albicans host colonization. Our data elucidate the inhibitory mechanisms that define the probiotic candicidal activity of lactobacilli, thus supporting their utility as an adjunctive therapeutic mode against mucosal candidal infections.

  15. Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model.

    Science.gov (United States)

    Rajendran, Ranjith; Borghi, Elisa; Falleni, Monica; Perdoni, Federica; Tosi, Delfina; Lappin, David F; O'Donnell, Lindsay; Greetham, Darren; Ramage, Gordon; Nile, Christopher

    2015-08-01

    Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections.

  16. Action of Coriandrum sativum L. Essential Oil upon Oral Candida albicans Biofilm Formation

    Directory of Open Access Journals (Sweden)

    V. F. Furletti

    2011-01-01

    Full Text Available The efficacy of extracts and essential oils from Allium tuberosum, Coriandrum sativum, Cymbopogon martini, Cymbopogon winterianus, and Santolina chamaecyparissus was evaluated against Candida spp. isolates from the oral cavity of patients with periodontal disease. The most active oil was fractionated and tested against C. albicans biofilm formation. The oils were obtained by water-distillation and the extracts were prepared with macerated dried plant material. The Minimal Inhibitory Concentration—MIC was determined by the microdilution method. Chemical characterization of oil constituents was performed using Gas Chromatography and Mass Spectrometry (GC-MS. C. sativum activity oil upon cell and biofilm morphology was evaluated by Scanning Electron Microscopy (SEM. The best activities against planktonic Candida spp. were observed for the essential oil and the grouped F8–10 fractions from C. sativum. The crude oil also affected the biofilm formation in C. albicans causing a decrease in the biofilm growth. Chemical analysis of the F8–10 fractions detected as major active compounds, 2-hexen-1-ol, 3-hexen-1-ol and cyclodecane. Standards of these compounds tested grouped provided a stronger activity than the oil suggesting a synergistic action from the major oil constituents. The activity of C. sativum oil demonstrates its potential for a new natural antifungal formulation.

  17. A quantitative real-time RT-PCR assay for mature C. albicans biofilms

    Directory of Open Access Journals (Sweden)

    Dongari-Bagtzoglou Anna

    2011-05-01

    Full Text Available Abstract Background Fungal biofilms are more resistant to anti-fungal drugs than organisms in planktonic form. Traditionally, susceptibility of biofilms to anti-fungal agents has been measured using the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxyanilide (XTT assay, which measures the ability of metabolically active cells to convert tetrazolium dyes into colored formazan derivatives. However, this assay has limitations when applied to high C. albicans cell densities because substrate concentration and solubility are limiting factors in the reaction. Because mature biofilms are composed of high cell density populations we sought to develop a quantitative real-time RT-PCR assay (qRT-PCR that could accurately assess mature biofilm changes in response to a wide variety of anti-fungal agents, including host immune cells. Results The XTT and qRT-PCR assays were in good agreement when biofilm changes were measured in planktonic cultures or in early biofilms which contain lower cell densities. However, the real-time qRT-PCR assay could also accurately quantify small-medium size changes in mature biofilms caused by mechanical biomass reduction, antifungal drugs or immune effector cells, that were not accurately quantifiable with the XTT assay. Conclusions We conclude that the qRT-PCR assay is more accurate than the XTT assay when measuring small-medium size effects of anti-fungal agents against mature biofilms. This assay is also more appropriate when mature biofilm susceptibility to anti-fungal agents is tested on complex biological surfaces, such as organotypic cultures.

  18. In vitro evaluation of antifungal activity of monolaurin against Candida albicans biofilms.

    Science.gov (United States)

    Seleem, Dalia; Chen, Emily; Benso, Bruna; Pardi, Vanessa; Murata, Ramiro M

    2016-01-01

    Monolaurin (also known as glycerol monolaurate) is a natural compound found in coconut oil and is known for its protective biological activities as an antimicrobial agent. The nature of oral candidiasis and the increased antifungal resistance demand the search for novel antifungal therapeutic agents. In this study, we examine the antifungal activity of monolaurin against Candida albicans biofilms (strain ATCC:SC5314/MYA2876) in vitro and investigate whether monolaurin can alter gene expression of host inflammatory cytokines, IL-1α and IL-1β. In a co-culture model, oral fibroblast cells were cultured simultaneously with C. albicans for 24 hrs followed by the exposure to treatments of monolaurin (3.9-2,500 µM), positive control fluconazole (32.2 µM), and vehicle control group (1% ethanol), which was a model used to evaluate the cytotoxicity of monolaurin on fibroblasts as well as to analyze morphological characteristics of biofilms through fluorescence microscopy. In addition, the co-culture model was used for RNA extraction of oral fibroblasts to assess gene expression of host inflammatory cytokines, using quantitative real-time PCR. Our results showed the MIC and MFC of monolaurin were in the range 62.5-125 µM and 125-250 µM, respectively. Biofilm antifungal assay showed significant reduction in Log (CFU/ml) of biofilms treated with 1,250 and 2,500 µM of 1-monolaurin when compared to the control groups . There was also a significant down-regulation of IL-1α and IL-1β in the co-culture treated with monolaurin. It can be concluded that monolaurin has a potential antifungal activity against C. albicans and can modulate the pro-inflammatory response of the host.

  19. In vitro evaluation of antifungal activity of monolaurin against Candida albicans biofilms

    Directory of Open Access Journals (Sweden)

    Dalia Seleem

    2016-06-01

    Full Text Available Monolaurin (also known as glycerol monolaurate is a natural compound found in coconut oil and is known for its protective biological activities as an antimicrobial agent. The nature of oral candidiasis and the increased antifungal resistance demand the search for novel antifungal therapeutic agents. In this study, we examine the antifungal activity of monolaurin against Candida albicans biofilms (strain ATCC:SC5314/MYA2876 in vitro and investigate whether monolaurin can alter gene expression of host inflammatory cytokines, IL-1α and IL-1β. In a co-culture model, oral fibroblast cells were cultured simultaneously with C. albicans for 24 hrs followed by the exposure to treatments of monolaurin (3.9–2,500 µM, positive control fluconazole (32.2 µM, and vehicle control group (1% ethanol, which was a model used to evaluate the cytotoxicity of monolaurin on fibroblasts as well as to analyze morphological characteristics of biofilms through fluorescence microscopy. In addition, the co-culture model was used for RNA extraction of oral fibroblasts to assess gene expression of host inflammatory cytokines, using quantitative real-time PCR. Our results showed the MIC and MFC of monolaurin were in the range 62.5–125 µM and 125–250 µM, respectively. Biofilm antifungal assay showed significant reduction in Log (CFU/ml of biofilms treated with 1,250 and 2,500 µM of 1-monolaurin when compared to the control groups . There was also a significant down-regulation of IL-1α and IL-1β in the co-culture treated with monolaurin. It can be concluded that monolaurin has a potential antifungal activity against C. albicans and can modulate the pro-inflammatory response of the host.

  20. In vitro evaluation of antifungal activity of monolaurin against Candida albicans biofilms

    Science.gov (United States)

    Benso, Bruna; Pardi, Vanessa

    2016-01-01

    Monolaurin (also known as glycerol monolaurate) is a natural compound found in coconut oil and is known for its protective biological activities as an antimicrobial agent. The nature of oral candidiasis and the increased antifungal resistance demand the search for novel antifungal therapeutic agents. In this study, we examine the antifungal activity of monolaurin against Candida albicans biofilms (strain ATCC:SC5314/MYA2876) in vitro and investigate whether monolaurin can alter gene expression of host inflammatory cytokines, IL-1α and IL-1β. In a co-culture model, oral fibroblast cells were cultured simultaneously with C. albicans for 24 hrs followed by the exposure to treatments of monolaurin (3.9–2,500 µM), positive control fluconazole (32.2 µM), and vehicle control group (1% ethanol), which was a model used to evaluate the cytotoxicity of monolaurin on fibroblasts as well as to analyze morphological characteristics of biofilms through fluorescence microscopy. In addition, the co-culture model was used for RNA extraction of oral fibroblasts to assess gene expression of host inflammatory cytokines, using quantitative real-time PCR. Our results showed the MIC and MFC of monolaurin were in the range 62.5–125 µM and 125–250 µM, respectively. Biofilm antifungal assay showed significant reduction in Log (CFU/ml) of biofilms treated with 1,250 and 2,500 µM of 1-monolaurin when compared to the control groups . There was also a significant down-regulation of IL-1α and IL-1β in the co-culture treated with monolaurin. It can be concluded that monolaurin has a potential antifungal activity against C. albicans and can modulate the pro-inflammatory response of the host. PMID:27366648

  1. Transcription Factors Efg1 and Bcr1 Regulate Biofilm Formation and Virulence during Candida albicans-Associated Denture Stomatitis.

    Science.gov (United States)

    Yano, Junko; Yu, Alika; Fidel, Paul L; Noverr, Mairi C

    2016-01-01

    Denture stomatitis (DS) is characterized by inflammation of the oral mucosa in direct contact with dentures and affects a significant number of otherwise healthy denture wearers. The disease is caused by Candida albicans, which readily colonizes and form biofilms on denture materials. While evidence for biofilms on abiotic and biotic surfaces initiating Candida infections is accumulating, a role for biofilms in DS remains unclear. Using an established model of DS in immunocompetent animals, the purpose of this study was to determine the role of biofilm formation in mucosal damage during pathogenesis using C. albicans or mutants defective in morphogenesis (efg1-/-) or biofilm formation (bcr1-/-). For in vivo analyses, rats fitted with custom dentures, consisting of fixed and removable parts, were inoculated with wild-type C. albicans, mutants or reconstituted strains and monitored weekly for fungal burden (denture and palate), body weight and tissue damage (LDH) for up to 8 weeks. C. albicans wild-type and reconstituted mutants formed biofilms on dentures and palatal tissues under in vitro, ex vivo and in vivo conditions as indicated by microscopy demonstrating robust biofilm architecture and extracellular matrix (ECM). In contrast, both efg1-/- and bcr1-/- mutants exhibited poor biofilm growth with little to no ECM. In addition, quantification of fungal burden showed reduced colonization throughout the infection period on dentures and palates of rats inoculated with efg1-/-, but not bcr1-/-, compared to controls. Finally, rats inoculated with efg1-/- and bcr1-/- mutants had minimal palatal tissue damage/weight loss while those inoculated with wild-type or reconstituted mutants showed evidence of tissue damage and exhibited stunted weight gain. These data suggest that biofilm formation is associated with tissue damage during DS and that Efg1 and Bcr1, both central regulators of virulence in C. albicans, have pivotal roles in pathogenesis of DS.

  2. Transcription Factors Efg1 and Bcr1 Regulate Biofilm Formation and Virulence during Candida albicans-Associated Denture Stomatitis.

    Directory of Open Access Journals (Sweden)

    Junko Yano

    Full Text Available Denture stomatitis (DS is characterized by inflammation of the oral mucosa in direct contact with dentures and affects a significant number of otherwise healthy denture wearers. The disease is caused by Candida albicans, which readily colonizes and form biofilms on denture materials. While evidence for biofilms on abiotic and biotic surfaces initiating Candida infections is accumulating, a role for biofilms in DS remains unclear. Using an established model of DS in immunocompetent animals, the purpose of this study was to determine the role of biofilm formation in mucosal damage during pathogenesis using C. albicans or mutants defective in morphogenesis (efg1-/- or biofilm formation (bcr1-/-. For in vivo analyses, rats fitted with custom dentures, consisting of fixed and removable parts, were inoculated with wild-type C. albicans, mutants or reconstituted strains and monitored weekly for fungal burden (denture and palate, body weight and tissue damage (LDH for up to 8 weeks. C. albicans wild-type and reconstituted mutants formed biofilms on dentures and palatal tissues under in vitro, ex vivo and in vivo conditions as indicated by microscopy demonstrating robust biofilm architecture and extracellular matrix (ECM. In contrast, both efg1-/- and bcr1-/- mutants exhibited poor biofilm growth with little to no ECM. In addition, quantification of fungal burden showed reduced colonization throughout the infection period on dentures and palates of rats inoculated with efg1-/-, but not bcr1-/-, compared to controls. Finally, rats inoculated with efg1-/- and bcr1-/- mutants had minimal palatal tissue damage/weight loss while those inoculated with wild-type or reconstituted mutants showed evidence of tissue damage and exhibited stunted weight gain. These data suggest that biofilm formation is associated with tissue damage during DS and that Efg1 and Bcr1, both central regulators of virulence in C. albicans, have pivotal roles in pathogenesis of DS.

  3. Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation.

    Science.gov (United States)

    Lattif, Ali Abdul; Mukherjee, Pranab K; Chandra, Jyotsna; Roth, Mary R; Welti, Ruth; Rouabhia, Mahmoud; Ghannoum, Mahmoud A

    2011-11-01

    Candida albicans-associated bloodstream infections are linked to the ability of this yeast to form biofilms. In this study, we used lipidomics to compare the lipid profiles of C. albicans biofilms and planktonic cells, in early and mature developmental phases. Our results showed that significant differences exist in lipid composition in both developmental phases. Biofilms contained higher levels of phospholipid and sphingolipids than planktonic cells (nmol per g biomass, Pbiofilms compared to planktonic cells (P≤0.05). The ratio of phosphatidylcholine to phosphatidylethanolamine was lower in biofilms compared to planktonic cells in both early (1.17 vs 2.52, P≤0.001) and late (2.34 vs 3.81, P≤0.001) developmental phases. The unsaturation index of phospholipids decreased with time, with this effect being particularly strong for biofilms. Inhibition of the biosynthetic pathway for sphingolipid [mannosyl diinositolphosphoryl ceramide, M(IP)₂C] by myriocin or aureobasidin A, and disruption of the gene encoding inositolphosphotransferase (Ipt1p), abrogated the ability of C. albicans to form biofilms. The differences in lipid profiles between biofilms and planktonic Candida cells may have important implications for the biology and antifungal resistance of biofilms.

  4. Action of antimicrobial photodynamic therapy on heterotypic biofilm: Candida albicans and Bacillus atrophaeus.

    Science.gov (United States)

    Silva, Michelle Peneluppi; dos Santos, Thais Alves; de Barros, Patrícia Pimentel; de Camargo Ribeiro, Felipe; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso

    2016-05-01

    The increase in survival and resistance of microorganisms organized in biofilms demonstrates the need for new studies to develop therapies able to break this barrier, such as photodynamic therapy, which is characterized as an alternative, effective, and non-invasive treatment. The objective was to evaluate in vitro the effect of antimicrobial photodynamic therapy on heterotypic biofilms of Candida albicans and Bacillus atrophaeus using rose bengal (12.5 μM) and light-emitting diode (LED) (532 nm and 16.2 J). We used standard strains of B. atrophaeus (ATCC 9372) and C. albicans (ATCC 18804). The biofilm was formed in the bottom of the plate for 48 h. For the photodynamic therapy (PDT) experimental groups, we added 100 μL of rose bengal with LED (P+L+), 100 μL of rose bengal without LED (P+L-), 100 μL of NaCl 0.9 % solution with LED (P-L+), and a control group without photosensitizer or LED (P-L-). The plates remained in agitation for 5 min (pre-irradiation) and were irradiated with LED for 3 min, and the biofilm was detached using an ultrasonic homogenizer for 30 s. Serial dilutions were plated in BHI agar and HiChrom agar and incubated at 37 °C/48 h. There was a reduction of 33.92 and 29.31 % of colony-forming units per milliliter (CFU/mL) for C. albicans and B. atrophaeus, respectively, from the control group to the group subjected to PDT. However, statistically significant differences were not observed among the P+L+, P+L-, P-L+, and P-L- groups. These results suggest that antimicrobial photodynamic therapy using rose bengal (12.5 μM) with a pre-irradiation period of 5 min and LED for 3 min was not enough to cause a significant reduction in the heterotypic biofilms of C. albicans and B. atrophaeus.

  5. The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole.

    LENUS (Irish Health Repository)

    2009-03-01

    The expression of the ERG1, ERG3, ERG7, ERG9, ERG11 and ERG25 genes in response to incubation with fluconazole and biofilm formation was investigated using reverse-transcription PCR and real-time PCR in Candida albicans and Candida dubliniensis clinical isolates. The viability of biofilm was measured using an 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay and confocal scanning laser microscopy (CSLM). Expression of the ERG11 gene was found to be low or moderate and it was regulated by fluconazole addition more so than by biofilm formation. Very low or non-detectable expression of ERG1, ERG7 and ERG25 genes was detected in C. albicans. The expression of the ERG9 increased in the presence of fluconazole in some isolates. Following incubation with fluconazole, formation of biofilm by C. dubliniensis was coupled with up-regulation of the ERG3 and ERG25 genes as have been observed previously in C. albicans. Planktonic cells of both Candida species released from biofilm displayed similar resistance mechanisms to fluconazole like attached cells. The XTT reduction assay and CSLM revealed that although incubation with fluconazole decreased the biofilm thickness, these were still comprised metabolically active cells able to disseminate and produce biofilm. Our data indicate that biofilm represents a highly adapted community reflecting the individuality of clinical isolates.

  6. Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma.

    Science.gov (United States)

    Maisch, Tim; Shimizu, Tetsuji; Isbary, Georg; Heinlin, Julia; Karrer, Sigrid; Klämpfl, Tobias G; Li, Yang-Fang; Morfill, Gregor; Zimmermann, Julia L

    2012-06-01

    Candida albicans is one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivating C. albicans growing in biofilms without thermally damaging heat-sensitive materials. This so-called cold atmospheric plasma is produced by applying high voltage to accelerate electrons, which ionize the surrounding air, leading to the production of charged particles, reactive species, and photons. A newly developed plasma device was used, which exhibits a large plasma-generating surface area of 9 by 13 cm (117 cm(2)). Different time points were selected to achieve an optimum inactivation efficacy range of ≥3 log(10) to 5 log(10) reduction in CFU per milliliter, and the results were compared with those of 70% ethanol. The results obtained show that contact-free antifungal inactivation of Candida biofilms by cold atmospheric plasma is a promising tool for disinfection of surfaces (and items) in both health care settings and the food industry, where ethanol disinfection should be avoided.

  7. Synergistic activity of the tyrocidines, antimicrobial cyclodecapeptides from Bacillus aneurinolyticus, with amphotericin B and caspofungin against Candida albicans biofilms.

    Science.gov (United States)

    Troskie, Anscha Mari; Rautenbach, Marina; Delattin, Nicolas; Vosloo, Johan Arnold; Dathe, Margitta; Cammue, Bruno P A; Thevissen, Karin

    2014-07-01

    Tyrocidines are cationic cyclodecapeptides from Bacillus aneurinolyticus that are characterized by potent antibacterial and antimalarial activities. In this study, we show that various tyrocidines have significant activity against planktonic Candida albicans in the low-micromolar range. These tyrocidines also prevented C. albicans biofilm formation in vitro. Studies with the membrane-impermeable dye propidium iodide showed that the tyrocidines disrupt the membrane integrity of mature C. albicans biofilm cells. This membrane activity correlated with the permeabilization and rapid lysis of model fungal membranes containing phosphatidylcholine and ergosterol (70:30 ratio) induced by the tyrocidines. The tyrocidines exhibited pronounced synergistic biofilm-eradicating activity in combination with two key antifungal drugs, amphotericin B and caspofungin. Using a Caenorhabditis elegans infection model, we found that tyrocidine A potentiated the activity of caspofungin. Therefore, tyrocidines are promising candidates for further research as antifungal drugs and as agents for combinatorial treatment.

  8. Fungal β-1,3-glucan increases ofloxacin tolerance of Escherichia coli in a polymicrobial E. coli/Candida albicans biofilm.

    Science.gov (United States)

    De Brucker, Katrijn; Tan, Yulong; Vints, Katlijn; De Cremer, Kaat; Braem, Annabel; Verstraeten, Natalie; Michiels, Jan; Vleugels, Jef; Cammue, Bruno P A; Thevissen, Karin

    2015-01-01

    In the past, biofilm-related research has focused mainly on axenic biofilms. However, in nature, biofilms are often composed of multiple species, and the resulting polymicrobial interactions influence industrially and clinically relevant outcomes such as performance and drug resistance. In this study, we show that Escherichia coli does not affect Candida albicans tolerance to amphotericin or caspofungin in an E. coli/C. albicans biofilm. In contrast, ofloxacin tolerance of E. coli is significantly increased in a polymicrobial E. coli/C. albicans biofilm compared to its tolerance in an axenic E. coli biofilm. The increased ofloxacin tolerance of E. coli is mainly biofilm specific, as ofloxacin tolerance of E. coli is less pronounced in polymicrobial E. coli/C. albicans planktonic cultures. Moreover, we found that ofloxacin tolerance of E. coli decreased significantly when E. coli/C. albicans biofilms were treated with matrix-degrading enzymes such as the β-1,3-glucan-degrading enzyme lyticase. In line with a role for β-1,3-glucan in mediating ofloxacin tolerance of E. coli in a biofilm, we found that ofloxacin tolerance of E. coli increased even more in E. coli/C. albicans biofilms consisting of a high-β-1,3-glucan-producing C. albicans mutant. In addition, exogenous addition of laminarin, a polysaccharide composed mainly of poly-β-1,3-glucan, to an E. coli biofilm also resulted in increased ofloxacin tolerance. All these data indicate that β-1,3-glucan from C. albicans increases ofloxacin tolerance of E. coli in an E. coli/C. albicans biofilm.

  9. Comparison of Switching and Biofilm Formation between MTL-Homozygous Strains of Candida albicans and Candida dubliniensis.

    Science.gov (United States)

    Pujol, Claude; Daniels, Karla J; Soll, David R

    2015-12-01

    Candida albicans and Candida dubliniensis are highly related species that share the same main developmental programs. In C. albicans, it has been demonstrated that the biofilms formed by strains heterozygous and homozygous at the mating type locus (MTL) differ functionally, but studies rarely identify the MTL configuration. This becomes a particular problem in studies of C. dubliniensis, given that one-third of natural strains are MTL homozygous. For that reason, we have analyzed MTL-homozygous strains of C. dubliniensis for their capacity to switch from white to opaque, the stability of the opaque phenotype, CO2 induction of switching, pheromone induction of adhesion, the effects of minority opaque cells on biofilm thickness and dry weight, and biofilm architecture in comparison with C. albicans. Our results reveal that C. dubliniensis strains switch to opaque at lower average frequencies, exhibit a far lower level of opaque phase stability, are not stimulated to switch by high CO2, exhibit more variability in biofilm architecture, and most notably, form mature biofilms composed predominately of pseudohyphae rather than true hyphae. Therefore, while several traits of MTL-homozygous strains of C. dubliniensis appear to be degenerating or have been lost, others, most notably several related to biofilm formation, have been conserved. Within this context, the possibility is considered that C. dubliniensis is transitioning from a hypha-dominated to a pseudohypha-dominated biofilm and that aspects of C. dubliniensis colonization may provide insights into the selective pressures that are involved.

  10. Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR

    Directory of Open Access Journals (Sweden)

    Deforce Dieter

    2006-08-01

    Full Text Available Abstract Background Candida albicans biofilms are commonly found on indwelling medical devices. However, the molecular basis of biofilm formation and development is not completely understood. Expression analysis of genes potentially involved in these processes, such as the ALS (Agglutinine Like Sequence gene family can be performed using quantitative PCR (qPCR. In the present study, we investigated the expression stability of eight housekeeping genes potentially useful as reference genes to study gene expression in Candida albicans (C. albicans biofilms, using the geNorm Visual Basic Application (VBA for Microsoft Excel. To validate our normalization strategies we determined differences in ALS1 and ALS3 expression levels between C. albicans biofilm cells and their planktonic counterparts. Results The eight genes tested in this study are ranked according to their expression stability (from most stable to least stable as follows: ACT1 (β-actin/PMA1 (adenosine triphosphatase, RIP (ubiquinol cytochrome-c reductase complex component, RPP2B (cytosolic ribosomal acidic protein P2B, LSC2 (succinyl-CoA synthetase β-subunit fragment, IMH3 (inosine-5'-monophosphate dehydrogenase fragment, CPA1 (carbamoyl-phosphate synthethase small subunit and GAPDH (glyceraldehyde-3-phosphate dehydrogenase. Our data indicate that five genes are necessary for accurate and reliable normalization of gene expression data in C. albicans biofilms. Using different normalization strategies, we found a significant upregulation of the ALS1 gene and downregulation of the ALS3 gene in C. albicans biofilms grown on silicone disks in a continous flow system, the CDC reactor (Centre for Disease Control, for 24 hours. Conclusion In conclusion, we recommend the use of the geometric mean of the relative expression values from the five housekeeping genes (ACT1, PMA1, RIP, RPP2B and LSC2 for normalization, when analysing differences in gene expression levels between C. albicans biofilm

  11. Candida albicans biofilms and MMA surface treatment influence the adhesion of soft denture liners to PMMA resin.

    Science.gov (United States)

    Mendonça e Bertolini, Martinna de; Cavalcanti, Yuri Wanderley; Bordin, Dimorvan; Silva, Wander José da; Cury, Altair Antoninha Del Bel

    2014-01-01

    The effect of Candida albicans biofilms and methyl methacrylate (MMA) pretreatment on the bond strength between soft denture liners and polymethyl methacrylate (PMMA) resin was analyzed. Specimens were prepared and randomly divided with respect to PMMA pretreatment, soft liner type (silicone-based or PMMA-based), and presence or absence of a C. albicans biofilm. Samples were composed of a soft denture liner bonded between two PMMA bars. Specimens (n = 10) were incubated to produce a C. albicans biofilm or stored in sterile PBS for 12 days. The tensile bond strength test was performed and failure type was determined using a stereomicroscope. Surface roughness (SR) and scanning electron microscopy (SEM) analysis were performed on denture liners (n = 8). Highest bond strength was observed in samples containing a silicone-based soft liner and stored in PBS, regardless of pretreatment (p PMMA-based liners predominantly underwent cohesive failures. The silicone-based specimens SR decreased after 12 days of biofilm accumulation or PBS storage, while the SR of PMMA-based soft liners increased (p PMMA-based soft liners surfaces presented sharp valleys and depressions, while silicone-based specimens surfaces exhibited more gentle features. In vitro exposure to C. albicans biofilms reduced the adhesion of denture liners to PMMA resin, and MMA pretreatment is recommended during relining procedures.

  12. Candida albicans biofilms and MMA surface treatment influence the adhesion of soft denture liners to PMMA resin

    Directory of Open Access Journals (Sweden)

    Martinna de Mendonça e Bertolini

    2014-01-01

    Full Text Available The effect of Candida albicans biofilms and methyl methacrylate (MMA pretreatment on the bond strength between soft denture liners and polymethyl methacrylate (PMMA resin was analyzed. Specimens were prepared and randomly divided with respect to PMMA pretreatment, soft liner type (silicone-based or PMMA-based, and presence or absence of a C. albicans biofilm. Samples were composed of a soft denture liner bonded between two PMMA bars. Specimens (n = 10 were incubated to produce a C. albicans biofilm or stored in sterile PBS for 12 days. The tensile bond strength test was performed and failure type was determined using a stereomicroscope. Surface roughness (SR and scanning electron microscopy (SEM analysis were performed on denture liners (n = 8. Highest bond strength was observed in samples containing a silicone-based soft liner and stored in PBS, regardless of pretreatment (p < 0.01. Silicone-based specimens mostly underwent adhesive failures, while samples containing PMMA-based liners predominantly underwent cohesive failures. The silicone-based specimens SR decreased after 12 days of biofilm accumulation or PBS storage, while the SR of PMMA-based soft liners increased (p < 0.01. The PMMA-based soft liners surfaces presented sharp valleys and depressions, while silicone-based specimens surfaces exhibited more gentle features. In vitro exposure to C. albicans biofilms reduced the adhesion of denture liners to PMMA resin, and MMA pretreatment is recommended during relining procedures.

  13. Inhibition of Candida albicans biofilm formation by antimycotics released from modified polydimethyl siloxane.

    Science.gov (United States)

    De Prijck, Kristof; De Smet, Nele; Honraet, Kris; Christiaen, Steven; Coenye, Tom; Schacht, Etienne; Nelis, Hans J

    2010-03-01

    Unlike various disinfectants, antifungals have not been commonly incorporated so far in medical devices, such as catheters or prostheses, to prevent biofilm formation by Candida spp. In the present study, five antimycotics were added to polydimethyl siloxane (PDMS) disks via admixture (nystatin) or impregnation (trimethylsilyl-nystatin (TMS-nystatin), miconazole, tea tree oil (TTO), zinc pyrithione). Nystatin-medicated PDMS disks exhibited a concentration-dependent inhibitory effect on biofilm formation in a microtiter plate (MTP) but not in a Modified Robbins Device (MRD). This observation, together with HPLC data and agar diffusion tests, indicates that a small fraction of free nystatin is released, which kills Candida albicans cells in the limited volume of a MTP well. In contrast, biofilm inhibition amounted to more than one log unit in the MRD on disks impregnated with miconazole, TTO, and zinc pyrithione. It is hypothesized that the reduction in biofilm formation by these compounds in a flow system occurs through a contact-dependent effect.

  14. In vitro Candida albicans biofilm induced proteinase activity and SAP8 expression correlates with in vivo denture stomatitis severity.

    Science.gov (United States)

    Ramage, Gordon; Coco, Brent; Sherry, Leighann; Bagg, Jeremy; Lappin, David F

    2012-07-01

    Denture stomatitis is a common inflammatory disorder of the palatal mucosa amongst denture wearers. The pathological changes are induced by Candida albicans biofilm on the fitting surface of the upper denture, and different individuals experience different levels of disease. C. albicans is known to produce secreted aspartyl proteinases (SAPs) to aid adhesion, invasion and tissue destruction. We hypothesised that differential expression and activity of SAPs from denture stomatitis isolates results in different levels of disease amongst denture wearers. We selected C. albicans isolates from asymptomatic controls and three different severities of disease [Newton’s type (NT) 0, I, II and III]. We assessed biofilm formation and proteinase activity for each biofilm and investigated the transcriptional profile of SAPs 1, 2, 5, 6 and 8 from early (12 h) and mature (24 h) biofilms. There were no significant differences between isolates with respect to biofilm formation, whereas proteinase activity normalised to biofilm growth was significantly increased in the diseased groups (p < 0.0001). Proteinase activity correlated strongly with SAP expression (p < 0.0001). SAP8 expression was the greatest, followed by SAP5, 6, 2 and 1. The diseased groups showed the greatest levels of SAP expression, with significant differences also observed between the groups (p < 0.005). All SAPs except SAP5 were expressed in greater amounts in the mature biofilms compared to early biofilms. Overall, this study suggests that SAP activity in biofilms determined in vitro may help to explain differences in disease severity. SAP8 has been shown for the first time to play a prominent role in biofilms.

  15. The role of Bgl2p in the transition to filamentous cells during biofilm formation by Candida albicans.

    Science.gov (United States)

    Chen, Xinyue; Zhang, Ruoyu; Takada, Ayako; Iwatani, Shun; Oka, Chiemi; Kitamoto, Toshitaka; Kajiwara, Susumu

    2017-02-01

    The fungal pathogen Candida albicans undergoes a transition from yeast cells to filamentous cells that is related to its pathogenicity. The complex multicellular processes involved in biofilm formation by this fungus also include this transition. In this work, we investigated the morphological role of the Bgl2 protein (Bgl2p) in the transition to filamentous cells during biofilm formation by C. albicans. Bgl2p has been identified as a β-1, 3-glucosyltransferase, and transcription of the CaBGL2 gene is upregulated during biofilm formation. We used scanning electron microscopy to observe the microstructure of a bgl2 null mutant during biofilm formation and found a delay in the transition to filamentous cells in the premature phase (24 hours) of biofilm formation. Deletion of the CaBGL2 gene led to a decrease in the expression of CPH2 and TEC1, which encode transcription factors required for the transition to the filamentous form. These findings indicate that Bgl2p plays a role in the transition to filamentous cells during biofilm formation by C. albicans.

  16. Influence of artificial saliva in biofilm formation of Candida albicans in vitro

    Directory of Open Access Journals (Sweden)

    Michelle Peneluppi Silva

    2012-02-01

    Full Text Available Due to the increase in life expectancy, new treatments have emerged which, although palliative, provide individuals with a better quality of life. Artificial saliva is a solution that contains substances that moisten a dry mouth, thus mimicking the role of saliva in lubricating the oral cavity and controlling the existing normal oral microbiota. This study aimed to assess the influence of commercially available artificial saliva on biofilm formation by Candida albicans. Artificial saliva I consists of carboxymethylcellulose, while artificial saliva II is composed of glucose oxidase, lactoferrin, lysozyme and lactoperoxidase. A control group used sterile distilled water. Microorganisms from the oral cavity were transferred to Sabouraud Dextrose Agar and incubated at 37°C for 24 hours. Colonies of Candida albicans were suspended in a sterile solution of NaCl 0.9%, and standardisation of the suspension to 106 cells/mL was achieved. The acrylic discs, immersed in artificial saliva and sterile distilled water, were placed in a 24-well plate containing 2 mL of Sabouraud Dextrose Broth plus 5% sucrose and 0.1 mL aliquot of the Candida albicans suspension. The plates were incubated at 37°C for 5 days, the discs were washed in 2 mL of 0.9% NaCl and placed into a tube containing 10 mL of 0.9% NaCl. After decimal dilutions, aliquots of 0.1 mL were seeded on Sabouraud Dextrose Agar and incubated at 37°C for 48 hours. Counts were reported as CFU/mL (Log10. A statistically significant reduction of 29.89% (1.45 CFU/mL of Candida albicans was observed in saliva I when compared to saliva II (p = 0.002, considering p≤0.05.

  17. Micafungin triggers caspase-dependent apoptosis in Candida albicans and Candida parapsilosis biofilms, including caspofungin non-susceptible isolates.

    Science.gov (United States)

    Shirazi, F; Kontoyiannis, D P

    2015-01-01

    Candida biofilms play an important role in infections associated with medical devices and are resistant to antifungals. We hypothesized that the echinocandin micafungin (MICA) exerts an enhanced antifungal activity against caspofungin (CAS)-susceptible (CAS-S) and CAS-non-susceptible (CAS-NS) Candida albicans and Candida parapsilosis which is at least in part through apoptosis, even in the biofilm environment. Apoptosis was characterized by detecting reactive oxygen species (ROS) accumulation, depolarization of mitochondrial membrane potential (MMP), DNA fragmentation, lack of plasma membrane integrity, and metacaspase activation following exposure of Candida biofilm to MICA for 3h at 37°C in RPMI 1640 medium. The minimum inhibitory concentration was higher for CAS (2.0-16.0 μg/mL) than for MICA (1.0-8.0 μg/mL) for Candida biofilms. Elevated intracellular ROS levels and depolarization of MMP was evident in CAS-S C. albicans (3.0-4.2 fold) and C. parapsilosis (4.8-5.4 fold) biofilms compared with CAS-NS (1.2 fold) after exposure to MICA (0.25x-1xMIC). Elevated intracellular ROS levels and depolarization of MMP was evident in CAS-S C. albicans (3.0-4.2 fold) and C. parapsilosis (4.8-5.4 fold) biofilms compared with CAS-NS (1.2 fold) after exposure to MICA (0.25x-1xMIC). Finally higher ß-1, 3 glucan levels were seen in sessile cells compared to planktonic cells, especially in CAS-NS strains. MICA treatment might induce a metacaspase-dependent apoptotic process in biofilms of both CAS-S C. albicans and C. parapsilosis, and to some degree in CAS-NS strains.

  18. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans.

    Science.gov (United States)

    Sztajer, Helena; Szafranski, Szymon P; Tomasch, Jürgen; Reck, Michael; Nimtz, Manfred; Rohde, Manfred; Wagner-Döbler, Irene

    2014-11-01

    Polymicrobial biofilms are of large medical importance, but relatively little is known about the role of interspecies interactions for their physiology and virulence. Here, we studied two human pathogens co-occuring in the oral cavity, the opportunistic fungus Candida albicans and the caries-promoting bacterium Streptococcus mutans. Dual-species biofilms reached higher biomass and cell numbers than mono-species biofilms, and the production of extracellular polymeric substances (EPSs) by S. mutans was strongly suppressed, which was confirmed by scanning electron microscopy, gas chromatography-mass spectrometry and transcriptome analysis. To detect interkingdom communication, C. albicans was co-cultivated with a strain of S. mutans carrying a transcriptional fusion between a green fluorescent protein-encoding gene and the promoter for sigX, the alternative sigma factor of S. mutans, which is induced by quorum sensing signals. Strong induction of sigX was observed in dual-species biofilms, but not in single-species biofilms. Conditioned media from mixed biofilms but not from C. albicans or S. mutans cultivated alone activated sigX in the reporter strain. Deletion of comS encoding the synthesis of the sigX-inducing peptide precursor abolished this activity, whereas deletion of comC encoding the competence-stimulating peptide precursor had no effect. Transcriptome analysis of S. mutans confirmed induction of comS, sigX, bacteriocins and the downstream late competence genes, including fratricins, in dual-species biofilms. We show here for the first time the stimulation of the complete quorum sensing system of S. mutans by a species from another kingdom, namely the fungus C. albicans, resulting in fundamentally changed virulence properties of the caries pathogen.

  19. ALS1 and ALS3 gene expression and biofilm formation in Candida albicans isolated from vulvovaginal candidiasis

    Directory of Open Access Journals (Sweden)

    Shahla Roudbarmohammadi

    2016-01-01

    Conclusion: The results attained indicated that there is an association between the expression of ALS1 and ALS3 genes and fluconazole resistance in C. albicans. A considerable percent of the isolates expressing the ALS1 and ALS3 genes may have contributed to their adherence to vagina and biofilm formation.

  20. The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis

    Science.gov (United States)

    Freires, Irlan Almeida; Bueno-Silva, Bruno; Galvão, Lívia Câmara de Carvalho; Duarte, Marta Cristina Teixeira; Sartoratto, Adilson; Figueira, Glyn Mara; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2015-01-01

    The essential oils (EO) and bioactive fractions (BF) from Aloysia gratissima, Baccharis dracunculifolia, Coriandrum sativum, Cyperus articulatus, and Lippia sidoides were proven to have strong antimicrobial activity on planktonic microorganisms; however, little is known about their effects on the morphology or viability of oral biofilms. Previously, we determined the EO/fractions with the best antimicrobial activity against Streptococcus mutans and Candida spp. In this report, we used a confocal analysis to investigate the effect of these EO and BF on the morphology of S. mutans biofilms (thickness, biovolume, and architecture) and on the metabolic viability of C. albicans biofilms. The analysis of intact treated S. mutans biofilms showed no statistical difference for thickness in all groups compared to the control. However, a significant reduction in the biovolume of extracellular polysaccharides and bacteria was observed for A. gratissima and L. sidoides groups, indicating that these BF disrupt biofilm integrity and may have created porosity in the biofilm. This phenomenon could potentially result in a weakened structure and affect biofilm dynamics. Finally, C. sativum EO drastically affected C. albicans viability when compared to the control. These results highlight the promising antimicrobial activity of these plant species and support future translational research on the treatment of dental caries and oral candidiasis. PMID:25821503

  1. The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis.

    Science.gov (United States)

    Freires, Irlan Almeida; Bueno-Silva, Bruno; Galvão, Lívia Câmara de Carvalho; Duarte, Marta Cristina Teixeira; Sartoratto, Adilson; Figueira, Glyn Mara; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2015-01-01

    The essential oils (EO) and bioactive fractions (BF) from Aloysia gratissima, Baccharis dracunculifolia, Coriandrum sativum, Cyperus articulatus, and Lippia sidoides were proven to have strong antimicrobial activity on planktonic microorganisms; however, little is known about their effects on the morphology or viability of oral biofilms. Previously, we determined the EO/fractions with the best antimicrobial activity against Streptococcus mutans and Candida spp. In this report, we used a confocal analysis to investigate the effect of these EO and BF on the morphology of S. mutans biofilms (thickness, biovolume, and architecture) and on the metabolic viability of C. albicans biofilms. The analysis of intact treated S. mutans biofilms showed no statistical difference for thickness in all groups compared to the control. However, a significant reduction in the biovolume of extracellular polysaccharides and bacteria was observed for A. gratissima and L. sidoides groups, indicating that these BF disrupt biofilm integrity and may have created porosity in the biofilm. This phenomenon could potentially result in a weakened structure and affect biofilm dynamics. Finally, C. sativum EO drastically affected C. albicans viability when compared to the control. These results highlight the promising antimicrobial activity of these plant species and support future translational research on the treatment of dental caries and oral candidiasis.

  2. The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis

    Directory of Open Access Journals (Sweden)

    Irlan Almeida Freires

    2015-01-01

    Full Text Available The essential oils (EO and bioactive fractions (BF from Aloysia gratissima, Baccharis dracunculifolia, Coriandrum sativum, Cyperus articulatus, and Lippia sidoides were proven to have strong antimicrobial activity on planktonic microorganisms; however, little is known about their effects on the morphology or viability of oral biofilms. Previously, we determined the EO/fractions with the best antimicrobial activity against Streptococcus mutans and Candida spp. In this report, we used a confocal analysis to investigate the effect of these EO and BF on the morphology of S. mutans biofilms (thickness, biovolume, and architecture and on the metabolic viability of C. albicans biofilms. The analysis of intact treated S. mutans biofilms showed no statistical difference for thickness in all groups compared to the control. However, a significant reduction in the biovolume of extracellular polysaccharides and bacteria was observed for A. gratissima and L. sidoides groups, indicating that these BF disrupt biofilm integrity and may have created porosity in the biofilm. This phenomenon could potentially result in a weakened structure and affect biofilm dynamics. Finally, C. sativum EO drastically affected C. albicans viability when compared to the control. These results highlight the promising antimicrobial activity of these plant species and support future translational research on the treatment of dental caries and oral candidiasis.

  3. Gold nanoparticles enhance methylene blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm.

    Science.gov (United States)

    Khan, Shakir; Alam, Fahad; Azam, Ameer; Khan, Asad U

    2012-01-01

    This article explores the novel gold nanoparticle-enhanced photodynamic therapy of methylene blue against recalcitrant pathogenic Candida albicans biofilm. Physiochemical (X-ray diffraction, ultraviolet-visible absorption, photon cross-correlation, FTIR, and fluorescence spectroscopy) and electron microscopy techniques were used to characterize gold nanoparticles as well as gold nanoparticle-methylene blue conjugate. A 38.2-J/cm(2) energy density of 660-nm diode laser was applied for activation of gold nanoparticle-methylene blue conjugate and methylene blue against C. albicans biofilm and cells. Antibiofilm assays, confocal laser scanning, and electron microscopy were used to investigate the effects of the conjugate. Physical characteristics of the gold nanoparticles (21 ± 2.5 nm and 0.2 mg/mL) and methylene blue (20 μg/mL) conjugation were confirmed by physicochemical and electron microscopy techniques. Antibiofilm assays and microscopic studies showed significant reduction of biofilm and adverse effect against Candida cells in the presence of conjugate. Fluorescence spectroscopic study confirmed type I photo toxicity against biofilm. Gold nanoparticle conjugate-mediated photodynamic therapy may be used against nosocomially acquired refractory Candida albicans biofilm.

  4. Biofilm formation is a risk factor for mortality in patients with Candida albicans bloodstream infection—Scotland, 2012–2013

    Science.gov (United States)

    Rajendran, R.; Sherry, L.; Nile, C.J.; Sherriff, A.; Johnson, E.M.; Hanson, M.F.; Williams, C.; Munro, C.A.; Jones, B.J.; Ramage, G.

    2016-01-01

    Bloodstream infections caused by Candida species remain a significant cause of morbidity and mortality in hospitalized patients. Biofilm formation by Candida species is an important virulence factor for disease pathogenesis. A prospective analysis of patients with Candida bloodstream infection (n = 217) in Scotland (2012–2013) was performed to assess the risk factors associated with patient mortality, in particular the impact of biofilm formation. Candida bloodstream isolates (n = 280) and clinical records for 157 patients were collected through 11 different health boards across Scotland. Biofilm formation by clinical isolates was assessed in vitro with standard biomass assays. The role of biofilm phenotype on treatment efficacy was also evaluated in vitro by treating preformed biofilms with fixed concentrations of different classes of antifungal. Available mortality data for 134 patients showed that the 30-day candidaemia case mortality rate was 41%, with predisposing factors including patient age and catheter removal. Multivariate Cox regression survival analysis for 42 patients showed a significantly higher mortality rate for Candida albicans infection than for Candida glabrata infection. Biofilm-forming ability was significantly associated with C. albicans mortality (34 patients). Finally, in vitro antifungal sensitivity testing showed that low biofilm formers and high biofilm formers were differentially affected by azoles and echinocandins, but not by polyenes. This study provides further evidence that the biofilm phenotype represents a significant clinical entity, and that isolates with this phenotype differentially respond to antifungal therapy in vitro. Collectively, these findings show that greater clinical understanding is required with respect to Candida biofilm infections, and the implications of isolate heterogeneity. PMID:26432192

  5. Rapid identification of bacterial biofilms and biofilm wound models using a multichannel nanosensor.

    Science.gov (United States)

    Li, Xiaoning; Kong, Hao; Mout, Rubul; Saha, Krishnendu; Moyano, Daniel F; Robinson, Sandra M; Rana, Subinoy; Zhang, Xinrong; Riley, Margaret A; Rotello, Vincent M

    2014-12-23

    Identification of infectious bacteria responsible for biofilm-associated infections is challenging due to the complex and heterogeneous biofilm matrix. To address this issue and minimize the impact of heterogeneity on biofilm identification, we developed a gold nanoparticle (AuNP)-based multichannel sensor to detect and identify biofilms based on their physicochemical properties. Our results showed that the sensor can discriminate six bacterial biofilms including two composed of uropathogenic bacteria. The capability of the sensor was further demonstrated through discrimination of biofilms in a mixed bacteria/mammalian cell in vitro wound model.

  6. Activity of antimicrobial peptide mimetics in the oral cavity: I. Activity against biofilms of Candida albicans.

    Science.gov (United States)

    Hua, J; Yamarthy, R; Felsenstein, S; Scott, R W; Markowitz, K; Diamond, G

    2010-12-01

    Naturally occurring antimicrobial peptides hold promise as therapeutic agents against oral pathogens such as Candida albicans but numerous difficulties have slowed their development. Synthetic, non-peptidic analogs that mimic the properties of these peptides have many advantages and exhibit potent, selective antimicrobial activity. Several series of mimetics (with molecular weight oral Candida strains as a proof-of-principle for their antifungal properties. One phenylalkyne and several arylamide compounds with reduced mammalian cytotoxicities were found to be active against C. albicans. These compounds demonstrated rapid fungicidal activity in liquid culture even in the presence of saliva, and demonstrated synergy with standard antifungal agents. When assayed against biofilms grown on denture acrylic, the compounds exhibited potent fungicidal activity as measured by metabolic and fluorescent viability assays. Repeated passages in sub-minimum inhibitory concentration levels did not lead to resistant Candida, in contrast to fluconazole. Our results demonstrate the proof-of principle for the use of these compounds as anti-Candida agents, and their further testing is warranted as novel anti-Candida therapies.

  7. Paradoxical antifungal activity and structural observations in biofilms formed by echinocandin-resistant Candida albicans clinical isolates.

    Science.gov (United States)

    Walraven, Carla J; Bernardo, Stella M; Wiederhold, Nathan P; Lee, Samuel A

    2014-02-01

    Echinocandin-resistant clinical isolates of Candida albicans have been reported, and key-hot spot mutations in the FKS1 gene, which encodes a major glucan synthase subunit, have been identified in these (caspofungin-resistant [CAS-R]) strains. Although these mutations result in phenotypic resistance to echinocandins in planktonic cells, there is little data on antifungal susceptibilities of CAS-R C. albicans strains within biofilms. Thus, we analyzed biofilms formed by 12 C. albicans CAS-R clinical strains in which we previously identified FKS1 hot-spot mutations and compared the sessile antifungal and paradoxical activity of anidulafungin (ANID), caspofungin (CAS), and micafungin (MICA). Biofilms were formed in a 96-well static microplate model and assayed using both tetrazolium-salt reduction and crystal violet assays, as well as examination by scanning electron microscopy. We first sought to assess biofilm formation and structure in these fks1 mutants and found that the biofilm mass and metabolic activities were reduced in most of the fks1 mutants as compared with reference strain SC5314. Structural analyses revealed that the fks1 mutant biofilms were generally less dense and had a clear predominance of yeast and pseudohyphae, with unusual "pit"-like cell surface structures. We also noted that sessile minimum inhibitory concentrations (MICs) to ANID, CAS, and MICA were higher than planktonic MICs of all but one strain. The majority of strains demonstrated a paradoxical effect (PE) to particular echinocandins, in either planktonic or sessile forms. Overall, biofilms formed by echinocandin-resistant clinical isolates demonstrated varied PEs to echinocandins and were structurally characterized by a preponderance of yeast, pseudohyphae, and pit-like structures.

  8. Polymicrobial Ventilator-Associated Pneumonia: Fighting In Vitro Candida albicans-Pseudomonas aeruginosa Biofilms with Antifungal-Antibacterial Combination Therapy

    Science.gov (United States)

    Pereira, Cláudia R.; Azevedo, Nuno F.; Lourenço, Anália; Henriques, Mariana; Pereira, Maria O.

    2017-01-01

    The polymicrobial nature of ventilator-associated pneumonia (VAP) is now evident, with mixed bacterial-fungal biofilms colonizing the VAP endotracheal tube (ETT) surface. The microbial interplay within this infection may contribute for enhanced pathogenesis and exert impact towards antimicrobial therapy. Consequently, the high mortality/morbidity rates associated to VAP and the worldwide increase in antibiotic resistance has promoted the search for novel therapeutic strategies to fight VAP polymicrobial infections. Under this scope, this work aimed to assess the activity of mono- vs combinational antimicrobial therapy using one antibiotic (Polymyxin B; PolyB) and one antifungal (Amphotericin B; AmB) agent against polymicrobial biofilms of Pseudomonas aeruginosa and Candida albicans. The action of isolated antimicrobials was firstly evaluated in single- and polymicrobial cultures, with AmB being more effective against C. albicans and PolyB against P. aeruginosa. Mixed planktonic cultures required equal or higher antimicrobial concentrations. In biofilms, only PolyB at relatively high concentrations could reduce P. aeruginosa in both monospecies and polymicrobial populations, with C. albicans displaying only punctual disturbances. PolyB and AmB exhibited a synergistic effect against P. aeruginosa and C. albicans mixed planktonic cultures, but only high doses (256 mg L-1) of PolyB were able to eradicate polymicrobial biofilms, with P. aeruginosa showing loss of cultivability (but not viability) at 2 h post-treatment, whilst C. albicans only started to be inhibited after 14 h. In conclusion, combination therapy involving an antibiotic and an antifungal agent holds an attractive therapeutic option to treat severe bacterial-fungal polymicrobial infections. Nevertheless, optimization of antimicrobial doses and further clinical pharmacokinetics/pharmacodynamics and toxicodynamics studies underpinning the optimal use of these drugs are urgently required to improve therapy

  9. Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion.

    Science.gov (United States)

    Dwivedi, Prabhat; Thompson, Angela; Xie, Zhihong; Kashleva, Helena; Ganguly, Shantanu; Mitchell, Aaron P; Dongari-Bagtzoglou, Anna

    2011-01-25

    Candida albicans triggers recurrent infections of the oropharyngeal mucosa that result from biofilm growth. Prior studies have indicated that the transcription factor Bcr1 regulates biofilm formation in a catheter model, both in vitro and in vivo. We thus hypothesized that Bcr1 plays similar roles in the formation of oral mucosal biofilms and tested this hypothesis in a mouse model of oral infection. We found that a bcr1/bcr1 mutant did not form significant biofilm on the tongues of immunocompromised mice, in contrast to reference and reconstituted strains that formed pseudomembranes covering most of the tongue dorsal surface. Overexpression of HWP1, which specifies an epithelial adhesin that is under the transcriptional control of Bcr1, partly but significantly rescued the bcr1/bcr1 biofilm phenotype in vivo. Since HWP1 overexpression only partly reversed the biofilm phenotype, we investigated whether additional mechanisms, besides adhesin down-regulation, were responsible for the reduced virulence of this mutant. We discovered that the bcr1/bcr1 mutant was more susceptible to damage by human leukocytes when grown on plastic or on the surface of a human oral mucosa tissue analogue. Overexpression of HYR1, but not HWP1, significantly rescued this phenotype. Furthermore a hyr1/hyr1 mutant had significantly attenuated virulence in the mouse oral biofilm model of infection. These discoveries show that Bcr1 is critical for mucosal biofilm infection via regulation of epithelial cell adhesin and neutrophil function.

  10. Susceptibility of Candida albicans biofilms to caspofungin and anidulafungin is not affected by metabolic activity or biomass production.

    Science.gov (United States)

    Marcos-Zambrano, Laura Judith; Escribano, Pilar; Bouza, Emilio; Guinea, Jesús

    2016-02-01

    Micafungin is more active against biofilms with high metabolic activity; however, it is unknown whether this observation applies to caspofungin and anidulafungin and whether it is also dependent on the biomass production. We compare the antifungal activity of anidulafungin, caspofungin, and micafungin against preformed Candida albicans biofilms with different degrees of metabolic activity and biomass production from 301 isolates causing fungemia in patients admitted to Gregorio Marañon Hospital (January 2007 to September 2014). Biofilms were classified as having low, moderate, or high metabolic activity according XTT reduction assay or having low, moderate, or high biomass according to crystal violet assay. Echinocandin MICs for planktonic and sessile cells were measured using the EUCAST E.Def 7.2 procedure and XTT reduction assay, respectively. Micafungin showed the highest activity against biofilms classified according to the metabolic activity and biomass production (P caspofungin and anidulafungin was not dependent on the metabolic activity of the biofilm or the biomass production. These observations were confirmed by scanning electron microscopy. None of the echinocandins produced major changes in the structure of biofilms with low metabolic activity and biomass production when compared with the untreated biofilms. However, biofilm with high metabolic activity or high biomass production was considerably more susceptible to micafungin; this effect was not shown by caspofungin or anidulafungin.

  11. Pseudomonas aeruginosa produces aspirin insensitive eicosanoids and contributes to the eicosanoid profile of polymicrobial biofilms with Candida albicans.

    Science.gov (United States)

    Fourie, Ruan; Ells, Ruan; Kemp, Gabré; Sebolai, Olihile M; Albertyn, Jacobus; Pohl, Carolina H

    2017-02-01

    The interaction of clinically relevant microorganisms is the focus of various studies, e.g. the interaction between the pathogenic yeast, Candida albicans, and the bacterium, Pseudomonas aeruginosa. During infection both release arachidonic acid, which they can transform into eicosanoids. This study evaluated the production of prostaglandin E2, prostaglandin F2α and 15-hydroxyeicosatetraenoic acid by biofilms of P. aeruginosa and C. albicans. The influence of co-incubation, acetylsalicylic acid and nordihydroguaiaretic acid on biofilm formation and eicosanoid production was evaluated. Acetylsalicylic acid decreased colony forming units of P. aeruginosa, but increased metabolic activity and eicosanoid production of the cells. In contrast to prostaglandin E2, prostaglandin F2a production by C. albicans was insensitive to acetylsalicylic acid, indicating that different enzymes are responsible for their production in this yeast. Nordihydroguaiaretic acid inhibited biofilm formation by P. aeruginosa, however co-incubation provided protection against this inhibitor. Production of these eicosanoids could affect pathogen-clearance and infection dynamics and this previously uncharacterized facet of interaction could facilitate novel therapeutic intervention against polymicrobial infection.

  12. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2013-04-01

    Full Text Available Rene Hernandez-Delgadillo,1 Donaji Velasco-Arias,3 Juan Jose Martinez-Sanmiguel,2 David Diaz,3 Inti Zumeta-Dube,3 Katiushka Arevalo-Niño,1 Claudio Cabral-Romero2 1Facultad de Ciencias Biológicas, Instituto de Biotecnologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Mexico; 2Facultad de Odontología, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, México; 3Facultad de Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Distrito Federal, México Abstract: Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85% and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized

  13. In Vitro Activity of Miltefosine against Candida albicans under Planktonic and Biofilm Growth Conditions and In Vivo Efficacy in a Murine Model of Oral Candidiasis.

    Science.gov (United States)

    Vila, Taissa Vieira Machado; Chaturvedi, Ashok K; Rozental, Sonia; Lopez-Ribot, Jose L

    2015-12-01

    The generation of a new antifungal against Candida albicans biofilms has become a major priority, since biofilm formation by this opportunistic pathogenic fungus is usually associated with an increased resistance to azole antifungal drugs and treatment failures. Miltefosine is an alkyl phospholipid with promising antifungal activity. Here, we report that, when tested under planktonic conditions, miltefosine displays potent in vitro activity against multiple fluconazole-susceptible and -resistant C. albicans clinical isolates, including isolates overexpressing efflux pumps and/or with well-characterized Erg11 mutations. Moreover, miltefosine inhibits C. albicans biofilm formation and displays activity against preformed biofilms. Serial passage experiments confirmed that miltefosine has a reduced potential to elicit resistance, and screening of a library of C. albicans transcription factor mutants provided additional insight into the activity of miltefosine against C. albicans growing under planktonic and biofilm conditions. Finally, we demonstrate the in vivo efficacy of topical treatment with miltefosine in the murine model of oropharyngeal candidiasis. Overall, our results confirm the potential of miltefosine as a promising antifungal drug candidate, in particular for the treatment of azole-resistant and biofilm-associated superficial candidiasis.

  14. Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures.

    Directory of Open Access Journals (Sweden)

    Kim Vriens

    Full Text Available Plant defensins are small, cysteine-rich peptides with antifungal activity against a broad range of yeast and fungi. In this study we investigated the antibiofilm activity of a plant defensin from coral bells (Heuchera sanguinea, i.e. HsAFP1. To this end, HsAFP1 was heterologously produced using Pichia pastoris as a host. The recombinant peptide rHsAFP1 showed a similar antifungal activity against the plant pathogen Fusarium culmorum as native HsAFP1 purified from seeds. NMR analysis revealed that rHsAFP1 consists of an α-helix and a triple-stranded antiparallel β-sheet stabilised by four intramolecular disulfide bonds. We found that rHsAFP1 can inhibit growth of the human pathogen Candida albicans as well as prevent C. albicans biofilm formation with a BIC50 (i.e. the minimum rHsAFP1 concentration required to inhibit biofilm formation by 50% as compared to control treatment of 11.00 ± 1.70 μM. As such, this is the first report of a plant defensin exhibiting inhibitory activity against fungal biofilms. We further analysed the potential of rHsAFP1 to increase the activity of the conventional antimycotics caspofungin and amphotericin B towards C. albicans. Synergistic effects were observed between rHsAFP1 and these compounds against both planktonic C. albicans cells and biofilms. Most notably, concentrations of rHsAFP1 as low as 0.53 μM resulted in a synergistic activity with caspofungin against pre-grown C. albicans biofilms. rHsAFP1 was found non-toxic towards human HepG2 cells up to 40 μM, thereby supporting the lack of a general cytotoxic activity as previously reported for HsAFP1. A structure-function study with 24-mer synthetic peptides spanning the entire HsAFP1 sequence revealed the importance of the γ-core and its adjacent regions for HsAFP1 antibiofilm activity. These findings point towards broad applications of rHsAFP1 and its derivatives in the field of antifungal and antibiofilm drug development.

  15. Novel role of a family of major facilitator transporters in biofilm development and virulence of Candida albicans.

    Science.gov (United States)

    Shah, Abdul Haseeb; Singh, Ashutosh; Dhamgaye, Sanjiveeni; Chauhan, Neeraj; Vandeputte, Patrick; Suneetha, Korivi Jyothiraj; Kaur, Rupinder; Mukherjee, Pranab K; Chandra, Jyotsna; Ghannoum, Mahmoud A; Sanglard, Dominique; Goswami, Shyamal K; Prasad, Rajendra

    2014-06-01

    The QDR (quinidine drug resistance) family of genes encodes transporters belonging to the MFS (major facilitator superfamily) of proteins. We show that QDR transporters, which are localized to the plasma membrane, do not play a role in drug transport. Hence, null mutants of QDR1, QDR2 and QDR3 display no alterations in susceptibility to azoles, polyenes, echinocandins, polyamines or quinolines, or to cell wall inhibitors and many other stresses. However, the deletion of QDR genes, individually or collectively, led to defects in biofilm architecture and thickness. Interestingly, QDR-lacking strains also displayed attenuated virulence, but the strongest effect was observed with qdr2∆, qdr3∆ and in qdr1/2/3∆ strains. Notably, the attenuated virulence and biofilm defects could be reversed upon reintegration of QDR genes. Transcripts profiling confirmed differential expression of many biofilm and virulence-related genes in the deletion strains as compared with wild-type Candida albicans cells. Furthermore, lipidomic analysis of QDR-deletion mutants suggests massive remodelling of lipids, which may affect cell signalling, leading to the defect in biofilm development and attenuation of virulence. In summary, the results of the present study show that QDR paralogues encoding MFS antiporters do not display conserved functional linkage as drug transporters and perform functions that significantly affect the virulence of C. albicans.

  16. Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity of Candida albicans isolated from recurrent urinary tract infections

    Institute of Scientific and Technical Information of China (English)

    Issam Alshami; Ahmed E Alharbi

    2014-01-01

    Objective: To explore the prevention of recurrent candiduria using natural based approaches and to study the antimicrobial effect of Hibiscus sabdariffa (H. sabdariffa) extract and the biofilm forming capacity of Candida albicans strains in the present of the H. sabdariffa extract.Methods:In this particular study, six strains of fluconazole resistant Candida albicans isolated from recurrent candiduria were used. The susceptibility of fungal isolates, time-kill curves and biofilm forming capacity in the present of the H. sabdariffa extract were determined. Results: Various levels minimum inhibitory concentration of the extract were observed against all the isolates. Minimum inhibitory concentration values ranged from 0.5 to 2.0 mg/mL. Time-kill experiment demonstrated that the effect was fungistatic. The biofilm inhibition assay results showed that H. sabdariffa extract inhibited biofilm production of all the isolates. Conclusions: The results of the study support the potential effect of H. sabdariffa extract for preventing recurrent candiduria and emphasize the significance of the plant extract approach as a potential antifungal agent.

  17. Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study.

    Science.gov (United States)

    Pereira, Cristiane Aparecida; Romeiro, Rogério Lima; Costa, Anna Carolina Borges Pereira; Machado, Ana Karina Silva; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso

    2011-05-01

    The purpose of this study was to evaluate specific effects of photodynamic inactivation (PDI) using methylene blue as photosensitizer and low-power laser irradiation on the viability of single-, dual-, and three-species biofilms formed by C. albicans, S. aureus, and S. mutans. Biofilms were grown in acrylic discs immersed in sterile brain heart infusion broth (BHI) containing 5% sucrose, inoculated with microbial suspension (10(6) cells/ml) and incubated for 5 days. On the fifth day, the effects of the methylene blue (MB) photosensitizer at a concentration of 0.1 mg/ml for 5 min and InGaAlP laser (660 nm) for 98 s, alone and conjugated were evaluated. Next, the discs were placed in tubes with sterile physiological solution [0.9% sodium chloride (NaCl)] and sonicated for to disperse the biofilms. Ten-fold serial dilutions were carried and aliquots seeded in selective agar, which were then incubated for 48 h. Then the numbers CFU/ml (log(10)) were counted and analyzed statistically (ANOVA, Tukey test, p biofilms groups was performed. Significant decreases in the viability of all microorganisms were observed for biofilms exposed to PDI mediated by MB dye. Reductions (log(10)) of single-species biofilms were greater (2.32-3.29) than the association of biofilms (1.00-2.44). Scanning electron microscopy micrographs suggested that lethal photosensitization occurred predominantly in the outermost layers of the biofilms. The results showed that PDI mediated by MB dye, might be a useful approach for the control of oral biofilms.

  18. Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines.

    Directory of Open Access Journals (Sweden)

    Annie I Chen

    2014-10-01

    Full Text Available In chronic infections, pathogens are often in the presence of other microbial species. For example, Pseudomonas aeruginosa is a common and detrimental lung pathogen in individuals with cystic fibrosis (CF and co-infections with Candida albicans are common. Here, we show that P. aeruginosa biofilm formation and phenazine production were strongly influenced by ethanol produced by the fungus C. albicans. Ethanol stimulated phenotypes that are indicative of increased levels of cyclic-di-GMP (c-di-GMP, and levels of c-di-GMP were 2-fold higher in the presence of ethanol. Through a genetic screen, we found that the diguanylate cyclase WspR was required for ethanol stimulation of c-di-GMP. Multiple lines of evidence indicate that ethanol stimulates WspR signaling through its cognate sensor WspA, and promotes WspR-dependent activation of Pel exopolysaccharide production, which contributes to biofilm maturation. We also found that ethanol stimulation of WspR promoted P. aeruginosa colonization of CF airway epithelial cells. P. aeruginosa production of phenazines occurs both in the CF lung and in culture, and phenazines enhance ethanol production by C. albicans. Using a C. albicans adh1/adh1 mutant with decreased ethanol production, we found that fungal ethanol strongly altered the spectrum of P. aeruginosa phenazines in favor of those that are most effective against fungi. Thus, a feedback cycle comprised of ethanol and phenazines drives this polymicrobial interaction, and these relationships may provide insight into why co-infection with both P. aeruginosa and C. albicans has been associated with worse outcomes in cystic fibrosis.

  19. Analysis of Candida albicans mutants defective in the Cdk8 module of mediator reveal links between metabolism and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Allia K Lindsay

    2014-10-01

    Full Text Available Candida albicans biofilm formation is a key virulence trait that involves hyphal growth and adhesin expression. Pyocyanin (PYO, a phenazine secreted by Pseudomonas aeruginosa, inhibits both C. albicans biofilm formation and development of wrinkled colonies. Using a genetic screen, we identified two mutants, ssn3Δ/Δ and ssn8Δ/Δ, which continued to wrinkle in the presence of PYO. Ssn8 is a cyclin-like protein and Ssn3 is similar to cyclin-dependent kinases; both proteins are part of the heterotetrameric Cdk8 module that forms a complex with the transcriptional co-regulator, Mediator. Ssn3 kinase activity was also required for PYO sensitivity as a kinase dead mutant maintained a wrinkled colony morphology in the presence of PYO. Furthermore, similar phenotypes were observed in mutants lacking the other two components of the Cdk8 module-Srb8 and Srb9. Through metabolomics analyses and biochemical assays, we showed that a compromised Cdk8 module led to increases in glucose consumption, glycolysis-related transcripts, oxidative metabolism and ATP levels even in the presence of PYO. In the mutant, inhibition of respiration to levels comparable to the PYO-treated wild type inhibited wrinkled colony development. Several lines of evidence suggest that PYO does not act through Cdk8. Lastly, the ssn3 mutant was a hyperbiofilm former, and maintained higher biofilm formation in the presence of PYO than the wild type. Together these data provide novel insights into the role of the Cdk8 module of Mediator in regulation of C. albicans physiology and the links between respiratory activity and both wrinkled colony and biofilm development.

  20. The MP65 gene is required for cell wall integrity, adherence to epithelial cells and biofilm formation in Candida albicans

    Directory of Open Access Journals (Sweden)

    Girolamo Antonietta

    2011-05-01

    Full Text Available Abstract Background The MP65 gene of Candida albicans (orf19.1779 encodes a putative β-glucanase mannoprotein of 65 kDa, which plays a main role in a host-fungus relationship, morphogenesis and pathogenicity. In this study, we performed an extensive analysis of a mp65Δ mutant to assess the role of this protein in cell wall integrity, adherence to epithelial cells and biofilm formation. Results The mp65Δ mutant showed a high sensitivity to a range of cell wall-perturbing and degrading agents, especially Congo red, which induced morphological changes such as swelling, clumping and formation of hyphae. The mp65Δ mutant showed an activation of two MAPKs (Mkc1p and Cek1p, a high level of expression of two stress-related genes (DDR48 and SOD5, and a modulated expression of β-glucan epitopes, but no gross changes in cell wall polysaccharide composition. Interestingly, the mp65Δ mutant displayed a marked reduction in adhesion to BEC and Caco-2 cells and severe defects in biofilm formation when compared to the wild type. All of the mentioned properties were totally or partially recovered in a revertant strain, demonstrating the specificity of gene deletion. Conclusions We demonstrate that the MP65 gene of Candida albicans plays a significant role in maintaining cell wall integrity, as well as in adherence to epithelia and biofilm formation, which are major virulence attributes of this fungus.

  1. Quercetin Assists Fluconazole to Inhibit Biofilm Formations of Fluconazole-Resistant Candida Albicans in In Vitro and In Vivo Antifungal Managements of Vulvovaginal Candidiasis

    Directory of Open Access Journals (Sweden)

    Mei Gao

    2016-11-01

    Full Text Available Background: Vulvovaginal candidiasis (VVC is a common gynecological disease. Candida albicans is believed to be mainly implicated in VVC occurrence, the biofilm of which is one of the virulence factors responsible for resistance to traditional antifungal agents especially to fluconazole (FCZ. Quercetin (QCT is a dietary flavonoid and has been demonstrated to be antifungal against C. albicans biofilm. Methods: 17 C. albicans isolates including 15 clinical ones isolated from VVC patients were employed to investigate the effects of QCT and/or FCZ on the inhibition of C. albicans biofilm. Results: We observed that 64 µg/mL QCT and/or 128 µg/mL FCZ could (i be synergistic against 10 FCZ-resistant planktonic and 17 biofilm cells of C. albicans, (ii inhibit fungal adherence, cell surface hydrophobicity (CSH, flocculation, yeast-to-hypha transition, metabolism, thickness and dispersion of biofilms; (iii down-regulate the expressions of ALS1, ALS3, HWP1, SUN41, UME6 and ECE1 and up-regulate the expressions of PDE2, NRG1 and HSP90, and we also found that (iv the fungal burden was reduced in vaginal mucosa and the symptoms were alleviated in a murine VVC model after the treatments of 5 mg/kg QCT and/or 20 mg/kg FCZ. Conclusion: Together with these results, it could be demonstrated that QCT could be a favorable antifungal agent and a promising synergist with FCZ in the clinical management of VVC caused by C. albicans biofilm.

  2. In vitro effectiveness of 455-nm blue LED to reduce the load of Staphylococcus aureus and Candida albicans biofilms in compact bone tissue.

    Science.gov (United States)

    Rosa, Luciano Pereira; da Silva, Francine Cristina; Viana, Magda Souza; Meira, Giselle Andrade

    2016-01-01

    The aim of this study was to evaluate the effectiveness of a 455-nm blue light-emitting diode (LED), at different application times, to reduce the load of Staphylococcus aureus and Candida albicans biofilms applied to compact bone tissue. The microorganisms S. aureus (ATCC 25923) and C. albicans (ATCC 18804) were used to form biofilms on 160 specimens of compact bones that had been divided into eight experimental groups (n = 10) for each microorganism, according to the times of application of the 455-nm blue LED (1, 2, 3, 4, 5, 7, and 10 min) with an irradiance of 75 mW/cm2. After LED application, decimal dilutions of microorganisms were performed, plated on BHI or Sabouraud agar and incubated for 24 h/35 °C to obtain CFU/mL counts. The findings were statistically analyzed using a ANOVA 5 %. For the group of S. aureus biofilms, all groups of 455-nm LED application differ compared with the control group (p albicans biofilms, only those samples receiving 3, 7, and 10 min of LED application presented a significant difference compared with the control group (p albicans biofilms, especially during 10 min of application.

  3. Putative Role of β-1,3 Glucans in Candida albicans Biofilm Resistance▿

    OpenAIRE

    Nett, Jeniel; Lincoln, Leslie; Marchillo, Karen; Massey, Randall; Holoyda, Kathleen; Hoff, Brian; VanHandel, Michelle; Andes, David

    2006-01-01

    Biofilms are microbial communities, embedded in a polymeric matrix, growing attached to a surface. Nearly all device-associated infections involve growth in the biofilm life style. Biofilm communities have characteristic architecture and distinct phenotypic properties. The most clinically important phenotype involves extraordinary resistance to antimicrobial therapy, making biofilm infections very difficulty to cure without device removal. The current studies examine drug resistance in Candid...

  4. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Koban, Ina; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Kocher, Thomas [Unit of Periodontology, Dental School, University of Greifswald, Rotgerberstr. 8, 17475 Greifswald (Germany); Matthes, Rutger; Huebner, Nils-Olaf; Kramer, Axel [Institute for Hygiene and Environmental Medicine, University of Greifswald, Walther-Rathenau-Str. 49 a, 17487 Greifswald (Germany); Sietmann, Rabea [Institute of Microbiology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald (Germany); Kindel, Eckhard; Weltmann, Klaus-Dieter, E-mail: ina.koban@uni-greifswald.d [Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2010-07-15

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log{sub 10} reduction factor of 1.5, the log{sub 10} reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  5. Comparison of the effect of rose bengal- and eosin Y-mediated photodynamic inactivation on planktonic cells and biofilms of Candida albicans.

    Science.gov (United States)

    Freire, Fernanda; Costa, Anna Carolina Borges Pereira; Pereira, Cristiane Aparecida; Beltrame Junior, Milton; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso

    2014-05-01

    Candida albicans is an opportunistic yeast that can cause oral candidosis through the formation of a biofilm, an important virulence factor that compromises the action of antifungal agents. The objective of this study was to compare the effect of rose bengal (RB)- and eosin Y (EY)-mediated photodynamic inactivation (PDI) using a green light-emitting diode (LED; 532 ± 10 nm) on planktonic cells and biofilms of C. albicans (ATCC 18804). Planktonic cultures were treated with photosensitizers at concentrations ranging from 0.78 to 400 μM, and biofilms were treated with 200 μM of photosensitizers. The number of colony-forming unit per milliliter (CFU/mL) was compared by analysis of variance and Tukey's test (P ≤ 0.05). After treatment, one biofilm specimen of the control and PDI groups were examined by scanning electron microscopy. The photosensitizers (6.25, 25, 50, 200, and 400 μM of EY, and 6.25 μM of RB or higher) significantly reduced the number of CFU/mL in the PDI groups when compared to the control group. With respect to biofilm formation, RB- and EY-mediated PDI promoted reductions of 0.22 log10 and 0.45 log10, respectively. Scanning electron microscopy showed that the two photosensitizers reduced fungal structures. In conclusion, EY- and RB-mediated PDI using LED irradiation significantly reduced C. albicans planktonic cells and biofilms.

  6. Dentinal Tubule Disinfection with Propolis & Two Extracts of Azadirachta indica Against Candida albicans Biofilm Formed on Tooth Substrate

    Science.gov (United States)

    Joy Sinha, Dakshita; Garg, Paridhi; Verma, Anurag; Malik, Vibha; Maccune, Edgar Richard; Vasudeva, Agrima

    2015-01-01

    Aim: This study evaluates the disinfection of dentinal tubules using Propolis, Azadirachta indica (alcoholic and aqueous extracts), 2% chlorhexidine gel and calcium hydroxide against Candida albicans biofilm formed on tooth substrate. Materials & Method: One hundred and five human teeth were infected with Candida albicans for 2 days. Samples were divided into 7 groups. Group I- Propolis, Group II- Alcoholic extract of Azadirachta indica, Group III- Aqueous extract of Azadirachta indica, Group IV- 2% Chlorhexidine, Group V- Calcium hydroxide, Group VI- Ethanol and Group VII- Saline (negative control). At the end of 1,3 and 5 days, the antimicrobial efficacy of medicaments against Candida albicans was assessed at the depths of 200 µm and 400 µm. Results: The overall percentage inhibition of fungal growth (at 200 µm and 400 µm depth) was 99.2% with 2% chlorhexidine gel. There was no statistical difference between propolis, alcoholic extract of Azadirachta indica (neem) and 2% chlorhexidine. Conclusion: Propolis and alcoholic extract of Azadirachta indica performed equally well as that of 2% Chlorhexidine. PMID:26962368

  7. Roles of Candida albicans Gat2, a GATA-type zinc finger transcription factor, in biofilm formation, filamentous growth and virulence.

    Science.gov (United States)

    Du, Han; Guan, Guobo; Xie, Jing; Sun, Yuan; Tong, Yaojun; Zhang, Lixin; Huang, Guanghua

    2012-01-01

    Candida albicans is the most common human fungal pathogen, causing not only superficial infections, but also life-threatening systemic disease. C. albicans can grow in several morphological forms including unicellular yeast-form, elongated hyphae and pseudohyphae. In certain natural environments, C. albicans also exists as biofilms, which are structured and surface-attached microbial communities. Transcription factors play a critical role in morphogenesis and biofilm development. In this study, we identified four adhesion-promoting transcription factors (Tec1, Cph1, Ume6 and Gat2) by screening a transcription factor overexpression library. Sequence analysis indicates that Gat2 is a GATA-type zinc finger transcription factor. Here we showed that the gat2/gat2 mutant failed to form biofilms on the plastic and silicone surfaces. Overexpression of GAT2 gene promoted filamentous and invasive growth on agar containing Lee's medium, while deletion of this gene had an opposite effect. However, inactivation of Gat2 had no obvious effect on N-acetyl-glucosamine (GlcNAc) induced hyphal development. In a mouse model of systemic infection, the gat2/gat2 mutant showed strongly attenuated virulence. Our results suggest that Gat2 plays a critical role in C. albicans biofilm formation, filamentous growth and virulence.

  8. Als1 and Als3 regulate the intracellular uptake of copper ions when Candida albicans biofilms are exposed to metallic copper surfaces.

    Science.gov (United States)

    Zheng, Sha; Chang, Wenqiang; Li, Chen; Lou, Hongxiang

    2016-05-01

    Copper surfaces possess efficient antimicrobial effect. Here, we reported that copper surfaces could inactivate Candida albicans biofilms within 40 min. The intracellular reactive oxygen species in C. albicans biofilms were immediately stimulated during the contact of copper surfaces, which might be an important factor for killing the mature biofilms. Copper release assay demonstrated that the copper ions automatically released from the surface of 1 mm thick copper coupons with over 99.9% purity are not the key determinant for the copper-mediated killing action. The susceptibility test to copper surfaces by using C. albicans mutant strains, which were involved in efflux pumps, adhesins, biofilms formation or osmotic stress response showed that als1/als1 and als3/als3 displayed higher resistance to the copper surface contact than other mutants did. The intracellular concentration of copper ions was lower in als1/als1 and als3/als3 than that in wild-type strain. Transcriptional analysis revealed that the expression of copper transporter-related gene, CRP1, was significantly increased in als1/als1, als3/als3, suggesting a potential role of ALS1 and ALS3 in absorbing ions by regulating the expression of CRP1 This study provides a potential application in treating pathogenic fungi by using copper surfaces and uncovers the roles of ALS1 and ALS3 in absorbing copper ions for C. albicans.

  9. In vitro photodynamic inactivation effects of cationic benzylidene cyclopentanone photosensitizers on clinical fluconazole-resistant Candida albicans planktonic cells and biofilms

    Science.gov (United States)

    Zhou, Shaona; Fang, Yanyan; Ye, Zulin; Wang, Ying; Zhao, Yuxia; Gu, Ying

    2016-10-01

    Background: An increasing prevalence of Candida infections has emerged with the wide use of immune-suppressants and antibiotics. Photodynamic inactivation (PDI) as a new approach to treat localized Candida infections is an emerging and promising field nowadays. This study evaluated the efficacy of photodynamic therapy using two new Cationic benzylidene cyclopentanone photosensitizers(P1 and P2) against strains of clinical fluconazole-resistant Candida albicans. Methods: Suspensions and biofilms of Candida species were incubated with P1 and P2 concentrations (0.25 50 μM) for 30 min followed by 532nm laser irradiation. For planktonic suspensions, viability of cells was assayed by CFU counting. For biofilms, the metabolic activity was evaluated by XTT. Results: In PDI of a planktonic culture of clinical fluconazole-resistant Candida albicans, P2 showed the higher efficacy. After incubation with 25 μM of P2 for 30 min and irradiation with 532nm laser (36 J cm-2), the viability of C. albicans planktonic cells decreased by 3.84 log10. For biofilm cells, a higher light dose of 75 mW cm-2 was necessary to achieve 97.71% metabolic activity reduction. Conclusions: The results of this investigation demonstrated that benzylidene cyclopentanone photosensitizer, P2, is an efficient photosensitizer to kill C. albicans. Moreover, single-species biofilms were less susceptible to PDT than their planktonic counterparts.

  10. Persea americana Glycolic Extract: In Vitro Study of Antimicrobial Activity against Candida albicans Biofilm and Cytotoxicity Evaluation

    Science.gov (United States)

    Jesus, D.; Oliveira, J. R.; Oliveira, F. E.; Higa, K. C.; Junqueira, J. C.; Jorge, A. O. C.; Back-Brito, G. N.; Oliveira, L. D.

    2015-01-01

    This study evaluated the antifungal activity of Persea americana extract on Candida albicans biofilm and its cytotoxicity in macrophage culture (RAW 264.7). To determine the minimum inhibitory concentration (MIC), microdilution in broth (CLSI M27-S4 protocol) was performed. Thereafter, the concentrations of 12.5, 25, 50, 100, and 200 mg/mL (n = 10) with 5 min exposure were analyzed on mature biofilm in microplate wells for 48 h. Saline was used as control (n = 10). After treatment, biofilm cells were scraped off and dilutions were plated on Sabouraud dextrose agar. After incubation (37°C/48 h), the values of colony forming units per milliliter (CFU/mL) were converted to log10 and analyzed (ANOVA and Tukey test, 5%). The cytotoxicity of the P. americana extract was evaluated on macrophages by MTT assay. The MIC of the extract was 6.25 mg/mL and with 12.5 mg/mL there was elimination of 100% of planktonic cultures. Regarding the biofilms, a significant reduction (P < 0.001) of the biofilm at concentrations of 50 (0.580 ± 0.209 log10), 100 (0.998 ± 0.508 log10), and 200 mg/mL (1.093 ± 0.462 log10) was observed. The concentrations of 200 and 100 mg/mL were cytotoxic for macrophages, while the concentrations of 50, 25, and 12.5 mg/mL showed viability higher than 55%. PMID:26605376

  11. Persea americana Glycolic Extract: In Vitro Study of Antimicrobial Activity against Candida albicans Biofilm and Cytotoxicity Evaluation

    Directory of Open Access Journals (Sweden)

    D. Jesus

    2015-01-01

    Full Text Available This study evaluated the antifungal activity of Persea americana extract on Candida albicans biofilm and its cytotoxicity in macrophage culture (RAW 264.7. To determine the minimum inhibitory concentration (MIC, microdilution in broth (CLSI M27-S4 protocol was performed. Thereafter, the concentrations of 12.5, 25, 50, 100, and 200 mg/mL (n=10 with 5 min exposure were analyzed on mature biofilm in microplate wells for 48 h. Saline was used as control (n=10. After treatment, biofilm cells were scraped off and dilutions were plated on Sabouraud dextrose agar. After incubation (37°C/48 h, the values of colony forming units per milliliter (CFU/mL were converted to log10 and analyzed (ANOVA and Tukey test, 5%. The cytotoxicity of the P. americana extract was evaluated on macrophages by MTT assay. The MIC of the extract was 6.25 mg/mL and with 12.5 mg/mL there was elimination of 100% of planktonic cultures. Regarding the biofilms, a significant reduction (P<0.001 of the biofilm at concentrations of 50 (0.580±0.209 log10, 100 (0.998±0.508 log10, and 200 mg/mL (1.093±0.462 log10 was observed. The concentrations of 200 and 100 mg/mL were cytotoxic for macrophages, while the concentrations of 50, 25, and 12.5 mg/mL showed viability higher than 55%.

  12. Persea americana Glycolic Extract: In Vitro Study of Antimicrobial Activity against Candida albicans Biofilm and Cytotoxicity Evaluation.

    Science.gov (United States)

    Jesus, D; Oliveira, J R; Oliveira, F E; Higa, K C; Junqueira, J C; Jorge, A O C; Back-Brito, G N; Oliveira, L D

    2015-01-01

    This study evaluated the antifungal activity of Persea americana extract on Candida albicans biofilm and its cytotoxicity in macrophage culture (RAW 264.7). To determine the minimum inhibitory concentration (MIC), microdilution in broth (CLSI M27-S4 protocol) was performed. Thereafter, the concentrations of 12.5, 25, 50, 100, and 200 mg/mL (n = 10) with 5 min exposure were analyzed on mature biofilm in microplate wells for 48 h. Saline was used as control (n = 10). After treatment, biofilm cells were scraped off and dilutions were plated on Sabouraud dextrose agar. After incubation (37°C/48 h), the values of colony forming units per milliliter (CFU/mL) were converted to log10 and analyzed (ANOVA and Tukey test, 5%). The cytotoxicity of the P. americana extract was evaluated on macrophages by MTT assay. The MIC of the extract was 6.25 mg/mL and with 12.5 mg/mL there was elimination of 100% of planktonic cultures. Regarding the biofilms, a significant reduction (P < 0.001) of the biofilm at concentrations of 50 (0.580 ± 0.209 log10), 100 (0.998 ± 0.508 log10), and 200 mg/mL (1.093 ± 0.462 log10) was observed. The concentrations of 200 and 100 mg/mL were cytotoxic for macrophages, while the concentrations of 50, 25, and 12.5 mg/mL showed viability higher than 55%.

  13. Lab-scale preparations of Candida albicans and dual Candida albicans-Candida glabrata biofilms on the surface of medical-grade polyvinyl chloride (PVC) perfusion tube using a modified gravity-supported free-flow biofilm incubator (GS-FFBI).

    Science.gov (United States)

    Shao, Jing; Lu, KeQiao; Tian, Ge; Cui, YanYan; Yan, YuanYuan; Wang, TianMing; Zhang, XinLong; Wang, ChangZhong

    2015-02-01

    The assembly of a man-made gravity-supported free-flow biofilm incubator (GS-FFBI) was described, which was composed of a gas cushion injector and four incubators. The GS-FFBI had the characteristics of (i) a bottom-up flow direction, and (ii) lab-scale biofilm preparation without the use of a multichannel pump. Two opportunistic fungal strains, namely Candida albicans and Candida glabrata, were employed to incubate C. albicans and dual C. albicans-C. glabrata biofilms on the surface of medical-grade polyvinyl chloride perfusion tube. In terms of the results from {2, 3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide} (XTT) assay, dry weight measurement, colony-forming unit counting, susceptibility test, and scanning electron microscopy, it was demonstrated that GS-FFBI could form both stable single and dual Candida biofilms with no significant variations among the four incubators or the three daily incubations within 21h, and could operate for at least 96h smoothly with no contamination of stock medium. The results also indicated, for the first time, that C. albicans and C. glabrata might be co-existent competitively and symbiotically in the dual biofilms with flowing media. GS-FFBI would be a useful device to study in vitro morphological and physiological features of microbial biofilms in the medical settings.

  14. The NDR/LATS kinase Cbk1 controls the activity of the transcriptional regulator Bcr1 during biofilm formation in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Pilar Gutiérrez-Escribano

    Full Text Available In nature, many microorganisms form specialized complex, multicellular, surface-attached communities called biofilms. These communities play critical roles in microbial pathogenesis. The fungal pathogen Candida albicans is associated with catheter-based infections due to its ability to establish biofilms. The transcription factor Bcr1 is a master regulator of C. albicans biofilm development, although the full extent of its regulation remains unknown. Here, we report that Bcr1 is a phosphoprotein that physically interacts with the NDR kinase Cbk1 and undergoes Cbk1-dependent phosphorylation. Mutating the two putative Cbk1 phosphoacceptor residues in Bcr1 to alanine markedly impaired Bcr1 function during biofilm formation and virulence in a mouse model of disseminated candidiasis. Cells lacking Cbk1, or any of its upstream activators, also had reduced biofilm development. Notably, mutating the two putative Cbk1 phosphoacceptor residues in Bcr1 to glutamate in cbk1Δ cells upregulated the transcription of Bcr1-dependent genes and partially rescued the biofilm defects of a cbk1Δ strain. Therefore, our data uncovered a novel role of the NDR/LATS kinase Cbk1 in the regulation of biofilm development through the control of Bcr1.

  15. Secreted aspartic protease cleavage of Candida albicans Msb2 activates Cek1 MAPK signaling affecting biofilm formation and oropharyngeal candidiasis.

    Directory of Open Access Journals (Sweden)

    Sumant Puri

    Full Text Available Perception of external stimuli and generation of an appropriate response are crucial for host colonization by pathogens. In pathogenic fungi, mitogen activated protein kinase (MAPK pathways regulate dimorphism, biofilm/mat formation, and virulence. Signaling mucins, characterized by a heavily glycosylated extracellular domain, a transmembrane domain, and a small cytoplasmic domain, are known to regulate various signaling pathways. In Candida albicans, the mucin Msb2 regulates the Cek1 MAPK pathway. We show here that Msb2 is localized to the yeast cell wall and is further enriched on hyphal surfaces. A msb2Δ/Δ strain formed normal hyphae but had biofilm defects. Cek1 (but not Mkc1 phosphorylation was absent in the msb2Δ/Δ mutant. The extracellular domain of Msb2 was shed in cells exposed to elevated temperature and carbon source limitation, concomitant with germination and Cek1 phosphorylation. Msb2 shedding occurred differentially in cells grown planktonically or on solid surfaces in the presence of cell wall and osmotic stressors. We further show that Msb2 shedding and Cek1 phosphorylation were inhibited by addition of Pepstatin A (PA, a selective inhibitor of aspartic proteases (Saps. Analysis of combinations of Sap protease mutants identified a sap8Δ/Δ mutant with reduced MAPK signaling along with defects in biofilm formation, thereby suggesting that Sap8 potentially serves as a major regulator of Msb2 processing. We further show that loss of either Msb2 (msb2Δ/Δ or Sap8 (sap8Δ/Δ resulted in higher C. albicans surface β-glucan exposure and msb2Δ/Δ showed attenuated virulence in a murine model of oral candidiasis. Thus, Sap-mediated proteolytic cleavage of Msb2 is required for activation of the Cek1 MAPK pathway in response to environmental cues including those that induce germination. Inhibition of Msb2 processing at the level of Saps may provide a means of attenuating MAPK signaling and reducing C. albicans virulence.

  16. Alternative mating type configurations (a/α versus a/a or α/α of Candida albicans result in alternative biofilms regulated by different pathways.

    Directory of Open Access Journals (Sweden)

    Song Yi

    2011-08-01

    Full Text Available Similar multicellular structures can evolve within the same organism that may have different evolutionary histories, be controlled by different regulatory pathways, and play similar but nonidentical roles. In the human fungal pathogen Candida albicans, a quite extraordinary example of this has occurred. Depending upon the configuration of the mating type locus (a/α versus a/a or α/α, C. albicans forms alternative biofilms that appear similar morphologically, but exhibit dramatically different characteristics and are regulated by distinctly different signal transduction pathways. Biofilms formed by a/α cells are impermeable to molecules in the size range of 300 Da to 140 kDa, are poorly penetrated by human polymorphonuclear leukocytes (PMNs, and are resistant to antifungals. In contrast, a/a or α/α biofilms are permeable to molecules in this size range, are readily penetrated by PMNs, and are susceptible to antifungals. By mutational analyses, a/α biofilms are demonstrated to be regulated by the Ras1/cAMP pathway that includes Ras1→Cdc35→cAMP(Pde2-|→Tpk2(Tpk1→Efg1→Tec1→Bcr1, and a/a biofilms by the MAP kinase pathway that includes Mfα→Ste2→ (Ste4, Ste18, Cag1→Ste11→Hst7→Cek2(Cek1→Tec1. These observations suggest the hypothesis that while the upstream portion of the newly evolved pathway regulating a/a and α/α cell biofilms was derived intact from the upstream portion of the conserved pheromone-regulated pathway for mating, the downstream portion was derived through modification of the downstream portion of the conserved pathway for a/α biofilm formation. C. albicans therefore forms two alternative biofilms depending upon mating configuration.

  17. Oral Candida albicans isolates from HIV-positive individuals have similar in vitro biofilm-forming ability and pathogenicity as invasive Candida isolates

    Directory of Open Access Journals (Sweden)

    Rasteiro Vanessa MC

    2011-11-01

    Full Text Available Abstract Background Candida can cause mucocutaneous and/or systemic infections in hospitalized and immunosuppressed patients. Most individuals are colonized by Candida spp. as part of the oral flora and the intestinal tract. We compared oral and systemic isolates for the capacity to form biofilm in an in vitro biofilm model and pathogenicity in the Galleria mellonella infection model. The oral Candida strains were isolated from the HIV patients and included species of C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, C. krusei, C. norvegensis, and C. dubliniensis. The systemic strains were isolated from patients with invasive candidiasis and included species of C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, C. lusitaniae, and C. kefyr. For each of the acquired strains, biofilm formation was evaluated on standardized samples of silicone pads and acrylic resin. We assessed the pathogenicity of the strains by infecting G. mellonella animals with Candida strains and observing survival. Results The biofilm formation and pathogenicity in Galleria was similar between oral and systemic isolates. The quantity of biofilm formed and the virulence in G. mellonella were different for each of the species studied. On silicone pads, C. albicans and C. dubliniensis produced more biofilm (1.12 to 6.61 mg than the other species (0.25 to 3.66 mg. However, all Candida species produced a similar biofilm on acrylic resin, material used in dental prostheses. C. albicans, C. dubliniensis, C. tropicalis, and C. parapsilosis were the most virulent species in G. mellonella with 100% of mortality, followed by C. lusitaniae (87%, C. novergensis (37%, C. krusei (25%, C. glabrata (20%, and C. kefyr (12%. Conclusions We found that on silicone pads as well as in the Galleria model, biofilm formation and virulence depends on the Candida species. Importantly, for C. albicans the pathogenicity of oral Candida isolates was similar to systemic Candida isolates

  18. Carbohydrate derived fulvic acid (CHD-FA: an in vitro investigation of a novel membrane active antiseptic agent against Candida albicans biofilms

    Directory of Open Access Journals (Sweden)

    Leighann eSherry

    2012-03-01

    Full Text Available Carbohydrate derived fulvic acid (CHD-FA is a heat stable low molecular weight, water soluble, cationic, colloidal material with proposed therapeutic properties. The aim of this study was to evaluate the antifungal activity of CHD-FA against Candida albicans, and to characterise its mode of action. A panel of C. albicans isolates (n=50 derived from a range of clinical specimens were grown planktonically and as biofilms, and the minimum inhibitory concentrations (MICs determined. Scanning electron microscopy was performed to examine ultrastructural changes and different cell membrane assays were used to determine its mode of action. In addition, the role of C. albicans biofilm resistance mechanisms were investigated to determine their effects of CHD-FA activity. CHD-FA was active against planktonic and sessile C. albicans at concentrations 0.125% and 0.25% respectively, and was shown to be fungicidal, acting through disruption of the cell membrane activity. Resistance mechanisms, including matrix, efflux and stress, had a limited role upon CHD-FA activity. Overall, based on the promising in vitro spectrum of activity and minimal biofilm resistance of the natural and cheap antiseptic CHD-FA, further studies are required to determine its applicability for clinical use.

  19. Evaluation of gene expression SAP5, LIP9, and PLB2 of Candida albicans biofilms after photodynamic inactivation.

    Science.gov (United States)

    Freire, Fernanda; de Barros, Patrícia Pimentel; da Silva Ávila, Damara; Brito, Graziella Nuernberg Back; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso

    2015-07-01

    With the increasing number of strains of Candida ssp. resistant to antifungal agents, the accomplishment of researches that evaluate the effects of new therapeutic methods, like photodynamic inactivation (PDI), becomes important and necessary. Thus, the objective of this study was to verify the effects of the PDI on Candida albicans biofilms, evaluating their effects on the expression of the gene hydrolytic enzymes aspartyl proteinase (SAP5), lipase (LIP9), and phospholipase (PLB2). Clinical strains of C. albicans (n = 9) isolated from patient bearers of the virus HIV and a pattern strain ATCC 18804 were used. The quantification of gene expression was related to the production of hydrolytic enzymes using the quantitative polymerase chain reaction (qPCR) assay. For PDI, we used laser-aluminum-gallium arsenide low power (red visible, 660 nm) as a light source and the methylene blue at 300 μM as a photosensitizer. We assessed two experimental groups for each strain: (a) PDI: sensitization with methylene blue and laser irradiation and (b) control: without sensitization with methylene blue and light absence. The PDI decreased gene expression in 60 % of samples for gene SAP5 and 50 % of the samples decreased expression of LIP9 and PLB2. When we compared the expression profile for of each gene between the treated and control group, a decrease in all gene expression was observed, however no statistically significant difference (Tukey's test/p = 0.12). It could be concluded that PDI (photosensitization with methylene blue followed by low-level laser irradiation) showed a slight reduction on the expression of hydrolytic enzymes of C. albicans, without statistical significance.

  20. Evaluation of Antimicrobial and Antifungal efficacy of Chitosan as endodontic irrigant against Enterococcus Faecalis and Candida Albicans Biofilm formed on tooth substrate

    Science.gov (United States)

    Yadav, Pankaj; Saxena, Rajendra K.; Talwar, Sangeeta; Yadav, Sudha

    2017-01-01

    Background Bacterial biofilms formed on the root canal wall are often difficult to remove. This study aimed to evaluate the cytotoxic effect and antibacterial efficacy of chitosan when used as root canal irrigant against E. Faecalis and Candida albicans biofilm formed on tooth substrate. Material and Methods The present study evaluated antibacterial effect of 0.25% Chitosan, 0.5% Chitosan, 2% chlorhexidine and 3% sodium hypochlorite against Enterococcus faecalis and Candida Albicans. Agar-well diffusion methods, minimal inhibitory concentration tests and biofilm susceptibility assays were used to determine antibacterial activity. Teeth specimens were sectioned to obtain a standardized tooth length of 12mm. Specimens were inoculated with 10 mL of the freshly prepared E. Faecalis suspension and Candida albicans for 4 weeks. The specimens were then instrumented with ProTaper rotary files F3 size. After irrigation with test solution, three sterile paper points were placed into one canal, left for 60 s and transferred to a test tube containing 1 mL of reduced transport fluid. The number of CFU in 1 mL was determined. Results 3-week biofilm qualitative assay showed complete inhibition of bacterial growth with 3% Sodium hypochlorite, 2% Chlorhexidine and Chitosan except saline, which showed presence of bacterial growth. Significant reduction of colony forming units (CFU)/mL was observed for the chitosan groups and the antibacterial activity of the chitosan groups was at par with 3% NaOCl and 2% Chlorhexidine. It was observed that the chitosan showed no cytotoxicity at 3mg/ml and 10% cytotoxicity at 6mg/ml. Conclusions The use of chitosan as a root canal irrigant might be an alternative considering the various undesirable properties of NaOCl and chlorhexidine. Key words:Biofilm, Candida albicans, Chitosan, Cytotoxicity, Enterococcus faecalis. PMID:28298975

  1. Candida species biofilm and Candida albicans ALS3 polymorphisms in clinical isolates

    OpenAIRE

    Ariane Bruder-Nascimento; Carlos Henrique Camargo; Alessandro Lia Mondelli; Maria Fátima Sugizaki; Terue Sadatsune; Eduardo Bagagli

    2015-01-01

    Over the last decades, there have been important changes in the epidemiology of Candida infections. In recent years, Candida species have emerged as important causes of invasive infections mainly among immunocompromised patients. This study analyzed Candida spp. isolates and compared the frequency and biofilm production of different species among the different sources of isolation: blood, urine, vulvovaginal secretions and peritoneal dialysis fluid. Biofilm production was quantified in 327 Ca...

  2. C. albicans Growth, Transition, Biofilm Formation, and Gene Expression Modulation by Antimicrobial Decapeptide KSL-W

    Science.gov (United States)

    2013-11-07

    lies in the pos- sible resistance of microorganisms to conventional anti- microbial strategies used against microbial pathogens in both agriculture ...a critical concentration [45]. Further studies are thus warranted to shed light on the fungicidal mechanism of KSL-W. C. albicans growth and...control in agriculture . J Sci Food Agric 2013, 93:1525–1536. 27. Dhople V, Krukemeyer A, Ramamoorthy A: The human beta-defensin-3, an antibacterial

  3. Influência das proteínas salivares e plasmáticas no desenvolvimento de biofilmes de Candida albicans

    OpenAIRE

    William Custodio

    2012-01-01

    Resumo: O desenvolvimento de biofilme de Candida albicans pode ser mediado pela expressão diferencial de sítios de ligação protéicos na película adquirida formada sobre as superfícies das próteses dentais. Assim, objetivo geral deste estudo foi verificar a influência das proteínas de origem salivar e plasmática na formação dos biofilmes de C. albicans. No primeiro capítulo foi revisado o estado da arte de metodologias aplicadas para análise de proteínas. A partir do conhecimento das metodolog...

  4. Evaluation of caries-associated virulence of biofilms from Candida albicans isolated from saliva of pediatric patients with sickle-cell anemia

    OpenAIRE

    Brighenti,Fernanda Lourenção; Medeiros, Amanda Coelho; Bruno Mello MATOS; RIBEIRO,Zulene Eveline Abreu; Koga-Ito, Cristiane Yumi

    2014-01-01

    A previous study demonstrated that the amount of Candida spp. in saliva is higher in children with sickle-cell disease. The results from a recent study demonstrate its participation in the etiology of dental caries. Objective This study assessed caries-associated virulence (production of acid, extracellular polysaccharides, proteins and metabolic activity) of biofilms from Candida albicans isolated from saliva of patients with sickle-cell anemia in comparison to isolates obtained from matc...

  5. Application of post-discharge region of atmospheric pressure argon and air plasma jet in the contamination control of Candida albicans biofilms

    Directory of Open Access Journals (Sweden)

    Anelise Cristina Osório Cesar Doria

    Full Text Available Introduction:Candida species are responsible for about 80% of hospital fungal infections. Non-thermal plasmas operated at atmospheric pressure are increasingly used as an alternative to existing antimicrobial strategy. This work investigates the action of post-discharge region of a non-thermal atmospheric plasma jet, generated by a gliding arc reactor, on biofilms of standard strain of Candida albicans grown on polyurethane substrate. Methods Samples were divided into three groups: (i non-treated; (ii treated with argon plasma, and (iii treated with argon plus air plasma. Subsequently to plasma treatment, counting of colony-forming units (CFU/ml and cell viability tests were performed. In addition, the surface morphology of the samples was evaluated by scanning electron microscopy (SEM and optical profilometry (OP. Results Reduction in CFU/ml of 85% and 88.1% were observed in groups ii and iii, respectively. Cell viability after treatment also showed reduction of 33% in group ii and 8% in group iii, in comparison with group i (100%. The SEM images allow observation of the effect of plasma chemistry on biofilm structure, and OP images showed a reduction of its surface roughness, which suggests a possible loss of biofilm mass. Conclusion The treatment in post-discharge region and the chemistries of plasma jet tested in this work were effective in controlling Candida albicans biofilm contamination. Finally, it was evidenced that argon plus air plasma was the most efficient to reduce cell viability.

  6. Critical role for CaFEN1 and CaFEN12 of Candida albicans in cell wall integrity and biofilm formation

    Science.gov (United States)

    Alfatah, Md.; Bari, Vinay K.; Nahar, Anubhav S.; Bijlani, Swati; Ganesan, K.

    2017-01-01

    Sphingolipids are involved in several cellular functions, including maintenance of cell wall integrity. To gain insight into the role of individual genes of sphingolipid biosynthetic pathway, we have screened Saccharomyces cerevisiae strains deleted in these genes for sensitivity to cell wall perturbing agents calcofluor white and congo red. Only deletants of FEN1 and SUR4 genes were found to be sensitive to both these agents. Candida albicans strains deleted in their orthologs, CaFEN1 and CaFEN12, respectively, also showed comparable phenotypes, and a strain deleted for both these genes was extremely sensitive to cell wall perturbing agents. Deletion of these genes was reported earlier to sensitise cells to amphotericin B (AmB), which is a polyene drug that kills the cells mainly by binding and sequestering ergosterol from the plasma membrane. Here we show that their AmB sensitivity is likely due to their cell wall defect. Further, we show that double deletant of C. albicans is defective in hyphae formation as well as biofilm development. Together this study reveals that deletion of FEN1 and SUR4 orthologs of C. albicans leads to impaired cell wall integrity and biofilm formation, which in turn sensitise cells to AmB. PMID:28079132

  7. Properties of silver and copper nanoparticle-containing aqueous solutions and evaluation of their in vitro activity against Candida albicans and Staphylococcus aureus biofilms

    Science.gov (United States)

    Montes Aguirre, Melissa Mariluz

    Most microorganisms grow on surfaces as biofilms rather than as individual planktonic cells, and cells within biofilms show high levels of resistance against antimicrobial drugs. Thereby biofilm formation complicates treatment and contributes to high morbidity and mortality rates associated with infections. This study explores the physical, optical, and nano-structural properties of selected nanoparticles dispersed in aqueous solutions (nanoparticulate colloidal water or nanofluids) and examines their in vitro activity against microbial biofilms. Silver and copper nanofluids of various concentrations were prepared and studied. Their surface energies, surface charge and surface plasmonic resonance properties were obtained using contact angle measurement, zeta potential and optical spectrometer, respectively. The temperature dependence of the surface plasmon resonance behavior was also determined for the selected nanoparticulate aqueous solutions. A model of biofilm formation on the wells of microtiter plates was used to determine the in vitro activity of the nanoparticle preparations against both fungal (Candida albicans) and bacterial (Staphylococcus aureus) biofilms. Scanning electron microscopy (SEM) was used to observe the nanoparticle interactions with microbial cells. Results show that silver nanofluid has higher surface energy than that of the copper, the surface energy increases as the concentration of silver nanoparticles increases; and both nanoparticles in liquid are positively charged. The interaction between silver nanoparticles and water molecules produces notable changes on the usual temperature properties of water. Altogether, effectiveness of silver nanoparticle-containing liquids in controlling biofilm formation is observed and reported. For a given size of silver nanoparticles studied, it is found that the effective concentrations of silver nanoparticles against microbial biofilms are far lower than their cytotoxic concentrations, indicating an

  8. Synergistic effect of fluconazole and doxycycline against Candida albicans biofilms resulting from calcium fluctuation and downregulation of fluconazole-inducible efflux pump gene overexpression.

    Science.gov (United States)

    Gao, Yuan; Li, Hui; Liu, Shuyuan; Zhang, Xiang; Sun, Shujuan

    2014-07-01

    Candida albicans biofilms are intrinsically resistant to antimicrobial agents. Previous work demonstrated that the antifungal activity of fluconazole against C. albicans biofilms is notably enhanced by doxycycline. In order to explore the synergistic mechanism of fluconazole and doxycycline, we investigated the changes of efflux pump gene expression, intracellular calcium concentration and cell cycle distribution after drug intervention in this study. The expression levels of CDR1, CDR2 and MDR1 were determined by real-time PCR, and the results showed that fluconazole alone could stimulate the high expression of CDR1, CDR2 and MDR1, and the combination of doxycycline and fluconazole downregulated the gene overexpression induced by fluconazole. Intracellular calcium concentration was determined using Fluo-3/AM by observing the fluorescence with flow cytometry. A calcium fluctuation, which started 4 h and peaked 8 h after the treatment with fluconazole, was observed. The combined drugs also initiated a calcium fluctuation after 4 h treatment and showed a peak at 16 h, and the peak was higher than that stimulated by fluconazole alone. The cell cycle was measured using flow cytometry. Fluconazole alone and the combined drugs both induced a reduction in the percentages of S-phase cells and an elevation in the percentages of cells in the G2/M phase. The results of this research showed that the synergism of fluconazole and doxycycline against C. albicans biofilms is associated with blockade of the efflux pump genes CDR1, CDR2 and MDR1, and stimulation of high intracellular calcium concentration. The findings of this study are of great significance in the search for new antifungal mechanisms.

  9. In Vitro Activity of Resveratrol Against Candida Albicans Biofilms%白藜芦醇体外抗白假丝酵母菌生物膜作用的初步研究

    Institute of Scientific and Technical Information of China (English)

    李永军; 张瑞; 王鑫; 李继红

    2011-01-01

    Objective To investigate the in vitro effects of resveratrol on C. albicans biofilms. Methods XTT reduction as say was performed to determine the effect of resveratrol on C. albican.s biofilms and adherence Microscopic examination was conducted to assess the effect of resveratrol on morphogenesis of C. albicans biofilms. Results SMIC50 and SMIC80 of resveratrol against C. albicans biofilms was 128 and 256 μg/ml ,respectively. At the concentration of 256 μg/ml,resveratrol could inhibit the initial adherence and filamentous growth. Conclusion Resveratrol displays potent activity against C. albican.s biofilm.%目的 研究白藜芦醇对体外白假丝酵母菌生物膜的影响.方法 采用XTT减低法评价白藜芦醇对白假丝酵母菌生物膜的影响;通过倒置显微镜、扫描显微镜观察该药对白假丝酵母菌生物膜的形态学影响.结果 白藜芦醇对白假丝酵母菌生物膜的SMIC50,SMIC80分别为128,256 μg/ml;当白藜芦醇浓度为256 μg/ml时对白假丝酵母菌的早期黏附及菌丝生长有抑制作用.结论 白藜芦醇对体外白假丝酵母菌生物膜有显著的抑制作用.

  10. Biofilm gene expression and biofilm-related genes of Candida albicans:an update%白念珠菌生物被膜的基因表达及相关基因研究进展

    Institute of Scientific and Technical Information of China (English)

    商庆华; 曹颖瑛; 苗浩; 姜远英

    2012-01-01

    Candida albicans is an opportunistic fungal pathogen with the ability to form biofilms on in-planted medical devices. Cells in biofilms display a phenotype that is markedly different from their pianktonic and free-living counterparts in both form and function. Recent advances in microarray and genetic manipulation have begun to clarify the mechanisms that govern C, albicans biofilm development and acquisition of such unique phenotype. These studies are considered to be important in finding new targets of antifungal drugs.%白念珠菌是一种条件性致病菌,可在人体植入性器械表面形成生物被膜.与浮游和以个体形式存在的白念珠菌相比,生物被膜在结构及功能上有很大差异,这种差异本质上是由基因表达决定的.近年来,研究者们试图通过芯片和基因敲除等技术手段,探索与白念珠菌生物被膜形成及耐药相关的基因,揭示其分子机制,寻找药物作用的新靶点.

  11. Effects of tannins extracted from Terminalia chebula Retz on Candida albicans and its biofilm%诃子鞣质对白色念珠菌及其生物被膜的影响

    Institute of Scientific and Technical Information of China (English)

    向丽; 周铁军; 叶迎春; 王光西

    2013-01-01

    目的 研究诃子鞣质对生物被膜型白色念珠菌的抑制作用.方法 采用MTT法检测诃子鞣质对生物被膜形成的影响;光镜下观察生物被膜内白色念珠菌的形态学变化;采用荧光显微镜观察吖啶橙/溴化乙锭染色的生物被膜内白色念珠菌的死亡方式.结果 诃子鞣质对生物被膜的形成及成熟期生物被膜中的白色念珠菌有抑制作用,并存在时间和剂量依赖性;鞣质导致被膜内白色念珠菌细胞变形,形态结构改变,芽管和假菌丝形成抑制,但未见确切细胞凋亡.结论 诃子鞣质对白色念珠菌生物被膜的形成有抑制作用,它可能通过非凋亡途径导致生物被膜内白色念珠菌的死亡.%Objective To study the inhibitory effects of tannins extracted from Terminalia chebula Retz on Candida albicans in biofilm.Methods MTT assay was used to detect the effects of tannins extracted from Terminalia chebula Retz on biofilm formation.Light microscope was employed to observe the morphological changes of Candida albicans in biofilm,and fluorescence microscope was adopted to survey the death mode of Candida albicans in biofilm by acridine orange/ethidium bromide staining.Results Tannins extracted from Terminalia chebula Retz showed inhibitory effects on biofilm formation and Candida albicans in mature biofilm in a time-and dose-dependent manner.Tannins led to cellular deformation, morphological changes of Candida albicans in biofilm,and inhibited germ tubes and pseudohyphae formation, while there was no exact apoptosis was observed.Conclusion Tannins extracted from Terminalia chebula Retz possess inhibitory effect on biofilm formation of Candida albicans,and lead to Candida albicans in biofilm death probably via non-apoptosis pathway.

  12. Oral Candida albicans isolates from HIV-positive individuals have similar in vitro biofilm-forming ability and pathogenicity as invasive Candida isolates

    OpenAIRE

    Rasteiro Vanessa MC; Costa Anna CBP; Vilela Simone FG; Suleiman Jamal MAH; Coleman Jeffrey J; Muhammed Maged; Fuchs Beth B; Junqueira Juliana C; Jorge Antonio OC; Mylonakis Eleftherios

    2011-01-01

    Abstract Background Candida can cause mucocutaneous and/or systemic infections in hospitalized and immunosuppressed patients. Most individuals are colonized by Candida spp. as part of the oral flora and the intestinal tract. We compared oral and systemic isolates for the capacity to form biofilm in an in vitro biofilm model and pathogenicity in the Galleria mellonella infection model. The oral Candida strains were isolated from the HIV patients and included species of C. albicans, C. glabrata...

  13. Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available The yeast-to-hypha transition plays a crucial role in the pathogenesis of C. albicans. Farnesol, a quorum sensing molecule (QSM secreted by the fungal itself, could prevent the formation of hyphae and subsequently lead to the defect of biofilm formation. The DPP3, encoding phosphatase, is a key gene in regulating farnesol synthesis. In this study, we screened 24 bisbibenzyls and 2 bibenzyls that were isolated from bryophytes or chemically synthesized by using CLSI method for antifungal effect. Seven bisbibenzyls were found to have antifungal effects with IC(80 less than 32 µg/ml, and among them, plagiochin F, isoriccardin C and BS-34 were found to inhibit the hyphae and biofilm formation of C. albicans in a dose-dependent manner. To uncover the underlying relationship between morphogenesis switch and QSM formation, we measured the farnesol production by HPLC-MS and quantified Dpp3 expression by detecting the fluorescent intensity of green fluorescent protein tagged strain using Confocal Laser Scanning microscopy and Multifunction Microplate Reader. The DPP3 transcripts were determined by real-time PCR. The data indicated that the bisbibenzyls exerted antifungal effects through stimulating the synthesis of farnesol via upregulation of Dpp3, suggesting a potential antifungal application of bisbibenzyls. In addition, our assay provides a novel, visual and convenient method to measure active compounds against morphogenesis switch.

  14. Comparison of antimicrobial efficacy of propolis, Morinda citrifolia, Azadirachta indica (Neem) and 5% sodium hypochlorite on Candida albicans biofilm formed on tooth substrate: An in-vitro study

    Science.gov (United States)

    Tyagi, Shashi Prabha; Sinha, Dakshita Joy; Garg, Paridhi; Singh, Udai Pratap; Mishra, Chandrakar Chaman; Nagpal, Rajni

    2013-01-01

    Introduction: Endodontic infections are polymicrobial in nature. Candida albicans is the most common fungus isolated from failed endodontic cases. The constant increase in antibiotic resistant strains and side-effects caused by synthetic drugs has prompted researchers to look for herbal alternatives such as propolis, Morinda citrifolia and Azadirachta indica (Neem) etc., since, the gold standard for irrigation, i.e., sodium hypochlorite has many disadvantages. Materials and Methods: Extracted human mandibular premolars were biomechanically prepared, vertically sectioned, placed in tissue culture wells exposing the root canal surface to C. albicans grown on Sabouraud Dextrose Agar to form a biofilm. At the end of 2 days, all groups were treated with test solutions and control for 10 min and evaluated for Candida growth and number of colony forming units. The readings were subjected to statistical analysis using analysis of variance and post hoc Tukey tests. Results: Sodium hypochlorite and propolis groups exhibited highest antimicrobial efficacy against C. albicans with no statistically significant difference. It was followed by the A. indica (Neem) group. M. citrifolia had limited antifungal action followed by the negative control group of saline. Conclusion: According to the results of this study, propolis can be used as an effective antifungal agent similar to that of sodium hypochlorite, although long-term in vivo studies are warranted. PMID:24347888

  15. Comparison of antimicrobial efficacy of propolis, Morinda citrifolia, Azadirachta indica (Neem and 5% sodium hypochlorite on Candida albicans biofilm formed on tooth substrate: An in-vitro study

    Directory of Open Access Journals (Sweden)

    Shashi Prabha Tyagi

    2013-01-01

    Full Text Available Introduction: Endodontic infections are polymicrobial in nature. Candida albicans is the most common fungus isolated from failed endodontic cases. The constant increase in antibiotic resistant strains and side-effects caused by synthetic drugs has prompted researchers to look for herbal alternatives such as propolis, Morinda citrifolia and Azadirachta indica (Neem etc., since, the gold standard for irrigation, i.e., sodium hypochlorite has many disadvantages. Materials and Methods: Extracted human mandibular premolars were biomechanically prepared, vertically sectioned, placed in tissue culture wells exposing the root canal surface to C. albicans grown on Sabouraud Dextrose Agar to form a biofilm. At the end of 2 days, all groups were treated with test solutions and control for 10 min and evaluated for Candida growth and number of colony forming units. The readings were subjected to statistical analysis using analysis of variance and post hoc Tukey tests. Results: Sodium hypochlorite and propolis groups exhibited highest antimicrobial efficacy against C. albicans with no statistically significant difference. It was followed by the A. indica (Neem group. M. citrifolia had limited antifungal action followed by the negative control group of saline. Conclusion: According to the results of this study, propolis can be used as an effective antifungal agent similar to that of sodium hypochlorite, although long-term in vivo studies are warranted.

  16. Synthetic antimicrobial β-peptide in dual-treatment with fluconazole or ketoconazole enhances the in vitro inhibition of planktonic and biofilm Candida albicans.

    Science.gov (United States)

    Mora-Navarro, Camilo; Caraballo-León, Jean; Torres-Lugo, Madeline; Ortiz-Bermúdez, Patricia

    2015-12-01

    Fungal infections are a pressing concern for human health worldwide, particularly for immunocompromised individuals. Current challenges such as the elevated toxicity of common antifungal drugs and the emerging resistance towards these could be overcome by multidrug therapy. Natural antimicrobial peptides, AMPs, in combination with other antifungal agents are a promising avenue to address the prevailing challenges. However, they possess limited biostability and susceptibility to proteases, which has significantly hampered their development as antifungal therapies. β-peptides are synthetic materials designed to mimic AMPs while allowing high tunability and increased biostability. In this work, we report for the first time the inhibition achieved in Candida albicans when treated with a mixture of a β-peptide model and fluconazole or ketoconazole. This combination treatment enhanced the biological activity of these azoles in planktonic and biofilm Candida, and also in a fluconazole-resistant strain. Furthermore, the in vitro cytotoxicity of the dual treatment was evaluated towards the human hepatoma cell line, HepG2, a widely used model derived from liver tissue, which is primarily affected by azoles. Analyses based on the LA-based method and the mass-action law principle, using a microtiter checkerboard approach, revealed synergism of the combination treatment in the inhibition of planktonic C. albicans. The dual treatment proved to be fungicidal at 48 and 72 h. Interestingly, it was also found that the viability of HepG2 was not significantly affected by the dual treatments. Finally, a remarkable enhancement in the inhibition of the highly azole-resistant biofilms and fluconazole resistant C. albicans strain was obtained.

  17. Molecular Identification of Candida Albicans Isolated From the Oncology Patients at Four University Hospitals in Mazandaran Province (2005-6

    Directory of Open Access Journals (Sweden)

    H. Karami, M.D.

    2007-01-01

    Full Text Available AbstractBackground and Purpose: Early detection of Candida species in body site could improve the survival of the immunosuppressed patients by allowing the initiation of specific treatment while the fungal biomass is still low. The aim of this study was the identification of Candida albicans isolated from the oncology patients by molecular methods.Materials and Methods: Sixty two of Candida albicans isolated identified by phenotypic methods (color of colony on CHROMagar medium, germ-tube formation in horse serum, chlamydospore formation on Cornmeal agar with 1% Tween 80. DNA was extracted by using a glass bead/phenol- chloroform method. The oligonucleotide primer pairs (NL1/NL4 were used to amplify a 620-bp fragment of D1/D2 region of large submit (26s ribosomal DNA gene. PCR-products were electrophoresed in a 1.5% agarose gel. Eighteen PCR-amplified products sequenced and results were evaluated by online BLAST software. Multiple sequence alignment was performed by using online CLUSTAL-W (version 1.83 software.Results: The BLAST search revealed that all of products were Candida albicans. All sequences showed >99% similarity when compared with known reference sequences at the Gene-Bank. Four different strains were obtained of albicans species, including: AA 1622b (13 samples, 24698 (3 samples, TA 62 (1samples and 551 FC (1 sample. A total of 131 nucleotide exchange sites were revealed.Conclusion: The dominant species by phenotypic approaches was Candida albicans. In addition, identification of Candida albicans by (26S rDNA sequencing was 100% concordant to the results obtained by the phenotypic metho

  18. 没食子酸抑制白念珠菌生物膜作用的研究%In vitro activity of gallic acid against Candida albicans biofilms

    Institute of Scientific and Technical Information of China (English)

    汪长中; 程惠娟; 官妍; 王艳; 云云

    2009-01-01

    目的:研究没食子酸对体外白念珠菌生物膜的影响.方法:采用XTT减低法评价没食子酸对白念珠菌的生物膜及黏附性的影响;镜下观察没食子酸对白念珠菌生物膜的形态学影响;细胞毒试验检测该药的毒副作用.结果:没食子酸抑制白念珠菌生物膜最低药物浓度SMIC_(50),SMIC_(80)分别是500,1 000 mg·L~(-1);100,1 000 mg·L~(-1) 的没食子酸对白念珠菌的早期黏附及菌丝生长有抑制作用;没食子酸对人细胞毒性较弱.结论:没食子酸对体外白念珠菌生物膜有较强的抑制作用.%Objective: To investigate the effects of gallic acid against Candida albicans biofilms in vitro. Method: XTT reduc-tion assay was performed to determine the effect of gallic acid on C. albicans biofilms and its adherence, and microscopic examination was conducted to assess the effect of gallic acid on morphogenesis of C. albicans biofilms; and cytotoxic assay was used to measure the adverse effects of gallic acid. Result: SMIC_(50), SMIC_(80) of gallic acid against C. albicans biofilms were 500, 1 000 mg · ~(-1) , respec-tively; 100 mg · L~(-1) and 1 000 mg · ~(-1) of gallic acid could inhibit the initial adherence and filamentous growth, and the agent showed poor cytotoxic activity. Conclusion: gallic acid displayed potent activity against C. albicans biofilm.

  19. Comparison of biofilm formation in clinical isolates of Candida species in a tertiary care center, North India

    Directory of Open Access Journals (Sweden)

    Vivek Agwan

    2015-01-01

    Full Text Available Background and Objectives: Biofilms are colonies of microbial cells encased in a self-produced organic polymeric matrix. The biofilm production is more important for nonalbicans Candida (NAC; as C. albicans possess many other mechanisms to establish infections. Correct identification of Candida species has gained importance due to persistent rise in infections caused by NAC. We sought to isolate, identify Candida species in clinical isolates and study biofilm formation. Materials and Methods: Modified microtiter plate method was performed to study biofilm formation by isolates in Sabouraud's dextrose broth. It was then quantitatively assessed using a spectrophotometer. Biofilm formation was graded as negative, +1, +2, +3 and + 4 on the basis of percentage absorbance. Results: Biofilm formation was observed in 16 of 40 (40.0% isolates of C. albicans as compared to 39 of 78 (50.0% of isolates of NAC. Strong (+4 biofilm production was seen in maximum biofilm producers in C. tropicalis (12 of 27 followed by C. albicans (8 of 16. Total biofilm producers were significantly more among high vaginal swab isolates 63.2% (12 of 19 and urine isolates 59.2% (29 of 49, when compared to blood isolates 34.2% (13 of 38 as well as other isolates 27.5% (11 of 40. Interpretation and Conclusions: NAC species are qualitatively and quantitatively superior biofilm producers than C. albicans. Biofilm production is the most important virulence factor of NAC species and compared to other lesions, it is more significantly associated with luminal infections.

  20. Presumptive identification of Candida species other than C. albicans, C. krusei, and C. tropicalis with the chromogenic medium CHROMagar Candida

    Directory of Open Access Journals (Sweden)

    Horvath Lynn L

    2006-01-01

    Full Text Available Abstract Background CHROMagar Candida (CaC is increasingly being reported as a medium used to differentiate Candida albicans from non-albicans Candida (NAC species. Rapid identification of NAC can assist the clinician in selecting appropriate antifungal therapy. CaC is a differential chromogenic medium designed to identify C. albicans, C. krusei, and C. tropicalis based on colony color and morphology. Some reports have proposed that CaC can also reliably identify C. dubliniensis and C. glabrata. Methods We evaluated the usefulness of CaC in the identification of C. dubliniensis, C. famata, C. firmetaria, C. glabrata, C. guilliermondii, C. inconspicua, C. kefyr, C. lipolytica, C. lusitaniae, C. norvegensis, C. parapsilosis, and C. rugosa. Results Most NAC produced colonies that were shades of pink, lavender, or ivory. Several isolates of C. firmetaria and all C. inconspicua produced colonies difficult to differentiate from C. krusei. Most C. rugosa isolates produced unique colonies with morphology like C. krusei except in a light blue-green color. C. glabrata isolates produced small dark violet colonies that could be differentiated from the pink and lavender colors produced by other species. All seventeen isolates of C. dubliniensis produced green colonies similar to those produced by C. albicans. Conclusion C. glabrata and C. rugosa appear distinguishable from other species using CaC. Some NAC, including C. firmetaria and C. inconspicua, could be confused with C. krusei using this medium.

  1. Structural Properties and Antifungal Activity against Candida albicans Biofilm of Different Composite Layers Based on Ag/Zn Doped Hydroxyapatite-Polydimethylsiloxanes

    Directory of Open Access Journals (Sweden)

    Andreea Groza

    2016-04-01

    Full Text Available Modern medicine is still struggling to find new and more effective methods for fighting off viruses, bacteria and fungi. Among the most dangerous and at times life-threatening fungi is Candida albicans. Our work is focused on surface and structural characterization of hydroxyapatite, silver doped hydroxyapatite and zinc doped hydroxyapatite deposited on a titanium substrate previously coated with polydimethylsiloxane (HAp-PDMS, Ag:HAp-PDMS, Zn:HAp-PDMS by different techniques: Scanning Electron Microscopy (SEM, Glow Discharge Optical Emission Spectroscopy (GDOES and Fourier Transform Infrared Spectroscopy (FTIR. The morphological studies revealed that the use of the PDMS polymer as an interlayer improves the quality of the coatings. The structural characterizations of the thin films revealed the basic constituents of both apatitic and PDMS structure. In addition, the GD depth profiles indicated the formation of a composite material as well as the successful embedding of the HAp, Zn:HAp and Ag:HAp into the polymer. On the other hand, in vitro evaluation of the antifungal properties of Ag:HAp-PDMS and Zn:HAp-PDMS demonstrated the fungicidal effects of Ag:HAp-PDMS and the potential antifungal effect of Zn:HAp-PDMS composite layers against C. albicans biofilm. The results acquired in this research complete previous research on the potential use of new complex materials produced by nanotechnology in biomedicine.

  2. In vitro activity of micafungin against Candida albicans biofilms%米卡芬净等对抗白念珠菌生物膜的体外研究

    Institute of Scientific and Technical Information of China (English)

    张洁; 王英; 顾军; 张莉

    2009-01-01

    目的 探讨体外白念珠菌生物膜对米卡芬净的敏感性.方法 通过建立白念珠菌生物膜的体外模型,用抗真菌药物敏感实验法和甲基四氮盐(XTT)减低法来评价白念珠菌生物膜对氟康唑、两性霉素B、米卡芬净的敏感性.结果 30株白念珠菌生物膜中,所有菌株对氟康唑均耐药(SMIC80≥64μg/mL);4株对两性霉素B敏感(SMIC80≤1μg/mL),26株对两性霉素B耐药(MIC801μg/mL);27株对米卡芬净敏感(SMIC800.05).结论 白念珠菌生物膜对目前常用的系统性抗真菌药物两性霉素B、氟康唑明显耐药,而对米卡芬净比较敏感.%Objective To explore the susceptibility of Candida albicans biofilms to micafungin. Methods In vitro model of C. Albicans biofilm was established in 96-well microtiter plates with 30 C. Albicans isolates from the Department of Mycology, Changhai Hospital, Shanghai. The susceptibility of C. Albicans biofilms to fluconazole, amphotericine B and micafungin was evaluated by colorimetric XTT-reduction assay. Sessile MIC80 (SMIC80), defined as the lowest antifungal concentration at which an 80% reduction in fungal growth was achieved, was determined. Results Of the 30 C. Albicans isolates grown in sessile states, all were resistant to fluconazole (SMIC80≥64 μg/mL), 4 sensitive to amphotericine B (SMIC80≤1 μg/mL), 26 resistant to amphotericine B (SMIC80 > 1 μg/mL), 27 sensitive to micafungin (SMIC80 16 μg/mL). Statistical analysis revealed a significant difference in the activity against C. Albicans biofilms between micafungin and fluconazole (χ2=736.36, P0.05). Conclusion C. Albicans biofilms are resistant to routine antifungal agents such as fluconazole and amphotericine B, but relatively more sensitive to micafungin.

  3. Study on andrographolide-induced apoptosis of Candida albicans biofilm dispersion cells%穿心莲内酯诱导白念珠菌生物膜分散细胞凋亡的研究

    Institute of Scientific and Technical Information of China (English)

    汪长中; 韩宁; 徐振华; 程惠娟; 官妍; 云云; 王艳

    2012-01-01

    Objective: To detect the effect of andrographolide on apoptosis of Candida albicans biofilm dispersion cells. Method: The morphological changes of apoptotic C. Albicans biofilm cells were observed by using Hoechst 33258 staining Fluorescence microscope; changes of mitochondrial membrane potential (MMP) of C. Albicans biofilm cells were detected by rhodamine 123 staining flow cytometry; and reactive oxygen species (ROS) was detected by DHR staining flow cytometry. Result: 1 000, 100 μmol · L-1 of andrographolide could cause pyknosis and dense staining of C. Albicans biofilm cells, 1 000, 100, 10 μmol · L-1 of andrographolide could decrease MMP and increase ROS of C. Albicans biofilm cells. Conclusion: Andrographolide of appropriate concentrations could induce apoptosis of dispersion cells of C. Albicans biofilms.%目的:探讨中药有效成分穿心莲内酯对白念珠菌生物膜分散细胞凋亡的影响.方法:Hoechst33258染色荧光显微镜检测白念珠菌生物膜细胞凋亡的形态;Rh123染色流式细胞仪检测白念珠菌生物膜细胞线粒体膜电位(MMP)变化;DHR染色流式细胞仪检测白念珠菌生物膜细胞内活性氧(ROS)水平.结果:1 000,100 μmol·L-1的穿心莲内酯能诱导白念珠菌生物膜细胞核固缩、浓染致密,1 000,100,10 μmol·L-的穿心莲内酯能降低白念珠菌生物膜线粒体膜电位,提高细胞内ROS水平.结论:一定浓度的穿心莲内酯可诱导白念珠菌生物膜分散细胞凋亡.

  4. Identification of different bacterial species in biofilms using confocal Raman microscopy

    Science.gov (United States)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2010-11-01

    Confocal Raman microspectroscopy is used to discriminate between different species of bacteria grown in biofilms. Tests are performed using two bacterial species, Streptococcus sanguinis and Streptococcus mutans, which are major components of oral plaque and of particular interest due to their association with healthy and cariogenic plaque, respectively. Dehydrated biofilms of these species are studied as a simplified model of dental plaque. A prediction model based on principal component analysis and logistic regression is calibrated using pure biofilms of each species and validated on pure biofilms grown months later, achieving 96% accuracy in prospective classification. When biofilms of the two species are partially mixed together, Raman-based identifications are achieved within ~2 μm of the boundaries between species with 97% accuracy. This combination of spatial resolution and predication accuracy should be suitable for forming images of species distributions within intact two-species biofilms.

  5. Confocal Raman microscopy for identification of bacterial species in biofilms

    Science.gov (United States)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2011-03-01

    Implemented through a confocal microscope, Raman spectroscopy has been used to distinguish between biofilm samples of two common oral bacteria species, Streptococcus sanguinis and mutans, which are associated with healthy and cariogenic plaque, respectively. Biofilms of these species are studied as a model of dental plaque. A prediction model has been calibrated and validated using pure biofilms. This model has been used to identify the species of transferred and dehydrated samples (much like a plaque scraping) as well as hydrated biofilms in situ. Preliminary results of confocal Raman mapping of species in an intact two-species biofilm will be shown.

  6. Biofilms on tuff stones at historical sites: identification and removal by nonthermal effects of radiofrequencies.

    Science.gov (United States)

    Cennamo, P; Caputo, P; Giorgio, A; Moretti, A; Pasquino, N

    2013-10-01

    A methodology aiming at identifying and removing biofilms from cultural heritage was applied to stones from tuff walls in historical sites. Identification of phototrophic encrusting microorganisms was carried out by optical and electron microscopy, as well as by molecular techniques (DNA analyses and denaturing gradient gel electrophoresis (DGGE)). In all sites, the examination of microbial components of biofilms resulted in the identification of 17 species belonging to Cyanobacteria, Rhodophyta, Bacillariophyta and Chlorophyta, with Cyanobacteria being the dominant components in all biofilms. In order to remove the biofilms, an innovative technique based on the use of nonthermal effects of radiofrequencies was adopted. The source of the electromagnetic fields was a signal generator connected to a horn antenna through an amplifier to provide the power boost required to generate the target field amplitude. Seven days after exposure to radiofrequency electromagnetic field, about 50 % reduction of biofilm was observed; after 14 days, biofilm extension was reduced by about 90 %. DGGE analyses performed after 14 days confirmed these visual inspections. Also, DGGE analyses carried out before and 14 days after treatments showed that 12 out of 17 identified species disappeared. A complete visual disappearance of biofilms was observed a month after the beginning of treatments. DGGE repeated at this time confirmed the total disappearance of biofilm-forming species. Treated stones, when transferred back to their original sites, did not show any microorganism re-growing after 6 months. No alteration in the color and structural consistency of tuff substrata was observed after radiofrequency treatments.

  7. Study on Biofilm Inhibit Mechanism of Streptococcus Sanguis Bacteriocin on Candida Albicans.%血链球菌细菌素对白色念珠菌生物膜抑制作用的研究

    Institute of Scientific and Technical Information of China (English)

    马晟利; 王琪波; 李旭明

    2011-01-01

    Objective: To extract bacteriocin effective antimicrobial substances the standard strains of Streptococcus sanguis ATCC10556 and to study the action mechanism of Streptococcus sanguis bacteriocin on Candida albicans biofilms. Methods.. By ultrasonic, salt precipitation and sephadex G-25 column desalting through dialysis, sanguicin of the streptococcus bacteria isolated elements, the Candida albicans biofilms. After 2h, 6h, 12h, 24h, 48h, 72h,changes observed in BF. Results: After 24h, Candida albicans biofilms changed significantly, then was 12h. Conclusion: Streptococcus sanguis bacteriocin biofilms of Candida albicans strains were significantly inhibited.%目的:提取血链球菌标准株ATCC10556的有效抗菌物质细菌素,进一步研究血链球菌细菌素对白色念珠菌生物膜的作用机理.方法:通过超声破碎、盐析、sephadex G-25过柱脱盐、透析、浓缩的方法分离血链球菌细菌素,使之作用于白色念珠菌生物膜,并在2 h、6 h、12 h、24 h、48 h、72 h观察白色念珠菌生物膜厚度的变化.结果:24 h内白色念珠菌生物膜厚度有明显改变,12 h效果最为显著.结论:血链球菌细菌素对白色念株菌生物膜具有显著的抑制作用.

  8. Intervention Effects of Tannins from Galla chinensis against Candida albicans in Biofilm%五倍子鞣质对生物被膜型白假丝酵母的干预作用

    Institute of Scientific and Technical Information of China (English)

    向丽; 李蓉; 周铁军; 叶迎春; 王光西

    2012-01-01

    [Objective] To study the inhibition action of tannins from Galla chinensis against Candida albicans in biofilm in vitro. [ Method] At early stage, middle stage and mature stage of biofilm formation, Candida albicans biofilm was incubated with different concentrations of tannins extracts for 48 h, and mature Candida albicans biofilm was incubated with different concentration of tannins extracts for 24, 48 and 72 h, the cells inhibition rate was tested by MIT method. The morphology of Candida albicans in biofilm was observed by light microscope and the death mode was observed in the staining of AO/EB by fluorescence microscope, [ Result] Tannins from Galla chinensis could inhibit biofilm formation and mature biofilm, and the inhibition was time-and-dose-dependent during the mature stage. Tannins extracts led to the biofilm deforma-tion, morphology and structure change of Candida albicans, but without obvious apoptosis. The tannins also inhibited the budding and formation of pseudohypha. [ Conclusion ] Tannins from Galla chinensis could efficiently inhibit biofilm information and mature biofilm, and possibly lead to Candida albicans death by non-apoptosis pathway.%[目的]研究五倍子鞣质对生物被膜型白假丝酵母的抑制作用.[方法]在生物被膜形成的早期、中期和成熟期以不同浓度药物干预48 h,采用MTT法检测药物对膜型白假丝酵母的抑制率;以不同浓度药物干预成熟生物被膜24、48、72 h,再用MTT法检测抑制率;光镜直接观察生物被膜内白假丝酵母的形态结构变化;用吖啶橙/溴化乙锭染色,通过荧光显微镜观察生物被膜内白假丝酵母的死亡方式.[结果]五倍子鞣质对生物被膜的形成具有抑制作用,对成熟期生物被膜中白假丝酵母的抑制作用具时间和剂量依赖性;鞣质导致被膜内白假丝酵母细胞变形,形态结构改变,但未见确切细胞凋亡,同时抑制细胞芽管和假菌丝形成.[结论]五倍子鞣质对

  9. Herpes Simplex Virus (HSV) Modulation of Staphylococcus aureus and Candida albicans Initiation of HeLa 299 Cell-Associated Biofilm.

    Science.gov (United States)

    Plotkin, Balbina J; Sigar, Ira M; Tiwari, Vaibhav; Halkyard, Scott

    2016-05-01

    Although herpes simplex virus type-1 (HSV-1), and type-2 (HSV-2), Staphylococcus aureus and Candida albicans co-habit the oral and genital mucosa, their interaction is poorly understood. We determined the effect HSV has on bacterial and/or fungal adherence, the initial step in biofilm formation. HeLa229 cells were infected with HSV-1 (KOS) gL86 or HSV-2 (KOS) 333gJ (-) at a multiplicity of infection (MOI) of 50 and 10. S. aureus (ATCC 25923) and/or C. albicans (yeast forms or germ tube forms) were co-incubated for 30 min (37 °C; 5 % CO2; 5:1 organism: HeLa cell ratio; n = 16) with virus-infected HeLa cells or uninfected HeLa cell controls. Post-incubation, the monolayers were washed (3x; PBS), lysed (RIPA), and the lysate plated onto Fungisel and/or mannitol salts agar for standard colony count. The level of HeLa-associated S. aureus was significantly decreased (P HSV-1- and HSV-2-infected cells, as compared to virus-free HeLa cell controls (38 and 59 % of control, respectively). In contrast, HSV-1 and HSV-2 significantly (P HSV-1- and HSV-2-infected cells was specific for the Candida phenotype tested. Our study suggests that HSV, while antagonist towards S. aureus adherence enhances Candida adherence. Furthermore, the combination of the three pathogens results in S. aureus adherence that is either unaffected, or partially restored depending on both the herpes viral species and the fungal phenotype present.

  10. Identification of Drosophila gene products required for phagocytosis of Candida albicans.

    Directory of Open Access Journals (Sweden)

    Shannon L Stroschein-Stevenson

    2006-01-01

    Full Text Available Phagocytosis is a highly conserved aspect of innate immunity. We used Drosophila melanogaster S2 cells as a model system to study the phagocytosis of Candida albicans, the major fungal pathogen of humans, by screening an RNAi library representing 7,216 fly genes conserved among metazoans. After rescreening the initial genes identified and eliminating certain classes of housekeeping genes, we identified 184 genes required for efficient phagocytosis of C. albicans. Diverse biological processes are represented, with actin cytoskeleton regulation, vesicle transport, signaling, and transcriptional regulation being prominent. Secondary screens using Escherichia coli and latex beads revealed several genes specific for C. albicans phagocytosis. Characterization of one of those gene products, Macroglobulin complement related (Mcr, shows that it is secreted, that it binds specifically to the surface of C. albicans, and that it promotes its subsequent phagocytosis. Mcr is closely related to the four Drosophila thioester proteins (Teps, and we show that TepII is required for efficient phagocytosis of E. coli (but not C. albicans or Staphylococcus aureus and that TepIII is required for the efficient phagocytosis of S. aureus (but not C. albicans or E. coli. Thus, this family of fly proteins distinguishes different pathogens for subsequent phagocytosis.

  11. STUDY ON THE INHIBITORY EFFECTS OF ESSENTIAL OILS ON Candida albicans BIOFILM%阴香植物精油对白色念珠菌生物膜的抑制研究

    Institute of Scientific and Technical Information of China (English)

    黄晓敏; 王晨明; 管文华; 林少芸; 袁华珍; 余培凯

    2012-01-01

    Objective To observe the inhibitory effect of essential oil on Candida albicans biofilm. Methods The modified Brown's Plate method and the carrier quantitative germicidal test were used to observe the inhibitory effect of essential oil on C. albicans. Results The C. albicans biofilm cultivated for 3 days and 7 days exposed to 2. 5% ( v/v) essential oil compound preparation for 30 min and 90 min respectively were completely killed. While the pelagic C. albicans in suspensions exposed to 2. 5% (v/v) essential oil compound preparation for 10 min were completely killed. Conclusion Essential oil has cleaning effect on C. albicans biofilm and can inhibit biofilm formation. It has better killing effect on pelagic C. albicans.%目的 观察阴香精油对白色念珠菌生物膜(BF)的抑制作用.方法 采用改良Brown平板连续培养法制备生物膜和应用悬液定量杀菌试验法,对阴香精油抑制白色念珠菌生物膜的效果进行了实验室检测.结果 用体积分数2.5%阴香精油作用30 min,对培养3 d的白色念珠菌生物膜达到完全杀灭;作用90 min对培养7 d的白色念珠菌生物膜达到完全清除.用体积分数2.5%阴香精油作用10 min,可完全杀灭悬液内白色念珠菌浮游菌.结论 阴香精油对白色念珠菌生物膜有清除效应,可抑制生物膜形成,对悬液内浮游菌杀灭效果更好.

  12. In vitro formation of biofilm by Candida albicans and its relationship with genotype%白色念珠菌体外生物膜形成与基因分型关系的研究

    Institute of Scientific and Technical Information of China (English)

    阳隽; 张天托; 朱家馨

    2012-01-01

    Objective To study the relationship between in vitro formation of biofilm by Candida albicans (C .albicans) isolates and genotypes .Methods 52 strains of C .albicans isolated from respiratory tract were isolated and incubated for 24 h .The metabolic activities of cells within biofilm were measured by XTT -reduction assay .The genetic similarities of isolates were assessed by rep-polymerase chain reaction(rep-PCR) and analyzed by cluster analysis .Results 26 C .albicans isolates were with high performance of biofilm formation .Similarity coefficient of tested strains was 0 .79 ± 0 .13 .Similarity coefficient of isolates with high or low performance of biofilm formation were 0 .8±0 .14 and 0 .81 ± 0 .12 respectively .Conclusion The relationship among C .albicans isolates from respiratory tract might be close .The isolates with similar ability to form biofilm might be without cluster of genotypes .%目的 探讨白色念珠菌临床分离株体外生物膜形成与基因分型的可能关系.方法 选取52株呼吸道白色念珠菌分离株体外黏附生长24 h,用XTT减低法测定其增殖情况.采用重复序列PCR指纹技术分析白色念珠菌菌株基因类型,并进行聚类分析.结果 根据黏附生长的白色念珠菌增殖情况,有26株临床株形成生物膜能力"高",其余菌株形成生物膜能力"低".实验菌株的遗传相似系数为0.79±0.13,生物膜形成能力"高"及生物膜形成能力"低"的菌株间相似系数分别为0.8±0.14和0.81±0.12.结论 呼吸道白色念珠菌分离株的亲缘关系较近,但生物膜形成能力形似的菌株间未出现基因型聚集.

  13. The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis

    OpenAIRE

    Irlan de Almeida Freires; Bruno Bueno-Silva; Lívia Câmara de Carvalho Galvão; Marta Cristina Teixeira Duarte; Adilson Sartoratto; Glyn Mara Figueira; Severino Matias de Alencar; Pedro Luiz Rosalen

    2015-01-01

    The essential oils (EO) and bioactive fractions (BF) from Aloysia gratissima, Baccharis dracunculifolia, Coriandrum sativum, Cyperus articulatus, and Lippia sidoides were proven to have strong antimicrobial activity on planktonic microorganisms; however, little is known about their effects on the morphology or viability of oral biofilms. Previously, we determined the EO/fractions with the best antimicrobial activity against Streptococcus mutans and Candida spp. In this report, we used a confo...

  14. Identification and study of non-Albicans Candida species isolated from clinical materials of patients with Candidiasis

    Directory of Open Access Journals (Sweden)

    Afsarian MH

    2007-05-01

    Full Text Available Background: I Infections due to Candida spp. have increased dramatically in recent years through a rising number of predisposing factors and immunocompromised hosts. Although Candida albicans is the most prevalent and important causative agent of Candida infections, the importance of C. parapsilosis, C. tropicalis, C. krusei, C. glabrata, C. guilliermondii and C. kefyr have increased significantly as they tend to be more resistant to antifungal agents. Therefore, it is critical that infecting Candida spp. be identified and considered. Furthermore, clinical laboratories may need to expand their yeast identification capabilities in order to facilitate rapid identification of clinical yeast isolates. Methods: In a discroptive – analytic study, the patients suspected of candidiasis were sampled. Direct examination and culture was carried out for all specimens. The isolated yeast colonies were then identified using various different tests such as culture on corn mealagar tween-80, CHROMagar Candida, and assimilation test by API 20C AUX kit. Results: In the present study, 304 yeast colonies were isolated from referral patients to mycology laboratory of 304 isolated colonies 204 were identified as C. albicans and 100 were identified as non albicans candida as follow 35% C. parapsilosis, 32% C. tropicalis, 8% C. glabrata, 8% C. kefyer, 6% C. krusei, 3% C. guilliermondii, 3% C. famata, 3% C. lusitaniae, 1% C. zeilanoides and 1% C. homicola. C. parapsilosis was the most frequent species. The result showed that clinical specimens were obtained from various infected sites of body and nail samples (59 cases were found to be the most frequent among those specimens. Conclusion: In conclusion, our results suggest that no single phenotypic test has proven to be highly effective for definitive identification. Moreover since these organisms can vary greatly in their susceptibility to the current antifungal agent and causing significant patient management problem

  15. Comparison of VITEK 2 YST Card and API 20C AUX system in identification of non- albicans Candida species

    Directory of Open Access Journals (Sweden)

    Süleyman Durmaz

    2012-03-01

    Full Text Available Objectives: In the present study, it was aimed to compare results obtained by using VITEK 2 YST Card (bioMérieux, France with those obtained by using API 20C AUX (bioMérieux, France for identification of non- albicans Candida species, which was isolated from various clinical samples, at level of species.Materials and methods: Forty-one non-albicans Candida isolates, which were isolated from 28 urine, 10 blood and 3 vaginal swab specimens, and found to be negative by germ tube test, were identified by using VITEK 2 YST Card (bioMérieux, France. In addition, microscopic morphology was assessed in corn-meal Tween 80 agar, while carbohydrate assimilation was assessed by using commercially available API 20C AUX kit (bioMérieux, France.Results: Thirty-four isolates (82.9% were identified as identical species by these 2 systems, while different results were obtained in 7 isolates (17.1%. 5 isolates, identified as Candida glabrata by API 20C AUX system, were identified as Candida tropicalis (n=2, Candida krusei, Candida lipolitica and Candida kefyr by VITEK 2 YST Card. One other isolate, identified as C.tropicalis, was identified as Candida parapsilosis; and additional one isolate, identified as C.parapsilosis, was identified as C.tropicalis.Conclusion: It was concluded that one should be cautious in the identification of C.glabrata, in particular, C.tropicalis and C.parapsilosis, although between VITEK 2 YST Card and API 20C AUX system results was found largely similarity in identification of non-albicans Candida spp.

  16. Beneficial biofilms

    Directory of Open Access Journals (Sweden)

    Sara R Robertson

    2015-10-01

    Full Text Available Surface-adherent biofilm growth is a common trait of bacteria and other microorganisms in nature. Within biofilms, organisms are present in high density and are enmeshed in an organic matrix containing polysaccharides and other molecules. The close proximity of organisms within biofilms facilitates microbial interactions and signaling, including many metabolic processes in which consortia rather than individual organisms participate. Biofilm growth also enables microorganisms to withstand chemical and biological stresses. Here, we review some current literature and document representative beneficial aspects of biofilms using examples from wastewater treatment, microbial fuel cells, biological repair (biocementation of stonework, and biofilm protection against Candida albicans infections. Finally, we address a chemical ecology strategy whereby desired microbial succession and beneficial biofilm formation can be encouraged via manipulation of culture conditions and bacterial signaling.

  17. 呼吸道白色假丝酵母菌分离株生物膜形成及药物敏感性检测%Biofilm formation and antifungal susceptibility of Candida albicans isolated from respiratory tract

    Institute of Scientific and Technical Information of China (English)

    阳隽; 张天托; 朱家馨; 黄静

    2011-01-01

    OBJECTIVE To monitor the biofilm formation and antifungal susceptibility of Candida albicans isolated from lower respiratory tract of critically ill patients.METHODS By forming biofilm in cell culture plate in vitro,based on the amount of light blocked passing through the wells, C.albicans isolates were divided into two groups:biofilm-negative isolates and biofilm-positive isolates.The MICs of antifungal drugs against planktonic cells and biofilm-associated adherent cells of 10 isolates were determined respectively.RESULTS Totally 14(26.92%)of 52 isolates were classified as biofilm producer, the other 38(73.08 %)isolates were classified as nonbiofilm producer.The MICs of FLU, CASPO and AMB for biofilm-associated adherent cells were much higher than that for planktonic cells.All biofilm-associated adherent ceils were resistant to FLU and CASPO(SMIC80 >256 μg/ml;>16 μg/ml).The MICs of AMB for biofilms of 4 strains were more than 8 μg/ml.CONCLUSION Biofilm formation varies greatly among individual C.albicans isolates.C.albicans biofilm is highly resistant to antifungal agents.%目的 监测危重病患者下呼吸道分离的白色假丝酵母菌(CAL)体外生物膜形成及对抗真菌药物的敏感性,为临床诊治提供依据.方法 接种CAL于96孔培养板黏附生长形成生物膜,根据相对于空白对照透光度下降的程度将CAL分为生物膜阳性和生物膜阴性菌株,并测定抗真菌药物对10株生物膜阳性CAL游离态和生物膜的MIC值.结果 52株CAL中有14株为生物膜阳性菌株,占26.92%;38株为生物膜阴性菌株,占73.08%;氟康唑、卡泊芬净及两性霉素B对生物膜CAL的MIC值明显高于其游离态MIC值,10株生物膜CAL对氟康唑、卡泊芬净均耐药(SMIC80>256μg/ml及>16μg/ml),而两性霉素B对其中4株生物膜CAL的SMIC80>8μg/ml.结论 呼吸道CAL分离株生物膜形成存在表型差异,生物膜CAL对抗真菌药物的耐药性增高.

  18. 黄根醇提取物体外抗白色念珠菌生物膜作用的实验研究%Alcohol Extract from Prismatomeris Tetrandra against Candida Albicans Biofilms in Vitro

    Institute of Scientific and Technical Information of China (English)

    谈潘莉; 徐雯; 曹毅

    2015-01-01

    目的:观察黄根醇提取物体外对白色念珠菌生物膜及相关基因的影响。方法 M27-A2测定黄根醇提取物对白色念珠菌的最小抑菌浓度(MIC);XTT法评价黄根醇提取物对白色念珠菌生物膜形成的影响;实时荧光定量RT-PCR(qRT-PCR)检测黄根醇提取物作用后,ALS基因的表达情况。结果黄根醇提取物对白色念珠菌的MIC为8μg/mL;随着浓度的增加,黄根醇提取物对白色念珠菌生物膜的抑制作用增强,呈正相关性;16μg/mL黄根醇提取物对不同生长阶段的白色念珠菌生物膜均有抑制作用,抑制率随生物膜成熟逐渐降低;qRT-PCR结果显示,药物作用后ALS2、ALS3基因表达降低(7.87±0.27比5.15±0.34;6.24±0.51比2.13±0.23,P0.05)。结论黄根醇提取物对体外白色念珠菌生物膜有较明显的抑制作用,可能通过抑制ALS2、ALS3基因的表达而实现。%Objective To study the effect of alcohol extract from Prismatomeris tetrandra on candida albicans(C. albicans) biofilms and the expression of related genes in vitro. Methods M27-A2 was used to determine the min-imum inhibitory concentration (MIC) of alcohol extract from Prismatomeris tetrandra against C. albicans. XTT assay was performed to determine the effects of alcohol extract from Prismatomeris tetrandraon C.albicans biofilm forma-tion. The real-time fluorescent quantitative RT-PCR(qRT-PCR) was used to determine the difference of ALS gene expression between before and after alcohol extract from Prismatomeris tetrandra induction group. Results MIC of alcohol extract from Prismatomeris tetrandra against C. albicans was 8μg/mL. With increasing concentration, the in-hibitory effect of alcohol extract from Prismatomeris tetrandra on C. albicans biofilms enhanced. Alcohol extract from Prismatomeris tetrandra at concentration of 16μg/mL showed distinct inhibitive effect on adhesion to C.albicans cultured for 4h, 8h, 12h, 24h and 48h, and the

  19. Root canal filling material added with tea polyphenols inhibits the generation of Candida albicans biofilm%根管充填材料加入茶多酚抑制白色念珠菌生物膜的生成

    Institute of Scientific and Technical Information of China (English)

    许颖; 吕庆; 康梁; 张慧明

    2013-01-01

    BACKGROUND: Candida albicans biofilms can influence the prognosis of root canal fil ing, and tea polyphenols can in vitro inhibit the Candida albicans biofilm, while the antibacterial mechanism may play the role through influencing or interfering the expression of resistance gene. OBJECTIVE: To investigate the inhibitory effect of root canal fil ing material added with tea polyphenols on Candida albicans biofilm. METHODS: Constant broth dilution method was used to determine the minimal inhibitory concentration of tea polyphenols in vitro inhibited Candida albicans biofilms, in order to identify the inhibitory effect. Then the expressions of Candida albicans resistance genes CDR1, CDR2 and MDR1 were detected with reverse transcriptase polymerase chain reaction after inhibited with tea polyphenols. RESULTS AND CONCLUSION: The minimum inhibitory concentration of tea polyphenols used to inhibit Candida albicans biofilm was 11.5 mg/mL. Reverse transcriptase polymerase chain reaction results showed that expressions of related resistance genes CDR1 and CDR2 were decreased with the gradient increasing of drug concentration, and when the concentration reached to 25 mg/mL or above, the mRNA expression level was completely inhibited, while the concentration of the resistance drug has less effect on the expression of resistance drug MDR1. Tea polyphenols has inhibitory effect on Candida albicans biofilm, and has significant inhibitory effect on the expressions of experimental selected resistance genes CDR1 and CDR2.%  背景:白色念珠菌生物膜是根管充填治疗预后的影响因素,茶多酚体外可能对白色念珠菌生物膜有抑菌作用,其抑菌机制可能通过影响或干扰相关耐药基因的表达而实现。目的:探讨根管充填材料加入茶多酚对白色念珠菌生物膜的抑制作用。方法:采用常量肉汤稀释法确定茶多酚体外对白色念珠菌生物膜的最小抑菌浓度,以此判断抑菌效果,然后用

  20. Identification of small molecules that disrupt vacuolar function in the pathogen Candida albicans

    Science.gov (United States)

    Tournu, Helene; Carroll, Jennifer; Latimer, Brian; Dragoi, Ana-Maria; Dykes, Samantha; Cardelli, James; Peters, Tracy L.; Eberle, Karen E.; Palmer, Glen E.

    2017-01-01

    The fungal vacuole is a large acidified organelle that performs a variety of cellular functions. At least a sub-set of these functions are crucial for pathogenic species of fungi, such as Candida albicans, to survive within and invade mammalian tissue as mutants with severe defects in vacuolar biogenesis are avirulent. We therefore sought to identify chemical probes that disrupt the normal function and/or integrity of the fungal vacuole to provide tools for the functional analysis of this organelle as well as potential experimental therapeutics. A convenient indicator of vacuolar integrity based upon the intracellular accumulation of an endogenously produced pigment was adapted to identify Vacuole Disrupting chemical Agents (VDAs). Several chemical libraries were screened and a set of 29 compounds demonstrated to reproducibly cause loss of pigmentation, including 9 azole antifungals, a statin and 3 NSAIDs. Quantitative analysis of vacuolar morphology revealed that (excluding the azoles) a sub-set of 14 VDAs significantly alter vacuolar number, size and/or shape. Many C. albicans mutants with impaired vacuolar function are deficient in the formation of hyphal elements, a process essential for its pathogenicity. Accordingly, all 14 VDAs negatively impact C. albicans hyphal morphogenesis. Fungal selectivity was observed for approximately half of the VDA compounds identified, since they did not alter the morphology of the equivalent mammalian organelle, the lysosome. Collectively, these compounds comprise of a new collection of chemical probes that directly or indirectly perturb normal vacuolar function in C. albicans. PMID:28151949

  1. Prospective evaluation of the chromogenic medium CandiSelect 4 for differentiation and presumptive identification of non-Candida albicans Candida species.

    Science.gov (United States)

    Zhao, Liang; de Hoog, G Sybren; Cornelissen, Akke; Lyu, Qian; Mou, Lili; Liu, Taohua; Cao, Yu; Vatanshenassan, Mansoureh; Kang, Yingqian

    2016-02-01

    Rapid identification of pathogenic yeasts is a crucial step in timely and appropriate antifungal therapy. For diagnostics in the clinical laboratory, simplified alternatives to barcoding are needed. CandiSelect 4 (CS4) medium, a chromogenic medium for isolation of clinical yeasts, allows routine recognition of Candida albicans and presumptive identification of Candida tropicalis, Candida glabrata, and Candida krusei. We evaluated an extension of this method with 46 non-Candida albicans Candida (NCAC) and 7 Malassezia species. The medium supported growth of all species tested and a wide diversity of cultural types were observed. Colony colours were in violet, turquoise (including green and blue), or white tinges. Eight NCAC species produced violet pigmentation similar to that of C. albicans. Most NCAC species, including C. glabrata and C. tropicalis were distributed in the turquoise group. Malassezia species were invariably blue.

  2. Tyrosol和Farnesol对白念珠菌生物被膜形成作用初探%Preliminary study on the effect of tyrosol and farnesol on biofilm formation of Candida albicans

    Institute of Scientific and Technical Information of China (English)

    潘(王争); 魏昕; 刘卫红

    2008-01-01

    目的 研究密度感应分子(quorum sensing molecule)tyrosol(对羟基苯乙醇)和farnesol(法呢醇)对白念珠菌生物被膜形成的调控作用.方法 在tyrosol和farnesol干预下构建白念珠菌临床株和标准株生物被膜,在倒置显微镜下观察细胞形态,应用RT-PCR技术检测密度感应分子对白念珠菌HTA1和EFG1基因表达的调控作用,并采用MTT法观察密度感应分子对细胞活性的影响.结果 tyrosol对白念珠菌生物被膜的菌丝发生和细胞活性无明显促进作用,也无法中和farnesol对菌丝发生和细胞活性的抑制作用.tyrosol使白念珠菌生物被膜内细胞HTA1的表达增强,对EFG1的表达并无明显影响;tyrosol不能改变famesol对HTA1和EFG1表达的抑制作用.结论 tyrosol能在一定程度恢复口腔白念珠菌生物被膜内细胞的活跃状态,但当tyrosol与famesol同时存在时,tyrosol的作用被后者的抑制效应所掩盖,细胞对farnesol更敏感.%Objective To study the regulation of quorum sensing molecule tyrosol and farnesol on biofilm formation of Candida albicans. Methods Candida albicans biofilms of clinic isolates and standard strain SC5314 were built when quorum sensing molecule existed. And inverted microscope was used to observe the morphology of C. albicans cells. RT-PCR and MTT assay were carried out to investigate the effect of quorum sensing molecule on expression of the two genes (HTA1 and EFG1) and cytoactive. Results Tyrosol could not promote hyphae development and cytoactive of C. albicans biofilms. The expression of HTA1 of C. albicans in biofilms was up-regulated by tyrosol but EFG1 was not. The inhibitory effect of farnesol on hyphae development, cytoactive and gene expression were not changed by addition of tyrosol. Conclusion Tyrosol can make C. albicans biofilms active in early stage. But when tyrosol and farnesol were simultaneously added, the effect of tyrosol were masked by farnesol. And C. albicans cells were more sensitive

  3. The inhibitory effect of farnesol on Candida albicans biofilms using the XTT reduction assay%XTT减低法检测法尼醇对白念珠菌生物被膜的抑制作用

    Institute of Scientific and Technical Information of China (English)

    钱芳; 魏昕; 许雯倩; 曹雪蛟; 花荣; 吴亚娟

    2014-01-01

    目的:体外研究法尼醇对白念珠菌生物被膜的抑制作用。方法:采用微量平板法制备12和24 h白念株菌生物被膜,每组膜分别加入不同浓度法尼醇(100~900μmol/L)培养24 h,甲基四氮盐(XTT)减低法检测法尼醇对白念珠菌生物被膜的抑制作用效果,倒置显微镜下观察生物被膜形态。结果:不同浓度的法尼醇对白念珠菌生物被膜均有抑制作用(P<0.05),法尼醇浓度增加,抑制强度呈上升趋势。培养12 h,抑制白念株菌生物被膜50%活性的最低药物浓度(sessile minimal inhibitory concentration 50%,SMIC50)为600μmol/L;培养24 h,SMIC50为200μmol/L。结论:法尼醇对白念珠菌生物被膜生长具有明显抑制作用。法尼醇对白念珠菌生物被膜抑制强度与法尼醇浓度和生物被膜时相相关,高浓度法尼醇的抑制效果高于低浓度法尼醇。%Objective:To evaluate the inhibitory activity of farnesol to the Candida albicans biofilms in vitro.Methods:Candida al-bicans biofilms were formed on flat-bottom 96-well microtiter plates and two study groups (12 h and 24 h Group)were noted,then re-spectively incubated in the RPMI 1640 with different concentration of farnesol (100-900 μmol/L)for 24 h.The XTT reduction assay was employed to evaluate the inhibitory effect of farnesol to the biofilms.Biofilm morphology was observed by inverted microscope.Re-sults:Farnesol (100-900 μmol/L)has inhibitory effect on Candida albicans biofilms.With the increase of concentration of farnesol,the inhibition rate tends to increas.The sessile minimal inhibitory concentration 50%(SMIC50 )of 12 h biofilm is 200 μmol/L;the SMIC50 of 24 h biofilm is 200 μmol/L.Conclusions:The inhibitory effect of Farnesol on Candida albicans biofilms was obvious.The inhibitory po-tency of farnesol was associated with its concentration and the phase of biofilms,and the farnesol of higher concentration are more effec

  4. Activity of scorpion venom-derived antifungal peptides against planktonic cells of Candida spp and Cryptococcus neoformans and Candida albicans biofilms.

    Directory of Open Access Journals (Sweden)

    Fernanda Guilhelmelli

    2016-11-01

    Full Text Available The incidence of fungal infections has been increasing in the last decades, while the number of available antifungal classes remains the same. The natural and acquired resistance of some fungal species to available therapies, associated with the high toxicity of these drugs on the present scenario and makes an imperative of the search for new, more efficient and less toxic therapeutic choices. Antimicrobial peptides (AMPs are a potential class of antimicrobial drugs consisting of evolutionarily conserved multifunctional molecules with both microbicidal and immunomodulatory properties being part of the innate immune response of diverse organisms. In this study, we evaluated 11 scorpion-venom derived non-disulfide-bridged peptides against Cryptococcus neoformans and Candida spp, which are important human pathogens. Seven of them, including two novel molecules, showed activity against both genera with MICs values ranging from 3.12 to 200 µM and an analogous activity against C. albicans biofilms. Most of the peptides presented low hemolytic and cytotoxic activity against mammalian cells. Modifications in the primary peptide sequence, as revealed by in silico and circular dichroism analyses of the most promising peptides, underscored the importance of cationicity for their antimicrobial activity as well the amphipathicity of these molecules and their tendency to form alpha helices. This is the first report of scorpion-derived AMPs against C. neoformans and our results underline the potential of scorpion venom as a source of antimicrobials. Further characterization of their mechanism of action, followed by molecular optimization to decrease their citotoxicity and increase antimicrobial activity, is needed to fully clarify their real potential as antifungals.

  5. Identification of signature volatiles to discriminate Candida albicans, glabrata, krusei and tropicalis using gas chromatography and mass spectrometry.

    Science.gov (United States)

    Hertel, Moritz; Hartwig, Stefan; Schütte, Eyke; Gillissen, Bernhard; Preissner, Robert; Schmidt-Westhausen, Andrea Maria; Paris, Sebastian; Kastner, Isabell; Preissner, Saskia

    2016-02-01

    Oral candidiasis is the most frequent fungal infection of the oral cavity. Clinical diagnoses require mycological confirmation, which is time-consuming in case of culture testing. The aim of the study was to identify signature volatiles to develop a chairside breath test to diagnose oral candidiasis. Headspaces above Candida albicans, glabrata, tropicalis, krusei cultures, and growth media as control were analysed after eight and 24 h using offline gas chromatography and mass spectrometry. The identification of signature volatiles was assisted using various microbial databases. Retrieved volatile patterns enabled Candida species discrimination in vitro. For C. albicans 3-methyl-2-butanone and styrene and for C. krusei a combination of p-xylene, 2-octanone, 2-heptanone and n-butyl acetate were found to be specific. 1-hexanol was found in C. tropicalis, but is emitted by a variety of other microorganisms. C. glabrata was characterised through the absence of these volatiles. The development of a breath test is a promising approach in confirming suspicions of oral candidiasis. To confirm the retrieved results in vivo, breath tests in affected and healthy subjects have to be performed.

  6. 白色念珠菌生物膜对消毒剂抵抗性的研究%A study on resistance of Candida albicans biofilm to disinfectants

    Institute of Scientific and Technical Information of China (English)

    张薇; 王丹敏; 董小青; 梁慧; 刘丽萍

    2011-01-01

    Objective To study the resistance of biofilm - forming fungi to common disinfectants using Candida albicans biofilm as the object of study. Methods The carrier quantitative test method was used for experimental observation. Results The 2% glutaral solution and 5% 84 disinfection solution had the strongest killing effect on the biofilm of Candida albicans, followed by anerdian while 75% ethanol and 3% benzalkonium bromide had a weaker effect. Conclusion The five disinfectants have different killing effects on the biofilm of Candida sp.%目的 了解白色念珠菌生物膜对常用消毒剂的抵抗性.方法 采用载体定量试验方法观察不同作用时间下75%乙醇、安尔碘、5%"84"消毒液、3%苯扎溴铵和2%戊二醛对生物膜中白色念珠菌的杀灭作用.结果 2%戊二醛和5%"84"消毒液对生物膜念珠菌杀灭作用最强,安尔碘次之, 75%乙醇和3%苯扎溴铵杀灭作用较弱.结论 五种消毒剂对念珠菌生物膜的杀灭作用不同,形成生物膜的白色念珠菌对常用消毒剂的抵抗力比游离菌强.

  7. 和厚朴酚对根管内白色念珠菌生物膜作用的体外研究%Effect of honokiol on Candida albicans biofilms in root canals in vitro

    Institute of Scientific and Technical Information of China (English)

    田玉珠; 王健平; 杨景云; 张慧明; 杨玉娟

    2013-01-01

    Objective To investigate the significance of honokio] in the oral microecology changes by observing its effect on Candida albicans biofilms in vitro. Methods XTT reduction assay was applied to evaluate the effect of honokiol on C. albicans biofilms and its adhesion; Confocal laser scanning microscopy combining with vital fluorescent staining technique was used to observe the thickness and activity of C. albicans biofilms with and without the drug action. Results 15. 63 μg/mL, 31. 25 μg/mL and 62. 5 μg/mL of honokiol had inhibited the early adhesion and mycelial growth of C. albicans; the inhibition rates of 2000 μg/mL to 15. 63 μg/mL honokiol against C. albicans biofilms were 90. 13% to 24. 21 %; Viable bacteria was dominant at 24 h in the untreated C. albicans biofilms, and the thickness of the C. albicans biofilms was (75. 15 ±6.57) μm; The quantitative data from Image-Pro Plus 6.0 software showed that under the inhibition of 62.5 μg/mL honokiol at 24 h, the viable bacteria percentage was (31.4 ±0.09)% and the biofilm thickness was (33.14 ± 6.66) μm; compared with the negative control group, the difference was statistically significant (P<0.05). The antibacterial activity of honokiol was relatively weaker than that of nystatin, but its influence on biofilm thickness was stronger. Conclusion Honokiol has inhibition against C. albicans biofilms in vitro.%目的 通过观察和厚朴酚对体外白色念珠菌生物膜形成中的作用,探讨其在口腔微生态中变化的意义.方法 采用XTT减低法评价和厚朴酚对白色念珠菌的生物膜及黏附性的影响;利用激光共聚焦扫描显微镜和死菌活菌荧光染色技术相结合,对常态及药物作用下白色念珠菌生物膜厚度及活性进行观察.结果 与阴性对照组相比,15.63、31.25及62.5μg/mL的和厚朴酚对白色念珠菌的早期黏附及菌丝生长有抑制作用;2 000 ~ 15.63 μg/mL的和厚朴酚对白色念珠菌生物膜的抑菌率分别为90

  8. 黄芩素与氟康唑协同抗白念珠菌生物被膜作用研究%Synergistic effect of baicalein in combination with fluconazole on Candida albicans biofilm

    Institute of Scientific and Technical Information of China (English)

    赵柳娅; 蒋京辰; 姚响文; 曹颖瑛; 姜远英

    2014-01-01

    Objective To investigate the effect of baicalein(BE)in combination with fluconazole(FLC)on Candida albicans biofilm formation. Methods The inhibition of C. albicans biofilm by BE in combination with FLC was determined by confocal scan-ning laser microscopy and XTT methods. The water-hydrocarbon two-phase assay was used to measure the cell surface hydrophobicity (CSH). The expression of CSH1,EFG1,HWP1,ALS1 mRNA was measured by Real time RT-PCR. Results BE in combination with FLC could inhibit the formation of C. albicans biofilm. The cell surface hydrophobicity in the BE and FLC-treated group was lower than that in the groups treated by BE or FLC alone. Consistent with this,BE and FLC-treated biofilm cells expressed lower lev-els of CSH1,EFG1,HWP1 mRNA than the cells grown in the presence of BE or FLC alone. Conclusions BE in combination with FLC could inhibit the formation of C. albicans biofilm.%目的:研究黄芩素与氟康唑合用对白念珠菌生物被膜形成的影响。方法采用激光共聚焦显微镜观察黄芩素与氟康唑合用对白念珠菌生物被膜生长形态的影响;采用 XTT 法考察黄芩素与氟康唑合用对白念珠菌生物被膜形成能力的影响;应用水-烃两相测定实验考察黄芩素与氟康唑合用对白念珠菌生物被膜细胞表面疏水性( Cell surface hydrophobicity, CSH)的影响;应用实时定量 RT-PCR(Real Time RT-PCR)实验考察黄芩素与氟康唑合用对白念珠菌 CSH1、EFG1、HWP1、ALS1基因表达的影响。结果黄芩素与氟康唑合用能够协同抑制白念珠菌生物被膜的形成,经黄芩素与氟康唑处理的白念珠菌不能形成正常的生物被膜,其生长动力学及细胞表面疏水性下降,细胞疏水性相关基 CSH1、菌丝形成调控基因EFG1、黏附相关基因 HWP1基因的表达水平降低。结论黄芩素与氟康唑合用可协同抑制白念珠菌生物被膜的形成。

  9. Evaluation and identification of poly-microbial biofilms on natural green Gordal table olives.

    Science.gov (United States)

    Benítez-Cabello, Antonio; Romero-Gil, Verónica; Rodríguez-Gómez, Francisco; Garrido-Fernández, Antonio; Jiménez-Díaz, Rufino; Arroyo-López, Francisco Noé

    2015-09-01

    This work examines the formation of poly-microbial communities adhered to the epidermis of natural green Gordal olives and the application of different methodologies for recovery and counting of the microorganisms embedded in olive biofilms. The fermentation process was physicochemical and microbiologically monitored for 90 days, at which, formation of true biofilms on the skin of fermented fruits was confirmed by scanning electron microscopy. Then, samples of olives were taken and treated with sonication, enzymes, mechanical homogenization with stomacher and ultrasonic bath for biofilm disaggregation. The use of the stomacher for 1 min was the most effective treatment to release the lactic acid bacteria (6.6 log10 cfu g(-1)), whereas sonication for 5 min was the most efficient method for quantification of yeasts (up to 3.5 log10 cfu g(-1)). Molecular identification of isolates obtained from natural Gordal olive biofilms revealed that Lactobacillus pentosus was the only species found among lactic acid bacteria, while Pichia membranifaciens was the dominant yeast species, with higher counts obtained for the bacteria.

  10. Antifungal Activity of Caspofungin against Candida albicans Biofilms in Vitro%卡泊芬净对生物膜态白色念珠菌体外抑菌作用的试验研究

    Institute of Scientific and Technical Information of China (English)

    阳隽; 张天托; 朱家馨

    2011-01-01

    目的:检测卡泊芬净对生物膜态白色念珠菌分离株的抑菌作用,探讨临床治疗其相关感染的最适治疗剂量.方法:分别测定卡泊芬净对10株白色念珠菌临床株游离态及生物膜态的半数抑菌浓度(MIC50),并对比观察不同浓度卡泊芬净作用下白色念珠菌的增殖活性.结果:卡泊芬净对游离态白色念珠菌的MlC50为0.125~0.5 mg·L-1,对生物膜态白色念殊菌的MIC50为0.25~256 mg·L-1,当卡泊芬净浓度高于白色念珠菌MIC50时,全部游离态白色念珠菌的增殖活性几乎完全受到抑制,但有7株生物膜态白色念珠菌的增殖活性再次增强,且大于阳性对照的50%.结论:卡泊芬净对生物膜态白色念珠菌有抑菌作用,但并不呈浓度依赖性,当其用于治疗生物膜态白色念珠菌相关感染时的最适治疗剂量有待临床研究验证.%OBJECTIVE: To detect antifungal activity of caspofungin against Candida albicans biofilms in vitro, and to investigate the suitable dosage of clinical treatment for relevant infection. METHODS: The MIC50 of caspofungin against planktonic cells and biofilm-associated adherent cells were determined respectively. Metabolic activity of Candida albicans was determined at MICso of caspofungin. RESULTS: The MICso of caspofungin against planktonic cells were 0.125 - 0.5 mg-L-1,the MICso of caspofungin against biofilm-associated adherent cells were 0.25 - 256 mg-L-1. But metabolic activity of planktonic cells was inhibited totally while that of 7 strains of biofilm-associated adherent cells were enhanced again in the caspofungin concentration above the MICso. It was more than 50% of positive control. CONCLUSION: Caspofungin displays antifungal activity against Candida albicans biofilms in vitro, not in concentration dependent manner. But the optimal dose of caspofungin for biofilm-associated infection should be determined in clinical study.

  11. Comoarison of the Effects of Five Denture Cleansers on Cleaning of Candida Albicans Biofilms.%5种义齿清洁剂对白色念珠菌生物膜清洁效果的比较

    Institute of Scientific and Technical Information of China (English)

    张燕萍; 吴凤鸣

    2011-01-01

    Objective: To evaluate the capacity of five denture cleansers on reducing the candida albicans biofilms activity and biomass. Methods: C. albicans strain SC5314 was grown as biofilms on a 96- well format and immersed in Polident,Victoria- C, Protefix, 0.2 % chlorhexidine gluconate and Y- Kelin denture cleansers according to the manufacturers'- instructions and overnight. The activity and biomass of the biofilms were then quantified. Results: Following the manufacturers' instructions,only Polident,protefix reduced the activity by greater than 80 %.Except 0.2% chlorhexidine gluconate (58.8%), all cleansers reduced theactivity by greater than 80% following overnight immersion. Following the manufacturers' instructions, all the five denture cleansers reduced the biomass by less than 50% ,and after overnight immersion, only Polident showed a reduction greater than 50%. Conclusion:Polident exhibited the best cleaning effect among the five denture cleansers. However, residual biofilms retention with a few living cells was still observed.%目的:比较5种义齿清洁剂在减少白色念珠菌生物膜活性及生物量方面的能力.方法:在96孔微量培养板中形成的白色念珠菌SC5314生物膜按照生产商推荐时间及过夜浸泡于保丽净,澳多-C,protefix,0.2%葡萄糖酸氯己定和雅克菱义齿清洁剂中,进而定量生物膜的活性和生物量.结果:生产商推荐时间浸泡后,仅保丽净、protefix组的活性减少率达80%以上;过夜浸泡后,除0.2%葡萄糖酸氯己定(58.8%)外,其余均达80%以上.在生物量减少上,5种义齿清洁剂生产商推荐时间浸泡后,生物量减少率均位于50%以下;过夜浸泡后,仅保丽净达50%以上.结论:5种义齿清洁剂中保丽净的清洁效果最佳,但仍存在残余少量活菌的生物膜.

  12. Identification of genes differentially expressed in hyphae of Candida albicans Identificação de gases em hifa de Candida albicans

    Directory of Open Access Journals (Sweden)

    Analy Salles de Azevedo Melo

    2003-11-01

    Full Text Available The ability to switch from yeast to hyphal forms is essential for Candida albicans virulence. This morphological switch involves the expression of hyphal-specific genes under the control of transcriptional factors. To contribute to the discovery of hyphal-specific genes, we used a differential screening method where clones of a genomic DNA library were hybridized with yeast and hyphal cDNA probes. Two clones with increased expression in hyphae were selected for study. Sequencing these clones, we found that they encoded two important metabolic genes, CaHXT7 (high-affinity hexose transporter and CaYLL34 (member of the AAA ATPase family. CaHXT7 and CaYLL34 ORFs were completely determined. Analyses of the putative proteins show that: (1 CaHxt7p has one hexose transporter domain and (2 CaYll34p has two AAA ATPase domains. These results show, for the first time, increased expression of metabolic genes in C. albicans hyphae. Also, because the proteins encoded by CaHXT7 and CaYLL34 may be necessary for the switching to hyphae, they could be new targets for antifungal drugs.A transição morfológica de levedura para hifa é essencial para a virulência de Candida albicans. Esta transição envolve a expressão de genes hifa-específicos que estão sob o controle de fatores transcricionais. Para descobrir genes hifa-específicos utilizamos um método de triagem diferencial, onde clones de biblioteca de DNA genômico foram hibridizados com sondas de cDNA de levedura e hifa. Dois clones com aumento de expressão em hifa foram selecionados. O sequenciamento dos insertos destes clones permitiu a identificação de dois genes metabólicos importantes: CaHXT7 (high-affinity hexose transporter e CaYLL34 (da família AAA ATPase. As ORFs completas destes genes foram caracterizadas e a análise das proteínas hipotéticas revelou que: (1 CaHxt7p tem um domínio de transportador de hexose e (2 CaYll34 tem dois domínios AAA ATPase. Este é o primeiro estudo que

  13. 黄芩苷联合氟康唑对白念珠菌生物膜的抑制作用研究%Inhibitory effects of baicalin in combination with fluconazole against Candida albicans biofilms

    Institute of Scientific and Technical Information of China (English)

    颜贵明; 施高翔; 邵菁; 汪天明; 夏丹; 汪长中

    2015-01-01

    目的:探讨中药有效成分黄芩苷( baicalin,BA)联合氟康唑( fluconazole,FLC)对白念珠菌( Candida albicans,C. albicans)生物膜的抑制作用。方法通过棋盘法考察BA联合FLC对白念珠菌浮游菌与生物膜的部分抑菌浓度指数( FI⁃CI);通过时间⁃杀菌曲线检测两药联合对白念珠菌标准株(C.albicans SC5314)的杀菌作用;以XTT减低法和干重法检测两药联合对白念珠菌SC5314生物膜代谢及生物量的影响;采用扫描电镜( Scanning electron microscopy,SEM)和激光共聚焦显微镜( Confocal laser scanning microscopy,CLSM)观察两药联合对白念珠菌SC5314生物膜形态结构的影响;以水⁃烃法检测两药联合对白念珠菌SC5314生物膜细胞表面疏水性( cell surface hydrophobicity,CSH)的影响;通过实时荧光定量PCR ( quan⁃titative real time PCR,qRT⁃PCR)检测两药联合对白念珠菌生物膜和CSH相关基因表达的影响。结果黄芩苷与氟康唑联用抗白念珠菌浮游菌的FICI介于0.28~0.75之间,对生物膜的FICI介于0.16~0.5之间,表现为协同作用;SEM和CLSM在生物膜结构上验证了两药的协同效果;两药联合可降低生物膜表面疏水性,以及使ALS1、ALS3、EAP1、SUN41和CSH1分别下调6%、51%、24%、13%和39%。结论黄芩苷具有协同氟康唑抗白念珠菌生物膜作用。%Objective This study aimed to investigate the antifungal activity of baicalin alone or in combination with fluconazole against Candida albicans biofilms and to explore the related mechanism.Methods Checkerboard method was uased to study the in⁃terrelation of baicalin and fluconazole on C.albicans;Time⁃kill curve was used to evaluate the effect of baicalin alone and in combina⁃tion with fluconazole on C.albicans;XTT reduction assay and measurement of biofilm biomass assay were performed to investigate the antibiofilm activity of

  14. Fungal peritonitis in patients undergoing peritoneal dialysis (PD) in Brazil: molecular identification, biofilm production and antifungal susceptibility of the agents.

    Science.gov (United States)

    Giacobino, Juliana; Montelli, Augusto Cezar; Barretti, Pasqual; Bruder-Nascimento, Ariane; Caramori, Jacqueline Teixeira; Barbosa, Luciano; Bagagli, Eduardo

    2016-10-01

    This paper presents data on fungal peritonitis (FP) in patients undergoing peritoneal dialysis (PD) at the University Hospital of Botucatu Medical School, São Paulo, Brazil. In a total of 422 patients, 30 developed FP, from which the medical records and the fungal isolates of 23 patient cases were studied. All patients presented abdominal pain, cloudy peritoneal effluent, needed hospitalization, had the catheter removed and were treated with fluconazole or fluconazole plus 5-flucitosine; six of them died due to FP. Concerning the agents, it was observed that Candida parapsilosis was the leading species (9/23), followed by Candida albicans (5/23), Candida orthopsilosis (4/23), Candida tropicalis (3/23), Candida guilliermondii (1/23), and Kodamaea ohmeri (1/23). All the isolates were susceptible to amphotericin B, voriconazole and caspofungin whereas C. albicans isolates were susceptible to all antifungals tested. Resistance to fluconazole was observed in three isolates of C. orthopsilosis, and dose-dependent susceptibility to this antifungal was observed in two isolates of C. parapsilosis and in the K. ohmeri isolate. Biofilm production estimates were high or moderate in most isolates, especially in C. albicans species, and low in C. parapsilosis species, with a marked variation among the isolates. This Brazilian study reinforces that FP in PD is caused by a diverse group of yeasts, most prevalently C. parapsilosis sensu stricto species. In addition, they present significant variation in susceptibility to antifungals and biofilm production, thus contributing to the complexity and severity of the clinical features.

  15. Mucins Suppress Virulence Traits of Candida albicans

    Science.gov (United States)

    Kavanaugh, Nicole L.; Zhang, Angela Q.; Nobile, Clarissa J.; Johnson, Alexander D.

    2014-01-01

    ABSTRACT Candida albicans is the most prevalent fungal pathogen of humans, causing a variety of diseases ranging from superficial mucosal infections to deep-seated systemic invasions. Mucus, the gel that coats all wet epithelial surfaces, accommodates C. albicans as part of the normal microbiota, where C. albicans resides asymptomatically in healthy humans. Through a series of in vitro experiments combined with gene expression analysis, we show that mucin biopolymers, the main gel-forming constituents of mucus, induce a new oval-shaped morphology in C. albicans in which a range of genes related to adhesion, filamentation, and biofilm formation are downregulated. We also show that corresponding traits are suppressed, rendering C. albicans impaired in forming biofilms on a range of different synthetic surfaces and human epithelial cells. Our data suggest that mucins can manipulate C. albicans physiology, and we hypothesize that they are key environmental signals for retaining C. albicans in the host-compatible, commensal state. PMID:25389175

  16. 盐酸氨溴索对体外白色假丝酵母菌成熟生物膜的抑制作用及其形态学的影响%Inhibition of ambroxol hydrochloride on Candida albicans biofilm in vitro and its effect on morphogenesis

    Institute of Scientific and Technical Information of China (English)

    吴玉华; 陆彪; 余加林

    2011-01-01

    目的 研究盐酸氨溴索对体外白色假丝酵母菌(Candida albicans)成熟生物膜(biofilm, BF)的影响.方法 用微孔板法建立体外白色假丝酵母菌ATCC 90028 BF模型;采用甲基四氮盐(the abated tetrazolium salt, XTT)减低法定量评价盐酸氨溴索对白色假丝酵母菌成熟BF的抑制作用;银染后,倒置显微镜下观察该药对白色假丝酵母菌成熟BF的形态学影响.结果 在96孔微量细胞培养板上成功建立白色假丝酵母菌BF模型;1.25、2.5、5、7.5 mg/ml的盐酸氨溴索作用白色假丝酵母菌成熟BF 12 h后,XTT减低法D(450)值分别为(0.63±0.05)、(0.52±0.08)、(0.31±0.05)和(0.11±0.03),分别与空白对照组(0.71±0.07)比较,差异有显著性(P0.05);不同浓度的盐酸氨溴索作用白色假丝酵母菌成熟BF,组间比较,均有显著性差异(P<0.05).结论 盐酸氨溴索对体外白色假丝酵母菌成熟BF有抑制作用,且在一定药物浓度范围内随着该药药物浓度的增加,对BF的抑制作用显著增强.%Objective To investigate the effect of ambroxol hydrochloride on biofilm and morphology of Candida albicans ( C. albicans) in vitro. Methods Microtiter plate culture method was used to establish C. albicans (ATCC 90028 ) biofilm. The abated tetrazolium salt (XTT) reduction assay was performed to quantitatively analyze the effect of ambroxol hydrochloride against C. albicans mature biofilm for 12 h. Micro scopic examination with silver staining was conducted to assess the effect of ambroxol hydrochloride on morpho logy of C. albicans biofilm. Results C. albicans biofilm in vitro was formed on 96-well microtiter plates suc cessfully. XTT reduction assay indicated that the OD450 values at different concentration of ambroxol hydrochlo ride (0. 625, 1.25 and 2.50, 5.00 and 7.50 mg/ml) were 0.68 ±0.04, 0.63 ±0.05, 0.52 ±0.07, 0.31 ± 0.05 and 0. 11 ± 0.03, respectively. All of these values had significant difference when compared with that of control (0

  17. Fusarium and Candida albicans biofilms on soft contact lenses: model development, influence of lens type and susceptibility to lens care solutions

    Science.gov (United States)

    Fungal keratitis is commonly caused by Fusarium species, while cases of Candida-associated keratitis are less frequent. Recent outbreaks of Fusarium keratitis were associated with contact lens wear and with MoistureLoc contact lens care solution, and biofilm formation on contact lens/lens cases was...

  18. 白念珠菌生物膜耐药性观察及 als3基因表达与成膜相关性的初步探讨%The drug resistance of Candida albicans biofilm and the correlation of als3 gene expression and film forming

    Institute of Scientific and Technical Information of China (English)

    邓可可; 邓琦; 张坚磊; 贺小圆; 江嫣雨

    2016-01-01

    Objective To observe the biofilm structure,drug resistance and related gene expressions of clinically collected drug sensitive strains of Candida albicans ,and to explore preliminarily the film-forming related gene expressions of Candida albicans .Methods A total of 108 strains of Candida albicans from positive blood culture were obtained from Tianjing First Central Hospital from January to December in 2015 and 58 stains which were sensitive to azole drugs were selected.Sterile indwelling catheter was used to establish the Candida albicans biofilm in vitro model.The structure of Candida albicans biofilm was observed with inverted microscope.The ultrastructure was observed with transmission electron microscope.The drug sensitivity was detected by using trace liquid dilution M27-A2 scheme and the als3,xog,bg1,efg1 gene expressions were detected using polymerase chain reaction method.Paired t test was used for data analysis.Results After Candida albicans biofilm model was set up,Candida albicans cells gathering along the hyphae and forming different layers of membrane structure were observed under inverted microscope.The thickened Candida albicans cell membranes with increased mitochondria and cell activity were observed under transmission electron microscope.Drug resistances to fluconazole,voriconazole and itraconazole were increased after the biofilm formation. The minimal inhibitory concentration values of echinocandins, including caspofungin and micafungin increased at different degree,but did not achieve drug resistance.The als3 gene expressions among strains before biofilm formation were different.Candida albicans with high als3 gene expression tended to form biofilm (t= 3.645,P 0.05 ).Conclusions Drug resistances to fluconazole, voriconazole and itraconazole increase after the Candida albicans biofilm formation.But Candida albicans remains sensitive to echinocandins after the formation of biofilm.The expression of als3 gene can be used to screen Candida

  19. Effect of Ten Traditional Chinese Medicine on Planktonic and Biofilm Candida Albicans in vitro%牡丹皮等10种中药对白色念珠菌浮游菌和生物膜作用的研究

    Institute of Scientific and Technical Information of China (English)

    宫毓静; 刘红; 冯淑怡; 周艳华; 孙明杰

    2011-01-01

    Objective: To observe the effect of ten traditional Chinese medicine and pseudolaric acid B (PB) on Candida albicans yeast and biofilm in vitro. Method: Moutan Cortex,Coptidis Rhizoma, Caryophylli Flos, Cinnamomi cortex, Alpiniae Officinarum Rhizoma, Cinnamomi Rhizoma Anemarrhenae Rhizoma, Sophore flavescentis Radir, Cnidii Fructus and Hedyotis diffusa Willd. Were extracted with water, dissolved in DMSO. The microtiter method was used to test the antifungal effect against planktonic and biofilm C. Albicans in vitro. Result; The MIC of PB inhibit the planktonic C. Albicans was 15. 6 mg·L-1, The MIC50 of PB inhibit the biofilm C. Albicans was 31.2 mg·L-1. The MIC50 of Moutan Cortex and Alpiniae Officinarum Rhizoma inhibit the biofilm C. Albicans was 125 mg·L-1 and 250 mg·L-1 , respectively. The other medicines did not show any antifungal effect at 2 000 mg · L-1, Conclusion: PB showed some antifungal effect against planktonic and biofilm C. Albicans, all the other traditional Chinese medicine water preparations did not show much activity against planktonic and biofilm C. Albicans. The water extracts of traditional Chinese medicine did not showed much antifungal activity against the planktonic and biofdm C. Albicans. The evaluation of the antifungal activity of traditional Chinese medicine need to be further discussed.%目的:观察牡丹皮等10种中药和土槿皮乙酸体外对白色念珠菌浮游菌和生物膜的作用.方法:10种中药为牡丹皮,黄连,丁香,肉桂,高良姜,桂枝,知母,苦参,蛇床子,白花蛇舌草,用水煎煮后浓缩,提取物用DMSO溶解,培养基稀释,体外微量稀释法检测药物对白色念珠菌浮游菌最低抑菌浓度(MIC)和抑制生物膜50%的浓度(SMIC50)的作用.结果:土槿皮乙酸对白色念珠菌的MIC为15.6 mg·L-1,对生物膜的SMIC50是31.2 mg·L-1.牡丹皮和高良姜对白色念珠菌生物膜有一定的抑制作用,SMIC50分别125,250 mg·L-1.黄连,丁香,肉桂,桂枝,知母,苦

  20. Rapid identification of oral Actinomyces species cultivated from subgingival biofilm by MALDI-TOF-MS

    Directory of Open Access Journals (Sweden)

    Catalina S. Stingu

    2015-01-01

    Full Text Available Background: Actinomyces are a common part of the residential flora of the human intestinal tract, genitourinary system and skin. Isolation and identification of Actinomyces by conventional methods is often difficult and time consuming. In recent years, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS has become a rapid and simple method to identify bacteria. Objective: The present study evaluated a new in-house algorithm using MALDI-TOF-MS for rapid identification of different species of oral Actinomyces cultivated from subgingival biofilm. Design: Eleven reference strains and 674 clinical strains were used in this study. All the strains were preliminarily identified using biochemical methods and then subjected to MALDI-TOF-MS analysis using both similarity-based analysis and classification methods (support vector machine [SVM]. The genotype of the reference strains and of 232 clinical strains was identified by sequence analysis of the 16S ribosomal RNA (rRNA. Results: The sequence analysis of the 16S rRNA gene of all references strains confirmed their previous identification. The MALDI-TOF-MS spectra obtained from the reference strains and the other clinical strains undoubtedly identified as Actinomyces by 16S rRNA sequencing were used to create the mass spectra reference database. Already a visual inspection of the mass spectra of different species reveals both similarities and differences. However, the differences between them are not large enough to allow a reliable differentiation by similarity analysis. Therefore, classification methods were applied as an alternative approach for differentiation and identification of Actinomyces at the species level. A cross-validation of the reference database representing 14 Actinomyces species yielded correct results for all species which were represented by more than two strains in the database. Conclusions: Our results suggest that a combination of MALDI

  1. Nicotine Enhances Interspecies Relationship between Streptococcus mutans and Candida albicans

    Science.gov (United States)

    Qiu, Wei; Zhang, Keke; Zhou, Xuedong; Ren, Biao; He, Jinzhi; Xu, Xin

    2017-01-01

    Streptococcus mutans and Candida albicans are common microorganisms in the human oral cavity. The synergistic relationship between these two species has been deeply explored in many studies. In the present study, the effect of alkaloid nicotine on the interspecies between S. mutans and C. albicans is explored. We developed a dual-species biofilm model and studied biofilm biomass, biofilm structure, synthesis of extracellular polysaccharides (EPS), and expression of glucosyltransferases (Gtfs). Biofilm formation and bacterial and fungal cell numbers in dual-species biofilms increased in the presence of nicotine. More C. albicans cells were present in the dual-species biofilms in the nicotine-treated groups as determined by scanning electron microscopy. The synthesis of EPS was increased by 1 mg/ml of nicotine as detected by confocal laser scanning microscopy. The result of qRT-PCR showed gtfs expression was upregulated when 1 mg/ml of nicotine was used. We speculate that nicotine promoted the growth of S. mutans, and more S. mutans cells attracted more C. albicans cells due to the interaction between two species. Since S. mutans and C. albicans are putative pathogens for dental caries, the enhancement of the synergistic relationship by nicotine may contribute to caries development in smokers. PMID:28280743

  2. Study on the transcription profiling of biofilm formation by Candida albicans at different phases exposed to tyrosol and farnesol%Tyrosol和Farnesol对白念珠菌生物被膜形成作用的基因表达谱研究

    Institute of Scientific and Technical Information of China (English)

    谭军艳; 张琰; 虞丽华; 马鸣; 陈晓君; 魏昕

    2013-01-01

    目的 研究Tyrosol和Farnesol对不同时相白念珠菌生物被膜形成的调控机制.方法 研究对象为白念珠菌标准株SC5314.设立Tyrosol处理组、Farnesol处理组、Tyrosol和Farnesol联合处理组、对照组.生物被膜6h和24h收集细胞,提取RNA,反转录cDNA.cDNA与白念珠菌全基因组8K表达谱芯片杂交.采用LuxScan双通道激光扫描仪进行扫描.LuxScan3.0图像分析软件对芯片图像进行分析.借助KEGG基因库对芯片数据进行生物信息学分析.结果 不同生物被膜时相,Tyrosol和Farnesol对白念珠菌基因表达调控作用不同.Tyrosol和Farnesol调控生物被膜形成相关基因、菌丝相基因和酵母相基因.Tyrosol是生物被膜基因表达的正向调控效应因子.Farnesol是负向调控效应因子.Tyrosol和Farnesol主要调控的基因包括生物学过程、分子功能及细胞成分相关基因,这些基因主要通过参与物质代谢通路调控白念珠菌生物学特点及生物被膜形成.结论 Tyrosol和Farnesol通过调控白念珠菌生物被膜形成相关基因调控生物被膜形成.%Objective To investigate the effects of tyrosol and farnesol on the transcription profiling of C.albicans biofilm by microarray analysis.Methods The standard strain of C.albicans,SC5314 were cultured into four groups (tyrosol treated,farnesol treated,tyrosol and farnesol co-treated,and untreated control).The cell suspensions of SC5314 were prepared and dispensed into polystyrene flasks to form biofilm.Then,the biofilms were collected at 6 h and 24 h respectively after culturing.RNA samples were extracted and synthesized into cDNA through reverse transcription.The genome arrays were scanned with a confocal LuxScanTM scanner and the images were then analyzed by using LuxScanTM 3.0 software (both from CapitalBio).Bioinformatics analysis of the data was carried out by comparatively analyzing S.cerevisiae gene in KEGG gene database.Results The cDNA microarray data showed that

  3. Candida albicans Amphotericin B-Tolerant Persister Formation is Closely Related to Surface Adhesion.

    Science.gov (United States)

    Sun, Jing; Li, Zhigang; Chu, Haoyue; Guo, Jing; Jiang, Guangshui; Qi, Qingguo

    2016-02-01

    Candida albicans persisters have so far been observed only in biofilm environment; the biofilm element(s) that trigger(s) persister formation are still unknown. In this study, we tried to further elucidate the possible relationship between C. albicans persisters and the early phases of biofilm formation, especially the surface adhesion phase. Three C. albicans strains were surveyed for the formation of persisters. We tested C. albicans persister formation dynamically at different time points during the process of adhesion and biofilm formation. The number of persister cells was determined based on an assessment of cell viability after amphotericin B treatment and colony-forming unit assay. None of the planktonic cultures contained persisters. Immediately following adhesion of C. albicans cells to the surface, persister cells emerged and the proportion of persisters reached a peak of 0.2-0.69 % in approximately 2-h biofilm. As the biofilm matured, the proportion of persisters decreased and was only 0.01-0.02 % by 24 h, while the number of persisters remained stable with no significant change. Persisters were not detected in the absence of an attachment surface which was pre-coated. Persisters were also absent in biofilms that were scraped to disrupt surface adhesion prior to amphotericin B treatment. These results indicate that C. albicans antifungal-tolerant persisters are produced mainly in surface adhesion phase and surface adhesion is required for the emergence and maintenance of C. albicans persisters.

  4. Identification of superficial Candida albicans germ tube antigens in a rabbit model of disseminated candidiasis. A proteomic approach.

    Science.gov (United States)

    Sáez-Rosón, Aranzazu; Sevilla, María-Jesús; Moragues, María-Dolores

    2014-03-01

    The diagnosis of invasive candidiasis remains a clinical challenge. The detection by indirect immunofluorescence of Candida albicans germ-tube-specific antibodies (CAGTA), directed against germ-tube surface antigens, is a useful diagnostic tool that discriminates between colonization and invasion. However, the standardization of this technique is complicated by its reliance on subjective interpretation. In this study, the antigenic recognition pattern of CAGTA throughout experimental invasive candidiasis in a rabbit animal model was determined by means of 2D-PAGE, Western blotting, and tandem mass spectrometry (MS/MS). Seven proteins detected by CAGTA were identified as methionine synthase, inositol-3-phosphate synthase, enolase 1, alcohol dehydrogenase 1,3-phosphoglycerate kinase, 14-3-3 (Bmhl), and Egd2. To our knowledge, this is the first report of antibodies reacting with Bmhl and Egd2 proteins in an animal model of invasive candidiasis. Although all of the antigens were recognized by CAGTA in cell-wall dithiothreitol extracts of both germ tubes and blastospores of C. albicans, immunoelectron microscopy study revealed their differential location, as the antigens were exposed on the germ-tube cell-wall surface but hidden in the inner layers of the blastospore cell wall. These findings will contribute to developing more sensitive diagnostic methods that enable the earlier detection of invasive candidiasis.

  5. DNA-microarrays identification of Streptococcus mutans genes associated with biofilm thickness

    Directory of Open Access Journals (Sweden)

    Feldman Mark

    2008-12-01

    Full Text Available Abstract Background A biofilm is a complex community of microorganisms that develop on surfaces in diverse environments. The thickness of the biofilm plays a crucial role in the physiology of the immobilized bacteria. The most cariogenic bacteria, mutans streptococci, are common inhabitants of a dental biofilm community. In this study, DNA-microarray analysis was used to identify differentially expressed genes associated with the thickness of S. mutans biofilms. Results Comparative transcriptome analyses indicated that expression of 29 genes was differentially altered in 400- vs. 100-microns depth and 39 genes in 200- vs. 100-microns biofilms. Only 10 S. mutans genes showed differential expression in both 400- vs. 100-microns and 200- vs. 100-microns biofilms. All of these genes were upregulated. As sucrose is a predominant factor in oral biofilm development, its influence was evaluated on selected genes expression in the various depths of biofilms. The presence of sucrose did not noticeably change the regulation of these genes in 400- vs. 100-microns and/or 200- vs. 100-microns biofilms tested by real-time RT-PCR. Furthermore, we analyzed the expression profile of selected biofilm thickness associated genes in the luxS- mutant strain. The expression of those genes was not radically changed in the mutant strain compared to wild-type bacteria in planktonic condition. Only slight downregulation was recorded in SMU.2146c, SMU.574, SMU.609, and SMU.987 genes expression in luxS- bacteria in biofilm vs. planktonic environments. Conclusion These findings reveal genes associated with the thickness of biofilms of S. mutans. Expression of these genes is apparently not regulated directly by luxS and is not necessarily influenced by the presence of sucrose in the growth media.

  6. Enhanced effect of the combination of aminobutyric acid with caspofungin against biofilm formation of Candida albicans%氨基丁酸联合卡泊芬净抗白色假丝酵母菌生物被膜协同作用研究

    Institute of Scientific and Technical Information of China (English)

    刘懿萱; 叶春林

    2015-01-01

    目的:探讨氨基丁酸联合卡泊芬净抗白色假丝酵母菌生物被膜的协同作用。方法利用白色假丝酵母菌标准菌株SC5314,采用生物被膜形成实验,分为空白对照组、氨基丁酸单用组、卡泊芬净单用组、氨基丁酸联合卡泊芬净组,对比各组生物被膜形成情况。采用XT T还原法测定氨基丁酸、卡泊芬净单用以及氨基丁酸联合卡泊芬净对成熟生物被膜细胞代谢活性的抑制作用。采用YNB培养基菌丝形成实验,考察氨基丁酸与卡泊芬净合用是否具有协同抑制菌丝形成的作用。结果卡泊芬净0.1μg · mL -1联合氨基丁酸0.1μmol · L -1对白色假丝酵母菌SC5314生物被膜的形成具有显著的抑制作用。此外,XT T还原法测定氨基丁酸6.25μmol · L -1联合卡泊芬净0.1μg · mL -1时降低被膜细胞代谢活性的效率能够达到约15%。采用YNB培养基形成菌丝,氨基丁酸6.25μmol · L -1联合卡泊芬净0.1μg · mL -1对白色假丝酵母菌SC5314菌丝形成能力有显著的抑制作用。结论氨基丁酸联合卡泊芬净表现出显著的体外协同抗白色假丝酵母菌标准菌株SC5314生物被膜作用。%Objective To investigate the enhanced effect of aminobutyric acid (GABA) combined with caspofungin on biofilm forma‐tion of Candida albicans .Methods Standard stains of Candida albicans SC5314 were used in this study .The group of caspofun‐gin with GABA comparing with the group of GABA or caspofungin alone were evaluated by observing the prevention of biofilm formation .Candida albicans SC5314 were cultured in YNB medium to induce the formation of hyphae and the metabolic activity was determined by XTT reduction assay .Results The group of caspofungin (0 .1μg · mL -1 ) showed no inhibition against biofilm formation of Candida albicans ,but caspofungin (0 .1 μg · mL -1 ) with GABA (0 .1 μmol · L -1 ) showed apparent inhibition a

  7. Isolation and identification of microbes from biofilm of Urinary catheters and antimicrobial Susceptibility evaluation

    Institute of Scientific and Technical Information of China (English)

    ABalasubramanian; KChairman; AJARanjit Singh; GAlagumuthu

    2012-01-01

    Objective: Bacterial species colonize indwelling catheters as biofilm induce complications in patients care. Methods: From the biofilm matrix seven species of microbes were isolated. The predominant bacteria seen in catheters were E.coli, (27 percent) P.mirabilis (20 percent) and S.epidermis (18 percent). Results: The biomass of microbes associated with the biofilm was estimated. The mean dry weight of biomass of bacteria associated with a catheter that was used for over a month time was in the range 2.5±0.04g - 3.1 ± 0.6g. Conclusion: But it was found to colonize the microtitre plate to attain a peak growth at 84h. P.mirabilis isolated from the biofilm was able to tolerate the antibiotics tetracycline, Penicillin, Kanamycin and Gentamycin at a dose level of 20μg/ml. The study indicated that the catheter has to be replaced if biofilm formation was noticed.

  8. 白头翁汤正丁醇提取物对白念珠菌 VVC 临床株体外生物膜形成的抑制作用%The inhibitory effects of Butyl alcohol extract of BaiTouWeng decoction on biofilm formation of Candida albicans

    Institute of Scientific and Technical Information of China (English)

    张梦翔; 陆克乔; 夏丹; 夏雪; 施高翔; 邵菁; 吴大强; 汪天明; 汪长中

    2015-01-01

    Objective To investigate the effects of Butyl alcohol extract of BaiTouWeng decoction (BAEB)on the biofilm formation of Candida albicans clinical strains isolated from vulvovaginal Candidiasis (VVC).Methods Microdilution meth-ods was used to determine the MIC.XTT reduction assay was applied to determine the SMIC80 .Time-kill curve method was applied to detect the effects of BAEB on living cells of Candida albicans .Crystal violet staining method was used to determine the biomass of the biofilm.Scanning electron microscopy (SEM)was applied to observe the morphological changes of the bio-film.Confocal laser scanning microscopy (CLSM)was applied to determine the thickness of the biofilm.The quantification re-al-time PCR (qRT-PCR)was used to detect expression changes of genes (HSP90 ,UME6 and PES1 )of the biofilm treated by BAEB.Results The MICs of BAEB against C .albicans strains are determined as 64~256 μg/mL.The SMIC80 s of BAEB against the biofilm of C .albicans strains are determined as ≥1 024 μg/mL.Time-kill curve results indicate that BAEB has a promise antifungal effect at concentrations of 5 12 and 1 024 μg/mL.Crystal violet staining results show that the biomass of C .albicans is reduced by BAEB at 5 12 and 1 024 μg/mL.SEM results indicate that the formation of C .albicans biofilm carriers is inhibited by BAEB on different adhesion,and the morphol-ogy of biofilm is also affected by BAEB.The thickness of C .albicans biofilm is reduced by BAEB accord-ing to CLSM results.Furthermore,qRT-PCR results indicate that expression of UME6 is significantly down-regulated by BAEB at 256,5 12,1 024 μg/mL,and HSP90 is up-regulated at 5 12 and 1 024 μg/mL of BAEB,and PES1 is not affected by BAEB at any concentration.Conclusion BAEB inhibits effectively the biofilm formation of VVC strains of C . albicans .%目的:探讨白头翁汤正丁醇提取物(Butyl alcohol extract of Bai Tou Weng decoction,BAEB)对分离自外阴阴道念珠菌病(vulvovaginal candidiasis

  9. The parasexual lifestyle of Candida albicans.

    Science.gov (United States)

    Bennett, Richard J

    2015-12-01

    Candida albicans is both a prevalent human commensal and the most commonly encountered human fungal pathogen. This lifestyle is dependent on the ability of the fungus to undergo rapid genetic and epigenetic changes, often in response to specific environmental cues. A parasexual cycle in C. albicans has been defined that includes several unique properties when compared to the related model yeast, Saccharomyces cerevisiae. Novel features include strict regulation of mating via a phenotypic switch, enhanced conjugation within a sexual biofilm, and a program of concerted chromosome loss in place of a conventional meiosis. It is expected that several of these adaptations co-evolved with the ability of C. albicans to colonize the mammalian host.

  10. Identification of Candida albicans by using different culture medias and its association in potentially malignant and malignant lesions

    Directory of Open Access Journals (Sweden)

    Sonal Saigal

    2011-01-01

    Full Text Available Background and Objective: The present study evaluates the association of Candida albicans with normal control group, potentially malignant and malignant lesions of oral cavity by using two different liquid culture media. Materials and Methods: Saliva was collected and biopsy was taken only from those clinically suspected potentially malignant and malignant lesions for histopathological diagnosis. Saliva samples were inoculated for fungal growth in Sabouraud′s dextrose agar and culture-positive samples had undergone for Germ tube test. Germ tube-positive samples were further taken for quantification of chlamydospore production in liquid media at 8 and 16 hours. Results: In normal control groups no fungus growth was found; however, potentially malignant and malignant cases showed fungus growth, positive germ tube test and chlamydospore formation. The result also showed rapid and quantitatively more chlamydospore formation in corn meal broth + 5% milk in comparison to serum milk culture media. Conclusion: The oral mucosa is compromised in potentially malignant lesions, it can be argued that this species may be involved in carcinogenesis by elaborating the nitrosamine compounds which either act directly on oral mucosa or interact with other chemical carcinogens to activate specific proto-oncogenes and thereby initiate oral neoplasia.

  11. Novel entries in a fungal biofilm matrix encyclopedia

    Science.gov (United States)

    Virulence of Candida albicans is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we conduc...

  12. Identification, structure, and characterization of an exopolysaccharide produced by Histophilus somni during biofilm formation

    Directory of Open Access Journals (Sweden)

    Apicella Michael A

    2011-08-01

    Full Text Available Abstract Background Histophilus somni, a gram-negative coccobacillus, is an obligate inhabitant of bovine and ovine mucosal surfaces, and an opportunistic pathogen responsible for respiratory disease and other systemic infections in cattle and sheep. Capsules are important virulence factors for many pathogenic bacteria, but a capsule has not been identified on H. somni. However, H. somni does form a biofilm in vitro and in vivo, and the biofilm matrix of most bacteria consists of a polysaccharide. Results Following incubation of H. somni under growth-restricting stress conditions, such as during anaerobiosis, stationary phase, or in hypertonic salt, a polysaccharide could be isolated from washed cells or culture supernatant. The polysaccharide was present in large amounts in broth culture sediment after H. somni was grown under low oxygen tension for 4-5 days (conditions favorable to biofilm formation, but not from planktonic cells during log phase growth. Immuno-transmission electron microscopy showed that the polysaccharide was not closely associated with the cell surface, and was of heterogeneous high molecular size by gel electrophoresis, indicating it was an exopolysaccharide (EPS. The EPS was a branched mannose polymer containing some galactose, as determined by structural analysis. The mannose-specific Moringa M lectin and antibodies to the EPS bound to the biofilm matrix, demonstrating that the EPS was a component of the biofilm. The addition of N-acetylneuraminic acid to the growth medium resulted in sialylation of the EPS, and increased biofilm formation. Real-time quantitative reverse transcription-polymerase chain reaction analyses indicated that genes previously identified in a putative polysaccharide locus were upregulated when the bacteria were grown under conditions favorable to a biofilm, compared to planktonic cells. Conclusions H. somni is capable of producing a branching, mannose-galactose EPS polymer under growth conditions

  13. 香莲方对白念珠菌生物膜体外模型的影响及代谢组学研究%The Effect of Xianglian Solution on Candida Albicans Biofilms Model in Vitro and it′s Metabolomics Study

    Institute of Scientific and Technical Information of China (English)

    袁娟娜; 范瑞强; 谢婷; 陈信生

    2015-01-01

    Objective:To study the antifungal efficacy and the probable mechanism of Candida albicans biofilms in vitro by Xianglian Solution, in the view of metabolomics.Methods:C.albi-cans biofilms in vitro were established, and the SMIC50 and SMIC80 of the C.albicans biofilms in different maturity (4 h, 24 h and 48 h) were measured by XTT.Through the method of UPLC-Q-TOF-MS, the metabolomics of the planktonic,early (4 h),medium term(24 h),and maturity(48 h) biofilms were detected.Results:The effect of Xianglian Solution,the SMIC50 of early (4 h), medium term(24 h) and maturity(48 h) biofilms were 7.81,125 and 500 mg/mL respectively. The SMIC80 were up to 31.25,250 and >1 000 mg/mL respectively.For Fluconazole,the SMIC50 of early (4 h),medium term(24 h) and maturity(48 h) biofilms were 32,64 and >1 024μg/mL respectively,while the SMIC80 were up to 64,128 and >1 024μg/mL respectively.The metabolic profiling of the planktonic among Group Xianglian Solution,Group Fluconazole and control group were different from each other.The metabolin Tyrosyl-Arginine and Pentosidine were identified as the potential metabolin .Conclusions:Xianglian Solution was effective to C .albicans biofilms. Sugar metabolism and changes in amino acid metabolism pathways may relate to the biofilms for-mation.%目的:从代谢组学角度探讨香莲外洗液对白念珠菌生物膜的抗真菌效力及其作用机制。方法:建立白念珠菌生物膜体外模型,采用 XTT减低法测定香莲外洗液、氟康唑对不同成熟程度(4 h、24 h、48 h)白念珠菌生物膜的最低粘附抑菌浓度( SMIC50、SMIC80),并采用UPLC-Q-TOF-MS分别进行代谢组学检测。结果:香莲外洗液对4 h、24 h、48 h的白念珠菌生物膜的 SMIC50分别为7.81、125和500 mg/mL,SMIC80分别为31.25、250和>1000 mg/mL;氟康唑对4 h、24 h、48 h的白念珠菌生物膜的SMIC50分别为32、64和>1024μg/mL,SMIC80分别为64、128和>1024μg/mL;香莲外洗

  14. Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue

    NARCIS (Netherlands)

    Schlecht, L.M.; Peters, B.M.; Krom, B.P.; Freiberg, J.A.; Hänsch, G.M.; Filler, S.G.; Jabra-Rizk, M.A.; Shirtliff, M.E.

    2015-01-01

    Candida albicans and Staphylococcus aureus are often co-isolated in cases of biofilm-associated infections. C. albicans can cause systemic disease through morphological switch from the rounded yeast to the invasive hyphal form. Alternatively, systemic S. aureus infections arise from seeding through

  15. In Situ Identification and Stratification of Monochloramine Inhibition Effects on Nitrifying Biofilms as Determined by the Use of Microelectrodes

    Science.gov (United States)

    The nitrifying biofilm grown in an annular biofilm reactor and the microbial deactivation achieved after monochloramine treatment were investigated using microelectrodes. The nitrifying biofilm ammonium microprofile was measured and the effect of monochloramine on nitrifying bio...

  16. 汉防己甲素对氟康唑抗白念珠菌生物膜增效活性的初步研究%Preliminary study on tetrandrine as a synergist to fluconazole against biofilms of Candida albicans

    Institute of Scientific and Technical Information of China (English)

    李水秀; 刘朝红; 张宏; 张晓利; 宋延君

    2011-01-01

    目的 探讨汉防己甲素( tetrandrine,TET)对氟康唑(fluconazole,FLC)抗白念珠菌生物膜是否有增效活性.方法 构建白念珠菌生物膜,参照微量稀释法,测定FLC单独及其联合TET对生物膜不同时期的最小抑菌浓度( minimum inhibitory concentration,MIC);生物膜重新悬浮后,测定FLC单独及其联合TET对不同浓度菌液的MIC.结果 FLC单独及其联合TET对白念珠菌生物膜最初期(0 h)的MIC50值范围分别为0.25~64μg/mL和0.125~16 μg/mL(P=0.002);早期(4 h)的MIC50值范围分别为8~256μg/mL和1~64 μg/mL(P=0.000);中期(24 h)、成熟期(48 h)的MIC50值均>1024 μg/mL.生物膜重新悬浮后,FLC单独及其联合TET对低浓度菌液(终浓度为1×103 CFU/mL)的MIC值范围分别为0.25~64μg/mL和0.125~16 μg/mL(P=0.003),高浓度菌液(终浓度为1×106 CFU/mL)的MIC值均>64 μg/mL.结论 汉防已甲素在体外对氟康唑抗白念珠菌生物膜最初期(0 h)、早期(4 h)有增效活性,对中期(24 h)、成熟期(48 h)无增效活性;汉防己甲素对氟康唑抗白念珠菌生物膜重新悬浮后的低浓度菌液(终浓度为1×103 CFU/mL)有增效活性,高浓度菌液(终浓度为1×106 CFU/mL)无增效活性.%The aim was to investigate the synergistic effect of tetrandrine (TET) on fluconazole (FLO to Candida albi-cans biofilms. The biofilms of C. albicans was built, and the minimum inhibitory concentration (MIC) of FLC alone as well as in combination with TET on each stage of biofilms forming were determined by the CLSI proposed M27-A microdilution method. The MIC of FLC alone and in combination with TET on re-suspended C. albicans biofilms were tested. In initial stage (Oh), the MIC50 of FLC alone and combined with TET to the C. albicans biofilms were 0. 25-64 g/mL and 0. 125-16 g/mL respectively (P=0. 002). In the early stage (4thh), the MIC50 were 8-256μg/mL and 1-64 μg/mL (P = 0. 000). In the middle (24lhh) and advanced stages (48th h), both the MIC50

  17. Detecting CPH1, EFG1 gene expression of planktonic cells and biofilm of Candida albicans with fluorescent quantitative PCR assay%荧光定量PCR检测不同状态下白念珠菌CPH1、EFG1基因的表达

    Institute of Scientific and Technical Information of China (English)

    阳隽; 张天托; 朱家馨

    2012-01-01

    Obejectiv To investigate the role of gene expression of transcription factor CPH1 and EFG1 in biofilm formation by detecting the difference of CPH1 ,EFG1 mRNA expression between biofilm and planktonic cells of C. Albicans . Methods Ten C. Albicans strains isolated from respiratory tract were used. The total RNA of planktonic and biofilm cells were extracted separately, the mRNA expression of CPH1 , EFG1 were measured with fluorescent quantitative PCR assay. The Δ ΔCt thai show relative value of mRNA expression were calculated. Results In this study, the mRNA expression of EFG1 in biofilm cells was 1. 42 ~ 7. 14 times higher than that in planktonic cells ( P 0.05). Conclusion The study show that transcription factors CPHI ,EFG1 participated in the regulation of biofilm formation in clinical isolates, and further research in vivo is needed to provide more proffs.%目的 检测转录因子CPH1和EFG1基因在游离态及生物膜态呼吸道白念珠菌临床分离株的表达差异,探讨其在生物膜形成过程中的作用.方法 选取10株白念珠菌临床分离株,分别提取游离态及生物膜态白念珠菌总RNA,用荧光定量PCR的方法测定两种状态下CPH1和EFG1基因的表达,用△△Ct的方法计算其相对表达量.结果 白念珠菌生物膜态转录因子EFG1的表达是游离态表达水平的1.42 ~7.14倍,差异有显著意义(P<0.05),而转录因子CPH1的表达有8株菌生物膜态较游离态增高,1株降低,1株无明显变化,差异无显著意义(P>0.05).结论 白念珠临床株转录因子CPH1和EFG1参与生物膜形成的调控,并需在体内实验中进一步研究.

  18. The research about Candida albicans biofilms eliminated by miconazole combined with drug efflux pump inhibitors%药物流出泵抑制剂联合咪康唑清除白假丝酵母菌生物被膜的研究

    Institute of Scientific and Technical Information of China (English)

    亓庆国; 王文霞

    2009-01-01

    Objective To investigate the effect of killing the biofilm persisters by miconazole combined with two compound which can inhibit the drug efflux of C. albicans. Methods Lab reference strains of C. albicans YEM30(CAF2-1) formed the mature biofilm in the 96 well plates, and then treated with miconazole combined with Enniatin B (CDR1 inhibitor) and Milbemycins ot25 (CDRI/CDR2 inhibitor) respectively. After incubated for 48 hours by CFU counting on the YPD plates, the analysis of persisters with SAS8.0 software package for q test. Results Miconazole combined with drug efflux inhibitor can kill more persisters than miconazole alone(P <0.001), and combining with Enniatin B have a better results in eliminating the biofilm persisters than with Milbemycins α25. Conclusion Antifungal drugs combined with drug efflux pump inhibitors can kill more strains which can tolerate very high concentration of antifungal drugs. And searching the potential drug efflux pump inhibitors may be a new way for eliminating the persisters in biofilm, and consequently controlling the chronic recurrent fungal infectious diseases.%目的 观察咪康唑分别与两种药物流出泵抑制剂联用清除耐药株(persister)的效果.方法 白假丝酵母菌参考株YEM30,在96孔板中形成生物被膜(biofilm),CDR1抑制剂Enniatin B、CDR1/CDR2抑制剂Milbemycins α25单独或联合与咪康唑作用后,采用菌落形成单位(CFU)计数的方法统计耐药株的数量.采用SAS8.0统计软件包对数据进行q检验.结果 咪康唑分别联合两种药物流出泵抑制剂清除生物被膜耐药株的效果明显优于咪康唑单独使用(P<0.001),其中咪康唑与Enniatin B联用效果更佳.结论 咪康唑与药物流出泵抑制剂联合应用具有清除生物被膜中表现型耐药株的作用,这为提高抗真菌治疗的效果提供了一条新途径和新思路.

  19. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Govindsamy Vediyappan

    Full Text Available Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine.

  20. Streptococcus mutans Competence-Stimulating Peptide Inhibits Candida albicans Hypha Formation

    NARCIS (Netherlands)

    Jarosz, Lucja M.; Deng, Dong Mei; van der Mei, Henny C.; Crielaard, Wim; Krom, Bastiaan P.

    2009-01-01

    The oral cavity is colonized by microorganisms growing in biofilms in which interspecies interactions take place. Streptococcus mutans grows in biofilms on enamel surfaces and is considered one of the main etiological agents of human dental caries. Candida albicans is also commonly found in the huma

  1. Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation

    NARCIS (Netherlands)

    Jarosz, L.M.; Deng, D.M.; van der Mei, H.C.; Crielaard, W.; Krom, B.P.

    2009-01-01

    The oral cavity is colonized by microorganisms growing in biofilms in which interspecies interactions take place. Streptococcus mutans grows in biofilms on enamel surfaces and is considered one of the main etiological agents of human dental caries. Candida albicans is also commonly found in the huma

  2. Identification and characterization of microbial biofilm communities associated with corroded oil pipeline surfaces.

    Science.gov (United States)

    Lenhart, Tiffany R; Duncan, Kathleen E; Beech, Iwona B; Sunner, Jan A; Smith, Whitney; Bonifay, Vincent; Biri, Bernadette; Suflita, Joseph M

    2014-01-01

    Microbially influenced corrosion (MIC) has long been implicated in the deterioration of carbon steel in oil and gas pipeline systems. The authors sought to identify and characterize sessile biofilm communities within a high-temperature oil production pipeline, and to compare the profiles of the biofilm community with those of the previously analyzed planktonic communities. Eubacterial and archaeal 16S rRNA sequences of DNA recovered from extracted pipeline pieces, termed 'cookies,' revealed the presence of thermophilic sulfidogenic anaerobes, as well as mesophilic aerobes. Electron microscopy and elemental analysis of cookies confirmed the presence of sessile cells and chemical constituents consistent with corrosive biofilms. Mass spectrometry of cookie acid washes identified putative hydrocarbon metabolites, while surface profiling revealed pitting and general corrosion damage. The results suggest that in an established closed system, the biofilm taxa are representative of the planktonic eubacterial and archaeal community, and that sampling and monitoring of the planktonic bacterial population can offer insight into biocorrosion activity. Additionally, hydrocarbon biodegradation is likely to sustain these communities. The importance of appropriate sample handling and storage procedures to oilfield MIC diagnostics is highlighted.

  3. In vitro study of biofilm formation and effectiveness of antimicrobial treatment on various dental material surfaces.

    Science.gov (United States)

    Li, L; Finnegan, M B; Özkan, S; Kim, Y; Lillehoj, P B; Ho, C-M; Lux, R; Mito, R; Loewy, Z; Shi, W

    2010-12-01

    Elevated proportions of Candida albicans in biofilms formed on dentures are associated with stomatitis whereas Streptococcus mutans accumulation on restorative materials can cause secondary caries. Candida albicans, S. mutans, saliva-derived and C. albicans/saliva-derived mixed biofilms were grown on different materials including acrylic denture, porcelain, hydroxyapatite (HA), and polystyrene. The resulting biomass was analysed by three-dimensional image quantification and assessment of colony-forming units. The efficacy of biofilm treatment with a dissolved denture cleansing tablet (Polident(®)) was also evaluated by colony counting. Biofilms formed on HA exhibited the most striking differences in biomass accumulation: biofilms comprising salivary bacteria accrued the highest total biomass whereas C. albicans biofilm formation was greatly reduced on the HA surface compared with other materials, including the acrylic denture surface. These results substantiate clinical findings that acrylic dentures can comprise a reservoir for C. albicans, which renders patients more susceptible to C. albicans infections and stomatitis. Additionally, treatment efficacy of the same type of biofilms varied significantly depending on the surface. Although single-species biofilms formed on polystyrene surfaces exhibited the highest susceptibility to the treatment, the most surviving cells were recovered from HA surfaces for all types of biofilms tested. This study demonstrates that the nature of a surface influences biofilm characteristics including biomass accumulation and susceptibility to antimicrobial treatments. Such treatments should therefore be evaluated on the surfaces colonized by the target pathogen(s).

  4. Function of fungal quorum sensing molecule tyrosol in formation of Staphylococcus epidermidis-Candida albicans mixed biofilm%真菌密度感应分子对羟基苯乙醇在白色假丝酵母菌与表皮葡萄球菌混合生物膜形成中的作用研究

    Institute of Scientific and Technical Information of China (English)

    王小燕; 汤琦; 黄云超; 赵光强; 周友全; 杨堃; 叶联华; 陈颖

    2015-01-01

    OBJECTIVE To explore the function of fungal quorum sensing molecule tyrosol in formation of Staphy‐lococcus epidermidis‐Candida albicans mixed biofilm ,so as to provide new ideas for prevention and treatment of mixed microorganism infection related to biomaterials .METHODS The strains of S .epidermidis ATCC 35984 and C .albicans ATCC10231 were co‐cultured in May 2014 to form the model of in vitro mixed biofilms which were di‐vided into the treatment group and the control group by tyrosol treatment .Biofilm mass was semi‐quantified by crystal violet semi‐quantitative adherence assay after 2 ,4 ,6 ,8 ,12 ,24 ,48 ,72 ,96 hours of incubation .XTT as‐say was performed to determine the growth kinetics at the same time .Scanning by electron microscopy was used to observe the ultrastructure of biofilms .The real‐time PCR was used to analyze the expression of icaA ,fbe ,aap , hwp1 ,als3 ,and ef g1 genes .RESULTS Crystal violet semi‐quantitative adherence assay showed that the biofilm thickness was significently larger in the treatment group than in the control group after 2 ,4 ,6 hours of incubation (P<0 .05) .XTT assay for determination of biofilm growth kinetics showed that the growth kinetics was higher in the treatment group than in the control group after 12 ,72 hours of incubation ,there was significant difference in 12 h inter‐group comparison(P< 0 .05) .The scanning by electron microscopy revealed the three‐dimensional structure of mix‐biofilm made by large amount of S .epidermidis and C .albicans spores and hypha that densely grew .The real‐time PCR showed that the expression of icaA ,fbe ,aap genes related to formation of S .epider‐midisbiofilminthetreatmentgroupwasup‐regulatedandtheexpressionofhwp1,als3,efg1genesrelatedtoC. albicans biofilm was down‐regulated .CONCLUSION With intervention of the fungal quorum sensing molecule ty‐rosol ,the biofilm in the treatment group was thicker ,which may be more closely correlated to the up

  5. Endoftalmite por Candida albicans Candida albicans endophthalmitis

    Directory of Open Access Journals (Sweden)

    Pedro Duraes Serracarbassa

    2003-10-01

    Full Text Available O autor descreve os aspectos epidemiológicos, histopatológicos e clínicos da endoftalmite endógena por Candida albicans. Apresenta ainda novos métodos diagnósticos e opções terapêuticas utilizadas no tratamento das infecções fúngicas intra-oculares, por meio de revisão bibliográfica.The author describes epidemiological, histopathological and clinical aspects of endogenous Candida albicans endophthalmitis. He also presents new diagnostic methods and therapeutical options to treat intraocular fungal infections, based on literature review.

  6. Identification of Bicarbonate as a Trigger and Genes Involved with Extracellular DNA Export in Mycobacterial Biofilms.

    Science.gov (United States)

    Rose, Sasha J; Bermudez, Luiz E

    2016-12-06

    Extracellular DNA (eDNA) is an integral biofilm matrix component of numerous pathogens, including nontuberculous mycobacteria (NTM). Cell lysis is the source of eDNA in certain bacteria, but the source of eDNA remains unidentified for NTM, as well as for other eDNA-containing bacterial species. In this study, conditions affecting eDNA export were examined, and genes involved with the eDNA export mechanism were identified. After a method for monitoring eDNA in real time in undisturbed biofilms was established, different conditions affecting eDNA were investigated. Bicarbonate positively influenced eDNA export in a pH-independent manner in Mycobacterium avium, M. abscessus, and M. chelonae The surface-exposed proteome of M. avium in eDNA-containing biofilms revealed abundant carbonic anhydrases. Chemical inhibition of carbonic anhydrases with ethoxzolamide significantly reduced eDNA export. An unbiased transposon mutant library screen for eDNA export in M. avium identified many severely eDNA-attenuated mutants, including one not expressing a unique FtsK/SpoIIIE-like DNA-transporting pore, two with inactivation of carbonic anhydrases, and nine with inactivation of genes belonging to a unique genomic region, as well as numerous mutants involved in metabolism and energy production. Complementation of nine mutants that included the FtsK/SpoIIIE and carbonic anhydrase significantly restored eDNA export. Interestingly, several attenuated eDNA mutants have mutations in genes encoding proteins that were found with the surface proteomics, and many more mutations are localized in operons potentially encoding surface proteins. Collectively, our data strengthen the evidence of eDNA export being an active mechanism that is activated by the bacterium responding to bicarbonate.

  7. Separation and Identification of Candida Albicans for Canine Surgical Infection%犬外科感染中白色念珠菌的分离鉴定

    Institute of Scientific and Technical Information of China (English)

    常向彩; 刘凌颖; 马明

    2015-01-01

    犬外科感染多以革兰氏阴性菌、革兰氏阳性菌混合感染为主,但近年来混有念珠菌、霉菌等真菌感染的病例呈增多趋势。文章对18例外科感染宠物犬创口中可能存在的白色念珠菌进行了分离鉴定,结果表明,18株样本中分离到白色念珠菌5株,分离率达27•8%,说明白色念珠菌在犬外科感染中占有一定比例。%Canine surgical infections ,mainly caused by Gramənegative bacteria and Graməpositive bacteria ,are showing an in‐creasing trend that mixed with Candida ,mold and other fungal.In this study ,there are 18 pet dogs of surgical wound infection in Candida albicans were isolated and identified .The results showed that :5 strains of Candida albicans were separated from 18 sam‐ples ,Candida albicans isolation rate was 27 .8% ,thus it can be seen that Candida albicans infection account for certain of dogs sur‐gical infection ,for the future to provide an important reference for surgical diagnosis and appropriate treatment of infection .

  8. Comparative phenotypic analysis of the major fungal pathogens Candida parapsilosis and Candida albicans.

    Science.gov (United States)

    Holland, Linda M; Schröder, Markus S; Turner, Siobhán A; Taff, Heather; Andes, David; Grózer, Zsuzsanna; Gácser, Attila; Ames, Lauren; Haynes, Ken; Higgins, Desmond G; Butler, Geraldine

    2014-09-01

    Candida parapsilosis and Candida albicans are human fungal pathogens that belong to the CTG clade in the Saccharomycotina. In contrast to C. albicans, relatively little is known about the virulence properties of C. parapsilosis, a pathogen particularly associated with infections of premature neonates. We describe here the construction of C. parapsilosis strains carrying double allele deletions of 100 transcription factors, protein kinases and species-specific genes. Two independent deletions were constructed for each target gene. Growth in >40 conditions was tested, including carbon source, temperature, and the presence of antifungal drugs. The phenotypes were compared to C. albicans strains with deletions of orthologous transcription factors. We found that many phenotypes are shared between the two species, such as the role of Upc2 as a regulator of azole resistance, and of CAP1 in the oxidative stress response. Others are unique to one species. For example, Cph2 plays a role in the hypoxic response in C. parapsilosis but not in C. albicans. We found extensive divergence between the biofilm regulators of the two species. We identified seven transcription factors and one protein kinase that are required for biofilm development in C. parapsilosis. Only three (Efg1, Bcr1 and Ace2) have similar effects on C. albicans biofilms, whereas Cph2, Czf1, Gzf3 and Ume6 have major roles in C. parapsilosis only. Two transcription factors (Brg1 and Tec1) with well-characterized roles in biofilm formation in C. albicans do not have the same function in C. parapsilosis. We also compared the transcription profile of C. parapsilosis and C. albicans biofilms. Our analysis suggests the processes shared between the two species are predominantly metabolic, and that Cph2 and Bcr1 are major biofilm regulators in C. parapsilosis.

  9. Antifungal Susceptibility of Candida Biofilms: Unique Efficacy of Amphotericin B Lipid Formulations and Echinocandins

    OpenAIRE

    Kuhn, D M; T. George; CHANDRA, J; P. K. Mukherjee; Ghannoum, M A

    2002-01-01

    Biofilms, likely the predominant mode of device-related microbial infection, exhibit resistance to antimicrobial agents. Evidence suggests that Candida biofilms have dramatically reduced susceptibility to antifungal drugs. We examined antifungal susceptibilities of Candida albicans and Candida parapsilosis biofilms grown on a bioprosthetic model. In addition to conventional agents, we determined if new antifungal agents (triazoles, amphotericin B lipid formulations, and echinocandins) have ac...

  10. Mimicking disinfection and drying of biofilms in contaminated endoscopes

    NARCIS (Netherlands)

    Kovaleva, J.; Degener, J. E.; van der Mei, H. C.

    2010-01-01

    The effects of peracetic acid-based (PAA) disinfectant with, and without, additional drying on Candida albicans, Candida parapsilosis, Pseudomonas aeruginosa and Stenotrophomonas maltophilia, isolated from contaminated flexible endoscopes, in single-and dual-species biofilms were studied. Biofilms w

  11. Biofilm Risks

    DEFF Research Database (Denmark)

    Wirtanen, Gun Linnea; Salo, Satu

    2016-01-01

    This chapter on biofilm risks deals with biofilm formation of pathogenic microbes, sampling and detection methods, biofilm removal, and prevention of biofilm formation. Several common pathogens produce sticky and/or slimy structures in which the cells are embedded, that is, biofilms, on various s...

  12. Structure-activity relationships among antifungal nylon-3 polymers: identification of materials active against drug-resistant strains of Candida albicans.

    Science.gov (United States)

    Liu, Runhui; Chen, Xinyu; Falk, Shaun P; Mowery, Brendan P; Karlsson, Amy J; Weisblum, Bernard; Palecek, Sean P; Masters, Kristyn S; Gellman, Samuel H

    2014-03-19

    Fungal infections are a major challenge to human health that is heightened by pathogen resistance to current therapeutic agents. Previously, we were inspired by host-defense peptides to develop nylon-3 polymers (poly-β-peptides) that are toxic toward the fungal pathogen Candida albicans but exert little effect on mammalian cells. Based on subsequent analysis of structure-activity relationships among antifungal nylon-3 polymers, we have now identified readily prepared cationic homopolymers active against strains of C. albicans that are resistant to the antifungal drugs fluconazole and amphotericin B. These nylon-3 polymers are nonhemolytic. In addition, we have identified cationic-hydrophobic copolymers that are highly active against a second fungal pathogen, Cryptococcus neoformans, and moderately active against a third pathogen, Aspergillus fumigatus.

  13. Combating biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong;

    2012-01-01

    Biofilms are complex microbial communities consisting of microcolonies embedded in a matrix of self-produced polymer substances. Biofilm cells show much greater resistance to environmental challenges including antimicrobial agents than their free-living counterparts. The biofilm mode of life...... is believed to significantly contribute to successful microbial survival in hostile environments. Conventional treatment, disinfection and cleaning strategies do not proficiently deal with biofilm-related problems, such as persistent infections and contamination of food production facilities. In this review......, strategies to control biofilms are discussed, including those of inhibition of microbial attachment, interference of biofilm structure development and differentiation, killing of biofilm cells and induction of biofilm dispersion....

  14. Potent Activities of Roemerine against Candida albicans and the Underlying Mechanisms.

    Science.gov (United States)

    Ma, Chaoyu; Du, Faya; Yan, Lan; He, Gonghao; He, Jianchang; Wang, Chengying; Rao, Gaoxiong; Jiang, Yuanying; Xu, Guili

    2015-01-01

    Roemerine (RM) is an aporphine alkaloid isolated from the fresh rattan stem of Fibraurea recisa, and it has been demonstrated to have certain antifungal activity. This study aimed to investigate the antifungal activity of RM and the underlying mechanisms in Candida albicans (C. albicans). The in vitro antifungal activity of RM was evaluated by a series of experiments, including the XTT reduction assay, confocal laser scanning microscopy assay, scanning electron microscope assay. Results showed that 1 μg/mL RM inhibited biofilm formation significantly (p albicans in a dose-dependent manner. The biofilm-specific and hypha-specific genes such as YWP1, SAP5, SAP6, HWP1, ECE1 were up-regulated and EFG1 was down-regulated after 8 μg/mL RM treatment. Furthermore, the toxicity of RM was investigated using C. elegans worms, three cancer cells and one normal cell. The date showed that RM had no significant toxicity. In conclusion, RM could inhibited the formation of C. albicans biofilm in vitro, but it had no fungicidal effect on planktonic C. albicans cells, and the anti-biofilm mechanism may be related to the cAMP pathway.

  15. Potent Activities of Roemerine against Candida albicans and the Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Chaoyu Ma

    2015-09-01

    Full Text Available Roemerine (RM is an aporphine alkaloid isolated from the fresh rattan stem of Fibraurea recisa, and it has been demonstrated to have certain antifungal activity. This study aimed to investigate the antifungal activity of RM and the underlying mechanisms in Candida albicans (C. albicans. The in vitro antifungal activity of RM was evaluated by a series of experiments, including the XTT reduction assay, confocal laser scanning microscopy assay, scanning electron microscope assay. Results showed that 1 μg/mL RM inhibited biofilm formation significantly (p < 0.01 both in Spider medium and Lee’s medium. In addition, RM could inhibit yeast-to-hyphae transition of C. albicans in a dose-dependent manner. The biofilm-specific and hypha-specific genes such as YWP1, SAP5, SAP6, HWP1, ECE1 were up-regulated and EFG1 was down-regulated after 8 μg/mL RM treatment. Furthermore, the toxicity of RM was investigated using C. elegans worms, three cancer cells and one normal cell. The date showed that RM had no significant toxicity. In conclusion, RM could inhibited the formation of C. albicans biofilm in vitro, but it had no fungicidal effect on planktonic C. albicans cells, and the anti-biofilm mechanism may be related to the cAMP pathway.

  16. Elderly nutritional status effection salivary anticandidal capacity against Candida albicans

    Directory of Open Access Journals (Sweden)

    Ria Puspitawati

    2011-06-01

    Full Text Available Background: Elderly often suffer malnutrition and oral candidiasis. Candida albicans (C. albicans which is the most prominent cause of oral candidiasis, is one of commensal oral micro-flora. Nutritional status affect the characteristic of saliva. Saliva is the regulator in the development of C. albicans from comensal into pathogen. Purpose: The purpose of this study was to determining the correlation between elderly nutritional status with salivary total protein and its activity in inhibiting C. albicans growth and biofilm formation. Methods: Using mini nutritional assessment 30 elderly were classified into normal and malnutrition groups. Total protein of unstimulated saliva was measured using Bradford protein assay. The colony forming unit (CFU of C. albicans was counted on 72 hours on SDA cultures without (control or with 2 hour saliva exposure. Biofilm formation was analyzed from the optical density of 10–5 C. albicans suspension without saliva exposure (control or with exposure of 10.000 μg/ml saliva and incubated in 37° C for 2 days. The suspension was put into 96 well plates, stained with crystal-violet dye, and analyzed using microplate reader. Differences between groups were analyzed using independent t-test or Kruskall-Wallis. Correlation between variables was analyzed using Spearman test. Results: Salivary total protein of normal elderly (1.113.5 ± 1.1143.3 was higher than those of malnutrition (613.6 ± 253.6 but not statistically significant (p > 0.05. The CFU of C. albicans exposed to saliva of normal samples (2.060 cfu/ml was significantly lower than control (24.100 cfu/ml and those exposed to malnutrition saliva (5.513.3 cfu/ml. C. albicans biofilm formation is highest in controls (0.177, lower in those exposed to malnourished saliva (0.151 and lowest in those exposed to saliva of good nourished elderly (0.133. Conclusion: Although does not cause significant decrease of salivary total protein, malnutrition in elderly results

  17. Hsp90 governs dispersion and drug resistance of fungal biofilms.

    Directory of Open Access Journals (Sweden)

    Nicole Robbins

    2011-09-01

    Full Text Available Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving

  18. PENGHAMBATAN CAJUPUTS CANDY TERHADAP VIABILITAS KHAMIR Candida albicans SECARA IN VITRO [Inhibition of Cajuputs Candy Toward the Viability of Candida albicans by using In Vitro Assay

    Directory of Open Access Journals (Sweden)

    C. Hanny Wijaya1*

    2014-12-01

    Full Text Available The utilization of cajuput essential oil as a flavor in candy may produce a physiological active added value. Some compounds of cajuput plant (Melaleuca cajuputi L have been reported for their anti-microbial activities. Candida albicans is a normal commensal organism in human mouth. However, it may become virulent and responsible for oral diseases known as oral candidiasis. This study aimed to determine the effect of cajuput and peppermint oil in cajuputs candy in inhibiting the C. albicans biofilms formation by using in vitro biofilm assay and viability assay. Furthermore, the influence of concentration of cajuput oil on the anti-microbial activities had been analyzed. All the tested concentration of cajuput oil in cajuputs candy was effective to inhibit the viability of C. albicans. The provision of flavor components of cajuput and peppermint oil could produce synergistic effects compared to a single flavor component. The addition of cajuput oil at 0.6% was able to inhibit the viability of C. albicans. The activities of the cajuput oil showed positive correlation to the concentration. The variable of plus and minus 0.1% addition of the cajuput oil concentration, however, produced no significant difference to inhibit the growth of C. albicans in biofilm. Sensory test, hedonic test, was conducted to evaluate the flavor, aroma, and overall attributes, resulting in no significant difference between 0.6 to 0.8% additions of cajuput oil upon the sensory acceptance.

  19. Extracellular enolase of Candida albicans is involved in colonization of mammalian intestinal epithelium

    Directory of Open Access Journals (Sweden)

    Richard Cardoso Silva

    2014-06-01

    Full Text Available Enolase is secreted by C. albicans and is present in its biofilms although its extracellular function is unknown. Here we show that extracellular enolase mediates the colonization of small intestine mucosa by C. albicans. Assays using intestinal mucosa disks show that C. albicans adhesion is inhibited, in a dose dependent mode, either by pretreatment of intestinal epithelium mucosa disks with recombinant C. albicans enolase (70% at 0.5 mg/ml enolase or by pretreatment of C. albicans yeasts with anti-enolase antibodies (48% with 20 µg antiserum. Also using flow cytometry, immunoblots of conditioned media and confocal microscopy we demonstrate that enolase is present in biofilms and that the extracellular enolase is not an artifact due to cell lysis, but must represent functional secretion of a stable form. This is the first direct evidence that C. albicans extracellular enolase mediates colonization on its primary translocation site. Also, because enolase is encoded by a single locus in C. albicans, its dual role peptide, as glycolytic enzyme and extracellular peptide, is a remarkable example of gene sharing in fungi.

  20. A common mechanism involving the TORC1 pathway can lead to amphotericin B-persistence in biofilm and planktonic Saccharomyces cerevisiae populations.

    Science.gov (United States)

    Bojsen, Rasmus; Regenberg, Birgitte; Gresham, David; Folkesson, Anders

    2016-02-23

    Fungal infections are an increasing clinical problem. Decreased treatment effectiveness is associated with biofilm formation and drug recalcitrance is thought to be biofilm specific. However, no systematic investigations have tested whether resistance mechanisms are shared between biofilm and planktonic populations. We performed multiplexed barcode sequencing (Bar-seq) screening of a pooled collection of gene-deletion mutants cultivated as biofilm and planktonic cells. Screening for resistance to the ergosterol-targeting fungicide amphotericin B (AmB) revealed that the two growth modes had significant overlap in AmB-persistent mutants. Mutants defective in sterol metabolism, ribosome biosynthesis, and the TORC1 and Ras pathways showed increased persistence when treated with AmB. The ras1, ras2 and tor1 mutants had a high-persister phenotype similar to wild-type biofilm and planktonic cells exposed to the TORC1 pathway inhibitor rapamycin. Inhibition of TORC1 with rapamycin also increased the proportion of persisters in Candida albicans and Candida glabrata. We propose that decreased TORC1-mediated induction of ribosome biosynthesis via Ras can lead to formation of AmB-persister cells regardless of whether the cells are in planktonic or biofilm growth mode. Identification of common pathways leading to growth mode-independent persister formation is important for developing novel strategies for treating fungal infections.

  1. Candida albicans susceptibility to lactoperoxidase-generated hypoiodite

    Directory of Open Access Journals (Sweden)

    Mohamed Ahariz

    2010-08-01

    Full Text Available Mohamed Ahariz1, Philippe Courtois21Laboratory of Experimental Hormonology, Université Libre de Bruxelles, Brussels, Belgium; 2Laboratory of Experimental Hormonology, Université Libre de Bruxelles, Brussels, Belgium and UER de Biologie Médicale, Haute Ecole Francisco Ferrer, Brussels, BelgiumAbstract: In vivo, lactoperoxidase produces hypothiocyanite (OSCN- from thiocyanate (SCN- in the presence of hydrogen peroxide (H2O2; in vitro, iodide (I- can be oxidized into hypoiodite (OI- by this enzyme. The aim of this study was to compare in vitro the anti-Candida effect of iodide versus thiocyanate used as lactoperoxidase substrate to prevent Candida biofilms development. Candida albicans ATCC 10231 susceptibility upon both peroxidase systems was tested in three different experimental designs: (i in a liquid culture medium, (ii in an interface model between solid culture medium and gel containing the enzymic systems, (iii in a biofilm model onto titanium and acrylic resin. Yeast growth in liquid medium was monitored by turbidimetry at 600 nm. Material-adherent yeast biomass was evaluated by the tetrazolium salt MTT method. The iodide-peroxidase system has been shown to inhibit Candida biofilm formation at lower substrate concentrations (~200 fold less H2O2 donor and for longer incubation periods than the thiocyanate-peroxidase system. In conclusion, efficiency of lactoperoxidase-generated OI- to prevent C. albicans biofilm development allows refining iodine antifungal use in ex vivo conditions.Keywords: denture, iodide, oral, peroxidase, saliva, titanium

  2. Identification of bap and icaA genes involved in biofilm formation in coagulase negative staphylococci isolated from feline conjunctiva.

    Science.gov (United States)

    Płoneczka-Janeczko, Katarzyna; Lis, Paweł; Bierowiec, Karolina; Rypuła, Krzysztof; Chorbiński, Paweł

    2014-12-01

    Bap and icaA genes are commonly known to be involved in the biofilm formation. The prevalence of bap and icaA genes and biofilm formation was determined in conjunctival isolates of coagulase negative staphylococci (CNS) collected from cats. The study was conducted on 90 archival CNS isolates collected from feline conjunctiva obtained from clinically healthy cats and cats with ocular problems. Biofilm formation was examined using the microtiter plate (MTP) method. The prevalence of icaA and bap genes was determined using polymerase chain reaction (PCR). Genetic profiles of the bap-positive isolates were examined using the modified random amplified polymorphic DNA (RAPD) method. Of the 90 CNS isolates investigated, 58.9% (53/90) were confirmed to form biofilms on a polystyrene plate after 24 h, and the intensity of the biofilm production varied strongly between positive strains. Among the biofilm-producing isolates, 24.5% (13/53) carried the icaA gene and 3.8% (2/53) carried the bap gene. Among the isolates that did not produce biofilms, the icaA gene and bap gene were detected in 8.1% (3/37) and 2.7% (1/37) of isolates, respectively. This is the first report demonstrating that CNS isolated from feline conjunctiva can potentially be a bap gene reservoir. Preliminary comparison of the genetic profiles of three bap-positive isolates collected from cats showed that each of the isolates has a different genetic background with a high similarity with the human strain of S. epidermidis.

  3. Permeabilizing biofilms

    Science.gov (United States)

    Soukos, Nikolaos S.; Lee, Shun; Doukas,; Apostolos G.

    2008-02-19

    Methods for permeabilizing biofilms using stress waves are described. The methods involve applying one or more stress waves to a biofilm, e.g., on a surface of a device or food item, or on a tissue surface in a patient, and then inducing stress waves to create transient increases in the permeability of the biofilm. The increased permeability facilitates delivery of compounds, such as antimicrobial or therapeutic agents into and through the biofilm.

  4. Identification of Pathogenicity-Related Genes in Biofilm-Defective Acidovorax citrulli by Transposon Tn5 Mutagenesis

    Directory of Open Access Journals (Sweden)

    Jinyan Luo

    2015-11-01

    Full Text Available Biofilm formation is important for virulence of a large number of plant pathogenic bacteria. Indeed, some virulence genes have been found to be involved in the formation of biofilm in bacterial fruit blotch pathogen Acidovorax citrulli. However, some virulent strains of A. citrulli were unable to format biofilm, indicating the complexity between biofilm formation and virulence. In this study, virulence-related genes were identified in the biofilm-defective strain A1 of A. citrulli by using Tn5 insertion, pathogenicity test, and high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR. Results from this study indicated that 22 out of the obtained 301 mutants significantly decreased the virulence of strain A1 compared to the wild-type. Furthermore, sequence analysis indicated that the obtained 22 mutants were due to the insertion of Tn5 into eight genes, including Aave 4244 (cation diffusion facilitator family transporter, Aave 4286 (hypothetical protein, Aave 4189 (alpha/beta hydrolase fold, Aave 1911 (IMP dehydrogenase/GMP reductase domain, Aave 4383 (bacterial export proteins, family 1, Aave 4256 (Hsp70 protein, Aave 0003 (histidine kinase, DNA gyrase B, and HSP90-like ATPase, and Aave 2428 (pyridoxal-phosphate dependent enzyme. Furthermore, the growth of mutant Aave 2428 was unaffected and even increased by the change in incubation temperature, NaCl concentration and the pH of the LB broth, indicating that this gene may be directly involved in the bacterial virulence. Overall, the determination of the eight pathogenicity-related genes in strain A1 will be helpful to elucidate the pathogenesis of biofilm-defective A. citrulli.

  5. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins.

    Science.gov (United States)

    Kuhn, D M; George, T; Chandra, J; Mukherjee, P K; Ghannoum, M A

    2002-06-01

    Biofilms, likely the predominant mode of device-related microbial infection, exhibit resistance to antimicrobial agents. Evidence suggests that Candida biofilms have dramatically reduced susceptibility to antifungal drugs. We examined antifungal susceptibilities of Candida albicans and Candida parapsilosis biofilms grown on a bioprosthetic model. In addition to conventional agents, we determined if new antifungal agents (triazoles, amphotericin B lipid formulations, and echinocandins) have activities against Candida biofilms. We also explored effects of preincubation of C. albicans cells with subinhibitory concentrations (sub-MICs) of drugs to see if they could modify subsequent biofilm formation. Finally, we used confocal scanning laser microscopy (CSLM) to image planktonic- and biofilm-exposed blastospores to examine drug effects on cell structure. Candida biofilms were formed on silicone elastomer and quantified by tetrazolium and dry weight (DW) assays. Susceptibility testing of fluconazole, nystatin, chlorhexidine, terbenafine, amphotericin B (AMB), and the triazoles voriconazole (VRC) and ravuconazole revealed resistance in all Candida isolates examined when grown as biofilms, compared to planktonic forms. In contrast, lipid formulations of AMB (liposomal AMB and AMB lipid complex [ABLC]) and echinocandins (caspofungin [Casp] and micafungin) showed activity against Candida biofilms. Preincubation of C. albicans cells with sub-MIC levels of antifungals decreased the ability of cells to subsequently form biofilm (measured by DW; P formulations.

  6. In Vitro Study on the Adhesion and Colonization of Candida Albicans on Metal and Acrylic Piercings

    Directory of Open Access Journals (Sweden)

    Stamenov N.

    2016-03-01

    Full Text Available Oral/perioral piercing may provide an ideal environment for adhesion and colonization of microorganisms. The aim of this study is to perform an “in vitro” research on the capabilities of adhesion of Candida albicans on oral piercings made of plastic and metal. Acrylic and metal piercings were incubated with Candida albicans and then were observed using scanning electron microscopy under different magnifications. A lot of irregularities and roughness were observed on the surface of the plastic piercing unlike the surface of the metal one, which is not so rough. Nevertheless, the number of Candida albicans colonies was considerably larger on the scanned metal surface in comparison to the plastic surface. In vitro the metal surface of the piercing creates better environment for the adhesion and colonization of microorganisms than the acrylic. This could be attributed to the electrostatic forces that most likely attract Candida albicans to the metal piercing in the early stages of biofilm formation.

  7. Fungal Biofilms: In Vivo Models for Discovery of Anti-Biofilm Drugs.

    Science.gov (United States)

    Nett, Jeniel E; Andes, David R

    2015-06-01

    During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate, and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is Candida albicans. Animal models have been developed to simulate common Candida device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections: oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to the development of new strategies for the eradication of fungal biofilm infections.

  8. Prospective evaluation of the chromogenic medium CandiSelect 4 for differentiation and presumptive identification of non-Candida albicans Candida species

    NARCIS (Netherlands)

    Zhao, Liang; de Hoog, G Sybren; Cornelissen, Akke; Lyu, Qian; Mou, Lili; Liu, Taohua; Cao, Yu; Vatanshenassan, Mansoureh; Kang, Yingqian

    2016-01-01

    Rapid identification of pathogenic yeasts is a crucial step in timely and appropriate antifungal therapy. For diagnostics in the clinical laboratory, simplified alternatives to barcoding are needed. CandiSelect 4 (CS4) medium, a chromogenic medium for isolation of clinical yeasts, allows routine rec

  9. Inhibitory effects of Lactobacillus fermentum on microbial growth and biofilm formation.

    Science.gov (United States)

    Rybalchenko, Oxana V; Bondarenko, Viktor M; Orlova, Olga G; Markov, Alexander G; Amasheh, S

    2015-10-01

    Beneficial effects of Lactobacilli have been reported, and lactic bacteria are employed for conservation of foods. Therefore, the effects of a Lactobacillus fermentum strain were analyzed regarding inhibitory effects on staphylococci, Candida albicans and enterotoxigenic enterobacteria by transmission electron microscopy (TEM). TEM of bacterial biofilms was performed using cocultures of bacteriocin-producing L. fermentum 97 with different enterotoxigenic strains: Staphylococcus epidermidis expressing the ica gene responsible for biofilm formation, Staphylococcus aureus producing enterotoxin type A, Citrobacter freundii, Enterobacter cloaceae, Klebsiella oxytoca, Proteus mirabilis producing thermolabile and thermostable enterotoxins determined by elt or est genes, and Candida albicans. L. fermentum 97 changed morphological features and suppressed biofilm formation of staphylococci, enterotoxigenic enterobacteria and Candida albicans; a marked transition to resting states, a degradation of the cell walls and cytoplasm, and a disruption of mature bacterial biofilms were observed, the latter indicating efficiency even in the phase of higher cell density.

  10. Candida albicans Carriage in Children with Severe Early Childhood Caries (S-ECC) and Maternal Relatedness

    Science.gov (United States)

    Xiao, Jin; Moon, Yonghwi; Li, Lihua; Rustchenko, Elena; Wakabayashi, Hironao; Zhao, Xiaoyi; Feng, Changyong; Gill, Steven R.; McLaren, Sean; Malmstrom, Hans; Ren, Yanfang; Quivey, Robert

    2016-01-01

    Introduction Candida albicans has been detected together with Streptococcus mutans in high numbers in plaque-biofilm from children with early childhood caries (ECC). The goal of this study was to examine the C. albicans carriage in children with severe early childhood caries (S-ECC) and the maternal relatedness. Methods Subjects in this pilot cross-sectional study were recruited based on a convenient sample. DMFT(S)/dmft(s) caries and plaque scores were assessed during a comprehensive oral exam. Social-demographic and related background information was collected through a questionnaire. Saliva and plaque sample from all children and mother subjects were collected. C. albicans were isolated by BBL™ CHROMagar™ and also identified using germ tube test. S. mutans was isolated using Mitis Salivarius with Bacitracin selective medium and identified by colony morphology. Genetic relatedness was examined using restriction endonuclease analysis of the C. albicans genome using BssHII (REAG-B). Multilocus sequence typing was used to examine the clustering information of isolated C. albicans. Spot assay was performed to examine the C. albicans Caspofungin susceptibility between S-ECC children and their mothers. All statistical analyses (power analysis for sample size, Spearman’s correlation coefficient and multiple regression analyses) were implemented with SAS 9.4 Results A total of 18 S-ECC child-mother pairs and 17 caries free child-mother pairs were enrolled in the study. Results indicated high C. albicans carriage rate in the oral cavity (saliva and plaque) of both S-ECC children and their mothers (>80%). Spearman’s correlation coefficient also indicated a significant correlation between salivary and plaque C. albicans and S. mutans carriage (p60% of them demonstrated identical C. albicans REAG-B pattern. C. albicans isolated from >65% of child-mother pairs demonstrated similar susceptibility to caspofungin in spot assay, while no caspofungin resistant strains were

  11. STUDY OF BIOFILM FORMATION AS A VIRULENCE MARKER IN CANDIDA SPECIES ISOLATED FROM VARIOUS CLINICAL SPEC IMENS

    Directory of Open Access Journals (Sweden)

    Saroj

    2012-12-01

    Full Text Available ABSTRACT: BACKGROUND: Candida species can be either commensals or opportunis tic pathogens with the ability to cause a variety of inf ections, ranging from superficial to life threatening. Nosocomial infections due to candida a re also becoming increasingly important. Early and prompt diagnosis, proper treatment and prevent ion of candidemia due to biofilms pose a major challenge for microbiologists and clini cians worldwide. Added to this is the emerging trend of antifungal drug resistance among the biofilm producing strains of Candida. AIMS: The aim of this study was to detect biofilm producti on in Candida species isolated from various clinical samples obtained from patients hospit alized in Dr. B.R Ambedkar Medical College and Hospital. MATERIALS AND METHODS: A total of 108 Candida species (Candida albicans49 and non-albicans Candida59 species isola ted from various specimens (urine, blood, respiratory tract, genital samples, plastic devices an d pus samples were included in the study.The various candida isolates were identified by using conventional methods and their ability to produce biofilm was detected by the tube method. RESULTS: Out of 108 candida species, non-albicans Candida 59(54.63% was the pred ominant species isolated. Biofilm positivity was seen with 71(65.74% isolates and the biofilm production was observed more with non-albicans Candida species 44(61.97% compare d to C.albicans species 27(38.03%. Among the non-albicans Candida species, strong biofi lm producers were C.krusei(80.77% and C.tropicalis(72.73%. Biofilm positivity was found to be higher in the bloodstream Candida isolates (81.82% compared to isolates from other si tes. CONCLUSION: The present study suggests an increasing prevalence of non-albicans Ca ndida species in the various clinical samples isolated and also shows them as strong biofi lm producers compared to C.albicans species. These data suggest that, biofilm formation as a potential virulence factor might

  12. [Genetic identification and study of the ability of lactobacilli isolated from the oral cavity of healthy individuals to form biofilms].

    Science.gov (United States)

    Chervinets, Iu V; Botina, S G; Glazova, A A; Koroban, N V; Chervinets, V M; Samoukina, A M; Gavrilova, O A; Lebedev, D V; Mironov, A Iu

    2011-02-01

    The highly antagonistic lactobacillus strains isolated from the oral cavity of human individuals were genetically passported as L. fermentum 39, L. rhamnosus 50, and L. rhamnosus 24, by applying the RAPD-PCR technique with two types of primers (M13, MSP). These lactobacillus strains showed high degrees of autoaggregation, surface hydrophobicity, coaggregation, and adhesion. These characteristics determine the obvious capacity of lactobacilli to form biofilms, which may be used to design new probiotic agents.

  13. Biofilm Infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Jensen, Peter Østrup; Moser, Claus Ernst

    A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that the vast majority of the total microbial biomass exists as biofilms. Aggregation of bacteria was first described by Leeuwenhoek in 1677, but only recently recognized...... as being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections...... such as diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well...

  14. Effect of Xylitol on Candida albicans resistance in serum (in vitro study

    Directory of Open Access Journals (Sweden)

    Ria Puspitawati

    2013-07-01

    Full Text Available Xylitol is reported to inhibit the growth of C. albicans. Objectives: Investigating serum factor role in inhibiting the growth of C. albicans and the effect of 1%, 5%, 10% xylitol on C. albicans resistance in serum in vitro. Methods: Identification of C. albicans (oral swab of candidiasis patient was conducted using CHROMAgar, confirmed by germ tube test. The cultures were serially diluted, inoculated in Saburoud Dextrose Broth (SDB contained 0% (control, 1%, 5%, or 10% xylitol, and kept for 3 or 7 days. These inoculations were then exposed to either active or inactive serum (Fetal Bovine Serum heated in 65ºC for 30 minutes for 2 hours in 37ºC. The colony forming unit (CFU of C. albicans in Saburoud Dextrose Agar (SDA were counted after 2 days. C. albicans ATCC 10231 strain was used as a comparison. One-way ANOVA with 0.05 was used. Results: After 3 days cultured in media with or without xylitol, the CFU of C. albicans exposed to active serum were significantly lower than those exposed to inactive serum (p=0.032. Although not statistically significant (p=0.689, increased concentration of xylitol lead to increased resistance of C. albicans in active serum. Only 7 day exposure of 10% xylitol resulted in significantly higher growth of C. albicans (p=0.034. No significant difference of C. albicans CFU in active or inactive serum (p=0.404. Conclusion: Serum factor has role in inhibiting C. albicans growth in vitro. Exposure of 1%, 5%, or 10% xylitol for 3 or 7 days has no significant effect on C. albicans resistance in serum.DOI: 10.14693/jdi.v16i2.98

  15. The GRF10 homeobox gene regulates filamentous growth in the human fungal pathogen Candida albicans.

    Science.gov (United States)

    Ghosh, Anup K; Wangsanut, Tanaporn; Fonzi, William A; Rolfes, Ronda J

    2015-12-01

    Candida albicans is the most common human fungal pathogen and can cause life-threatening infections. Filamentous growth is critical in the pathogenicity of C. albicans, as the transition from yeast to hyphal forms is linked to virulence and is also a pivotal process in fungal biofilm development. Homeodomain-containing transcription factors have been linked to developmental processes in fungi and other eukaryotes. We report here on GRF10, a homeobox transcription factor-encoding gene that plays a role in C. albicans filamentation. Deletion of the GRF10 gene, in both C. albicans SN152 and BWP17 strain backgrounds, results in mutants with strongly decreased hyphal growth. The mutants are defective in chlamydospore and biofilm formation, as well as showing dramatically attenuated virulence in a mouse infection model. Expression of the GRF10 gene is highly induced during stationary phase and filamentation. In summary, our study emphasizes a new role for the homeodomain-containing transcription factor in morphogenesis and pathogenicity of C. albicans.

  16. Enteric Gram-negative bacilli suppress Candida biofilms on Foley urinary catheters.

    Science.gov (United States)

    Samaranayake, Y H; Bandara, H M H N; Cheung, B P K; Yau, J Y Y; Yeung, S K W; Samaranayake, L P

    2014-01-01

    Mixed Candida-bacterial biofilms in urinary catheters are common in hospitalized patients. (i) The aims of this study were to evaluate, quantitatively and qualitatively, the in vitro development of mono- and dual-species biofilms (MSBs and DSBs) of Candida albicans and two enteric gram-negative bacilli (EGNB; Pseudomonas aeruginosa or Escherichia coli) on Foley catheter (FC) discs, (ii) to determine the biofilm growth in tryptic soy broth or glucose supplemented artificial urine (AU) and (iii) to assess the inhibitory effects of EGNB and their lipopolysaccharides (LPS) on Candida biofilm growth. The growth of MSBs and DSBs on FC discs was monitored by cell counts and SEM. The metabolic activity of LPS-treated Candida biofilms was determined by the XTT reduction assay. Candida albicans and EGNB demonstrated significant inter- and intra-species differences in biofilm growth on FC discs (p Candida albicans significantly (p Candida biofilm growth, compared with Pseudomonas aeruginosa and its LPS (p Candida albicans and EGNB colonization in FC is significantly increased in AU with glucose, and variably modified by Escherichia coli, Pseudomonas aeruginosa and their corresponding LPS.

  17. Candida albicans commensalism in the gastrointestinal tract.

    Science.gov (United States)

    Neville, B Anne; d'Enfert, Christophe; Bougnoux, Marie-Elisabeth

    2015-11-01

    Candida albicans is a polymorphic yeast species that often forms part of the commensal gastrointestinal mycobiota of healthy humans. It is also an important opportunistic pathogen. A tripartite interaction involving C. albicans, the resident microbiota and host immunity maintains C. albicans in its commensal form. The influence of each of these factors on C. albicans carriage is considered herein, with particular focus on the mycobiota and the approaches used to study it, models of gastrointestinal colonization by C. albicans, the C. albicans genes and phenotypes that are necessary for commensalism and the host factors that influence C. albicans carriage.

  18. Effects of Mentha suaveolens Essential Oil Alone or in Combination with Other Drugs in Candida albicans.

    Science.gov (United States)

    Stringaro, Annarita; Vavala, Elisabetta; Colone, Marisa; Pepi, Federico; Mignogna, Giuseppina; Garzoli, Stefania; Cecchetti, Serena; Ragno, Rino; Angiolella, Letizia

    2014-01-01

    Candidosis is the most important cause of fungal infections in humans. The yeast Candida albicans can form biofilms, and it is known that microbial biofilms play an important role in human diseases and are very difficult to treat. The prolonged treatment with drugs has often resulted in failure and resistance. Due to the emergence of multidrug resistance, alternatives to conventional antimicrobial therapy are needed. This study aims to analyse the effects induced by essential oil of Mentha suaveolens Ehrh (EOMS) on Candida albicans and its potential synergism when used in combination with conventional drugs. Morphological differences between control and EOMS treated yeast cells or biofilms were observed by scanning electron microscopy and transmission electron microscopy (SEM and TEM resp.,). In order to reveal the presence of cell cycle alterations, flow cytometry analysis was carried out as well. The synergic action of EOMS was studied with the checkerboard method, and the cellular damage induced by different treatments was analysed by TEM. The results obtained have demonstrated both the effects of EOMS on C. albicans yeast cells and biofilms and the synergism of EOMS when used in combination with conventional antifungal drugs as fluconazole (FLC) and micafungin (MCFG), and therefore we can hypothesize on its potential use in therapy. Further studies are necessary to know its mechanism of action.

  19. Oral biofilm architecture on natural teeth.

    Science.gov (United States)

    Zijnge, Vincent; van Leeuwen, M Barbara M; Degener, John E; Abbas, Frank; Thurnheer, Thomas; Gmür, Rudolf; Harmsen, Hermie J M

    2010-02-24

    Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and accessibility. Despite descriptions of initial plaque formation on the tooth surface, studies on mature plaque and plaque structure below the gum are limited to landmark studies from the 1970s, without appreciating the breadth of microbial diversity in the plaque. We used fluorescent in situ hybridization to localize in vivo the most abundant species from different phyla and species associated with periodontitis on seven embedded teeth obtained from four different subjects. The data showed convincingly the dominance of Actinomyces sp., Tannerella forsythia, Fusobacterium nucleatum, Spirochaetes, and Synergistetes in subgingival plaque. The latter proved to be new with a possibly important role in host-pathogen interaction due to its localization in close proximity to immune cells. The present study identified for the first time in vivo that Lactobacillus sp. are the central cells of bacterial aggregates in subgingival plaque, and that Streptococcus sp. and the yeast Candida albicans form corncob structures in supragingival plaque. Finally, periodontal pathogens colonize already formed biofilms and form microcolonies therein. These in vivo observations on oral biofilms provide a clear vision on biofilm architecture and the spatial distribution of predominant species.

  20. Oral biofilm architecture on natural teeth.

    Directory of Open Access Journals (Sweden)

    Vincent Zijnge

    Full Text Available Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and accessibility. Despite descriptions of initial plaque formation on the tooth surface, studies on mature plaque and plaque structure below the gum are limited to landmark studies from the 1970s, without appreciating the breadth of microbial diversity in the plaque. We used fluorescent in situ hybridization to localize in vivo the most abundant species from different phyla and species associated with periodontitis on seven embedded teeth obtained from four different subjects. The data showed convincingly the dominance of Actinomyces sp., Tannerella forsythia, Fusobacterium nucleatum, Spirochaetes, and Synergistetes in subgingival plaque. The latter proved to be new with a possibly important role in host-pathogen interaction due to its localization in close proximity to immune cells. The present study identified for the first time in vivo that Lactobacillus sp. are the central cells of bacterial aggregates in subgingival plaque, and that Streptococcus sp. and the yeast Candida albicans form corncob structures in supragingival plaque. Finally, periodontal pathogens colonize already formed biofilms and form microcolonies therein. These in vivo observations on oral biofilms provide a clear vision on biofilm architecture and the spatial distribution of predominant species.

  1. Relationship between salivary flow rates and Candida albicans counts.

    Science.gov (United States)

    Navazesh, M; Wood, G J; Brightman, V J

    1995-09-01

    Seventy-one persons (48 women, 23 men; mean age, 51.76 years) were evaluated for salivary flow rates and Candida albicans counts. Each person was seen on three different occasions. Samples of unstimulated whole, chewing-stimulated whole, acid-stimulated parotid, and candy-stimulated parotid saliva were collected under standardized conditions. An oral rinse was also obtained and evaluated for Candida albicans counts. Unstimulated and chewing-stimulated whole flow rates were negatively and significantly (p or = 500 count. Differences in stimulated parotid flow rates were not significant among different levels of Candida counts. The results of this study reveal that whole saliva is a better predictor than parotid saliva in identification of persons with high Candida albicans counts.

  2. Interleukin 17-Mediated Host Defense against Candida albicans

    Directory of Open Access Journals (Sweden)

    Florian Sparber

    2015-08-01

    Full Text Available Candida albicans is part of the normal microbiota in most healthy individuals. However, it can cause opportunistic infections if host defenses are breached, with symptoms ranging from superficial lesions to severe systemic disease. The study of rare congenital defects in patients with chronic mucocutaneous candidiasis led to the identification of interleukin-17 (IL-17 as a key factor in host defense against mucosal fungal infection. Experimental infections in mice confirmed the critical role of IL-17 in mucocutaneous immunity against C. albicans. Research on mouse models has also contributed importantly to our current understanding of the regulation of IL-17 production by different cellular sources and its effector functions in distinct tissues. In this review, we highlight recent findings on IL-17-mediated immunity against C. albicans in mouse and man.

  3. Rapid detection and identification of Candida albicans and Torulopsis (Candida) glabrata in clinical specimens by species-specific nested PCR amplification of a cytochrome P-450 lanosterol-alpha-demethylase (L1A1) gene fragment.

    Science.gov (United States)

    Burgener-Kairuz, P; Zuber, J P; Jaunin, P; Buchman, T G; Bille, J; Rossier, M

    1994-08-01

    PCR of a Candida albicans cytochrome P-450 lanosterol-alpha-demethylase (P450-L1A1) gene segment is a rapid and sensitive method of detection in clinical specimens. This enzyme is a target for azole antifungal action. In order to directly detect and identify the clinically most important species of Candida, we cloned and sequenced 1.3-kbp fragments of the cytochrome P450-L1A1 genes from Torulopsis (Candida) glabrata and from Candida krusei. These segments were compared with the published sequences from C. albicans and Candida tropicalis. Amplimers for gene sequences highly conserved throughout the fungal kingdom were first used; positive PCR results were obtained for C. albicans, T. glabrata, C. krusei, Candida parapsilosis, C. tropicalis, Cryptococcus neoformans, and Trichosporon beigelii DNA extracts. Primers were then selected for a highly variable region of the gene, allowing the species-specific detection from purified DNA of C. albicans, T. glabrata, C. krusei, and C. tropicalis. The assay sensitivity as tested for C. albicans in seeded clinical specimens such as blood, peritoneal fluid, or urine was 10 to 20 cells per 0.1 ml. Compared with results obtained by culture, the sensitivity, specificity, and efficiency of the species-specific nested PCR tested with 80 clinical specimens were 71, 95, and 83% for C. albicans and 100, 97, and 98% for T. glabrata, respectively.

  4. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance.

    Directory of Open Access Journals (Sweden)

    Heather T Taff

    Full Text Available Extracellular polysaccharides are key constituents of the biofilm matrix of many microorganisms. One critical carbohydrate component of Candida albicans biofilms, β-1,3 glucan, has been linked to biofilm protection from antifungal agents. In this study, we identify three glucan modification enzymes that function to deliver glucan from the cell to the extracellular matrix. These enzymes include two predicted glucan transferases and an exo-glucanase, encoded by BGL2, PHR1, and XOG1, respectively. We show that the enzymes are crucial for both delivery of β-1,3 glucan to the biofilm matrix and for accumulation of mature matrix biomass. The enzymes do not appear to impact cell wall glucan content of biofilm cells, nor are they necessary for filamentation or biofilm formation. We demonstrate that mutants lacking these genes exhibit enhanced susceptibility to the commonly used antifungal, fluconazole, during biofilm growth only. Transcriptional analysis and biofilm phenotypes of strains with multiple mutations suggest that these enzymes act in a complementary fashion to distribute matrix downstream of the primary β-1,3 glucan synthase encoded by FKS1. Furthermore, our observations suggest that this matrix delivery pathway works independently from the C. albicans ZAP1 matrix formation regulatory pathway. These glucan modification enzymes appear to play a biofilm-specific role in mediating the delivery and organization of mature biofilm matrix. We propose that the discovery of inhibitors for these enzymes would provide promising anti-biofilm therapeutics.

  5. Salmonella biofilms

    NARCIS (Netherlands)

    Castelijn, G.A.A.

    2013-01-01

    Biofilm formation by Salmonellaspp. is a problem in the food industry, since biofilms may act as a persistent source of product contamination. Therefore the aim of this study was to obtain more insight in the processes involved and the factors contributing to Salmonellabiofilm formation. A collectio

  6. Efek Penambahan Glukosa pada Saburoud Dextrose Broth terhadap Pertumbuhan Candida albicans (Uji In Vitro

    Directory of Open Access Journals (Sweden)

    Lakshmi A. Leepel

    2012-10-01

    Full Text Available High carbohydrate intake is one of predisposing factors of oral candidiasis. Objective: Investigating the effect of 1%,5%,10% glucose addition on the growth of C.albicans in vitro. Method: C.albicans sample was taken from oral swab of a male oral candidiasis patient. Identification of C.albicans was conducted using CHROMagar and confirmed by germ tube formation in serum. As a comparison, C.albicans ATCC10231 was used. After 2 days the cultures were serially diluted and inoculated in SDB without glucose, and with 1%,5%,10% addditional glucose, kept for 3 and 7 days in room temperature, then inoculated in SDA. The CFU/ml were counted after 2 days. ANOVA with α0.05 was used. Result: Statisticaly, additional 1% glucose for 3 days lead to significant decreased of growth of both clinical strain and ATCC 10231 C. albicans. However, only additional 5% and 10% glucose in clinical isolate for 7 days increased the growth of C.albicans significantly. Conclusion: The effect of additional glucose on the increased growth of C.albicans in vitro is influenced by the concentration, exposure duration of glucose, and by the strain of C.albicans.DOI: 10.14693/jdi.v16i1.14

  7. Biofilm development

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2015-01-01

    During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction or terminat......During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction...... or termination of biofilm matrix production via the second messenger molecule c-di-GMP. In between initiation and termination of biofilm formation we have defined specific biofilm stages, but the currently available evidence suggests that these transitions are mainly governed by adaptive responses......, and not by specific genetic programs. It appears that biofilm formation can occur through multiple pathways and that the spatial structure of the biofilms is species dependent as well as dependent on environmental conditions. Bacterial subpopulations, e.g., motile and nonmotile subpopulations, can develop...

  8. Biofilm-specific extracellular matrix proteins of nontypeable Haemophilus influenzae.

    Science.gov (United States)

    Wu, Siva; Baum, Marc M; Kerwin, James; Guerrero, Debbie; Webster, Simon; Schaudinn, Christoph; VanderVelde, David; Webster, Paul

    2014-12-01

    Nontypeable Haemophilus influenzae (NTHi), a human respiratory tract pathogen, can form colony biofilms in vitro. Bacterial cells and the amorphous extracellular matrix (ECM) constituting the biofilm can be separated using sonication. The ECM from 24- and 96-h NTHi biofilms contained polysaccharides and proteinaceous components as detected by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) spectroscopy. More conventional chemical assays on the biofilm ECM confirmed the presence of these components and also DNA. Proteomics revealed eighteen proteins present in biofilm ECM that were not detected in planktonic bacteria. One ECM protein was unique to 24-h biofilms, two were found only in 96-h biofilms, and fifteen were present in the ECM of both 24- and 96-h NTHi biofilms. All proteins identified were either associated with bacterial membranes or cytoplasmic proteins. Immunocytochemistry showed two of the identified proteins, a DNA-directed RNA polymerase and the outer membrane protein OMP P2, associated with bacteria and biofilm ECM. Identification of biofilm-specific proteins present in immature biofilms is an important step in understanding the in vitro process of NTHi biofilm formation. The presence of a cytoplasmic protein and a membrane protein in the biofilm ECM of immature NTHi biofilms suggests that bacterial cell lysis may be a feature of early biofilm formation.

  9. In Vitro effect of low-level laser therapy on typical oral microbial biofilms.

    Science.gov (United States)

    Basso, Fernanda G; Oliveira, Camila F; Fontana, Amanda; Kurachi, Cristina; Bagnato, Vanderlei S; Spolidório, Denise M P; Hebling, Josimeri; de Souza Costa, Carlos A

    2011-01-01

    The aim of this study was to evaluate the effect of specific parameters of low-level laser therapy (LLLT) on biofilms formed by Streptococcus mutans, Candida albicans or an association of both species. Single and dual-species biofilms--SSB and DSB--were exposed to laser doses of 5, 10 or 20 J/cm(2) from a near infrared InGaAsP diode laser prototype (LASERTable; 780 ± 3 nm, 0.04 W). After irradiation, the analysis of biobilm viability (MTT assay), biofilm growth (cfu/mL) and cell morphology (SEM) showed that LLLT reduced cell viability as well as the growth of biofilms. The response of S. mutans (SSB) to irradiation was similar for all laser doses and the biofilm growth was dose dependent. However, when associated with C. albicans (DSB), S. mutans was resistant to LLLT. For C. albicans, the association with S. mutans (DSB) caused a significant decrease in biofilm growth in a dose-dependent fashion. The morphology of the microorganisms in the SSB was not altered by LLLT, while the association of microbial species (DSB) promoted a reduction in the formation of C. albicans hyphae. LLLT had an inhibitory effect on the microorganisms, and this capacity can be altered according to the interactions between different microbial species.

  10. Microbial dynamics during conversion from supragingival to subgingival biofilms in an in vitro model.

    Science.gov (United States)

    Thurnheer, T; Bostanci, N; Belibasakis, G N

    2016-04-01

    The development of dental caries and periodontal diseases result from distinct shifts in the microbiota of the tooth-associated biofilm. This in vitro study aimed to investigate changes in biofilm composition and structure, during the shift from a 'supragingival' aerobic profile to a 'subgingival' anaerobic profile. Biofilms consisting of Actinomyces oris, Candida albicans, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus mutans and Veillonella dispar were aerobically grown in saliva-containing medium on hydroxyapatite disks. After 64 h, Campylobacter rectus, Prevotella intermedia and Streptococcus anginosus were further added along with human serum, while culture conditions were shifted to microaerophilic. After 96 h, Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola were finally added and the biofilm was grown anaerobically for another 64 h. At the end of each phase, biofilms were harvested for species-specific quantification and localization. Apart from C. albicans, all other species gradually increased during aerobic and microaerophilic conditions, but remained steady during anaerobic conditions. Biofilm thickness was doubled during the microaerophilic phase, but remained steady throughout the anaerobic phase. Extracellular polysaccharide presence was gradually reduced throughout the growth period. Biofilm viability was reduced during the microaerophilic conversion, but was recovered during the anaerobic phase. This in vitro study has characterized the dynamic structural shifts occurring in an oral biofilm model during the switch from aerobic to anaerobic conditions, potentially modeling the conversion of supragingival to subgingival biofilms. Within the limitations of this experimental model, the findings may provide novel insights into the ecology of oral biofilms.

  11. Direct Electrical Current Reduces Bacterial and Yeast Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Maria Ruiz-Ruigomez

    2016-01-01

    Full Text Available New strategies are needed for prevention of biofilm formation. We have previously shown that 24 hr of 2,000 µA of direct current (DC reduces Staphylococcus epidermidis biofilm formation in vitro. Herein, we examined the effect of a lower amount of DC exposure on S. epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Propionibacterium acnes, and Candida albicans biofilm formation. 12 hr of 500 µA DC decreased S. epidermidis, S. aureus, E. coli, and P. aeruginosa biofilm formation on Teflon discs by 2, 1, 1, and 2 log10 cfu/cm2, respectively (p<0.05. Reductions in S. epidermidis, S. aureus, and E. coli biofilm formation were observed with as few as 12 hr of 200 µA DC (2, 2 and 0.4 log10 cfu/cm2, resp.; a 1 log10 cfu/cm2 reduction in P. aeruginosa biofilm formation was observed at 36 hr. 24 hr of 500 µA DC decreased C. albicans biofilm formation on Teflon discs by 2 log10 cfu/cm2. No reduction in P. acnes biofilm formation was observed. 1 and 2 log10 cfu/cm2 reductions in E. coli and S. epidermidis biofilm formation on titanium discs, respectively, were observed with 12 hr of exposure to 500 µA. Electrical current is a potential strategy to reduce biofilm formation on medical biomaterials.

  12. Therapeutic potential of thiazolidinedione-8 as an antibiofilm agent against Candida albicans.

    Directory of Open Access Journals (Sweden)

    Mark Feldman

    Full Text Available Candida albicans is known as a commensal microorganism but it is also the most common fungal pathogen in humans, causing both mucosal and systemic infections. Biofilm-associated C. albicans infections present clinically important features due to their high levels of resistance to traditional antifungal agents. Quorum sensing is closely associated with biofilm formation and increasing fungal pathogenicity. We investigated the ability of the novel bacterial quorum sensing quencher thiazolidinedione-8 (S-8 to inhibit the formation of, and eradication of mature C. albicans biofilms. In addition, the capability of S-8 to alter fungal adhesion to mammalian cells was checked. S-8 exhibited specific antibiofilm and antiadhesion activities against C. albicans, at four- to eightfold lower concentrations than the minimum inhibitory concentration (MIC. Using fluorescence microscopy, we observed that S-8 dose-dependently reduces C. albicans-GFP binding to RAW macrophages. S-8 at sub-MICs also interfered with fungal morphogenesis by inhibiting the yeast-to-hyphal form transition. In addition, the tested agent strongly affected fungal cell wall characteristics by modulating its hydrophobicity. We evaluated the molecular mode of S-8 antibiofilm and antiadhesion activities using real-time RT-PCR. The expression levels of genes associated with biofilm formation, adhesion and filamentation, HWP1, ALS3 and EAP1, respectively, were dose-dependently downregulated by S-8. Transcript levels of UME6, responsible for long-term hyphal maintenance, were also significantly decreased by the tested agent. Both signaling pathways of hyphal formation-cAMP-PKA and MAPK-were interrupted by S-8. Their upstream general regulator RAS1 was markedly suppressed by S-8. In addition, the expression levels of MAPK cascade components CST20, HST7 and CPH1 were downregulated by S-8. Finally, transcriptional repressors of filament formation, TUP1 and NRG1, were dramatically upregulated by our

  13. Characterization of biofilm formed on intrauterine devices

    Directory of Open Access Journals (Sweden)

    Pruthi V

    2003-01-01

    Full Text Available PURPOSE: Intrauterine device (IUD is one of the most convenient contraceptive procedures used by women of Asian and African countries. Previous surveys have revealed that 75% of the IUDs recovered from patients suffering from reproductive tract infections (RTIs were covered with a consortium of microbes. This study was designed to characterize these microbes and recommend remedial measures. METHODS: Quantitative measurement of biofilm formation was assessed by a microtitre plate assay on 86 samples of microorganisms dislodged from IUDs of patients with RTIs. Susceptibility of biofilm to various antimicrobial agents was also quantified. Scanning electron microscopy (SEM was used to scrutinize the microorganisms adherent to IUDs. RESULTS: The organisms associated with IUDs were predominantly composed of Staphylococcus aureus (16%, Staphylococcus epidermidis (18%, Pseudomonas aeruginosa (5%, Escherichia coli (27%, Neisseria gonorrhoeae (2%, Candida albicans (20% and Candida dubliniesis (12%. SEM studies indicated that these organisms were organized into biofilms. Studies on the in vitro adherence pattern by crystal violet staining on 96 well microtitre plates revealed that the biofilms were stably established after 60 hours. These biofilms are resistant to an array of antibiotics tested. CONCLUSION: Biofilm formation may be one of the major causes for persistent infection and antibiotic resistance in IUD users.

  14. Comparison of E,E-Farnesol Secretion and the Clinical Characteristics of Candida albicans Bloodstream Isolates from Different Multilocus Sequence Typing Clades.

    Science.gov (United States)

    Jung, Sook-In; Shin, Jong Hee; Kim, Soo Hyun; Kim, Jin; Kim, Joo Hee; Choi, Min Ji; Chung, Eun-Kyung; Lee, Kyungwon; Koo, Sun Hoe; Chang, Hyun Ha; Bougnoux, Marie-Elisabeth; d'Enfert, Christophe

    2016-01-01

    Using multilocus sequence typing (MLST), Candida albicans can be subdivided into 18 different clades. Farnesol, a quorum-sensing molecule secreted by C. albicans, is thought to play an important role in the development of C. albicans biofilms and is also a virulence factor. This study evaluated whether C. albicans bloodstream infection (BSI) strains belonging to different MLST clades secrete different levels of E,E-farnesol (FOH) and whether they have different clinical characteristics. In total, 149 C. albicans BSI isolates from ten Korean hospitals belonging to clades 18 (n = 28), 4 (n = 23), 1 (n = 22), 12 (n = 17), and other clades (n = 59) were assessed. For each isolate, the FOH level in 24-hour biofilms was determined in filtered (0.45 μm) culture supernatant using high-performance liquid chromatography. Marked differences in FOH secretion from biofilms (0.10-6.99 μM) were observed among the 149 BSI isolates. Clade 18 isolates secreted significantly more FOH than did non-clade 18 isolates (mean ± SEM; 2.66 ± 0.22 vs. 1.69 ± 0.10 μM; P albicans BSI isolates belonging to the most prevalent MLST clade (clade 18) in Korea are characterized by increased levels of FOH secretion and less severe illness.

  15. Susceptibility of Candida albicans and Candida dubliniensis to Photodynamic Therapy Using Four Dyes as the Photosensitizer

    Science.gov (United States)

    Hosseini, Nasim; Yazdanpanah, Samira; Saki, Maryam; Rezazadeh, Fahimeh; Ghapanchi, Janan; Zomorodian, Kamiar

    2016-01-01

    Statement of the Problem: Oral candidiasis is the most common opportunistic infection affecting the human oral cavity. Photodynamic therapy, as one of its proposed treatment modalities, needs a distinct dye for achieving the best effect. Purpose: The purpose of this study was to evaluate photosensitization effects of four distinct dyes on standard suspension of Candida albicans (C. albicans) and Candida dubliniensis (C. dubliniensis) and biofilm of C. albicans considering the obtained optimum dye concentration and duration of laser irradiation. Materials and Method: In this in vitro study, colony forming units (CFU) of two sets of four groups of Laser plus Dye (L+D+), Dye (L-D+), Laser (L+D-) and No Laser, No Dye (L-D-) were assessed individually with different methylene blue concentrations and laser irradiation period. The photodynamic therapy effect on standard suspension of Candida species (using methylene blue, aniline blue, malachite green and crystal violet) were studied based on the obtained results. Similar investigation was performed on biofilm of C. albicans using the spectral absorbance. Data were imported to SPSS and assessed by statistical tests of analysis of variance (ANOVA) and Tukey test (α= 0.05). Results: CFU among the different dye concentration and irradiation time decrease in dose- and time-dependent manner (p> 0.05), all of which were significantly lower than the control groups (p 0.05) though all of them were significantly decrease CFU compared with the control groups (p< 0.05). In L+D- and L+D+ groups, biofilm was significantly destroyed more than that of L-D- (p< 0.05). Conclusion: Photodynamic therapy might be used as an effective procedure to treat Candida associated mucocutaneous diseases and killing biofilm in the infected surfaces such as dentures. PMID:27942552

  16. Biofilm formation in clinical Candida isolates and its association with virulence

    OpenAIRE

    Hasan, Fahmi; Xess, Immaculata; Wang, Xiabo; Jain, Neena; Fries, Bettina C.

    2009-01-01

    Biofilm formation, an important virulence trait of Candida species was measured in 107 Candida isolates from 32 candidemic patients by XTT [2,3-bis (2-methoxy-4nitro-5-sulfo-phenyl)-2H-tetra-zolium-5-carboxanilide] activity and compared to biofilm formation of Candida isolates from oropharyngeal lesions of 19 AIDS patients. Biofilm formation by XTT varied among species and C. albicans; C. lusitaniae and C. krusei produced more biofilm than the other Candida species. C. tropicalis was the most...

  17. Development of a calibration protocol and identification of the most sensitive parameters for the particulate biofilm models used in biological wastewater treatment.

    Science.gov (United States)

    Eldyasti, Ahmed; Nakhla, George; Zhu, Jesse

    2012-05-01

    Biofilm models are valuable tools for process engineers to simulate biological wastewater treatment. In order to enhance the use of biofilm models implemented in contemporary simulation software, model calibration is both necessary and helpful. The aim of this work was to develop a calibration protocol of the particulate biofilm model with a help of the sensitivity analysis of the most important parameters in the biofilm model implemented in BioWin® and verify the predictability of the calibration protocol. A case study of a circulating fluidized bed bioreactor (CFBBR) system used for biological nutrient removal (BNR) with a fluidized bed respirometric study of the biofilm stoichiometry and kinetics was used to verify and validate the proposed calibration protocol. Applying the five stages of the biofilm calibration procedures enhanced the applicability of BioWin®, which was capable of predicting most of the performance parameters with an average percentage error (APE) of 0-20%.

  18. Antimicrobial effects of Piper hispidum extract, fractions and chalcones against Candida albicans and Staphylococcus aureus.

    Science.gov (United States)

    Costa, G M; Endo, E H; Cortez, D A G; Nakamura, T U; Nakamura, C V; Dias Filho, B P

    2016-09-01

    Three chalcones, 2'-hydroxy-4,4',6'-trimethoxychalcone, 2'-hydroxy-4,4',6'-tetramethoxychalcone, and 3,2'-dihydroxy-4,4',6'-trimethoxychalcone, were isolated from the leaves of Piper hispidum in a bioguided fractionation of crude extract. The antimicrobial activity of crude extract of P. hispidum leaves was determined against bacteria Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus and yeasts Candida albicans, C. parapsilosis and C. tropicalis. Fractions and chalcones were tested against C. albicans and S. aureus. The checkerboard assay was performed to assess synergic interactions between extract and antifungal drugs, and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction assay was used to evaluate anti-biofilm effects of extract. The extract was active against yeasts, S. aureus and B. subtilis with MIC values between 15.6 and 62.5μg/mL. Synergistic effects of extract associated with fluconazole and nystatin were observed against C. albicans, with fractional inhibitory concentration indices of 0.37 and 0.24, respectively. The extract was also effective against C. albicans and S. aureus biofilm cells at concentrations of 62.5 and 200μg/mL, respectively. Thus, P. hispidum may be a possible source of bioactive substances with antimicrobial properties.

  19. Study on the Curcumin dynamics and distribution through living biofilms

    Science.gov (United States)

    Carvalho, Mariana T.; Dovigo, Lívia N.; Rastelli, Alessandra N. S.; Bagnato, Vanderlei S.

    2013-03-01

    Human oral cavity is colonized by a wide range of microorganisms, often organized in biofilms. These biofilms are responsible for the pathogenesis of caries and most periodontal diseases. A possible alternative to reduce biofilms is the photodynamic inactivation (PDI). The success of the PDI depends on different factors. The time required by the PS to remain in contact with the target cells prior to illumination is determinant for the technique's efficacy. This study aimed to assess the interaction between the PS and the biofilm prior to the PDI. We used confocal microscopy and FLIM to evaluate the interaction between the PS and the biofilm's microorganism during the pre-irradiation time (PIT). The study of this dynamics can lead to the understanding of why only some PSs are effective and why is necessary a long PIT for some microorganisms. Our results showed that are differences for each PIT. These differences can be the determinate for the efficacy of the PDI. We observed that the microorganism needs time to concentrate and/or transport the PS within the biofilm. We presented preliminary results for biofilms of Candida albicans and Streptococcus mutans in the presence of Curcumin and compared it with the literature. We observed that the effectiveness of the PDI might be directly correlated to the position of the PS with the biofilm. Further analyses will be conducted in order to confirm the potential of FLIM to assess the PS dynamics within the biofilms.

  20. Microbial biofilms are able to destroy hydroxyapatite in the absence of host immunity in vitro

    Science.gov (United States)

    Junka, Adam Feliks; Szymczyk, Patrycja; Smutnicka, Danuta; Kos, Marcin; Smolina, Iryna; Bartoszewicz, Marzenna; Chlebus, Edward; Turniak, Michal; Sedghizadeh, Parish P.

    2014-01-01

    Introduction It is widely thought that inflammation and osteoclastogenesis result in hydroxyapatite (HA) resorption and sequestra formation during osseous infections, and microbial biofilm pathogens induce the inflammatory destruction of HA. We hypothesized that biofilms associated with infectious bone disease can directly resorb HA in the absence of host inflammation or osteoclastogenesis. Therefore, we developed an in vitro model to test this hypothesis. Materials and Methods Customized HA discs were manufactured as a substrate for growing clinically relevant biofilm pathogens. Single-species biofilms of S.mutans, S.aureus, P.aeruginosa and C.albicans, and mixed-species biofilms of C.albicans + S.mutans were incubated on HA discs for 72 hours to grow mature biofilms. Three different non-biofilm control groups were also established for testing. HA discs were then evaluated by means of scanning electron microscopy, micro-CT metrotomography, x-ray spectroscopy and confocal microscopy with planimetric analysis. Additionally, quantitative cultures and pH assessment were performed. ANOVA was used to test for significance between treatment and control groups. Results All investigated biofilms were able to cause significant (P<0.05) and morphologically characteristic alterations in HA structure as compared to controls. The highest number of alterations observed was caused by mixed biofilms of C.albicans + S.mutans. S. mutans biofilm incubated in medium with additional sucrose content was the most detrimental to HA surfaces among single-species biofilms. Conclusion These findings suggest that direct microbial resorption of bone is possible in addition to immune-mediated destruction, which has important translational implications for the pathogenesis of chronic bone infections and for targeted antimicrobial therapeutics. PMID:25544303

  1. Wound biofilms: lessons learned from oral biofilms.

    Science.gov (United States)

    Mancl, Kimberly A; Kirsner, Robert S; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque, are a primary cause of oral diseases including caries, gingivitis, and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible; thus, biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well elucidated. In contrast, wound research has relatively recently directed attention to the role biofilms have in chronic wounds. This review discusses the biofilms in periodontal disease and chronic wounds with comparisons focusing on biofilm detection, biofilm formation, the immune response to biofilms, bacterial interaction, and quorum sensing. Current treatment modalities used by both fields and future therapies are also discussed.

  2. Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms.

    Directory of Open Access Journals (Sweden)

    Katja Fricke

    Full Text Available INTRODUCTION: The medical use of non-thermal physical plasmas is intensively investigated for sterilization and surface modification of biomedical materials. A further promising application is the removal or etching of organic substances, e.g., biofilms, from surfaces, because remnants of biofilms after conventional cleaning procedures are capable to entertain inflammatory processes in the adjacent tissues. In general, contamination of surfaces by micro-organisms is a major source of problems in health care. Especially biofilms are the most common type of microbial growth in the human body and therefore, the complete removal of pathogens is mandatory for the prevention of inflammatory infiltrate. Physical plasmas offer a huge potential to inactivate micro-organisms and to remove organic materials through plasma-generated highly reactive agents. METHOD: In this study a Candida albicans biofilm, formed on polystyrene (PS wafers, as a prototypic biofilm was used to verify the etching capability of the atmospheric pressure plasma jet operating with two different process gases (argon and argon/oxygen mixture. The capability of plasma-assisted biofilm removal was assessed by microscopic imaging. RESULTS: The Candida albicans biofilm, with a thickness of 10 to 20 µm, was removed within 300 s plasma treatment when oxygen was added to the argon gas discharge, whereas argon plasma alone was practically not sufficient in biofilm removal. The impact of plasma etching on biofilms is localized due to the limited presence of reactive plasma species validated by optical emission spectroscopy.

  3. Identification of linoleic acid, a main component of the n-hexane fraction from Dryopteris crassirhizoma, as an anti-Streptococcus mutans biofilm agent.

    Science.gov (United States)

    Jung, Ji-Eun; Pandit, Santosh; Jeon, Jae-Gyu

    2014-01-01

    Dryopteris crassirhizoma is a semi-evergreen plant. Previous studies have shown the potential of this plant as an agent for the control of cariogenic biofilms. In this study, the main antibacterial components of the plant were identified by correlating gas chromatography-mass spectrometry data with the antibacterial activity of chloroform and n-hexane fractions and then evaluating the activity of the most potent antibacterial component against Streptococcus mutans UA159 biofilms. The most potent antibacterial component was linoleic acid, a main component of the n-hexane fraction. Linoleic acid reduced viability in a dose dependent manner and reduced biofilm accumulation during initial and mature biofilm formation. Furthermore, when the biofilms were briefly treated with linoleic acid (10 min/treatment, a total of six times), the dry weight of the biofilms was significantly diminished. In addition, the anti-biofilm activity of the n-hexane fraction was similar to that of linoleic acid. These results suggest that the n-hexane fraction of D. crassirhizoma and linoleic acid may be useful for controlling cariogenic biofilms.

  4. Identification of Molecular and Cellular Responses of Desulfovibrio vulgaris Biofilms under Culture Conditions Relevant to Field Conditions for Bioreduction of Toxic Metals and Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Judy D. Wall

    2011-06-09

    Our findings demonstrated that D. vulgaris surface-adhered populations produce extracellular structures, and that that the cells have altered carbon and energy flux compared to planktonic cells. Biofilms did not have greatly increased carbohydrate accumulation. Interestingly genes present on the native plasmid found in D. vulgaris Hildenborough were necessary for wild type biofilm formation. In addition, extracellular appendages dependent on functions or proteins encoded by flaG or fliA also contributed to biofilm formation. Studies with SRB biofilms have indicated that the reduction and precipitation of metals can occur within the biofilm matrix; however, little work has been done to elucidate the physiological state of surface-adhered cells during metal reduction (Cr6+, U6+) and how this process is affected by nutrient feed levels (i.e., the stimulant).

  5. Antifungal Activity of 14-Helical β-Peptides against Planktonic Cells and Biofilms of Candida Species

    Directory of Open Access Journals (Sweden)

    Namrata Raman

    2015-08-01

    Full Text Available Candida albicans is the most prevalent cause of fungal infections and treatment is further complicated by the formation of drug resistant biofilms, often on the surfaces of implanted medical devices. In recent years, the incidence of fungal infections by other pathogenic Candida species such as C. glabrata, C. parapsilosis and C. tropicalis has increased. Amphiphilic, helical β-peptide structural mimetics of natural antimicrobial α-peptides have been shown to exhibit specific planktonic antifungal and anti-biofilm formation activity against C. albicans in vitro. Here, we demonstrate that β-peptides are also active against clinically isolated and drug resistant strains of C. albicans and against other opportunistic Candida spp. Different Candida species were susceptible to β-peptides to varying degrees, with C. tropicalis being the most and C. glabrata being the least susceptible. β-peptide hydrophobicity directly correlated with antifungal activity against all the Candida clinical strains and species tested. While β-peptides were largely ineffective at disrupting existing Candida biofilms, hydrophobic β-peptides were able to prevent the formation of C. albicans, C. glabrata, C. parapsilosis and C. tropicalis biofilms. The broad-spectrum antifungal activity of β-peptides against planktonic cells and in preventing biofilm formation suggests the promise of this class of molecules as therapeutics.

  6. Identification of mazEF Toxin – Antitoxin system and biofilm formation in clinical isolates of MRSA isolated from Eastern India

    Directory of Open Access Journals (Sweden)

    Sonia Jain

    2016-01-01

    Full Text Available Introduction: Interest on Toxin-Antitoxin (TA systems has increased dramatically over recent years. It is ubiquitously present in many bacterial genomes including pathogens like MRSA. Several cellular functions of TA systems are proposed like programmed cell death, persister cell formation, biofilm formation etc. However, their exact role in cell physiology remains unclear. Due to the biofilm development the rate of morbidity and mortality of chronic MRSA infections are increasing day by day. Objectives: The aim of the study is to find any association between biofilm formation and mazEF toxin-antitoxin systems in clinical isolates of MRSA, isolated from tertiary care hospital, Kolkata. Materials and Methods: MRSA isolates were detected for biofilm formation by tube method and simultaneously the presence of mazEF TA gene in these biofilm forming isolates were evaluated. Results: It was found that 52.47 % MRSA isolates were potent biofilm producers by Tube method. The results indicated that 55.26 % of the biofilm forming isolates possessed mazEF gene. And 44% of the biofilm forming isolates did not possessed mazEF gene. Conclusions: The analysis recommended that TA genes are prevalent in clinical isolates of MRSA strains but no significant difference is found in the presence of mazEF TA system in the biofilm producer and non-biofilm producer isolates. Further to come into any conclusion reverse transcription studies are needed to be done in order to find out the exact amount of mazEF expression in all MRSA isolates.

  7. Candida albicans: adapting to succeed.

    Science.gov (United States)

    Kadosh, David; Lopez-Ribot, Jose L

    2013-11-13

    In this issue of Cell Host & Microbe, Lu et al. (2013) report on the redundancy of signaling pathways controlling Candida albicans filamentation and pathogenicity. In the process, they provide important insight into how this normal commensal of humans adapts to different host microenvironments to become a highly successful opportunistic pathogen.

  8. MLPA diagnostics of complex microbial communities: relative quantification of bacterial species in oral biofilms.

    Science.gov (United States)

    Terefework, Zewdu; Pham, Chi L; Prosperi, Anja C; Entius, Mark M; Errami, Abdellatif; van Spanning, Rob J M; Zaura, Egija; Ten Cate, Jacob M; Crielaard, Wim

    2008-12-01

    A multitude of molecular methods are currently used for identification and characterization of oral biofilms or for community profiling. However, multiplex PCR techniques that are able to routinely identify several species in a single assay are not available. Multiplex Ligation-dependent Probe Amplification (MLPA) identifies up to 45 unique fragments in a single tube PCR. Here we report a novel use of MLPA in the relative quantification of targeted microorganisms in a community of oral microbiota. We designed 9 species specific probes for: Actinomyces gerencseriae, Actinomyces naeslundii, Actinomyces odontolyticus, Candida albicans, Lactobacillus acidophilus, Rothia dentocariosa, Streptococcus mutans, Streptococcus sanguinis and Veillonella parvula; and genus specific probes for selected oral Streptococci and Lactobacilli based on their 16S rDNA sequences. MLPA analysis of DNA pooled from the strains showed the expected specific MLPA products. Relative quantification of a serial dilution of equimolar DNA showed that as little as 10 pg templates can be detected with clearly discernible signals. Moreover, a 2 to 7% divergence in relative signal ratio of amplified probes observed from normalized peak area values suggests MLPA can be a cheaper alternative to using qPCR for quantification. We observed 2 to 6 fold fluctuations in signal intensities of MLPA products in DNAs isolated from multispecies biofilms grown in various media for various culture times. Furthermore, MLPA analyses of DNA isolated from saliva obtained from different donors gave a varying number and intensity of signals. This clearly shows the usefulness of MLPA in a quantitative description of microbial shifts.

  9. Effects of lactoferricin B against keratitis-associated fungal biofilms.

    Science.gov (United States)

    Sengupta, Jayangshu; Saha, Suman; Khetan, Archana; Sarkar, Sujoy K; Mandal, Santi M

    2012-10-01

    Biofilms are considered as the most important developmental characteristics in ocular infections. Biofilm eradication is a major challenge today to overcome the incidence of drug resistance. This report demonstrates the in vitro ability of biofilm formation on contact lens by three common keratitis-associated fungal pathogens, namely, Aspergillus fumigatus, Fusarium solani, and Candida albicans. Antifungal sensitivity testing performed for both planktonic cells and biofilm revealed the sessile phenotype to be resistant at MIC levels for the planktonic cells and also at higher concentrations. A prototype lens care solution was also found to be partially effective in eradication of the mature biofilm from contact lenses. Lactoferricin B (Lacf, 64 μg/ml), an antimicrobial peptide, exhibited almost no effect on the sessile phenotype. However, the combinatory effect of Lacf with antifungals against planktonic cells and biofilms of three fungal strains that were isolated from keratitis patients exhibited a reduction of antifungal dose more than eightfold. Furthermore, the effect of Lacf in lens care solution against biofilms in which those strains formed was eradicated successfully. These results suggest that lactoferricin B could be a promising candidate for clinical use in improving biofilm susceptibility to antifungals and also as an antibiofilm-antifungal additive in lens care solution.

  10. Selection and identification of a bacterial community able to degrade and detoxify m-nitrophenol in continuous biofilm reactors.

    Science.gov (United States)

    González, Ana J; Fortunato, María S; Papalia, Mariana; Radice, Marcela; Gutkind, Gabriel; Magdaleno, Anahí; Gallego, Alfredo; Korol, Sonia E

    2015-12-01

    Nitroaromatics are widely used for industrial purposes and constitute a group of compounds of environmental concern because of their persistence and toxic properties. Biological processes used for decontamination of nitroaromatic-polluted sources have then attracted worldwide attention. In the present investigation m-nitrophenol (MNP) biodegradation was studied in batch and continuous reactors. A bacterial community able to degrade the compound was first selected from a polluted freshwater stream and the isolates were identified by the analysis of the 16S rRNA gene sequence. The bacterial community was then used in biodegradation assays. Batch experiments were conducted in a 2L aerobic microfermentor at 28 °C and with agitation (200 rpm). The influence of abiotic factors in the biodegradation process in batch reactors, such as initial concentration of the compound and initial pH of the medium, was also studied. Continuous degradation of MNP was performed in an aerobic up-flow fixed-bed biofilm reactor. The biodegradation process was evaluated by determining MNP and ammonium concentrations and chemical oxygen demand (COD). Detoxification was assessed by Vibrio fischeri and Pseudokirchneriella subcapitata toxicity tests. Under batch conditions the bacterial community was able to degrade 0.72 mM of MNP in 32 h, with efficiencies higher than 99.9% and 89.0% of MNP and COD removals respectively and with concomitant release of ammonium. When the initial MNP concentration increased to 1.08 and 1.44 mM MNP the biodegradation process was accomplished in 40 and 44 h, respectively. No biodegradation of the compound was observed at higher concentrations. The community was also able to degrade 0.72 mM of the compound at pH 5, 7 and 9. In the continuous process biodegradation efficiency reached 99.5% and 96.8% of MNP and COD removal respectively. The maximum MNP removal rate was 37.9 gm(-3) day(-1). Toxicity was not detected after the biodegradation process.

  11. Candida glabrata Biofilms: How Far Have We Come?

    Directory of Open Access Journals (Sweden)

    Célia F. Rodrigues

    2017-03-01

    Full Text Available Infections caused by Candida species have been increasing in the last decades and can result in local or systemic infections, with high morbidity and mortality. After Candida albicans, Candida glabrata is one of the most prevalent pathogenic fungi in humans. In addition to the high antifungal drugs resistance and inability to form hyphae or secret hydrolases, C. glabrata retain many virulence factors that contribute to its extreme aggressiveness and result in a low therapeutic response and serious recurrent candidiasis, particularly biofilm formation ability. For their extraordinary organization, especially regarding the complex structure of the matrix, biofilms are very resistant to antifungal treatments. Thus, new approaches to the treatment of C. glabrata’s biofilms are emerging. In this article, the knowledge available on C. glabrata’s resistance will be highlighted, with a special focus on biofilms, as well as new therapeutic alternatives to control them.

  12. Detection of phospholipase activity of Candida albicans and non albicans isolated from women of reproductive age with vulvovaginal candidiasis in rural area

    Directory of Open Access Journals (Sweden)

    S R Fule

    2015-01-01

    Full Text Available Background: Vulvovaginal candidiasis (VVC is most common accounting for 17 to 39% of symptomatic women. Both Candida albicans and non albicans Candida species are involved in VVC. Amongst various virulence factors proposed for Candida, extracellular phospholipases is one of the virulence factor implicated in its pathogenicity. With this background the present study was carried out to find the prevalence of different Candida species and to detect phospholipase producing strains isolated from symptomatic women with VVC. Materials and Methods: At least two vaginal swabs from 156 women of reproductive age with abnormal vaginal discharge were collected. Direct microscopy and Gram′s stained smear examined for presence of budding yeast and pseudo mycelia followed by isolation and identification of Candida species. Extracellular phospholipase activity was studied by inoculating all isolates on Sabouraud′s dextrose egg yolk agar (SDA medium. Results: Of the 156 women with curdy white discharge alone or in combination with other signs, 59 (37.82% women showed laboratory evidence of VVC. A total of 31 (52.54% women had curdy white discharge followed by 12 (20.33% with other signs and symptoms. C. albicans (62.59% and non albicans Candida (37.28% in a ratio of 1.68:1 were isolated. Of the 37 strains of C. albians 30 (81.08% showed the enzyme activity. Seventeen (56.66% strains showed higher Pz value of < 0.70 (++++. Conclusion: Although there may be typical clinical presentation of Candidiasis. all the patients did not show laboratory evidence of infection. Pregnancy was found to be major risk factor for development of VVC. C. albicans was prevalent species but non albicans species were also frequently isolated. Extracellular phospholipase activity was seen in C. albicans and not in non albicans Candida isolates.

  13. A mucosal model to study microbial biofilm development and anti-biofilm therapeutics

    Science.gov (United States)

    Anderson, Michele J.; Parks, Patrick J.; Peterson, Marnie L.

    2013-01-01

    Biofilms are a sessile colony of bacteria which adhere to and persist on surfaces. The ability of bacteria to form biofilms is considered a virulence factor, and in fact is central to the pathogenesis of some organisms. Biofilms are inherently resistant to chemotherapy and host immune responses. Clinically, biofilms are considered a primary cause of a majority of infections, such as otitis media, pneumonia in cystic fibrosis patients and endocarditis. However, the vast majority of the data on biofilm formation comes from traditional microtiter-based or flow displacement assays with no consideration given to host factors. These assays, which have been a valuable tool in high-throughput screening for biofilm-related factors, do not mimic a host-pathogen interaction and may contribute to an inappropriate estimation of the role of some factors in clinical biofilm formation. We describe the development of a novel ex vivo model of biofilm formation on a mucosal surface by an important mucosal pathogen, methicillin resistant S. aureus (MRSA). This model is being used for the identification of microbial virulence factors important in mucosal biofilm formation and novel anti-biofilm therapies. PMID:23246911

  14. Candida albicans skin abscess Abscesso de pele por Candida albicans

    Directory of Open Access Journals (Sweden)

    Felipe Francisco Tuon

    2006-10-01

    Full Text Available Subcutaneous candidal abscess is a very rare infection even in immunocompromised patients. Some cases are reported when breakdown in the skin occurs, as bacterial cellulites or abscess, iatrogenic procedures, trauma and parenteral substance abuse. We describe a case of Candida albicans subcutaneous abscess without fungemia, which can be associated with central venous catheter.Abscesso subcutâneo por Candida é infecção muito rara mesmo em pacientes imunocomprometidos. Alguns casos são relatados quando ocorre dano na pele, como celulite bacteriana ou abscesso, procedimentos iatrogênicos, trauma e abuso de substância parenteral. Relatamos caso de abscesso subcutâneo por Candida albicans sem fungemia, que pode estar associado com cateter venoso central.

  15. A Human-Curated Annotation of the Candida albicans Genome.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Recent sequencing and assembly of the genome for the fungal pathogen Candida albicans used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy. We also observed that, compared to other fungi, the protein-coding sequences in the C. albicans genome are especially rich in short sequence repeats. Finally, our improved annotation permitted a detailed analysis of several multigene families, and comparative genomic studies showed that C. albicans has a far greater catabolic range, encoding respiratory Complex 1, several novel oxidoreductases and ketone body degrading enzymes, malonyl-CoA and enoyl-CoA carriers, several novel amino acid degrading enzymes, a variety of secreted catabolic lipases and proteases, and numerous transporters to assimilate the resulting nutrients. The results of these efforts will ensure that the Candida research community has uniform and comprehensive genomic information for medical research as well as for future diagnostic and therapeutic applications.

  16. Niche-specific requirement for hyphal wall protein 1 in virulence of Candida albicans.

    Directory of Open Access Journals (Sweden)

    Janet F Staab

    Full Text Available Specialized Candida albicans cell surface proteins called adhesins mediate binding of the fungus to host cells. The mammalian transglutaminase (TG substrate and adhesin, Hyphal wall protein 1 (Hwp1, is expressed on the hyphal form of C. albicans where it mediates fungal adhesion to epithelial cells. Hwp1 is also required for biofilm formation and mating thus the protein functions in both fungal-host and self-interactions. Hwp1 is required for full virulence of C. albicans in murine models of disseminated candidiasis and of esophageal candidiasis. Previous studies correlated TG activity on the surface of oral epithelial cells, produced by epithelial TG (TG1, with tight binding of C. albicans via Hwp1 to the host cell surfaces. However, the contribution of other Tgs, specifically tissue TG (TG2, to disseminated candidiasis mediated by Hwp1 was not known. A newly created hwp1 null strain in the wild type SC5314 background was as virulent as the parental strain in C57BL/6 mice, and virulence was retained in C57BL/6 mice deleted for Tgm2 (TG2. Further, the hwp1 null strains displayed modestly reduced virulence in BALB/c mice as did strain DD27-U1, an independently created hwp1Δ/Δ in CAI4 corrected for its ura3Δ defect at the URA3 locus. Hwp1 was still needed to produce wild type biofilms, and persist on murine tongues in an oral model of oropharyngeal candidiasis consistent with previous studies by us and others. Finally, lack of Hwp1 affected the translocation of C. albicans from the mouse intestine into the bloodstream of mice. Together, Hwp1 appears to have a minor role in disseminated candidiasis, independent of tissue TG, but a key function in host- and self-association to the surface of oral mucosa.

  17. In vitro antifungal activity of dictamnine against candida albicans%白鲜碱对白色念珠菌体外抑制作用初探

    Institute of Scientific and Technical Information of China (English)

    施琳俊; 薛婷君; 吴岚; 朱彩莲; 周曾同

    2011-01-01

    目的:检测白鲜碱对白色念珠菌的抑制作用,及其对白色念珠菌细胞周期的影响.方法:采用白色念珠菌标准菌株(ATCC76615)为研究对象,用经典方法测定白鲜碱对白色念珠菌的最小抑菌浓度(MIC),抑制生物膜50%(SMIC50)的药物浓度,流式细胞仪分析白鲜碱对白色念珠菌细胞周期的影响.结果:白鲜碱对白色念珠菌的MIC为312.5 μg/mL,对生物膜的SMIC50为1250 μg/mL,白鲜碱能使白色念珠菌生长停滞.结论:白鲜碱具有抑制白色念珠菌生长的能力.%Objective:To investigate the in vitro antifungal activity of dictamnine against Candida albicans and the in-fluence of dictamnine on the cell cycle of Candida albicans. Method: NCCLS M27-A2 broth microdilution method was ac-cessed to evaluate the in vitro activity of dictamnine against Candida albicans (ATCC 76615). XTT-reduction method was used to test the SMIC50 of dictamnine against Candida albicans biofilms. Flow cytometer was applied to determine the effect of dictamnine on the cell cycle of Candida albicans. Result: MIC of dictamnine against Candida albicans was 312.5 μg / mL. SMIC50 of dictamnine against Candida albicans biofilms was 1250 μg / mL. Dictamnine can stop the growth cycle of Candi-da albicans. Conclusion: Dictamnine displayed in vitro antifungal activity against Candida albicans.

  18. Effect of Antimicrobial Denture Base Resin on Multi-Species Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Keke Zhang

    2016-06-01

    Full Text Available Our aims of the research were to study the antimicrobial effect of dimethylaminododecyl methacrylate (DMADDM modified denture base resin on multi-species biofilms and the biocompatibility of this modified dental material. Candida albicans (C. albicans, Streptococcus mutans (S. mutans, Streptococcus sanguinis (S. sanguinis, as well as Actinomyces naeslundii (A. naeslundii were used for biofilm formation on denture base resin. Colony forming unit (CFU counts, microbial viability staining, and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxanilide (XTT array were used to evaluate the antimicrobial effect of DMADDM. C. albicans staining and Real-time PCR were used to analyze the morphology and expression of virulence genes of C. albicans in biofilm. Lactate dehydrogenase (LDH array and Real-time PCR were conducted to examine the results after biofilm co-cultured with epithelial cell. Hematoxylin and eosin (HE staining followed by histological evaluation were used to study the biocompatibility of this modified material. We found that DMADDM containing groups reduced both biomass and metabolic activity of the biofilm significantly. DMADDM can also inhibit the virulence of C. albicans by means of inhibiting the hyphal development and downregulation of two virulence related genes. DMADDM significantly reduced the cell damage caused by multi-species biofilm according to the LDH activity and reduced the expression of IL-18 gene of the cells simultaneously. The in vivo histological evaluation proved that the addition of DMADDM less than 6.6% in denture material did not increase the inflammatory response (p > 0.05. Therefore, we proposed that the novel denture base resin containing DMADDM may be considered as a new promising therapeutic system against problems caused by microbes on denture base such as denture stomatitis.

  19. Effect of Antimicrobial Denture Base Resin on Multi-Species Biofilm Formation.

    Science.gov (United States)

    Zhang, Keke; Ren, Biao; Zhou, Xuedong; Xu, Hockin H K; Chen, Yu; Han, Qi; Li, Bolei; Weir, Michael D; Li, Mingyun; Feng, Mingye; Cheng, Lei

    2016-06-29

    Our aims of the research were to study the antimicrobial effect of dimethylaminododecyl methacrylate (DMADDM) modified denture base resin on multi-species biofilms and the biocompatibility of this modified dental material. Candida albicans (C. albicans), Streptococcus mutans (S. mutans), Streptococcus sanguinis (S. sanguinis), as well as Actinomyces naeslundii (A. naeslundii) were used for biofilm formation on denture base resin. Colony forming unit (CFU) counts, microbial viability staining, and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) array were used to evaluate the antimicrobial effect of DMADDM. C. albicans staining and Real-time PCR were used to analyze the morphology and expression of virulence genes of C. albicans in biofilm. Lactate dehydrogenase (LDH) array and Real-time PCR were conducted to examine the results after biofilm co-cultured with epithelial cell. Hematoxylin and eosin (HE) staining followed by histological evaluation were used to study the biocompatibility of this modified material. We found that DMADDM containing groups reduced both biomass and metabolic activity of the biofilm significantly. DMADDM can also inhibit the virulence of C. albicans by means of inhibiting the hyphal development and downregulation of two virulence related genes. DMADDM significantly reduced the cell damage caused by multi-species biofilm according to the LDH activity and reduced the expression of IL-18 gene of the cells simultaneously. The in vivo histological evaluation proved that the addition of DMADDM less than 6.6% in denture material did not increase the inflammatory response (p > 0.05). Therefore, we proposed that the novel denture base resin containing DMADDM may be considered as a new promising therapeutic system against problems caused by microbes on denture base such as denture stomatitis.

  20. Enterococcus faecium biofilm formation: identification of major autolysin AtlAEfm, associated Acm surface localization, and AtlAEfm-independent extracellular DNA Release.

    Science.gov (United States)

    Paganelli, Fernanda L; Willems, Rob J L; Jansen, Pamela; Hendrickx, Antoni; Zhang, Xinglin; Bonten, Marc J M; Leavis, Helen L

    2013-04-16

    Enterococcus faecium is an important multidrug-resistant nosocomial pathogen causing biofilm-mediated infections in patients with medical devices. Insight into E. faecium biofilm pathogenesis is pivotal for the development of new strategies to prevent and treat these infections. In several bacteria, a major autolysin is essential for extracellular DNA (eDNA) release in the biofilm matrix, contributing to biofilm attachment and stability. In this study, we identified and functionally characterized the major autolysin of E. faecium E1162 by a bioinformatic genome screen followed by insertional gene disruption of six putative autolysin genes. Insertional inactivation of locus tag EfmE1162_2692 resulted in resistance to lysis, reduced eDNA release, deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and significant chaining compared to that of the wild type. Therefore, locus tag EfmE1162_2692 was considered the major autolysin in E. faecium and renamed atlAEfm. In addition, AtlAEfm was implicated in cell surface exposure of Acm, a virulence factor in E. faecium, and thereby facilitates binding to collagen types I and IV. This is a novel feature of enterococcal autolysins not described previously. Furthermore, we identified (and localized) autolysin-independent DNA release in E. faecium that contributes to cell-cell interactions in the atlAEfm mutant and is important for cell separation. In conclusion, AtlAEfm is the major autolysin in E. faecium and contributes to biofilm stability and Acm localization, making AtlAEfm a promising target for treatment of E. faecium biofilm-mediated infections. IMPORTANCE Nosocomial infections caused by Enterococcus faecium have rapidly increased, and treatment options have become more limited. This is due not only to increasing resistance to antibiotics but also to biofilm-associated infections. DNA is released in biofilm matrix via cell lysis, caused by autolysin, and acts as a matrix stabilizer. In this study

  1. 嗜麦芽窄食单胞菌生物被膜的鉴定及其耐药性研究%Identification of Stenotrophomonas maltophilia using biofilms and in vitro effects of antibiotic agents on those biofilms

    Institute of Scientific and Technical Information of China (English)

    梁歌宏; 孙二琳; 宋诗铎; 祁伟

    2013-01-01

    目的 研究临床常用8种抗菌药物对嗜麦芽窄食单胞菌(Stenotrophomonas maltophilia,SMA)体外生物被膜(bacterial biofilm,BBF)的抗菌活性. 方法 通过微量接种针装置建立SMA生物被膜的体外模型,测定左氧氟沙星、环丙沙星、哌拉西林、头孢哌酮/舒巴坦、头孢他啶、磺胺甲基异噁唑、庆大霉素和红霉素对SMA生物被膜的抑制浓度(biofilm inhibitory concentration,BIC),并与相应最低抑菌浓度(minimum inhibitory concentration,MIC)进行比较.结果 共有42株SMA利用微量接种针成功建立成熟生物被膜的体外模型,8种抗菌药物对形成物被膜SMA的BIC50分别为左氧氟沙星4 μg/ml、环丙沙星8 μg/ml、哌拉西林256μtg/ml、头孢哌酮/舒巴坦128 μg/ml、头孢他啶128 μg/ml、磺胺甲基异噁唑304 μg/ml、庆大霉素256 μg/ml、红霉素128 μg/ml,相应抗生素的MIC50分别为0.25、2、64、16、32、19、32和32μg/ml.相应的BIC90也均高于MIC90.扫描电镜观察细菌培养24 h可形成成熟的生物被膜形态结构. 结论 与浮游态细菌相比,形成生物被膜后SMA对抗菌药物的耐药程度增加.%Objective To investigate the in vitro effects of eight antibiotic agents on Stenotrophomonas maltophilia biofilms.Methods An in vitro model of S.maltophilia biofilms was established in a Mueller-Hinton broth-silica film system,the biofilm inhibitory concentration (BIC) of each agent was calculated,and the corresponding minimal inhibitory concentrations (MICs) of the agents were compared.Results The in vitro model of S.maltophilia biofilms was subjected to scanning electron microscopy.Forty-two strains formed bacterial biofilms.The BIC50 of levofloxacin,ciprofloxacin,piperacillin,cefoperazone/sulbactam,ceftazidime,sulfamethoxazole,gentamycin,and erythromycin was 4μg/ml,8μg/ml,256 μg/ml,128 μg/ml,128 μg/ml,304 μg/ml,256 μg/ml,and 128 μg/ml,respectively.The corresponding of MIC50of these agents was 0.25 μg/ml,2

  2. Transferrin Impacts Bacillus thuringiensis Biofilm Levels

    Directory of Open Access Journals (Sweden)

    Bianca Garner

    2016-01-01

    Full Text Available The present study examined the impact of transferrin on Bacillus thuringiensis biofilms. Three commercial strains, an environmental strain (33679, the type strain (10792, and an isolate from a diseased insect (700872, were cultured in iron restricted minimal medium. All strains produced biofilm when grown in vinyl plates at 30°C. B. thuringiensis 33679 had a biofilm biomass more than twice the concentration exhibited by the other strains. The addition of transferrin resulted in slightly increased growth yields for 2 of the 3 strains tested, including 33679. In contrast, the addition of 50 μg/mL of transferrin resulted in an 80% decrease in biofilm levels for strain 33679. When the growth temperature was increased to 37°C, the addition of 50 μg/mL of transferrin increased culture turbidity for only strain 33679. Biofilm levels were again decreased in strain 33679 at 37°C. Growth of B. thuringiensis cultures in polystyrene resulted in a decrease in overall growth yields at 30°C, with biofilm levels significantly decreased for 33679 in the presence of transferrin. These findings demonstrate that transferrin impacts biofilm formation in select strains of B. thuringiensis. Identification of these differences in biofilm regulation may be beneficial in elucidating potential virulence mechanisms among the differing strains.

  3. Reconstruction of biofilm images: combining local and global structural parameters

    Energy Technology Data Exchange (ETDEWEB)

    Resat, Haluk; Renslow, Ryan S.; Beyenal, Haluk

    2014-10-20

    Digitized images can be used for quantitative comparison of biofilms grown under different conditions. Using biofilm image reconstruction, it was previously found that biofilms with a completely different look can have nearly identical structural parameters and that the most commonly utilized global structural parameters were not sufficient to uniquely define these biofilms. Here, additional local and global parameters are introduced to show that these parameters considerably increase the reliability of the image reconstruction process. Assessment using human evaluators indicated that the correct identification rate of the reconstructed images increased from 50% to 72% with the introduction of the new parameters into the reconstruction procedure. An expanded set of parameters especially improved the identification of biofilm structures with internal orientational features and of structures in which colony sizes and spatial locations varied. Hence, the newly introduced structural parameter sets helped to better classify the biofilms by incorporating finer local structural details into the reconstruction process.

  4. Candida-streptococcal mucosal biofilms display distinct structural and virulence characteristics depending on growth conditions and hyphal morphotypes.

    Science.gov (United States)

    Bertolini, M M; Xu, H; Sobue, T; Nobile, C J; Del Bel Cury, A A; Dongari-Bagtzoglou, A

    2015-08-01

    Candida albicans and streptococci of the mitis group form communities in multiple oral sites, where moisture and nutrient availability can change spatially or temporally. This study evaluated structural and virulence characteristics of Candida-streptococcal biofilms formed on moist or semidry mucosal surfaces, and tested the effects of nutrient availability and hyphal morphotype on dual-species biofilms. Three-dimensional models of the oral mucosa formed by immortalized keratinocytes on a fibroblast-embedded collagenous matrix were used. Infections were carried out using Streptococcus oralis strain 34, in combination with a C. albicans wild-type strain, or pseudohyphal-forming mutant strains. Increased moisture promoted a homogeneous surface biofilm by C. albicans. Dual biofilms had a stratified structure, with streptococci growing in close contact with the mucosa and fungi growing on the bacterial surface. Under semidry conditions, Candida formed localized foci of dense growth, which promoted focal growth of streptococci in mixed biofilms. Candida biofilm biovolume was greater under moist conditions, albeit with minimal tissue invasion, compared with semidry conditions. Supplementing the infection medium with nutrients under semidry conditions intensified growth, biofilm biovolume and tissue invasion/damage, without changing biofilm structure. Under these conditions, the pseudohyphal mutants and S. oralis formed defective superficial biofilms, with most bacteria in contact with the epithelial surface, below a pseudohyphal mass, resembling biofilms growing in a moist environment. The presence of S. oralis promoted fungal invasion and tissue damage under all conditions. We conclude that moisture, nutrient availability, hyphal morphotype and the presence of commensal bacteria influence the architecture and virulence characteristics of mucosal fungal biofilms.

  5. Novel entries in a fungal biofilm matrix encyclopedia.

    Science.gov (United States)

    Zarnowski, Robert; Westler, William M; Lacmbouh, Ghislain Ade; Marita, Jane M; Bothe, Jameson R; Bernhardt, Jörg; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Sanchez, Hiram; Hatfield, Ronald D; Ntambi, James M; Nett, Jeniel E; Mitchell, Aaron P; Andes, David R

    2014-08-05

    Virulence of Candida is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we provide a comprehensive analysis of the matrix manufactured by Candida albicans both in vitro and in a clinical niche animal model. We further explore the function of matrix components, including the impact on drug resistance. We uncovered components from each of the macromolecular classes (55% protein, 25% carbohydrate, 15% lipid, and 5% nucleic acid) in the C. albicans biofilm matrix. Three individual polysaccharides were identified and were suggested to interact physically. Surprisingly, a previously identified polysaccharide of functional importance, β-1,3-glucan, comprised only a small portion of the total matrix carbohydrate. Newly described, more abundant polysaccharides included α-1,2 branched α-1,6-mannans (87%) associated with unbranched β-1,6-glucans (13%) in an apparent mannan-glucan complex (MGCx). Functional matrix proteomic analysis revealed 458 distinct activities. The matrix lipids consisted of neutral glycerolipids (89.1%), polar glycerolipids (10.4%), and sphingolipids (0.5%). Examination of matrix nucleic acid identified DNA, primarily noncoding sequences. Several of the in vitro matrix components, including proteins and each of the polysaccharides, were also present in the matrix of a clinically relevant in vivo biofilm. Nuclear magnetic resonance (NMR) analysis demonstrated interaction of aggregate matrix with the antifungal fluconazole, consistent with a role in drug impedance and contribution of multiple matrix components. Importance: This report is the first to decipher the complex and unique macromolecular composition of the Candida biofilm matrix, demonstrate the clinical relevance of matrix components, and show that multiple matrix components are needed

  6. Espondilodiscitis por Candida albicans Candida albicans spondylodiscitis: Diagnosis and Treatment

    OpenAIRE

    2008-01-01

    Propósito: Describir los hallazgos radiológicos distintivos en resonancia magnética de las espondilodiscitis fúngicas (Candida albicans) y su importancia en el diagnóstico temprano de estas entidades. Se reporta el caso de un paciente masculino de 51 años de edad, inmunocomprometido, que consulta por fiebre y dolor lumbar. La RM con gadolinio demostró en secuencias T2 hipointensidad de la médula ósea en los cuerpos vertebrales afectados, asociados a cambios en la señal discal y realce intenso...

  7. Mechanisms of the antifungal action of marine metagenome-derived peptide, MMGP1, against Candida albicans.

    Directory of Open Access Journals (Sweden)

    Muthuirulan Pushpanathan

    Full Text Available BACKGROUND: Development of resistant variants to existing antifungal drugs continues to be the serious problem in Candida albicans-induced fungal pathogenesis, which has a considerable impact on animal and human health. Identification and characterization of newer drugs against C. albicans is, therefore, essential. MMGP1 is a direct cell-penetrating peptide recently identified from marine metagenome, which was found to possess potent antifungal activity against C. albicans. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the mechanism of antifungal action of MMGP1 against C. albicans. Agarose gel shift assay found the peptide to be having a remarkable DNA-binding ability. The modification of the absorption spectra and fluorescence quenching of the tryptophyl residue correspond to the stacking between indole ring and nucleotide bases. The formation of peptide-DNA complexes was confirmed by fluorescence quenching of SYTO 9 probe. The interaction of peptide with plasmid DNA afforded protection of DNA from enzymatic degradation by DNase I. In vitro transcription of mouse β-actin gene in the presence of peptide led to a decrease in the level of mRNA synthesis. The C. albicans treated with MMGP1 showed strong inhibition of biosynthetic incorporation of uridine analog 5-ethynyluridine (EU into nascent RNA, suggesting the peptide's role in the inhibition of macromolecular synthesis. Furthermore, the peptide also induces endogenous accumulation of reactive oxygen species (ROS in C. albicans. MMGP1 supplemented with glutathione showed an increased viability of C. albicans cells. The hyper-produced ROS by MMGP1 leads to increased levels of protein carbonyls and thiobarbituric acid reactive substances and it also causes dissipation of mitochondrial membrane potential and DNA fragmentation in C. albicans cells. CONCLUSION: And Significance: Therefore, the antifungal activity of MMGP1 could be attributed to its binding with DNA, causing

  8. Defining pheromone-receptor signaling in Candida albicans and related asexual Candida species.

    Science.gov (United States)

    Lin, Ching-Hsuan; Choi, Anthony; Bennett, Richard J

    2011-12-01

    Candida albicans is an important human fungal pathogen in which sexual reproduction is under the control of the novel white-opaque switch. Opaque cells are the mating-competent form, whereas white cells do not mate but can still respond to pheromones, resulting in biofilm formation. In this study, we first define the domains of the α-pheromone receptor Ste2 that are necessary for signaling in both white and opaque forms. Both cell states require the IC loop 3 (IC3) and the C-terminal tail of Ste2 for the cellular response, whereas the first IC loop (IC1) of Ste2 is dispensable for signaling. To also address pheromone-receptor interactions in related species, including apparently asexual Candida species, Ste2 orthologues were heterologously expressed in Candida albicans. Ste2 receptors from multiple Candida clade species were functional when expressed in C. albicans, whereas the Ste2 receptor of Candida lusitaniae was nonfunctional. Significantly, however, expression of a chimeric C. lusitaniae Ste2 receptor containing the C-terminal tail of Ste2 from C. albicans generated a productive response to C. lusitaniae pheromone. This system has allowed us to characterize pheromones from multiple Candida species and indicates that functional pheromone-receptor couples exist in fungal species that have yet to be shown to undergo sexual mating.

  9. The actin-related protein Sac1 is required for morphogenesis and cell wall integrity in Candida albicans.

    Science.gov (United States)

    Zhang, Bing; Yu, Qilin; Jia, Chang; Wang, Yuzhou; Xiao, Chenpeng; Dong, Yijie; Xu, Ning; Wang, Lei; Li, Mingchun

    2015-08-01

    Candida albicans is a common pathogenic fungus and has aroused widespread attention recently. Actin cytoskeleton, an important player in polarized growth, protein secretion and organization of cell shape, displays irreplaceable role in hyphal development and cell integrity. In this study, we demonstrated a homologue of Saccharomyces cerevisiae Sac1, in C. albicans. It is a potential PIP phosphatase with Sac domain which is related to actin organization, hyphal development, biofilm formation and cell wall integrity. Deletion of SAC1 did not lead to insitiol-auxotroph phenotype in C. albicans, but this gene rescued the growth defect of S. cerevisiae sac1Δ in the insitiol-free medium. Hyphal induction further revealed the deficiency of sac1Δ/Δ in hyphal development and biofilm formation. Fluorescence observation and real time PCR (RT-PCR) analysis suggested both actin and the hyphal cell wall protein Hwp1 were overexpressed and mislocated in this mutant. Furthermore, cell wall integrity (CWI) was largely affected by deletion of SAC1, due to the hypersensitivity to cell wall stress, changed content and distribution of chitin in the mutant. As a result, the virulence of sac1Δ/Δ was seriously attenuated. Taken together, this study provides evidence that Sac1, as a potential PIP phosphatase, is essential for actin organization, hyphal development, CWI and pathogenicity in C. albicans.

  10. Characterization of temporal protein production in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Southey-Pillig, Christopher J; Davies, David G; Sauer, Karin

    2005-12-01

    Phenotypic and genetic evidence supporting the notion of biofilm formation as a developmental process is growing. In the present work, we provide additional support for this hypothesis by identifying the onset of accumulation of biofilm-stage specific proteins during Pseudomonas aeruginosa biofilm maturation and by tracking the abundance of these proteins in planktonic and three biofilm developmental stages. The onset of protein production was found to correlate with the progression of biofilms in developmental stages. Protein identification revealed that proteins with similar function grouped within similar protein abundance patterns. Metabolic and housekeeping proteins were found to group within a pattern separate from virulence, antibiotic resistance, and quorum-sensing-related proteins. The latter were produced in a progressive manner, indicating that attendant features that are characteristic of biofilms such as antibiotic resistance and virulence may be part of the biofilm developmental process. Mutations in genes for selected proteins from several protein production patterns were made, and the impact of these mutations on biofilm development was evaluated. The proteins cytochrome c oxidase, a probable chemotaxis transducer, a two-component response regulator, and MexH were produced only in mature and late-stage biofilms. Mutations in the genes encoding these proteins did not confer defects in growth, initial attachment, early biofilm formation, or twitching motility but were observed to arrest biofilm development at the stage of cell cluster formation we call the maturation-1 stage. The results indicated that expression of theses genes was required for the progression of biofilms into three-dimensional structures on abiotic surfaces and the completion of the biofilm developmental cycle. Reverse transcription-PCR analysis confirmed the detectable change in expression of the respective genes ccoO, PA4101, and PA4208. We propose a possible mechanism for the

  11. Antifungal, anti-biofilm and adhesion activity of the essential oil of Myrtus communis L. against Candida species.

    Science.gov (United States)

    Cannas, Sara; Molicotti, Paola; Usai, Donatella; Maxia, Andrea; Zanetti, Stefania

    2014-01-01

    Candida species belong to the normal microbiota of the oral cavity, gastrointestinal tract and vagina. The increasing incidence of drug-resistant pathogens and the toxicity of the antifungal compounds have drawn the attention towards the antimicrobial activity of natural products, an inexpensive alternative. The aim of this work was to evaluate the adhesion activity, the biofilm formation and the action of the Myrtus communis L. essential oil (EO) on the biofilm formation towards three species isolated from clinical samples: Candida albicans, Candida parapsilosis and Candida tropicalis. Furthermore, we evaluated the antimycotic activity of the EO towards the three species, and the results were compared with the minimum inhibitory concentration of six antimycotics. The activity of the EO against C. albicans and C. parapsilosis was better than that obtained against C. tropicalis; moreover, the strains used in the assay were adhesive and biofilm producer, and the effect of myrtle EO on the biofilm formation yielded encouraging results.

  12. Identification of the Genes Involved in the Biofilm-like Structures on Actinomyces oris K20, a Clinical Isolate from an Apical Lesion

    Science.gov (United States)

    2013-01-01

    structures. Methods Bacterial Strains and Media Strain K20 was isolated from a closed apical abscess lesion of a 39- year-old patient (generally healthy...biofilms. Mol Microbiol 2005;57:1210–23. 2. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science...Int Endod J 2006;39:249–81. 6. Siqueira JF Jr, Rôças IN. Distinctive features of the microbiota associated with different forms of apical

  13. Kinetics of biofilm formation by drinking water isolated Penicillium expansum.

    Science.gov (United States)

    Simões, Lúcia Chaves; Simões, Manuel; Lima, Nelson

    2015-01-01

    Current knowledge on drinking water (DW) biofilms has been obtained mainly from studies on bacterial biofilms. Very few reports on filamentous fungi (ff) biofilms are available, although they can contribute to the reduction in DW quality. This study aimed to assess the dynamics of biofilm formation by Penicillium expansum using microtiter plates under static conditions, mimicking water flow behaviour in stagnant regions of drinking water distribution systems. Biofilms were analysed in terms of biomass (crystal violet staining), metabolic activity (resazurin, fluorescein diacetate and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide [MTT]) and morphology (epifluorescence [calcofluor white M2R, FUN-1, FDA and acridine orange] and bright-field microscopies). Biofilm development over time showed the typical sigmoidal curve with noticeable different phases in biofilm formation (induction, exponential, stationary, and sloughing off). The methods used to assess metabolic activity provided similar results. The microscope analysis allowed identification of the involvement of conidia in initial adhesion (4 h), germlings (8 h), initial monolayers (12 h), a monolayer of intertwined hyphae (24 h), mycelial development, hyphal layering and bundling, and development of the mature biofilms (≥48 h). P. expansum grows as a complex, multicellular biofilm in 48 h. The metabolic activity and biomass of the fungal biofilms were shown to increase over time and a correlation between metabolism, biofilm mass and hyphal development was found.

  14. The in vivo biofilm

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Maria; Alhede, Morten

    2013-01-01

    Bacteria can grow and proliferate either as single, independent cells or organized in aggregates commonly referred to as biofilms. When bacteria succeed in forming a biofilm within the human host, the infection often becomes very resistant to treatment and can develop into a chronic state. Biofilms...... have been studied for decades using various in vitro models, but it remains debatable whether such in vitro biofilms actually resemble in vivo biofilms in chronic infections. In vivo biofilms share several structural characteristics that differ from most in vitro biofilms. Additionally, the in vivo...... experimental time span and presence of host defenses differ from chronic infections and the chemical microenvironment of both in vivo and in vitro biofilms is seldom taken into account. In this review, we discuss why the current in vitro models of biofilms might be limited for describing infectious biofilms...

  15. Candida albicans escapes from mouse neutrophils

    DEFF Research Database (Denmark)

    Ermert, David; Niemiec, Maria J; Röhm, Marc

    2013-01-01

    Candida albicans, the most commonly isolated human fungal pathogen, is able to grow as budding yeasts or filamentous forms, such as hyphae. The ability to switch morphology has been attributed a crucial role for the pathogenesis of C. albicans. To mimic disseminated candidiasis in humans, the mouse...

  16. Establishment of new genetic traits in a microbial biofilm community

    DEFF Research Database (Denmark)

    Christensen, Bjarke Bak; Sternberg, Claus; Andersen, Jens Bo

    1998-01-01

    that the frequency of horizontal plasmid transfer was low, and growth (vertical transfer) of the recipient strain was the major cause of plasmid establishment in the biofilm community, Employment of scanning confocal laser microscopy on fixed biofilms, combined with simultaneous identification of P. putida cells...

  17. Effect of Atmospheric-Pressure Cold Plasma on Pathogenic Oral Biofilms and In Vitro Reconstituted Oral Epithelium.

    Science.gov (United States)

    Delben, Juliana Aparecida; Zago, Chaiene Evelin; Tyhovych, Natalia; Duarte, Simone; Vergani, Carlos Eduardo

    2016-01-01

    Considering the ability of atmospheric-pressure cold plasma (ACP) to disrupt the biofilm matrix and rupture cell structure, it can be an efficient tool against virulent oral biofilms. However, it is fundamental that ACP does not cause damage to oral tissue. So, this study evaluated (1) the antimicrobial effect of ACP on single- and dual-species biofilms of Candida albicans and Staphylococcus aureus as well as (2) the biological safety of ACP on in vitro reconstituted oral epithelium. Standardized cell suspensions of each microorganism were prepared for biofilm culture on acrylic resin discs at 37°C for 48 hours. The biofilms were submitted to ACP treatment at 10 mm of plasma tip-to-sample distance during 60 seconds. Positive controls were penicillin G and fluconazole for S. aureus and C. albicans, respectively. The biofilms were analyzed through counting of viable colonies, confocal laser scanning microscopy, scanning electron microscopy and fluorescence microscopy for detection of reactive oxygen species. The in vitro reconstituted oral epithelium was submitted to similar ACP treatment and analyzed through histology, cytotoxocity test (LDH release), viability test (MTT assay) and imunnohistochemistry (Ki67 expression). All plasma-treated biofilms presented significant log10 CFU/mL reduction, alteration in microorganism/biofilm morphology, and reduced viability in comparison to negative and positive controls. In addition, fluorescence microscopy revealed presence of reactive oxygen species in all plasma-treated biofilms. Low cytotoxicity and high viability were observed in oral epithelium of negative control and plasma group. Histology showed neither sign of necrosis nor significant alteration in plasma-treated epithelium. Ki67-positive cells revealed maintenance of cell proliferation in plasma-treated epithelium. Atmospheric-pressure cold plasma is a promissing approach to eliminate single- and dual-species biofilms of C. albicans and S. aureus without having

  18. Effect of Atmospheric-Pressure Cold Plasma on Pathogenic Oral Biofilms and In Vitro Reconstituted Oral Epithelium.

    Directory of Open Access Journals (Sweden)

    Juliana Aparecida Delben

    Full Text Available Considering the ability of atmospheric-pressure cold plasma (ACP to disrupt the biofilm matrix and rupture cell structure, it can be an efficient tool against virulent oral biofilms. However, it is fundamental that ACP does not cause damage to oral tissue. So, this study evaluated (1 the antimicrobial effect of ACP on single- and dual-species biofilms of Candida albicans and Staphylococcus aureus as well as (2 the biological safety of ACP on in vitro reconstituted oral epithelium. Standardized cell suspensions of each microorganism were prepared for biofilm culture on acrylic resin discs at 37°C for 48 hours. The biofilms were submitted to ACP treatment at 10 mm of plasma tip-to-sample distance during 60 seconds. Positive controls were penicillin G and fluconazole for S. aureus and C. albicans, respectively. The biofilms were analyzed through counting of viable colonies, confocal laser scanning microscopy, scanning electron microscopy and fluorescence microscopy for detection of reactive oxygen species. The in vitro reconstituted oral epithelium was submitted to similar ACP treatment and analyzed through histology, cytotoxocity test (LDH release, viability test (MTT assay and imunnohistochemistry (Ki67 expression. All plasma-treated biofilms presented significant log10 CFU/mL reduction, alteration in microorganism/biofilm morphology, and reduced viability in comparison to negative and positive controls. In addition, fluorescence microscopy revealed presence of reactive oxygen species in all plasma-treated biofilms. Low cytotoxicity and high viability were observed in oral epithelium of negative control and plasma group. Histology showed neither sign of necrosis nor significant alteration in plasma-treated epithelium. Ki67-positive cells revealed maintenance of cell proliferation in plasma-treated epithelium. Atmospheric-pressure cold plasma is a promissing approach to eliminate single- and dual-species biofilms of C. albicans and S. aureus

  19. Espondilodiscitis por Candida albicans Candida albicans spondylodiscitis: Diagnosis and Treatment

    Directory of Open Access Journals (Sweden)

    Silvina De Luca

    2008-03-01

    Full Text Available Propósito: Describir los hallazgos radiológicos distintivos en resonancia magnética de las espondilodiscitis fúngicas (Candida albicans y su importancia en el diagnóstico temprano de estas entidades. Se reporta el caso de un paciente masculino de 51 años de edad, inmunocomprometido, que consulta por fiebre y dolor lumbar. La RM con gadolinio demostró en secuencias T2 hipointensidad de la médula ósea en los cuerpos vertebrales afectados, asociados a cambios en la señal discal y realce intenso discovertebral. Ante un paciente inmunocomprometido con dolor lumbar que presenta modificaciones disco vertebrales atípicas en la resonancia magnética, debe considerarse la infección micótica dentro de las posibilidades diagnósticas. El diagnóstico de certeza requiere la toma de biopsia del tejido afectado mediante punción aspiración y posterior análisis microbiológico. El tratamiento médico es el de elección, aunque en algunos casos se plantea el drenaje quirúrgico. El reconocimiento de las características radiológicas distintivas evita retardos en el diagnóstico y el tratamiento.Purpose: To describe Candida albicans spondylodiscitis distinctive imaging findings and treatment. The authors reported a 51 years old, male inmunocompromised patient with fever and lumbar pain. MR findings include bone marrow hypointense signal intensity in T2 weighted of affected vertebral bodies and intense discovertebral enhancement. Candida albicans spondylodiscitis should be considered as one of the differential diagnosis of an inmunocompromised patient with lumbar pain and lumbar atypical findings at MR. Biopsy sample is required in order to reach final diagnosis. The first choice treatment is antyfungal drugs although in certain cases surgery is required. Rapid recognition of distinctive imaging findings avoid missdiagnosis and treatment delays.

  20. Defining pheromone-receptor signaling in Candida albicans and related asexual Candida species

    OpenAIRE

    Lin, Ching-Hsuan; Choi, Anthony; Bennett, Richard J.

    2011-01-01

    Candida albicans is an important human fungal pathogen in which sexual reproduction is under the control of the novel white–opaque switch. Opaque cells are the mating-competent form, whereas white cells do not mate but can still respond to pheromones, resulting in biofilm formation. In this study, we first define the domains of the α-pheromone receptor Ste2 that are necessary for signaling in both white and opaque forms. Both cell states require the IC loop 3 (IC3) and the C-terminal tail of ...

  1. The in vitro and in vivo efficacy of fluconazole in combination with farnesol against Candida albicans isolates using a murine vulvovaginitis model.

    Science.gov (United States)

    Bozó, Aliz; Domán, Marianna; Majoros, László; Kardos, Gábor; Varga, István; Kovács, Renátó

    2016-11-01

    Farnesol is a quorum-sensing molecule that inhibits biofilm formation in Candida albicans. Previous in vitro data suggest that, in combination with certain antifungals, farnesol may have an adjuvant anti-biofilm agent. However, the in vivo efficacy of farnesol is very questionable. Therefore, the in vitro and in vivo activity of fluconazole combined with farnesol was evaluated against C. albicans biofilms using fractional inhibitory concentration index (FICI) determination, time-kill experiments and a murine vulvovaginitis model. The median biofilm MICs of fluconazole-sensitive C. albicans isolates ranged between 4 -> 512 mg/L and 150-300 μM for fluconazole and farnesol, respectively. These values were 512 -> 512 mg/L and > 300 μM for fluconazole-resistant clinical isolates. Farnesol decreased the median MICs of fluconazole by 2-64-fold for biofilms. Based on FICI, synergistic interaction was observed only in the case of the sessile SC5314 reference strain (FICIs: 0.16-0.27). In time-kill studies, only the 512 mg/L fluconazole and 512 mg/L fluconazole + 75 μM farnesol reduced biofilm mass significantly at each time point in the case of all isolates. The combination reduced the metabolic activity of biofilms for all isolates in a concentration- and time-dependent manner. Our findings revealed that farnesol alone was not protective in a murine vulvovaginitis model. Farnesol was not beneficial in combination with fluconazole for fluconazole-susceptible isolates, but partially increased fluconazole activity against one fluconazole-resistant isolate, but not the other one.

  2. Characterisitics of Candida albicans bioflm developed on poly (methil methacrilate) resins surfaces

    OpenAIRE

    2009-01-01

    Resumo: Os biofilmes de Cândida albicans formados sobre a superfície de resina de poli (metil metacrilato) (PMMA) apresentam alta virulência em função da liberação de enzimas hidrolíticas e são responsáveis pela candidose oral, infecção fúngica mais comum em usuários de próteses dentais removíveis. A organização do biofilme em várias camadas celulares envoltos por matriz de polissacarídeos extracelulares leva estas camadas celulares a estado metabólicos diferenciados e, portanto o uso da técn...

  3. Biofilm production and evaluation of antifungal susceptibility amongst clinical Candida spp. isolates, including strains of the Candida parapsilosis complex.

    Science.gov (United States)

    Melo, Analy S; Bizerra, Fernando C; Freymüller, Edna; Arthington-Skaggs, Beth A; Colombo, Arnaldo L

    2011-04-01

    Candida cells can form biofilms that frequently are sources of infections and are less susceptible to antifungal drugs. Some authors have reported that Candida orthopsilosis and Candida metapsilosis isolates are not able to produce biofilms in vitro and there are no studies available on biofilm susceptibility for these species to antifungals. The aims of this study were to (i) quantify Candida spp. biofilms in vitro, and (ii) test the in vitro susceptibilities of Candida spp. biofilms to fluconazole (FLC) and amphotericin B (AMB). Isolates studied included four Candida albicans, six C. tropicalis, seven C. parapsilosis, eight C. orthopsilosis, and five C. metapsilosis. We compared two different methods to evaluate biofilm production, i.e., crystal violet (CV) staining and XTT-reduction assays (XTT). Scanning electron microscopy (SEM) was used to observe high, medium and low biofilm producing isolates screened by these two methods. To determine the minimum biofilm eradication concentration (MBEC) for FLC and AMB, XTT-reduction assay was used to measure cell metabolic activity. Biofilm quantification by CV and XTT showed that C. tropicalis isolates were the highest biofilm producer, followed by C. albicans, C. parapsilosis, C. orthopsilosis and C. metapsilosis. Examination of SEM images revealed that the extent of biofilms formed by high, medium, and low producers was highly correlated to the results generated by CV assay. Biofilm of all the isolates evaluated were resistant to FLC (MBEC(80) ≥ 256 ug/ml) but, in general, susceptible to AMB, except for six C. parapsilosis strains (MBEC(80) ≥ 8 ug/ml).

  4. Biofilm Fixed Film Systems

    Directory of Open Access Journals (Sweden)

    Dipesh Das

    2011-09-01

    Full Text Available The work reviewed here was published between 2008 and 2010 and describes research that involved aerobic and anoxic biofilm treatment of water pollutants. Biofilm denitrification systems are covered when appropriate. References catalogued here are divided on the basis of fundamental research area or reactor types. Fundamental research into biofilms is presented in two sections, Biofilm Measurement and Characterization and Growth and Modeling. The reactor types covered are: trickling filters, rotating biological contactors, fluidized bed bioreactors, submerged bed biofilm reactors, biological granular activated carbon, membrane bioreactors, and immobilized cell reactors. Innovative reactors, not easily classified, are then presented, followed by a section on biofilms on sand, soil and sediment.

  5. I. Enabling Single-Chain Surfactants to Form Vesicles by Nonamphiphilic Liquid Crystals in Water II. Controlling Attachment and Ligand-Mediated Adherence of Candida albicans on Monolayers

    Science.gov (United States)

    Varghese, Nisha

    . Adhesion of C. albicans to a surface is a complex process and is governed by nonspecific attachment or multiple ligand-receptor interactions. The work demonstrates that the multiple ligand-receptor interactions used by C. albicans for adherence to a surface can be individually studied using self-assembled monolayers (SAMs) decorated with minimal motif of the ligands. The SAMs were also used to differentiate between the interactions of the two different morphological forms of C. albicans.. Chapter 5 presents a study on small molecules that were used to inhibit biofilm formed by C. albicans. The acyclic triazoles used in the study were not toxic to the C. albicans and were capable of inhibiting biofilm formed by C. albicans. The acyclic triazole can be used as promising candidates to design new antifungal agents. The chapter also reports the synthesis of squarylated homoserine lactones (SHLs) structural mimics of bacterial acyl homoserine lactones (AHLs) to study the inhibitory effects of SHLs on fungal biofilm. The bacterial AHLs are known to repress the growth of C. albicans and control fungal biofilm in native host environment. The synthesized SHLs were non-toxic to C. albicans and failed to inhibit biofilm formed by C. albicans. . Chapter 6 uses gradient nanotopography combined with controlled surface chemistry to confine bacterial biofilm formed by Escherichia coli. The E. coli biofilm were confined within micrometer sized regions of hydrophobic SAMs surrounded by polyol-terminated SAMs. The study reveals that surface with higher topography enhances the ability of the bioinert SAMs to resist bacterial adherence to surface.

  6. Identification and characterization of a cold-active phthalate esters hydrolase by screening a metagenomic library derived from biofilms of a wastewater treatment plant.

    Directory of Open Access Journals (Sweden)

    Yiying Jiao

    Full Text Available A cold-active phthalate esters hydrolase gene (designated dphB was identified through functional screening of a metagenomic library derived from biofilms of a wastewater treatment plant. The enzyme specifically catalyzed the hydrolysis of dipropyl phthalate, dibutyl phthalate, and dipentyl phthalate to the corresponding monoalkyl phthalate esters at low temperatures. The catalytic triad residues of DphB were proposed to be Ser159, Asp251, and His281.

  7. Identification and Characterization of a Cold-Active Phthalate Esters Hydrolase by Screening a Metagenomic Library Derived from Biofilms of a Wastewater Treatment Plant

    OpenAIRE

    Jiao, Yiying; CHEN Xu; Wang, Xin; Liao, Xuewei; Xiao, Lin; Miao, Aijun; Wu, Jun; Yang, Liuyan

    2013-01-01

    A cold-active phthalate esters hydrolase gene (designated dphB) was identified through functional screening of a metagenomic library derived from biofilms of a wastewater treatment plant. The enzyme specifically catalyzed the hydrolysis of dipropyl phthalate, dibutyl phthalate, and dipentyl phthalate to the corresponding monoalkyl phthalate esters at low temperatures. The catalytic triad residues of DphB were proposed to be Ser159, Asp251, and His281.

  8. Susceptibility of Candida albicans to new synthetic sulfone derivatives.

    Science.gov (United States)

    Staniszewska, Monika; Bondaryk, Małgorzata; Ochal, Zbigniew

    2015-02-01

    The influence of halogenated methyl sulfones, i.e. bromodichloromethyl-4-chloro-3-nitrophenyl sulfone (named halogenated methyl sulfone 1), dichloromethyl-4-chloro-3-nitrophenyl sulfone (halogenated methyl sulfone 2), and chlorodibromomethyl-4-hydrazino-3-nitrophenyl sulfone (halogenated methyl sulfone 3), on cell growth inhibition, aspartic protease gene (SAP4-6) expression, adhesion to epithelium, and filamentation was investigated. Antifungal susceptibility of the halogenated methyl sulfones was determined with the M27-A3 protocol in the range of 16-0.0313 µg/mL. Adherence to Caco-2 cells was performed in 24-well plates; relative quantification was normalized against ACT1 in cells after 18 h of growth in YEPD and on Caco-2 cells. SAP4-6 expression was analyzed using RT-PCR. Structure-activity relationship studies suggested that halogenated methyl sulfone 1 containing bromodichloromethyl or dichloromethyl function at C-4 (halogenated methyl sulfone 2) of the phenyl ring showed the best activity (100% cell inhibition at 0.5 µg/mL), while hydrazine at C-1 (halogenated methyl sulfone 3) reduced the sulfone potential (100% = 4 µg/mL). SAP4-6 were up- or down-regulated depending on the strains' genetic background and the substitutions on the phenyl ring. Halogenated methyl sulfone 2 repressed germination and affected adherence to epithelium (P ≤ 0.05). The tested halogenated methyl sulfones interfered with the adhesion of Candida albicans cells to the epithelial tissues, without affecting their viability after 90 min of incubation. The mode of action of the halogenated methyl sulfones was attributed to the reduced virulence of C. albicans. SAP5 and SAP6 contribute to halogenated methyl sulfones resistance. Thus, halogenated methyl sulfones can inhibit biofilm formation due to their interference with adherence and with the yeast-to-hyphae transition.

  9. Comparison of the in vitro activity of echinocandins against Candida albicans, Candida dubliniensis, and Candida africana by time-kill curves.

    Science.gov (United States)

    Gil-Alonso, Sandra; Jauregizar, Nerea; Cantón, Emilia; Eraso, Elena; Quindós, Guillermo

    2015-05-01

    Candida albicans remains the most common fungal pathogen. This species is closely related to 2 phenotypically similar cryptic species, Candida dubliniensis and Candida africana. This study aims to compare the antifungal activities of echinocandins against 7 C. albicans, 5 C. dubliniensis, and 2 C. africana strains by time-kill methodology. MIC values were similar for the 3 species; however, differences in killing activity were observed among species, isolates, and echinocandins. Echinocandins produced weak killing activity against the 3 species. In all drugs, the fungicidal endpoint (99.9% mortality) was reached at ≤31 h with ≥0.5 μg/mL for anidulafungin in 4 C. albicans and 1 C. dubliniensis, for caspofungin in 1 C. albicans and 2 C. dubliniensis, and for micafungin in 4 C. albicans and 1 C. dubliniensis. None of echinocandins showed lethality against C. africana. Identification of these new cryptic species and time-kill studies would be recommendable when echinocandin treatment fails.

  10. Distribution of Candida Species in different clinical samples and their virulence: Biofilm formation, proteinase and phospholipase production: A study on hospitalized patients in Southern India

    Directory of Open Access Journals (Sweden)

    Vinitha Mohandas

    2011-01-01

    Full Text Available Introduction: Candida species are normal inhabitants of the skin and mucosa. The importance of epidemiological monitoring of yeasts involved in pathogenic processes is unquestionable due to the increase of these infections over the last decade; Materials and Methods: The clinical samples from the respiratory tract (sputum, bronchial wash, tracheal secretions, saliva, blood, urine, middle ear discharge, vitreous fluid, corneal ulcer, and plastic devices (endotracheal tube, catheter tip, suction tip were collected and cultured. The species of Candida isolated were identified. Results: A total of 111 isolates of Candida species were recovered from 250 diverse clinical sources. C. albicans (39.64% was the most isolated species, although the Candida non albicans species with 60.36% showed the major prevalence. In blood cultures, C. krusei (38.23% and C. albicans (20.58% were isolated frequently. C. albicans (63.27% was the predominant species in mucosal surface. Urinary tract infections caused by yeasts were more frequent in hospitalized patients, C. krusei (50.0% being commonly isolated, followed by C. albicans (25.0%. Discussion: Several virulence factors like, biofilm, proteinase, phospholipase, etc. contribute to the pathogenecity. Early detection of virulence factors by Candida is useful in clinical decision making. We therefore have aimed at demonstrating the formation of biofilm using the method proposed by Branchini et al, (1994. The proteinase produced by Candida was estimated as per the method of Staib et al, (1965. Phospholipase assay was carried out as per the method of Samaranayake et al, (2005. Conclusions : The data suggests that the capacity of Candida species to produce biofilm may be a reflection of the pathogenic potential of the isolates. C. krusei and C. tropicalis showed strong slime production. The non-Candida albicans produced more proteinase than C. albicans. C. albicans produced higher levels of phospholipase than non

  11. Adaptive immune responses to Candida albicans infection.

    Science.gov (United States)

    Richardson, Jonathan P; Moyes, David L

    2015-01-01

    Fungal infections are becoming increasingly prevalent in the human population and contribute to morbidity and mortality in healthy and immunocompromised individuals respectively. Candida albicans is the most commonly encountered fungal pathogen of humans, and is frequently found on the mucosal surfaces of the body. Host defense against C. albicans is dependent upon a finely tuned implementation of innate and adaptive immune responses, enabling the host to neutralise the invading fungus. Central to this protection are the adaptive Th1 and Th17 cellular responses, which are considered paramount to successful immune defense against C. albicans infections, and enable tissue homeostasis to be maintained in the presence of colonising fungi. This review will highlight the recent advances in our understanding of adaptive immunity to Candida albicans infections.

  12. In vitro modification of Candida albicans invasiveness.

    Science.gov (United States)

    Fontenla de Petrino, S E; de Jorrat, M E; Sirena, A; Valdez, J C; Mesón, O

    1986-05-01

    Candida albicans produces germ-tubes (GT) when it is incubated in animal or human serum. This dimorphism is responsible for its invasive ability. The purpose of the present paper is (1) to evaluate the ability of rat peritoneal macrophages to inhibit GT production of ingested Candida albicans, obtained from immunized rats and then activated in vitro with Candida-induced lymphokines; (2) to determinate any possible alteration of phagocytic and candidacidal activities. The phagocytes were obtained from rats immunized with viable C. albicans. Some of them were exposed to Candida-induced lymphokines in order to activate the macrophages in vitro. The monolayers of activated, immune and normal macrophages were infected with a C. albicans suspension during 4 hr. Activated macrophages presented not only the highest phagocytic and candidacidal activities but a noticeable inhibition of GT formation and incremented candidacidal activity.

  13. Pseudomonas aeruginosa Biofilm Infections

    DEFF Research Database (Denmark)

    Rybtke, Morten; Hultqvist, Louise Dahl; Givskov, Michael

    2015-01-01

    Studies of biopsies from infectious sites, explanted tissue and medical devises have provided evidence that biofilms are the underlying cause of a variety of tissue-associated and implant-associated recalcitrant human infections. With a need for novel anti-biofilm treatment strategies, research...... in biofilm infection microbiology, biofilm formation mechanisms and biofilm-associated antimicrobial tolerance has become an important area in microbiology. Substantial knowledge about biofilm formation mechanisms, biofilm-associated antimicrobial tolerance and immune evasion mechanisms has been obtained...... through work with biofilms grown in in vitro experimental setups, and the relevance of this information in the context of chronic infections is being investigated by the use of animal models of infection. Because our current in vitro experimental setups and animal models have limitations, new advanced...

  14. Miconazole activity against Candida biofilms developed on acrylic discs.

    Science.gov (United States)

    Gebremedhin, S; Dorocka-Bobkowska, B; Prylinski, M; Konopka, K; Duzgunes, N

    2014-08-01

    Oral candidiasis in the form of Candida-associated denture stomatitis (CaDS) is associated with Candida adhesion and biofilm formation on the fitting surface of poly (methyl methacrylate) (PMMA) dentures. Candida biofilms show considerable resistance to most conventional antifungal agents, a phenomenon that is considered a developmental-phase-specific event that may help explain the high recurrence rates associated with CaDS. The aim of this study was to examine the activity of miconazole towards in vitro-grown mature Candida biofilms formed on heat-cured PMMA discs as a standardized model. The effect of miconazole nitrate on Candida biofilms developed on acrylic discs was determined for C. albicans MYA-2732 (ATCC), C. glabrata MYA-275 (ATCC), and clinical isolates, C. albicans 6122/06, C. glabrata 7531/06, C. tropicalis 8122/06, and C. parapsilosis 11375/07. Candida biofilms were developed on heat-cured poly(methyl methacrylate) discs and treated with miconazole (0.5 - 96 μg/ml). The metabolic activity of the biofilms was measured by the XTT reduction assay. The minimum inhibitory concentrations (MICs) of miconazole against Candida species were determined by the microdilution method. The MICs for miconazole for the investigated strains ranged from 0.016-32 μg/ml. Treatment with miconazole resulted in a significant reduction of biofilm metabolic activity for all strains. The highest inhibition was observed at 96 μg/ml miconazole. In the case of C. glabrata MYA-275 and C. tropicalis 8122/06 this corresponded to 83.7% and 75.4% inhibition, respectively. The lowest reduction was observed for C. parapsilosis 11375/07-46.1%. For all Candida strains there was a strong correlation between MIC values and miconazole concentrations corresponding to a reduction of metabolic activity of the biofilm by 50%. Miconazole exhibits high antifungal activity against Candida biofilms developed on the surface of PMMA discs. The study provides support for the use of miconazole as an

  15. Triclosan antagonises fluconazole activity against Candida albicans

    OpenAIRE

    2012-01-01

    Epub October 4th Triclosan is a broad-spectrum antimicrobial compound commonly used in oral hygiene products. Investigation of its activity against Candida albicans showed that triclosan was fungicidal at concentrations of 16 mg/L. However, at subinhibitory concentrations (0.5-2 mg/L) triclosan antagonized the activity of fluconazole. Although triclosan induced CDR1 expression in C. albicans, antagonism was still observed in cdr1? and cdr2? strains. Triclosan did not affect fluconazole upt...

  16. Functional Divergence of Hsp90 Genetic Interactions in Biofilm and Planktonic Cellular States.

    Directory of Open Access Journals (Sweden)

    Stephanie Diezmann

    Full Text Available Candida albicans is among the most prevalent opportunistic fungal pathogens. Its capacity to cause life-threatening bloodstream infections is associated with the ability to form biofilms, which are intrinsically drug resistant reservoirs for dispersal. A key regulator of biofilm drug resistance and dispersal is the molecular chaperone Hsp90, which stabilizes many signal transducers. We previously identified 226 C. albicans Hsp90 genetic interactors under planktonic conditions, of which 56 are involved in transcriptional regulation. Six of these transcriptional regulators have previously been implicated in biofilm formation, suggesting that Hsp90 genetic interactions identified in planktonic conditions may have functional significance in biofilms. Here, we explored the relationship between Hsp90 and five of these transcription factor genetic interactors: BCR1, MIG1, TEC1, TUP1, and UPC2. We deleted each transcription factor gene in an Hsp90 conditional expression strain, and assessed biofilm formation and morphogenesis. Strikingly, depletion of Hsp90 conferred no additional biofilm defect in the mutants. An interaction was observed in which deletion of BCR1 enhanced filamentation upon reduction of Hsp90 levels. Further, although Hsp90 modulates expression of TEC1, TUP1, and UPC2 in planktonic conditions, it has no impact in biofilms. Lastly, we probed for physical interactions between Hsp90 and Tup1, whose WD40 domain suggests that it might interact with Hsp90 directly. Hsp90 and Tup1 formed a stable complex, independent of temperature or developmental state. Our results illuminate a physical interaction between Hsp90 and a key transcriptional regulator of filamentation and biofilm formation, and suggest that Hsp90 has distinct genetic interactions in planktonic and biofilm cellular states.

  17. CdTe quantum dots conjugated to concanavalin A as potential fluorescent molecular probes for saccharides detection in Candida albicans.

    Science.gov (United States)

    Tenório, Denise P L A; Andrade, Camila G; Cabral Filho, Paulo E; Sabino, Caetano P; Kato, Ilka T; Carvalho, Luiz B; Alves, Severino; Ribeiro, Martha S; Fontes, Adriana; Santos, Beate S

    2015-01-01

    Semiconductor colloidal quantum dots (QDs) have been applied in biological analysis due to their unique optical properties and their versatility to be conjugated to biomolecules, such as lectins and antibodies, acquiring specificity to label a variety of targets. Concanavalin A (Con A) lectin binds specifically to α-d-mannose and α-d-glucose regions of saccharides that are usually expressed on membranes of mammalian cells and on cell walls of microbials. Candida albicans is the most common fungal opportunistic pathogen present in humans. Therefore, in this work, this fungus was chosen as a model for understanding cells and biofilm-forming organisms. Here, we report an efficient bioconjugation process to bind CdTe (Cadmium Telluride) QDs to Con A, and applied the bioconjugates to label saccharide structures on the cellular surface of C. albicans suspensions and biofilms. By accomplishing hemagglutination experiments and circular dichroism, we observed that the Con A structure and biochemical properties were preserved after the bioconjugation. Fluorescence microscopy images of yeasts and hyphae cells, as well as biofilms, incubated with QDs-(Con A) showed a bright orange fluorescence profile, indicating that the cell walls were specifically labeled. Furthermore, flow cytometry measurements confirmed that over 93% of the yeast cells were successfully labeled by QD-(Con A) complex. In contrast, non-conjugated QDs or QDs-(inhibited Con A) do not label any kind of biological system tested, indicating that the bioconjugation was specific and efficient. The staining pattern of the cells and biofilms demonstrate that QDs were effectively bioconjugated to Con A with specific labeling of saccharide-rich structures on C. albicans. Consequently, this work opens new possibilities to monitor glucose and mannose molecules through fluorescence techniques, which can help to optimize phototherapy protocols for this kind of fungus.

  18. Candida albicans escapes from mouse neutrophils.

    Science.gov (United States)

    Ermert, David; Niemiec, Maria J; Röhm, Marc; Glenthøj, Andreas; Borregaard, Niels; Urban, Constantin F

    2013-08-01

    Candida albicans, the most commonly isolated human fungal pathogen, is able to grow as budding yeasts or filamentous forms, such as hyphae. The ability to switch morphology has been attributed a crucial role for the pathogenesis of C. albicans. To mimic disseminated candidiasis in humans, the mouse is the most widely used model organism. Neutrophils are essential immune cells to prevent opportunistic mycoses. To explore potential differences between the rodent infection model and the human host, we compared the interactions of C. albicans with neutrophil granulocytes from mice and humans. We revealed that murine neutrophils exhibited a significantly lower ability to kill C. albicans than their human counterparts. Strikingly, C. albicans yeast cells formed germ tubes upon internalization by murine neutrophils, eventually rupturing the neutrophil membrane and thereby, killing the phagocyte. On the contrary, growth and subsequent escape of C. albicans are blocked inside human neutrophils. According to our findings, this blockage in human neutrophils might be a result of higher levels of MPO activity and the presence of α-defensins. We therefore outline differences in antifungal immune defense between humans and mouse strains, which facilitates a more accurate interpretation of in vivo results.

  19. Biofilms: A microbial home

    Science.gov (United States)

    Chandki, Rita; Banthia, Priyank; Banthia, Ruchi

    2011-01-01

    Microbial biofilms are mainly implicated in etiopathogenesis of caries and periodontal disease. Owing to its properties, these pose great challenges. Continuous and regular disruption of these biofilms is imperative for prevention and management of oral diseases. This essay provides a detailed insight into properties, mechanisms of etiopathogenesis, detection and removal of these microbial biofilms. PMID:21976832

  20. Biofilms: A microbial home

    OpenAIRE

    Chandki, Rita; Banthia, Priyank; Banthia, Ruchi

    2011-01-01

    Microbial biofilms are mainly implicated in etiopathogenesis of caries and periodontal disease. Owing to its properties, these pose great challenges. Continuous and regular disruption of these biofilms is imperative for prevention and management of oral diseases. This essay provides a detailed insight into properties, mechanisms of etiopathogenesis, detection and removal of these microbial biofilms.

  1. The Biofilm Challenge

    DEFF Research Database (Denmark)

    Alhede, Maria; Alhede, Morten

    2014-01-01

    The concept of biofilms has emerged in the clinical setting during the last decade. Infections involving biofilms have been documented in all parts of the human body, and it is currently believed that the presence of biofilm-forming bacteria is equivalent to chronic infection. A quick Pubmed search...

  2. [Investigation of the correlation between biofilm forming ability of urinary Candida isolates with the use of urinary catheters and change of antifungal susceptibility in the presence of biofilm].

    Science.gov (United States)

    Aslan, Hacer; Gülmez, Dolunay

    2016-04-01

    Frequency of Candida species causing urinary tract infections is increasing, and this increase is outstanding in nosocomial urinary tract infections especially in intensive care units. The ability of biofilm formation that is contributed to the virulence of the yeast, plays a role in the pathogenesis of biomaterial-related infections and also constitutes a risk for treatment failure. The aims of this study were to compare biofilm forming abilities of Candida strains isolated from urine cultures of patients with and without urinary catheters, and to investigate the change of antifungal susceptibility in the presence of biofilm. A total of 50 Candida strains isolated from urine cultures of 25 patients with urinary catheters (10 C.tropicalis, 6 C.glabrata, 4 C.albicans, 4 C.parapsilosis, 1 C.krusei) and 25 without urinary catheters (8 C.tropicalis, 6 C.albicans, 4 C.krusei, 3 C.parapsilosis, 2 C.kefyr, 1 C.glabrata, 1 C.lusitaniae) were included in the study. Biofilm forming ability was tested by Congo red agar (CRA) and microplate XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction methods. Fluconazole (FLU) and amphotericin B (AMP-B) susceptibilities of the isolates were determined by reference microdilution method recommended by Clinical and Laboratory Standards Institute for planktonic cells and by XTT reduction assay in case of biofilm presence. Biofilm formation was detected in 12 (24%) by CRA and 50 (100%) of the isolates by XTT reduction method. None of the C.albicans (n= 10) and C.tropicalis (n= 18) strains were detected as biofilm positive by CRA, however, these strains were strongly positive by XTT reduction method. No statistically significant correlation was detected between the presence of urinary catheter and biofilm forming ability of the isolate (p> 0.05). This might be caused by the advantage of biofilm forming strains in adhesion to bladder mucosa at the initial stages of infection. For all of the isolates in

  3. Single-cell force spectroscopy of the medically important Staphylococcus epidermidis-Candida albicans interaction

    Science.gov (United States)

    Beaussart, Audrey; Herman, Philippe; El-Kirat-Chatel, Sofiane; Lipke, Peter N.; Kucharíková, Soňa; van Dijck, Patrick; Dufrêne, Yves F.

    2013-10-01

    Despite the clinical importance of bacterial-fungal interactions, their molecular details are poorly understood. A hallmark of such medically important interspecies associations is the interaction between the two nosocomial pathogens Staphylococcus aureus and Candida albicans, which can lead to mixed biofilm-associated infections with enhanced antibiotic resistance. Here, we use single-cell force spectroscopy (SCFS) to quantify the forces engaged in bacterial-fungal co-adhesion, focusing on the poorly investigated S. epidermidis-C. albicans interaction. Force curves recorded between single bacterial and fungal germ tubes showed large adhesion forces (~5 nN) with extended rupture lengths (up to 500 nm). By contrast, bacteria poorly adhered to yeast cells, emphasizing the important role of the yeast-to-hyphae transition in mediating adhesion to bacterial cells. Analysis of mutant strains altered in cell wall composition allowed us to distinguish the main fungal components involved in adhesion, i.e. Als proteins and O-mannosylations. We suggest that the measured co-adhesion forces are involved in the formation of mixed biofilms, thus possibly as well in promoting polymicrobial infections. In the future, we anticipate that this SCFS platform will be used in nanomedicine to decipher the molecular mechanisms of a wide variety of pathogen-pathogen interactions and may help in designing novel anti-adhesion agents.

  4. 耐盐芽孢杆菌LAY的分类鉴定及其抗白色念珠菌活性研究%Identification of Bacillus sp. LAY and Its Antimicrobial Activity Against Candida albicans

    Institute of Scientific and Technical Information of China (English)

    曹建斌; 于慧瑛; 李新

    2015-01-01

    旨在从运城盐湖黑泥样品中分离获得一株耐盐细菌LAY,对其进行分类鉴定及抗菌特性研究。基于16S rRNA基因序列对菌株进行分类鉴定。以白色念珠菌为指示菌,采用杯碟法对菌株LAY发酵上清液进行抗菌活性检测,研究不同因素对其抗菌活性的影响;采用扫描电镜和透射电镜观察其抗菌效果,并对菌株基因组进行功能基因的PCR筛查。系统发育分析表明,菌株LAY为Bacillus属成员,为耐盐细菌。电镜观察发现,菌株LAY发酵上清液可导致白色念珠菌细胞结构出现明显异常。抗菌稳定性研究表明,菌株LAY发酵上清液活性较为稳定,表现出良好的对温度、pH、NaCl和紫外光的耐受性。功能基因筛查发现菌株LAY基因组中含有聚酮合酶(PKS)基因,表明该菌具有产聚酮类化合物的潜力。结果表明,盐湖环境中的极端微生物资源可作为抗菌活性物质的潜在新来源。%The goal of this work is to identify a halotolerant bacterium LAY isolated from Yuncheng Salt Lake and study its antimicrobial properties. The strain LAY was identified by 16S rRNA gene sequence analysis. Using Candida albicans as the indicator, the antimicrobial activity of the fermentation broth of strain LAY was detected by cylinder plate method, and meanwhile the effects of different factors on the activities were studied. Morphological and ultra-structural changes of treated cells were observed by scanning electron microscopy(SEM) and transmission electron microscopy(TEM). PCR screening of functional genes were also carried out. The results of phylogenetic analysis indicated that it was a halotolerant bacterium, and characterized as the genus of Bacillus, and named as Bacillus sp. LAY. The observation by electron spectroscopy discovered that morphological and ultra-structural changes of C. albicans after treatment by fermentation broth of Bacillus sp. LAY were significant. Antimicrobial

  5. Effect of essential oils prepared from Thai culinary herbs on sessile Candida albicans cultures.

    Science.gov (United States)

    Hovijitra, Ray S; Choonharuangdej, Suwan; Srithavaj, Theerathavaj

    2016-01-01

    Although medicinal herbs with fungicidal effects have been ubiquitously employed in traditional medicine, such effects of culinary herbs and spices still have to be elucidated. Therefore, it is noteworthy to determine the antifungal efficacy of some edible herbs used in Thai cuisine against sessile Candida albicans cultures, and to inquire if they can be further utilized as naturally-derived antifungals. Fourteen essential oils extracted from Thai culinary herbs and spices were tested for their antifungal activity against C. albicans using the agar disk diffusion method followed by broth micro-dilution method for the determination of minimum inhibitory concentration (MIC) and minimum fungicidal concentration. The oils with potent antifungal effects against planktonic fungi were then assessed for their effect against sessile fungus (adherent organisms and established biofilm culture). MIC of the oils against sessile C. albicans was evaluated by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide reduction assay. All selected culinary herbs and spices, except galangal, garlic, and turmeric, exhibited inhibitory effects on planktonic yeast cells. Cinnamon bark and sweet basil leaf essential oils exhibited potent fungicidal effect on planktonic and sessile fungus. Sessile MICs were 8-16 times higher than planktonic MICs. Consequently, both cinnamon bark and sweet basil leaf herbal oils seem to be highly effective anti-Candida choices. (J Oral Sci 58, 365-371, 2016).

  6. Candida albicans and Pseudomonas aeruginosa Interaction, with Focus on the Role of Eicosanoids.

    Science.gov (United States)

    Fourie, Ruan; Ells, Ruan; Swart, Chantel W; Sebolai, Olihile M; Albertyn, Jacobus; Pohl, Carolina H

    2016-01-01

    Candida albicans is commonly found in mixed infections with Pseudomonas aeruginosa, especially in the lungs of cystic fibrosis (CF) patients. Both of these opportunistic pathogens are able to form resistant biofilms and frequently infect immunocompromised individuals. The interaction between these two pathogens, which includes physical interaction as well as secreted factors, is mainly antagonistic. In addition, research suggests considerable interaction with their host, especially with immunomodulatory lipid mediators, termed eicosanoids. Candida albicans and Pseudomonas aeruginosa are both able to utilize arachidonic acid (AA), liberated from the host cells during infection, to form eicosanoids. The production of these eicosanoids, such as Prostaglandin E2, by the host and the pathogens may affect the dynamics of polymicrobial infection and the outcome of infections. It is of considerable importance to elucidate the role of host-produced, as well as pathogen-produced eicosanoids in polymicrobial infection. This review will focus on in vitro as well as in vivo interaction between C. albicans and P. aeruginosa, paying special attention to the role of eicosanoids in the cross-talk between host and the pathogens.

  7. Proteolytic activity and cytokine up-regulation by non-albicans Candida albicans.

    Science.gov (United States)

    Nawaz, Ali; Pärnänen, Pirjo; Kari, Kirsti; Meurman, Jukka H

    2015-05-01

    Mouth is an important source of infections and oral infections such as Candida infections increase the risk of mortality. Our purpose was to investigate differences in proteolytic activity of non-albicans Candida albicans (non-albicans Candida) between clinical isolates and laboratory samples. The second aim was to assess the concentration of pro- and anti-inflammatory cytokine levels IL-1β, IL-10, and TNF-α in saliva of patients with the non-albicans Candida and Candida-negative saliva samples. Clinical yeast samples from our laboratory were used for analyses. Candida strains were grown in YPG at 37 °C for 24 h in water bath with shaking. The activity of Candida proteinases of cell and cell-free fractions were analyzed by MDPF-gelatin zymography. The levels of IL-1β, IL-10, and TNF-α were measured from saliva with ELISA. The study showed differences in the proteolytic activity among the non-albicans Candida strains. C. tropicalis had higher proteolytic activity when compared to the other strains. Significant difference was found in salivary IL-1β levels between the non-albicans Candida and control strains (P albicans Candida strains. The increased IL-1β concentration may be one of the host response components associated with non-albicans Candida infection.

  8. A role for amyloid in cell aggregation and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Melissa C Garcia

    Full Text Available Cell adhesion molecules in Saccharomyces cerevisiae and Candida albicans contain amyloid-forming sequences that are highly conserved. We have now used site-specific mutagenesis and specific peptide perturbants to explore amyloid-dependent activity in the Candida albicans adhesin Als5p. A V326N substitution in the amyloid-forming region conserved secondary structure and ligand binding, but abrogated formation of amyloid fibrils in soluble Als5p and reduced cell surface thioflavin T fluorescence. When displayed on the cell surface, Als5p with this substitution prevented formation of adhesion nanodomains and formation of large cellular aggregates and model biofilms. In addition, amyloid nanodomains were regulated by exogenous peptides. An amyloid-forming homologous peptide rescued aggregation and biofilm activity of Als5p(V326N cells, and V326N substitution peptide inhibited aggregation and biofilm activity in Als5p(WT cells. Therefore, specific site mutation, inhibition by anti-amyloid peturbants, and sequence-specificity of pro-amyloid and anti-amyloid peptides showed that amyloid formation is essential for nanodomain formation and activation.

  9. Crystal Structure and Identification of Two Key Amino Acids Involved in AI-2 Production and Biofilm Formation in Streptococcus suis LuxS.

    Directory of Open Access Journals (Sweden)

    Yang Wang

    Full Text Available Streptococcus suis has emerged as an important zoonotic pathogen that causes meningitis, arthritis, septicemia and even sudden death in pigs and humans. Quorum sensing is the signaling network for cell-to-cell communication that bacterial cells can use to monitor their own population density through production and exchange of signal molecules. S-Ribosylhomocysteinase (LuxS is the key enzyme involved in the activated methyl cycle. Autoinducer 2 (AI-2 is the adduct of borate and a ribose derivative and is produced from S-adenosylhomocysteine (SAH. AI-2 can mediate interspecies communication and in some species facilitate the bacterial behavior regulation such as biofilm formation and virulence in both Gram-positive and Gram-negative bacteria. Here, we reported the overexpression, purification and crystallographic structure of LuxS from S. suis. Our results showed the catalytically active LuxS exists as a homodimer in solution. Inductively coupled plasma-mass spectrometry (ICP-MS revealed the presence of Zn2+ in LuxS. Although the core structure shares the similar topology with LuxS proteins from other bacterial species, structural analyses and comparative amino acid sequence alignments identified two key amino acid differences in S. suis LuxS, Phe80 and His87, which are located near the substrate binding site. The results of site-directed mutagenesis and enzymology studies confirmed that these two residues affect the catalytic activity of the enzyme. These in vitro results were corroborated in vivo by expression of the LuxS variants in a S. suis ΔluxS strain. The single and two amino acid of LuxS variant decreased AI-2 production and biofilm formation significantly compared to that of the parent strain. Our findings highlight the importance of key LuxS residues that influence the AI-2 production and biofilm formation in S.suis.

  10. Influence of culture media on biofilm formation by Candida species and response of sessile cells to antifungals and oxidative stress.

    Science.gov (United States)

    Serrano-Fujarte, Isela; López-Romero, Everardo; Reyna-López, Georgina Elena; Martínez-Gámez, Ma Alejandrina; Vega-González, Arturo; Cuéllar-Cruz, Mayra

    2015-01-01

    The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS) as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrations of antifungals, H2O2, menadione or silver nanoparticles (AgNPs). Biofilms were observed by scanning electron microscopy (SEM) and quantified by the XTT assay. C. albicans formed biofilms preferentially in YPD containing 2% glucose (YPD/2%), C. glabrata in glucose-free YNB or supplemented with 0.2% glucose (YNB/0.2%), while C. krusei and C. parapsilosis preferred YP, YPD/0.2%, and YPD/2%. Interestingly, only C. albicans produced an exopolymeric matrix. This is the first report dealing with the in vitro effect of the culture medium and glucose on the formation of biofilms in four Candida species as well as the resistance of sessile cells to antifungals, AgNPs, and ROS. Our results suggest that candidiasis in vivo is a multifactorial and complex process where the nutritional conditions, the human immune system, and the adaptability of the pathogen should be considered altogether to provide an effective treatment of the patient.

  11. Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species.

    Science.gov (United States)

    Whibley, Natasha; Gaffen, Sarah L

    2015-11-01

    The fungal genus Candida encompasses numerous species that inhabit a variety of hosts, either as commensal microbes and/or pathogens. Candida species are a major cause of fungal infections, yet to date there are no vaccines against Candida or indeed any other fungal pathogen. Our knowledge of immunity to Candida mainly comes from studies on Candida albicans, the most frequent species associated with disease. However, non-albicans Candida (NAC) species also cause disease and their prevalence is increasing. Although research into immunity to NAC species is still at an early stage, it is becoming apparent that immunity to C. albicans differs in important ways from non-albicans species, with important implications for treatment, therapy and predicted demographic susceptibility. This review will discuss the current understanding of immunity to NAC species in the context of immunity to C. albicans, and highlight as-yet unanswered questions.

  12. Comparative assessment of the effectiveness of different cleaning methods on the growth of Candida albicans over acrylic surface

    Directory of Open Access Journals (Sweden)

    Subhajit Gantait

    2016-01-01

    Full Text Available Context: This study evaluated the efficacy of denture adhesive, cleanser, chlorhexidine, and brushing against Candida albicans biofilm developed on an acrylic surface and predicted the most effective, simple, and inexpensive way to maintain denture health, thereby preventing denture stomatitis. Aims: To find the best possible method for maintaining denture hygiene. Settings and Design: This retrospective analysis was conducted in the Guru Nanak Institute of Dental Sciences and Research, Kolkata, and this in vitro study was designed to minimize denture stomatitis among denture wearing population. Subjects and Methods: Sixty acrylic discs of equal dimensions after exposure to C. albicans were treated for a duration of 24 h with denture adhesive, cleanser, 0.2% chlorhexidine individually, or in combinations simulating clinical conditions dividing in six groups, ten samples each (n = 10. Statistical Analysis Used: After treatment, colony count was evaluated and statistically analyzed by post hoc Tukey′s test and Dunnett′s test to determine the most effective way of prevention. Results: The statistical post hoc analysis (Tukey′s test and Dunnett′s test showed high significance (P < 0.0001. The group treated with adhesive showed high fungal growth compared to the control group, whereas chlorhexidine showed high potency to prevent C. albicans, whereas adhesive increased the adhesion of C. albicans to acrylic surface. Conclusions: Denture adhesive increases the adherence of C. albicans to denture surface. Other cleaning chemicals such as cleanser and chlorhexidine decrease the adherence. Moreover, among the all denture cleaning protocol, chlorhexidine drastically inhibit the adherence, as well as growth of C. albicans over denture surface.

  13. Pulsed light for the inactivation of fungal biofilms of clinically important pathogenic Candida species.

    Science.gov (United States)

    Garvey, Mary; Andrade Fernandes, Joao Paulo; Rowan, Neil

    2015-07-01

    Microorganisms are naturally found as biofilm communities more than planktonic free-floating cells; however, planktonic culture remains the current model for microbiological studies, such as disinfection techniques. The presence of fungal biofilms in the clinical setting has a negative impact on patient mortality, as Candida biofilms have proved to be resistant to biocides in numerous in vitro studies; however, there is limited information on the effect of pulsed light on sessile communities. Here we report on the use of pulsed UV light for the effective inactivation of clinically relevant Candida species. Fungal biofilms were grown by use of a CDC reactor on clinically relevant surfaces. Following a maximal 72 h formation period, the densely populated biofilms were exposed to pulsed light at varying fluences to determine biofilm sensitivity to pulsed-light inactivation. The results were then compared to planktonic cell inactivation. High levels of inactivation of C. albicans and C. parapsilosis biofilms were achieved with pulsed light for both 48 and 72 h biofilm structures. The findings suggest that pulsed light has the potential to provide a means of surface decontamination, subsequently reducing the risk of infection to patients. The research described herein deals with an important aspect of disease prevention and public health.

  14. Immunoproteomic Analysis of Antibody Responses to Extracellular Proteins of Candida albicans Revealing the Importance of Glycosylation for Antigen Recognition.

    Science.gov (United States)

    Luo, Ting; Krüger, Thomas; Knüpfer, Uwe; Kasper, Lydia; Wielsch, Natalie; Hube, Bernhard; Kortgen, Andreas; Bauer, Michael; Giamarellos-Bourboulis, Evangelos J; Dimopoulos, George; Brakhage, Axel A; Kniemeyer, Olaf

    2016-08-05

    During infection, the human pathogenic fungus Candida albicans undergoes a yeast-to-hypha transition, secretes numerous proteins for invasion of host tissues, and modulates the host's immune response. Little is known about the interplay of C. albicans secreted proteins and the host adaptive immune system. Here, we applied a combined 2D gel- and LC-MS/MS-based approach for the characterization of C. albicans extracellular proteins during the yeast-to-hypha transition, which led to a comprehensive C. albicans secretome map. The serological responses to C. albicans extracellular proteins were investigated by a 2D-immunoblotting approach combined with MS for protein identification. On the basis of the screening of sera from candidemia and three groups of noncandidemia patients, a core set of 19 immunodominant antibodies against secreted proteins of C. albicans was identified, seven of which represent potential diagnostic markers for candidemia (Xog1, Lip4, Asc1, Met6, Tsa1, Tpi1, and Prx1). Intriguingly, some secreted, strongly glycosylated protein antigens showed high cross-reactivity with sera from noncandidemia control groups. Enzymatic deglycosylation of proteins secreted from hyphae significantly impaired sera antibody recognition. Furthermore, deglycosylation of the recombinantly produced, secreted aspartyl protease Sap6 confirmed a significant contribution of glycan epitopes to the recognition of Sap6 by antibodies in patient's sera.

  15. Short imidazolium chains effectively clear fungal biofilm in keratitis treatment.

    Science.gov (United States)

    Liu, Lihong; Wu, Hong; Riduan, Siti Nurhanna; Ying, Jackie Y; Zhang, Yugen

    2013-01-01

    Fungal keratitis is a leading cause of ocular morbidity throughout the world. However, current therapies against fungal keratitis are often ineffective. Herein, we have developed the amphiphilic main-chain imidazolium polymer (PIM-45) and oligomer (IBN-1) materials that can efficiently inhibit the growth of fungi with low minimal inhibition concentration (MIC) values and clear the fungal biofilm, while displaying minimal hemolysis. In vivo keratitis treatment indicates that topical solutions of these polyimidazolium salts (PIMSs) are safe and as effective as that of amphotericin B, the most commonly used agent for the treatment of Candida albicans (C. albicans) keratitis. Compared to the costly and unstable amphotericin B and fluconazole, PIM-45 and IBN-1 are easy to prepare, inexpensive and stable. They can be stored in phosphate-buffered saline (PBS) solutions with long shelf life for routine topical use.

  16. Identification of flgZ as a flagellar gene encoding a PilZ domain protein that regulates swimming motility and biofilm formation in Pseudomonas.

    Science.gov (United States)

    Martínez-Granero, Francisco; Navazo, Ana; Barahona, Emma; Redondo-Nieto, Miguel; González de Heredia, Elena; Baena, Irene; Martín-Martín, Irene; Rivilla, Rafael; Martín, Marta

    2014-01-01

    Diguanylate cyclase and phosphodiesterase enzymatic activities control c-di-GMP levels modulating planktonic versus sessile lifestyle behavior in bacteria. The PilZ domain is described as a sensor of c-di-GMP intracellular levels and the proteins containing a PilZ domain represent the best studied class of c-di-GMP receptors forming part of the c-di-GMP signaling cascade. In P. fluorescens F113 we have found two diguanylate cyclases (WspR, SadC) and one phosphodiesterase (BifA) implicated in regulation of swimming motility and biofilm formation. Here we identify a flgZ gene located in a flagellar operon encoding a protein that contains a PilZ domain. Moreover, we show that FlgZ subcellular localization depends on the c-di-GMP intracellular levels. The overexpression analysis of flgZ in P. fluorescens F113 and P. putida KT2440 backgrounds reveal a participation of FlgZ in Pseudomonas swimming motility regulation. Besides, the epistasis of flgZ over wspR and bifA clearly shows that c-di-GMP intracellular levels produced by the enzymatic activity of the diguanylate cyclase WspR and the phosphodiesterase BifA regulates biofilm formation through FlgZ.

  17. Identification of flgZ as a flagellar gene encoding a PilZ domain protein that regulates swimming motility and biofilm formation in Pseudomonas.

    Directory of Open Access Journals (Sweden)

    Francisco Martínez-Granero

    Full Text Available Diguanylate cyclase and phosphodiesterase enzymatic activities control c-di-GMP levels modulating planktonic versus sessile lifestyle behavior in bacteria. The PilZ domain is described as a sensor of c-di-GMP intracellular levels and the proteins containing a PilZ domain represent the best studied class of c-di-GMP receptors forming part of the c-di-GMP signaling cascade. In P. fluorescens F113 we have found two diguanylate cyclases (WspR, SadC and one phosphodiesterase (BifA implicated in regulation of swimming motility and biofilm formation. Here we identify a flgZ gene located in a flagellar operon encoding a protein that contains a PilZ domain. Moreover, we show that FlgZ subcellular localization depends on the c-di-GMP intracellular levels. The overexpression analysis of flgZ in P. fluorescens F113 and P. putida KT2440 backgrounds reveal a participation of FlgZ in Pseudomonas swimming motility regulation. Besides, the epistasis of flgZ over wspR and bifA clearly shows that c-di-GMP intracellular levels produced by the enzymatic activity of the diguanylate cyclase WspR and the phosphodiesterase BifA regulates biofilm formation through FlgZ.

  18. Performance comparison of phenotypic and molecular methods for detection and differentiation of Candida albicans and Candida dubliniensis

    Directory of Open Access Journals (Sweden)

    Ahmad Suhail

    2012-09-01

    Full Text Available Abstract Background Candida albicans is the most pathogenic Candida species but shares many phenotypic features with Candida dubliniensis and may, therefore, be misidentified in clinical microbiology laboratories. Candidemia cases due to C. dubliniensis are increasingly being reported in recent years. Accurate identification is warranted since mortality rates are highest for C. albicans infections, however, C. dubliniensis has the propensity to develop resistance against azoles more easily. We developed a duplex PCR assay for rapid detection and differentiation of C. albicans from C. dubliniensis for resource-poor settings equipped with basic PCR technology and compared its performance with three phenotypic methods. Methods Duplex PCR was performed on 122 germ tube positive and 12 germ tube negative isolates of Candida species previously identified by assimilation profiles on Vitek 2 ID-YST system. Typical morphologic characteristics on simplified sunflower seed agar (SSA, and reaction with a commercial (Bichro-Dubli latex agglutination test were also performed. The assay was further applied on 239 clinical yeast and yeast-like fungi and results were confirmed by DNA sequencing of internal transcribed spacer (ITS region of rDNA. Results The results of duplex PCR assay for 122 germ tube positive and 12 germ tube negative isolates of Candida species were comparable to their identification by Vitek 2 ID-YST system, colony characteristics on SSA and latex agglutination test. Application of duplex PCR also correctly identified all 148 C. albicans and 50 C. dubliniensis strains among 239 yeast-like fungi. Conclusions The data show that both, duplex PCR and Bichro-Dubli are reliable tests for rapid (within few hours identification of clinical yeast isolates as C. dubliniensis or C. albicans. However, duplex PCR may be applied directly on clinical yeast isolates for their identification as C. dubliniensis or C. albicans as it does not require prior

  19. The antimicrobial effects of Citrus limonum and Citrus aurantium essential oils on multi-species biofilms

    Directory of Open Access Journals (Sweden)

    Sarah Almeida Coelho Oliveira

    2014-01-01

    Full Text Available The aim of this study was to evaluate the effects of Citrus limonum and Citrus aurantium essential oils (EOs compared to 0.2% chlorhexidine (CHX and 1% sodium hypochlorite (NaOCl on multi-species biofilms formed by Candida albicans, Enterococcus faecalis and Escherichia coli. The biofilms were grown in acrylic disks immersed in broth, inoculated with microbial suspension (106 cells/mL and incubated at 37°C / 48 h. After the biofilms were formed, they were exposed for 5 minutes to the solutions (n = 10: C. aurantium EO, C. limonum EO, 0.2% CHX, 1% NaOCl or sterile saline solution [0.9% sodium chloride (NaCl]. Next, the discs were placed in sterile 0.9% NaCl and sonicated to disperse the biofilms. Tenfold serial dilutions were performed and the aliquots were seeded onto selective agar and incubated at 37°C / 48 h. Next, the number of colony-forming units per milliliter was counted and analyzed statistically (Tukey test, p ≤ 0.05. C. aurantium EO and NaOCl inhibited the growth of all microorganisms in multi-species biofilms. C. limonum EO promoted a 100% reduction of C. albicans and E. coli, and 49.3% of E. faecalis. CHX was less effective against C. albicans and E. coli, yielding a reduction of 68.8% and 86.7%, respectively. However, the reduction of E. faecalis using CHX (81.7% was greater than that obtained using C. limonum EO. Both Citrus limonum and Citrus aurantium EOs are effective in controlling multi-species biofilms; the microbial reductions achieved by EOs were not only similar to those of NaOCl, but even higher than those achieved by CHX, in some cases.

  20. Comparative assessment of the effectiveness of different cleaning methods on the growth of Candida albicans over acrylic surface

    Science.gov (United States)

    Gantait, Subhajit; Bhattacharyya, Jayanta; Das, Samiran; Biswas, Shibendu; Ghati, Amit; Ghosh, Soumitra; Goel, Preeti

    2016-01-01

    Context: This study evaluated the efficacy of denture adhesive, cleanser, chlorhexidine, and brushing against Candida albicans biofilm developed on an acrylic surface and predicted the most effective, simple, and inexpensive way to maintain denture health, thereby preventing denture stomatitis. Aims: To find the best possible method for maintaining denture hygiene. Settings and Design: This retrospective analysis was conducted in the Guru Nanak Institute of Dental Sciences and Research, Kolkata, and this in vitro study was designed to minimize denture stomatitis among denture wearing population. Subjects and Methods: Sixty acrylic discs of equal dimensions after exposure to C. albicans were treated for a duration of 24 h with denture adhesive, cleanser, 0.2% chlorhexidine individually, or in combinations simulating clinical conditions dividing in six groups, ten samples each (n = 10). Statistical Analysis Used: After treatment, colony count was evaluated and statistically analyzed by post hoc Tukey's test and Dunnett's test to determine the most effective way of prevention. Results: The statistical post hoc analysis (Tukey's test and Dunnett's test) showed high significance (P Denture adhesive increases the adherence of C. albicans to denture surface. Other cleaning chemicals such as cleanser and chlorhexidine decrease the adherence. Moreover, among the all denture cleaning protocol, chlorhexidine drastically inhibit the adherence, as well as growth of C. albicans over denture surface. PMID:27630498

  1. The Use of Chitosan to Enhance Photodynamic Inactivation against Candida albicans and Its Drug-Resistant Clinical Isolates

    Directory of Open Access Journals (Sweden)

    Tsuimin Tsai

    2013-04-01

    Full Text Available Drug-resistant Candida infection is a major health concern among immunocompromised patients. Antimicrobial photodynamic inactivation (PDI was introduced as an alternative treatment for local infections. Although Candida (C. has demonstrated susceptibility to PDI, high doses of photosensitizer (PS and light energy are required, which may be harmful to eukaryotic human cells. This study explores the capacity of chitosan, a polycationic biopolymer, to increase the efficacy of PDI against C. albicans, as well as fluconazole-resistant clinical isolates in planktonic or biofilm states. Chitosan was shown to effectively augment the effect of PDI mediated by toluidine blue O (TBO against C. albicans that were incubated with chitosan for 30 min following PDI. Chitosan at concentrations as low as 0.25% eradicated C. albicans; however, without PDI treatment, chitosan alone did not demonstrate significant antimicrobial activity within the 30 min of incubation. These results suggest that chitosan only augmented the fungicidal effect after the cells had been damaged by PDI. Increasing the dosage of chitosan or prolonging the incubation time allowed a reduction in the PDI condition required to completely eradicate C. albicans. These results clearly indicate that combining chitosan with PDI is a promising antimicrobial approach to treat infectious diseases.

  2. New pharmacological properties of Medicago sativa and Saponaria officinalis saponin-rich fractions addressed to Candida albicans.

    Science.gov (United States)

    Sadowska, Beata; Budzyńska, Aleksandra; Więckowska-Szakiel, Marzena; Paszkiewicz, Małgorzata; Stochmal, Anna; Moniuszko-Szajwaj, Barbara; Kowalczyk, Mariusz; Różalska, Barbara

    2014-08-01

    The antifungal activity of the saponin-rich fractions (SFs) from Medicago sativa (aerial parts and roots) and Saponaria officinalis (used as a well-known source of plant saponins) against Candida albicans reference and clinical strains, their yeast-to-hyphal conversion, adhesion, and biofilm formation was investigated. Direct fungicidal/fungistatic properties of the tested phytochemicals used alone, as well as their synergy with azoles (probably resulting from yeast cell wall instability) were demonstrated. Here, to the best of our knowledge, we report for the first time the ability of saponin-rich extracts of M. sativa and S. officinalis to inhibit C. albicans germ tube formation, limit hyphal growth, reduce yeast adherence and biofilm formation, and eradicate mature (24 h) Candida biofilm. Moreover, M. sativa SFs (mainly obtained from aerial parts), in the range of concentrations which were active modulators of Candida virulence factors, exhibited low cytotoxicity against the mouse fibroblast line L929. These properties seem to be very promising in the context of using plant-derived SFs as potential novel antifungal therapeutics supporting classic drugs or as ingredients of disinfectants.

  3. Role of Candida albicans-Secreted Aspartyl Proteinases (Saps in Severe Early Childhood Caries

    Directory of Open Access Journals (Sweden)

    Wenqing Li

    2014-06-01

    Full Text Available Candida albicans is strongly associated with severe early childhood caries (S-ECC. However, the roles of secreted aspartyl proteinases (Saps, an important virulence factor of C. albicans, in the progress of S-ECC are not clear. In our study, the Saps activities were evaluated by the yeast nitrogen base–bovine serum albumi (YNB–BSA agar plate method and by the MTT method with bovine serum albumin (BSA as the substrate. Genotypes of C. albicans and gene expression of Sap1–5 were evaluated. The relationships of Saps activities and genotypes with S-ECC were analyzed. The results showed that enzyme activities of Saps in the S-ECC group were significantly higher than those in the caries free (CF group (p < 0.05. Genotypes A, B and C were detected in the S-ECC group, and genotypes A and C were detected in the CF group. In the genotype A group, Saps activity in the S-ECC group was significantly different from that in the CF group (p < 0.05. The gene expression level of Sap1 in the S-ECC group was significantly higher than that in the CF group (p = 0.001, while Sap4 expression was significantly lower than that in the CF group (p = 0.029. It can be concluded that Sap1–5 are the predominant proteinase genes expressed in C. albicans from dental biofilm and Sap1 may play an important role in the development of S-ECC.

  4. Exogenous tyrosol inhibits planktonic cells and biofilms of Candida species and enhances their susceptibility to antifungals.

    Science.gov (United States)

    Cordeiro, Rossana de A; Teixeira, Carlos E C; Brilhante, Raimunda S N; Castelo-Branco, Débora S C M; Alencar, Lucas P; de Oliveira, Jonathas S; Monteiro, André J; Bandeira, Tereza J P G; Sidrim, José J C; Moreira, José Luciano Bezerra; Rocha, Marcos F G

    2015-06-01

    Tyrosol is a quorum-sensing molecule of Candida albicans able to induce hyphal development in the early and intermediate stages of biofilm growth. In the present study, we evaluated the effect of high concentrations of exogenous tyrosol on planktonic cells and biofilms of C. albicans (n = 10) and C. tropicalis (n = 10), and investigated whether tyrosol could be synergic to antifungals that target cellular ergosterol. Antifungal susceptibility and drug interaction against planktonic cells were investigated by the broth microdilution method. Tyrosol was able to inhibit planktonic cells, with MIC values ranging from 2.5 to 5.0 mM for both species. Synergism was observed between tyrosol/amphotericin B (11/20 strains), tyrosol/itraconazole (18/20 strains) and tyrosol/fluconazole (18/20 strains). Exogenous tyrosol alone or combined with antifungals at both 10 × MIC and 50 × MIC were able to reduce biofilm of both Candida species. Mature biofilms were susceptible to tyrosol alone at 50 × MIC or combined with amphotericin at both 10 × MIC and 50 × MIC. On the other hand, tyrosol plus azoles at both 10 × MIC and 50 × MIC enhanced biofilm growth.

  5. Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm.

    Science.gov (United States)

    Jayashree, C; Tamilarasan, K; Rajkumar, M; Arulazhagan, P; Yogalakshmi, K N; Srikanth, M; Banu, J Rajesh

    2016-09-15

    Tubular upflow microbial fuel cell (MFC) utilizing sea food processing wastewater was evaluated for wastewater treatment efficiency and power generation. At an organic loading rate (OLR) of 0.6 g d(-1), the MFC accomplished total and soluble chemical oxygen demand (COD) removal of 83 and 95%, respectively. A maximum power density of 105 mW m(-2) (2.21 W m(-3)) was achieved at an OLR of 2.57 g d(-1). The predominant bacterial communities of anode biofilm were identified as RB1A (LC035455), RB1B (LC035456), RB1C (LC035457) and RB1E (LC035458). All the four strains belonged to genera Stenotrophomonas. The results of the study reaffirms that the seafood processing wastewater can be treated in an upflow MFC for simultaneous power generation and wastewater treatment.

  6. Biofilm formation by and antifungal susceptibility of Candida isolates from urine.

    Science.gov (United States)

    Jain, N; Kohli, R; Cook, E; Gialanella, P; Chang, T; Fries, B C

    2007-03-01

    Biofilm formation (BF) in the setting of candiduria has not been well studied. We determined BF and MIC to antifungals in Candida spp. isolates grown from urine samples of patients and performed a retrospective chart review to examine the correlation with risk factors. A total of 67 Candida spp. isolates were grown from urine samples from 55 patients. The species distribution was C. albicans (54%), C. glabrata (36%), and C. tropicalis (10%). BF varied greatly among individual Candida isolates but was stable in sequential isolates during chronic infection. BF also depended on the growth medium and especially in C. albicans was significantly enhanced in artificial urine (AU) compared to RPMI medium. In nine of the C. albicans strains BF was 4- to 10-fold higher in AU, whereas in three of the C. albicans strains and two of the C. glabrata strains higher BF was measured in RPMI medium than in AU. Determination of the MICs showed that planktonic cells of all strains were susceptible to amphotericin B (AMB) and caspofungin (CASPO) and that three of the C. glabrata strains and two of the C. albicans strains were resistant to fluconazole (FLU). In contrast, all biofilm-associated adherent cells were resistant to CASPO and FLU. The biofilms of 14 strains (28%) were sensitive to AMB (MIC(50) of Candida strains that varies greatly among clinical strains and is dependent on the growth medium. Resistance to AMB is associated with higher BF in AU, which may represent the more physiologic medium to test BF. Future studies should address whether in vitro BF can predict treatment failure in vivo.

  7. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display...... a remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because...... the use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  8. Functional regions of Candida albicans hyphal cell wall protein Als3 that determine interaction with the oral bacterium Streptococcus gordonii.

    Science.gov (United States)

    Bamford, Caroline V; Nobbs, Angela H; Barbour, Michele E; Lamont, Richard J; Jenkinson, Howard F

    2015-01-01

    The opportunistic pathogen Candida albicans colonizes the oral cavity and gastrointestinal tract. Adherence to host cells, extracellular matrix and salivary glycoproteins that coat oral surfaces, including prostheses, is an important prerequisite for colonization. In addition, interactions of C. albicans with commensal oral streptococci are suggested to promote retention and persistence of fungal cells in mixed-species communities. The hyphal filament specific cell wall protein Als3, a member of the Als protein family, is a major determinant in C. albicans adherence. Here, we utilized site-specific in-frame deletions within Als3 expressed on the surface of heterologous Saccharomyces cerevisiae to determine regions involved in interactions of Als3 with Streptococcus gordonii. N-terminal region amino acid residue deletions Δ166-225, Δ218-285, Δ270-305 and Δ277-286 were each effective in inhibiting binding of Strep. gordonii to Als3. In addition, these deletions differentially affected biofilm formation, hydrophobicity, and adherence to silicone and human tissue proteins. Deletion of the central repeat domain (Δ434-830) did not significantly affect interaction of Als3 with Strep. gordonii SspB protein, but affected other adherence properties and biofilm formation. Deletion of the amyloid-forming region (Δ325-331) did not affect interaction of Als3 with Strep. gordonii SspB adhesin, suggesting this interaction was amyloid-independent. These findings highlighted the essential function of the N-terminal domain of Als3 in mediating the interaction of C. albicans with S. gordonii, and suggested that amyloid formation is not essential for the inter-kingdom interaction.

  9. Systemic neonatal candidosis: the karyotyping of Candida albicans strains isolated from neonates and health-workers.

    Science.gov (United States)

    Ben Abdeljelil, J; Ben Saida, N; Saghrouni, F; Fathallah, A; Boukadida, J; Sboui, H; Ben Said, M

    2010-01-01

    Candida albicans has become an important cause of nosocomial infections in neonatal intensive care units (NICUs). The aim of the present study was to compare C. albicans strains isolated from neonates (NN) suffering from systemic candidosis and from nurses in order to determine the relatedness between NN and health workers' strains. Thirty-one C. albicans strains were isolated from 18 NN admitted to the NICU of the neonatology service of Farhat Hached Hospital of Sousse, Tunisia and suffering from systemic candidosis, together with five strains recovered from nurses suffering from C. albicans onychomycosis. Two additional strains were tested, one from an adult patient who developed a systemic candidosis and the second from an adult with inguinal intertrigo. All strains were karyotyped by pulsed-field gel electrophoresis (PFGE) with a CHEF-DR II system. Analysis of PFGE patterns yielded by the 38 strains tested led to the identification of three pulsotypes that were designated I, II and III, and consisted of six chromosomal bands with a size ranging from 700 to >2500 kbp. The most widespread was the pulsotype I, which was shared by 17 NN and the five nurses' strains. The identity between NN and nurses' strains is very suggestive of a nosocomial acquisition from health-workers.

  10. Application of surface plasmon resonance biosensor for the detection of Candida albicans

    Science.gov (United States)

    Yodmongkol, Sirasa; Thaweboon, Sroisiri; Thaweboon, Boonyanit; Puttharugsa, Chokchai; Sutapun, Boonsong; Amarit, Ratthasart; Somboonkaew, Armote; Srikhirin, Toemsak

    2016-02-01

    In this study, surface plasmon resonance imaging (SPR imaging) was developed for the detection of Candida albicans which is a causal agent of oral infection. The detection was based on the sandwich assay. The capture antibody was covalently immobilized on the mixed self assemble monolayers (SAMs). The ratio of mixed SAMs between 11-mercaptoundecanoic acid and 3-mercaptopropanol was varied to find the optimal ratio for use as a sensor surface. The results showed that the suitable surface for C. albicans detection was SAM of carboxylic (mixed SAMs 1:0), even though mixed SAMs 1:40 had a high detection signal in comparison to mixed SAMs 1:0, but the non-specific signal was higher. The detection limit was 107 cells/ml for direct detection, and was increased to 106 cells/ml with sandwich antibody. The use of polyclonal C. albicans antibody as capture and sandwich antibody showed good selectivity against the relevant oral bacteria including Escherichia coli, Streptococcus mutan, Staphylococcus aureus, β-streptococci, and Lactobacillus casei. SPR platform in this study could detect C. albicans from the mixed microbial suspension without requirement of skillful technician. This SPR imaging biosensor could be applied for Candida identification after cultivation.

  11. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial communities...... at the microscale of complex communities, including biofilms.Studies of multispecies biofilms and the interactions shaping these are conducted in traditional approaches used for single-species biofilms with some adjustments; but a crucial point for consideration is which strains to combine and where these should...

  12. Candida albicans infection in patients with oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Čanković Miloš

    2010-01-01

    Full Text Available Bacground/Aim. Systemic candidiasis in intensive care units remains an improtant problem due to antifungal resistance. Patients undergoing radiotherapy for head and neck cancer are at increased risk of developing oral candidiasis and they more frequent have prior fungi colonization. Due to identification of specific risk factors predisposing to fungal infection in order to threat such patients the aim of this study was to determine the presence of Candida species in patients with oral squamous cell carcinoma and compare it to the control subjects (patients with benign oral mucosal lesions. Methods. A total number of 30 consecutive oral cancer examined patients were included in this prospective study (24 men and 6 women with a mean age of 61.47 years, range 41-81 years. The control group consisted of 30 consecutive patients with histologically proven benign oral mucosal lesions (16 men and 14 women with a mean age of 54.53 years, range 16- 83 years. The samples for mycological examination were obtained by using sterile cotton swabs from the cancer lesion surface and in the patients of the control group from the benign mucosal lesion surface. Samples were inoculated in Sabouraud' dextrose agar. For identification purposes, Mackenzie germ tube test was performend on all isolates. Results. The prevalence of Candida was significantly higher in oral cancer patients than in control subjects (χ2 = 5.455, p = 0.020. Candida was found on nine of the 30 cancer surfaces; 5 (16.7% were identified as non-albicans Candida and 4 (13.3% as Candida albicans. In the control group, only Candida albicans was isolated from 2 (6.7% patients. In this study, no statistically significant differences in the presence of Candida species was found with respect to gender, age, smoking, alcohol consumption, wearing of dental protheses and the site of cancer lesion. Conclusion. The increased prevalence of yeasts on the surfaces of oral carcinoma indicates a need for their

  13. Raman spectroscopic differentiation of planktonic bacteria and biofilms.

    Science.gov (United States)

    Kusić, Dragana; Kampe, Bernd; Ramoji, Anuradha; Neugebauer, Ute; Rösch, Petra; Popp, Jürgen

    2015-09-01

    Both biofilm formations as well as planktonic cells of water bacteria such as diverse species of the Legionella genus as well as Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli were examined in detail by Raman microspectroscopy. Production of various molecules involved in biofilm formation of tested species in nutrient-deficient media such as tap water was observed and was particularly evident in the biofilms formed by six Legionella species. Biofilms of selected species of the Legionella genus differ significantly from the planktonic cells of the same organisms in their lipid amount. Also, all Legionella species have formed biofilms that differ significantly from the biofilms of the other tested genera in the amount of lipids they produced. We believe that the significant increase in the synthesis of this molecular species may be associated with the ability of Legionella species to form biofilms. In addition, a combination of Raman microspectroscopy with chemometric approaches can distinguish between both planktonic form and biofilms of diverse bacteria and could be used to identify samples which were unknown to the identification model. Our results provide valuable data for the development of fast and reliable analytic methods based on Raman microspectroscopy, which can be applied to the analysis of tap water-adapted microorganisms without any cultivation step.

  14. Rapid identification of Yeast like fungi outside of Candida albicans isolated form blood culture by two MALDI-TOF MS systems%两种 MALDI-TOF MS 系统快速鉴定血培养中白念珠菌以外酵母样真菌

    Institute of Scientific and Technical Information of China (English)

    黄声雷; 胡必杰; 陈蓉; 周春妹

    2015-01-01

    Objective To evaluate the application of 2 matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS),Autoflex MALDI-TOF MS and Vitek MALDI-TOF MS,for the identification of Yeast like fungi outside of Candida albicans isolated from blood culture.Methods A total of 59 isolates were collected from blood culture from October 201 0 to February 201 3 among inpatients in Zhongshan Hospital,Fudan University.The results of fungus internal transcribed spacer (ITS)sequencing were as golden standards.The correct identification rates of Autoflex MALDI-TOF MS,Vitek MALDI-TOF MS and API 20C AUX were analyzed comparatively.Results The 59 isolates included 1 1 types of fungi,namely,Candida parapsilosis complex(30 isolates,50.8%),Candida tropicalis(1 1 isolates,1 8.6%),Candida glabrata (8 isolates,1 3.6%),Candida krusei (2 isolates,3.4%),Wickerhamomy cesanomalus(2 isolates,3.4%),Cryptococcus neoformans(2 isolates,3.4%),Candida iusitaniae(1 isolate,1 .7%), Candida guilliermondii (1 isolate,1 .7%),Trichosporon asahii(1 isolate,1 .7%)and Saccharomyces cerevisiae (1 isolate,1 .7%).The correct identification rates by Autoflex MALDI-TOF MS,Vitek MALDI-TOF MS and API 20C AUX were 93.2%,83.1 % and 79.7%,respectively,and there was no statistical significance between the 2 MALDI-TOF MS systems (P =0.1 55 ).The correct identification rates for yeast like fungi outside of Candida albicans by Autoflex MALDI-TOF MS,Vitek MALDI-TOF MS and API 20C AUX were 1 00.0%,84.9% and 84.9%, respectively,and there was statistical significance between the 2 MALDI-TOF MS systems(P =0.006).The correct identification rates of rarely clinical encountered fungi by Autoflex MALDI-TOF MS,Vitek MALDI-TOF MS and API 20C AUX were 33.3%,66.6% and 33.3%,respectively.Conclusions MALDI-TOF MS system is rapid,simple and accurate compared with current routine biochemical identification methods.The performance of Autoflex MALDI-TOF MS is similar with that of Vitek MALDI-TOF MS for the

  15. Candida albicans adhesion to composite resin materials.

    Science.gov (United States)

    Bürgers, Ralf; Schneider-Brachert, Wulf; Rosentritt, Martin; Handel, Gerhard; Hahnel, Sebastian

    2009-09-01

    The adhesion of Candida albicans to dental restorative materials in the human oral cavity may promote the occurrence of oral candidosis. This study aimed to compare the susceptibility of 14 commonly used composite resin materials (two compomers, one ormocer, one novel silorane, and ten conventional hybrid composites) to adhere Candida albicans. Differences in the amount of adhering fungi should be related to surface roughness, hydrophobicity, and the type of matrix. Cylindrical specimens of each material were made according to the manufacturers' instructions. Surface roughness R (a) was assessed by perthometer measurements and the degree of hydrophobicity by computerized contact angle analysis. Specimens were incubated with a reference strain of C. albicans (DMSZ 1386), and adhering fungi were quantified by using a bioluminometric assay in combination with an automated plate reader. Statistical differences were analyzed by the Kruskal-Wallis test and Mann-Whitney U test. Spearman's rank correlation coefficients were calculated to assess correlations. Median R (a) of the tested composite resin materials ranged between 0.04 and 0.23 microm, median contact angles between 69.2 degrees and 86.9 degrees . The two compomers and the ormocer showed lower luminescence intensities indicating less adhesion of fungi than all tested conventional hybrid composites. No conclusive correlation was found between surface roughness, hydrophobicity, and the amount of adhering C. albicans.

  16. Photodynamic therapy with water-soluble phtalocyanines against bacterial biofilms in teeth root canals

    Science.gov (United States)

    Gergova, Raina; Georgieva, Tzvetelina; Angelov, Ivan; Mantareva, Vanya; Valkanov, Serjoga; Mitov, Ivan; Dimitrov, Slavcho

    2012-06-01

    The study presents the PDT with metal phthalocyanines on biofilms grown in root canals of ten representatives of the Gram-positive and the Gram-negative bacterial species and a fungus Candida albicans which cause aqute teeth infections in root canals.. The extracted human single-root teeth infected for 48 h with microorganisms in conditions to form biofilms of the above pathogens were PDT treated. The stage of biofilm formation and PDT effect of the samples of the teeth were determined by the scaning electron microscopy and with standard microbial tests. The PDT treating procedure included 10 min incubation with the respected phthalocyanine and irradiated with 660 nm Diode laser for 10 min. The most strongly antibacterial activity was achieved with zinc(II) phthalocyanine (ZnPc) against Enterococcus faecalis, Staphylococcus aureus and Moraxella catarrhalis. The other Gram-negative bacteria and Candida albicans were 10-100 times more resistant than the Gram-positive species. The Gram-negative Moraxella catarrhalis and Acinetobacter baumannii were more sensitive than the enterobacteria, but eradication of Pseudomonas aeruginosa in biofilm was insignificant. The influence of the stage of biofilm formation and the initial conditions (bacterial density, photosensitizer concentration and energy fluence of radiation) to the obtained level of inactivation of biofilms was investigated. The PDT with ZnPc photosensitizers show a powerful antimicrobial activity against the most frequent pathogens in endodontic infections and this method for inactivation of pathogens may be used with sucsses for treatment of the bacterial biofilms in the root canals.

  17. Anticandidal efficacy of cinnamon oil against planktonic and biofilm cultures of Candida parapsilosis and Candida orthopsilosis.

    Science.gov (United States)

    Pires, Regina Helena; Montanari, Lilian Bueno; Martins, Carlos Henrique G; Zaia, José Eduardo; Almeida, Ana Marisa Fusco; Matsumoto, Marcelo T; Mendes-Giannini, Maria José S

    2011-12-01

    Candida parapsilosis is yeast capable of forming biofilms on medical devices. Novel approaches for the prevention and eradication of the biofilms are desired. This study investigated the anticandidal activity of sixteen essential oils on planktonic and biofilm cultures of C. parapsilosis complex. We used molecular tools, enumeration of colony-forming units, the colourimetric MTT assay, scanning electron microscopy (SEM) and a chequerboard assay coupled with software analyses to evaluate the growth kinetics, architecture, inhibition and reduction in biofilms formed from environmental isolates of the Candida parapsilosis complex; further, we also evaluated whether essential oils would interact synergistically with amphotericin B to increase their anticandidal activities. Of the environmental C. parapsilosis isolates examined, C. parapsilosis and C. orthopsilosis were identified. Biofilm growth on polystyrene substrates peaked within 48 h, after which growth remained relatively stable up to 72 h, when it began to decline. Details of the architectural analysis assessed by SEM showed that C. parapsilosis complex formed less complex biofilms compared with C. albicans biofilms. The most active essential oil was cinnamon oil (CO), which showed anticandidal activity against C. orthopsilosis and C. parapsilosis in both suspension (minimum inhibitory concentration-MIC-250 and 500 μg/ml) and biofilm (minimum biofilm reduction concentration-MBRC-1,000 and 2,000 μg/ml) cultures. CO also inhibited biofilm formation (MBIC) at concentrations above 250 μg/ml for both species tested. However, synergism with amphotericin B was not observed. Thus, CO is a natural anticandidal agent that can be effectively utilised for the control of the yeasts tested.

  18. Hydraulic resistance of biofilms

    KAUST Repository

    Dreszer, C.

    2013-02-01

    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  19. Meningococcal biofilm formation

    DEFF Research Database (Denmark)

    Lappann, M.; Haagensen, Janus Anders Juul; Claus, H.

    2006-01-01

    We show that in a standardized in vitro flow system unencapsulated variants of genetically diverse lineages of Neisseria meningitidis formed biofilms, that could be maintained for more than 96 h. Biofilm cells were resistant to penicillin, but not to rifampin or ciprofloxacin. For some strains......, microcolony formation within biofilms was observed. Microcolony formation in strain MC58 depended on a functional copy of the pilE gene encoding the pilus subunit pilin, and was associated with twitching of cells. Nevertheless, unpiliated pilE mutants formed biofilms showing that attachment and accumulation......X alleles was identified among genetically diverse meningococcal strains. PilX alleles differed in their propensity to support autoaggregation of cells in suspension, but not in their ability to support microcolony formation within biofilms in the continuous flow system....

  20. [The evaluation of relationship between the origin of Candida sp. and the ability of biofilm formation on surface of different biomaterials].

    Science.gov (United States)

    Ciok-Pater, Emilia; Gospodarek, Eugenia; Prazyńska, Małgorzata; Bogiel, Tomasz

    2009-01-01

    The increase of fungal infections in recent years is connected with the progress in medicine. The vast usage of biomaterials is an inseparable element of contemporary medicine but it also leads to development of infections. The ability to produce biofilm by those yeasts plays an important role in the pathogenesis of candidiasis. Candida biofilm can form on the surface of plastic materials (silicon, polychloride vinyl, polymethacrylate methyl) used to catheters, drains and dentures production that is why it is a serious problem in case of fungal infections in patients who during the diagnosis and treatment have contact with biomaterials. The aim of the study was the assessment of ability to form biofilm on the surface of different biomaterials (latex silicon, polychloride vinyl, polystyrene, nylon and polymethacrylate methyl). 150 strains of Candida sp. were examined: 85 (56.7%) C. albicans and 65 (43.3%) C. non-albicans. The examined yeasts produced biofilm on the surface of polymethacrylate methyl in 39.3%, latex silicone in 38.7%, polychloride vinyl in 38.0%, polystyrene in 35.3% and nylon in 30.7%. Biofilm was most frequently produced by the strains of C. albicans, C. tropicalis, C. glabrata, C. parapsilosis, C. krusei and C. lusitaniae species.

  1. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin.

    Directory of Open Access Journals (Sweden)

    Steve P Bernier

    Full Text Available High levels of antibiotic tolerance are a hallmark of bacterial biofilms. In contrast to well-characterized inherited antibiotic resistance, molecular mechanisms leading to reversible and transient antibiotic tolerance displayed by biofilm bacteria are still poorly understood. The physiological heterogeneity of biofilms influences the formation of transient specialized subpopulations that may be more tolerant to antibiotics. In this study, we used random transposon mutagenesis to identify biofilm-specific tolerant mutants normally exhibited by subpopulations located in specialized niches of heterogeneous biofilms. Using Escherichia coli as a model organism, we demonstrated, through identification of amino acid auxotroph mutants, that starved biofilms exhibited significantly greater tolerance towards fluoroquinolone ofloxacin than their planktonic counterparts. We demonstrated that the biofilm-associated tolerance to ofloxacin was fully dependent on a functional SOS response upon starvation to both amino acids and carbon source and partially dependent on the stringent response upon leucine starvation. However, the biofilm-specific ofloxacin increased tolerance did not involve any of the SOS-induced toxin-antitoxin systems previously associated with formation of highly tolerant persisters. We further demonstrated that ofloxacin tolerance was induced as a function of biofilm age, which was dependent on the SOS response. Our results therefore show that the SOS stress response induced in heterogeneous and nutrient-deprived biofilm microenvironments is a molecular mechanism leading to biofilm-specific high tolerance to the fluoroquinolone ofloxacin.

  2. Virulence factors of Candida albicans isolates from the oral cavities of HIV-1-positive patients.

    Science.gov (United States)

    Menezes, Tatiany O A; Gillet, Luciana C S; Menezes, Sílvio A F; Feitosa, Rosimar N M; Ishak, Marluísa O G; Ishak, Ricardo; Marques-da-Silva, Sílvia H; Vallinoto, Antonio C R

    2013-06-01

    The present study assessed the phenotypic aspects of oral-cavity Candida albicans isolates from 300 HIV-1- positive patients, relating the most commonly investigated virulence factors (enzyme typing and germ-tube formation) to the most common morphotypes. The samples were seeded into specific media for isolation and subsequent identification using the automated Vitek 2 system. The following assays were performed for phenotypic characterization: morphotyping, germ-tube formation and enzyme typing. Out of 300 collected samples, 144 tested positive for yeasts of the Candida genus, 98 (32.7 %) of which were identified as C. albicans. The latter samples were attributed to seven different morphotypes; the three most common morphotypes were 7208 (49 %), 7308 (14.3 %) and 3208 (13.3 %). All of the C. albicans isolate samples formed germ tubes and produced the enzymes proteinase and phospholipase, with an activity classified as intermediate to high. Due to the identification of virulence factors among the analyzed samples, monitoring of HIV-1-positive patients colonized by different morphotypes must be established because these morphotypes are extremely pathogenic and can trigger severe fungal infections.

  3. Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Jeremy A Iwashkiw

    Full Text Available Acinetobacter baumannii is an emerging cause of nosocomial infections. The isolation of strains resistant to multiple antibiotics is increasing at alarming rates. Although A. baumannii is considered as one of the more threatening "superbugs" for our healthcare system, little is known about the factors contributing to its pathogenesis. In this work we show that A. baumannii ATCC 17978 possesses an O-glycosylation system responsible for the glycosylation of multiple proteins. 2D-DIGE and mass spectrometry methods identified seven A. baumannii glycoproteins, of yet unknown function. The glycan structure was determined using a combination of MS and NMR techniques and consists of a branched pentasaccharide containing N-acetylgalactosamine, glucose, galactose, N-acetylglucosamine, and a derivative of glucuronic acid. A glycosylation deficient strain was generated by homologous recombination. This strain did not show any growth defects, but exhibited a severely diminished capacity to generate biofilms. Disruption of the glycosylation machinery also resulted in reduced virulence in two infection models, the amoebae Dictyostelium discoideum and the larvae of the insect Galleria mellonella, and reduced in vivo fitness in a mouse model of peritoneal sepsis. Despite A. baumannii genome plasticity, the O-glycosylation machinery appears to be present in all clinical isolates tested as well as in all of the genomes sequenced. This suggests the existence of a strong evolutionary pressure to retain this system. These results together indicate that O-glycosylation in A. baumannii is required for full virulence and therefore represents a novel target for the development of new antibiotics.

  4. Candida biofilm disrupting ability of di-rhamnolipid (RL-2) produced from Pseudomonas aeruginosa DSVP20.

    Science.gov (United States)

    Singh, Nivedita; Pemmaraju, Suma C; Pruthi, Parul A; Cameotra, Swaranjit S; Pruthi, Vikas

    2013-04-01

    Biosurfactant produced from Pseudomonas aeruginosa DSVP20 was evaluated for its potential to disrupt Candida albicans biofilm formed on polystyrene (PS) surfaces in this investigation. P. aeruginosa DSVP20 exhibited optimum production of biosurfactant (5.8 g L(-1)) after 96 h of growth with an ability to reduce surface tension of the aqueous solution from 72 to 28 mN m(-1). Analysis of purified biosurfactant with FT-IR, (1)H and (13)C NMR and MALDI-TOF MS revealed it to be di-rhamnolipid (RL-2) in nature. Biofilm disrupting ability of RL-2 (0.16 mg mL(-1)) on Candida cells when checked using XTT reduction assay revealed that about 50 % of the cells remain adhered to 96-well plate after 2 h of treatment, while up to 90 % reduction in pre-formed C. albicans biofilm on PS surface was observed with RL-2 (5.0 mg mL(-1)) in a dose-dependent manner. Microscopic analyses (SEM and CLSM) further confirm the influence of RL-2 on disruption of Candida biofilm extracellular matrix on PS surface which can be exploited as a potential alternative to the available conventional therapies.

  5. Comparison of Listeria monocytogenes Exoproteomes from biofilm and planktonic state: Lmo2504, a protein associated with biofilms.

    Science.gov (United States)

    Lourenço, António; de Las Heras, Aitor; Scortti, Mariela; Vazquez-Boland, Jose; Frank, Joseph F; Brito, Luisa

    2013-10-01

    The food-borne pathogen Listeria monocytogenes is the causative agent of the severe human and animal disease listeriosis. The persistence of this bacterium in food processing environments is mainly attributed to its ability to form biofilms. The search for proteins associated with biofilm formation is an issue of great interest, with most studies targeting the whole bacterial proteome. Nevertheless, exoproteins constitute an important class of molecules participating in various physiological processes, such as cell signaling, pathogenesis, and matrix remodeling. The aim of this work was to quantify differences in protein abundance between exoproteomes from a biofilm and from the planktonic state. For this, two field strains previously evaluated to be good biofilm producers (3119 and J311) were used, and a procedure for the recovery of biofilm exoproteins was optimized. Proteins were resolved by two-dimensional difference gel electrophoresis and identified by electrospray ionization-tandem mass spectrometry. One of the proteins identified in higher abundance in the biofilm exoproteomes of both strains was the putative cell wall binding protein Lmo2504. A mutant strain with deletion of the gene for Lmo2504 was produced (3119Δlmo2504), and its biofilm-forming ability was compared to that of the wild type using the crystal violet and the ruthenium red assays as well as scanning electron microscopy. The results confirmed the involvement of Lmo2504 in biofilm formation, as strain 3119Δlmo2504 showed a significantly (P biofilm-forming ability than the wild type. The identification of additional exoproteins associated with biofilm formation may lead to new strategies for controlling this pathogen in food processing facilities.

  6. Biofilm Cohesive Strength as a Basis for Biofilm Recalcitrance: Are Bacterial Biofilms Overdesigned?

    Science.gov (United States)

    Aggarwal, Srijan; Stewart, Philip S; Hozalski, Raymond M

    2015-01-01

    Bacterial biofilms are highly resistant to common antibacterial treatments, and several physiological explanations have been offered to explain the recalcitrant nature of bacterial biofilms. Herein, a biophysical aspect of biofilm recalcitrance is being reported on. While engineering structures are often overdesigned with a factor of safety (FOS) usually under 10, experimental measurements of biofilm cohesive strength suggest that the FOS is on the order of thousands. In other words, bacterial biofilms appear to be designed to withstand extreme forces rather than typical or average loads. In scenarios requiring the removal or control of unwanted biofilms, this emphasizes the importance of considering strategies for structurally weakening the biofilms in conjunction with bacterial inactivation.

  7. Role of CaECM25 in cell morphogenesis, cell growth and virulence in Candida albicans

    Institute of Scientific and Technical Information of China (English)

    ZHANG TingTing; LI WanJie; LI Di; WANG Yue; SANG JianLi

    2008-01-01

    Candida albicans is the most prominent opportunistic fungal pathogen in humans. Multiple factors are associated with the virulence of C. albicans, including morphogenesis, cell wall organization and growth rate. Here, we describe the identification and functional characterization of CaECM25, a gene that has not been reported before. We constructed Caecm25△/△ mutants and investigated the role of the gene In morphogenesis, cell wall organization and virulence. CaECM25 deletion resulted in defects in cell separation, a slower growth rate, reduced filamentous growth and attenuated adherence to plastic surfaces. The Caecm25△/△ mutant was also significantly less virulent than wild type when tested for systemic infection in mice. Therefore, CaECM25 plays important roles in morphogenesis, cell wall organization and virulence.

  8. Role of CaECM25 in cell morphogenesis, cell growth and virulence in Candida albicans

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Candida albicans is the most prominent opportunistic fungal pathogen in humans. Multiple factors are associated with the virulence of C. albicans, including morphogenesis, cell wall organization and growth rate. Here, we describe the identification and functional characterization of CaECM25, a gene that has not been reported before. We constructed Caecm25?/? mutants and investigated the role of the gene in morphogenesis, cell wall organization and virulence. CaECM25 deletion resulted in defects in cell separation, a slower growth rate, reduced filamentous growth and attenuated adherence to plastic surfaces. The Caecm25?/? mutant was also significantly less virulent than wild type when tested for systemic infection in mice. Therefore, CaECM25 plays important roles in morphogenesis, cell wall organization and virulence.

  9. Comparison of the hemolytic activity between C. albicans and non-albicans Candida species.

    Science.gov (United States)

    Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; Vilela, Simone Furgeri Godinho; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2013-01-01

    The ability to produce enzymes, such as hemolysins, is an important virulence factor for the genus Candida.The objective of this study was to compare the hemolytic activity between C. albicansand non-albicans Candida species. Fifty strains of Candida species, isolated from the oral cavity of patients infected with HIV were studied. The isolates included the following species: C. albicans, C. dubliniensis, C. glabrata, C. tropicalis, C. krusei, C. parapsilosis, C. dubliniensis, C. norvegensis, C. lusitaniae, and C. guilliermondii. Hemolysin production was evaluated on Sabouraud dextrose agar containing chloramphenicol, blood, and glucose. A loop-full of pure Candidaculture was spot-inoculated onto plates and incubated at 37 ºC for 24 h in a 5% CO2 atmosphere. Hemolytic activity was defined as the formation of a translucent halo around the colonies. All C. albicansstrains that were studied produced hemolysins. Among the non-albicans Candidaspecies, 86% exhibited hemolytic activity. Only C. guilliermondiiand some C. parapsilosis isolates were negative for this enzyme. In conclusion, most non-albicans Candidaspecies had a similar ability to produce hemolysins when compared to C. albicans.

  10. Development of DNA probes for Candida albicans

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, L.L.; Hudson, J.B.

    1988-07-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves. It became evident that, although both /sup 32/P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis.

  11. Molecule Targeting Glucosyltransferase Inhibits Streptococcus mutans Biofilm Formation and Virulence.

    Science.gov (United States)

    Ren, Zhi; Cui, Tao; Zeng, Jumei; Chen, Lulu; Zhang, Wenling; Xu, Xin; Cheng, Lei; Li, Mingyun; Li, Jiyao; Zhou, Xuedong; Li, Yuqing

    2015-10-19

    Dental plaque biofilms are responsible for numerous chronic oral infections and cause a severe health burden. Many of these infections cannot be eliminated, as the bacteria in the biofilms are resistant to the host's immune defenses and antibiotics. There is a critical need to develop new strategies to control biofilm-based infections. Biofilm formation in Streptococcus mutans is promoted by major virulence factors known as glucosyltransferases (Gtfs), which synthesize adhesive extracellular polysaccharides (EPS). The current study was designed to identify novel molecules that target Gtfs, thereby inhibiting S. mutans biofilm formation and having the potential to prevent dental caries. Structure-based virtual screening of approximately 150,000 commercially available compounds against the crystal structure of the glucosyltransferase domain of the GtfC protein from S. mutans resulted in the identification of a quinoxaline derivative, 2-(4-methoxyphenyl)-N-(3-{[2-(4-methoxyphenyl)ethyl]imino}-1,4-dihydro-2-quinoxalinylidene)ethanamine, as a potential Gtf inhibitor. In vitro assays showed that the compound was capable of inhibiting EPS synthesis and biofilm formation in S. mutans by selectively antagonizing Gtfs instead of by killing the bacteria directly. Moreover, the in vivo anti-caries efficacy of the compound was evaluated in a rat model. We found that the compound significantly reduced the incidence and severity of smooth and sulcal-surface caries in vivo with a concomitant reduction in the percentage of S. mutans in the animals' dental plaque (P biofilm formation and the cariogenicity of S. mutans.

  12. Tobacco smoking affects bacterial acquisition and colonization in oral biofilms.

    Science.gov (United States)

    Kumar, Purnima S; Matthews, Chad R; Joshi, Vinayak; de Jager, Marko; Aspiras, Marcelo

    2011-11-01

    Recent evidence suggests that smoking affects the composition of the disease-associated subgingival biofilm, yet little is known about its effects during the formation of this biofilm. The present investigation was undertaken to examine the contributions of smoking to the composition and proinflammatory characteristics of the biofilm during de novo plaque formation. Marginal and subgingival plaque and gingival crevicular fluid samples were collected from 15 current smokers and from 15 individuals who had never smoked (nonsmokers) following 1, 2, 4, and 7 days of undisturbed plaque formation. 16S rRNA gene cloning and sequencing were used for bacterial identification, and multiplex bead-based flow cytometry was used to quantify the levels of 27 immune mediators. Smokers demonstrated a highly diverse, relatively unstable initial colonization of both marginal and subgingival biofilms, with lower niche saturation than that seen in nonsmokers. Periodontal pathogens belonging to the genera Fusobacterium, Cardiobacterium, Synergistes, and Selenomonas, as well as respiratory pathogens belonging to the genera Haemophilus and Pseudomonas, colonized the early biofilms of smokers and continued to persist over the observation period, suggesting that smoking favors early acquisition and colonization of pathogens in oral biofilms. Smokers also demonstrated an early proinflammatory response to this colonization, which persisted over 7 days. Further, a positive correlation between proinflammatory cytokine levels and commensal bacteria was observed in smokers but not in nonsmokers. Taken together, the data suggest that smoking influences both the composition of the nascent biofilm and the host response to this colonization.

  13. Candida albicans isolates from a Malaysian hospital exhibit more potent phospholipase and haemolysin activities than non-albicans Candida isolates.

    Science.gov (United States)

    Chin, V K; Foong, K J; Maha, A; Rusliza, B; Norhafizah, M; Ng, K P; Chong, P P

    2013-12-01

    This study was aimed at determining the phospholipase and haemolysin activity of Candida isolates in Malaysia. A total of 37 Candida clinical isolates representing seven species, Candida albicans (12), Candida tropicalis (8), Candida glabrata (4), Candida parapsilosis (1), Candida krusei (4), Candida orthopsilosis (1) and Candida rugosa (7) were tested. In vitro phospholipase activity was determined by using egg yolk plate assay whereas in vitro haemolysin activity was tested by using blood plate assay on sheep blood Sabouraud's dextrose agar (SDA) enriched with glucose. Phospholipase activity was detected in 75% (9 out of 12) of the C. albicans isolates. Among the 25 non- C. albicans Candida isolates, phospholipase activity was detected in only 24% of these isolates. The phospholipase activity of C. albicans was significantly higher than that of the non- C. albicans Candida isolates (P=0.002). Haemolysin activity was detected in 100% of the C. albicans, C. tropicalis, C. glabrata, C. krusei, C. parapsilosis, and C. orthopsilosis isolates while 75% of the C. krusei isolates and 12.3% of the C. rugosa isolates showed haemolysin activity. The haemolytic activity of C. albicans was significantly higher than that of the non- C. albicans Candida isolates (P=0.0001).The findings in this study indicate that C. albicans isolates in Malaysia may possess greater virulence potential than the non-albicans species.

  14. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens.

    Science.gov (United States)

    Bakkiyaraj, Dhamodharan; Nandhini, Janarthanam Rathna; Malathy, Balakumar; Pandian, Shunmugiah Karutha

    2013-09-01

    Infectious diseases caused by bacteria and fungi are the major cause of morbidity and mortality across the globe. Multi-drug resistance in these pathogens augments the complexity and severity of the diseases. Various studies have shown the role of biofilms in multi-drug resistance, where the pathogen resides inside a protective coat made of extracellular polymeric substances. Since biofilms directly influence the virulence and pathogenicity of a pathogen, it is optimal to employ a strategy that effectively inhibits the formation of biofilm. Pomegranate is a common food and is also used traditionally to treat various ailments. This study assessed the anti-biofilm activity of a methanolic extract of pomegranate against bacterial and fungal pathogens. Methanolic extract of pomegranate was shown to inhibit the formation of biofilms by Staphylococcus aureus, methicillin resistant S. aureus, Escherichia coli, and Candida albicans. Apart from inhibiting the formation of biofilm, pomegranate extract disrupted pre-formed biofilms and inhibited germ tube formation, a virulence trait, in C. albicans. Characterization of the methanolic extract of pomegranate revealed the presence of ellagic acid (2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione) as the major component. Ellagic acid is a bioactive tannin known for its antioxidant, anticancer, and anti-inflammatory properties. Further studies revealed the ability of ellagic acid to inhibit the growth of all species in suspension at higher concentrations (>75 μg ml(-1)) and biofilm formation at lower concentrations (pomegranate for the treatment of human ailments.

  15. Silicone colonization by non-Candida albicans Candida species in the presence of urine.

    Science.gov (United States)

    Silva, Sónia; Negri, Melyssa; Henriques, Mariana; Oliveira, Rosário; Williams, David; Azeredo, Joana

    2010-07-01

    Urinary tract infections (UTIs) are the most common nosocomial infections and 80 % are related to the use of urinary catheters. Furthermore, Candida species are responsible for around 15 % of UTIs and an increasing involvement of non-Candida albicans Candida (NCAC) species (e.g. Candida glabrata, Candida tropicalis and Candida parapsilosis) has been recognized. Given the fact that silicone is frequently used in the manufacture of urinary catheters, the aim of this work was to compare both the adhesion and biofilm formation on silicone of different urinary clinical isolates of NCAC species (i.e. C. glabrata, C. tropicalis and C. parapsilosis) in the presence of urine. Several clinical isolates of NCAC species recovered from patients with UTIs, together with reference strains of each species, were examined. Adhesion and biofilm formation were performed in artificial urine and the biofilm biomass was assessed by crystal violet staining. Hydrophobicity and surface charge of cells was determined by measuring contact angles and zeta potential, respectively. The number of viable cells in biofilms was determined by enumeration of c.f.u. after appropriate culture. The biofilm structure was also examined by confocal laser scanning microscopy (CLSM). The results showed that all isolates adhered to silicone in a species- and strain-dependent manner with C. parapsilosis showing the lowest and C. glabrata the highest levels of adhesion. However, these differences in adhesion abilities cannot be correlated with surface properties since all strains examined were hydrophilic and exhibited a similar zeta potential. Despite a higher number of cultivable cells being recovered after 72 h of incubation, stronger biofilm formation was not observed and CLSM showed an absence of extracellular polymeric material for all isolates examined. In summary, this work demonstrated that all tested NCAC species were able to adhere to and survive on silicone in the presence of urine. Furthermore, C

  16. Detection of Pathogenic Biofilms with Bacterial Amyloid Targeting Fluorescent Probe, CDy11

    DEFF Research Database (Denmark)

    Jun-Young, Kim; Srikanta, Sahu; Yin-Hoe, Yau

    2016-01-01

    Bacterial biofilms are responsible for a wide range of persistent infections. In the clinic, diagnosis of biofilm-associated infections relies heavily on culturing methods, which fail to detect nonculturable bacteria. Identification of novel fluorescent probes for biofilm imaging will greatly...... facilitate diagnosis of pathogenic bacterial infection. Herein, we report a novel fluorescent probe, CDy11 (compound of designation yellow 11), which targets amyloid in the Pseudomonas aeruginosa biofilm matrix through a diversity oriented fluorescent library approach (DOFLA). CDy11 was further demonstrated...... for in vivo imaging of P. aeruginosa in implant and corneal infection mice models....

  17. Triclosan antagonizes fluconazole activity against Candida albicans.

    LENUS (Irish Health Repository)

    Higgins, J

    2012-01-01

    Triclosan is a broad-spectrum antimicrobial compound commonly used in oral hygiene products. Investigation of its activity against Candida albicans showed that triclosan was fungicidal at concentrations of 16 mg\\/L. However, at subinhibitory concentrations (0.5-2 mg\\/L), triclosan antagonized the activity of fluconazole. Although triclosan induced CDR1 expression in C. albicans, antagonism was still observed in cdr1Δ and cdr2Δ strains. Triclosan did not affect fluconazole uptake or alter total membrane sterol content, but did induce the expression of FAS1 and FAS2, indicating that its mode of action may involve inhibition of fatty acid synthesis, as it does in prokaryotes. However, FAS2 mutants did not exhibit increased susceptibility to triclosan, and overexpression of both FAS1 and FAS2 alleles did not alter triclosan susceptibility. Unexpectedly, the antagonistic effect was specific for C. albicans under hypha-inducing conditions and was absent in the non-filamentous efg1Δ strain. This antagonism may be due to the membranotropic activity of triclosan and the unique composition of hyphal membranes.

  18. Occurrence of yeasts, enterococci and other enteric bacteria in subgingival biofilm of HIV-positive patients with chronic gingivitis and necrotizing periodontitis Ocorrência de leveduras, enterococos e outras bactérias entéricas no biofilme subgengival de pacientes HIV-positivos com gengivite crônica e periodontite necrosante

    Directory of Open Access Journals (Sweden)

    Elerson Gaetti-Jardim Júnior

    2008-06-01

    Full Text Available The purpose of this study was to determine the prevalence of enteric bacteria and yeasts in biofilm of 80 HIV-positive patients with plaque-associated gingivitis or necrotizing periodontitis. Patients were subjected to extra, intra oral and radiographic examinations. The oral hygiene, bleeding on probing, gingival conditions, and attachment loss were evaluated. Clinical specimens were collected from gingival crevices or periodontal pockets, transferred to VMGA III, diluted and transferred to Sabouraud Dextrose agar with 100 µg/ml of chloramphenicol, peptone water, EVA broth, EMB agar, SS agar, Bile esculin agar and Brilliant green agar. Isolation of yeasts was carried out at room temperature, for 3-7 days; and for the isolation of enteric microorganisms plates were incubated at 37ºC, for 24-48 h. The yeasts identification was performed according to the carbon and nitrogen assimilation, fermentation of carbohydrates and germ tube formation. Bacteria were identified according to their colonial and cellular morphologies and biochemical tests. Yeasts were identified as Candida albicans and its occurrence was more common in patients with CD4+ below 200/mm³ and was affected by the extension of periodontal involvement (P = 0.0345. Enteric bacteria recovered from clinical specimens were identified as Enterobacter sakazakii, Enterobacter cloacae, Serratia liquefaciens, Klebsiella oxytoca and Enterococcus sp. Enterobacteriaceae and enterococci were detected in 32.5% of clinical samples from patients with necrotizing periodontitis. In conclusion, non-oral pathogenic bacteria and C. albicans were more prevalent in periodontal sites of HIV-positive patients with necrotizing periodontitis and chronic gingivitis.O objetivo desse estudo foi avaliar a ocorrência de bactérias entéricas e leveduras no biofilme subgengival de pacientes HIV-positivos com gengivite crônica ou periodontite necrosante. Os pacientes foram submetidos a exame clínico e radiogr

  19. Screening of pharmacologically active small molecule compounds identifies antifungal agents against Candida biofilms

    Directory of Open Access Journals (Sweden)

    Takao eWatamoto

    2015-12-01

    Full Text Available Candida species have emerged as important and common opportunistic human pathogens, particularly in immunocompromised individuals. The current antifungal therapies either have toxic side effects or are insufficiently effect. The aim of this study is develop new small-molecule antifungal compounds by library screening methods using C. albicans, and to evaluate their antifungal effects on Candida biofilms and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used in library screening. To identify antifungal compounds, we screened a small-molecule library of 1,280 pharmacologically active compounds (LOPAC1280TM using an antifungal susceptibility test (AST. To investigate the antifungal effects of the hit compounds, ASTs were conducted using Candida strains in various growth modes, including biofilms. We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF cells to evaluate their clinical safety. Only 35 compounds were identified by screening, which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds had fungistatic effects and 9 compounds had fungicidal effects on C. albicans. Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no cytotoxicity at a fungicidal concentration.Four of the compounds identified, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent, CV-3988 that was previously unknown to be antifungal agent, which could be a novel therapies for superficial mucosal

  20. Inhibitory activity of hinokitiol against biofilm formation in fluconazole-resistant Candida species

    Science.gov (United States)

    Choi, Jeong Su; Lee, Seung Gwan; Park, Jee Yoon

    2017-01-01

    The aim of this study was to investigate the ability of hinokitiol to inhibit the formation of Candida biofilms. Biofilm inhibition was evaluated by quantification of the biofilm metabolic activity with XTT assay. Hinokitiol efficiently prevented biofilm formation in both fluconazole-susceptible and fluconazole-resistant strains of Candida species. We determined the expression levels of specific genes previously implicated in biofilm development of C. albicans cells by real-time RT-PCR. The expression levels of genes associated with adhesion process, HWP1 and ALS3, were downregulated by hinokitiol. Transcript levels of UME6 and HGC1, responsible for long-term hyphal maintenance, were also decreased by hinokitiol. The expression level of CYR1, which encodes the component of signaling pathway of hyphal formation-cAMP-PKA was suppressed by hinokitiol. Its upstream general regulator RAS1 was also suppressed by hinokitiol. These results indicate that hinokitiol may have therapeutic potential in the treatment and prevention of biofilm-associated Candida infections. PMID:28152096

  1. Candida albicans versus Candida dubliniensis: Why Is C. albicans More Pathogenic?

    LENUS (Irish Health Repository)

    Moran, Gary P

    2012-01-01

    Candida albicans and Candida dubliniensis are highly related pathogenic yeast species. However, C. albicans is far more prevalent in human infection and has been shown to be more pathogenic in a wide range of infection models. Comparison of the genomes of the two species has revealed that they are very similar although there are some significant differences, largely due to the expansion of virulence-related gene families (e.g., ALS and SAP) in C. albicans, and increased levels of pseudogenisation in C. dubliniensis. Comparative global gene expression analyses have also been used to investigate differences in the ability of the two species to tolerate environmental stress and to produce hyphae, two traits that are likely to play a role in the lower virulence of C. dubliniensis. Taken together, these data suggest that C. dubliniensis is in the process of undergoing reductive evolution and may have become adapted for growth in a specialized anatomic niche.

  2. Biofilm formation on tympanostomy tubes depends on methicillin-resistant Staphylococcus aureus genetic lineage.

    Science.gov (United States)

    Jotić, Ana; Božić, Dragana D; Milovanović, Jovica; Pavlović, Bojan; Ješić, Snežana; Pelemiš, Mijomir; Novaković, Marko; Ćirković, Ivana

    2016-03-01

    Bacterial biofilm formation has been implicated in the high incidence of persistent otorrhoea after tympanostomy tube insertion. The aim of the study was to investigate whether biofilm formation on tympanostomy tubes depends on the genetic profile of methicillin-resistant Staphylococcus aureus (MRSA) strains. Capacity of biofilm formation on fluoroplastic tympanostomy tubes (TTs) was tested on 30 MRSA strains. Identification and methicillin resistance were confirmed by PCR for nuc and mecA genes. Strains were genotypically characterised (SCCmec, agr and spa typing). Biofilm formation was tested in microtiter plate and on TTs. Tested MRSA strains were classified into SCCmec type I (36.7 %), III (23.3 %), IV (26.7 %) and V (13.3 %), agr type I (50 %), II (36.7 %) and III (13.3 %), and 5 clonal complexes (CCs). All tested MRSA strains showed ability to form biofilm on microtiter plate. Capacity of biofilm formation on TTs was as following: 13.3 % of strains belonged to the category of no biofilm producers, 50 % to the category of weak biofilm producers and 36.7 % to moderate biofilm producers. There was a statistically significant difference between CC, SCCmec and agr types and the category of biofilm production on TTs tubes (p biofilm, and CC8 and agrI type with a low amount of biofilm. Biofilm formation by MRSA on TTs is highly dependent on genetic characteristics of the strains. Therefore, MRSA genotyping may aid the determination of the possibility of biofilm-related post-tympanostomy tube otorrhea.

  3. Emergence of non-albicans Candida among candidal vulvovaginitis cases and study of their potential virulence factors, from a tertiary care center, North India

    Directory of Open Access Journals (Sweden)

    Varsha Kumari

    2013-01-01

    Full Text Available Purpose: The purpose of this study was to determine the prevalence of various Candida species and study some of their virulence factors among thevulvovaginal candidiasis(VVCpatients. Study Design and Settings: The study was conducted in a Tertiary Care University Hospital in North India. Materials and Methods: This study was carried out prospectively for a period of 1 year. High vaginal swabs (HVSs were collected from women in childbearing age group attending the gynecology and obstetrics out-patient departments with the complaints suggestive of vulvovaginitis. Samples were plated on Sabouraud′s dextrose agar slope. Candida spp. isolated was further speciated based on microscopy, biochemical tests and culture characteristics on special media. Virulence factors of these strains were determined by biofilm formation and phospholipase activity. Result: A total of 464 HVS from 232 patients with the complaints of vulvovaginitis were included in this study. Following laboratory workup, 71 specimens were positive for genus Candida (30.6%. Further speciation showed 32.4% as Candida albicans, 45.07% Candida parapsilosis and 22.53% of Candida glabrata. Biofilm production was shown by 50 candidal strains (70.4% and phospholipase activity was given by 41 candidal strains (57.74%. Conclusion: Our study suggests increasing prevalence of non-albicans Candida among the VVC cases along with their virulence factors. Therefore, we recommend that microbiological investigation upto species level should be mandatory to determine the emergence of non-albicans Candida as a major cause of VVC.

  4. IDENTIFIKASI SPESIES CANDIDA ALBICANS PADA PENDERITA ANGULAR CHEILITIS

    OpenAIRE

    Mu`min, Mulia Sari

    2012-01-01

    2011 Abstrak Candida albicans merupakan jenis Candida yang menginfeksi semua organ tubuh manusia, dapat ditemukan pada semua golongan umur, baik pada pria maupun wanita. Candida albicans merupakan fungi patogen oportunistik yang paling sering menginfeksi rongga mulut. Fungi ini dapat ditemukan pada seluruh permukaan rongga mulut, yaitu lidah (punggung lidah merupakan tempat yang disukai Candida albicans untuk tumbuh dan berkembang biak), pipi, mukosa palatal, plak gigi, karies gigi, flo...

  5. Biofilm in wound care.

    Science.gov (United States)

    Rajpaul, Kumal

    2015-03-01

    A biofilm can be described as a microbial colony encased in a polysaccharide matrix which can become attached to a wound surface. This can affect the healing potential of chronic wounds due to the production of destructive enzymes and toxins which can promote a chronic inflammatory state within the wound. Biofilms can be polymicrobial and can result in delayed wound healing and chronic wound infection resistant to antibiotics, leading to prolonged hospitalisation for some patients. There appears to be a correlation between biofilms and non-healing in chronic wounds. It is suggested that biofilms are a major player in the chronicity of wounds. They are a complex concept to diagnose and management needs to be multifactorial.

  6. Compaction and relaxation of biofilms

    KAUST Repository

    Valladares Linares, R.

    2015-06-18

    Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more

  7. Interactions Between Candida albicans and Host Interações entre Candida albicans e Hospedeiro

    Directory of Open Access Journals (Sweden)

    Tatiane De Rossi

    2011-06-01

    Full Text Available Candida albicans can cause grave infections in patients who are immunocompromised by diseases, by surgery, or by immunesupresive therapy. The high levels of morbidity and mortality resulting from those infections in hospitalized patients show that C. albicans became a prominent human pathogen. Although the host immune system is the major factor balancing the transition from commensalisms to pathogenicity, several virulence attributes expressed by C. albicans, such as adhesion factors, phenotypic switching, dimorphic behavior, and secretion of hydrolytic enzymes, might contribute to the persistence of colonization as well as the development of symptomatic episodes. Host defense against candidiasis relies mainly on the ingestion and elimination of C. albicans by phagocytic cells, which present receptors Toll-like 4, dectin–1 associated to receptors Toll-like2 and mannose receptors. The cytokine IL-10 (IL-10 produced by phagocytes has a crucial role on susceptibility of host fungal infection, whereas IL-10 produced by regulatory T cells is mainly responsible by commensalisms. In contrast, productions of tumour necrosis factor - α (TNF-α, interleukin–1 β (lL-1 β, (IL-6 and (Il-12 provided protective cell–mediated immunity. The interferon-γ produced by natural killer and TH1 cells stimulates migration of phagocytes and major efficacy on destruction of fungi. In epithelial cells from mucosas the NOD-like receptors and defensins-β cytoplasmatic prevent the translocation of C. albicans from microbiota to tissues, which are modulated by IL-1 β, Il-17 and Il-22 cytokines. to pathogenicity, several virulence attributes expressed by C. albicans, such as adhesion factors, phenotypic switching, dimorphic behavior, and secretion of hydrolytic enzymes, might contribute to the persistence of colonization as well as the development of symptomatic episodes. Host defense against candidiasis relies mainly on the ingestion and elimination of C. albicans

  8. Intestinal colonization with Candida albicans and mucosal immunity

    Institute of Scientific and Technical Information of China (English)

    Xiao-Dong Bai; Xian-Hua Liu; Qing-Ying Tong

    2004-01-01

    AIM: To observe the relationship between intestinal lumen colonization with Candida albicans and mucosal secretory IgA (sIgA).METHODS: A total of 82 specific-pathogen-free mice were divided randomly into control and colonization groups. After Candida albicans were inoculated into specific-pathogenfree mice, the number of Candida albicans adhering to cecum and mucosal membrane was counted. The lymphocyte proliferation in Peyer's patch and in lamina propria was shown by BrdU incorporation, while mucosal sIgA (surface membrane) isotype switch in Peyer's patch was investigated. IgA plasma cells in lamina propria were observed by immunohistochemical staining. Specific IgA antibodies to Candida albicans were measured with ELISA.RESULTS: From d 3 to d 14 after Candida albicans gavaging to mice, the number of Candida albicans colonizing in lumen and adhering to mucosal membrane was sharply reduced.Candida albicans translocation to mesenteric lymph nodes occurred at early time points following gavage administration and disappeared at later time points. Meanwhile, the content of specific IgA was increased obviously. Proliferation and differentiation of lymphocytes in lamina propria were also increased.CONCLUSION: Lymphocytes in lamina propria play an important role in intestinal mucosal immunity of specificpathogen-free mice when they are first inoculated with Candida albicans. The decreasing number of Candida albicans in intestine is related to the increased level of specific IgA antibodies in the intestinal mucus.

  9. Baicalin prevents Candida albicans infections via increasing its apoptosis rate

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shulong; Fu, Yingyuan, E-mail: yingyuanfu@126.com; Wu, Xiuzhen; Zhou, Zhixing; Xu, Jing; Zeng, Xiaoping; Kuang, Nanzhen; Zeng, Yurong

    2014-08-15

    Highlights: • Baicalin increases the ratio of the G0/G1 stages and C. albicans apoptosis. • Baicalin decreases the proliferation index of C. albicans. • Baicalin inhibits the biosynthesis of DNA, RNA and protein in C. albicans. • Baicalin depresses Succinate Dehydrogenase and Ca{sup 2+}–Mg{sup 2+} ATPase in C. albicans. • Baicalin increases the endocytic free Ca{sup 2+} concentration in C. albicans. - Abstract: Background: These experiments were employed to explore the mechanisms underlying baicalin action on Candida albicans. Methodology and principal findings: We detected the baicalin inhibition effects on three isotope-labeled precursors of {sup 3}H-UdR, {sup 3}H-TdR and {sup 3}H-leucine incorporation into C. albicans using the isotope incorporation technology. The activities of Succinate Dehydrogenase (SDH), cytochrome oxidase (CCO) and Ca{sup 2+}–Mg{sup 2+} ATPase, cytosolic Ca{sup 2+} concentration, the cell cycle and apoptosis, as well as the ultrastructure of C.albicans were also tested. We found that baicalin inhibited {sup 3}H-UdR, {sup 3}H-TdR and {sup 3}H-leucine incorporation into C.albicans (P < 0.005). The activities of the SDH and Ca{sup 2+}–Mg{sup 2+} ATPase of C.albicans in baicalin groups were lower than those in control group (P < 0.05). Ca{sup 2+} concentrations of C. albicans in baicalin groups were much higher than those in control group (P < 0.05). The ratio of C.albicans at the G0/G1 stage increased in baicalin groups in dose dependent manner (P < 0.01). There were a significant differences in the apoptosis rate of C.albicans between baicalin and control groups (P < 0.01). After 12–48 h incubation with baicalin (1 mg/ml), C. albicans shown to be markedly damaged under transmission electron micrographs. Innovation and significance: Baicalin can increase the apoptosis rate of C. albicans. These effects of Baicalin may involved in its inhibiting the activities of the SDH and Ca{sup 2+}–Mg{sup 2+} ATPase, increasing

  10. Interactions in multispecies biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Ren, Dawei; Bjarnsholt, Thomas;

    2014-01-01

    The recent focus on complex bacterial communities has led to the recognition of interactions across species boundaries. This is particularly pronounced in multispecies biofilms, where synergistic interactions impact the bacterial distribution and overall biomass produced. Importantly, in a number...... of settings, the interactions in a multispecies biofilm affect its overall function, physiology, or surroundings, by resulting in enhanced resistance, virulence, or degradation of pollutants, which is of significant importance to human health and activities. The underlying mechanisms causing these synergistic...

  11. Occurrence of yeasts, enterococci and other enteric bacteria in subgingival biofilm of HIV-positive patients with chro