WorldWideScience

Sample records for albedo reflectance

  1. Earth's Reflection: Albedo

    Science.gov (United States)

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    When viewing objects of different colors, you might notice that some appear brighter than others. This is because light is reflected differently from various surfaces, depending on their physical properties. The word "albedo" is used to describe how reflective a surface is. The Earth-atmosphere has a combined albedo of about 30%, a number that is…

  2. Retrieval of snow albedo and grain size using reflectance measurements in Himalayan basin

    OpenAIRE

    H. S. Negi; A. Kokhanovsky

    2010-01-01

    In the present paper spectral reflectance measurements of Himalayan seasonal snow were carried out and analysed to retrieve the snow albedo and effective grain size. The asymptotic radiative transfer (ART) theory was applied to retrieve the plane and spherical albedo. The retrieved plane albedo was compared with the measured spectral albedo and a good agreement was observed with ±10% measured error accuracy. Retrieved integrated albedo was found within ±6% difference with ground observed broa...

  3. Albedo and Reflection Spectra of Extrasolar Giant Planets

    CERN Document Server

    Sudarsky, D; Pinto, P A; Sudarsky, David; Burrows, Adam; Pinto, Philip

    1999-01-01

    We generate theoretical albedo and reflection spectra for a full range of extrasolar giant planet (EGP) models, from Jovian to 51-Pegasi class objects. Our albedo modeling utilizes the latest atomic and molecular cross sections, a Mie theory treatment of extinction by condensates, a variety of particle size distributions, and an extension of the Feautrier radiative transfer method which allows for a general treatment of the scattering phase function. We find that due to qualitative similarities in the compositions and spectra of objects within each of four broad effective temperature ranges, it is natural to establish four representative EGP albedo classes: a ``Jovian'' class (T$_{\\rm eff} \\lesssim 150$ K; Class I) with tropospheric ammonia clouds, a ``water cloud'' class (T$_{\\rm eff} \\sim 250$ K; Class II) primarily affected by condensed H$_2$O, a ``clear'' class (T$_{\\rm eff} \\gtrsim 350$ K; Class III) which lacks clouds, and a high-temperature class (T$_{\\rm{eff}}$ $\\gtrsim$ 900 K; Class IV) for which alk...

  4. Reflected Signal Analysis and Surface Albedo in the Mars Orbiter Laser Altimeter (MOLA) Investigation

    Science.gov (United States)

    Ivanov, Anton B.; Muhleman, Duane O.

    2001-01-01

    This work presents results from the analysis of the reflectivity data from the MOLA investigation. We will discuss calculation of the surface albedo using the MGS TES 9 micron opacity. We will also overview reflectivity data collected to date. Additional information is contained in the original extended abstract.

  5. Retrieval of snow albedo and grain size using reflectance measurements in Himalayan basin

    Directory of Open Access Journals (Sweden)

    H. S. Negi

    2011-03-01

    Full Text Available In the present paper, spectral reflectance measurements of Himalayan seasonal snow were carried out and analysed to retrieve the snow albedo and effective grain size. The asymptotic radiative transfer (ART theory was applied to retrieve the plane and spherical albedo. The retrieved plane albedo was compared with the measured spectral albedo and a good agreement was observed with ±10% differences. Retrieved integrated albedo was found within ±6% difference with ground observed broadband albedo. The retrieved snow grain sizes using different models based on the ART theory were compared for various snow types and it was observed that the grain size model using two channel method (one in visible and another in NIR region can work well for the Himalayan seasonal snow and it was found consistent with temporal changes in grain size. This method can work very well for clean, dry snow as in the upper Himalaya, but sometimes, due to the low reflectances (<20% using wavelength 1.24 μm, the ART theory cannot be applied, which is common in lower and middle Himalayan old snow. This study is important for monitoring the Himalayan cryosphere using air-borne or space-borne sensors.

  6. Retrieval of snow albedo and grain size using reflectance measurements in Himalayan basin

    Directory of Open Access Journals (Sweden)

    H. S. Negi

    2010-11-01

    Full Text Available In the present paper spectral reflectance measurements of Himalayan seasonal snow were carried out and analysed to retrieve the snow albedo and effective grain size. The asymptotic radiative transfer (ART theory was applied to retrieve the plane and spherical albedo. The retrieved plane albedo was compared with the measured spectral albedo and a good agreement was observed with ±10% measured error accuracy. Retrieved integrated albedo was found within ±6% difference with ground observed broadband albedo. The snow grain sizes retrieved using different models based on ART theory are compared for different snow types and it was observed that presently grain size model using two channel method (one in visible and another in NIR region can work well for Himalayan seasonal snow and it was found consistence with temporal increased grain size. This method can work very well for clean dry snow like in upper Himalaya but sometime due to low reflectances (<0.2 using wavelength 1.24 μm ART theory can not be applied, which is common in lower and middle Himalayan old snow. This study is of importance for monitoring the Himalayan cryosphere using air-borne or space-borne sensors.

  7. The Characterization of Deep Convective Cloud Albedo as a Calibration Target Using MODIS Reflectances

    Science.gov (United States)

    Doelling, David R.; Hong, Gang; Morstad, Daniel; Bhatt, Rajendra; Gopalan, Arun; Xiong, Jack

    2010-01-01

    There are over 25 years of historical satellite data available to climate analysis. The historical satellite data needs to be well calibrated, especially in the visible, where there is no onboard calibration on operational satellites. The key to the vicarious calibration of historical satellites relies on invariant targets, such as the moon, Dome C, and deserts. Deep convective clouds (DCC) also show promise of being a stable invariant or predictable target viewable by all satellites, since they behave as solar diffusers. However DCC have not been well characterized for calibration. Ten years of well-calibrated MODIS is now available. DCC can easily be identified using IR thresholds, where the IR calibration can be traced to the onboard black-bodies. The natural variability of DCC albedo will be analyzed geographically and seasonally, especially difference of convection initiated over land or ocean. Functionality between particle size and ozone absorption with DCC albedo will be examined. Although DCC clouds are nearly Lambertion, the angular distribution of reflectances will be sampled and compared with theoretical models. Both Aqua and Terra MODIS DCC angular models will be compared for consistency. Normalizing angular geostationary DCC reflectances, which were calibrated against MODIS, with SCIAMACHY spectral reflectances and comparing them to MODIS DCC reflectances will inspect the usage of DCC albedos as an absolute calibration target.

  8. Variations of albedo and spectral reflectance on Qiyi Glacier in Qilian Mountains during the ablation season

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the data observed at two sites (site H1, 4,473 m a.s.l., and site H2, 4,696 m a.s.l.) on Qiyi Glacier in Qilian Mountains, China, by automatic weather station and spectral pyranometer during the period of June 9 through September 27, 2006, we investigated the temporal and spatial variations in surface albedo and spectral reflectance on the glacier. At site H1, the daily mean surface albedos fluctuated between 0.233 and 0.866, which were significantly affected by the air temperature on the glacier. It was found that the albedos clearly showed a diurnal cycle with the lowest value at noon at the two observation sites over the study period, and the difference of albedos between the upper site H2 and the lower site H1 also showed diurnal cycle but with the highest value at noon. The reflectance on the glacier was higher in the ultraviolet (0.28-0.4 μm) and visible (0.4-0.76 μm) wavelengths, lower in the near infrared wavelength (0.76-3 μm), which is quite contrary to the spectral reflectance on other ground surfaces. At the two observation sites, the spectral reflectance declined in all wavelengths with the ablation of snow generally. However, it declined drastically in ultraviolet (0.28-0.4 μm) and 0.6-0.7 μm wavelength, and declined less in 0.4-0.5 μm wavelength. On fresh snow surface, the spectral reflectance had the high values of 0.983 and 0.815 in the ultraviolet and visible (0.4-0.76 μm) wavelengths, respectively; but it had a relatively lower value of 0.671 in near infrared (0.76-3 μm) wavelengths. However, on dirty and melting ice surfaces, the reflectance had the very low values of 0.305 and 0.256 in the ultraviolet and visible wavelengths, with the lowest value of 0.082 in near infrared wavelengths. The spectral reflectance also showed a diurnal cycle like that of albedo. The diurnal variations of spectral reflectance on snow surface in ultraviolet and visible wavelength changed to a greater degree than that on ice surface. The diurnal

  9. Reflected Light Curves, Spherical and Bond Albedos of Jupiter- and Saturn-like Exoplanets

    Science.gov (United States)

    Dyudina, Ulyana A.; Zhang, Xi; Li, Liming; Kopparla, Pushkar; Ingersoll, Andrew P.; Dones, Henry C. Luke; Verbiscer, Anne J.; Yung, Yuk

    2016-10-01

    Reflected light curves observed for exoplanets indicate that a few of them host bright clouds. We estimate how the light curve and total stellar heating of a planet depends on forward and backward scattering in the clouds based on Pioneer and Cassini spacecraft images of Jupiter and Saturn. We fit analytical functions to the local reflected brightnesses of Jupiter and Saturn depending on the planet's phase. These observations cover broad bands at 0.59–0.72 and 0.39–0.5 μm, and narrow bands at 0.938 (atmospheric window), 0.889 (CH4 absorption band), and 0.24–0.28 μm. We simulate the images of the planets with a ray-tracing model, and disk-integrate them to produce the full-orbit light curves. For Jupiter, we also fit the modeled light curves to the observed full-disk brightness. We derive spherical albedos for Jupiter and Saturn, and for planets with Lambertian and Rayleigh-scattering atmospheres. Jupiter-like atmospheres can produce light curves that are a factor of two fainter at half-phase than the Lambertian planet, given the same geometric albedo at transit. The spherical albedo is typically lower than for a Lambertian planet by up to a factor of ˜1.5. The Lambertian assumption will underestimate the absorption of the stellar light and the equilibrium temperature of the planetary atmosphere. We also compare our light curves with the light curves of solid bodies: the moons Enceladus and Callisto. Their strong backscattering peak within a few degrees of opposition (secondary eclipse) can lead to an even stronger underestimate of the stellar heating. This work is published: Dyudina, U.,et al., 2016: ApJ, 822, 76, http://arxiv.org/abs/1511.04415.

  10. Daily variability of Ceres' Albedo detected by means of radial velocities changes of the reflected sunlight

    CERN Document Server

    Molaro, P; Monaco, L; Tosi, F; Curto, G Lo; Fulle, M; Pasquini, L

    2016-01-01

    Bright features have been recently discovered by Dawn on Ceres, which extend previous photometric and Space Telescope observations. These features should produce distortions of the line profiles of the reflected solar spectrum and therefore an apparent radial velocity variation modulated by the rotation of the dwarf planet. Here we report on two sequences of observations of Ceres performed in the nights of 31 July, 26-27 August 2015 by means of the high-precision HARPS spectrograph at the 3.6-m La Silla ESO telescope. The observations revealed a quite complex behaviour which likely combines a radial velocity modulation due to the rotation with an amplitude of approx +/- 6 m/s and an unexpected diurnal effect. The latter changes imply changes in the albedo of Occator's bright features due to the blaze produced by the exposure to solar radiation. The short-term variability of Ceres' albedo is on timescales ranging from hours to months and can both be confirmed and followed by means of dedicated radial velocity ...

  11. Development of a High Resolution BRDF/Albedo Product by Fusing Airborne CASI Reflectance with MODIS Daily Reflectance in the Oasis Area of the Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Dongqin You

    2015-05-01

    Full Text Available A land-cover-based linear BRDF (bi-directional reflectance distribution function unmixing (LLBU algorithm based on the kernel-driven model is proposed to combine the compact airborne spectrographic imager (CASI reflectance with the moderate resolution imaging spectroradiometer (MODIS daily reflectance product to derive the BRDF/albedo of the two sensors simultaneously in the foci experimental area (FEA of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER, which was carried out in the Heihe River basin, China. For each land cover type, an archetypal BRDF, which characterizes the shape of its anisotropic reflectance, is extracted by linearly unmixing from the MODIS reflectance with the assistance of a high-resolution classification map. The isotropic coefficients accounting for the differences within a class are derived from the CASI reflectance. The BRDF is finally determined by the archetypal BRDF and the corresponding isotropic coefficients. Direct comparisons of the cropland archetypal BRDF and CASI albedo with in situ measurements show good agreement. An indirect validation which compares retrieved BRDF/albedo with that of the MCD43A1 standard product issued by NASA and aggregated CASI albedo also suggests reasonable reliability. LLBU has potential to retrieve the high spatial resolution BRDF/albedo product for airborne and spaceborne sensors which have inadequate angular samplings. In addition, it can shorten the timescale for coarse spatial resolution product like MODIS.

  12. An Algorithm for the Retrieval of 30-m Snow-Free Albedo from Landsat Surface Reflectance and MODIS BRDF

    Science.gov (United States)

    Shuai, Yanmin; Masek, Jeffrey G.; Gao, Feng; Schaaf, Crystal B.

    2011-01-01

    We present a new methodology to generate 30-m resolution land surface albedo using Landsat surface reflectance and anisotropy information from concurrent MODIS 500-m observations. Albedo information at fine spatial resolution is particularly useful for quantifying climate impacts associated with land use change and ecosystem disturbance. The derived white-sky and black-sky spectral albedos maybe used to estimate actual spectral albedos by taking into account the proportion of direct and diffuse solar radiation arriving at the ground. A further spectral-to-broadband conversion based on extensive radiative transfer simulations is applied to produce the broadband albedos at visible, near infrared, and shortwave regimes. The accuracy of this approach has been evaluated using 270 Landsat scenes covering six field stations supported by the SURFace RADiation Budget Network (SURFRAD) and Atmospheric Radiation Measurement Southern Great Plains (ARM/SGP) network. Comparison with field measurements shows that Landsat 30-m snow-free shortwave albedos from all seasons generally achieve an absolute accuracy of +/-0.02 - 0.05 for these validation sites during available clear days in 2003-2005,with a root mean square error less than 0.03 and a bias less than 0.02. This level of accuracy has been regarded as sufficient for driving global and regional climate models. The Landsat-based retrievals have also been compared to the operational 16-day MODIS albedo produced every 8-days from MODIS on Terra and Aqua (MCD43A). The Landsat albedo provides more detailed landscape texture, and achieves better agreement (correlation and dynamic range) with in-situ data at the validation stations, particularly when the stations include a heterogeneous mix of surface covers.

  13. Aerosol single-scattering albedo retrieval over North Africa using critical reflectance

    Science.gov (United States)

    Wells, Kelley C.

    The sign and magnitude of the aerosol radiative forcing over bright surfaces is highly dependent on the absorbing properties of the aerosol. Thus, the determination of aerosol forcing over desert regions requires accurate information about the aerosol single-scattering albedo (SSA). However, the brightness of desert surfaces complicates the retrieval of aerosol optical properties using passive space-based measurements. The aerosol critical reflectance is one parameter that can be used to relate top-of-atmosphere (TOA) reflectance changes over land to the aerosol absorption properties, without knowledge of the underlying surface properties or aerosol loading. Physically, the parameter represents the TOA reflectance at which increased aerosol scattering due to increased aerosol loading is balanced by increased absorption of the surface contribution to the TOA reflectance. It can be derived by comparing two satellite images with different aerosol loading, assuming that the surface reflectance and background aerosol are similar between the two days. In this work, we explore the utility of the critical reflectance method for routine monitoring of spectral aerosol absorption from space over North Africa, a region that is predominantly impacted by absorbing dust and biomass burning aerosol. We derive the critical reflectance from Moderate Resolution Spectroradiometer (MODIS) Level 1B reflectances in the vicinity of two Aerosol Robotic Network (AERONET) stations: Tamanrasset, a site in the Algerian Sahara, and Banizoumbou, a Sahelian site in Niger. We examine the sensitivity of the critical reflectance parameter to aerosol physical and optical properties, as well as solar and viewing geometry, using the Santa Barbara DISORT Radiative Transfer (SBDART) model, and apply our findings to retrieve SSA from the MODIS critical reflectance values. We compare our results to AERONET-retrieved estimates, as well as to measurements of the TOA albedo and surface fluxes from the

  14. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  15. Reflected Light Curves, Spherical and Bond Albedos of Jupiter- and Saturn-like Exoplanets

    CERN Document Server

    Dyudina, Ulyana; Li, Liming; Kopparla, Pushkar; Yung, Yuk L; Ingersoll, Andrew P; Dones, Luke

    2015-01-01

    We estimate how the light curve and total stellar heating of a planet depend on forward and backward scattering clouds. To do that, we construct light curves for Jupiter- and Saturn-like planet based on observations. We fit analytical functions to the reflected brightness of Jupiter's and Saturn's surface versus planet's phase. We use Pioneer and Cassini spacecraft images to estimate these functions. These observations cover broad bands at 0.59-0.72 microns and 0.39-0.5 microns, and narrow bands at 0.938 microns (atmospheric window), 0.889 microns (CH4 absorption band), and 0.24-0.28 microns. We simulate the images of the planets at different phases with ray-tracing model of a planet by Dyudina et al. (2005). The full-disk luminosity of these simulated images changes with planet's phase producing the full-orbit light curves. We also derive total planet's reflection integrated in all directions (spherical albedos) for Jupiter, Saturn, and for planets with Lambertian and Rayleigh-scattering atmosphere. For Jupi...

  16. Albedo Boundary

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-510, 11 October 2003The sharp, nearly straight line that runs diagonally across the center of this April 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is an albedo boundary. Albedois a term that refers to reflectance of sunlight. A surface with a low albedo is one that appears dark because it reflects less light than a high albedo (bright) surface. On Mars, albedo boundaries occur between two materials of differing texture, particle size, or composition, or some combination of these three factors. The boundary shown here is remarkable because it is so sharp and straight. This is caused by wind. Most likely, the entire surface was once covered with the lower-albedo (darker) material that is now seen in the upper half of the image. At some later time, wind stripped away this darker material from the surfaces in the lower half of the image. The difference in albedo here might be related to composition, and possibly particle size. This picture is located near the southwest rim of Schiaparelli Basin at 5.5oS, 345.9oW. The picture covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the left.

  17. Total number albedo and average cosine of the polar angle of low-energy photons reflected from water

    Directory of Open Access Journals (Sweden)

    Marković Srpko

    2007-01-01

    Full Text Available The total number albedo and average cosine of the polar angle for water and initial photon energy range from 20 keV to 100 keV are presented in this pa per. A water shield in the form of a thick, homogenous plate and per pendicular incidence of the monoenergetic photon beam are assumed. The results were obtained through Monte Carlo simulations of photon reflection by means of the MCNP computer code. Calculated values for the total number albedo were compared with data previously published and good agreement was confirmed. The dependence of the average cosine of the polar angle on energy is studied in detail. It has been found that the total average cosine of the polar angle has values in the narrow interval of 0.66-0.67, approximately corresponding to the reflection angle of 48°, and that it does not depend on the initial photon energy.

  18. Derivation of Land Surface Albedo at High Resolution by Combining HJ-1A/B Reflectance Observations with MODIS BRDF Products

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2014-09-01

    Full Text Available Land surface albedo is an essential parameter for monitoring global/regional climate and land surface energy balance. Although many studies have been conducted on global or regional land surface albedo using various remote sensing data over the past few decades, land surface albedo product with a high spatio–temporal resolution is currently very scarce. This paper proposes a method for deriving land surface albedo with a high spatio–temporal resolution (space: 30 m and time: 2–4 days. The proposed method works by combining the land surface reflectance data at 30 m spatial resolution obtained from the charge-coupled devices in the Huanjing-1A and -1B (HJ-1A/B satellites with the Moderate Resolution Imaging Spectroradiometer (MODIS land surface bidirectional reflectance distribution function (BRDF parameters product (MCD43A1, which is at a spatial resolution of 500 m. First, the land surface BRDF parameters for HJ-1A/B land surface reflectance with a spatial–temporal resolutions of 30 m and 2–4 day are calculated on the basis of the prior knowledge from the MODIS BRDF product; then, the calculated high resolution BRDF parameters are integrated over the illuminating/viewing hemisphere to produce the white- and black-sky albedos at 30 m resolution. These results form the basis for the final land surface albedo derivation by accounting for the proportion of direct and diffuse solar radiation arriving at the ground. The albedo retrieved by this novel method is compared with MODIS land surface albedo products, as well as with ground measurements. The results show that the derived land surface albedo during the growing season of 2012 generally achieved a mean absolute accuracy of ±0.044, and a root mean square error of 0.039, confirming the effectiveness of the newly proposed method.

  19. "Albedo dome": a method for measuring spectral flux-reflectance in a laboratory for media with long optical paths.

    Science.gov (United States)

    Light, Bonnie; Carns, Regina C; Warren, Stephen G

    2015-06-10

    A method is presented for accurate measurement of spectral flux-reflectance (albedo) in a laboratory, for media with long optical path lengths, such as snow and ice. The approach uses an acrylic hemispheric dome, which, when placed over the surface being studied, serves two functions: (i) it creates an overcast "sky" to illuminate the target surface from all directions within a hemisphere, and (ii) serves as a platform for measuring incident and backscattered spectral radiances, which can be integrated to obtain fluxes. The fluxes are relative measurements and because their ratio is used to determine flux-reflectance, no absolute radiometric calibrations are required. The dome and surface must meet minimum size requirements based on the scattering properties of the surface. This technique is suited for media with long photon path lengths since the backscattered illumination is collected over a large enough area to include photons that reemerge from the domain far from their point of entry because of multiple scattering and small absorption. Comparison between field and laboratory albedo of a portable test surface demonstrates the viability of this method. PMID:26192823

  20. Global Albedo

    Science.gov (United States)

    2002-01-01

    A new sensor aboard NASA?s Terra satellite is now collecting the most detailed and accurate measurements ever made of how much sunlight the Earth?s surface reflects back up into the atmosphere. By quantifying precisely our planet?s reflectivity, or albedo, the Moderate Resolution Imaging Spectroradiometer (MODIS) is helping scientists better understand and predict how various surface features influence both short-term weather patterns as well as longer-term climate trends. (Click to read the press release.) The colors in this image emphasize the albedo over the Earth?s land surfaces, ranging from 0.0 to 0.4. Areas colored red show the brightest, most reflective regions; yellows and greens are intermediate values; and blues and violets show relatively dark surfaces. White indicates where no data were available, and no albedo data are provided over the oceans. This image was produced using data composited over a 16-day period, from April 7-22, 2002. Image courtesy Crystal Schaaf, Boston University, based upon data processed by the MODIS Land Science Team

  1. Mars Albedo

    Science.gov (United States)

    2001-01-01

    These two views of Mars are derived from the MGS Thermal Emission Spectrometer (TES) measurements of global broadband (0.3 - 3.0 microns) visible and near-infrared reflectance, also known as albedo. The range of colors are in dimensionless units. The values are the ratio of the amount of electromagnetic energy reflected by the surface to the amount of energy incident upon it from the sun (larger values are brighter surfaces).The TES instrument was built by Santa Barbara Remote Sensing and is operated by Philip R. Christensen, of Arizona State University, Tempe, AZ.

  2. Intercalibration of CERES, MODIS, and MISR reflected solar radiation and its application to albedo trends

    Science.gov (United States)

    Zhan, Yizhe; Davies, Roger

    2016-06-01

    Measurements on the Terra satellite by the Cloud and the Earth's Radiant Energy System (CERES), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Multiangle Imaging Spectroradiometer (MISR), between 2001 and 2015 over the polar regions, are analyzed in order to investigate the intercalibration differences between these instruments. Direct comparisons of colocated near-nadir radiances from CERES, MODIS, and MISR show relative agreement within 2.4% decade-1. By comparison with the CERES shortwave broadband, MODIS Collection 6 is getting brighter, by 1.0 ± 0.7% decade-1 in the red band and 1.4 ± 0.7% decade-1 in the near infrared. MISR's red and near-infrared bands, however, show darkening trends of -1.0 ± 0.6% decade-1 and -1.1 ± 0.6% decade-1, respectively. The CERES/MODIS or CERES/MISR visible and near IR radiance ratio is shown to have a significant negative correlation with precipitable water content over the Antarctic Plateau. The intercalibration results successfully correct the differential top-of-atmosphere trends in zonal albedos between CERES and MISR.

  3. Photon albedo for water, concrete, and iron at normal incidence, and dependence on the thickness of reflecting material

    OpenAIRE

    Marković Vladimir M.; Krstić Dragana; Stevanović Nenad; Nikezić Dragoslav R.

    2013-01-01

    Total number and angular albedo were calculated for commonly used shielding materials, water, concrete, and iron, for photons with initial energies from 10 keV up to 10 MeV and normal incident angle. Influence of material thickness on total number albedo was also investigated. Double differential albedo was determined from simulation of photon transport through materials by using PENELOPE and MCNP software. Backscattered photons were scored and grouped in equal intervals of energy and a...

  4. Hemispherical-directional reflectance factor measurements of snow on the Greenland Ice Sheet during the Radiation, Snow Characteristics and Albedo at Summit (RASCALS) campaign

    International Nuclear Information System (INIS)

    During the summer of 2010 a snow measurement campaign was carried out at Greenland Environmental Observatory, on Greenland Ice Sheet. Broadband snow albedo (bihemispherical reflectance), spectral hemispherical conical reflectance factor, temperature, density and other physical parameters were measured. Especially, the Hemispherical Directional Reflectance Factor (HDRF) of 46 snow samples was measured using the Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO). Additionally, linear polarization (Stokes parameters I, Q, and U), or Muller matrix elements R11, R12, and R13, were measured from some samples. Albedo was also calculated from the HDRF and these values were compared to those from the albedometer. Values were found to be within 3% of each other, which is within the accuracy limits of the instruments. We also compared our results to previous measurements at the Summit (by Bourgeois et al. during 2005 and Carmagnola et al. during 2011) and found our results to be in agreement with their measurements. Compared to previous studies, our measurements have full solar spectrum spectral coverage and linear polarization. - Highlights: • Snow albedo calculated from HDRF data match with albedometer values. • Comparison to previous measurements at same area. • Linear polarization and extended spectral range compared to previous measurements

  5. View-angle consistency in reflectance, optical thickness and spherical albedo of marine water-clouds over the northeastern Pacific through MISR-MODIS fusion

    Science.gov (United States)

    Liang, Lusheng; Di Girolamo, Larry; Platnick, Steven

    2009-05-01

    View-angle consistency in bidirectional reflectance factor (BRF), optical thickness and spherical albedo is examined for marine water clouds over a region of the northeastern Pacific using six years of fused Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging SpectroRadiometer (MISR) data. Consistency is quantified by the root-mean-square of relative differences between MISR-measured BRF and their plane-parallel values and variation of plane-parallel retrieved optical thickness and spherical albedo across multiple view-angles. Probability distribution functions of consistency show that, for example, these clouds are angularly consistent within 5% in BRF, optical thickness and spherical albedo 72.2%, 39.0% and 81.1% of the time, respectively. We relate angular consistency to the spatial variability of nadir-BRF, thus allowing us to potentially identify, with a prescribed confidence level, which MODIS microphysical retrievals within the MISR swath meet the plane-parallel assumption to within any desired range in view-angle consistency.

  6. Hemispherical-directional reflectance factor measurements of snow on the Greenland Ice Sheet during the Radiation, Snow Characteristics and Albedo at Summit (RASCALS) campaign

    Science.gov (United States)

    Hakala, Teemu; Riihelä, Aku; Lahtinen, Panu; Peltoniemi, Jouni I.

    2014-10-01

    During the summer of 2010 a snow measurement campaign was carried out at Greenland Environmental Observatory, on Greenland Ice Sheet. Broadband snow albedo (bihemispherical reflectance), spectral hemispherical conical reflectance factor, temperature, density and other physical parameters were measured. Especially, the Hemispherical Directional Reflectance Factor (HDRF) of 46 snow samples was measured using the Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO). Additionally, linear polarization (Stokes parameters I, Q, and U), or Muller matrix elements R11, R12, and R13, were measured from some samples. Albedo was also calculated from the HDRF and these values were compared to those from the albedometer. Values were found to be within 3% of each other, which is within the accuracy limits of the instruments. We also compared our results to previous measurements at the Summit (by Bourgeois et al. during 2005 and Carmagnola et al. during 2011) and found our results to be in agreement with their measurements. Compared to previous studies, our measurements have full solar spectrum spectral coverage and linear polarization.

  7. An Approach for the Long-Term 30-m Land Surface Snow-Free Albedo Retrieval from Historic Landsat Surface Reflectance and MODIS-based A Priori Anisotropy Knowledge

    Science.gov (United States)

    Shuai, Yanmin; Masek, Jeffrey G.; Gao, Feng; Schaaf, Crystal B.; He, Tao

    2014-01-01

    Land surface albedo has been recognized by the Global Terrestrial Observing System (GTOS) as an essential climate variable crucial for accurate modeling and monitoring of the Earth's radiative budget. While global climate studies can leverage albedo datasets from MODIS, VIIRS, and other coarse-resolution sensors, many applications in heterogeneous environments can benefit from higher-resolution albedo products derived from Landsat. We previously developed a "MODIS-concurrent" approach for the 30-meter albedo estimation which relied on combining post-2000 Landsat data with MODIS Bidirectional Reflectance Distribution Function (BRDF) information. Here we present a "pre-MODIS era" approach to extend 30-m surface albedo generation in time back to the 1980s, through an a priori anisotropy Look-Up Table (LUT) built up from the high quality MCD43A BRDF estimates over representative homogenous regions. Each entry in the LUT reflects a unique combination of land cover, seasonality, terrain information, disturbance age and type, and Landsat optical spectral bands. An initial conceptual LUT was created for the Pacific Northwest (PNW) of the United States and provides BRDF shapes estimated from MODIS observations for undisturbed and disturbed surface types (including recovery trajectories of burned areas and non-fire disturbances). By accepting the assumption of a generally invariant BRDF shape for similar land surface structures as a priori information, spectral white-sky and black-sky albedos are derived through albedo-to-nadir reflectance ratios as a bridge between the Landsat and MODIS scale. A further narrow-to-broadband conversion based on radiative transfer simulations is adopted to produce broadband albedos at visible, near infrared, and shortwave regimes.We evaluate the accuracy of resultant Landsat albedo using available field measurements at forested AmeriFlux stations in the PNW region, and examine the consistency of the surface albedo generated by this approach

  8. Program for Computing Albedo

    Science.gov (United States)

    Justus, Carl G.

    2003-01-01

    Simple Thermal Environment Model (STEM) is a FORTRAN-based computer program that provides engineering estimates of top-of-atmosphere albedo and outgoing long-wave radiation (OLR) for use in analyzing thermal loads on spacecraft near Earth. The thermal environment of a spacecraft is represented in STEM as consisting of direct solar radiation; short-wave radiation reflected by the atmosphere of the Earth, as characterized in terms of the albedo of the Earth; and OLR emitted by the atmosphere of the Earth. STEM can also address effects of heat loads internal to a spacecraft. Novel features of STEM include (1) the use of Earth albedo and OLR information based on time series of measurements by Earth Radiation Budget Experiment satellites in orbit; (2) the ability to address thermal time constants of spacecraft systems by use of albedo and OLR values representing averages over a range of averaging times; and (3) the ability to address effects, on albedo and OLR values, of satellite orbital inclination, the angle between the plane of a spacecraft orbit and the line between the centers of the Earth and Sun, the solar zenith angle, and latitude.

  9. Derivation of Land Surface Albedo at High Resolution by Combining HJ-1A/B Reflectance Observations with MODIS BRDF Products

    NARCIS (Netherlands)

    Gao, B.; Jia, L.; Wang, T.X.

    2014-01-01

    Land surface albedo is an essential parameter for monitoring global/regional climate and land surface energy balance. Although many studies have been conducted on global or regional land surface albedo using various remote sensing data over the past few decades, land surface albedo product with a hi

  10. Directional effects in albedo and angular distributions of relativistic electrons reflected from single crystals at grazing incidence

    International Nuclear Information System (INIS)

    Using the computer experiment methods directional effects of relativistic electrons' coherent reflection from crystal surface at glancing incidence were studied in conditions when it is due to multiple transversal scattering of particles by atomic chains (axial surface channeling). Directional dependencies of backscattering coefficients, ranges and depths of reflected electrons' penetration in crystal and their angular distributions have been calculated. It has allowed to elicit the directional effects of strings that lead to reflection at grazing angles close to the beam incident angle with respect to atomic chain as well as kinetic effects of surface plane that result in specular reflection and dominate at large beam misalignments with respect to low-index crystallographic directions

  11. Use of in situ and airborne multiangle data to assess MODIS-and landsat-based estimates of directional reflectance and albedo

    Science.gov (United States)

    The quantification of uncertainty in satellite-derived global surface albedo products is a critical aspect in producing complete, physically consistent, and decadal land property data records for studying ecosystem change. A challenge in validating albedo measurements acquired from space is the abil...

  12. Influence of spatial heterogeneity of local surface albedo on the area-averaged surface albedo retrieved from airborne irradiance measurements

    OpenAIRE

    E. Jäkel; M. Wendisch; Mayer, Bernhard

    2013-01-01

    Spectral airborne upward and downward irradiance measurements are used to derive the area-averaged surface albedo. Real surfaces are not homogeneous in their reflectivity. Therefore, this work studies the effects of the heterogeneity of surface reflectivity on the area-averaged surface albedo to quantify how well aircraft measurements can resolve the small-scale variability of the local surface albedo.

  13. Linking snowpack microphysics and albedo evolution

    OpenAIRE

    Mark G. Flanner; Zender, Charles S

    2006-01-01

     Snow aging causes reflectance to vary significantly on timescales of days. This variability influences the strength of snow albedo feedback and can affect the timing of snowmelt. However, climate models have yet to incorporate important controls on snow aging and albedo evolution. We develop a physically based model that predicts evolution of dry, pure snow specific surface area, and apply aspherical ice particle theory to link these results with albedo evolution. This is the first theoretic...

  14. 影响黄土高原地物光谱反射率的非均匀因子及反照率参数化研究%The relations of spectrum reflectance with inhomogeneous factors and albedo parameterization

    Institute of Scientific and Technical Information of China (English)

    张杰; 张强

    2011-01-01

    Remote sensing of albedo over inhomogeneous surfaces is an important topic that involves core problems such as assuring incidence angle, reflection angle and spectrum continuity. Hyper-spectral remote sensing is a good way to investigate the spectral continuity effect on albedo retrieval. In this research, synchronized observations of a wide range of soil and vegetative land cover were performed using the hyper-spectral instrument ASD FieldSpec Pro FRTM. Differences between spectral reflectance and broad albedo were analyzed. Spectral curves show that there are large differences at visible and near-infrared wavelengths; reflectance is low from 400 to 450 nm and from 650 to 700 nm due to strong chlorophyll absorption; reflectance is high, from 750 to 1300 nm due to cell structure reflectance; and reflectance is low from 1360 tol470 nm, 1830 to 2080 nm, and 2350 to 2500 nm, due to water vapor absorption. In addition to the sun zenith angle, chlorophyll, the cell structure of vegetation and water content are shown to be the main factors affecting the spectral reflectance of underlying surfaces, which are determined by the different growth stages and conditions of the vegetation. Therefore, chlorophyll, the cell structure of vegetation and water content are considered to be the important distinguishing indices for describing the spectral reflectance of sparse vegetation and inhomogeneous surfaces. They can be described by the normal difference vegetation index (NDVI) , the normal difference vegetation water index (NDWI) , and the soil water content capacity ( SWCC ) , respectively.There is a good negative logarithmic relationship between albedo and SWCC when SWCC is larger than 0. 2, and a negative logarithmic relationship and linearity between albedo and both NDVI and NDWI. Based on the relationships, an albedo retrieval model is estimated that relies on the reference spectral reflectance of the vegetation and soil. Spectral wavelengths between 0.3 and 2. 35 μm are

  15. Influence of spatial heterogeneity of local surface albedo on the area-averaged surface albedo retrieved from airborne irradiance measurements

    OpenAIRE

    E. Jäkel; M. Wendisch; Mayer, B.

    2012-01-01

    Spectral airborne upward and downward irradiance measurements are used to derive the area-averaged surface albedo. Real surfaces are not homogeneous in their reflectivity. Therefore, this work studies the effects of the heterogeneity of surface reflectivity on the area-averaged surface albedo to quantify how well aircraft measurements can resolve the small-scale variability of the local surface albedo. For that purpose spatially heterogeneous surface albedo maps were input into a 3-dimensiona...

  16. Influence of spatial heterogeneity of local surface albedo on the area-averaged surface albedo retrieved from airborne irradiance measurements

    OpenAIRE

    E. Jäkel; M. Wendisch; Mayer, B.

    2013-01-01

    Spectral airborne upward and downward irradiance measurements are used to derive the area-averaged surface albedo. Real surfaces are not homogeneous in their reflectivity. Therefore, this work studies the effects of the heterogeneity of surface reflectivity on the area-averaged surface albedo to quantify how well aircraft measurements can resolve the small-scale variability of the local surface albedo. For that purpose spatially heterogeneous surface albedo maps were inpu...

  17. Variability of albedo and utility of the MODIS albedo product in forested wetlands

    Science.gov (United States)

    Sumner, David M.; Wu, Qinglong; Pathak, Chandra S.

    2011-01-01

    Albedo was monitored over a two-year period (beginning April 2008) at three forested wetland sites in Florida, USA using up- and down-ward facing pyranometers. Water level, above and below land surface, is the primary control on the temporal variability of daily albedo. Relatively low reflectivity of water accounts for the observed reductions in albedo with increased inundation of the forest floor. Enhanced canopy shading of the forest floor was responsible for lower sensitivity of albedo to water level at the most dense forest site. At one site, the most dramatic reduction in daily albedo was observed during the inundation of a highly-reflective, calcareous periphyton-covered land surface. Satellite-based Moderate-Resolution Imaging Spectroradiometer (MODIS) estimates of albedo compare favorably with measured albedo. Use of MODIS albedo values in net radiation computations introduced a root mean squared error of less than 4.7 W/m2 and a mean, annual bias of less than 2.3 W/m2 (1.7%). These results suggest that MODIS-estimated albedo values can reliably be used to capture areal and temporal variations in albedo that are important to the surface energy balance.

  18. The zonal and global albedoes of the earth

    OpenAIRE

    Henderson-Sellers, A.; A. J. Meadows

    2011-01-01

    Changes in global albedo of the Earth can depend on regional variations in reflectivity. We compare here three regional factors that have been considered capable of causing significant changes in global albedo, representing them approximately by zonal averages. Our calculations suggest that (1) large latitudinal changes in ice cover will have only a slight effect on the planetary albedo, and (2) latitudinal shifts in the cloud belts can produce significant changes in the planetary albedo.DO...

  19. Boreal forest albedo and its spatial and temporal variation

    OpenAIRE

    Kuusinen, Nea

    2014-01-01

    Surface albedo refers to the fraction of solar irradiance that is reflected by a surface. Accurate characterisation of the albedo of various land cover types is required for evaluating the energy exchange between the Earth s surface and the atmosphere. The optical and structural properties of a surface determine its albedo. Boreal forest albedo can vary due to factors such as tree species composition, forest structure, understorey vegetation composition, and seasonal changes in vegetation and...

  20. NLCD - MODIS albedo data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The NLCD-MODIS land cover-albedo database integrates high-quality MODIS albedo observations with areas of homogeneous land cover from NLCD. The spatial resolution...

  1. Multiscale climatological albedo look-up maps derived from moderate resolution imaging spectroradiometer BRDF/albedo products

    Science.gov (United States)

    Gao, Feng; He, Tao; Wang, Zhuosen; Ghimire, Bardan; Shuai, Yanmin; Masek, Jeffrey; Schaaf, Crystal; Williams, Christopher

    2014-01-01

    Surface albedo determines radiative forcing and is a key parameter for driving Earth's climate. Better characterization of surface albedo for individual land cover types can reduce the uncertainty in estimating changes to Earth's radiation balance due to land cover change. This paper presents albedo look-up maps (LUMs) using a multiscale hierarchical approach based on moderate resolution imaging spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo products and Landsat imagery. Ten years (2001 to 2011) of MODIS BRDF/albedo products were used to generate global albedo climatology. Albedo LUMs of land cover classes defined by the International Geosphere-Biosphere Programme (IGBP) at multiple spatial resolutions were generated. The albedo LUMs included monthly statistics of white-sky (diffuse) and black-sky (direct) albedo for each IGBP class for visible, near-infrared, and shortwave broadband under both snow-free and snow-covered conditions. The albedo LUMs were assessed by using the annual MODIS IGBP land cover map and the projected land use scenarios from the Intergovernmental Panel on Climate Change land-use harmonization project. The comparisons between the reconstructed albedo and the MODIS albedo data product show good agreement. The LUMs provide high temporal and spatial resolution global albedo statistics without gaps for investigating albedo variations under different land cover scenarios and could be used for land surface modeling.

  2. Non interactive calculation of effective neutron multiplication factor by using two-group neutron albedo theory

    International Nuclear Information System (INIS)

    The effective neutron multiplication factor, Keff, explicitly appears under the neutron albedo theory. An albedo scheme can be used to determine Keff value without an iterative strategy. The albedo theory is illustrated by the endeavor of calculating Keff by using two-group neutron albedo method for spherical reflected cores. (author). 4 refs, 7 tabs

  3. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  4. Data for the Chilton-Huddleston photon-albedo approximations

    International Nuclear Information System (INIS)

    Empirical parameters for two different gamma-ray albedo formulas, originally proposed by Chilton and Huddleston, are presented for water, concrete, iron, and lead for 12 photon energies ranging from 0.1 to 10 MeV and for reflected doses based on the ambient dose equivalent, the effective dose equivalent, and the exposure. The parameters were obtained by fitting the albedo formulas to MCNP-calculated albedo values over the complete ranges of incident and reflected directions

  5. Spectral albedo of arctic snow during intensive melt period

    OpenAIRE

    O. Meinander; Kazadzis, S.; A. Arola; Kivi, R.; Kontu, A.; H. Suokanerva; Aaltonen, V.; Manninen, T.; J.-L. Roujean; O. Hautecoeur

    2010-01-01

    Spectral albedo and water liquid content of intensively melting Arctic snow were measured during the Snow Reflectance Transition Experiment (SNORTEX), in Sodankylä, Finland, in April 2009. The upwelling and downwelling spectral irradiance, measured at 290–550 nm with a double monochromator spectroradiometer, revealed the snow albedo to increase as a function wavelength. At the same time, we found the albedo of melting snow to decrease by ~10%, as a function of time within one day. During four...

  6. ZZ ALBEDO-DATA, Data for the Calculation of Albedos from Concrete, Iron, Lead and Water for Photons and Neutrons

    International Nuclear Information System (INIS)

    1 - Description: The use of albedo techniques is central to many radiation streaming codes and has been widely used as an alternative to much more expensive transport calculations. Key to the albedo technique is the availability of either a large set of albedo data or, preferably, an empirical formula that approximates the albedo over the range of source energies and incident and exit radiation directions involved in a particular problem. Previously proposed neutron and photon albedo approximating formulas have been based on limited energy-angular ranges, a single reflecting material, old cross section data, and, most important, obsolete fluence-to-dose response functions. This library contains differential neutron dose albedo functions, based on modern cross section and response function data. Newly evaluated parameters are tabulated for several empirical differential dose albedo formulas. The albedos considered are (1) two approximations for photon albedo, (2) a new approximation for the neutron albedo, and (3) the secondary-photon albedo for incident neutrons. Albedo data is provided for four Materials: concrete, iron, lead, and water. Unlike previous compilations of albedo data, modern dosimetric units have been employed. Data are presented for (1) the ambient dose equivalent H*(10 mm) and (2) the effective dose equivalent for anteroposterior (AP) illumination of the ICRP anthropomorphic phantom. 2 - Methods: Monte Carlo code, MCNP, was used to calculate the albedo reflected from thick slabs of various materials. In particular, a homogeneous cylindrical slab surrounded by a vacuum was used. The incident neutrons were modeled by a point mono-directional source positioned just inside the center of the circular scoring (reflecting) surface. This was done to facilitate scoring because all particles crossing the surface must be outgoing (reflected) particles. Slab thickness and radius were sufficiently large (1000 cm) so that negligible numbers of neutrons were

  7. A Continental United States High Resolution NLCD Land Cover – MODIS Albedo Database to Examine Albedo and Land Cover Change Relationships

    Science.gov (United States)

    Surface albedo influences climate by affecting the amount of solar radiation that is reflected at the Earth’s surface, and surface albedo is, in turn, affected by land cover. General Circulation Models typically use modeled or prescribed albedo to assess the influence of land co...

  8. Joint derivation method for determining optical properties based on steady-state spatially resolved diffuse reflectance measurement at small source-detector separations and large reduced albedo range: theory and simulation.

    Science.gov (United States)

    Shi, Zhenzhi; Fan, Ying; Zhao, Huijuan; Xu, Kexin

    2012-06-01

    Accurate determination of the optical properties (the absorption coefficient μ(a) and the reduced scattering coefficient μ(s) (')) of tissues is very important in a variety of diagnostic and therapeutic procedures. Optical diffusion theory is frequently used as the forward model for describing the photon transfer in media with large reduced albedos (a(')) and in large source-detector separations (SDS). Several other methods (PN approximation, hybrid diffusion-P3 approximation) have also been published that describe photon transfer in media with low a(') or small SDSs. We studied the theoretical models for the steady-state spatially resolved diffuse reflectance measurement to accurately determine μ(a) and μ(s) (') at large a(') range but small SDSs. Instead of using a single model, a joint derivation method is proposed. The developed method uses one of the best aforementioned theoretical methods separately in five ranges of a(') determined from several forward models. In the region of small SDSs (the range between 0.4 and 8 mm) and large a(') range (between 0.5 and 0.99), the best theoretical derivation model was determined. The results indicate that the joint derivation method can improve the derivation accuracy and that a(') range can be determined by the steady-state spatially resolved diffuse reflectance measurement. PMID:22734782

  9. Enhancement of the MODIS Daily Snow Albedo Product

    Science.gov (United States)

    Hall, Dorothy K.; Schaaf, Crystal B.; Wang, Zhuosen; Riggs, George A.

    2009-01-01

    The MODIS daily snow albedo product is a data layer in the MOD10A1 snow-cover product that includes snow-covered area and fractional snow cover as well as quality information and other metadata. It was developed to augment the MODIS BRDF/Albedo algorithm (MCD43) that provides 16-day maps of albedo globally at 500-m resolution. But many modelers require daily snow albedo, especially during the snowmelt season when the snow albedo is changing rapidly. Many models have an unrealistic snow albedo feedback in both estimated albedo and change in albedo over the seasonal cycle context, Rapid changes in snow cover extent or brightness challenge the MCD43 algorithm; over a 16-day period, MCD43 determines whether the majority of clear observations was snow-covered or snow-free then only calculates albedo for the majority condition. Thus changes in snow albedo and snow cover are not portrayed accurately during times of rapid change, therefore the current MCD43 product is not ideal for snow work. The MODIS daily snow albedo from the MOD10 product provides more frequent, though less robust maps for pixels defined as "snow" by the MODIS snow-cover algorithm. Though useful, the daily snow albedo product can be improved using a daily version of the MCD43 product as described in this paper. There are important limitations to the MOD10A1 daily snow albedo product, some of which can be mitigated. Utilizing the appropriate per-pixel Bidirectional Reflectance Distribution Functions (BRDFs) can be problematic, and correction for anisotropic scattering must be included. The BRDF describes how the reflectance varies with view and illumination geometry. Also, narrow-to-broadband conversion specific for snow on different surfaces must be calculated and this can be difficult. In consideration of these limitations of MOD10A1, we are planning to improve the daily snow albedo algorithm by coupling the periodic per-pixel snow albedo from MCD43, with daily surface ref|outanoom, In this paper, we

  10. Albedo matrices in assembly homogenization

    International Nuclear Information System (INIS)

    Relations between albedo matrices and a set of diffusion coefficients for a homogeneous medium is considered. The possibility to determine albedo matrices in a homogeneous diffusion medium on the basis of diffusion constants is proved. Relations for the reverse calculation of a set of equivalent diffusion constants using the albedo matrices are obtained. These relations can be used to check the albedo matrices determined by a numerical method. 10 refs.; 2 tabs

  11. UV albedo of arctic snow in spring

    Directory of Open Access Journals (Sweden)

    O. Meinander

    2008-02-01

    Full Text Available The relevance of snow for climate studies is based on its physical properties, such as high surface reflectivity. Surface ultraviolet (UV albedo is an essential parameter for various applications based on radiative transfer modeling. Here, new continuous measurements of the local UV albedo of natural Arctic snow were made at Sodankylä (67.37° N, 26.63° E, 179 m a.s.l. during the spring of 2007. The data were logged at 1-min intervals. The accumulation of snow was up to 68 cm. The surface layer thickness varied from 0.5 to 35 cm with the snow grain size between 0.2 and 2.5 mm. The midday erythemally weighted UV albedo ranged from 0.6 to 0.8 in the accumulation period and 0.5–0.7 during melting. During the snow melt period, under cases of an almost clear sky and variable cloudiness, an unexpected diurnal decrease of 0.05 in albedo soon after midday, and recovery thereafter, was detected. This diurnal decrease in albedo was found to be asymmetric with respect to solar midday, thus indicating a change in the properties of the snow. Independent UV albedo results with two different types of instruments confirm these findings. The measured temperature of the snow surface was below 0°C on the following mornings. Hence, the reversible diurnal change, evident for ~1–2 h, could be explained by the daily metamorphosis of the surface of the snowpack, in which the temperature of the surface increases, melting some of the snow to liquid water, after which the surface freezes again.

  12. Surface Albedo Variations Across Opportunity's Traverse in Meridiani Planum

    Science.gov (United States)

    Studer-Ellis, G. L.; Rice, M. S.; Johnson, J. R.; Bell, J. F., III

    2015-12-01

    Surface albedo measurements from the Mars Exploration Rover (MER) Opportunity mission can be used to help understand surface-atmosphere interactions at Meridiani Planum. Opportunity has acquired 117 albedo panoramas with the Pancam instrument as of sol 3870, across the first 40 km of its traverse. To date, only the first 32 panoramas have been reported upon in previous studies [1]. Here we present an analysis of the full set of PDS-released albedo observations from Opportunity and correlate our measurements with terrain type and known atmospheric events. To acquire a 360-degree albedo observation, Pancam's L1 ("clear") filter is used to take 27 broad-spectrum images, which are stitched into a mosaic. Pancam images are calibrated to reflectance factor (R*), which is taken as an approximation of the Lambertian albedo. Areas of interest are selected and average albedo calculations are applied to all of the selections. Results include the average albedo of each scene, as well as equal-area corrections where applicable, in addition to measurements of specific classes of surface features (e.g., outcrops, dusty terrain, and rover tracks). Average scene albedo measurements range from 0.11 ± 0.04 to 0.30 ± 0.04, with the highest value observed on sol 1290 (immediately after the planet-encircling dust storm of 2007). We compare these results to distance traveled, surface morphologies, local wind driven events, and dust opacity measurements. Future work will focus on correlating Pancam albedo values with orbital data from cameras such as HiRISE, CTX, MOC, THEMIS-VIS, and MARCI, and completion of the same analysis for the full Pancam albedo dataset from Spirit. References: [1] Bell, J. F., III, M. S. Rice, J. R. Johnson, and T. M. Hare (2008), Surface albedo observations at Gusev Crater and Meridiani Planum, Mars, J. Geophys. Res., 113, E06S18, doi:10.1029/2007JE002976.

  13. From Regional Cloud-Albedo to a Global Albedo Footprint - Studying Aerosol Effects on the Radiation Budget Using the Relation Between Albedo and Cloud Fraction

    Science.gov (United States)

    Bender, F.; Engström, A.; Karlsson, J.; Wood, R.; Charlson, R. J.

    2015-12-01

    Earth's albedo is the primary determinant of the amount of energy absorbed by the Earth-atmosphere system. The main factor controlling albedo is the amount of clouds present, but aerosols can affect and alter both clear-sky and cloudy-sky reflectance. How albedo depends on cloud fraction and how albedo varies at a given cloud fraction and a given cloud water content, reveals information about these aerosol effects on the radiation budget. Hence, the relation between total albedo and cloud fraction can be used for illustration and quantification of aerosol effects, and as a diagnostic tool, to test model performance. Here, we show examples of the utilisation of this relation focusing on satellite observations from CERES and MODIS on Aqua, as well as from Calipso and CloudSat, and performing comparisons with climate models on the way: In low-cloud regions in the subtropics, we find that climate models well represent a near-constant regional cloud albedo, and this representation has improved from CMIP3 to CMIP5. CMIP5 models indicate more reflective clouds in present-day climate than pre-industrial, as a result of increased aerosol burdens. On monthly mean time scale, models are found to over-estimate the regional cloud-brightening due to aerosols. On the global scale we find an increasing cloud albedo with increasing cloud fraction - a relation that is very well defined in observations, and less so in CMIP5 models. Cloud brightening from pre-industrial to present day is also seen on global scale. Further, controlling for both cloud fraction and cloud water content we can trace small variations in albedo, or perturbations of solar reflectivity, that create a near-global coherent geographical pattern that is consistent with aerosol impacts on climate, with albedo enhancement in regions dominant of known aerosol sources and suppression of albedo in regions associated with high rates of aerosol removal (deduced using CloudSat precipitation estimates). This mapping can be

  14. Measurements of spectral snow albedo at Neumayer, Antarctica

    Directory of Open Access Journals (Sweden)

    S. Wuttke

    2006-03-01

    Full Text Available Spectral albedo in high resolution, from 290 to 1050 nm, has been measured at Neumayer, Antarctica, (70°39' S, 8°15' W during the austral summer 2003/2004. At 500 nm, the spectral albedo nearly reaches unity, with slightly lower values below and above 500 nm. Above 600 nm, the spectral albedo decreases to values between 0.45 and 0.75 at 1000 nm. For one cloudless case an albedo up to 1.01 at 500 nm could be determined. This can be explained by the larger directional component of the snow reflectivity for direct incidence, combined with a slightly mislevelled sensor and the snow surface not being perfectly horizontal. A possible explanation for an observed decline in albedo is an increase in snow grain size. The theoretically predicted increase in albedo with increasing solar zenith angle (SZA could not be observed. This is explained by the small range of SZA during albedo measurements, combined with the effect of changing snow conditions outweighing the effect of changing SZA. The measured spectral albedo serves as input for radiative transfer models, describing radiation conditions in Antarctica.

  15. The Albedo of Pervious Cement Concrete Linearly Decreases with Porosity

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2015-01-01

    Full Text Available Pervious pavements have been advocated as a potential countermeasure to the urban heat island effect. To understand if pervious pavements stay cooler than conventional pavements, the albedo of the pervious concrete must be understood. This study measured the albedo of pervious concrete with different porosity. Four Portland cement concrete mixes were casted, using designed amounts of sand to vary the porosity of the pervious concrete samples. The samples were sliced and the spectral reflectance and albedo of the sliced samples were measured and analyzed. It is found that the albedo of pervious concrete decreases linearly with the increase of the porosity. The albedo of a pervious Portland concrete varies from 0.25 to 0.35, which is 0.05~0.15 lower than the albedo of conventional cement concrete. Due to this lower albedo, it should be cautious to develop pervious concrete to battle with urban heat island unless the evaporation of pervious concrete is promoted to compensate the additional solar absorption caused by the low albedo.

  16. Linking glacier annual mass balance and glacier albedo retrieved from MODIS data

    OpenAIRE

    Dumont, M; Gardelle, J.; P. Sirguey; A. Guillot; Six, D.; Rabatel, A.; Y. Arnaud

    2012-01-01

    Albedo is one of the variables controlling the mass balance of temperate glaciers. Multispectral imagers, such as MODerate Imaging Spectroradiometer (MODIS) on board the TERRA and AQUA satellites, provide a means to monitor glacier surface albedo. In this study, different methods to retrieve broadband glacier surface albedo from MODIS data are compared. The effect of multiple reflections due to the rugged topography and of the anisotropic reflection of snow and ...

  17. Observational estimates of planetary albedo changes due to anthropogenic effects /

    OpenAIRE

    Pistone, Kristina

    2014-01-01

    A major driver of both the Earth's natural climate variability and current climate change is the net solar input to the Earth system, i.e. the amount of incident solar radiation minus the fraction reflected back to space. Changes in this so-called albedo may have substantial effects on the Earth's climate. I use observations to address aspects of both the Arctic sea ice -albedo feedback and the albedo effects of aerosols on Indian Ocean cumulus clouds. In Chapter 2, I use satellite radiation ...

  18. Lunar Terrain and Albedo Reconstruction from Apollo Imagery

    Science.gov (United States)

    Nefian, Ara V.; Kim, Taemin; Broxton, Michael; Moratto, Zach

    2010-01-01

    Generating accurate three dimensional planetary models and albedo maps is becoming increasingly more important as NASA plans more robotics missions to the Moon in the coming years. This paper describes a novel approach for separation of topography and albedo maps from orbital Lunar images. Our method uses an optimal Bayesian correlator to refine the stereo disparity map and generate a set of accurate digital elevation models (DEM). The albedo maps are obtained using a multi-image formation model that relies on the derived DEMs and the Lunar- Lambert reflectance model. The method is demonstrated on a set of high resolution scanned images from the Apollo era missions.

  19. Mars surface albedo and changes

    CERN Document Server

    Vincendon, Mathieu; Altieri, Francesca; Ody, Anouck

    2014-01-01

    The pervasive Mars dust is continually transported between surface and atmosphere. When on the surface, dust increases the albedo of darker underlying rocks and regolith, which modifies climate energy balance and must be quantified. Remote observation of surface albedo absolute value and albedo change is however complicated by dust itself when lifted in the atmosphere. Here we present a method to calculate and map the bolometric solar hemispherical albedo of the Martian surface using the 2004 - 2010 OMEGA imaging spectrometer dataset. This method takes into account aerosols radiative transfer, surface photometry, and instrumental issues such as registration differences between visible and near-IR detectors. Resulting albedos are on average 17% higher than previous estimates for bright surfaces while similar for dark surfaces. We observed that surface albedo changes occur mostly during the storm season due to isolated events. The main variations are observed during the 2007 global dust storm and during the fol...

  20. A generalized albedo option for forward and adjoint Monte Carlo calculations

    International Nuclear Information System (INIS)

    The advisability of using the albedo procedure for the Monte Carlo solution of deep-penetration shielding problems which have ducts and other penetrations is investigated. It is generally accepted that the use of albedo data can dramatically improve the computational efficiency of certain Monte Carlo calculations - however the accuracy of these results may be unacceptable because of lost information during the albedo event and serious errors in the available differential albedo data. This study was done to evaluate and appropriate modify the MORSE/BREESE package, to develop new methods for generating the required albedo data, and to extend the adjoint capability to the albedo-modified calculations. The major modifications include an option to save for further use information that would be lost at the albedo event, an option to displace the emergent point during an albedo event, and an option to read spatially-dependent albedo data for both forward and adjoint calculations - which includes the emergent point as a new random variable to be selected during an albedo reflection event. The theoretical basis for using TORT-generated forward albedo information to produce adjuncton albedos is derived

  1. Albedo patterns on triton

    International Nuclear Information System (INIS)

    A model for seasonal transport of volatiles based on Trafton [1984] is coupled to considerations of methane photochemistry to infer albedo patterns on Triton's surface at the time of the Voyager encounter. The relatively large southern subsolar latitude at present is predicted to cause the deposition of an extensive fresh frost layer covering approximately the northern half of the planet. The region between 10 degree and -35 degree latitude is expected to be devoid of surface frosts and will probably be covered with organic compounds resulting from methane dissociative chemistry. These substances are thought to be rather low in albedo and red in color. Triton's south polar cap is expected to extend from -35 degree latitude to the southern pole. Sublimation of Triton's south polar ices been occurring since 1930, but has been preferentially occurring near the pole. The sublimation of ices in this region may be concentrating dark organic matter on the surface of the ice or exposing layers of this material which have built up in the ice over many seasonal cycles. The south polar cap may be distinctly darker near the pole than around the equatorward edge

  2. Inter-comparison of multiple angle remotely sensed data across different spatial resolutions and sensors for determination of albedo

    OpenAIRE

    Khavarian Nehzak, Hassan

    2012-01-01

    Surface albedo is one of the critical parameters required by studies of surface energy balance and climate models. Albedo is defined as the ratio of outgoing radiances to incoming irradiances over hemispherical view-illumination geometry. Remotely sensed albedo is usually based on multiple view angle observations and a Bidirectional Reflectance Distribution Function (BRDF) model. The accuracy of remotely sensed albedo depends on a variety of factors of which the main ones are the accuracy of ...

  3. Quasi-specular albedo of cold neutrons from powder of nanoparticles

    OpenAIRE

    Cubitt, R.; Lychagin, E. V.; Muzychka, A. Yu.; Nekhaev, G. V.; Nesvizhevsky, V. V.; Pignol, G.; Protasov, K.V.; Strelkov, A. V.

    2009-01-01

    We predicted and observed for the first time the quasi-specular albedo of cold neutrons at small incidence angles from a powder of nanoparticles. This albedo (reflection) is due to multiple neutron small-angle scattering. The reflection angle as well as the half-width of angular distribution of reflected neutrons is approximately equal to the incidence angle. The measured reflection probability was equal to ~30% within the detector angular size that corresponds to 40-50% total calculated prob...

  4. Land Surface Albedos Computed from BRF Measurements with a Study of Conversion Formulae

    OpenAIRE

    Aku Riihelä; Eetu Puttonen; Juha Suomalainen; Teemu Hakala; Terhikki Manninen; Peltoniemi, Jouni I.

    2010-01-01

    Land surface hemispherical albedos of several targets have been resolved using the bidirectional reflectance factor (BRF) library of the Finnish Geodetic Institute (FGI). The library contains BRF data measured by FGI during the years 2003–2009. Surface albedos are calculated using selected BRF datasets from the library. Polynomial interpolation and extrapolation have been used in computations. Several broadband conversion formulae generally used for satellite based surface albedo retrieval ha...

  5. Land Surface Albedo Estimation from Chinese HJ Satellite Data Based on the Direct Estimation Approach

    OpenAIRE

    Tao He; Shunlin Liang; Dongdong Wang; Xiaona Chen; Dan-Xia Song; Bo Jiang

    2015-01-01

    Monitoring surface albedo at medium-to-fine resolution (<100 m) has become increasingly important for medium-to-fine scale applications and coarse-resolution data evaluation. This paper presents a method for estimating surface albedo directly using top-of-atmosphere reflectance. This is the first attempt to derive surface albedo for both snow-free and snow-covered conditions from medium-resolution data with a single approach. We applied this method to the multispectral data from the wide-...

  6. Radiative forcing by changes in surface albedo caused by changes in vegetation

    OpenAIRE

    2005-01-01

    The human influence on vegetation causes changes in the surface reflective properties. By using MODIS land cover and MODIS surface albedo products, an estimation of radiative forcing due to surface albedo changes caused by vegetation changes is performed. A potential natural vegetation data set is used to compute radiative forcing estimates from pre agricultural times to present. A combination between MODIS blacksky and whitesky albedo and diffuse and direct radiation at gr...

  7. Main-belt asteroids with WISE/NEOWISE: Near-infrared albedos

    Energy Technology Data Exchange (ETDEWEB)

    Masiero, Joseph R.; Mainzer, A. K.; Nugent, C. R.; Bauer, J. M.; Stevenson, R.; Sonnett, S. [Jet Propulsion Laboratory/Caltech, 4800 Oak Grove Drive, MS 183-601, Pasadena, CA 91109 (United States); Grav, T., E-mail: Joseph.Masiero@jpl.nasa.gov, E-mail: amainzer@jpl.nasa.gov, E-mail: cnugent@jpl.nasa.gov, E-mail: James.Bauer@jpl.nasa.gov, E-mail: Rachel.A.Stevenson@jpl.nasa.gov, E-mail: sarah.sonnett@jpl.nasa.gov, E-mail: tgrav@psi.edu [Planetary Science Institute, Tucson, AZ (United States)

    2014-08-20

    We present revised near-infrared albedo fits of 2835 main-belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with thermal emission measurements, allowing for more accurate measurements of the near-infrared albedos than is possible for visible albedo measurements. Because our sample requires reflected light measurements, it undersamples small, low-albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the main belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 μm. Conversely, the 4.6 μm albedo distribution spans the full range of possible values with no clear grouping. Asteroid families show a narrow distribution of 3.4 μm albedos within each family that map to one of the three observed groupings, with the (221) Eos family being the sole family associated with the 16% reflectance 3.4 μm albedo group. We show that near-infrared albedos derived from simultaneous thermal emission and reflected light measurements are important indicators of asteroid taxonomy and can identify interesting targets for spectroscopic follow-up.

  8. Main-belt asteroids with WISE/NEOWISE: Near-infrared albedos

    International Nuclear Information System (INIS)

    We present revised near-infrared albedo fits of 2835 main-belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with thermal emission measurements, allowing for more accurate measurements of the near-infrared albedos than is possible for visible albedo measurements. Because our sample requires reflected light measurements, it undersamples small, low-albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the main belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 μm. Conversely, the 4.6 μm albedo distribution spans the full range of possible values with no clear grouping. Asteroid families show a narrow distribution of 3.4 μm albedos within each family that map to one of the three observed groupings, with the (221) Eos family being the sole family associated with the 16% reflectance 3.4 μm albedo group. We show that near-infrared albedos derived from simultaneous thermal emission and reflected light measurements are important indicators of asteroid taxonomy and can identify interesting targets for spectroscopic follow-up.

  9. The Ultraviolet Albedo of Ganymede

    Science.gov (United States)

    McGrath, Melissa; Hendrix, Amanda

    2013-01-01

    A large set of ultraviolet images of Ganymede have been acquired with the Hubble Space Telescope over the last 15 years. These images have been used almost exclusively to study Ganymede's stunning auroral emissions (Feldman et al. 2000; Eviatar et al. 2001; McGrath et al. 2004; Saur et al. 2011; McGrath et al. 2013), and even the most basic information about Ganymede's UV albedo has yet to be gleaned from these data. We will present a first-cut analysis of both disk-averaged and spatially-resolved UV albedos of Ganymede, with focus on the spatially-resolved Lyman-alpha albedo, which has never been considered previously for this satellite. Ganymede's visibly bright regions are known to be rich in water ice, while the visibly dark regions seem to be more carbonaceous (Carlson et al., 1996). At Lyman-alpha, these two species should also have very different albedo values.

  10. Connection between the spherical albedo and the observable characteristics of a planetary atmosphere

    International Nuclear Information System (INIS)

    Semiempirical dependences of the geometrical albedo and the reflection coefficient at the center of a planetary disk on the spherical albedo are found. The nonsteady analogs of these quantities are studied on the basis of the approximate equations obtained. These analogs can be used in the analysis of radiation transfer in forbidden molecular absorption bands

  11. THE HIGH ALBEDO OF THE HOT JUPITER KEPLER-7 b

    International Nuclear Information System (INIS)

    Hot Jupiters are expected to be dark from both observations (albedo upper limits) and theory (alkali metals and/or TiO and VO absorption). However, only a handful of hot Jupiters have been observed with high enough photometric precision at visible wavelengths to investigate these expectations. The NASA Kepler mission provides a means to widen the sample and to assess the extent to which hot Jupiter albedos are low. We present a global analysis of Kepler-7 b based on Q0-Q4 data, published radial velocities, and asteroseismology constraints. We measure an occultation depth in the Kepler bandpass of 44 ± 5 ppm. If directly related to the albedo, this translates to a Kepler geometric albedo of 0.32 ± 0.03, the most precise value measured so far for an exoplanet. We also characterize the planetary orbital phase light curve with an amplitude of 42 ± 4 ppm. Using atmospheric models, we find it unlikely that the high albedo is due to a dominant thermal component and propose two solutions to explain the observed planetary flux. First, we interpret the Kepler-7 b albedo as resulting from an excess reflection over what can be explained solely by Rayleigh scattering, along with a nominal thermal component. This excess reflection might indicate the presence of a cloud or haze layer in the atmosphere, motivating new modeling and observational efforts. Alternatively, the albedo can be explained by Rayleigh scattering alone if Na and K are depleted in the atmosphere by a factor of 10-100 below solar abundances.

  12. Land Surface Albedos Computed from BRF Measurements with a Study of Conversion Formulae

    Directory of Open Access Journals (Sweden)

    Aku Riihelä

    2010-08-01

    Full Text Available Land surface hemispherical albedos of several targets have been resolved using the bidirectional reflectance factor (BRF library of the Finnish Geodetic Institute (FGI. The library contains BRF data measured by FGI during the years 2003–2009. Surface albedos are calculated using selected BRF datasets from the library. Polynomial interpolation and extrapolation have been used in computations. Several broadband conversion formulae generally used for satellite based surface albedo retrieval have been tested. The albedos were typically found to monotonically increase with increasing zenith angle of the Sun. The surface albedo variance was significant even within each target category / surface type. In general, the albedo estimates derived using diverse broadband conversion formulas and estimates obtained by direct integration of the measured spectra were in line.

  13. Radiative transfer in plane inhomogeneous media with exponentially varying albedo

    International Nuclear Information System (INIS)

    Accurate numerical results for the exit distributions and the global reflection and transmission coefficients relevant to radiative transfer in a stratified medium with exponentially varying albedo are obtained and compared to previous results. The semi-analytical solution of the linear transport equation is rigorously performed on the basis of a simple projectional method. (author)

  14. The retrieval of land surface albedo in rugged terrain

    NARCIS (Netherlands)

    Gao, B.; Jia, L.; Menenti, M.

    2012-01-01

    Land surface albedo may be derived from the satellite data through the estimation of a bidirectional reflectance distribution function (BRDF) model and angular integration. However many BRDF models do not consider explicitly the topography. In rugged terrain, the topography influences the observed s

  15. The high albedo of the hot Jupiter Kepler-7b

    DEFF Research Database (Denmark)

    Demory, B.-O.; Seager, S.; Madhusudhan, N.;

    2011-01-01

    component. This excess reflection might indicate the presence of a cloud or haze layer in the atmosphere, motivating new modeling and observational efforts. Alternatively, the albedo can be explained by Rayleigh scattering alone if Na and K are depleted in the atmosphere by a factor of 10-100 below solar...

  16. Design and Fabrication of an Albedo Insensitive Analog Sun Sensor

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; De Graaf, G.; Leijtens, J.; Wolffenbuttel, R.F.

    2011-01-01

    A sun sensor is usually included in a satellite for optically measuring the position relative to the sun. The accuracy of a conventional sun sensor is affected by reflected sunlight at the nearby earth atmosphere: the albedo radiation. The part of the spectrum at near IR (1.5 μm) is not included in

  17. Implications of albedo changes following afforestation on the benefits of forests as carbon sinks

    Science.gov (United States)

    Kirschbaum, M. U. F.; Whitehead, D.; Dean, S. M.; Beets, P. N.; Shepherd, J. D.; Ausseil, A.-G. E.

    2011-12-01

    Increased carbon storage with afforestation leads to a decrease in atmospheric carbon dioxide concentration and thus decreases radiative forcing and cools the Earth. However, afforestation also changes the reflective properties of the surface vegetation from more reflective pasture to relatively less reflective forest cover. This increase in radiation absorption by the forest constitutes an increase in radiative forcing, with a warming effect. The net effect of decreased albedo and carbon storage on radiative forcing depends on the relative magnitude of these two opposing processes. We used data from an intensively studied site in New Zealand's Central North Island that has long-term, ground-based measurements of albedo over the full short-wave spectrum from a developing Pinus radiata forest. Data from this site were supplemented with satellite-derived albedo estimates from New Zealand pastures. The albedo of a well-established forest was measured as 13 % and pasture albedo as 20 %. We used these data to calculate the direct radiative forcing effect of changing albedo as the forest grew. We calculated the radiative forcing resulting from the removal of carbon from the atmosphere as a decrease in radiative forcing of -104 GJ tC-1 yr-1. We also showed that the observed change in albedo constituted a direct radiative forcing of 2759 GJ ha-1 yr-1. Thus, following afforestation, 26.5 tC ha-1 needs to be stored in a growing forest to balance the increase in radiative forcing resulting from the observed albedo change. Measurements of tree biomass and albedo were used to estimate the net change in radiative forcing as the newly planted forest grew. Albedo and carbon-storage effects were of similar magnitude for the first four to five years after tree planting, but as the stand grew older, the carbon storage effect increasingly dominated. Averaged over the whole length of the rotation, the changes in albedo negated the benefits from increased carbon storage by 17-24 %.

  18. Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2.

    Science.gov (United States)

    Wicklein, Haley F; Ollinger, Scott V; Martin, Mary E; Hollinger, David Y; Lepine, Lucie C; Day, Michelle C; Bartlett, Megan K; Richardson, Andrew D; Norby, Richard J

    2012-08-01

    Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen–albedo relationship have not been established, and it is unknown whether factors affecting nitrogen availability will also influence albedo. To address these questions, we examined variation in foliar nitrogen in relation to leaf spectral properties, leaf mass per unit area, and leaf water content for three deciduous species subjected to either nitrogen (Harvard Forest, MA, and Oak Ridge, TN) or CO(2) fertilization (Oak Ridge, TN). At Oak Ridge, we also obtained canopy reflectance data from the airborne visible/infrared imaging spectrometer (AVIRIS) to examine whether canopy-level spectral responses were consistent with leaf-level results. At the leaf level, results showed no differences in reflectance or transmittance between CO(2) or nitrogen treatments, despite significant changes in foliar nitrogen. Contrary to our expectations, there was a significant, but negative, relationship between foliar nitrogen and leaf albedo, a relationship that held for both full spectrum leaf albedo as well as leaf albedo in the NIR region alone. In contrast, remote sensing data indicated an increase in canopy NIR reflectance with nitrogen fertilization. Collectively, these results suggest that altered nitrogen availability can affect canopy albedo, albeit by mechanisms that involve canopy-level processes rather than changes in leaf-level reflectance. PMID:22294028

  19. Albedo Measurement System for UVA and the Visible Wavelength

    International Nuclear Information System (INIS)

    An instrument system to measure the UVA and visible albedo from the snow capped mountain ranges has been built. Albedo is the ratio between the incoming radiation and the reflected radiation for a given location. Measuring albedo of the UVA and the Photosynthetic Active Radiation (PAR) wavelength range involves measuring the global irradiance and the reflections from the slopes around the measuring location. This system can be installed in any mountain peak to measure the reflectivity around the snow covered slopes. Global irradiance is measured by a standard global sensor using a Gigahertz UVA head and a home built UVA head. The UVA reflection is measured by an 1 deg. telescope fitted with a home built UVA head. The home built UVA detector systems have been built using Hamamatsu silicon UV diodes and temperature stabilized using Peltier elements driven by a closed loop feedback control system. Two such similar systems have been built and used for directional and global measurements for direct comparison. PAR reflection is measured by a standard area CCD camera fitted with a wide angle lens and an optical filter. Global PAR is measured by using LI-COR Quantum sensors. The telescope and the CCD camera have been mounted on an Alta-Azimuth mount for scanning the surface around the peak to measure the reflectivity. A set of reflection standards along with the global PAR sensor has been mounted on a boom and fixed with the azimuth table. These reflection standards are visible in the field of view of the CCD camera. This provides the reference pixels in every CCD image that can be used to calibrate the rest of the CCD pixels. This system has been used to make the albedo images at the Zugspitze for the CUVRA (Characteristic of Ultra Violet Radiation in the Alps) project. Preliminary results are shown here. (author)

  20. Deriving albedo maps for HAPEX-Sahel from ASAS data using kernel-driven BRDF models

    Directory of Open Access Journals (Sweden)

    P. Lewis

    1999-01-01

    Full Text Available This paper describes the application and testing of a method for deriving spatial estimates of albedo from multi-angle remote sensing data. Linear kernel-driven models of surface bi-directional reflectance have been inverted against high spatial resolution multi-angular, multi- spectral airborne data of the principal cover types within the HAPEX-Sahel study site in Niger, West Africa. The airborne data are obtained from the NASA Airborne Solid-state Imaging Spectrometer (ASAS instrument, flown in Niger in September and October 1992. The maps of model parameters produced are used to estimate integrated reflectance properties related to spectral albedo. Broadband albedo has been estimated from this by weighting the spectral albedo for each pixel within the map as a function of the appropriate spectral solar irradiance and proportion of direct and diffuse illumination. Partial validation of the results was performed by comparing ASAS reflectance and derived directional-hemispherical reflectance with simulations of a millet canopy made with a complex geometric canopy reflectance model, the Botanical Plant Modelling System (BPMS. Both were found to agree well in magnitude. Broadband albedo values derived from the ASAS data were compared with ground-based (point sample albedo measurements and found to agree extremely well. These results indicate that the linear kernel-driven modelling approach, which is to be used operationally to produce global 16 day, 1 km albedo maps from forthcoming NASA Earth Observing System spaceborne data, is both sound and practical for the estimation of angle-integrated spectral reflectance quantities related to albedo. Results for broadband albedo are dependent on spectral sampling and on obtaining the correct spectral weigthings.

  1. Multigroup albedo method applied to gamma radiation shielding

    International Nuclear Information System (INIS)

    The Albedo method, when applied to shielding calculations, is characterized by following the radiation through the materials, determining the reflected, absorbed and transmitted fractions of the incident current, independently of flux calculations. The excellent results obtained to neutron shielding cases in which the diffusion approximation could be applied motivated this work, where the method was applied in order to develop a multigroup and multilayered algorithm. A gamma radiation shielding simulation was carried out to a system constituted by three infinite slabs of varied materials and six energy groups. The results obtained by Albedo Method were the same generated by ANISN, a consecrated deterministic nuclear code. Concludingly, this work demonstrates the validity of Albedo Method to gamma radiation shielding analysis through its agreement with the full Transport Equation. (author)

  2. Matrix albedo for discrete ordinates infinite-medium boundary condition

    International Nuclear Information System (INIS)

    Discrete ordinates problems with an infinite exterior medium (reflector) can be more efficiently computed by eliminating grid cells in the exterior medium and applying a matrix albedo boundary condition. The albedo matrix is a discretized bidirectional reflection distribution function (BRDF) that accounts for the angular quadrature set, spatial quadrature method, and spatial grid that would have been used to model a portion of the exterior medium. The method is exact in slab geometry, and could be used as an approximation in multiple dimensions or curvilinear coordinates. We present an adequate method for computing albedo matrices and demonstrate their use in verifying a discrete ordinates code in slab geometry by comparison with Ganapol's infinite medium semi-analytic TIEL benchmark. With sufficient resolution in the spatial and angular grids and iteration tolerance to yield solutions converged to 6 digits, the conventional (scalar) albedo boundary condition yielded 2-digit accuracy at the boundary, but the matrix albedo solution reproduced the benchmark scalar flux at the boundary to all 6 digits. (authors)

  3. Spatial and temporal variation in vegetation land cover albedo in Finland

    OpenAIRE

    Safdari, Pezhman

    2015-01-01

    Surface albedo, which is the fraction of reflected radiant energy by earth’s surface to incoming solar energy, plays an important role in earth energy budget and energy equilibrium. Different features of the earth’s surface have different reflectivity rates which affect the albedo. Vegetation land-covers covering vast areas of earth’s surface as agricultural lands, forests, grass lands and so on, have great impact on land surface albedo. The Species composition, geographical distributi...

  4. Control of neutron albedo in toroidal fusion reactors

    International Nuclear Information System (INIS)

    The MCNP and ANISN codes have been used to obtain basic neutron albedo data for materials of interest for fusion applications. Simple physical models are presented which explain albedo dependence on pre- and post-reflection variables. The angular distribution of reflected neutrons. The energy spectra of reflected neutrons are presented, and it is shown that substantial variations in the total neutron current at the outboard wall of a torus can be effected by changing materials behind the inboard wall. Analyses show that a maximum of four isolated incident-current environments may be established simultaneously on the outboard side of a torus. With suitable inboard reflectors, global tritium breeding ratios significantly larger than unity can be produced in limited-coverage breeding blankets when the effects of outboard penetrations are included

  5. Quasi-specular albedo of cold neutrons from powder of nanoparticles

    CERN Document Server

    Cubitt, R; Muzychka, A Yu; Nekhaev, G V; Nesvizhevsky, V V; Pignol, G; Protasov, K V; Strelkov, A V

    2009-01-01

    We predicted and observed for the first time the quasi-specular albedo of cold neutrons at small incidence angles from a powder of nanoparticles. This albedo (reflection) is due to multiple neutron small-angle scattering. The reflection angle as well as the half-width of angular distribution of reflected neutrons is approximately equal to the incidence angle. The measured reflection probability was equal to ~30% within the detector angular size that corresponds to 40-50% total calculated probability of quasi-specular reflection.

  6. MCNP - transport calculations in ducts using multigroup albedo coefficients

    International Nuclear Information System (INIS)

    In this work, the use of multigroup albedo coefficients in Monte Carlo calculations of particle reflection and transmission by ducts is investigated. The procedure consists in modifying the MCNP code so that an albedo matrix computed previously by deterministic methods or Monte Carlo is introduced into the program to describe particle reflection by a surface. This way it becomes possible to avoid the need of considering particle transport in the duct wall explicitly, changing the problem to a problem of transport in the duct interior only and reducing significantly the difficulty of the real problem. The probability of particle reflection at the duct wall is given, for each group, as the sum of the albedo coefficients over the final groups. The calculation is started by sampling a source particle and simulating its reflection on the duct wall by sampling a group for the emerging particle. The particle weight is then reduced by the reflection probability. Next, a new direction and trajectory for the particle is selected. Numerical results obtained for the model are compared with results from a discrete ordinates code and results from Monte Carlo simulations that take particle transport in the wall into account. (author)

  7. Linking glacier annual mass balance and glacier albedo retrieved from MODIS data

    Directory of Open Access Journals (Sweden)

    M. Dumont

    2012-07-01

    Full Text Available Albedo is one of the variables controlling the mass balance of temperate glaciers. Multispectral imagers, such as MODerate Imaging Spectroradiometer (MODIS on board the TERRA and AQUA satellites, provide a means to monitor glacier surface albedo. In this study, different methods to retrieve broadband glacier surface albedo from MODIS data are compared. The effect of multiple reflections due to the rugged topography and of the anisotropic reflection of snow and ice are particularly investigated. The methods are tested on the Saint Sorlin Glacier (Grandes Rousses area, French Alps. The accuracy of the retrieved albedo is estimated using both field measurements, at two automatic weather stations located on the glacier, and albedo values derived from terrestrial photographs. For summers 2008 and 2009, the Root Mean Square Deviation (RMSD between field measurements and the broadband albedo retrieved from MODIS data at 250 m spatial resolution was found to be 0.052 or about 10% relative error. The RMSD estimated for the MOD10 daily albedo product is about three times higher. One decade (2000–2009 of MODIS data were then processed to create a time series of albedo maps of Saint Sorlin Glacier during the ablation season. The annual mass balance of Saint Sorlin Glacier was compared with the minimum albedo value (average over the whole glacier surface observed with MODIS during the ablation season. A strong linear correlation exists between the two variables. Furthermore, the date when the average albedo of the whole glacier reaches a minimum closely corresponds to the period when the snowline is located at its highest elevation, thus when the snowline is a good indicator of the glacier equilibrium line. This indicates that this strong correlation results from the fact that the minimal average albedo values of the glacier contains a considerable information regarding the relative share of areal surfaces between the ablation zone (i.e. ice with generally

  8. A Method for Retrieving Daily Land Surface Albedo from Space at 30-m Resolution

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2015-08-01

    Full Text Available Land surface albedo data with high spatio-temporal resolution are increasingly important for scientific studies addressing spatially and/or temporally small-scale phenomena, such as urban heat islands and urban land surface energy balance. Our previous study derived albedo data with 2–4-day and 30-m temporal and spatial resolution that have better spatio-temporal resolution than existing albedo data, but do not completely satisfy the requirements for monitoring high-frequency land surface changes at the small scale. Downscaling technology provides a chance to further improve the albedo data spatio-temporal resolution and accuracy. This paper introduces a method that combines downscaling technology for land surface reflectance with an empirical method of deriving land surface albedo. Firstly, downscaling daily MODIS land surface reflectance data (MOD09GA from 500 m to 30 m on the basis of HJ-1A/B BRDF data with 2–4-day and 30-m temporal and spatial resolution is performed: this is the key step in the improved method. Subsequently, the daily 30-m land surface albedo data are derived by an empirical method combining prior knowledge of the MODIS BRDF product and the downscaled daily 30-m reflectance. Validation of albedo data obtained using the proposed method shows that the new method has both improved spatio-temporal resolution and good accuracy (a total absolute accuracy of 0.022 and a total root mean squared error at six sites of 0.028.

  9. Using Remote Sensing to Quantify Roof Albedo in Seven California Cities

    Science.gov (United States)

    Ban-Weiss, G. A.; Woods, J.; Millstein, D.; Levinson, R.

    2013-12-01

    Cool roofs reflect sunlight and therefore can reduce cooling energy use in buildings. Further, since roofs cover about 20-25% of cities, wide spread deployment of cool roofs could mitigate the urban heat island effect and partially counter urban temperature increases associated with global climate change. Accurately predicting the potential for increasing urban albedo using reflective roofs and its associated energy use and climate benefits requires detailed knowledge of the current stock of roofs at the city scale. Until now this knowledge has been limited due to a lack of availability of albedo data with sufficient spatial coverage, spatial resolution, and spectral information. In this work we use a novel source of multiband aerial imagery to derive the albedos of individual roofs in seven California cities: Los Angeles, Long Beach, San Diego, Bakersfield, Sacramento, San Francisco, and San Jose. The radiometrically calibrated, remotely sensed imagery has high spatial resolution (1 m) and four narrow (less than 0.1 μm wide) band reflectances: blue, green, red, and near-infrared. To derive the albedo of roofs in each city, we first locate roof pixels within GIS building outlines. Next we use laboratory measurements of the solar spectral reflectances of 190 roofing products to empirically relate solar reflectance (albedo) to reflectances in the four narrow bands; the root-mean-square of the residuals for the albedo prediction is 0.016. Albedos computed from remotely sensed reflectances are calibrated to ground measurements of roof albedo in each city. The error (both precision and accuracy) of albedo values is presented for each city. The area-weighted mean roof albedo (× standard deviation) for each city ranges from 0.17 × 0.08 (Los Angeles) to 0.29 × 0.15 (San Diego). In each city most roofs have low albedo in the range of 0.1 to 0.3. Roofs with albedo greater than 0.4 comprise less than 3% of total roofs and 7% of total roof area in each city. The California

  10. Diurnal variations in the UV albedo of arctic snow

    Directory of Open Access Journals (Sweden)

    O. Meinander

    2008-11-01

    Full Text Available The relevance of snow for climate studies is based on its physical properties, such as high surface reflectivity. Surface ultraviolet (UV albedo is an essential parameter for various applications based on radiative transfer modeling. Here, new continuous measurements of the local UV albedo of natural Arctic snow were made at Sodankylä (67°22'N, 26°39'E, 179 m a.s.l. during the spring of 2007. The data were logged at 1-min intervals. The accumulation of snow was up to 68 cm. The surface layer thickness varied from 0.5 to 35 cm with the snow grain size between 0.2 and 2.5 mm. The midday erythemally weighted UV albedo ranged from 0.6 to 0.8 in the accumulation period, and from 0.5 to 0.7 during melting. During the snow melt period, under cases of an almost clear sky and variable cloudiness, an unexpected diurnal decrease of 0.05 in albedo soon after midday, and recovery thereafter, was detected. This diurnal decrease in albedo was found to be asymmetric with respect to solar midday, thus indicating a change in the properties of the snow. Independent UV albedo results with two different types of instruments confirm these findings. The measured temperature of the snow surface was below 0°C on the following mornings. Hence, the reversible diurnal change, evident for ~1–2 h, could be explained by the daily metamorphosis of the surface of the snowpack, in which the temperature of the surface increases, melting some of the snow to liquid water, after which the surface freezes again.

  11. Albedo in the ATIC Experiment

    Science.gov (United States)

    Sokolskaya, N. V.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Case, G.; Christl, M.; Chang, J.; Fazely, A. R.; Ganel, O.; Six, N. Frank (Technical Monitor)

    2002-01-01

    ATIC(Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure the cosmic ray composition for elements from hydrogen to iron and their energy spectra from approx.50 GeV to near 100 TeV. It consists of a Si-matrix detector to determine the charge of a CR particle, a scintillator hodoscope for tracking, carbon interaction targets and a fully active BGO calorimeter. ATIC had its first 16-day flight from McMurdo, Antarctica from 28/12/2000 to 13/01/2000. The ATIC flight collected approximately 25 million events. To measure charge of primary particle in presence of radiation scattered back from the interaction and subsequent shower development in the calorimeter a charge detector must be a mosaic of small detector pads so that the pad containing the signal from the incident particle has no additional signal from albedo particles. Therefore the silicon matrix was built of 4480 individual silicon pads each 2 cm x 1.5 cm. The matrix consists of four planes of detectors and the active detector area, in these planes are partially overlapped to completely cover the aperture. The lateral and amplitude distributions of albedo signals in Si-matrix are analyzed for different primary nuclei and different energy deposits in BGO calorimeter. The greater part of albedo signals has Q near 1, where Q = square root of Amplitude(MIP). The albedo distribution exponentially decreases up to Q near 8. These high values are produced by slow protons and plans. There are also a small number of signals of Q > 8, mainly for heavy nucleus primaries. These signals are apparently generated by neutrons. The comparison of the experimental data and simulations with GEANT 3-21 code using QGSM generator for nucleus-nucleus interactions is presented.

  12. Calibration of neutron albedo dosemeters.

    Science.gov (United States)

    Schwartz, R B; Eisenhauer, C M

    2002-01-01

    It is shown that by calibrating neutron albedo dosemeters under the proper conditions, two complicating effects will essentially cancel out, allowing accurate calibrations with no need for explicit corrections. The 'proper conditions' are: a large room (> or = 8 m on a side). use of a D2O moderated 252Cf source, and a source-to-phantom calibration distance of approximately 70 cm. PMID:12212898

  13. Albedo and laser threshold of a diffusive Raman gain medium

    CERN Document Server

    Selden, Adrian C

    2010-01-01

    The diffuse reflectance (albedo) and transmittance of a Raman random gain medium are calculated via semi-analytic two-stream equations with power-dependent coefficients. The results show good qualitative agreement with the experimental data for barium nitrate powder. A divergence in reflectance at a critical gain is interpreted as the threshold for diffusive Raman laser generation. The dependence of the generation threshold on the scattering parameters is analysed and the feedback effect of Fresnel reflection at the gain boundaries evaluated. The addition of external mirrors, particularly at the pumped surface, significantly reduces the threshold gain.

  14. Spring–summer albedo variations of Antarctic sea ice from 1982 to 2009

    International Nuclear Information System (INIS)

    This study examined the spring–summer (November, December, January and February) albedo averages and trends using a dataset consisting of 28 years of homogenized satellite data for the entire Antarctic sea ice region and for five longitudinal sectors around Antarctica: the Weddell Sea (WS), the Indian Ocean sector (IO), the Pacific Ocean sector (PO), the Ross Sea (RS) and the Bellingshausen–Amundsen Sea (BS). Time series data of the sea ice concentrations and sea surface temperatures were used to analyse their relations to the albedo. The results indicated that the sea ice albedo increased slightly during the study period, at a rate of 0.314% per decade, over the Antarctic sea ice region. The sea ice albedos in the PO, the IO and the WS increased at rates of 2.599% per decade (confidence level 99.86%), 0.824% per decade and 0.413% per decade, respectively, and the steepest increase occurred in the PO. However, the sea ice albedo in the BS decreased at a rate of −1.617% per decade (confidence level 95.05%) and was near zero in the RS. The spring–summer average albedo over the Antarctic sea ice region was 50.24%. The highest albedo values were mainly found on the continental coast and in the WS; in contrast, the lowest albedo values were found on the outer edge of the sea ice, the RS and the Amery Ice Shelf. The average albedo in the western Antarctic sea ice region was distinctly higher than that in the east. The albedo was significantly positively correlated with sea ice concentration (SIC) and was significantly negatively correlated with sea surface temperature (SST); these scenarios held true for all five longitudinal sectors. Spatially, the higher surface albedos follow the higher SICs and lower SST patterns. The increasing albedo means that Antarctic sea ice region reflects more solar radiation and absorbs less, leading to a decrease in temperature and much snowfall on sea ice, and further resulted in an increase in albedo. Conversely, the decreasing

  15. Daily albedo estimation and comparison to MCD43 product

    Science.gov (United States)

    Franch, B.; Vermote, E.; Sobrino, J. A.

    2013-12-01

    Land surface broadband albedo is among the main radiative uncertainties in current climate modelling. An accuracy requirement of 5% and a daily temporal resolution is suggested by the Global Climate Observing System for albedo characterization at spatial and temporal scales compatible with climate studies. Satellite remote sensing provides the only practical way of producing high-quality global albedo data sets with high spatial and temporal resolutions. For view-ilumination geometries such as Moderate Resolution Imaging Spectroradiometer (MODIS), in order to retrieve the Bidirectional Reflectance Distribution Function (BRDF) parameters and, consequently, the albedo, a period of sequential measurement is needed to accumulate sufficient observations. This is used to derive the MODIS BRDF/Albedo product (MCD43), which consider a composite period of 16 days with a resulting temporal resolution of 8 days. Looking for an improvement in the albedo temporal resolution that mitigated the assumption of a stable target, Vermote et al. (2009) presented the VJB method that assumes that the BRDF shape variations throughout a year are limited and linked to the Normalized Difference Vegetation Index (NDVI). This method retains the highest temporal resolution (daily, cloud cover permitting). The purpose of this work is to compare the MCD43 product with the VJB method through the albedo. Additionally, we present and study a method based on the VJB assumption, the 5param Rsqr. In this study we focus our analysis on daily MODIS CMG Collection 6 data from both Aqua and Terra satellites over Europe from 2002 until 2011. Figure 1 shows the percentage of the total RMSE of the VJB and the 5param Rsqr method against the MCD43 product. They display that southern latitudes present lower errors while they increase for northern latitudes and mountainous areas. Comparing the methods, the VJB presents errors higher than 15% in 8.2% of total land pixels while they suppose 6.9% of pixels when

  16. Comparison of MISR and MODIS land surface albedos: Methodology

    Science.gov (United States)

    Taberner, M.; Pinty, B.; Govaerts, Y.; Liang, S.; Verstraete, M. M.; Gobron, N.; Widlowski, J.-L.

    2010-03-01

    The broadband white sky surface albedo (bihemispherical reflectance) products available from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared at regional and continental scales with similar products generated from the Multiangle Imaging Spectroradiometer (MISR) land surface bidirectional reflectance factor (BRF) parameters. This paper describes the methodology applied to derive MISR white sky albedos over four spectral broadbands of interest, namely, 0.3-0.7 μm, 0.4-1.1 μm, 0.7-3.0 μm, and 0.3-3.0 μm, as well as an evaluation of the strategy adopted to compare the MODIS and MISR products. The results are very encouraging since the two data sets show very good statistical agreement over large areas and over a full year of measurements, despite the many differences that exist in the suite of algorithms applied to retrieve these surface quantities from each of these instruments separately.

  17. Mimicking biochar-albedo feedback in complex Mediterranean agricultural landscapes

    International Nuclear Information System (INIS)

    Incorporation of charcoal produced by biomass pyrolysis (biochar) in agricultural soils is a potentially sustainable strategy for climate change mitigation. However, some side effects of large-scale biochar application need to be investigated. In particular a massive use of a low-reflecting material on large cropland areas may impact the climate via changes in surface albedo. Twelve years of MODIS-derived albedo data were analysed for three pairs of selected agricultural sites in central Italy. In each pair bright and dark coloured soil were identified, mimicking the effect of biochar application on the land surface albedo of complex agricultural landscapes. Over this period vegetation canopies never completely masked differences in background soil colour. This soil signal, expressed as an albedo difference, induced a local instantaneous radiative forcing of up to 4.7 W m−2 during periods of high solar irradiance. Biochar mitigation potential might therefore be reduced up to ∼30%. This study proves the importance of accounting for crop phenology and crop management when assessing biochar mitigation potential and provides more insights into the analysis of its environmental feedback. (letter)

  18. Mimicking biochar-albedo feedback in complex Mediterranean agricultural landscapes

    Science.gov (United States)

    Bozzi, E.; Genesio, L.; Toscano, P.; Pieri, M.; Miglietta, F.

    2015-08-01

    Incorporation of charcoal produced by biomass pyrolysis (biochar) in agricultural soils is a potentially sustainable strategy for climate change mitigation. However, some side effects of large-scale biochar application need to be investigated. In particular a massive use of a low-reflecting material on large cropland areas may impact the climate via changes in surface albedo. Twelve years of MODIS-derived albedo data were analysed for three pairs of selected agricultural sites in central Italy. In each pair bright and dark coloured soil were identified, mimicking the effect of biochar application on the land surface albedo of complex agricultural landscapes. Over this period vegetation canopies never completely masked differences in background soil colour. This soil signal, expressed as an albedo difference, induced a local instantaneous radiative forcing of up to 4.7 W m-2 during periods of high solar irradiance. Biochar mitigation potential might therefore be reduced up to ˜30%. This study proves the importance of accounting for crop phenology and crop management when assessing biochar mitigation potential and provides more insights into the analysis of its environmental feedback.

  19. The Role of the Effective Cloud Albedo for Climate Monitoring and Analysis

    OpenAIRE

    Christine Träger-Chatterjee; Richard Mueller; Jörg Trentmann; Rebekka Posselt; Reto Stökli

    2011-01-01

    Cloud properties and the Earth’s radiation budget are defined as essential climate variables by the Global Climate Observing System (GCOS). The cloud albedo is a measure for the portion of solar radiation reflected back to space by clouds. This information is essential for the analysis and interpretation of the Earth’s radiation budget and the solar surface irradiance. We present and discuss a method for the production of the effective cloud albedo and the solar surface irradiance based on th...

  20. Atmospheric effect on the ground-based measurements of broadband surface albedo

    OpenAIRE

    Manninen, T.; Riihelä, A.; De Leeuw, G.

    2012-01-01

    Ground-based pyranometer measurements of the (clear-sky) broadband surface albedo are affected by the atmospheric conditions (mainly by aerosol particles, water vapour and ozone). A new semi-empirical method for estimating the magnitude of the effect of atmospheric conditions on surface albedo measurements in clear-sky conditions is presented. Global and reflected radiation and/or aerosol optical depth (AOD) at two wavelengths are needed to apply the method. Depending on the...

  1. Mars: Correcting surface albedo observations for effects of atmospheric dust loading

    Science.gov (United States)

    Lee, S. W.; Clancy, R. T.

    1992-01-01

    We have developed a radiative transfer model which allows the effects of atmospheric dust loading on surface albedo to be investigated. This model incorporates atmospheric dust opacity, the single scattering albedo and particle phase function of atmospheric dust, the bidirectional reflectance of the surface, and variable lighting and viewing geometry. The most recent dust particle properties are utilized. The spatial and temporal variability of atmospheric opacity (Tan) strongly influences the radiative transfer modelling results. We are currently using the approach described to determine Tan for IRTM mapping sequences of selected regions. This approach allows Tan to be determined at the highest spatial and temporal resolution supported by the IRTM data. Applying the radiative transfer modelling and determination of Tan described, IRTM visual brightness observations can be corrected for the effects of atmospheric dust loading a variety of locations and times. This approach allows maps of 'dust-corrected surface albedo' to be constructed for selected regions. Information on the variability of surface albedo and the amount of dust deposition/erosion related to such variability results. To date, this study indicates that atmospheric dust loading has a significant effect on observations of surface albedo, amounting to albedo corrections of as much as several tens of percent. This correction is not constant or linear, but depends upon surface albedo, viewing and lighting geometry, the dust and surface phase functions, and the atmospheric opacity. It is clear that the quantitative study of surface albedo, especially where small variations in observed albedo are important (such as photometric analyses), needs to account for the effects of the atmospheric dust loading. Maps of 'dust-corrected surface albedo' will be presented for a number of regions.

  2. Multi-modal albedo distributions in the ablation area of the southwestern Greenland Ice Sheet

    Science.gov (United States)

    Moustafa, S. E.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J. R.; Koenig, L. S.; Hom, M. G.; Shuman, C. A.

    2015-05-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface and, thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates, earlier snowmelt, and amplified melt-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation area albedo and meltwater production is still relatively unknown. In this study, we analyze albedo and ablation rates using in situ and remotely sensed data. Observations include (1) a new high-quality in situ spectral albedo data set collected with an Analytical Spectral Devices Inc. spectroradiometer measuring at 325-1075 nm along a 1.25 km transect during 3 days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August 2012 and 2013. We find that seasonal ablation area albedos in 2013 have a bimodal distribution, with snow and ice facies characterizing the two peaks. Our results show that a shift from a distribution dominated by high to low albedos corresponds to an observed melt rate increase of 51.5% (between 10-14 July and 20-24 July 2013). In contrast, melt rate variability caused by albedo changes before and after this shift was much lower and varied between ~10 and 30% in the melting season. Ablation area albedos in 2012 exhibited a more complex multimodal distribution, reflecting a transition from light to dark-dominated surface, as well as sensitivity to the so called "dark-band" region in southwest Greenland. In addition to a darkening surface from ice crystal growth, our findings demonstrate that seasonal changes in GrIS ablation area albedos are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. Thus, seasonal variability in ablation area albedos appears to be regulated primarily as a function

  3. Neutron albedo effects of underground nuclear explosion

    International Nuclear Information System (INIS)

    The neutron field distribution is affected by the surrounding medium in the underground nuclear explosion. It will influence the radiation chemical diagnosis. By Monte Carlo simulation, the fuel burnup induced by device and neutron albedo was calculated. The analysis method of albedo effect on radiation chemical diagnosis result under special environment was proposed. Neutron albedo should be considered when capture reaction burnup fraction is used, and then correct analysis can be carried out on the nuclear device.The neutron field distribution is affected by the surrounding medium in the underground nuclear explosion. It will influence the radiation chemical diagnosis. By Monte Carlo simulation, the fuel burnup induced by device and neutron albedo was calculated. The analysis method of albedo effect on radiation chemical diagnosis result under special environment was proposed. Neutron albedo should be considered when capture reaction burnup fraction is used, and then correct analysis can be carried out on the nuclear device. (authors)

  4. Albedo enhancement over land to counteract global warming: impacts on hydrological cycle

    Energy Technology Data Exchange (ETDEWEB)

    Bala, Govindasamy; Nag, Bappaditya [Indian Institute of Science, Divecha Center for Climate Change and Center for Atmospheric and Oceanic Sciences, Bangalore (India)

    2012-09-15

    A recent modelling study has shown that precipitation and runoff over land would increase when the reflectivity of marine clouds is increased to counter global warming. This implies that large scale albedo enhancement over land could lead to a decrease in runoff over land. In this study, we perform simulations using NCAR CAM3.1 that have implications for Solar Radiation Management geoengineering schemes that increase the albedo over land. We find that an increase in reflectivity over land that mitigates the global mean warming from a doubling of CO{sub 2} leads to a large residual warming in the southern hemisphere and cooling in the northern hemisphere since most of the land is located in northern hemisphere. Precipitation and runoff over land decrease by 13.4 and 22.3%, respectively, because of a large residual sinking motion over land triggered by albedo enhancement over land. Soil water content also declines when albedo over land is enhanced. The simulated magnitude of hydrological changes over land are much larger when compared to changes over oceans in the recent marine cloud albedo enhancement study since the radiative forcing over land needed (-8.2 W m{sup -2}) to counter global mean radiative forcing from a doubling of CO{sub 2} (3.3 W m{sup -2}) is approximately twice the forcing needed over the oceans (-4.2 W m{sup -2}). Our results imply that albedo enhancement over oceans produce climates closer to the unperturbed climate state than do albedo changes on land when the consequences on land hydrology are considered. Our study also has important implications for any intentional or unintentional large scale changes in land surface albedo such as deforestation/afforestation/reforestation, air pollution, and desert and urban albedo modification. (orig.)

  5. Albedo over snow and ice penitents

    OpenAIRE

    J. Abermann; C. Kinnard; S. Lhermitte

    2013-01-01

    Both satellite and ground-based broadband albedo measurements over complex terrain show several limitations concerning feasibility and representativeness. In this study a series of experiments on Glaciar Tapado in the semi-arid Andes of Northern Chile is used to investigate the vertical dependence of albedo over a penitent-covered surface. The albedo–height relationship depends on the surface properties: over medium-sized snow penitents albedo increases with height, whereas over ice pe...

  6. Albedo over rough snow and ice surfaces

    OpenAIRE

    S. Lhermitte; J. Abermann; C. Kinnard

    2014-01-01

    Both satellite and ground-based broadband albedo measurements over rough and complex terrain show several limitations concerning feasibility and representativeness. To assess these limitations and understand the effect of surface roughness on albedo, firstly, an intrasurface radiative transfer (ISRT) model is combined with albedo measurements over different penitente surfaces on Glaciar Tapado in the semi-arid Andes of northern Chile. Results of the ISRT model show effective...

  7. CARP: a computer code and albedo data library for use by BREESE, the MORSE albedo package

    International Nuclear Information System (INIS)

    The CARP computer code was written to allow processing of DOT angular flux tapes to produce albedo data for use in the MORSE computer code. An albedo data library was produced containing several materials. 3 tables

  8. The temporal scale research of MODIS albedo product authenticity verification

    Science.gov (United States)

    Cao, Yongxing; Xue, Zhihang; Cheng, Hui; Xiong, Yajv; Chen, Yunping; Tong, Ling

    2016-06-01

    This study introduces a method that normalizes the inversed ETM+ albedo to the local solar noon albedo for the temporal scale of the MODIS albedo validation. Firstly, the statistical relation model between the surface albedo and the solar elevation angle was set up, and then deducing relationship between ETM+ albedo and the solar elevation angle, so the ETM+ albedo at local solar noon could be got. Secondly, the ground measurement albedo at the local solar noon was used to assess the inversed ETM+ albedo and the normalized albedo. The experiment results show that the method can effectively improve the accuracy of product certification.

  9. Evaluation of Moderate-Resolution Imaging Spectroradiometer (MODIS) Snow Albedo Product (MCD43A) over Tundra

    Science.gov (United States)

    Wang, Zhuosen; Schaaf, Crystal B.; Chopping, Mark J.; Strahler, Alan H.; Wang, Jindi; Roman, Miguel O.; Rocha, Adrian V.; Woodcock, Curtis E.; Shuai, Yanmin

    2012-01-01

    This study assesses the MODIS standard Bidirectional Reflectance Distribution Function (BRDF)/Albedo product, and the daily Direct Broadcast BRDF/Albedo algorithm at tundra locations under large solar zenith angles and high anisotropic diffuse illumination and multiple scattering conditions. These products generally agree with ground-based albedo measurements during the snow cover period when the Solar Zenith Angle (SZA) is less than 70deg. An integrated validation strategy, including analysis of the representativeness of the surface heterogeneity, is performed to decide whether direct comparisons between field measurements and 500- m satellite products were appropriate or if the scaling of finer spatial resolution airborne or spaceborne data was necessary. Results indicate that the Root Mean Square Errors (RMSEs) are less than 0.047 during the snow covered periods for all MCD43 albedo products at several Alaskan tundra areas. The MCD43 1- day daily albedo product is particularly well suited to capture the rapidly changing surface conditions during the spring snow melt. Results also show that a full expression of the blue sky albedo is necessary at these large SZA snow covered areas because of the effects of anisotropic diffuse illumination and multiple scattering. In tundra locations with dark residue as a result of fire, the MODIS albedo values are lower than those at the unburned site from the start of snowmelt.

  10. Contribution to the determination of the double angular and energy differential neutron albedo. Application to the propagation in lacunar medium

    International Nuclear Information System (INIS)

    This thesis deals with the neutrons propagation by reflection on the vacuum-matter interfaces of a lacunar medium, to control the direct irradiation risk. The more efficient method to simulate this propagation is the use of reflection coefficients (albedo). The first part of the work deals with the generation of albedo for various materials. The Monte Carlo method has been chosen and a new estimator has been developed and validated in the Monte Carlo transport code TRIPOLI4. This estimator is based on the neutrons transport simulation in the matter, to calculate in each collision point the double differential reflexions probability. The second part deals with the implementing of an interpolation module of the generated albedo in a library. These differential albedo of neutrons allow the study of the neutrons propagation by multi-reflections and the accurate calculation of the equivalent dose rate generated by the neutrons reflections. (A.L.B.)

  11. An Improved Method For Retrieving Land Surface Albedo Over Rugged Terrain

    NARCIS (Netherlands)

    Gao, B.; Jia, L.; Menenti, M.

    2014-01-01

    Land surface albedo is a very important parameter, which can be derived from a bidirectional reflectance distribution function (BRDF) model with angular integration of BRDF in a particular distribution of downward solar irradiance. The Algorithm for MODIS Bidirectional Reflectance Anisotropic of Lan

  12. Global Albedos of Pluto and Charon from LORRI New Horizons Observations

    CERN Document Server

    Buratti, B J; Hicks, M D; Weaver, H A; Stern, S A; Momary, T; Mosher, J A; Beyer, R A; Young, L A; Ennico, K; Olkin, C B

    2016-01-01

    The exploration of the Pluto-Charon system by the New Horizons spacecraft represent the first opportunity to understand the distribution of albedo and other photometric properties of the surfaces of objects in the Solar System's "Third Zone" within the context of a geologic world. Images of the entire illuminated surface of Pluto and Charon obtained by the Long Range Reconnaissance Imager (LORRI) camera provide a global map of Pluto that revealed surface albedo variegations larger than any other world except for Saturn's moon Iapetus. Normal reflectances on Pluto range from 0.08-1.0. Charon exhibits a much blander surface with normal reflectances ranging from 0.20-0.73. Pluto's albedo features are well-correlated with geologic features, although some exogenous low-albedo dust may be responsible for features seen to the west of the area informally named Tombaugh Regio. The albedo patterns of both Pluto and Charon are latitudinally organized, with the exception of Tombaugh Regio. The low-albedo areas of Pluto a...

  13. Implications of albedo changes following afforestation on the benefits of forests as carbon sinks

    Directory of Open Access Journals (Sweden)

    M. U. F. Kirschbaum

    2011-08-01

    Full Text Available Increased carbon storage with afforestation leads to a decrease in atmospheric carbon dioxide concentration and thus decreases radiative forcing and cools the Earth. However, land-use change also changes the reflective properties of the surface vegetation from more reflective pasture to relatively less reflective forest cover. This increase in radiation absorption by the forest constitutes an increase in radiative forcing, with a warming effect. The net effect of decreased albedo and carbon storage on radiative forcing depends on the relative magnitude of these two opposing processes.

    We used data from an intensively studied site in New Zealand's Central North Island that has long-term, ground-based measurements of albedo over the full short-wave spectrum from a developing Pinus radiata forest. Data from this site were supplemented with satellite-derived albedo estimates from New Zealand pastures. The albedo of a well-established forest was measured as 13 % and pasture albedo as 20 %. We used these data to calculate the direct radiative forcing effect of changing albedo as the forest grew.

    We calculated the radiative forcing resulting from the removal of carbon from the atmosphere as a decrease in radiative forcing of −104 GJ tC−1 yr−1. We also showed that the observed change in albedo constituted a direct radiative forcing of 2759 GJ ha−1 yr−1. Thus, following afforestation, 26.5 tC ha−1 needs to be stored in a growing forest to balance the increase in radiative forcing resulting from the observed albedo change. Measurements of tree biomass and albedo were used to estimate the net change in radiative forcing as the newly planted forest grew. Albedo and carbon-storage effects were of similar magnitude for the first four to five years after tree planting, but as the stand grew older, the carbon storage effect increasingly dominated. Averaged over the whole

  14. Implications of albedo changes following afforestation on the benefits of forests as carbon sinks

    Directory of Open Access Journals (Sweden)

    M. U. F. Kirschbaum

    2011-12-01

    Full Text Available Increased carbon storage with afforestation leads to a decrease in atmospheric carbon dioxide concentration and thus decreases radiative forcing and cools the Earth. However, afforestation also changes the reflective properties of the surface vegetation from more reflective pasture to relatively less reflective forest cover. This increase in radiation absorption by the forest constitutes an increase in radiative forcing, with a warming effect. The net effect of decreased albedo and carbon storage on radiative forcing depends on the relative magnitude of these two opposing processes.

    We used data from an intensively studied site in New Zealand's Central North Island that has long-term, ground-based measurements of albedo over the full short-wave spectrum from a developing Pinus radiata forest. Data from this site were supplemented with satellite-derived albedo estimates from New Zealand pastures. The albedo of a well-established forest was measured as 13 % and pasture albedo as 20 %. We used these data to calculate the direct radiative forcing effect of changing albedo as the forest grew.

    We calculated the radiative forcing resulting from the removal of carbon from the atmosphere as a decrease in radiative forcing of −104 GJ tC−1 yr−1. We also showed that the observed change in albedo constituted a direct radiative forcing of 2759 GJ ha−1 yr−1. Thus, following afforestation, 26.5 tC ha−1 needs to be stored in a growing forest to balance the increase in radiative forcing resulting from the observed albedo change. Measurements of tree biomass and albedo were used to estimate the net change in radiative forcing as the newly planted forest grew. Albedo and carbon-storage effects were of similar magnitude for the first four to five years after tree planting, but as the stand grew older, the carbon storage effect increasingly dominated. Averaged over the whole

  15. Migration of Frosts from High-Albedo Regions of Pluto: what New Horizons Reveals

    Science.gov (United States)

    Buratti, Bonnie J.; Stern, S. A.; Weaver, Hal A.; Young, Leslie A.; Olkin, Cathy B.; Ennico, Kimberly; Binzel, Richard P.; Zangari, Amanda; Earle, Alissa M.

    2015-11-01

    With its high eccentricity and obliquity, Pluto should exhibit seasonal volatile transport on its surface. Several lines of evidence support this transport: doubling of Pluto’s atmospheric pressure over the past two decades (Young et al., 2013, Ap. J. 766, L22; Olkin et al., 2015, Icarus 246, 230); changes in its historical rotational light curve, once all variations due to viewing geometry have been modelled (Buratti et al., 2015; Ap. J. 804, L6); and changes in HST albedo maps (Buie et al., 2010, Astron. J. 139, 1128). New Horizons LORRI images reveal that the region of greatest albedo change is not the polar cap(s) of Pluto, but the feature informally named Tombaugh Regio (TR). This feature has a normal reflectance as high as ~0.8 in some places, and it is superposed on older, lower-albedo pre-existing terrain with an albedo of only ~0.10. This contrast is larger than any other body in the Solar System, except for Iapetus. This albedo dichotomy leads to a complicated system of cold-trapping and thermal segregation, beyond the simple picture of seasonal volatile transport. Whatever the origin of TR, it initially acted as a cold trap, as the temperature differential between the high and low albedo regions could be enormous, possibly approaching 20K, based on their albedo differences and assuming their normalized phase curves are similar. This latter assumption will be refined as the full New Horizons data set is returned.Over six decades of ground-based photometry suggest that TR has been decreasing in albedo over the last 25 years. Possible causes include changing insolation angles, or sublimation from the edges where the high-albedo material impinges on a much warmer substrate.Funding by the NASA New Horizons Project acknowledged.

  16. Albedo changes occurring in stationary forest covers over France during the last decade

    Science.gov (United States)

    Planque, C.; Carrer, D.; Roujean, J. L.

    2015-12-01

    Climate warming has caused unprecedented changes in the vegetation cycle of forests. In return, forests play a substantial role on climate by directly modifying the amount of carbon dioxide in the atmosphere. Besides the shifts occurring in forest architecture and diversity, the climate pressure influences the canopy structure and the leaf physiological characteristics. A direct consequence is the modification of reflectivity properties of the whole canopy. This study examines the evolution of the direct radiative forcing due to the evolution of reflectivity properties of the canopy (canopy albedo). We restrict our analysis to the albedo trends occurring in stationary forest covers over France during the last decade (2001-2013). Satellite surface albedo, LAI (leaf area index), and FCOVER (fraction of vegetation cover) from MODIS (on Terra and Aqua satellites) and BioPar (Bio-geophysical Parameter) projects are used in order to 1/ isolate stationary forest covers, and 2/ detect local tendencies in their canopy albedo. First, the statistical tests were applied to LAI, FCOVER, and surface albedo data over the areas that are classified as forest by ESA-CCI land cover database. In case of temporal break in LAI or FCOVER data series, we assume that the forest was managed at least once during the last decade or the vegetation cover has changed. This hypothesis was verified over the Landes forest in southwestern France, where a major storm damaged 300000 hectares in 2009. This work allowed to isolate relative stationary forest covers that were not managed. Secondly, we show that the visible surface albedo has decreased due to the gradual closing and increase in greenness of some of these forest covers. Finally, we quantified the change in direct radiative forcing due to this shift of surface albedo by using ERA-Interim incoming solar radiation data. The next step will be to better characterize the physiological and structural factors that drive these albedo changes.

  17. Quantifying the missing link between albedo and productivity of boreal forests

    Science.gov (United States)

    Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina

    2016-04-01

    Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Several studies have examined the relation between forest structure and albedo in the boreal zone. Studies regarding FAPAR are fewer and the relations between albedo and FAPAR are still poorly understood. To study these relations we simulated shortwave black sky albedo and canopy FAPAR, using the FRT forest reflectance model. We used two sets of field plots as input data. The plots were located in Alaska, USA (N = 584) and in Finland (N = 506) between Northern latitudes of 60° and 68° , and they represent naturally grown and more intensively managed (regularly thinned) forests, respectively. The simulations were carried out with sun zenith angles (SZA) typical to the biome, ranging from 40° to 80° . The simulated albedos in coniferous plots decreased with increasing tree height, whereas canopy FAPAR showed an opposite trend. The albedo of broadleaved plots was notably higher than that of coniferous plots. No species differences in canopy FAPAR were seen, except for pine forests in Finland that showed lowest FAPAR among species. Albedo and canopy FAPAR were negatively correlated (r ranged from -0.93 to -0.69) in coniferous plots. The correlations were notably weaker (r ranged from -0.64 to 0.05) if plots with broadleaved trees were included. To show the influence of forest management, we further examined the response of albedo and FAPAR to forest density (basal area) and fraction of broadleaved trees. Plots with low basal area showed high albedos but also low canopy FAPAR. When comparing the sparse plots to dense ones, the relative decrease in canopy FAPAR was larger than the relative increase in albedo. However, at large SZAs the basal area could be lowered to approx. 20 m2 ha‑1 before FAPAR was notably reduced. Increasing the proportion of broadleaved trees from 0% to 100% increased the albedos to approximately

  18. Quantifying the missing link between albedo and productivity of boreal forests

    Science.gov (United States)

    Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina

    2016-04-01

    Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Several studies have examined the relation between forest structure and albedo in the boreal zone. Studies regarding FAPAR are fewer and the relations between albedo and FAPAR are still poorly understood. To study these relations we simulated shortwave black sky albedo and canopy FAPAR, using the FRT forest reflectance model. We used two sets of field plots as input data. The plots were located in Alaska, USA (N = 584) and in Finland (N = 506) between Northern latitudes of 60° and 68° , and they represent naturally grown and more intensively managed (regularly thinned) forests, respectively. The simulations were carried out with sun zenith angles (SZA) typical to the biome, ranging from 40° to 80° . The simulated albedos in coniferous plots decreased with increasing tree height, whereas canopy FAPAR showed an opposite trend. The albedo of broadleaved plots was notably higher than that of coniferous plots. No species differences in canopy FAPAR were seen, except for pine forests in Finland that showed lowest FAPAR among species. Albedo and canopy FAPAR were negatively correlated (r ranged from -0.93 to -0.69) in coniferous plots. The correlations were notably weaker (r ranged from -0.64 to 0.05) if plots with broadleaved trees were included. To show the influence of forest management, we further examined the response of albedo and FAPAR to forest density (basal area) and fraction of broadleaved trees. Plots with low basal area showed high albedos but also low canopy FAPAR. When comparing the sparse plots to dense ones, the relative decrease in canopy FAPAR was larger than the relative increase in albedo. However, at large SZAs the basal area could be lowered to approx. 20 m2 ha-1 before FAPAR was notably reduced. Increasing the proportion of broadleaved trees from 0% to 100% increased the albedos to approximately

  19. Radiation Dose from Lunar Neutron Albedo

    Science.gov (United States)

    Adams, J. H., Jr.; Bhattacharya, M.; Lin, Zi-Wei; Pendleton, G.

    2006-01-01

    The lunar neutron albedo from thermal energies to 8 MeV was measured on the Lunar Prospector Mission in 1998-1999. Using GEANT4 we have calculated the neutron albedo due to cosmic ray bombardment of the moon and found a good-agreement with the measured fast neutron spectra. We then calculated the total effective dose from neutron albedo of all energies, and made comparisons with the effective dose contributions from both galactic cosmic rays and solar particle events to be expected on the lunar surface.

  20. The long-term effect of increasing the albedo of urban areas

    International Nuclear Information System (INIS)

    Solar reflective urban surfaces (white rooftops and light-colored pavements) can increase the albedo of an urban area by about 0.1. Increasing the albedo of urban and human settlement areas can in turn decrease atmospheric temperature and could potentially offset some of the anticipated temperature increase caused by global warming. We have simulated the long-term (decadal to centennial) effect of increasing urban surface albedos using a spatially explicit global climate model of intermediate complexity. We first carried out two sets of simulations in which we increased the albedo of all land areas between ±20° and ±45° latitude respectively. The results of these simulations indicate a long-term global cooling effect of 3 × 10−15 K for each 1 m2 of a surface with an albedo increase of 0.01. This temperature reduction corresponds to an equivalent CO2 emission reduction of about 7 kg, based on recent estimates of the amount of global warming per unit CO2 emission. In a series of additional simulations, we increased the albedo of urban locations only, on the basis of two independent estimates of the spatial extent of urban areas. In these simulations, global cooling ranged from 0.01 to 0.07 K, which corresponds to a CO2 equivalent emission reduction of 25–150 billion tonnes of CO2. (letter)

  1. Estimate the influence of snow grain size and black carbon on albedo

    Institute of Scientific and Technical Information of China (English)

    ZhongMing Guo; NingLian Wang; XiaoBo Wu; HongBo Wu; YuWei Wu

    2015-01-01

    Estimation of the influence of snow grain size and black carbon on albedo is essential in obtaining the accurate albedo. In this paper, field measurement data, including snow grain size, snow depth and density was obtained. Black carbon samples were collected from the snow surface. A simultaneous observation using Analytical Spectral Devices was employed in the Qiyi Glacier located in the Qilian Mountain. Analytical Spectral Devices spectrum data were used to analyze spectral re-flectance of snow for different grain size and black carbon content. The measurements were compared with the results obtained from the Snow, Ice, and Aerosol Radiation model, and the simulation was found to correlate well with the ob-served data. However, the simulated albedo was near to 0.98 times of the measured albedo, so the other factors were as-sumed to be constant using the corrected Snow, Ice, and Aerosol Radiation model to estimate the influence of measured snow grain size and black carbon on albedo. Field measurements were controlled to fit the relationship between the snow grain size and black carbon in order to estimate the influence of these factors on the snow albedo.

  2. The Extraordinary Albedo Variations on Pluto Detected by New Horizons and Implications for Dwarf Planet Eris

    Science.gov (United States)

    Buratti, Bonnie J.; Hofgartner, Jason D.; Stern, S. Alan; Weaver, Harold A.; Verbiscer, Anne J.; Ennico, Kimberly; Olkin, Catherine B.; Young, Leslie; New Horizons Geology and Geophysics Team

    2016-10-01

    The New Horizons mission returned stunning observations of active geology on the surface of Pluto (Stern et al., 2015, Science 350, 292). One of the markers for activity on planets or moons is normal albedos approaching 1.0, as is the case for Enceladus (Buratti et al., 1984, Icarus 58, 254; Verbiscer et al., 2005, Icarus 173, 66). When all corrections for viewing geometry are made for Pluto, it has normal albedos that approach unity in the regions that show evidence for activity by a lack of craters, notably the region informally named Sputnik Planum. On the other hand, Pluto also has a very dark (normal albedo ~0.10) equatorial belt.The geometric albedo of Eris, another large dwarf planet in the Kuiper Belt, is 0.96 (Sicardy et al., 2011, Nature 478, 493), close to that of Enceladus. Coupled with a high density of 2.5 gm/cc (Sicardy et al., ibid.), implying an even larger amount of radiogenic heating than that for Pluto (with a density near 1.9 gm/cc), we find it highly likely that Eris is also active with some type of solid state convection or cryovolcanism on its surface. Alternate explanations such as complete condensation of methane frost onto its surface in the colder environment at nearly 100 AUs would not lead to the high albedo observed.Another implication of the extreme albedo variations on Pluto is that the temperature varies by at least 20K on its surface, spawning possible aeolian processes and associated features such as wind streaks and dunes, which are currently being sought on New Horizons images. Finally, low albedo regions on Pluto, with normal reflectances less than 0.10, provide possible evidence for dust in the Kuiper Belt that is accreting onto the surface of Pluto. Another - or additional - explanation for this low-albedo dust is native material created in Pluto's hazy atmosphere.New Horizons funding by NASA is gratefully acknowledged.

  3. Nuclear criticality for thermal reactors using the two-group neutron Albedo method and ANISN code

    International Nuclear Information System (INIS)

    The neutron Albedo method applied to criticality calculations in nuclear reactors is characterized by following the neutron currents, allowing the detailed analyses of the physics phenomena about interactions of the neutrons with the core-reflector group, by the determination of the probabilities of reflection, absorption and transmission. Under two-group neutron Albedo method, the effective neutron multiplication factor, keff, explicitly appears and therefore it is possible to obtain an explicit result from the variation of keff. In the present work, motivated for excellent results presented in previous studies applied to thermal reactors and shieldings, the methodology using Albedo's method was described for the criticality analysis of thermal reactors by using two energy neutron groups admitting variable reflection and absorption coefficients of the core to each reentrant current. The obtained results were compared to the results for keff obtained with the ANISN code and the Diffusion method, both presenting very good concordance. (author)

  4. Theoretical simulation of neutron albedo experiment

    International Nuclear Information System (INIS)

    The purpose of neutron albedo experiment is to check and scale the programs, parameters and methods used in engineering design. Monte-Carlo particle transport code is used to simulate the experiment, and the neutron activation rate and albedo coefficient of each detecting point on iron spherical shell's outer surface were obtained. It is proved that the theoretical results are in good agreement with the experiment data within the range of data's uncertainty. (authors)

  5. Bounded cascade clouds: albedo and effective thickness

    OpenAIRE

    Cahalan, R. F.

    2002-01-01

    If climate models produced clouds having liquid water amounts close to those observed, they would compute a mean albedo that is often much too large, due to the treatment of clouds as plane-parallel. An approximate lower-bound for this "plane-parallel albedo bias" may be obtained from a fractal model having a range of optical thicknesses similar to those observed in marine stratocumulus, since they are more nearly plane-parallel than most other cloud types. We review ...

  6. Application of Laplace transform for determination of albedo type boundary conditions for neutronic calculations; Aplicacao da transformada de Laplace para determinacao de condicoes de contorno tipo albedo para calculos neutronicos

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Claudio Zen

    2008-07-01

    In this dissertation we use the Laplace transform to derive expressions for nonstandard albedo boundary conditions for one and two non-multiplying regions at the ends of one dimensional domains. In practice, the fuel regions of reactor cores are surrounded by reflector regions that reduce neutron leakage. In order to exclude the reflector regions from the calculations, we introduce a reflection coefficient or albedo. We use the present albedo boundary conditions to solve numerically slab-geometry monoenergetic and multigroup diffusion equations using the conventional finite difference method. Numerical results are generated for fixed source and eigenvalue diffusion problems in slab geometry(author)

  7. A framework for consistent estimation of leaf area index, fraction of absorbed photosynthetically active radiation, and surface albedo from MODIS time-series data

    DEFF Research Database (Denmark)

    Xiao, Zhiqiang; Liang, Shunlin; Wang, Jindi;

    2015-01-01

    model and the MODIS surface reflectance data. The estimated LAI values were then input into the ACRM to calculate the surface albedo and the fraction of absorbed photosynthetically active radiation (FAPAR). For snow-covered areas, the surface albedo was calculated as the underlying vegetation canopy...

  8. The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Miguel O. [NASA Goddard Space Flight Center; Schaaf, Crystal [Boston University; Woodcock, Curtis E. [Boston University; Strahler, Alan [Boston University; Yang, Xiaoyuan [Boston University; Braswell, Rob H. [Complex Systems Research Center, Durham, NH; Curtis, Peter [Ohio State University, The, Columbus; Davis, Kenneth J. [Pennsylvania State University; Dragoni, Danilo [Indiana University; Goulden, Michael L. [University of California, Irvine; Gu, Lianhong [ORNL; Hollinger, David Y [ORNL; Meyers, Tilden P. [NOAA, Oak Ridge, TN; Wilson, Tim B. [NOAA; Munger, J. William [Harvard University; Wofsy, Steve [Harvard University; Privette, Jeffrey L. [NOAA; Richardson, Andrew D. [Harvard University

    2009-11-01

    A new methodology for establishing the spatial representativeness of tower albedo measurements that are routinely used in validation of satellite retrievals from global land surface albedo and reflectance anisotropy products is presented. This method brings together knowledge of the intrinsic biophysical properties of a measurement site, and the surrounding landscape to produce a number of geostatistical attributes that describe the overall variability, spatial extent, strength of the spatial correlation, and spatial structure of surface albedo patterns at separate seasonal periods throughout the year. Variogram functions extracted from Enhanced Thematic Mapper Plus (ETM+) retrievals of surface albedo using multiple spatial and temporal thresholds were used to assess the degree to which a given point (tower) measurement is able to capture the intrinsic variability of the immediate landscape extending to a satellite pixel. A validation scheme was implemented over a wide range of forested landscapes, looking at both deciduous and coniferous sites, from tropical to boreal ecosystems. The experiment focused on comparisons between tower measurements of surface albedo acquired at local solar noon and matching retrievals from the MODerate Resolution Imaging Spectroradiometer (MODIS) (Collection V005) Bidirectional Reflectance Distribution Function (BRDF)/albedo algorithm. Assessments over a select group of field stations with comparable landscape features and daily retrieval scenarios further demonstrate the ability of this technique to identify measurement sites that contain the intrinsic spatial and seasonal features of surface albedo over sufficiently large enough footprints for use in modeling and remote sensing studies. This approach, therefore, improves our understanding of product uncertainty both in terms of the representativeness of the field data and its relationship to the larger satellite pixel.

  9. Decadal to seasonal variability of Arctic sea ice albedo

    OpenAIRE

    Agarwal, S; Moon, W.; Wettlaufer, J. S.

    2011-01-01

    A controlling factor in the seasonal and climatological evolution of the sea ice cover is its albedo $\\alpha$. Here we analyze Arctic data from the Advanced Very High Resolution Radiometer (AVHRR) Polar Pathfinder and assess the seasonality and variability of broadband albedo from a 23 year daily record. We produce a histogram of daily albedo over ice covered regions in which the principal albedo transitions are seen; high albedo in late winter and spring, the onset of snow melt and melt pond...

  10. Modeling Earth Albedo for Satellites in Earth Orbit

    OpenAIRE

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We...

  11. Spacecraft Attitude Determination with Earth Albedo Corrected Sun Sensor Measurements

    OpenAIRE

    Bhanderi, Dan

    2005-01-01

    This thesis focuses on advanced modeling of the Earth albedo experienced by satellites in Earth orbit. The model of the Earth albedo maintains directional information of the Earth albedo irradiance from each partition on the Earth surface. This allows enhanced modeling of Sun sensor current outputs with improved accuracy. The Earth albedo model may be applied in simulations of the space environment useful in the satellite design phase. The Earth albedo model is verified using the telemetry da...

  12. Multidecadal analysis of forest growth and albedo in boreal Finland

    Science.gov (United States)

    Lukeš, Petr; Stenberg, Pauline; Mõttus, Matti; Manninen, Terhikki; Rautiainen, Miina

    2016-10-01

    It is well known that forests serve as carbon sinks. However, the balancing effect of afforestation and increased forest density on global warming due to carbon storage may be lost by low albedo (thus high absorption) of the forests. In the last 30 years, there has been a steady increase in the growing stock of Finnish forests by nearly a quarter while the area of the forests has remained virtually unchanged. Such increase in forest density together with the availability of detailed forest inventories provided by the Multi-Source National Forest Inventory (MS-NFI) in high spatial resolution makes Finland an ideal candidate for exploring the effects of increased forest density on satellite derived estimates of bio-geochemical products e.g. albedo (directional-hemispherical reflectance, DHR), fraction of photosynthetically active radiation absorbed by canopies (fAPAR), leaf area index (LAI) and normalized difference vegetation index (NDVI) in both current and long-term perspective. In this study, we first used MODIS-based vegetation satellite products for Finnish forests to study their seasonal patterns and interrelations. Next, the peak growing season observations are linked to the MS-NFI database to yield the generic relationships between forest density and the satellite-derived vegetation indicators. Finally, long-term GIMMS3g datasets between 1982 and 2011 (2008 for DHR) are analyzed and interpreted using forest inventory data. The vegetation peak growing season NIR DHR and VIS DHR showed weak to moderate negative correlation with fAPAR, whereas there was no correlation between NIR DHR and fAPAR. Next, we show that the spectral albedos in the near-infrared region (NIR DHR) showed weak negative correlation with forest biomass, basal area or canopy cover whereas, as expected, the spectral albedo in the visible region (VIS DHR) correlated negatively with these measures of forest density. Interestingly, the increase in forest density (biomass per ha) of Finnish

  13. Monitoring NEON terrestrial sites phenology with daily MODIS BRDF/albedo product and landsat data

    Science.gov (United States)

    The MODerate resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) and albedo products (MCD43) have already been in production for more than a decade. The standard product makes use of a linear “kernel-driven” RossThick-LiSparse Reciprocal (RTLSR) BRDF m...

  14. HIGH ALBEDO AND ENVIRONMENT-FRIENDLY CONCRETE FOR SMART GROWTH AND SUSTAINABLE DEVELOPMENT

    Science.gov (United States)

    Concrete surfaces absorb heat from sunlight due to their low solar reflectivity (albedo). This increases the local ambient temperature in urban areas (the so-called "heat-island" effect). The heat-island effect leads to a waste of energy because of increased cooling costs. ...

  15. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo in Natural Waters

    Science.gov (United States)

    Several numerical and analytical solutions of the radiative transfer equation (RTE) for plane albedo were compared for solar light reflection by sea water. The study incorporated the simplest case, that being a semi-infinite one-dimensional plane-parallel absorbing and scattering...

  16. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo of Natural Waters

    Science.gov (United States)

    Three numerical algorithms were compared to provide a solution of a radiative transfer equation (RTE) for plane albedo (hemispherical reflectance) in semi-infinite one-dimensional plane-parallel layer. Algorithms were based on the invariant imbedding method and two different var...

  17. Sea ice-albedo climate feedback mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, J.L.; Curry, J.A. [Univ. of Colorado, Boulder, CO (United States); Ebert, E.E. [Bureau of Meterology Research Center, Melbourne (Australia)

    1995-02-01

    The sea ice-albedo feedback mechanism over the Arctic Ocean multiyear sea ice is investigated by conducting a series of experiments using several one-dimensional models of the coupled sea ice-atmosphere system. In its simplest form, ice-albedo feedback is thought to be associated with a decrease in the areal cover of snow and ice and a corresponding increase in the surface temperature, further decreasing the area cover of snow and ice. It is shown that the sea ice-albedo feedback can operate even in multiyear pack ice, without the disappearance of this ice, associated with internal processes occurring within the multiyear ice pack (e.g., duration of the snow cover, ice thickness, ice distribution, lead fraction, and melt pond characteristics). The strength of the ice-albedo feedback mechanism is compared for several different thermodynamic sea ice models: a new model that includes ice thickness distribution., the Ebert and Curry model, the Mayjut and Untersteiner model, and the Semtner level-3 and level-0 models. The climate forcing is chosen to be a perturbation of the surface heat flux, and cloud and water vapor feedbacks are inoperative so that the effects of the sea ice-albedo feedback mechanism can be isolated. The inclusion of melt ponds significantly strengthens the ice-albedo feedback, while the ice thickness distribution decreases the strength of the modeled sea ice-albedo feedback. It is emphasized that accurately modeling present-day sea ice thickness is not adequate for a sea ice parameterization; the correct physical processes must be included so that the sea ice parameterization yields correct sensitivities to external forcing. 22 refs., 6 figs., 1 tab.

  18. SURFACE ALBEDO AND SPECTRAL VARIABILITY OF CERES

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian-Yang; Reddy, Vishnu; Corre, Lucille Le; Sykes, Mark V.; Prettyman, Thomas H. [Planetary Science Institute, 1700 E. Ft. Lowell Road, Suite 106, Tucson, AZ 85719 (United States); Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael [Max Planck Institute for Solar System Research, Göttingen (Germany); Izawa, Matthew R. M.; Cloutis, Edward A. [University of Winnipeg, Winnipeg, Manitoba (Canada); Carsenty, Uri; Jaumann, Ralf; Krohn, Katrin; Mottola, Stefano; Schröder, Stefan E. [German Aerospace Center (DLR), Institute of Planetary Research, Berlin (Germany); Castillo-Rogez, Julie C. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Schenk, Paul [Lunar and Planetary Institute, Houston, TX 77058 (United States); Williams, David A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Smith, David E. [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Zuber, Maria T. [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); and others

    2016-02-01

    Previous observations suggested that Ceres has active, but possibly sporadic, water outgassing as well as possibly varying spectral characteristics over a timescale of months. We used all available data of Ceres collected in the past three decades from the ground and the Hubble Space Telescope, as well as the newly acquired images by the Dawn  Framing Camera, to search for spectral and albedo variability on Ceres, on both a global scale and in local regions, particularly the bright spots inside the Occator crater, over timescales of a few months to decades. Our analysis has placed an upper limit on the possible temporal albedo variation on Ceres. Sporadic water vapor venting, or any possibly ongoing activity on Ceres, is not significant enough to change the albedo or the area of the bright features in the Occator crater by >15%, or the global albedo by >3% over the various timescales that we searched. Recently reported spectral slope variations can be explained by changing Sun–Ceres–Earth geometry. The active area on Ceres is less than 1 km{sup 2}, too small to cause global albedo and spectral variations detectable in our data. Impact ejecta due to impacting projectiles of tens of meters in size like those known to cause observable changes to the surface albedo on Asteroid Scheila cannot cause detectable albedo change on Ceres due to its relatively large size and strong gravity. The water vapor activity on Ceres is independent of Ceres’ heliocentric distance, ruling out the possibility of the comet-like sublimation process as a possible mechanism driving the activity.

  19. Tackling regional climate change by leaf albedo bio-geoengineering.

    Science.gov (United States)

    Ridgwell, Andy; Singarayer, Joy S; Hetherington, Alistair M; Valdes, Paul J

    2009-01-27

    The likelihood that continuing greenhouse-gas emissions will lead to an unmanageable degree of climate change has stimulated the search for planetary-scale technological solutions for reducing global warming ("geoengineering"), typically characterized by the necessity for costly new infrastructures and industries. We suggest that the existing global infrastructure associated with arable agriculture can help, given that crop plants exert an important influence over the climatic energy budget because of differences in their albedo (solar reflectivity) compared to soils and to natural vegetation. Specifically, we propose a "bio-geoengineering" approach to mitigate surface warming, in which crop varieties having specific leaf glossiness and/or canopy morphological traits are specifically chosen to maximize solar reflectivity. We quantify this by modifying the canopy albedo of vegetation in prescribed cropland areas in a global-climate model, and thereby estimate the near-term potential for bio-geoengineering to be a summertime cooling of more than 1 degrees C throughout much of central North America and midlatitude Eurasia, equivalent to seasonally offsetting approximately one-fifth of regional warming due to doubling of atmospheric CO(2). Ultimately, genetic modification of plant leaf waxes or canopy structure could achieve greater temperature reductions, although better characterization of existing intraspecies variability is needed first.

  20. HIGH-ALBEDO C-COMPLEX ASTEROIDS IN THE OUTER MAIN BELT: THE NEAR-INFRARED SPECTRA

    International Nuclear Information System (INIS)

    Primitive, outer-belt asteroids are generally of low albedo, reflecting carbonaceous compositions like those of CI and CM meteorites. However, a few outer-belt asteroids having high albedos are known, suggesting the presence of unusually reflective surface minerals or, conceivably, even exposed water ice. Here, we present near-infrared (1.1-2.5 μm) spectra of four outer-belt C-complex asteroids with albedos ≥0.1. We find no absorption features characteristic of water ice (near 1.5 and 2.0 μm) in the objects. Intimate mixture models set limits to the water ice by weight ≤2%. Asteroids (723) Hammonia and (936) Kunigunde are featureless and have (60%-95%) amorphous Mg pyroxenes that might explain the high albedos. Asteroid (1276) Ucclia also shows a featureless reflection spectrum with (50%-60%) amorphous Mg pyroxenes. Asteroid (1576) Fabiola shows a possible weak, broad absorption band (1.5-2.1 μm). The feature can be reproduced by (80%) amorphous Mg pyroxenes or orthopyroxene (crystalline silicate), either of which is likely to cause its high albedo. We discuss the origin of high-albedo components in primitive asteroids.

  1. Thermal neutron albedo measurements for multilithic reflectors

    International Nuclear Information System (INIS)

    Highlights: • Measurement of thermal neuron albedo for multilithic reflectors. • Modeling of experiments in MATLAB. • Comparison of numerical calculated and experimental values. • Study of thermal neutron albedo in different multilayered shielding. - Abstract: An experimental measurement of the thermal neutron (0.025 eV) albedo (αth) has been carried out for multilithic shielding by using Am–Be neutron source and BF3 detector. The measured saturation value for the thermal albedo of paraffin wax has been found to be 0.734 ± 0.020, which is in close agreement to the corresponding value 0.83 quoted in the literature. The thermal neutron albedo has been measured for the multilayered shielding in copper–wood, copper–aluminum, wood–paraffin and paraffin–iron combinations in horizontal geometric configurations. Modeling and numerical simulation have been carried out by developing a MATLAB code which solves the diffusion equation in order to calculate the experimental results. Good agreement has been found between the numerical calculated and experimental results. The uncertainties in the measurements have also been calculated based on error propagation of the underlying Poisson distribution

  2. Generalized Albedo option on the Morse Monte Carlo code

    International Nuclear Information System (INIS)

    The advisability of using the albedo procedure for solving deep penetration shielding problems which have ducts and other penetrations is investigated. It is generally accepted that the use of albedo data can dramatically improve the computational efficiency of certain Monte Carlo calculations - however the accuracy of these results may be unacceptable because of lost information during the albedo event and serious errors in the available differential albedo data. This study has been done to evaluate and appropriately modify the MORSE/BREESE package, to develop new methods for generating the required albedo data, and to extend the adjoint capability to the albedo modified calculations. The major modifications include the tracking of special particles inside albedo media, an option to displace the point-of-emergence during an albedo event, and an option to read, process, and use spatially-dependent albedo data for both forward and adjoint calculations. (author)

  3. Exoplanet albedo spectra and colors as a function of planet phase, separation, and metallicity

    OpenAIRE

    Cahoy, Kerri L.; Marley, Mark S.; Fortney, Jonathan J.

    2010-01-01

    First generation optical coronagraphic telescopes will obtain images of cool gas and ice giant exoplanets around nearby stars. The albedo spectra of exoplanets at planet-star separations larger than about 1 AU are dominated by reflected light to beyond 1 {\\mu}m and are punctuated by molecular absorption features. We consider how exoplanet albedo spectra and colors vary as a function of planet-star separation, metallicity, mass, and observed phase for Jupiter and Neptune analogs from 0.35 to 1...

  4. Criticality analysis of thermal reactors for two energy groups applying Monte Carlo and neutron Albedo method

    International Nuclear Information System (INIS)

    The Albedo method applied to criticality calculations to nuclear reactors is characterized by following the neutron currents, allowing to make detailed analyses of the physics phenomena about interactions of the neutrons with the core-reflector set, by the determination of the probabilities of reflection, absorption, and transmission. Then, allowing to make detailed appreciations of the variation of the effective neutron multiplication factor, keff. In the present work, motivated for excellent results presented in dissertations applied to thermal reactors and shieldings, was described the methodology to Albedo method for the analysis criticality of thermal reactors by using two energy groups admitting variable core coefficients to each re-entrant current. By using the Monte Carlo KENO IV code was analyzed relation between the total fraction of neutrons absorbed in the core reactor and the fraction of neutrons that never have stayed into the reflector but were absorbed into the core. As parameters of comparison and analysis of the results obtained by the Albedo method were used one dimensional deterministic code ANISN (ANIsotropic SN transport code) and Diffusion method. The keff results determined by the Albedo method, to the type of analyzed reactor, showed excellent agreement. Thus were obtained relative errors of keff values smaller than 0,78% between the Albedo method and code ANISN. In relation to the Diffusion method were obtained errors smaller than 0,35%, showing the effectiveness of the Albedo method applied to criticality analysis. The easiness of application, simplicity and clarity of the Albedo method constitute a valuable instrument to neutronic calculations applied to nonmultiplying and multiplying media. (author)

  5. The Role of the Effective Cloud Albedo for Climate Monitoring and Analysis

    Directory of Open Access Journals (Sweden)

    Christine Träger-Chatterjee

    2011-10-01

    Full Text Available Cloud properties and the Earth’s radiation budget are defined as essential climate variables by Global Climate Observing System (GCOS. The cloud albedo is a measure for the portion of solar radiation reflected back to space by clouds. This information is essential for the analysis and interpretation of the Earth’s radiation budget and the solar surface irradiance. We present and discuss a method for the production of the effective cloud albedo and the solar surface irradiance based on the visible channel (0.45–1 μm on-board of the Meteosat satellites. This method includes a newly developed self-calibration approach and has been used to generate a 23-year long (1983–2005 continuous and validated climate data record of the effective cloud albedo and the solar surface irradiance. Using these records we demonstrate the ability of the method to provide these essential variables in high accuracy and homogeneity. Further on, we discuss the role of the cloud albedo within climate monitoring and analysis. We found trends with opposite sign in the observed effective cloud albedo resulting in positive trends in the solar surface irradiance over ocean and partly negative trends over land. Ground measurements are scarce over the ocean and thus satellite-derived effective cloud albedo and solar surface irradiance constitutes a unique observational data source. Within this scope it has to be considered that the ocean is the main energy reservoir of the Earth, which emphasises the role of satellite-observed effective cloud albedo and derived solar surface irradiance as essential climate variables for climate monitoring and analysis.

  6. Albedo control as an effective strategy to tackle Global Warming: A case study

    International Nuclear Information System (INIS)

    Highlights: • We modeled the energy exchanges for the system Earth–Atmosphere–Outer space. • We proposed a method quantifying the CO2eq offset potential of high-albedo surfaces. • We presented the application of the method to a case study in Tunis. • The CO2eq offsetting potential depends on the geometry-orientation of the surfaces. • An economic value was attributed to the Albedo control compensation mechanism. - Abstract: Recent research developments focused on Climate Change issue aimed at achieving Kyoto targets. In this context, an innovative methodology (officially recognized by WEC in 2009) is proposed to mitigate Global Warming by artificially enhancing earth’s Albedo. Such a methodology allows to quantify the maximum environmental benefit achievable through the installation of Albedo control technologies, as a function of the geographical features of the installation site, local meteorological conditions, radiative properties, tilt angle, and orientation of the surfaces. This benefit is directly quantified in terms of CO2eq offset. Albedo control can be an effective mitigation strategy by means of three synergistic effects: a direct contribution towards Global Warming mitigation produced by an enhanced reflection to the space of the shortwave incident radiation; the indirect contribution from energy saving in buildings with high Albedo envelopes; the indirect contribution from the mitigation of Urban Heat Island phenomenon. Since the effectiveness of Albedo control is mostly relevant in Mediterranean area, for both climate conditions and historical-architectural heritage, this work presents procedures and findings of the ABCD project (Albedo, Building green, Control of Global Warming and Desertification) concluded in 2012, funded by the Italian Ministry for the Environment. A description of the analytic model is also presented. The paper focuses on the application of the methodology to a Tunisian factory site, showing that approximately 16

  7. Intercomparison measurements with albedo neutron dosimeters

    International Nuclear Information System (INIS)

    Since the introduction of the albedo dosimeter as the official personal neutron dosimeter the dosimetry services concerned have participated in intercomparison measurements at the PTB. Their albedo dosimeters were irradiated in reference fields produced by unmoderated and D2O-moderated 252Cf neutron sources in the standard irradiation facility of the PTB. Six fields with fluences different in energy and angle distribution could be realised in order to determine the response of the albedo dosimeter. The dose equivalent values evaluated by the services were compared with the reference values of the PTB for the directional dose equivalent H'(10). The results turned out to be essentially dependent on the evaluation method and the choice of the calibration factors. (orig.)

  8. The Global Albedo of the Moon at 1064 nm from LOLA

    Science.gov (United States)

    Lucey, P. G.; Neumann, G. A.; Riner, M. A.; Mazarico, E.; Smith, D. E.; Zuber, M. T.; Paige, D. A.; Bussey, D. B.; Cahill, J. T.; McGovern, A.; Isaacson, P.; Corley, L. M.; Torrence, M. H.; Melosh, H. J.; Head, J. W.; Song, E.

    2014-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) measures the backscattered energy of the returning altimetric laser pulse at its wavelength of 1064 nm, and these data are used to map the reflectivity of the Moon at zero-phase angle with a photometrically uniform data set. Global maps have been produced at 4 pixels per degree (about 8 kilometers at the equator) and 2 kilometers resolution within 20 deg latitude of each pole. The zero-phase geometry is insensitive to lunar topography, so these data enable characterization of subtle variations in lunar albedo, even at high latitudes where such measurements are not possible with the Sun as the illumination source. The geometric albedo of the Moon at 1064 nm was estimated from these data with absolute calibration derived from the Kaguya Multiband Imager and extrapolated to visual wavelengths. The LOLA estimates are within 2 sigma of historical measurements of geometric albedo. No consistent latitude-dependent variations in reflectance are observed, suggesting that solar wind does not dominate space weathering processes that modify lunar reflectance. The average normal albedo of the Moon is found to be much higher than that of Mercury consistent with prior measurements, but the normal albedo of the lunar maria is similar to that of Mercury suggesting a similar abundance of space weathering products. Regions within permanent shadow in the polar regions are found to be more reflective than polar surfaces that are sometimes illuminated. Limiting analysis to data with slopes less than 10 deg eliminates variations in reflectance due to mass wasting and shows a similar increased reflectivity within permanent polar shadow. Steep slopes within permanent shadow are also more reflective than similar slopes that experience at least some illumination. Water frost and a reduction in effectiveness of space weathering are offered as possible explanations for the increased reflectivity of permanent shadow; porosity is largely ruled out as the

  9. MERIS albedo climatology for FRESCO+ O2 A-band cloud retrieval

    OpenAIRE

    Zhou, Y.; P. Stammes; Brunner, D.; Wang, P.; Popp, C; M. Grzegorski

    2011-01-01

    A new global albedo climatology for Oxygen A-band cloud retrievals is presented. The climatology is based on MEdium Resolution Imaging Spectrometer (MERIS) Albedomap data and its favourable impact on the derivation of cloud fraction is demonstrated for the FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm. To date, a relatively coarse resolution (1° × 1°) surface reflectance dataset from GOME (Global Ozone Monitoring Experiment) Lambert-equivalent reflectivity (LER) ...

  10. MERIS albedo climatology for FRESCO+ O2 A-band cloud retrieval

    OpenAIRE

    Zhou, Y.; P. Stammes; Brunner, D.; Wang, P.; Popp, C; M. Grzegorski

    2010-01-01

    A new global albedo climatology for Oxygen A-band cloud retrievals is presented. The climatology is based on MEdium Resolution Imaging Spectrometer (MERIS) Albedomap data and its favourable impact on the derivation of cloud fraction is demonstrated for the FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm. To date, a relatively coarse resolution (1° × 1°) surface reflectance dataset from GOME (Global Ozone Monitoring Experiment) Lambert-equivalent reflectivity (LER) ...

  11. Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study

    CERN Document Server

    Hamwey, R M

    2005-01-01

    This study explores the potential to enhance the reflectance of solar insolation by the human settlement and grassland components of the Earth's terrestrial surface as a climate change mitigation measure. Preliminary estimates derived using a static radiative transfer model indicate that such efforts could amplify the planetary albedo enough to offset the current global annual average level of radiative forcing caused by anthropogenic greenhouse gases by as much as 30 percent or 0.76 W/m2. Terrestrial albedo amplification may thus extend, by about 25 years, the time available to advance the development and use of low-emission energy conversion technologies which ultimately remain essential to mitigate long-term climate change. However, additional study is needed to confirm the estimates reported here and to assess the economic and environmental impacts of active land-surface albedo amplification as a climate change mitigation measure.

  12. Albedo and estimates of net radiation for green beans under polyethylene cover and field conditions

    International Nuclear Information System (INIS)

    This paper describes the albedo (r) and estimates of net radiation and global solar irradiance for green beans crop (Phaseolus vulgaris L.), cultivated in greenhouse with cover of polyethylene and field conditions, in Botucatu, SP, Brazil (22° 54' S; 48° 27' W; 850 m). The solar global irradiance (Rg) and solar reflected radiation (Rr) were used to estimate the albedo through the ratio between Rr and Rg. The diurnal curves of albedo were obtained for days with clear sky and partially cloudy conditions, for different phenological stages of the crop. The albedo ranged with the solar elevation, the environment and the phenological stages. The cloudiness range have almost no influence on the albedo diurnal amount. The estimation of radiation were made by linear regression, using the global solar irradiance (Rg) and net short-waves radiation (Rc) as independent variables. All estimates of radiation showed better adjustment for specific phenological periods compared to the entire crop growing cycle. The net radiation in the greenhouse has been estimated by the global solar irradiance measured at field conditions. (author)

  13. [New index for soil moisture monitoring based on deltaT(s)-albedo spectral information].

    Science.gov (United States)

    Yao, Yun-Jun; Qin, Qi-Ming; Zhao, Shao-Hua; Shen, Xin-Yi; Sui, Xin-Xin

    2011-06-01

    Monitoring soil moisture by remote sensing has been an important problem for both agricultural drought monitoring and water resources management. In the present paper, we acquire the land surface temperature difference (deltaT(s)) and broadband albedo using MODIS Terra reflectance and land surface temperature products to construct the deltaT(s)-albedo spectral feature space. According to the soil moisture variation in spectral feature space, we put forward a simple and practical temperature difference albedo drought index (TDADI) and validate it using ground-measured 0-10 cm averaged soil moisture of Ningxia plain The results show that the coefficient of determination (R2) of both them varies from 0.36 to 0.52, and TDADI has higher accuracy than temperature albedo drought index (TADI) for soil moisture retrieval. The good agreement of TDADI, Albedo/LST, LST/ NDVI and TVDI for analyzing the trends of soil moisture change supports the reliability of TDADI. However, TDADI has been designed only at Ningxia plain and still needs further validation in other regions. PMID:21847933

  14. United States Land Cover Land Use Change, Albedo and Surface Radiative Forcing 1973 to 2000

    Science.gov (United States)

    Barnes, C. A.; Roy, D. P.

    2007-12-01

    This research responds to the recent recommendations made by the U.S. National Research Council for regional forcing studies to better understand climatic responses to land cover land use change. Surface albedo affects the earth's radiative energy balance, by controlling how much incoming solar radiation is absorbed and reflected. It is well established that Land Cover Land Use (LCLU) change results in changes in the surface albedo which has a radiative forcing effect, however, to date, studies have been limited due to data uncertainties. New spatially explicit satellite derived LCLU change and albedo data for the conterminous U.S. are used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing. The methodology and preliminary results for 42% of the U.S. processed to date are presented as spatially explicit maps and summary statistics. The results indicate a negative (cooling) radiative forcing effect due to U.S. LCLU change over the last three decades. Data used include USGS Landsat based decadal land cover maps of the conterminous U.S. located using a stratified sampling methodology across 84 ecoregions, mean 2000-2002 MODIS broadband albedo values extracted in each ecoregion for the 10 mapped LCLU classes, and monthly mean surface incoming solar radiation from the recent European Center for Medium Range Weather Forecast 40 year Reanalysis (ERA40) product.

  15. Evaluation of the MODIS Albedo Product over a Heterogeneous Agricultural Area

    Science.gov (United States)

    Sobrino, Jose Antonio; Franch, B.; Oltra-Carrio, R.; Vermote, E. F.; Fedele, E.

    2013-01-01

    In this article, the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF)/Albedo product (MCD43) is evaluated over a heterogeneous agricultural area in the framework of the Earth Observation: Optical Data Calibration and Information Extraction (EODIX) project campaign, which was developed in Barrax (Spain) in June 2011. In this method, two models, the RossThick-LiSparse-Reciprocal (RTLSR) (which corresponds to the MODIS BRDF algorithm) and the RossThick-Maignan-LiSparse-Reciprocal (RTLSR-HS), were tested over airborne data by processing high-resolution images acquired with the Airborne Hyperspectral Scanner (AHS) sensor. During the campaign, airborne images were retrieved with different view zenith angles along the principal and orthogonal planes. Comparing the results of applying the models to the airborne data with ground measurements, we obtained a root mean square error (RMSE) of 0.018 with both RTLSR and RTLSR-HS models. The evaluation of the MODIS BRDF/Albedo product (MCD43) was performed by comparing satellite images with AHS estimations. The results reported an RMSE of 0.04 with both models. Additionally, taking advantage of a homogeneous barley pixel, we compared in situ albedo data to satellite albedo data. In this case, the MODIS albedo estimation was (0.210 +/- 0.003), while the in situ measurement was (0.204 +/- 0.003). This result shows good agreement in regard to a homogeneous pixel.

  16. Comparison between Snow Albedo Obtained from Landsat TM, ETM+ Imagery and the SPOT VEGETATION Albedo Product in a Mediterranean Mountainous Site

    Directory of Open Access Journals (Sweden)

    Rafael Pimentel

    2016-02-01

    Full Text Available Albedo plays an important role in snow evolution modeling quantifying the amount of solar radiation absorbed and reflected by the snowpack, especially in mid-latitude regions with semiarid conditions. Satellite remote sensing is the most extensive technique to determine the variability of snow albedo over medium to large areas; however, scale effects from the pixel size of the sensor source may affect the results of snow models, with different impacts depending on the spatial resolution. This work presents the evaluation of snow albedo values retrieved from (1 Landsat images, L (16-day frequency with 30 × 30 m pixel size and (2 SPOT VEGETATION albedo products, SV (10-day frequency with 1 × 1 km pixel size in the Sierra Nevada mountain range in South Spain, a Mediterranean site representative of highly heterogeneous conditions. Daily snow albedo map series were derived from both sources, and used as input for the snow module in the WiMMed (Watershed Integrated Management in Mediterranean Environment hydrological model, which was operational at the study area for snow monitoring for two hydrological years, 2011–2012 and 2012–2013, in the Guadalfeo river basin in Sierra Nevada. The results showed similar albedo trends in both data sources, but with different values, the shift between both sources being distributed in space according to the altitude. This difference resulted in lower snow cover fraction values in the SV-simulations that affected the rest of snow variables included in the simulation. This underestimation, mainly due to the effects of mixed pixels composed by both snow and snow-free areas, produced higher divergences from both sources during the melting periods when the evapo-sublimation and melting fluxes are more relevant. Therefore, the selection of the albedo data source in these areas, where snow evapo-sublimation plays a very important role and the presence of snow-free patches is very frequent, can condition the final

  17. Entrainment, Drizzle, and Cloud Albedo

    Science.gov (United States)

    Ackerman, A. S.; Kirkpatrick, J. P.; Stevens, D. E.; Toon, O. B.

    2004-01-01

    Increased aerosol and hence droplet concentrations in polluted clouds are expected to inhibit precipitation and thereby increase cloud water, leading to more reflective clouds that partially offset global warming. Yet polluted clouds are not generally observed to hold more water. Much of the uncertainty regarding the indirect aerosol effect stems from inadequate understanding of such changes in cloud water. Detailed simulations show that the relative humidity of air overlying stratocumulus is a leading factor determining whether cloud water increases or decreases when precipitation is suppressed. When the overlying air is dry, cloud water can decrease as droplet concentrations increase.

  18. A FALSE POSITIVE FOR OCEAN GLINT ON EXOPLANETS: THE LATITUDE-ALBEDO EFFECT

    International Nuclear Information System (INIS)

    Identifying liquid water on the surface of planets is a high priority, as this traditionally defines habitability. One proposed signature of oceans is specular reflection ('glint'), which increases the apparent albedo of a planet at crescent phases. We post-process a global climate model of an Earth-like planet to simulate reflected light curves. Significantly, we obtain glint-like phase variations even though we do not include specular reflection in our model. This false positive is the product of two generic properties: (1) for modest obliquities, a planet's poles receive less orbit-averaged stellar flux than its equator, so the poles are more likely to be covered in highly reflective snow and ice; and (2) we show that reflected light from a modest-obliquity planet at crescent phases probes higher latitudes than at gibbous phases, therefore a planet's apparent albedo will naturally increase at crescent phase. We suggest that this 'latitude-albedo effect' will operate even for large obliquities: in that case the equator receives less orbit-averaged flux than the poles, and the equator is preferentially sampled at crescent phase. Using rotational and orbital color variations to map the surfaces of directly imaged planets and estimate their obliquity will therefore be a necessary pre-condition for properly interpreting their reflected phase variations. The latitude-albedo effect is a particularly convincing glint false positive for zero-obliquity planets, and such worlds are not amenable to latitudinal mapping. This effect severely limits the utility of specular reflection for detecting oceans on exoplanets.

  19. Spectral albedo of seasonal snow during intensive melt period at Sodankylä, beyond the Arctic Circle

    Directory of Open Access Journals (Sweden)

    O. Meinander

    2013-04-01

    Full Text Available We have measured spectral albedo, as well as ancillary parameters, of seasonal European Arctic snow at Sodankylä, Finland (67°22' N, 26°39' E. The springtime intensive melt period was observed during the Snow Reflectance Transition Experiment (SNORTEX in April 2009. The upwelling and downwelling spectral irradiance, measured at 290–550 nm with a double monochromator spectroradiometer, revealed albedo values of ~0.5–0.7 for the ultraviolet and visible range, both under clear sky and variable cloudiness. During the most intensive snowmelt period of four days, albedo decreased from 0.65 to 0.45 at 330 nm, and from 0.72 to 0.53 at 450 nm. In the literature, the UV and VIS albedo for clean snow are ~0.97–0.99, consistent with the extremely small absorption coefficient of ice in this spectral region. Our low albedo values were supported by two independent simultaneous broadband albedo measurements, and simulated albedo data. We explain the low albedo values to be due to (i large snow grain sizes up to ~3 mm in diameter; (ii meltwater surrounding the grains and increasing the effective grain size; (iii absorption caused by impurities in the snow, with concentration of elemental carbon (black carbon in snow of 87 ppb, and organic carbon 2894 ppb, at the time of albedo measurements. The high concentrations of carbon, detected by the thermal–optical method, were due to air masses originating from the Kola Peninsula, Russia, where mining and refining industries are located.

  20. An algorithm to determine backscattering ratio and single scattering albedo

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Matondkar, S.G.P.; Mascarenhas, A.A.M.Q.; Nayak, S.R.; Naik, P.

    bands. Using the empirical relationship for the total backscattering ratios, we have also computed single scattering albedo, which is defined as the ratio of the scattering to the beam attenuation coefficient. The values of single scattering albedo...

  1. Surface Albedo and Spectral Variability of Ceres

    CERN Document Server

    Li, Jian-Yang; Nathues, Andreas; Corre, Lucille Le; Izawa, Matthew R M; Clouts, Edward A; Sykes, Mark V; Carsenty, Uri; Castillo-Rogez, Julie C; Hoffmann, Martin; Jaumann, Ralf; Krohn, Katrin; Mottola, Stefano; Prettyman, Thomas H; Schaefer, Michael; Schenk, Paul; Schröder, Stefan E; Williams, David A; Smith, David E; Zuber, Maria T; Konopliv, Alexander S; Park, Ryan S; Raymond, Carol A; Russell, Christopher T

    2016-01-01

    Previous observations suggested that Ceres has active but possibly sporadic water outgassing, and possibly varying spectral characteristics in a time scale of months. We used all available data of Ceres collected in the past three decades from the ground and the Hubble Space Telescope, and the newly acquired images by Dawn Framing Camera to search for spectral and albedo variability on Ceres, in both a global scale and local regions, particularly the bright spots inside Occator crater, over time scales of a few months to decades. Our analysis has placed an upper limit on the possible temporal albedo variation on Ceres. Sporadic water vapor venting, or any possibly ongoing activity on Ceres, is not significant enough to change the albedo or the area of the bright features in Occator crater by >15%, or the global albedo by >3% over various time scales that we searched. Recently reported spectral slope variations can be explained by changing Sun-Ceres-Earth geometry. The active area on Ceres is less than 1 km$^2...

  2. Carbonization in Titan Tholins: implication for low albedo on surfaces of Centaurs and trans-Neptunian objects

    Science.gov (United States)

    Giri, Chaitanya; McKay, Christopher P.; Goesmann, Fred; Schäfer, Nadine; Li, Xiang; Steininger, Harald; Brinckerhoff, William B.; Gautier, Thomas; Reitner, Joachim; Meierhenrich, Uwe J.

    2016-07-01

    Astronomical observations of Centaurs and trans-Neptunian objects (TNOs) yield two characteristic features - near-infrared (NIR) reflectance and low geometric albedo. The first feature apparently originates due to complex organic material on their surfaces, but the origin of the material contributing to low albedo is not well understood. Titan tholins synthesized to simulate aerosols in the atmosphere of Saturn's moon Titan have also been used for simulating the NIR reflectances of several Centaurs and TNOs. Here, we report novel detections of large polycyclic aromatic hydrocarbons, nanoscopic soot aggregates and cauliflower-like graphite within Titan tholins. We put forth a proof of concept stating the surfaces of Centaurs and TNOs may perhaps comprise of highly `carbonized' complex organic material, analogous to the tholins we investigated. Such material would apparently be capable of contributing to the NIR reflectances and to the low geometric albedos simultaneously.

  3. Concrete albedo for low-energy gamma radiation

    International Nuclear Information System (INIS)

    Monte Carlo calculations of different current characteristics of both the numerical asub(N) and energy asub(E) albedos have been carried out at initial gamma quanta energies E0=20-100 keV. Both integral functionals and angular, energy and spectral-angular distributions of asub(N) have been obtained. The component due to single scattering has been extracted. The incident angles THETA0 from 0 to 89 deg, and reflection angles THETA from -89 to +89 deg are considered. The energy range where the electron binding energy in atoms must be taken account of has been found as follows: E0=60 keV at THETA0>=80 deg and THETA>=60 deg; E00>=60 deg and THETA>=15 deg. The ratio asub(E)/asub(N) practically does not depend on THETA0. In terms of the least square fit the semiempirical representation coefficients of the differential angular albedo have been determined

  4. Factors affecting polyamide prototypes design of Albedo dosemeters

    International Nuclear Information System (INIS)

    This work studies the most important factors which affect the response of albedo neutron dosemeters containing LiF TLDs with the aim to improve their sensitivity. It includes tests of thickness and shape of the polyamide moderator body prototypes, albedo window diameter and TLD position inside the moderator. Analyzing the results, an albedo neutron dosemeter prototype, B4C covered, was developed. The prototype has a response three times higher than the albedo dosemeter now in use in Brazil. (author)

  5. Albedo muons in upper layers of the atmosphere

    International Nuclear Information System (INIS)

    The albedo muon fluxes are calculated in the energy range 50≤E≤1000 MeV in the upper atmospheric layers. It is shown that the anisotropy degree of albedo muon flux in the stratosphere increases with the muon energy increase, and according to the absolute values the albedo muon flux becomes comparable with the direct albedo proton fluxes at energies > 200 MeV. 8 refs.; 2 figs

  6. Towards multidecadal consistent Meteosat surface albedo time series

    OpenAIRE

    Alexander Loew; Yves Govaerts

    2010-01-01

    Monitoring of land surface albedo dynamics is important for the understanding of observed climate trends. Recently developed multidecadal surface albedo data products, derived from a series of geostationary satellite data, provide the opportunity to study long term surface albedo dynamics at the regional to global scale. Reliable estimates of temporal trends in surface albedo require carefully calibrated and homogenized long term satellite data records and derived products. The present paper ...

  7. Simulations of tropical rainforest albedo: is canopy wetness important?

    OpenAIRE

    Silvia N.M. Yanagi; Costa, Marcos H.

    2011-01-01

    Accurate information on surface albedo is essential for climate modelling, especially for regions such as Amazonia, where the response of the regional atmospheric circulation to the changes on surface albedo is strong. Previous studies have indicated that models are still unable to correctly reproduce details of the seasonal variation of surface albedo. Therefore, it was investigated the role of canopy wetness on the simulated albedo of a tropical rainforest by modifying the IBIS canopy radia...

  8. Systematic Numerical Experiments for Investigation of Urban Albedo Characteristics

    OpenAIRE

    Tanimoto, Jun; Hagishima, Aya

    2003-01-01

    One of the important parameters used to estimate Urban Heat Island that involved with mesoscale model is albedo. It is useful to reliably investigate the energy budget in an urban through the radiation exchange study within urban canopy. In order to systematically clarify the urban albedo characteristics coupling with that of factorial effects, we introduce an Albedo Calculation Model, which is simple and more reliable to provide the 3-dimensional urban albedo simulation. In addition, the num...

  9. Albedo of photons in high energy electromagnetic and hadronic cascades

    International Nuclear Information System (INIS)

    The albedo of photons in electromagnetic cascades is simulated. A simple model of back current photons generation and propagation in electromagnetic cascades is considered which satisfactorily describes the general features of albedo behavior. The contribution to the photonic albedo of electromagnetic subshowers generated by high energy gamma-quanta from π0 decays in the hadron initiated cascade is evaluated. (orig.)

  10. Albedo boundaries on Mars in 1972: Results from Mariner 9

    Science.gov (United States)

    Batson, R.M.; Inge, J.L.

    1976-01-01

    A map of "albedo" boundaries (light and dark markings) on Mars was prepared from Mariner 9 images. After special digital processing, these pictures provide detailed locations of albedo boundaries, which is significant in interpreting recent eolian activity. Derivation of absolute albedo values from the spacecraft data was not attempted. The map correlates well with telescopic observations of Mars after the 1971 dust storm. ?? 1976.

  11. Spectral geometric albedo and bolometric Bond albedo of Neptune's satellite Triton from voyager observations

    International Nuclear Information System (INIS)

    The authors have calculated the spectral geometric albedo and bolometric Bond albedo of Triton by combining the published data from the Voyager spacecraft Photopolarimeter (PPS) experiment and the Voyager imaging science (ISS) experiment. They have used the PPS ultraviolet (0.25 μm) and infrared (0.75 μm) filter data and the ISS violet (0.41 μm) and green (0.56 μm) filter data to produce geometric albedos and phase integrals at each of the four wavelengths. The resulting spectral geometric albedo is not inconsistent with the presence of weak absorption feature in Triton's spectrum near 0.75 μm. The phase integrals were determined by Russell's approximation and by 2-point Gaussian quadrature. The geometric albedo at the uv, v, g and ir filters is 0.59, 0.68, 0.81, and 0.75 respectively. The resulting bolometric Bond albedo (∼0.65) is consistent with the 38 K, unit emissivity, daytime surface temperature for Triton reported as a best fit to the data of the Voyager Infrared Spectrometer and Radiometer (IRIS). The results are also in agreement with the 37.5 K temperature of nitrogen at an inferred basal pressure of 14 μbar as reported by the Voyager Ultraviolet Spectrometer (UVS) investigation

  12. Sunshine, Earthshine and Climate Change: II. Solar Origins of Variations in the Earth's Albedo

    Science.gov (United States)

    Goode, P. R.; Pallé, E.; Yurchyshyn, V.; Qiu, J.; Hickey, J.; Rodriguez, P. Montañés; Chu, M.-C.; Kolbe, E.; Brown, C. T.; Koonin, S. E.

    2003-06-01

    There are terrestrial signatures of the solar activity cycle in ice core data (Ram & Stoltz 1999), but the variations in the sun's irradiance over the cycle seem too small to account for the signature (Lean 1997; Goode & Dziembowski 2003). Thus, one would expect that the signature must arise from an indirect effect(s) of solar activity. Such an indirect effect would be expected to manifest itself in the earth's reflectance. Further, the earth's climate depends directly on the albedo. Continuous observations of the earthshine have been carried out from Big Bear Solar Observatory since December 1998, with some more sporadic measurements made during the years 1994 and 1995. We have determined the annual albedos both from our observations and from simulations utilizing the Earth Radiation Budget Experiment (ERBE) scene model and various datasets for the cloud cover, as well as snow and ice cover. With these, we look for inter-annual and longer-term changes in the earth's total reflectance, or Bond albedo. We find that both our observations and simulations indicate that the albedo was significantly higher during 1994-1995 (activity minimum) than for the more recent period covering 1999-2001 (activity maximum). However, the sizes of the changes seem somewhat discrepant. Possible indirect solar influences on the earth's Bond albedo are discussed to emphasize that our earthshine data are already sufficiently precise to detect, if they occur, any meaningful changes in the earth's reflectance. Still greater precision will occur as we expand our single site observations to a global network.

  13. Bipolar high temporal resolution measurements of snow UV albedo in Sodankylä and Marambio

    Science.gov (United States)

    Meinander, Outi; Kontu, Anna; Asmi, Eija; Sanchez, Ricardo; Mei, Miguel; de Leeuw, Gerrit

    2015-04-01

    In this presentation we will give an overview of our high temporal resolution polar snow UV albedo data from Arctic Sodankylä, and from Marambio, Antarctica. These both are WMO GAW stations with many measurement parameters relevant to the albedo data usage. We will also describe our campaign based polar albedo data (SNORTEX and SOS campaigns), and an important data set of light absorbing impurities (BC) in the Arctic snow. The black carbon (BC) has been estimated to be the second most important human emission after carbon dioxide, in terms of its climate forcing in the present-day atmosphere. The reflectance effect of BC deposited on snow surface is the bigger the smaller the wavelength, i.e. the albedo effect of BC is the biggest at UV. This is also shown in SNICAR-model simulated albedo values. In Sodankylä, our bipolar snow ultraviolet (UV) albedo research started within the International Polar Year (IPY) 2007-2008. In 2007, the continuous Sodankylä snow UV albedo measurements were installed in Sodankylä, in the operational albedo field of the Finnish Meteorological Institute Arctic Research Center (FMI-ARC). These Sodankylä 1-min data during snow time were soon compared with the German Antarctic Neumayer Station UV albedo data, also with the same sensor type. In both data we found an up to 10 % decrease in albedo as a function of time within a day, ranging from 0.77 to 0.67 in Sodankylä and from 0.96 to 0.86 in Neumeyer. Physical explanations to asymmetry were found for cases with high relative humidity and low surface temperature during the previous night, favorable to frost and higher albedo on the next morning; new snow on the previous night; snow melting during day time and refreezing during night. In Marambio, in the beginning of 2013, our new continuous Finnish-Argentinian co-operation snow UV albedo measurements were installed and started as part of a larger continuous meteorological and environmental instrumentation. These new UV radiation data

  14. Joint AOT-Single Scattering Albedo Retrieval in Algorithm MAIAC

    Science.gov (United States)

    Lyapustin, A.

    2015-12-01

    Multi-Angle Implementation of Atmospheric Correction (MAIAC) is a new algorithm which uses time series analysis and processing of groups of pixels for advanced cloud detection and retrieval of aerosol and surface bidirectional reflectance properties. MAIAC C6+ re-processing of MODIS data record, scheduled to begin in November 2015, will create a suite of products MCD19. Due to high 1km resolution, MAIAC provides information about fine scale aerosol variability required in different applications such as urban air quality analysis. During the past year, we developed a new MAIAC capability to retrieve Single Scattering Albedo (SSA) from MODIS by adapting OMI heritage approach of O. Torres. We will describe MAIAC retrieval approach, AERONET AOT and SSA validation for different world biomass burning regions, and will compare MAIAC results with other sensors.

  15. The Albedo Dichotomy of Iapetus Measured at UV Wavelengths

    Science.gov (United States)

    Hendrix, Amanda R.; Hansen, Candice J.

    2007-01-01

    The dramatic hemispheric dichotomy in albedo displayed by Saturn's moon Iapetus has intrigued astronomers for centuries. Here we report on far-ultraviolet observations of Iapetus' bright and dark terrains from Cassini. We compare the reflectance spectra of Iapetus's dark terrain, Hyperion and Phoebe and find that both Phoebe and Hyperion are richer in water ice than Iapetus' dark terrain. Spectra of the lowest latitudes of the dark terrain display the diagnostic water ice absorption feature; water ice amounts increase within the dark material away from the apex (at 90 deg W longitude, the center of the dark leading hemisphere), consistent with thermal segregation of water ice. The water ice in the darkest, warmest low latitude regions is not expected to be stable and may be a sign of ongoing or recent emplacement of the dark material from an exogenic source.

  16. Estimates of ocean and land albedo at two wavelengths from airborne lidar.

    Science.gov (United States)

    Terenzi, F.; Cacciani, M.; di Sarra, A.; Fiocco, G.; Meloni, D.; Pace, G.

    2003-04-01

    Daytime backscattering profiles and background radiation measurements obtained by the nadir-looking ABLE (AirBorne Lidar Experiment) instrument have been used to estimate values of the albedo of ocean and land at the wavelengths of 355 and 532 nm. Data obtained during the transfer flight from Ushuaia (54.4°S, 68.2°W) to Porto Alegre (29.9°S, 51.8°W), at the end of the APE-GAIA (Airborne Polar Experiment - Geophysica Aircraft In Antarctica) campaign, were used to determine the surface albedo. In that flight the airplane overflew the Southern Ocean, the East coast of Argentina, and the estuary of the Rio de la Plata. In order to obtain the surface albedo at the two lidar wavelengths, a new method was applied. The background noise measured by the instrument, pointing to the nadir, provided an uncalibrated radiometric measurement of the solar radiation reflected and scattered from the surface and the atmosphere, while the lidar backscattering ratio profiles allowed to identify zones devoid of clouds. A relative calibration of the background noise measurements at 355 and 532 nm was obtained using the nadir radiances simulated by a radiative transfer model (LibRadTran). The model was used to estimate the solar atmospheric radiation observed by the lidar in cloud-free regions as a function of several parameters, in particular of the solar zenith angle and the surface albedo. The estimated open ocean and land albedo in the visible and UV agree with the published values, indicating the reliability of the methodology. During the flight, a significant change of the ocean albedo is observed at the Rio de la Plata estuary.

  17. Estimation of daily albedo on Tottori sand surface

    International Nuclear Information System (INIS)

    Daily albedos of a bare sand surface were measured with a solarimeter (Eko MS-62) between 23 August and 30 November in 1997 at Tottori sand dune, Japan. These quickly decreased on rainy days, and recovered during dry spells (days between rainfalls). A strong exponential relationship was found between daily albedos and the number of dry days. The daily albedos on dry days also showed a direct relationship with daily transmissivities in the range less than 0.55. Two simple models were developed to estimate daily albedos for dry spell days on bare Tottori sand surface using routine meteorological data. Daily albedos were calculated using these two models, and compared with the measured daily albedos. For Model #1, the daily albedos were successfully predicted only using the number of dry spell days; the correlation coefficient between the estimated and measured albedo was 0.73, and the standard error was 1.2%. For Model #2, the number of dry spell days and transmissivity were considered in order to calculate the daily albedo on dry spell days; the correlation coefficient was 0.85, and the standard error was 0.9%. Estimated albedos were in good agreement with measured albedos. (author)

  18. Spectral albedo of photons of initial energies below 100 keV

    Directory of Open Access Journals (Sweden)

    Marković Srpko

    2007-01-01

    Full Text Available This paper shows the results of Monte Carlo simulations of the photon reflection from homogenous plates of the shield materials made of water, aluminum, and iron. Perpendicular incidence of a monoenergetic photon beam of the initial energy of 20 keV up to 100 keV is considered. The numerical experiments were performed using the verified Monte Carlo programs MCNP-4C, FOTELP-2K3, and PENELOPE-2005. As the result, the values of difference number albedo distributed in ten even intervals according to the energy and nine even intervals according to the polar angle of reflected photons were obtained. Out of these data, the spectral albedo coefficients for all three materials and three initial photon energies of 40 keV, 60 keV, and 100 keV were calculated, graphically presented, and analyzed. The values of the spectral albedo determined on the basis of MCNP-4C code were compared to the results of the early simulations of the photon reflection performed in Russia and in the USA. Also, with the help of MCNP-4C program, the yield of fluorescent photons to the spectrum of the reflected radiation was registered, which can be seen in the graphs in the form of the peak at the energy of 7.112 keV only at the shielding plates made of iron.

  19. Spectral albedo of photons of initial energies below 100 keV

    International Nuclear Information System (INIS)

    This paper shows the results of Monte Carlo simulations of the photon reflection from homogenous plates of the shield materials made of water, aluminum, and iron. Perpendicular incidence of a monoenergetic photon beam of the initial energy of 20 keV up to 100 keV is considered. The numerical experiments were performed using the verified Monte Carlo programs MCNP-4C, FOTELP-2K3, and PENELOPE-2005. As the result, the values of difference number albedo distributed in ten even intervals according to the energy and nine even intervals according to the polar angle of reflected photons were obtained. Out of these data, the spectral albedo coefficients for all three materials and three initial photon energies of 40 keV, 60 keV, and 100 keV were calculated, graphically presented, and analyzed. The values of the spectral albedo determined on the basis of MCNP-4C code were compared to the results of the early simulations of the photon reflection performed in Russia and in the USA. Also, with the help of MCNP-4C program, the yield of fluorescent photons to the spectrum of the reflected radiation was registered, which can be seen in the graphs in the form of the peak at the energy of 7.112 keV only at the shielding plates made of iron. (author)

  20. Contribution to the determination of the double angular and energy differential neutron albedo. Application to the propagation in lacunar medium; Contribution a la determination de l'albedo doublement differentiel en angle et en energie des neutrons. Application a la propagation dans les milieux lacunaires

    Energy Technology Data Exchange (ETDEWEB)

    Litaize, O

    2000-07-01

    The goal of this thesis is to study the neutron propagation by reflection from lacunar medium interfaces. The most efficient method to calculate this type of propagation is to use the concept of albedo. Actual version of NARCISSE code uses a simple formulation of angular differential albedos and so, can only treat single reflections. Multiple reflections treatment needs the knowledge of neutron spectrum after reflection. This energetic information is contained in double angular and energy differential albedos. The first step of this study consists to generate these albedos for various materials. Several methods have been tested and the Monte Carlo method was retained. A new estimator has been developed and validated in the Mote Carlo transport code TRIPOLI-4. It computes, during the simulation of the neutron history, the angular and energy reflection probability at each collision site. The second step consists to generate an interpolation scheme and albedo libraries for various materials. A new version of NARCISSE was developed to use these libraries and the interpolation module. Spectrum and dose rates comparisons were made between codes to validate these albedos. The neutron propagation by multiple reflections can be studied now, by using this new version of Narcisse. (author)

  1. Evidence for the Nature of Space Weathering Spectral Signatures on Low Albedo Asteroids

    Science.gov (United States)

    Lantz, Cateline; Clark, B. E.; Barucci, M. A.

    2012-10-01

    We address an existing problem in understanding the reflected light spectral signatures of carbonaceous (low-albedo) asteroids. We know from observations of the moon and high-albedo asteroids that interplanetary surface processes (solar wind and micrometeorite bombardment) can alter the spectral properties of silicates. The problem is that we don’t understand how carbonaceous surfaces respond to surface processes. The question is, what are the spectral signatures of surface processes on low albedo asteroids? To answer this question, we need to study reflected light spectra of asteroid subsurface materials, and compare them with asteroid surface materials. In this work, we assume that primitive asteroids are the parent bodies of carbonaceous chondrites. We begin with a fairly well-established meteorite-asteroid link: several studies have found evidence that links the CM meteorites with the Ch/Cgh asteroids [Hiroi et ao. 1996; Fornasier et al. 1999]. Assuming this link, we reason that differences between spectra of particulate samples of the CM meteorites and spectra of the regolith of the asteroids can be due to either differences in textural properties, or differences caused by surface processes on the asteroid. Previous work has resulted in contradictory predictions. Asteroid color survey data analyzed by Lazzarin et al. (2006) predicted spectral reddening for low albedo asteroids. Laser irradiation experiments by Moroz et al. (1996; 2004; 2004b) indicated both reddening and blueing of various degrees. Our initial results indicate spectral blueing of up to 50%, with little to no concurrent albedo change. We used telescopic observations of 43 Ch and Cgh-type asteroids (0.4 to 2.5 microns) from Binzel, DeMeo, et al. (MIT) and Fornasier et al. (Obs. Paris). We compare them statistically with 106 CM meteorite spectra from RELAB. The goal of this work is to predict what the OSIRIS-REx mission will see at B-type asteroid (101955) 1999RQ36.

  2. Improvement of surface albedo parameterization within a regional climate model (RegCM3)

    OpenAIRE

    Bao, Y; Lü, S.

    2009-01-01

    A parameterization for calculating surface albedo of Solar Zenith Angel (SZA) dependence with coefficient for each vegetation type determined on the Moderate Resolution Imaging Spectro-radiometer (MODIS) reformed by the Bidirectional Reflectance Distribution Function (BRDF) is incorporated within the latest Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3), and evaluated with a high resolution one-way nesting simulation in China using the Climate ...

  3. Temporal and spatial mapping of surface albedo and atmospheric dust opacity on Mars

    Science.gov (United States)

    Lee, S. W.; Clancy, R. T.; Gladstone, G. R.

    1993-01-01

    The Mariner 9 and Viking provided abundant evidence that eolian processes are active over much of the surface of Mars. Past studies have demonstrated that variations in regional albedo and wind-streak patterns are indicative of sediment transport through a region, while thermal inertia data (derived from the Viking Infrared Thermal Mapper (IRTM) dataset) are indicative of the degree of surface mantling by dust deposits. The visual and thermal data are therefore diagnostic of whether net erosion or deposition of dust-storm fallout is taking place currently and whether such processes have been active in a region over the long term. These previous investigations, however, have not attempted to correct for the effects of atmospheric dust loading on observations of the martian surface, so quantitative studies of current sediment transport rates have included large errors due to uncertainty in the magnitude of this 'atmospheric component' of the observations. We have developed a radiative transfer model that allows the atmospheric dust opacity to be determined from IRTM thermal observations. Corrections for the effects of atmospheric dust loading on observations of surface albedo can also be modeled. This approach to determining 'dust-corrected surface albedo' incorporates the atmospheric dust opacity, the single-scattering albedo and particle phase function of atmospheric dust, and the bidirectional reflectance of the surface, and it accounts for variable lighting and viewing geometry.

  4. Global color and albedo variations on Io

    Science.gov (United States)

    Mcewen, Alfred S.

    1988-01-01

    The present Voyager imaging data multispectral mosaics of Io include global mosaics from each of the Voyager 1 and 2 data sets and a high-resolution mosaic of the region centered on the Ra Patera volcano. The constancy of the disk-integrated color and albedo of Io over recent decades despite volcanic activity may be due to the regular occurrence of large Pele-type plumes with relatively dark, red deposits. Io's intrinsic spectral variability involves continuous variation among three major spectral end members. Attention is given to the mapping of the data into five spectral units for the purposes of comparison with laboratory measurements of Io surface material candidates.

  5. Albedo and transmittance of inhomogeneous stratus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.E.; Kasyanov, E.I.; Titov, G.A. [Institute of Atmospheric Optics, Tomsk (Russian Federation)] [and others

    1996-04-01

    A highly important topic is the study of the relationship between the statistical parameters of optical and radiative charactertistics of inhomogeneous stratus clouds. This is important because the radiation codes of general circulation models need improvement, and it is important for geophysical information. A cascade model has been developed at the Goddard Space Flight Center to treat stratocumulus clouds with the simplest geometry and horizontal fluctuations of the liquid water path (optical thickness). The model evaluates the strength with which the stochastic geometry of clouds influences the statistical characteristics of albedo and the trnasmittance of solar radiation.

  6. Albedo calculation for single scattering gamma-rays, (3)

    International Nuclear Information System (INIS)

    Several formulae for albedo calculation of single scattering gamma-rays were given here with a quantitative discussion on the irregular variation of albedo with incident photon energy close to the K-edge of the material. The formula derived analytically from the approximation that attenuation coefficient is inversely proportional to photon energy to the third power, was found to be practically applicable to albedo calculation for materials of high atomic number in the limited range of incident energies. (auth.)

  7. The albedo-color diversity of transneptunian objects

    OpenAIRE

    Lacerda, Pedro; Fornasier, Sonia; Lellouch, Emmanuel; Kiss, Csaba; Vilenius, Esa; Santos-Sanz, Pablo; Rengel, Miriam; Mueller, Thomas; Stansberry, John; Duffard, Rene; Delsanti, Audrey; Guilbert-Lepoutre, Aurelie

    2014-01-01

    We analyze albedo data obtained using the Herschel Space Observatory that reveal the existence of two distinct types of surface among midsized transneptunian objects. A color-albedo diagram shows two large clusters of objects, one redder and higher albedo and another darker and more neutrally colored. Crucially, all objects in our sample located in dynamically stable orbits within the classical Kuiper belt region and beyond are confined to the bright-red group, implying a compositional link. ...

  8. Absorption feedback in stratocumulus clouds Influence on cloud top albedo

    OpenAIRE

    BOERS, REINOUT; Mitchell, Ross M.

    2011-01-01

    This paper proposes a feedback mechanism which modifies the enhancement of cloud top albedo expected from an increased concentration of cloud condensation nuclei (CCN). The mechanism is based on the thermodynamic tendency of the cloud to stabilize itself against changes in the absorption of solar radiation. For optically thin clouds, this absorption feedback leads to a reduction in the anticipated albedo enhancement, while for optically thick clouds, an amplification of the albedo enhancement...

  9. Geographical gradients in boreal forest albedo and structure in Finland

    OpenAIRE

    Lukes, Petr; Rautiainen, Miina; Manninen, Terhikki; Stenberg, Pauline; Mottus, Matti

    2014-01-01

    Land surface albedo is an essential climate variable controlling the planetary radiative energy budget, yet it is still among the main uncertainties of the radiation budget in the current climate modeling. To date, albedo satellite products have not been linked to extensive forest inventory data sets due to the lack of ground reference data. Here, we used comprehensive and detailed maps of forest inventory variables to couple forest structure and MODIS albedo products for both winter and summ...

  10. Factors influencing the mesoscale variations in marine stratocumulus albedo

    OpenAIRE

    D. A. Hegg; Nielsen, K.; Covert, D S; Jonsson, H. H.; Durkee, P.A.

    2011-01-01

    Measurements of both horizontal gradients and vertical profiles of aerosols, cloud droplets and thermodynamic parameters in the cloud topped marine boundary layer off of central California are presented. They suggest that, while aerosols can indeed modulate cloud albedo, other parameters such as sea surface temperature may similarly affect cloud albedo. Additionally, the impact of aerosols, through sedimentation and precipitation, on cloud optical depths and thus albedo is not always in accor...

  11. The role of surface albedo feedback in climate

    OpenAIRE

    Hall, A.

    2004-01-01

    A coarse resolution coupled ocean - atmosphere simulation in which surface albedo feedback is suppressed by prescribing surface albedo, is compared to one where snow and sea ice anomalies are allowed to affect surface albedo. Canonical CO2-doubling experiments were performed with both models to assess the impact of this feedback on equilibrium response to external forcing. It accounts for about half the high-latitude response to the forcing. Both models were also run for 1000 yr without forci...

  12. Light curves, Spherical and Bond albedos of Jupiter, Saturn, and exoplanets.

    Science.gov (United States)

    Dyudina, U.

    2015-12-01

    We estimate how the light curve and stellar light reflection of a planet depends on forward and backward scattering, which was observed on Jupiter and Saturn. We fit analytical scattering phase function to Pioneer 10 and 11 spacecraft observations of Jupiter at 0.64 μm and Saturn at 0.64 and 0.44 μm and to Cassini spacecraft observations of Jupiter at 0.938 μm atmospheric window, 0.889 μm CH4 absorption band, and 0.258 μm UV filter. Using scattering ray-tracing model of a planet by Dyudina et al. (2005)*, the images of the planets with different scattering properties are simulated to calculate the reflected luminosity as it varies with scattering phase to produce full-orbit light curves. We compare the light curve shapes and total reflection integrated in all directions (spherical albedos) for Jupiter and Saturn with the ones for planets with Lambertian and semi-infinite Rayleigh-scattering atmosphere. Saturn-like and especially Jupiter-like atmosphere produces light curves that are several times fainter at half-phase than does a Lambertian planet, given the same brightness at transit. The spherical albedo (and hence the wavelengh-integrated Bond albedo) is lower than for a Lambertian planet. Corresponding absorption of the stellar light and planet's heating rate would be higher than estimated for Lambertian planets, especially for bright planets. In extreme case of Jupiter-like scattering at 0.64 μm Lambertian assumption can overestimate spherical albedo by a factor of ˜1.5. We will discuss how the light curves and absorption for planets covered by atmospheres would differ from the light curves of rocky planet without atmosphere. * Dyudina, U. A., et al., Phase Light Curves for Extrasolar Jupiters and Saturns. ApJ, 618, 973-986, 2005

  13. Spacecraft Attitude Determination with Earth Albedo Corrected Sun Sensor Measurements

    DEFF Research Database (Denmark)

    Bhanderi, Dan

    This thesis focuses on advanced modeling of the Earth albedo experienced by satellites in Earth orbit. The model of the Earth albedo maintains directional information of the Earth albedo irradiance from each partition on the Earth surface. This allows enhanced modeling of Sun sensor current outputs......-Method, Extended Kalman Filter, and Unscented Kalman Filter algorithms are presented and the results are compared. Combining the Unscented Kalman Filter with Earth albedo and enhanced Sun sensor modeling allows for three-axis attitude determination from Sun sensor only, which previously has been perceived...

  14. LUNAR TERRAIN AND ALBEDO RECONSTRUCTION FROM APOLLO IMAGERY

    Data.gov (United States)

    National Aeronautics and Space Administration — LUNAR TERRAIN AND ALBEDO RECONSTRUCTION FROM APOLLO IMAGERY ARA V NEFIAN*, TAEMIN KIM, MICHAEL BROXTON, AND ZACH MORATTO Abstract. Generating accurate three...

  15. THE ALBEDO-COLOR DIVERSITY OF TRANSNEPTUNIAN OBJECTS

    International Nuclear Information System (INIS)

    We analyze albedo data obtained using the Herschel Space Observatory that reveal the existence of two distinct types of surface among midsized trans-Neptunian objects. A color-albedo diagram shows two large clusters of objects, one redder and higher albedo and another darker and more neutrally colored. Crucially, all objects in our sample located in dynamically stable orbits within the classical Kuiper Belt region and beyond are confined to the bright red group, implying a compositional link. Those objects are believed to have formed further from the Sun than the dark neutral bodies. This color-albedo separation is evidence for a compositional discontinuity in the young solar system

  16. THE ALBEDO-COLOR DIVERSITY OF TRANSNEPTUNIAN OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Pedro; Rengel, Miriam [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Fornasier, Sonia; Lellouch, Emmanuel; Delsanti, Audrey [LESIA-Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot, 5 place Jules Janssen, F-92195 Meudon (France); Kiss, Csaba [Konkoly Observatory, MTA CSFK, 1121 Budapest, Konkoly Th. M. út 15-17 (Hungary); Vilenius, Esa; Müller, Thomas [Max-Planck-Institut für Extraterrestrische Physik, Postfach 1312, Giessenbachstrasse, D-85741 Garching (Germany); Santos-Sanz, Pablo; Duffard, René [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, s/n. E-18008 Granada (Spain); Stansberry, John [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Guilbert-Lepoutre, Aurélie [European Space Agency/ESTEC, Keplerlaan 1, 2201-AZ Noordwijk (Netherlands)

    2014-09-20

    We analyze albedo data obtained using the Herschel Space Observatory that reveal the existence of two distinct types of surface among midsized trans-Neptunian objects. A color-albedo diagram shows two large clusters of objects, one redder and higher albedo and another darker and more neutrally colored. Crucially, all objects in our sample located in dynamically stable orbits within the classical Kuiper Belt region and beyond are confined to the bright red group, implying a compositional link. Those objects are believed to have formed further from the Sun than the dark neutral bodies. This color-albedo separation is evidence for a compositional discontinuity in the young solar system.

  17. Albedo of the ice covered Weddell and Bellingshausen Seas

    OpenAIRE

    Weiss, A.I.; J. C. King; Lachlan-Cope, T.A.; R. S. Ladkin

    2012-01-01

    This study investigates the surface albedo of the sea ice areas adjacent to the Antarctic Peninsula during the austral summer. Aircraft measurements of the surface albedo, which were conducted in the sea ice areas of the Weddell and Bellingshausen Seas show significant differences between these two regions. The averaged surface albedo varied between 0.13 and 0.81. The ice cover of the Bellingshausen Sea consisted mainly of first year ice and the sea surface showed an averaged sea ice albedo o...

  18. Measurements of spectral snow albedo at Neumayer, Antarctica

    OpenAIRE

    S. Wuttke; Seckmeyer, G.; König-Langlo, G.

    2006-01-01

    Spectral albedo in high resolution, from 290 to 1050 nm, has been measured at Neumayer, Antarctica, (70°39' S, 8°15' W) during the austral summer 2003/2004. At 500 nm, the spectral albedo nearly reaches unity, with slightly lower values below and above 500 nm. Above 600 nm, the spectral albedo decreases to values between 0.45 and 0.75 at 1000 nm. For one cloudless case an albedo up to 1.01 at 500 nm could be determined. This can be explained by the larger directional...

  19. Effect of shaddock albedo addition on the properties of frankfurters

    OpenAIRE

    Shan, Bing; Li, Xingmin; Pan, Teng; Zheng, Limin; Zhang, Hao; Guo, Huiyuan; JIANG, LU; Zhen, Shaobo; Ren, Fazheng

    2014-01-01

    To explore the potential as a natural auxiliary emulsifier, shaddock albedo was added into frankfurters at six different levels: 0.0, 2.5, 5.0, 7.5, 10 and 12.5 %. The emulsion capacity (EC) of meat batters and cooking properties of frankfurters were evaluated. EC of meat batters was improved with the addition of shaddock albedo and the maximum value was reached at the 5 % albedo concentration. The addition of shaddock albedo resulted in lower cooking losses of frankfurters, with the lowest v...

  20. Spectral albedo of seasonal snow during intensive melt period at Sodankylä, beyond the Arctic Circle

    OpenAIRE

    O. Meinander; Kazadzis, S.; A. Arola; Riihelä, A.; P. Räisänen; Kivi, R.; Kontu, A.; R. Kouznetsov; Sofiev, M; Svensson, J.; H. Suokanerva; Aaltonen, V.; Manninen, T.; J.-L. Roujean; O. Hautecoeur

    2013-01-01

    We have measured spectral albedo, as well as ancillary parameters, of seasonal European Arctic snow at Sodankylä, Finland (67°22' N, 26°39' E). The springtime intensive melt period was observed during the Snow Reflectance Transition Experiment (SNORTEX) in April 2009. The upwelling and downwelling spectral irradiance, measured at 290–550 nm with a double monochromator spectroradiometer, revealed albedo values of ~0.5–0.7 for the ultraviolet and visible range, both under clear sky and variable...

  1. Sensitivity of cloud albedo to aerosol concentration and spectral dispersion of cloud droplet size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Iorga, G. [Faculty of Chemistry, University of Bucharest, Bucharest (Romania)]. E-mail: giorga@gw-chimie.math.unibuc.ro; Stefan, S. [Faculty of Physics, University of Bucharest, Bucharest (Romania)

    2007-07-15

    Both the enhancement of the aerosol number concentration and the relative dispersion of the cloud droplet size distribution (spectral dispersion) on a regional scale can modify the cloud reflectivity. This work is focused on the role that pre-cloud aerosol plays in cloud reflectivity. Log-normal aerosol size distributions were used to describe two aerosol types: marine and rural. The number of aerosols that activate to droplets was obtained based on Abdul-Razzak and Ghan's (2000) activation parameterization. The cloud albedo taking into account the spectral dispersion effect in the parameterization of cloud effective radius and in the scattering asymmetry factor has been estimated. Two different scaling factors to account for dispersion were used. The sensitivity of cloud albedo to spectral dispersion-cloud droplet number concentration relationship in connection to the changes in liquid water content (LWC), and the cloud droplet effective radius has been also investigated. We obtained higher values of effective radius when dispersion is taken into account, with respect to the base case (without considering dispersion). The inferred absolute differences in effective radius values between calculations with each of the scaling factors are below 0.8 {mu}m as LWC ranges between 0.1 and 1.0 g m-3. The optical depth decreased by up to 14% (marine), and up to 29% (continental) when dispersion is considered in both effective radius and asymmetry factor ({beta}LDR scaling factor). Correspondingly, the relative change in cloud albedo is up to 6% (marine) and up to 11% (continental) clouds. For continental clouds, the calculated effective radius when dispersion is considered fits well within the measured range of effective radius in SCAR-B project. The calculated cloud albedo when dispersion is considered shows better agreement with the estimated cloud albedo from measured effective radius in SCAR-B project than the cloud albedo calculated without dispersion. In cleaner

  2. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    OpenAIRE

    Liu, Y; Wu, W.; Jensen, M. P.; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surfaced-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fractio...

  3. Albedo changes, Milankovitch forcing, and late quaternary climate changes in the central Andes

    Energy Technology Data Exchange (ETDEWEB)

    Kull, C.; Grosjean, M. [Swiss Federal Inst. of Tech., Zurich (Switzerland). Dept. of Geography

    1998-11-01

    Late quaternary humidity changes resulted in substantial modifications of the land surface characteristics in the Altiplano of the Atacama desert, central Andes. Reconstructions of surface albedo, top-of-atmosphere (TOA) albedo, and shortwave net radiation in the Andes of northern Chile for 20,14,10,7 and 0 ka suggest that surface and TOA albedo increased substantially during periods of relatively humid environmental conditions (i.e., with large palaeolakes, glaciers and dense vegetation). The decrease of summer shortwave net radiation and seasonality during the late-glacial/early Holocene humid phase (14 to 10 ka) due to Earth`s surface and atmospheric characteristics added to the effect of orbitally driven negative deviations of southern Hemisphere austral summer insolation and minimum seasonality at 20 S. Therefore, in situ radiative forcing is, in contrast to the Northern Hemisphere tropics, not a suitable explanation for enhanced convective precipitation and, ultimately, humid climatic conditions. Our results suggest that late Quaternary humidity changes on the Altiplano reflect a collective response to (1) environmental changes in the source area of the moisture (e.g., reexpansion of the rain forest and increased release of latent heat over Amazonia and the Chaco, warm sea surface temperatures in the E Pacific) and, (2) large-scale circulation patterns and wave structures in the upper troposphere (strength and position of the Bolivian high, divergent flow stimulating convection over the Altiplano), or that they even reflect a response to (3) interhemispherical teleconnections. (orig.) With 5 figs., 2 tabs., 45 refs.

  4. Global land surface albedo maps from MODIS using the Google Earth Engine

    Science.gov (United States)

    Mitraka, Zina; Benas, Nikolaos; Gorelick, Noel; Chrysoulakis, Nektarios

    2016-04-01

    The land surface albedo (LSA) is a critical physical variable, which influences the Earth's climate by affecting the energy budget and distribution in the Earth-atmosphere system. Its role is highly significant in both global and local scales; hence, LSA measurements provide a quantitative means for better constraining global and regional scale climate modelling efforts. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, on board NASA's Terra and Aqua platforms, provides the parameters needed for the computation of LSA on an 8-day temporal scale and a variety of spatial scales (ranging between 0.5 - 5 km). This dataset was used here for the LSA estimation and its changes over the study area at 0.5 km spatial resolution. More specifically, the MODIS albedo product was used, which includes both the directional-hemispherical surface reflectance (black-sky albedo) and the bi-hemispherical surface reflectance (white-sky albedo). The LSA was estimated for the whole globe on an 8-day basis for the whole time period covered by MODIS acquisitions (i.e. 2000 until today). To estimate LSA from black-sky and white-sky albedos, the fraction of the diffused radiation is needed, a function of the Aerosol Optical Thickness (AOT). Required AOT information was acquired from the MODIS AOT product at 1̊ × 1̊ spatial resolution. Since LSA also depends on solar zenith angle (SZA), 8-day mean LSA values were computed as averages of corresponding LSA values for representative SZAs covering the 24-hour day. The estimated LSA was analysed in terms of both spatial and seasonal characteristics, while LSA changes during the period examined were assessed. All computation were performed using the Google Earth Engine (GEE). The GEE provided access to all the MODIS products needed for the analysis without the need of searching or downloading. Moreover, the combination of MODIS products in both temporal and spatial terms was fast and effecting using the GEE API (Application

  5. Monte Carlo simulation of the CTA/IEAV electron linear accelerator environmental doses using albedo coefficients

    International Nuclear Information System (INIS)

    With the purpose of determining the radiation field in the accelerator environment in an efficient way, it was developed an approximate methodology which uses multigroup albedo coefficients to describe the particle reflection by the walls. This method avoids the particle transport calculation inside the walls, which spends much of the processing time. The Monte Carlo code MCNP was suitably modified to allow the simulation of such calculations. To assess the accuracy achieved with this methodology, very realistic calculations considering the transport of particles inside all the walls are performed. The results showed that the use of albedo coefficients for some walls while allowing the transport of particles inside the other walls in the same calculation gives accurate results, saving significant computational time. The results obtained for the accelerator showed an excellent agreement with the realistic calculation, and that the technique is applicable to large environments. (author)

  6. Universal dependence of the total number albedo of photons on the mean number of photon scatterings

    International Nuclear Information System (INIS)

    This paper presents the results of research on photon reflection from plane targets based on Monte Carlo simulations performed by the MCNP code. Five materials (water, concrete, aluminum, iron, and copper) are examined in the area of initial photon energies of up to 200 keV. The values of the total number albedo for photons dependent on the initial photon energy or the mean number of photon scatterings are calculated and graphically presented. We have shown that the values of the total number albedo for different target materials, expressed as a function of the mean number of photon scatterings, are in good agreement with each other and can be approximated by simple, universal analytic functions obtained by the least squares method. The accuracy of these analytic approximations is confirmed by their comparison with the results of PENELOPE and FOTELP Monte Carlo codes. (author)

  7. Self-similarity Based Editing of 3D Surface Textures Using Height and Albedo Maps

    Institute of Scientific and Technical Information of China (English)

    DONG Junyu; REN Jing; CHEN Guojiang

    2007-01-01

    This paper presents an inexpensive method for self-similarity based editing of real-world 3D surface textures by using height and albedo maps. Unlike self-similarity based 2D texture editing approaches which only make changes to pixel color or intensity values, this technique also allows surface geometry and reflectance of the captured 3D surface textures to be edited and relit using illumination conditions and viewing angles that differ from those of the original. A single editing operation at a given location affects all similar areas and produces changes on all images of the sample rendered under different conditions. Since surface height and albedo maps can be used to describe seabed topography and geologic features, which play important roles in many oceanic processes, the proposed method can be effectively employed in applications regarding visualization and simulation of oceanic phenomena.

  8. Toward a new radiative-transfer-based model for remote sensing of terrestrial surface albedo.

    Science.gov (United States)

    Cui, Shengcheng; Zhen, Xiaobing; Wang, Zhen; Yang, Shizhi; Zhu, WenYue; Li, Xuebin; Huang, Honghua; Wei, Heli

    2015-08-15

    This Letter formulates a simple yet accurate radiative-transfer-based theoretical model to characterize the fraction of radiation reflected by terrestrial surfaces. Emphasis is placed on the concept of inhomogeneous distribution of the diffuse sky radiation function (DSRF) and multiple interaction effects (MIE). Neglecting DSRF and MIE produces a -1.55% mean relative bias in albedo estimates. The presented model can elucidate the impact of DSRF on the surface volume scattering and geometry-optical scattering components, respectively, especially for slant illuminations with solar zenith angles (SZA) larger than 50°. Particularly striking in the comparisons between our model and ground-based observations is the achievement of the agreement level, indicating that our model can effectively resolve the longstanding issue in accurately estimating albedo at extremely large SZAs and is promising for land-atmosphere interactions studies. PMID:26274674

  9. SAS 2 observations of the earth albedo gamma radiation above 35 MeV

    Science.gov (United States)

    Thompson, D. J.; Simpson, G. A.; Ozel, M. E.

    1981-01-01

    The earth albedo gamma radiation above 35 MeV in the equatorial region is investigated using observations from the second Small Astronomy Satellite. The zenith angle distribution of the gamma radiation has a peak toward the horizon which is about an order of magnitude more intense than the radiation coming from the nadir, and nearly two orders of magnitude more intense than the gamma radiation from most parts of the sky. The gamma radiation originating from the western horizon is a factor of four more intense than the radiation from the eastern horizon and a factor of three more intense than that from the northern and southern directions. This reflects the geomagnetic effects on the incident cosmic rays whose interactions produce the albedo gamma rays. The variation of the upcoming gamma ray intensity with vertical cutoff rigidity is consistent with the empirical relationship found by Gur'yan et al. (1979).

  10. Albedo and land surface temperature shift in hydrocarbon seepage potential area, case study in Miri Sarawak Malaysia

    International Nuclear Information System (INIS)

    The presence of hydrocarbon seepage is generally associated with rock or mineral alteration product exposures, and changes of soil properties which manifest with bare development and stress vegetation. This alters the surface thermodynamic properties, changes the energy balance related to the surface reflection, absorption and emission, and leads to shift in albedo and LST. Those phenomena may provide a guide for seepage detection which can be recognized inexpensively by remote sensing method. District of Miri is used for study area. Available topographic maps of Miri and LANDSAT ETM+ were used for boundary construction and determination albedo and LST. Three land use classification methods, namely fixed, supervised and NDVI base classifications were employed for this study. By the intensive land use classification and corresponding statistical comparison was found a clearly shift on albedo and land surface temperature between internal and external seepage potential area. The shift shows a regular pattern related to vegetation density or NDVI value. In the low vegetation density or low NDVI value, albedo of internal area turned to lower value than external area. Conversely in the high vegetation density or high NDVI value, albedo of internal area turned to higher value than external area. Land surface temperature of internal seepage potential was generally shifted to higher value than external area in all of land use classes. In dense vegetation area tend to shift the temperature more than poor vegetation area

  11. Albedo and land surface temperature shift in hydrocarbon seepage potential area, case study in Miri Sarawak Malaysia

    Science.gov (United States)

    Suherman, A.; Rahman, M. Z. A.; Busu, I.

    2014-02-01

    The presence of hydrocarbon seepage is generally associated with rock or mineral alteration product exposures, and changes of soil properties which manifest with bare development and stress vegetation. This alters the surface thermodynamic properties, changes the energy balance related to the surface reflection, absorption and emission, and leads to shift in albedo and LST. Those phenomena may provide a guide for seepage detection which can be recognized inexpensively by remote sensing method. District of Miri is used for study area. Available topographic maps of Miri and LANDSAT ETM+ were used for boundary construction and determination albedo and LST. Three land use classification methods, namely fixed, supervised and NDVI base classifications were employed for this study. By the intensive land use classification and corresponding statistical comparison was found a clearly shift on albedo and land surface temperature between internal and external seepage potential area. The shift shows a regular pattern related to vegetation density or NDVI value. In the low vegetation density or low NDVI value, albedo of internal area turned to lower value than external area. Conversely in the high vegetation density or high NDVI value, albedo of internal area turned to higher value than external area. Land surface temperature of internal seepage potential was generally shifted to higher value than external area in all of land use classes. In dense vegetation area tend to shift the temperature more than poor vegetation area.

  12. Improving winter leaf area index estimation in coniferous forests and its significance in estimating the land surface albedo

    Science.gov (United States)

    Wang, Rong; Chen, Jing M.; Pavlic, Goran; Arain, Altaf

    2016-09-01

    Winter leaf area index (LAI) of evergreen coniferous forests exerts strong control on the interception of snow, snowmelt and energy balance. Simulation of winter LAI and associated winter processes in land surface models is challenging. Retrieving winter LAI from remote sensing data is difficult due to cloud contamination, poor illumination, lower solar elevation and higher radiation reflection by snow background. Underestimated winter LAI in evergreen coniferous forests is one of the major issues limiting the application of current remote sensing LAI products. It has not been fully addressed in past studies in the literature. In this study, we used needle lifespan to correct winter LAI in a remote sensing product developed by the University of Toronto. For the validation purpose, the corrected winter LAI was then used to calculate land surface albedo at five FLUXNET coniferous forests in Canada. The RMSE and bias values for estimated albedo were 0.05 and 0.011, respectively, for all sites. The albedo map over coniferous forests across Canada produced with corrected winter LAI showed much better agreement with the GLASS (Global LAnd Surface Satellites) albedo product than the one produced with uncorrected winter LAI. The results revealed that the corrected winter LAI yielded much greater accuracy in simulating land surface albedo, making the new LAI product an improvement over the original one. Our study will help to increase the usability of remote sensing LAI products in land surface energy budget modeling.

  13. The effect of pulverization on the albedo of lunar rocks

    NARCIS (Netherlands)

    Minnaert, Marcel Gilles Jozef

    1969-01-01

    Measures of the albedo under full-moon conditions have been made on two samples of very dark rocks, pulverized and sieved so as to obtain powders of different grain size. Below a size of 0.05 mm the albedo suddenly increases, obviously because the individual grains become transparent. By a rough cal

  14. Albedo and constant source problems for extremely anisotropic scattering

    International Nuclear Information System (INIS)

    The half-space albedo problem and the constant source problem have been solved for a combination of the linearly anisotropic scattering and Inoenue's scattering functions. The linear transport equation for extremely anisotropic scattering kernel can be converted into an equivalent equation with a linearly anisotropic scattering kernel and the modified FN method can be used for albedo calculations. (orig.)

  15. Albedo method applied to coupled neutron-gamma shielding radiations

    International Nuclear Information System (INIS)

    The Albedo Theory was applied in order to develop an one-group algorithm for coupled neutron-gamma shielding calculations. The configuration analyzed consists of multilayered plane systems, where a incident neutron current generates gamma radiation through neutron-gamma reactions. The results obtained by Albedo Method and ANISN code have shown excellent agreement. (author)

  16. Albedo decline on Greenland's Mittivakkat Gletscher in a warming climate

    DEFF Research Database (Denmark)

    Mernild, Sebastian H.; Malmros, Jeppe K.; Yde, Jacob C.;

    2015-01-01

    Albedo is one of the parameters that govern energy availability for snow and ice surface ablation, and subsequently the surface mass balance conditions of temperate glaciers and ice caps (GIC). Here, we document snow and ice albedo changes for Mittivakkat Gletscher (MG) in Southeast Greenland (20...

  17. Greenland surface albedo changes 1981-2012 from satellite observations

    Science.gov (United States)

    Significant melt over Greenland has been observed during the last several decades associated with extreme warming events over the northern Atlantic Ocean. An analysis of surface albedo change over Greenland is presented, using a 32-year consistent satellite albedo product from the Global Land Surfac...

  18. Anthropogenic desertification by high-albedo pollution Observations and modeling

    Science.gov (United States)

    Otterman, J.; Rosenberg, N. W.; Rosenberg, E.

    1974-01-01

    ERTS-1 MSS albedo data of Western Negev, Sinai and the Gaza strip are presented. A sharp contrast in albedo exists across the Negev-Sinai and Negev-Gaza strip borders. Anthropogenic desertification has occurred on the Arab side due to overgrazing and Bedouin agriculture, whereas natural vegetation grows much more abundantly on the Israeli side.

  19. Effect of shaddock albedo addition on the properties of frankfurters.

    Science.gov (United States)

    Shan, Bing; Li, Xingmin; Pan, Teng; Zheng, Limin; Zhang, Hao; Guo, Huiyuan; Jiang, Lu; Zhen, Shaobo; Ren, Fazheng

    2015-07-01

    To explore the potential as a natural auxiliary emulsifier, shaddock albedo was added into frankfurters at six different levels: 0.0, 2.5, 5.0, 7.5, 10 and 12.5 %. The emulsion capacity (EC) of meat batters and cooking properties of frankfurters were evaluated. EC of meat batters was improved with the addition of shaddock albedo and the maximum value was reached at the 5 % albedo concentration. The addition of shaddock albedo resulted in lower cooking losses of frankfurters, with the lowest value obtained at the 7.5 % level. The presence of shaddock albedo decreased the total expressible fluid (TEF) and the proportion of fat in total expressible fluid (PF) which indicated the emulsion stability of frankfurters and the lowest values both occurred at the concentration of 7.5 %. Shaddock albedo inclusion increased the lightness and yellowness of frankfurters and decreased redness. Texture profile analysis showed increased hardness and decreased chewiness of frankfurters with the addition of shaddock albedo. Consequently, shaddock albedo could be a potential source of auxiliary emulsifier filler for emulsion-type meat products. PMID:26139927

  20. Effect of Martian Suspended Dust on Albedo Measurements from the MGS-TES Data

    OpenAIRE

    Zinzi, A.; Palomba, E.; Rinaldi, G.; D'Amore, M.

    2010-01-01

    Suspended dust on Mars influences albedo measurements by orbiting instruments, but not necessary the real surface albedo. The aim of this study is to characterize the role of suspended aerosols on albedo measurement by remote sensing instruments.

  1. NEOWISE Reactivation Mission Year Two: Asteroid Diameters and Albedos

    CERN Document Server

    Nugent, C R; Bauer, J; Cutri, R M; Kramer, E A; Grav, T; Masiero, J; Sonnett, S; Wright, E L

    2016-01-01

    The Near-Earth Object Wide-Field Infrared Survey Explorer (NEOWISE) mission continues to detect, track, and characterize minor planets. We present diameters and albedos calculated from observations taken during the second year since the spacecraft was reactivated in late 2013. These include 207 near-Earth asteroids and 8,885 other asteroids. $84\\%$ of the near-Earth asteroids did not have previously measured diameters and albedos by the NEOWISE mission. Comparison of sizes and albedos calculated from NEOWISE measurements with those measured by occultations, spacecraft, and radar-derived shapes shows accuracy consistent with previous NEOWISE publications. Diameters and albedos fall within $ \\pm \\sim20\\%$ and $\\pm\\sim40\\%$, 1-sigma, respectively, of those measured by these alternate techniques. NEOWISE continues to preferentially discover near-Earth objects which are large ($>100$ m), and have low albedos.

  2. Correction of sub-pixel topographical effects on land surface albedo retrieved from geostationary satellite (FengYun-2D) observations

    International Nuclear Information System (INIS)

    The Qinghai-Tibetan Plateau is characterised by a very strong relief which affects albedo retrieval from satellite data. The objective of this study is to highlight the effects of sub-pixel topography and to account for those effects when retrieving land surface albedo from geostationary satellite FengYun-2D (FY-2D) data with 1.25km spatial resolution using the high spatial resolution (30 m) data of the Digital Elevation Model (DEM) from ASTER. The methodology integrates the effects of sub-pixel topography on the estimation of the total irradiance received at the surface, allowing the computation of the topographically corrected surface reflectance. Furthermore, surface albedo is estimated by applying the parametric BRDF (Bidirectional Reflectance Distribution Function) model called RPV (Rahman-Pinty-Verstraete) to the terrain corrected surface reflectance. The results, evaluated against ground measurements collected over several experimental sites on the Qinghai-Tibetan Plateau, document the advantage of integrating the sub-pixel topography effects in the land surface reflectance at 1km resolution to estimate the land surface albedo. The results obtained after using sub-pixel topographic correction are compared with the ones obtained after using pixel level topographic correction. The preliminary results imply that, in highly rugged terrain, the sub-pixel topography correction method gives more accurate results. The pixel level correction tends to overestimate surface albedo

  3. The albedo effect on neutron transmission probability.

    Science.gov (United States)

    Khanouchi, A; Sabir, A; Boulkheir, M; Ichaoui, R; Ghassoun, J; Jehouani, A

    1997-01-01

    The aim of this study is to evaluate the albedo effect on the neutron transmission probability through slab shields. For this reason we have considered an infinite homogeneous slab having a fixed thickness equal to 20 lambda (lambda is the mean free path of the neutron in the slab). This slab is characterized by the factor Ps (scattering probability) and contains a vacuum channel which is formed by two horizontal parts and an inclined one (David, M. C. (1962) Duc and Voids in shields. In Reactor Handbook, Vol. III, Part B, p. 166). The thickness of the vacuum channel is taken equal to 2 lambda. An infinite plane source of neutrons is placed on the first of the slab (left face) and detectors, having windows equal to 2 lambda, are placed on the second face of the slab (right face). Neutron histories are sampled by the Monte Carlo method (Booth, T. E. and Hendricks, J. S. (1994) Nuclear Technology 5) using exponential biasing in order to increase the Monte Carlo calculation efficiency (Levitt, L. B. (1968) Nuclear Science and Engineering 31, 500-504; Jehouani, A., Ghassoun, J. and Abouker, A. (1994) In Proceedings of the 6th International Symposium on Radiation Physics, Rabat, Morocco) and we have applied the statistical weight method which supposes that the neutron is born at the source with a unit statistical weight and after each collision this weight is corrected. For different values of the scattering probability and for different slopes of the inclined part of the channel we have calculated the neutron transmission probability for different positions of the detectors versus the albedo at the vacuum channel-medium interface. Some analytical representations are also presented for these transmission probabilities. PMID:9463883

  4. Generating multi-scale albedo look-up maps using MODIS BRDF/Albedo products and landsat imagery

    Science.gov (United States)

    Surface albedo determines radiative forcing and is a key parameter for driving Earth’s climate. Better characterization of surface albedo for individual land cover types can reduce the uncertainty in estimating changes to Earth’s radiation balance due to land cover change. This paper presents a mult...

  5. Effect of Satellite Formations and Imaging Modes on Global Albedo Estimation

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; Miller, David W.; de Weck, Olivier L.

    2016-01-01

    We confirm the applicability of using small satellite formation flight for multi-angular earth observation to retrieve global, narrow band, narrow field-of-view albedo. The value of formation flight is assessed using a coupled systems engineering and science evaluation model, driven by Model Based Systems Engineering and Observing System Simulation Experiments. Albedo errors are calculated against bi-directional reflectance data obtained from NASA airborne campaigns made by the Cloud Absorption Radiometer for the seven major surface types, binned using MODIS' land cover map - water, forest, cropland, grassland, snow, desert and cities. A full tradespace of architectures with three to eight satellites, maintainable orbits and imaging modes (collective payload pointing strategies) are assessed. For an arbitrary 4-sat formation, changing the reference, nadir-pointing satellite dynamically reduces the average albedo error to 0.003, from 0.006 found in the static reference case. Tracking pre-selected waypoints with all the satellites reduces the average error further to 0.001, allows better polar imaging and continued operations even with a broken formation. An albedo error of 0.001 translates to 1.36 W/sq m or 0.4% in Earth's outgoing radiation error. Estimation errors are found to be independent of the satellites' altitude and inclination, if the nadir-looking is changed dynamically. The formation satellites are restricted to differ in only right ascension of planes and mean anomalies within slotted bounds. Three satellites in some specific formations show average albedo errors of less than 2% with respect to airborne, ground data and seven satellites in any slotted formation outperform the monolithic error of 3.6%. In fact, the maximum possible albedo error, purely based on angular sampling, of 12% for monoliths is outperformed by a five-satellite formation in any slotted arrangement and an eight satellite formation can bring that error down four fold to 3%. More

  6. Effect of satellite formations and imaging modes on global albedo estimation

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; Miller, David W.; de Weck, Olivier L.

    2016-05-01

    We confirm the applicability of using small satellite formation flight for multi-angular earth observation to retrieve global, narrow band, narrow field-of-view albedo. The value of formation flight is assessed using a coupled systems engineering and science evaluation model, driven by Model Based Systems Engineering and Observing System Simulation Experiments. Albedo errors are calculated against bi-directional reflectance data obtained from NASA airborne campaigns made by the Cloud Absorption Radiometer for the seven major surface types, binned using MODIS' land cover map - water, forest, cropland, grassland, snow, desert and cities. A full tradespace of architectures with three to eight satellites, maintainable orbits and imaging modes (collective payload pointing strategies) are assessed. For an arbitrary 4-sat formation, changing the reference, nadir-pointing satellite dynamically reduces the average albedo error to 0.003, from 0.006 found in the static referencecase. Tracking pre-selected waypoints with all the satellites reduces the average error further to 0.001, allows better polar imaging and continued operations even with a broken formation. An albedo error of 0.001 translates to 1.36 W/m2 or 0.4% in Earth's outgoing radiation error. Estimation errors are found to be independent of the satellites' altitude and inclination, if the nadir-looking is changed dynamically. The formation satellites are restricted to differ in only right ascension of planes and mean anomalies within slotted bounds. Three satellites in some specific formations show average albedo errors of less than 2% with respect to airborne, ground data and seven satellites in any slotted formation outperform the monolithic error of 3.6%. In fact, the maximum possible albedo error, purely based on angular sampling, of 12% for monoliths is outperformed by a five-satellite formation in any slotted arrangement and an eight satellite formation can bring that error down four fold to 3%. More than

  7. Measured and modeled albedos of sea-ice surfaces with implications for Snowball Earth

    Science.gov (United States)

    Carns, Regina C.

    The Snowball Earth episodes were extensive glaciations that occurred during the Neoproterozoic, between 600 and 800 million years ago, during which ice covered much or all of the oceans. These glaciations were a result of ice-albedo feedback, a process likely to occur on any Earthlike planet with oceans covering most of its surface. Modeling shows that sublimation would exceed precipitation over large regions of the ice-covered ocean on a Snowball planet; during the initial stages of the Snowball episode, these areas would be entirely covered by sea ice containing inclusions of brine, and sea ice could remain in smaller regions through the whole episode. At temperatures likely to prevail in the Snowball climate, sodium chloride precipitates within brine inclusions as the hydrated salt hydrohalite (NaCl·2H2O, also known as sodium chloride dehydrate). This work used field measurements, laboratory experiments and modeling to constrain the albedo of sea ice surfaces relevant to Snowball Earth. Field measurements of cold sea ice in McMurdo Sound show an increase in the albedo of natural sea ice with decreasing temperatures. Laboratory experiments on natural sea ice show that brine pockets can become supersaturated with respect to sodium chloride at low temperatures, creating a hysteresis in hydrohalite precipitation and dissolution. Experiments show this effect in laboratory-grown ice of several different compositions: grown from an NaCl solution, grown from artificial seawater, and grown from artificial seawater with added extracellular polysaccharides. Sufficiently cold sea ice in a region of net sublimation will eventually develop a lag deposit of salt as the ice sublimates away from precipitated hydrohalite in brine pockets. No sea ice on modern Earth stays cold and dry long enough for such a deposit to form, so we developed a method for measuring the albedo of ice surfaces in a cold-room laboratory. The method uses a dome with a diffusely reflecting interior

  8. Surface albedo measurements in Mexico City metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Castro, T; Mar, B; Longoria, R; Ruiz Suarez, L. G [Centro de Ciencias de la Atmosfera, UNAM, Mexico, D.F. (Mexico); Morales, L [Instituto de Geografia, UNAM, Mexico, D.F. (Mexico)

    2001-04-01

    Optical and thermal properties of soils are important input data for the meteorological and photochemical modules of air quality models. As development of these models increase on spatial resolution good albedo data become more important. In this paper measurements of surface albedo of UV (295-385 nm) and visible (450-550 nm) radiation are reported for different urban and rural surfaces in the vicinity of Mexico City. It was found for the downtown zone and average albedo value of 0.05 which is in very good agreement with reported values for urban surfaces. Our albedo values measured in UV region for grey cement and green grass are of 0.10 and 0.009, respectively, and quite similar to those found at the literature of 0.11 and 0.008 for those type of surfaces. [Spanish] Las propiedades opticas y termicas de suelos son datos importantes para los modulos meteorologicos y fotoquimicos de los modelos de calidad del aire. Conforme aumenta la resolucion espacial del modelo se vuelve mas importante contar con buenos datos de albedo. En este articulo se presentan mediciones de albedo superficial de radiacion Ultravioleta (295-385 nm) y visible (450-550 nm) para diferentes superficies urbanas. Los valores medidos de albedo en la region UV para cemento gris y pasto verde son de 0.10 y 0.009, respectivamente, y son muy similares a los reportados en la literatura, 0.11 y 0.008 para este tipo de superficies.

  9. Measurement of TLD Albedo response on various calibration phantoms

    International Nuclear Information System (INIS)

    The International Commission on Radiation Units and Measurements (ICRU) has recommended that individual dosemeter should be calibrated on a suitable phantom and has pointed out that the calibration factor of a neutron dosemeter is strongly influenced by the the exact size and shape of the body and the phantom to which the dosemeter is attached. As the principle of an albedo type thermoluminescent personal dosemeter (albedo TLD) is essentially based on a detection of scattered and moderated neutron from a human body, the sensitivity of albedo TLD is strongly influenced by the incident neutron energy and the calibration phantom. (1) Therefore for albedo type thermoluminescent personal dosemeter (albedo TLD), the information of neutron albedo response on the calibration phantom is important for appropriate dose estimation. In order to investigate the effect of phantom type on the reading of the albedo TLD, measurement of the TLD energy response and angular response on some typical calibration phantoms was performed using dynamitron accelerator and 252Cf neutron source. (author)

  10. CHARACTERISTICS OF VEGETATION COVER, ROUGHNESS AND ALBEDO DISTRIBUTION OVER CHINA

    Institute of Scientific and Technical Information of China (English)

    张正秋; 周秀骥; 李维亮; 徐兴奎

    2001-01-01

    To build land surface dataset for climate model, with application of remote sensing technique as well as the Geographic Information System (GIS), the data of surface type, roughness and albedo over China in 1997 were retrieved, resolutions being 10 km× 10 km. Based on these data,an analysis is conducted on the geographic distributions and seasonal variations of surface vegetation cover and roughness as well as albedo over China. Results show that surface vegetation cover is mainly located to the south of Yangtze River, in Southwest and Northeast China and sparse vegetation cover is in the Northwest. The variation of land surface cover affects the variations of land surface roughness and albedo. High albedo occurred in the north of Xinjiang Autonomous Region, the north of Northeast China and the Qinghai-Xizang Plateau in winter, in correspondence with the location of snow cover.For most part of China, surface roughness decreases and albedo increases in winter, while the roughness increases and the albedo decreases in summer, which could mainly result from land surface cover (snow cover and vegetation cover) and soil moisture changes. This shows that the geographic distribution and seasonal variation of the albedo are alnost opposite to those of the roughness, in agreement with theoretical results. Temporally, the amplitude of surface roughness change is quite small in comparison with the roughness itself.

  11. Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers

    Directory of Open Access Journals (Sweden)

    J. E. Box

    2012-08-01

    Full Text Available Greenland ice sheet mass loss has accelerated in the past decade responding to combined glacier discharge and surface melt water runoff increases. During summer, absorbed solar energy, modulated at the surface primarily by albedo, is the dominant factor governing surface melt variability in the ablation area. Using satellite-derived surface albedo with calibrated regional climate modeled surface air temperature and surface downward solar irradiance, we determine the spatial dependence and quantitative impact of the ice sheet albedo feedback over 12 summer periods beginning in 2000. We find that, while albedo feedback defined by the change in net solar shortwave flux and temperature over time is positive over 97% of the ice sheet, when defined using paired annual anomalies, a second-order negative feedback is evident over 63% of the accumulation area. This negative feedback damps the accumulation area response to warming due to a positive correlation between snowfall and surface air temperature anomalies. Positive anomaly-gauged feedback concentrated in the ablation area accounts for more than half of the overall increase in melting when satellite-derived melt duration is used to define the timing when net shortwave flux is sunk into melting. Abnormally strong anticyclonic circulation, associated with a persistent summer North Atlantic Oscillation extreme since 2007, enabled three amplifying mechanisms to maximize the albedo feedback: (1 increased warm (south air advection along the western ice sheet increased surface sensible heating that in turn enhanced snow grain metamorphic rates, further reducing albedo; (2 increased surface downward shortwave flux, leading to more surface heating and further albedo reduction; and (3 reduced snowfall rates sustained low albedo, maximizing surface solar heating, progressively lowering albedo over multiple years. The summer net infrared and solar radiation for the high elevation accumulation area approached

  12. Design characteristics of a three-component AEOI Neutriran Albedo Neutron Personnel Dosimeter

    International Nuclear Information System (INIS)

    In establishing a national personnel neutron dosimetry service in Iran, different parameters of the AEOI Neutriran Albedo Neutron Personnel Dosimeter (NANPD) have been optimized. A NANPD was designed with three dosimetry components to measure (a) direct thermal neutrons, (b) direct fast neutrons and (C) direct neutrons by the detection of the albedo neutrons reflected from the body. The dosimeter consists of one or more Lexan polycarbonate and/or CR-39 foils and two 10B (n,α) 7Li converters in a cadmium cover so arranged as to efficiently measure the three neutron dose components separately. The boron converter thickness, its position relative to the beam direction and its distance from the PC foil were studied and the results were incorporated into the design. The dose response of the dosimeter, its lower detection limit as well as the correction factors related to the field neutrons and albedo neutrons were also determined for a 238Pu-Be, an 241Am-Be and a 252Cf sources. In this paper, the dosimeter design and its dosimetric characteristics are presented and discussed. (author)

  13. Inferring heat recirculation and albedo for exoplanetary atmospheres: Comparing optical phase curves and secondary eclipse data

    CERN Document Server

    von Paris, P; Bordé, P; Selsis, F

    2015-01-01

    Basic atmospheric properties such as albedo and heat redistribution between day and nightside have been inferred for a number of planets using observations of secondary eclipses and thermal phase curves. Optical phase curves have not yet been used to constrain these atmospheric properties consistently. We re-model previously published phase curves of CoRoT-1b, TrES-2b and HAT-P-7b and infer albedos and recirculation efficiencies. These are then compared to previous estimates based on secondary eclipse data. We use a physically consistent model to construct optical phase curves. This model takes Lambertian reflection, thermal emission, ellipsoidal variations and Doppler boosting into account. CoRoT-1b shows a non-negligible scattering albedo (0.11

  14. Neutron dosimetry with TL albedo dosemeters at high energy accelerators

    International Nuclear Information System (INIS)

    The GSF-Personal Monitoring Service uses the TLD albedo dosemeter as standard neutron personal dosemeter. Due to its low sensitivity for fast neutrons however, it is generally not recommended for workplaces at high-energy accelerators. Test measurements with the albedo dosemeter were performed at the accelerator laboratories of GSI in Darmstadt and DESY in Hamburg to reconsider this hypothesis. It revealed that the albedo dosemeter can also be used as personal dosemeter at these workplaces, because at all measurement locations a significant part of neutrons with lower energies could be found, which were produced by scattering at walls or the ground. (authors)

  15. Albedo's determination by the method of neutron impulse

    International Nuclear Information System (INIS)

    Experiments with non-stationary neutron transport in large cavity moderators (l>>Σsub(tr)-1) (where l is the characteristic cavity length and Σsub(tr)-1 the macroscopic transport section of the moderator) led to the method reported in this study which, based on neutron impulses for determining albedo of thermal neutrons, gave a precision greater by an order of magnitude over previous methods. A sufficient time interval after introduction of the neutron flux into the moderator chamber decreased exponentially the decay constant L, which was itself related to albedo by a function called f. Numerical calculations of albedo were assisted. (author)

  16. Earth albedo neutrons from 10 to 100 MeV.

    Science.gov (United States)

    Preszler, A. M.; Simnett, G. M.; White, R. S.

    1972-01-01

    We report the measurement of the energy and angular distributions of earth albedo neutrons from 10 to 100 MeV at 40 deg N geomagnetic latitude from a balloon at 120,000 ft, below 4.65 g/sq cm. The albedo-neutron omnidirectional energy distribution is flat to 50 MeV, then decreases with energy. The absolute neutron energy distribution is of the correct strength and shape for the albedo neutrons to be the source of the protons trapped in earth's inner radiation belt.

  17. Neutron dosimetry with TL albedo dosemeters at high energy accelerators.

    Science.gov (United States)

    Haninger, T; Fehrenbacher, G

    2007-01-01

    The GSF-Personal Monitoring Service uses the TLD albedo dosemeter as standard neutron personal dosemeter. Due to its low sensitivity for fast neutrons however, it is generally not recommended for workplaces at high-energy accelerators. Test measurements with the albedo dosemeter were performed at the accelerator laboratories of GSI in Darmstadt and DESY in Hamburg to reconsider this hypothesis. It revealed that the albedo dosemeter can also be used as personal dosemeter at these workplaces, because at all measurement locations a significant part of neutrons with lower energies could be found, which were produced by scattering at walls or the ground. PMID:17766258

  18. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake.

    Science.gov (United States)

    de Wit, Heleen A; Bryn, Anders; Hofgaard, Annika; Karstensen, Jonas; Kvalevåg, Maria M; Peters, Glen P

    2014-07-01

    Expanding high-elevation and high-latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south-central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land-use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow-covered tundra areas. The positive climate feedback of high-latitude and high-elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts.

  19. A comparison of numerical and analytical radiative-transfer solutions for plane albedo of natural waters

    International Nuclear Information System (INIS)

    Several numerical and analytical solutions of the radiative transfer equation (RTE) were compared for plane albedo in a problem of solar light reflection by sea water. The study incorporated the simplest case-a semi-infinite one-dimensional plane-parallel absorbing and scattering homogeneous layer illuminated by a monodirectional light beam. Inelastic processes (such as Raman scattering and fluorescence), polarization and air-water surface refraction-reflection effects, were not considered. Algorithms were based on the invariant imbedding method and two different variants of the discrete ordinate method (DOM). Calculations were performed using parameters across all possible ranges (single-scattering albedo ω0 and refracted solar zenith angle θ1), but with a special emphasis on natural waters. All computations were made for two scattering phase functions, which included an almost isotropic Rayleigh phase function and strongly anisotropic double-peaked Fournier-Forand-Mobley phase function. Models were validated using quasi-single-scattering (QSSA) and exponential approximations, which represent the extreme cases of ω0→0 and ω0→1, respectively. All methods yielded relative differences within 1.8% for modeled natural waters. An analysis of plane albedo behavior resulted in the development of a new extended QSSA approximation, which when applied in conjunction with the extended Hapke approximation developed earlier, resulted in a maximum relative error of 2.7%. The study results demonstrated that for practical applications, the estimation of inherent optical properties from observed reflectance can best be achieved using an extended Hapke approximation.

  20. Personnel neutron monitoring based on albedo technique

    International Nuclear Information System (INIS)

    This work deals with the study, design and test of a personal neutron monitor based on the detection of albedo neutrons from the body and its further relation to the incident flux. By this method, neutrons of energies below about 100 KeV can be efficiently detected, providing good information in the region where the biological effectiveness of neutron radiation starts to rise. The system consists of a pair of Thermoluminescent Detectors (6 LiF - 7 LiF) ∼ inside a polyethylene moderating body, in order to increase the sensitivity. The surface of the dosimeter facing away from the body is covered by a layer of a borated resin to assure appropriate shielding of incident low energy neutrons. The response of the dosimeter to monoenergetic neutrons from a 3 MeV Van de Graaff, to Am Be neutrons and to neutrons from a thermal column was investigated. The directional sensitivity, the effect of beam divergence was well as the effect of changes in dosimeter-to-body distances were also studied. (author)

  1. The Albedo Distribution of Near Earth Asteroids

    CERN Document Server

    Wright, Edward L; Masiero, Joseph; Grav, Tommy; Bauer, James

    2016-01-01

    The cryogenic WISE mission in 2010 was extremely sensitive to asteroids and not biased against detecting dark objects. The albedos of 428 Near Earth Asteroids (NEAs) observed by WISE during its fully cryogenic mission can be fit quite well by a 3 parameter function that is the sum of two Rayleigh distributions. The Rayleigh distribution is zero for negative values, and follows $f(x) = x \\exp[-x^2/(2\\sigma^2)]/\\sigma^2$ for positive x. The peak value is at x=\\sigma, so the position and width are tied together. The three parameters are the fraction of the objects in the dark population, the position of the dark peak, and the position of the brighter peak. We find that 25.3% of the NEAs observed by WISE are in a very dark population peaking at $p_V = 0.03$, while the other 74.7% of the NEAs seen by WISE are in a moderately dark population peaking at $p_V = 0.168$. A consequence of this bimodal distribution is that the Congressional mandate to find 90% of all NEAs larger than 140 m diameter cannot be satisfied by...

  2. The nonlinear relationship between albedo and cloud fraction on near-global, monthly mean scale in observations and in the CMIP5 model ensemble

    Science.gov (United States)

    Engström, A.; Bender, F. A.-M.; Charlson, R. J.; Wood, R.

    2015-11-01

    We study the relation between monthly mean albedo and cloud fraction over ocean, 60°S-60°N. Satellite observations indicate that these clouds all fall on the same near-exponential curve, with a monotonic distribution over the ranges of cloud fractions and albedo. Using these observational data as a reference, we examine the degree to which 26 climate models capture this feature of the near-global marine cloud population. Models show a general increase in albedo with increasing cloud fraction, but none of them display a relation that is as well defined as that characterizing the observations. Models typically display larger albedo variability at a given cloud fraction, larger sensitivity in albedo to changes in cloud fraction, and lower cloud fractions. Several models also show branched distributions, contrasting with the smooth observational relation. In the models the present-day cloud scenes are more reflective than the preindustrial, demonstrating the simulated impact of anthropogenic aerosols on planetary albedo.

  3. Use of a spherical albedo system for correcting the readings of albedo dosimeters in JINR phasotron neutron radiation fields

    Science.gov (United States)

    Mokrov, Yu. V.; Morozova, S. V.

    2014-03-01

    Results of calibrating a spherical albedo system in the radiation fields of a Pu-Be radionuclide neutron source are presented. It is shown that it can be used for correcting the readings of the DVGN-01 albedo dosimeter. The results of measurements with the system in JINR phasotron neutron fields for the purpose of correcting the DVGN-01 readings in these fields are given. The values of the correction factors for DVGN-01 albedo dosimeters when used in personnel neutron dosimetry (PD) on the JINR phasotron are determined.

  4. MCNP simulation of the incident and Albedo neutron response of the IRD Albedo Neutron Dosemeter for {sup 241}Am-Be moderated sources

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Bruno M.; Martins, Marcelo M.; Mauricio, Claudia L.P.; Mauricio, Claudia L.P. da, E-mail: claudia@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Silva, Ademir X. [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    The IRD TLD Albedo dosemeter measures both incident and albedo neutron component. The incident to Albedo ratio is used to take into account the energy dependence of its response. In this paper, the behavior of the IRD Albedo dosemeter response as a function of the incident to Albedo ratio for {sup 241}Am-Be sources was simulated to improve its algorithm. The simulation was performed in MCNPX transport code and presents a good agreement with experimental measurements. The results obtained in this work are very useful to improve the accuracy of the IRD Albedo dosemeter at real neutron workplace. (author)

  5. MCNP simulation of the incident and Albedo neutron response of the IRD Albedo Neutron Dosemeter for 241Am-Be moderated sources

    International Nuclear Information System (INIS)

    The IRD TLD Albedo dosemeter measures both incident and albedo neutron component. The incident to Albedo ratio is used to take into account the energy dependence of its response. In this paper, the behavior of the IRD Albedo dosemeter response as a function of the incident to Albedo ratio for 241Am-Be sources was simulated to improve its algorithm. The simulation was performed in MCNPX transport code and presents a good agreement with experimental measurements. The results obtained in this work are very useful to improve the accuracy of the IRD Albedo dosemeter at real neutron workplace. (author)

  6. Validation of MODIS albedo products with high resolution albedo estimates from FORMOSAT-2

    OpenAIRE

    Courault, Dominique; Olioso, Albert; Weiss, Marie; Marloie, Olivier; Baret, Frédéric; Hagolle, Olivier; GALLEGO-ELVIRA, Belen

    2013-01-01

    Among MODIS products (freely available to the scientific community from 2001), albedo data (MCD43B3) are 16 days composites at 1km spatial resolution, widely used for various applications in climate models, but which still remains difficult to validate. The objective of this study is to propose a method to validate these products with high spatial and temporal resolution data. 31 FORMOSAT-2 images acquired over a small region in the South-Eastern France at 8m for spatial resolution were aggre...

  7. Albedo neutron dosimetry in Germany: regulations and performance.

    Science.gov (United States)

    Luszik-Bhadra, M; Zimbal, A; Busch, F; Eichelberger, A; Engelhardt, J; Figel, M; Frasch, G; Günther, K; Jordan, M; Martini, E; Haninger, T; Rimpler, A; Seifert, R

    2014-12-01

    Personal neutron dosimetry has been performed in Germany using albedo dosemeters for >20 y. This paper describes the main principles, the national standards, regulations and recommendations, the quality management and the overall performance, giving some examples. PMID:24639589

  8. Remote sensing the susceptibility of cloud albedo to changes in drop concentration

    International Nuclear Information System (INIS)

    The role of clouds in reflecting solar radiation to space and thereby reducing surface heating is of critical importance to climate. Combustion processes that produce greenhouse gases also increase cloud condensation nuclei (CCN) concentrations which in turn increase cloud drop concentrations and thereby cloud albedo. A calculation of cloud susceptibility, defined in this work as the increase in albedo resulting from the addition of one cloud drop per cubic centimeter (as cloud liquid water content remains constant), is made through satellite remote sensing of cloud drop radius and optical thickness. The remote technique uses spectral channels of the Advanced Very High Resolution Radiometer (AVHRR) instrument on board the NOAA polar orbiting satellites. Radiative transfer calculations of reflectance and effective surface and cloud emissivities are made for applicable sun and satellite viewing angles, including azimuth, at various radii and optical thicknesses for each AVHRR channel. Emission in channel 3 (at 3.75 microns) is removed to give the reflected solar component. These calculations are used to infer the radius and optical thickness giving the best match to the satellite measurements. The effect of the atmosphere on the signal received by the satellite is included in the analysis

  9. Albedo Pattern Recognition and Time-Series Analyses in Malaysia

    Science.gov (United States)

    Salleh, S. A.; Abd Latif, Z.; Mohd, W. M. N. Wan; Chan, A.

    2012-07-01

    Pattern recognition and time-series analyses will enable one to evaluate and generate predictions of specific phenomena. The albedo pattern and time-series analyses are very much useful especially in relation to climate condition monitoring. This study is conducted to seek for Malaysia albedo pattern changes. The pattern recognition and changes will be useful for variety of environmental and climate monitoring researches such as carbon budgeting and aerosol mapping. The 10 years (2000-2009) MODIS satellite images were used for the analyses and interpretation. These images were being processed using ERDAS Imagine remote sensing software, ArcGIS 9.3, the 6S code for atmospherical calibration and several MODIS tools (MRT, HDF2GIS, Albedo tools). There are several methods for time-series analyses were explored, this paper demonstrates trends and seasonal time-series analyses using converted HDF format MODIS MCD43A3 albedo land product. The results revealed significance changes of albedo percentages over the past 10 years and the pattern with regards to Malaysia's nebulosity index (NI) and aerosol optical depth (AOD). There is noticeable trend can be identified with regards to its maximum and minimum value of the albedo. The rise and fall of the line graph show a similar trend with regards to its daily observation. The different can be identified in term of the value or percentage of rises and falls of albedo. Thus, it can be concludes that the temporal behavior of land surface albedo in Malaysia have a uniform behaviours and effects with regards to the local monsoons. However, although the average albedo shows linear trend with nebulosity index, the pattern changes of albedo with respects to the nebulosity index indicates that there are external factors that implicates the albedo values, as the sky conditions and its diffusion plotted does not have uniform trend over the years, especially when the trend of 5 years interval is examined, 2000 shows high negative linear

  10. NEOWISE Diameters and Albedos V1.0

    Science.gov (United States)

    Mainzer, A. K.; Bauer, J. M.; Cutri, R. M.; Grav, T.; Kramer, E. A.; Masiero, J. R.; Nugent, C. R.; Sonnett, S. M.; Stevenson, R. A.; Wright, E. L.

    2016-06-01

    This PDS data set represents a compilation of published diameters, optical albedos, near-infrared albedos, and beaming parameters for minor planets detected by NEOWISE during the fully cryogenic, 3-band cryo, post-cryo and NEOWISE-Reactivation Year 1 operations. It contains data covering near-Earth asteroids, Main Belt asteroids, active Main Belt objects, Hildas, Jupiter Trojans, Centaurs, and Jovian and Saturnian irregular satellites. Methodology for physical property determination is described in the referenced articles.

  11. Global Scale Comparison of MISR and MODIS Land Surface Albedos

    OpenAIRE

    Pinty, Bernard; TABERNER Malcolm; HAEMMERLE Vance; PARADISE Susan; Vermote, Eric; Verstraete, Michel; Gobron, Nadine; Widlowski, Jean-Luc

    2011-01-01

    MODIS white sky surface albedos are compared with similar products generated on the basis of the MISR surface BRF model parameters available for year 2005. The analysis is achieved using global scale statistics in order to characterize the broad patterns of these two independent albedo datasets. The results obtained in Taberner etal. (2010) have shown that robust statistics can be established and that both datasets are highly correlated. As a result, the slight but consistent ...

  12. Direct Intrinsics: Learning Albedo-Shading Decomposition by Convolutional Regression

    OpenAIRE

    Narihira, Takuya; Maire, Michael; Yu, Stella X.

    2015-01-01

    We introduce a new approach to intrinsic image decomposition, the task of decomposing a single image into albedo and shading components. Our strategy, which we term direct intrinsics, is to learn a convolutional neural network (CNN) that directly predicts output albedo and shading channels from an input RGB image patch. Direct intrinsics is a departure from classical techniques for intrinsic image decomposition, which typically rely on physically-motivated priors and graph-based inference alg...

  13. The Albedo of Pervious Cement Concrete Linearly Decreases with Porosity

    OpenAIRE

    Rui Zhang; Guosheng Jiang; Jia Liang

    2015-01-01

    Pervious pavements have been advocated as a potential countermeasure to the urban heat island effect. To understand if pervious pavements stay cooler than conventional pavements, the albedo of the pervious concrete must be understood. This study measured the albedo of pervious concrete with different porosity. Four Portland cement concrete mixes were casted, using designed amounts of sand to vary the porosity of the pervious concrete samples. The samples were sliced and the spectral reflectan...

  14. NEOWISE Reactivation Mission Year One: Preliminary Asteroid Diameters and Albedos

    CERN Document Server

    Nugent, C R; Masiero, J; Bauer, J; Cutri, R M; Grav, T; Kramer, E; Sonnett, S; Stevenson, R; Wright, E L

    2015-01-01

    We present preliminary diameters and albedos for 7,959 asteroids detected in the first year of the NEOWISE Reactivation mission. 201 are near-Earth asteroids (NEAs). 7,758 are Main Belt or Mars-crossing asteroids. 17% of these objects have not been previously characterized using WISE or NEOWISE thermal measurements. Diameters are determined to an accuracy of ~20% or better. If good-quality H magnitudes are available, albedos can be determined to within ~40% or better.

  15. Summertime canopy albedo is sensitive to forest thinning

    OpenAIRE

    Otto, J.; Berveiller, D.; F.-M. Bréon; Delpierre, N.; Geppert, G.; Granier, A.; Jans, W.; Knohl, A; Kuusk, A.; B. Longdoz; Moors, E.; Mund, M.; Pinty, B.; M.-J. Schelhaas; Luyssaert, S.

    2013-01-01

    Despite an emerging body of literature linking canopy albedo to forest management, understanding of the process is still fragmented. We combined a stand-level forest gap model with a canopy radiation transfer model and satellite-derived model parameters to quantify the effects of forest thinning, that is removing trees at a certain time during the forest rotation, on summertime canopy albedo. The effects of different forest species (pine, beech, oak) and four thinning strategies (light to int...

  16. Factors influencing the mesoscale variations in marine stratocumulus albedo

    OpenAIRE

    D. A. Hegg; Nielsen, K.; Jonsson, H. H.; Durkee, P.A.; Covert, D S

    2007-01-01

    Tellus, 59B, 66-76, 2007. The article of record as published may be found at http://dx.doi.org/10.1111/j.1600-0889.2006.00231.x Measurements of both horizontal gradients and vertical profiles of aerosols, cloud droplets and thermodynamic parameters in the cloud topped marine boundary layer off of central California are presented. They suggest that, while aerosols can indeed modulate cloud albedo, other parameters such as sea surface temperature may similarly affect cloud albedo. ...

  17. Surface albedo observations at Gusev Crater and Meridiani Planum, Mars

    Science.gov (United States)

    Bell, J.F., III; Rice, M.S.; Johnson, J. R.; Hare, T.M.

    2008-01-01

    During the Mars Exploration Rover mission, the Pancam instrument has periodically acquired large-scale panoramic images with its broadband (739??338 nm) filter in order to estimate the Lambert bolometric albedo of the surface along each rover's traverse. In this work we present the full suite of such estimated albedo values measured to date by the Spirit and Opportunity rovers along their traverses in Gusev Crater and Meridiani Planum, respectively. We include estimated bolometric albedo values of individual surface features (e.g., outcrops, dusty plains, aeolian bed forms, wheel tracks, light-toned soils, and crater walls) as well as overall surface averages of the 43 total panoramic albedo data sets acquired to date. We also present comparisons to estimated Lambert albedo values taken from the Mars Global Surveyor Mars Orbiter Camera (MOC) along the rovers' traverses, and to the large-scale bolometric albedos of the sites from the Viking Orbiter Infrared Thermal Mapper (IRTM) and Mars Global Surveyor/Thermal Emission Spectrometer (TES). The ranges of Pancam-derived albedos at Gusev Crater (0.14 to 0.25) and in Meridiani Planum. (0.10 to 0.18) are in good agreement with IRTM, TES, and MOC orbital measurements. These data sets will be a useful tool and benchmark for future investigations of albodo variations with time, including measurements from orbital instruments like the Context Camera and High Resolution Imaging Science Experiment on Mars Reconnaissance Orbiter. Long-term, accurate albedo measurements could also be important for future efforts in climate modeling as well as for studies of active surface processes. Copyright 2008 by the American Geophysical Union.

  18. Sublimation's impact on temporal change of albedo dichotomy on Iapetus

    OpenAIRE

    Kimura, Jun; Kawamura, Taichi; Morito, Hisataka; Morota, Tomokatsu; Honda, Chikatoshi; Kuramoto, Kiyoshi; Okada, Tatsuaki

    2011-01-01

    Iapetus, one of the Saturnian moons, has an extreme albedo contrast between the leading and trailing hemispheres. The origin of this albedo dichotomy has led to several hypotheses, however it remains controversial. To clarify the origin of the dichotomy, the key approach is to investigate the detailed distribution of the dark material. Recent studies of impact craters and surface temperature from Cassini spacecraft data implied that sublimation of H2O ice can occur on Iapetus' surface. This i...

  19. Effects of species selection and management on forest canopy albedo

    OpenAIRE

    Otto, Juliane; Berveiller, Daniel; Bréon, François-Marie; Delpierre, Nicolas; Geppert, Gernot; Granier, André; Gunia, Katja; Jans, Wilma; Knohl, Alexander; Kuusk, Andres; Longdoz, Bernard; Moors, Eddy; Mund, Martina; Pinty, Bernard; Rautiainen, Miina

    2013-01-01

    Forest management is considered to be one of the key instruments available to mitigate climate change as it can lead to increased sequestration of atmospheric carbon dioxide. However, the changes in canopy albedo may neutralise or offset the climate benefits of carbon sequestration. Although there is an emerging body of literature linking canopy albedo to management, understanding is still fragmented. We make use of a generally applicable approach: we combine a stand-level forest gap model wi...

  20. Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers

    OpenAIRE

    Box, J. E.; X. Fettweis; J. C. Stroeve; Tedesco, M.; Hall, D.K.; Steffen, K.

    2012-01-01

    Greenland ice sheet mass loss has accelerated in the past decade responding to combined glacier discharge and surface melt water runoff increases. During summer, absorbed solar energy, modulated at the surface primarily by albedo, is the dominant factor governing surface melt variability in the ablation area. Using satellite observations of albedo and melt extent with calibrated regional climate model output, we determine the spatial dependence and quantitative impact of the ice sheet...

  1. Albedo and constant source problems for extremely anisotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kocmen, M.A. [Turkish Atomic Energy Authority, Ankara (Turkey); Tegmen, A.; Guelecyuez, M.C. [Ankara Univ., Besevler (Turkey). Dept. of Physics; Tuereci, R.G. [Kirikkale Univ. (Turkey). Kirikkale Vocational High School; Tuereci, D.

    2013-07-15

    The half-space albedo problem and the constant source problem have been solved for a combination of the linearly anisotropic scattering and Inoenue's scattering functions. The linear transport equation for extremely anisotropic scattering kernel can be converted into an equivalent equation with a linearly anisotropic scattering kernel and the modified F{sub N} method can be used for albedo calculations. (orig.)

  2. IAU nomenclature for albedo features on the planet Mercury

    Science.gov (United States)

    Dollfus, A.; Chapman, C. R.; Davies, M. E.; Gingerich, O.; Goldstein, R.; Guest, J.; Morrison, D.; Smith, B. A.

    1978-01-01

    The International Astronomical Union has endorsed a nomenclature for the albedo features on Mercury. Designations are based upon the mythological names related to the god Hermes; they are expressed in Latin form. The dark-hued albedo features are associated with the generic term Solitudo. The light-hued areas are designated by a single name without generic term. The 32 names adopted are allocated on the Mercury map.

  3. Earth Reflected Solar Radiation Input to Spherical Satellites

    Science.gov (United States)

    Cunningham, F. G.

    1961-01-01

    A general calculation is given for the earth's albedo input to a spherical satellite, with the assumption that the earth can be considered a diffusely reflecting sphere. The results are presented in general form so that appropriate values for the solar constant and albedo of the earth can be used as more accurate values become available. The results are also presented graphically; the incident power is determined on the assumption that the mean solar constant is 1.353 x 10( exp 6) erg/(sq cm.sec) and the albedo of the earth is 0.34.

  4. Effect of increasing urban albedo on meteorology and air quality of Montreal (Canada) - Episodic simulation of heat wave in 2005

    Science.gov (United States)

    Touchaei, Ali G.; Akbari, Hashem; Tessum, Christopher W.

    2016-05-01

    Increasing albedo is an effective strategy to mitigate urban air temperature in different climates. Using reflective urban surfaces decreases the air temperature, which potentially reduces the rate of generation of smog. However, for implementing the albedo enhancement, complicated interactions between air, moisture, aerosols, and other gaseous contaminant in the atmosphere should be considered. We used WRF-CHEM to investigate the effect of increasing albedo in Montreal, Canada, during a heat wave period (July 10th through July 12th, 2005) on air quality and urban climate. The reflectivity of roofs, walls, and roads are increased from 0.2 to 0.65, 0.6, and 0.45, respectively. Air temperature at 2-m elevation is decreased during all hours in the simulation period and the maximum reduction is about 1 °C on each day (Tmax is reduced by about 0.7 °C) The concentration of two regulated pollutants -ozone (O3) and fine particulate matters (PM2.5) - is calculated at a height of 5-m above the ground. The maximum decrease in 8-h averaged ozone concentration is about 3% (∼0.2 ppbv). 24-h averaged PM2.5 concentration decreases by 1.8 μg/m3. This relatively small change in concentration of pollutants is related to the decrease in planetary boundary layer height caused by increasing the albedo. Additionally, the combined effect of decreased solar heat gain by building surfaces and decreased air temperature reduces the energy consumption of HVAC systems by 2% (∼0.1 W/m2), which exacerbates the positive effect of the albedo enhancement on the air quality.

  5. Albedo as a modulator of climate response to tropical deforestation

    Science.gov (United States)

    Dirmeyer, Paul A.; Shukla, J.

    1994-01-01

    An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years' duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, is strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.

  6. Spectral albedo and transmittance of thin young Arctic sea ice

    Science.gov (United States)

    Taskjelle, Torbjørn; Hudson, Stephen R.; Granskog, Mats A.; Nicolaus, Marcel; Lei, Ruibo; Gerland, Sebastian; Stamnes, Jakob J.; Hamre, Børge

    2016-01-01

    Spectral albedo and transmittance in the range were measured on three separate dates on less than thick new Arctic sea ice growing on Kongsfjorden, Svalbard at , . Inherent optical properties, including absorption coefficients of particulate and dissolved material, were obtained from ice samples and fed into a radiative transfer model, which was used to analyze spectral albedo and transmittance and to study the influence of clouds and snow on these. Integrated albedo and transmittance for photosynthetically active radiation () were in the range 0.17-0.21 and 0.77-0.86, respectively. The average albedo and transmittance of the total solar radiation energy were 0.16 and 0.51, respectively. Values inferred from the model indicate that the ice contained possibly up to 40% brine and only 0.6% bubbles. Angular redistribution of solar radiation by clouds and snow was found to influence both the wavelength-integrated value and the spectral shape of albedo and transmittance. In particular, local peaks and depressions in the spectral albedo and spectral transmittance were found for wavelengths within atmospheric absorption bands. Simulated and measured transmittance spectra were within 5% for most of the wavelength range, but deviated up to 25% in the vicinity of , indicating the need for more optical laboratory measurements of pure ice, or improved modeling of brine optical properties in this near-infrared wavelength region.

  7. Effects of composition and exposure on the solar reflectance of Portland cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem

    2001-12-21

    Increasing the solar reflectance (albedo) of a paved surface keeps it cooler in the sun, reducing convection of heat from pavement to air and thereby decreasing the ambient air temperature. Simulations of the influence of pavement albedo on air temperature in Los Angeles predict that increasing the albedo of 1,250 km2 of pavement by 0.25 would save cooling energy worth $15M yr-1, and reduce smog-related medical and lost-work expenses by $76M yr-1. Most sidewalks and a small fraction of roads and parking areas are paved with portland cement concrete, which can be made quite reflective through suitable choice of cement and aggregate. Variations with composition and environmental exposure of the albedos of portland cement concrete pavements were investigated through laboratory fabrication and exposure of 32 mixes of concrete. Twenty-four mixes yielded substandard, ''rough'' concretes due to high, unmet aggregate water demand. The albedos of the remaining eight ''smooth'' concrete mixes ranged from 0.41 to 0.77 (mean 0.59). Simulated weathering, soiling, and abrasion each reduced average concrete albedo (mean decreases 0.06, 0.05, and 0.19, respectively), though some samples became slightly more reflective through weathering or soiling. Simulated rain (wetting) strongly depressed the albedos of concretes (mean decrease 0.23) until their surfaces were dried. Concrete albedo grew as the cement hydration reaction progressed (mean increase 0.08), but stabilized within six weeks of casting. White-cement concretes were on average significantly more reflective than gray-cement concretes. The albedo of the most-reflective white-cement concrete was 0.18 to 0.39 higher than that of the most-reflective gray-cement concrete, depending on state of exposure. Concrete albedo generally correlated with cement albedo and sand albedo, and, after abrasion, with rock albedo. Cement albedo had a disproportionately strong influence on the reflectance

  8. Mapping spatially-temporally continuous shortwave albedo for global land surface from MODIS data

    OpenAIRE

    Liu, N.; Liu, Q.; Wang, L.; Liang, S.; Wen, J.; Y. Qu; Liu, S

    2012-01-01

    Land-surface albedo plays a critical role in the Earth's radiant energy budget studies. Satellite remote sensing is an effective approach to acquire regional and global albedo observations. However, owing to cloud coverage, seasonal snow and sensor malfunctions, spatially-temporally continuous albedo datasets are often inaccessible. GLASS preliminary albedo datasets (GLASS02A2x, x = 1, 2, 3 and 4) are newly developed global daily land-surface albedo produ...

  9. Reflecting Reflective Practice

    Science.gov (United States)

    Galea, Simone

    2012-01-01

    This paper demystifies reflective practice on teaching by focusing on the idea of reflection itself and how it has been conceived by two philosophers, Plato and Irigaray. It argues that reflective practice has become a standardized method of defining the teacher in teacher education and teacher accreditation systems. It explores how practices of…

  10. High-albedo materials for reducing building cooling energy use

    Energy Technology Data Exchange (ETDEWEB)

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building`s envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  11. High-albedo materials for reducing building cooling energy use

    Energy Technology Data Exchange (ETDEWEB)

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building's envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  12. Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and direct aerosol forcing

    Directory of Open Access Journals (Sweden)

    L. Zhu

    2012-06-01

    Full Text Available This study develops an algorithm for the representation of large spectral variations of albedo over vegetation surfaces based on Moderate Resolution Imaging Spectrometer (MODIS observations at 7 discrete channels centered at 0.47, 0.55, 0.67, 0.86, 1.24, 1.63, and 2.11 μm. The MODIS 7-channel observations miss several major features of vegetation albedo including the vegetation red edge near 0.7 μm and vegetation absorption features at 1.48 and 1.92 μm. We characterize these features by investigating aerosol forcing in different spectral ranges. We show that the correction at 0.7 μm is the most sensitive and important due to the presence of the red edge and strong solar radiation; the other two corrections are less sensitive due to the weaker solar radiation and strong atmospheric water absorption. Four traditional approaches for estimating the reflectance spectrum and the MODIS enhanced vegetation albedo (MEVA are tested against various vegetation types: dry grass, green grass, conifer, and deciduous from the John Hopkins University (JHU spectral library; aspens from the US Geological Survey (USGS digital spectral library; and Amazon vegetation types. Compared to traditional approaches, MEVA improves the accuracy of the outgoing flux at the top of the atmosphere by over 60 W m−2 and aerosol forcing by over 10 W m−2. Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol forcing at equator at equinox by 3.7 W m−2 (about 70% of the aerosol forcing calculated with high spectral resolution surface reflectance. These improvements indicate that MEVA can contribute to vegetation covered regional climate studies, and help to improve understanding of climate processes and climate change.

  13. Reflecting reflection in supervision

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    Reflection has moved from the margins to the mainstream in supervision. Notions of reflection have become well established since the late 1980s. These notions have provided useful framing devices to help conceptualize some important processes in guidance and counseling. However, some applications...... associated with reflection and an exploration of alternative conceptions that view reflection within the context of settings which have a more group- and team-based orientation. Drawing on an action research project on health care supervision, the paper questions whether we should reject earlier views...... of reflection, rehabilitate them in order to capture broader connotations or move to new ways of regarding reflection that are more in keeping with not only reflective but also emotive, normative and formative views on supervision. The paper presents a critical perspective on supervision that challenge...

  14. Reflectance Spectra of the Juneau Icefield

    Science.gov (United States)

    Hughes-Allen, L.; Popyack, K.; Peter, A.; Perera, E.; Pope, A.

    2015-12-01

    Snow reflectance is an important input to understanding a glacier's surface energy balance. It is also useful for quantifying other snow properties such as impurities and grain size. In cooperation with the Juneau Icefield Research Program, we measured the spectral reflectance and albedo of a range of targets, collecting a spectral catalogue of the Taku glacier system. Using this spectral library, the main foci of this study are linking red algae biomass to spectral reflectance, quantifying the radiative forcing of impurities in suncups, and testing a snow grain size retrieval algorithm. Impurities, algae, and large snow grains all reduce the reflectance of shortwave radiation but with unique spectral signatures. In addition, spectra are used in conjunction with satellite imagery to investigate the spatial variability of albedo and therefore impurities on the Taku Glacier.

  15. Natural Aerosols Explain Seasonal and Spatial Patterns of Southern Ocean Cloud Albedo

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Daniel; Burrows, Susannah M.; Wood, R.; Grosvenor, Daniel P.; Elliott, Scott; Ma, Po-Lun; Rasch, Philip J.; Hartmann, Dennis L.

    2015-07-17

    Small particles called aerosols act as nucleation sites for cloud drop formation, affecting clouds and cloud properties – ultimately influencing the cloud dynamics, lifetime, water path and areal extent that determine the reflectivity (albedo) of clouds. The concentration Nd of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations not only affect cloud properties themselves, but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. Here, it is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed Nd. Enhanced Nd over regions of high biological activity is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35-45°S) and by organic matter in sea spray aerosol at higher latitudes (45-55°S). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m-2 over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere.

  16. Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo.

    Science.gov (United States)

    McCoy, Daniel T; Burrows, Susannah M; Wood, Robert; Grosvenor, Daniel P; Elliott, Scott M; Ma, Po-Lun; Rasch, Phillip J; Hartmann, Dennis L

    2015-07-01

    Atmospheric aerosols, suspended solid and liquid particles, act as nucleation sites for cloud drop formation, affecting clouds and cloud properties-ultimately influencing the cloud dynamics, lifetime, water path, and areal extent that determine the reflectivity (albedo) of clouds. The concentration N d of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations affect not only cloud properties themselves but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. It is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed N d. Enhanced N d is spatially correlated with regions of high chlorophyll a, and the spatiotemporal variability in N d is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35(o) to 45(o)S) and by organic matter in sea spray aerosol at higher latitudes (45(o) to 55(o)S). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m(-2) over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere. PMID:26601216

  17. Potential effects of forest management on surface albedo

    Science.gov (United States)

    Otto, J.; Bréon, F.-M.; Schelhaas, M.-J.; Pinty, B.; Luyssaert, S.

    2012-04-01

    Currently 70% of the world's forests are managed and this figure is likely to rise due to population growth and increasing demand for wood based products. Forest management has been put forward by the Kyoto-Protocol as one of the key instruments in mitigating climate change. For temperate and boreal forests, the effects of forest management on the stand-level carbon balance are reasonably well understood, but the biophysical effects, for example through changes in the albedo, remain elusive. Following a modeling approach, we aim to quantify the variability in albedo that can be attributed to forest management through changes in canopy structure and density. The modelling approach chains three separate models: (1) a forest gap model to describe stand dynamics, (2) a Monte-Carlo model to estimate the probability density function of the optical path length of photons through the canopy and (3) a physically-based canopy transfer model to estimate the interaction between photons and leaves. The forest gap model provides, on a monthly time step the position, height, diameter, crown size and leaf area index of individual trees. The Monte-Carlo model computes from this the probability density function of the distance a photon travels through crown volumes to determine the direct light reaching the forest floor. This information is needed by the canopy transfer model to calculate the effective leaf area index - a quantity that allows it to correctly represent a 3D process with a 1D model. Outgoing radiation is calculated as the result of multiple processes involving the scattering due to the canopy layer and the forest floor. Finally, surface albedo is computed as the ratio between incident solar radiation and calculated outgoing radiation. The study used two time series representing thinning from below of a beech and a Scots pine forest. The results show a strong temporal evolution in albedo during stand establishment followed by a relatively stable albedo once the canopy

  18. Understanding the Factors That Control Snow Albedo Over Central Greenland

    Science.gov (United States)

    Wright, P.; Bergin, M. H.; Dibb, J. E.; Domine, F.; Carmagnola, C.; Courville, Z.; Sokolik, I. N.; Lefer, B. L.

    2011-12-01

    Snow albedo plays a critical role in the energy balance of the Greenland Ice Sheet. In particular, the snow albedo influences the extent to which absorbing aerosols over Greenland (i.e. dust and black carbon) force climate. With this in mind the spectral snow albedo, physical snow properties, and snow chemistry were measured during May, June, and July 2011 at Summit, Greenland to investigate the variability in snow spectral albedo and its impact on aerosol direct radiative forcing. Optical and chemical properties of aerosol and aerosol optical depth were also measured as part of this study. Strellis et. al. will present a preliminary assessment of aerosol radiative forcing at Summit in summer 2011, in a separate presentation at this meeting. Spectral albedo was measured from 350-2500 nm with an ASD FieldSpec Pro spectroradiometer daily at four permanent sites and a moving fifth site where snow was sampled for characterization, as well as in more intensive diurnal and spatial surveys. Snow specific surface area (SSA), the ratio of snow crystal surface area to mass, was measured with a Dual Frequency Integrating Sphere (DUFISSS) at 1310 nm and 1550 nm, as well as with dyed and cast samples collected for stereology analysis. Snow stratigraphy, crystal size, and density were also measured on a daily basis, and snow samples will be analyzed for microstructural parameters determined from micro-CT imaging. Snow chemistry measurements include specific elements, major ions, and elemental and organic carbon. The time series of daily albedo measurements ranged from 0.88 to nearly 1.0 in visible wavelengths and from 0.42 to 0.65 in the near infrared. Changes as large as 0.1 were observed between consecutive daily measurements across the spectrum. Preliminary results show a strong correlation between variation in albedo and co-located measurements of snow specific surface area, specifically in the near infrared. By conducting our measurements near solar noon every day, and

  19. Improvement of Surface Albedo Simulations over Arid Regions

    Institute of Scientific and Technical Information of China (English)

    BAO Yan; L(U) Shihua; ZHANG Yu; MENG Xianhong; YANG Shengpeng

    2008-01-01

    To improve the simulation of the surface radiation budget and related thermal processes in arid regions, three sophisticated surface albedo schemes designed for such regions were incorporated into the Biosphere-Atmosphere Transfer Scheme (BATS). Two of these schemes are functions of the solar zenith angle (SZA), where the first one has one adjustable parameter defined as SZA1 scheme, and the second one has two empir-ical parameters defined as SZA2 scheme. The third albedo scheme is a function of solar angle and soil water that were developed based on arid-region observations from the Dunhuang field experiment (DHEX) (defined as DH scheme). We evaluated the performance of the original and newly-incorporated albedo schemes within BATS using the in-situ data from the Oasis System Energy and Water Cycle Field Experiment that was carried out in JinTa, Gansu arid area (JTEX). The results indicate that a control run by the original version of the BATS generates a constant albedo, while the SZA1 and SZA2 schemes basically can reproduce the observed diurnal cycle of surface albedo, although these two schemes still underestimate the albedo when SZA is high in the early morning and late afternoon, and overestimate it when SZA is low during noontime. The SZA2 scheme has a better overall performance than the SZA1 scheme. In addition, BATS with the DH scheme slightly improves the albedo simulation in magnitude as compared to that from the control run, but a diurnal cycle of albedo is not produced by this scheme. The SZAl and SZA2 schemes significantly increase the surface absorbed solar radiation by nearly 70 W m~2, which further raises the ground temperature by 6 K and the sensible heat flux by 35 W m~2. The increased solar radiation, heat flux, and temperature are more consistent with the observations that those from the control run. However, a significant improvement in these three variables is not found in BATS with the DH scheme due to the neglect of the diurnal cycle of

  20. Decadal to seasonal variability of Arctic sea ice albedo

    CERN Document Server

    Agarwal, S; Wettlaufer, J S

    2011-01-01

    A controlling factor in the seasonal and climatological evolution of the sea ice cover is its albedo $\\alpha$. Here we analyze Arctic data from the Advanced Very High Resolution Radiometer (AVHRR) Polar Pathfinder and assess the seasonality and variability of broadband albedo from a 23 year daily record. We produce a histogram of daily albedo over ice covered regions in which the principal albedo transitions are seen; high albedo in late winter and spring, the onset of snow melt and melt pond formation in the summer, and fall freeze up. The bimodal late summer distribution demonstrates the combination of the poleward progression of the onset of melt with the coexistence of perennial bare ice with melt ponds and open water, which then merge to a broad peak at $\\alpha \\gtrsim $ 0.5. We find the interannual variability to be dominated by the low end of the $\\alpha$ distribution, highlighting the controlling influence of the ice thickness distribution and large-scale ice edge dynamics. The statistics obtained pro...

  1. Occurrence of lower cloud albedo in ship tracks

    Directory of Open Access Journals (Sweden)

    Y.-C. Chen

    2012-05-01

    Full Text Available The concept of geoengineering by marine cloud brightening is based on seeding marine stratocumulus clouds with sub-micrometer sea-salt particles to enhance the cloud droplet number concentration and cloud albedo, thereby producing a climate cooling effect. The efficacy of this as a strategy for global cooling rests on the extent to which aerosol-perturbed marine clouds will respond with increased albedo. Ship tracks, cloud regions impacted by ship exhaust, are a well-known manifestation of the effect of aerosol injection on marine clouds. We present here an analysis of the albedo responses in ship tracks, based on in situ aircraft measurements and three years of satellite observations of 589 individual ship tracks. It is found that the sign (increase or decrease and magnitude of the albedo response in ship tracks depends on the mesoscale cloud structure, the free tropospheric humidity, and cloud top height. In a closed cell structure (cloud cells ringed by a perimeter of clear air, nearly 30% of ship tracks exhibited a decreased albedo. Detailed cloud responses must be accounted for in global studies of the potential efficacy of sea-spray geoengineering as a means to counteract global warming.

  2. Occurrence of lower cloud albedo in ship tracks

    Directory of Open Access Journals (Sweden)

    Y.-C. Chen

    2012-09-01

    Full Text Available The concept of geoengineering by marine cloud brightening is based on seeding marine stratocumulus clouds with sub-micrometer sea-salt particles to enhance the cloud droplet number concentration and cloud albedo, thereby producing a climate cooling effect. The efficacy of this as a strategy for global cooling rests on the extent to which aerosol-perturbed marine clouds will respond with increased albedo. Ship tracks, quasi-linear cloud features prevalent in oceanic regions impacted by ship exhaust, are a well-known manifestation of the effect of aerosol injection on marine clouds. We present here an analysis of the albedo responses in ship tracks, based on in situ aircraft measurements and three years of satellite observations of 589 individual ship tracks. It is found that the sign (increase or decrease and magnitude of the albedo response in ship tracks depends on the mesoscale cloud structure, the free tropospheric humidity, and cloud top height. In a closed cell structure (cloud cells ringed by a perimeter of clear air, nearly 30% of ship tracks exhibited a decreased albedo. Detailed cloud responses must be accounted for in global studies of the potential efficacy of sea-spray geoengineering as a means to counteract global warming.

  3. The high albedo of the hot Jupiter Kepler-7b

    CERN Document Server

    Demory, Brice-Olivier; Madhusudhan, Nikku; Kjeldsen, Hans; Christensen-Dalsgaard, Joergen; Gillon, Michael; Rowe, Jason F; Welsh, William F; Adams, Elisabeth R; Dupree, Andrea; McCarthy, Don; Kulesa, Craig; Borucki, William J; Koch, David G

    2011-01-01

    Hot Jupiters are expected to be dark from both observations (albedo upper limits) and theory (alkali metals and/or TiO and VO absorption). However, only a handful of hot Jupiters have been observed with high enough photometric precision at visible wavelengths to investigate these expectations. The NASA Kepler mission provides a means to widen the sample and to assess the extent to which hot Jupiter albedos are low. We present a global analysis of Kepler-7b based on Q0-Q4 data, published radial velocities, and asteroseismology constraints. We measure an occultation depth in the Kepler bandpass of 44+-5 ppm. If directly related to the albedo, this translates to a Kepler geometric albedo of 0.32+-0.03, the most precise value measured so far for an exoplanet. We also characterize the planetary orbital phase lightcurve with an amplitude of 42+-4 ppm. Using atmospheric models, we find it unlikely that the high albedo is due to a dominant thermal component and propose two solutions to explain the observed planetary ...

  4. Tundra vegetation effects on pan-Arctic albedo

    International Nuclear Information System (INIS)

    Recent field experiments in tundra ecosystems describe how increased shrub cover reduces winter albedo, and how subsequent changes in surface net radiation lead to altered rates of snowmelt. These findings imply that tundra vegetation change will alter regional energy budgets, but to date the effects have not been documented at regional or greater scales. Using satellite observations and a pan-Arctic vegetation map, we examined the effects of shrub vegetation on albedo across the terrestrial Arctic. We included vegetation classes dominated by low shrubs, dwarf shrubs, tussock-dominated graminoid tundra, and non-tussock graminoid tundra. Each class was further stratified by bioclimate subzones. Low-shrub tundra had higher normalized difference vegetation index values and earlier albedo decline in spring than dwarf-shrub tundra, but for tussock tundra, spring albedo declined earlier than for low-shrub tundra. Our results illustrate how relatively small changes in vegetation properties result in differences in albedo dynamics, regardless of shrub growth, that may lead to differences in net radiation upwards of 50 W m-2 at weekly time scales. Further, our findings imply that changes to the terrestrial Arctic energy budget during this important seasonal transition are under way regardless of whether recent satellite observed productivity trends are the result of shrub expansion. We conclude that a better understanding of changes in vegetation productivity and distribution in Arctic tundra is essential for accurately quantifying and predicting carbon and energy fluxes and associated climate feedbacks.

  5. Reflection, radiation and interference for black holes

    CERN Document Server

    Kuchiev, M Yu

    2003-01-01

    Black holes are capable of reflection: there is a finite probability for any particle that approaches the event horizon to bounce back. The albedo of the black hole depends on its temperature and the energy of the incoming particle. The reflection shares its physical origins with the Hawking process of radiation, both of them arise as consequences of the mixing of the incoming and outgoing waves that takes place on the event horizon.

  6. Reductions in soil surface albedo as a function of biochar application rate: implications for global radiative forcing

    International Nuclear Information System (INIS)

    Biochar can be defined as pyrolysed (charred) biomass produced for application to soils with the aim of mitigating global climate change while improving soil functions. Sustainable biochar application to soils has been estimated to reduce global greenhouse gas emissions by 71–130 Pg CO2-Ce over 100 years, indicating an important potential to mitigate climate change. However, these estimates ignored changes in soil surface reflection by the application of dark-coloured biochar. Through a laboratory experiment we show a strong tendency for soil surface albedo to decrease as a power decay function with increasing biochar application rate, depending on soil moisture content, biochar application method and land use. Surface application of biochar resulted in strong reductions in soil surface albedo even at relatively low application rates. As a first assessment of the implications for climate change mitigation of these biochar–albedo relationships, we applied a first order global energy balance model to compare negative radiative forcings (from avoided CO2 emissions) with positive radiative forcings (from reduced soil surface albedos). For a global-scale biochar application equivalent to 120 t ha−1, we obtained reductions in negative radiative forcings of 5 and 11% for croplands and 11 and 23% for grasslands, when incorporating biochar into the topsoil or applying it to the soil surface, respectively. For a lower global biochar application rate (equivalent to 10 t ha−1), these reductions amounted to 13 and 44% for croplands and 28 and 94% for grasslands. Thus, our findings revealed the importance of including changes in soil surface albedo in studies assessing the net climate change mitigation potential of biochar, and we discuss the urgent need for field studies and more detailed spatiotemporal modelling. (letter)

  7. Estimation of four land surface essential climate variables (albedo, LAI/FAPAR, and Fcover) from VIIRS data

    Science.gov (United States)

    Liang, Shunlin

    2016-07-01

    As the successor of MODIS, the Visible Infrared Imaging Radiometer Suite (VIIRS) from the Suomi National Polar-orbiting Partnership (S-NPP) and future Joint Polar Satellite System (JPSS) brings us into a new era of global daily Earth observations. VIIRS was designed to improve upon the capabilities of the operational AVHRR and provide observation continuity with MODIS. This presentation will describe the progress in estimating four Essential Climate Variables (ECV): shortwave albedo (Wang, et al., 2013; Zhou, et al., 2016), leaf area index (LAI) (Xiao et al., 2016), fraction of absorbed photosynthetically active radiation (FAPAR) (Xiao et al., 2016), and fractional vegetation coverage (Fcover) (Li, et al., 2016) from VIIRS data. The algorithms have been peer reviewed, and shortwave albedo has been operationally produced by NOAA and accessible to the scientific community. Li, Y., K. Jia, S. Liang, Z. Xiao, X. Wang, L. Yang, (2016), An operational algorithm for estimating fractional vegetation cover from VIIRS reflectance data based on general regression neural networks, Remote Sensing, revised Xiao, Z., S. Liang, T. Wang, and B. Jiang, (2016), Retrieval of Leaf Area Index and Fraction of Absorbed Photosynthetically Active Radiation from VIIRS Time Series Data, Remote Sensing, revised. Wang, D., S. Liang, T. He, and Y. Yu, (2013), Direct Estimation of Land Surface Albedo from VIIRS Data: Algorithm Improvement and Preliminary Validation, Journal of Geophysical Research, 118(22):12,577-12,586 Zhou, Y., D. Wang, S. Liang, Y. Yu, and T. He, (2016), Assessment of the Suomi NPP VIIRS Land Surface Albedo Data Using Station Measurements and High-Resolution Albedo Maps, Remote Sensing, in press.

  8. MORSE/STORM: A generalized albedo option for Monte Carlo calculations

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, I.C.; Stevens, P.N. (Tennessee Univ., Knoxville, TN (United States))

    1991-09-01

    The advisability of using the albedo procedure for the Monte Carlo solution of deep penetration shielding problems that have ducts and other penetrations has been investigated. The use of albedo data can dramatically improve the computational efficiency of certain Monte Carlo calculations. However, the accuracy of these results may be unacceptable because of lost information during the albedo event and serious errors in the available differential albedo data. This study was done to evaluate and appropriately modify the MORSE/BREESE package, to develop new methods for generating the required albedo data, and to extend the adjoint capability to the albedo-modified calculations. Major modifications to MORSE/BREESE include an option to save for further use information that would be lost at the albedo event, an option to displace the point of emergence during an albedo event, and an option to use spatially dependent albedo data for both forward and adjoint calculations, which includes the point of emergence as a new random variable to be selected during an albedo event. The theoretical basis for using TORT-generated forward albedo information to produce adjuncton albedos was derived. The MORSE/STORM package was developed to perform both forward and adjoint modes of analysis using spatially dependent albedo data. Results obtained with MORSE/STORM for both forward and adjoint modes were compared with benchmark solutions. Excellent agreement and improved computational efficiency were achieved, demonstrating the full utilization of the albedo option in the MORSE code. 7 refs., 17 figs., 15 tabs.

  9. Reflection from black holes and space-time topology

    CERN Document Server

    Kuchiev, M Yu

    2004-01-01

    The quantum corrections make the black hole capable of reflection: any particle that approaches the event horizon can bounce back in the outside world. The albedo of the black hole depends on its temperature. The reflection shares physical origins with the phenomenon of Hawking radiation; both effects are explained as consequences of the singular nature that the event horizon exhibits on the quantum level.

  10. Influência da irrigação sobre o albedo Influence of irrigation on albedo

    Directory of Open Access Journals (Sweden)

    Mário de Miranda V.B.R. Leitão

    2000-01-01

    Full Text Available Uma análise dos efeitos e da influência da irrigação sobre o albedo de uma cultura de amendoim, ao longo do ciclo de desenvolvimento e, em particular, durante um dia em que houve irrigação, é realizada neste estudo, cuja pesquisa de campo foi desenvolvida no perímetro irrigado da Estação Experimental da CODEVASF, no município de Rodelas, BA, no período de setembro a dezembro de 1996. Os resultados mostraram que o albedo variou significativamente nos dias em que foram efetuadas irrigações e nos dias imediatamente posteriores. Sob condições normais, o albedo variou de um máximo de 29,8% na fase inicial do experimento, com o solo ainda descoberto, a um mínimo de 18,6% no final da fase de desenvolvimento de vagem; contudo, nos dias de irrigação, dependendo da hora em que esta foi efetuada, houve influência diferenciada no valor do albedo médio diário, que chegou a reduzi-lo em até 6,4%, quando as irrigações ocorreram nas primeiras horas da manhã.The influence of irrigation on the albedo of a peanut crop during its development cycle, and in particular on the day when irrigation took place, is analyzed in this study. The field research was conducted in the irrigated perimeter of the Experimental Station of CODEVASF, in the municipal district of Rodelas, BA, during the period of September to December of 1996. The results showed that the albedo suffered significant variations on the days of irrigation as well as on the day after irrigation. Under normal conditions, the albedo varied from a maximum of 29.8% in the initial phase of the experiment with the soil still uncovered, to a minimum of 18.6% at the end of the kernel development phase. However, on the days of irrigation, the albedo varied with the time of irrigation. The daily mean value of the albedo reduced by 6.4% when the irrigations took place in the early hours of the morning.

  11. Estimating ice albedo from fine debris cover quantified by a semi-automatic method: the case study of Forni Glacier, Italian Alps

    Science.gov (United States)

    Azzoni, Roberto Sergio; Senese, Antonella; Zerboni, Andrea; Maugeri, Maurizio; Smiraglia, Claudio; Diolaiuti, Guglielmina Adele

    2016-03-01

    In spite of the quite abundant literature focusing on fine debris deposition over glacier accumulation areas, less attention has been paid to the glacier melting surface. Accordingly, we proposed a novel method based on semi-automatic image analysis to estimate ice albedo from fine debris coverage (d). Our procedure was tested on the surface of a wide Alpine valley glacier (the Forni Glacier, Italy), in summer 2011, 2012 and 2013, acquiring parallel data sets of in situ measurements of ice albedo and high-resolution surface images. Analysis of 51 images yielded d values ranging from 0.01 to 0.63 and albedo was found to vary from 0.06 to 0.32. The estimated d values are in a linear relation with the natural logarithm of measured ice albedo (R = -0.84). The robustness of our approach in evaluating d was analyzed through five sensitivity tests, and we found that it is largely replicable. On the Forni Glacier, we also quantified a mean debris coverage rate (Cr) equal to 6 g m-2 per day during the ablation season of 2013, thus supporting previous studies that describe ongoing darkening phenomena at Alpine debris-free glaciers surface. In addition to debris coverage, we also considered the impact of water (both from melt and rainfall) as a factor that tunes albedo: meltwater occurs during the central hours of the day, decreasing the albedo due to its lower reflectivity; instead, rainfall causes a subsequent mean daily albedo increase slightly higher than 20 %, although it is short-lasting (from 1 to 4 days).

  12. The albedo problem of low-energy light ions treated analytically in the DP0 flux approximation

    International Nuclear Information System (INIS)

    The energy dependent albedo problem of low-energy light ions from heavy targets is considered in a multiple-collision model. The ion transport equation is treated with the assumptions that (i) the distribution function is almost isotropic and (ii) the transport cross section depends only on initial ion energy. The transport equation is Laplace transformed in relative path length and solved by applying the DP0 flux approximation in angle. Reflected energy spectra, particle and energy reflection coefficients are analytically derived. A comparison of DP0 results with age theory, computer simulation data and experimental results is made. (Author)

  13. Direct determination of surface albedos from satellite imagery

    Science.gov (United States)

    Mekler, Y.; Joseph, J. H.

    1983-01-01

    An empirical method to measure the spectral surface albedo of surfaces from Landsat imagery is presented and analyzed. The empiricism in the method is due only to the fact that three parameters of the solution must be determined for each spectral photograph of an image on the basis of independently known albedos at three points. The approach is otherwise based on exact solutions of the radiative transfer equation for upwelling intensity. Application of the method allows the routine construction of spectral albedo maps from satelite imagery, without requiring detailed knowledge of the atmospheric aerosol content, as long as the optical depth is less than 0.75, and of the calibration of the satellite sensor.

  14. Brazilian two-component TLD albedo neutron individual monitoring system

    International Nuclear Information System (INIS)

    Since 1983, Instituto de Radioprotecao e Dosimetria, Brazil, uses a TLD one-component albedo neutron monitor, which has a single different calibration factor specifically for each installation type. In order to improve its energy response, a two-component albedo monitor was developed, which measure the thermal neutron component besides the albedo one. The two-component monitor has been calibrated in reference neutron fields: thermal, five accelerator-produced monoenergetic beams (70, 144, 565, 1200 and 5000 keV) and five radionuclide sources (252Cf, 252Cf(D2O), 241Am-Be, 241Am-B and 238Pu-Be) at several distances. Since January 2008, mainly Brazilian workers who handle neutron sources at different distances and moderation, such as in well logging and calibration facilities are using it routinely.

  15. Albedo calculation for single scattering gamma-rays, (2)

    International Nuclear Information System (INIS)

    The analytical formulae of number albedo and energy albedo for single scattering gamma-rays were given in the form of F2 function, under the assumption that cross-section, energy and attenuation coefficient of backscattered gamma-rays were constant for scattering angles. The results calculated with the analytical formula agreed with those of numerical integration within +-20% error. The more simplified formula was also presented here with a correcting term. This formula is practically useful in estimating albedo of single scattering gamma-rays with in an accuracy of 10% for most materials of a finite thickness in the incident energy ranges of 0.05 to 3 MeV. (auth.)

  16. Albedo control of seasonal South Polar cap recession on Mars

    Science.gov (United States)

    Schmidt, Frédéric; Douté, Sylvain; Schmitt, Bernard; Vincendon, Mathieu; Bibring, Jean-Pierre; Langevin, Yves; Omega Team

    2009-04-01

    Over the last few decades, General Circulation Models (GCM) have been used to simulate the current martian climate. The calibration of these GCMs with the current seasonal cycle is a crucial step in understanding the climate history of Mars. One of the main climatic signals currently used to validate GCMs is the annual atmospheric pressure cycle. It is difficult to use changes in seasonal deposits on the surface of Mars to calibrate the GCMs given the spectral ambiguities between CO 2 and H 2O ice in the visible range. With the OMEGA imaging spectrometer covering the near infra-red range, it is now possible to monitor both types of ice at a spatial resolution of about 1 km. At global scale, we determine the change with time of the Seasonal South Polar Cap (SSPC) crocus line, defining the edge of CO 2 deposits. This crocus line is not symmetric around the geographic South Pole. At local scale, we introduce the snowdrop distance, describing the local structure of the SSPC edge. Crocus line and snowdrop distance changes can now be used to calibrate GCMs. The albedo of the seasonal deposits is usually assumed to be a uniform and constant parameter of the GCMs. In this study, albedo is found to be the main parameter controlling the SSPC recession at both global and local scale. Using a defrost mass balance model (referred to as D-frost) that incorporates the effect of shadowing induced by topography, we show that the global SSPC asymmetry in the crocus line is controlled by albedo variations. At local scale, we show that the snowdrop distance is correlated with the albedo variability. Further GCM improvements should take into account these two results. We propose several possibilities for the origin of the asymmetric albedo control. The next step will be to identify and model the physical processes that create the albedo differences.

  17. The Deep Blue Color of HD189733b: Albedo Measurements with Hubble Space Telescope/Space Telescope Imaging Spectrograph at Visible Wavelengths

    CERN Document Server

    Evans, Thomas M; Sing, David K; Aigrain, Suzanne; Barstow, Joanna K; Désert, Jean-Michel; Gibson, Neale; Heng, Kevin; Knutson, Heather A; Etangs, Alain Lecavelier des

    2013-01-01

    We present a secondary eclipse observation for the hot Jupiter HD189733b across the wavelength range 290-570nm made using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. We measure geometric albedos of Ag = 0.40 \\pm 0.12 across 290-450nm and Ag < 0.12 across 450-570nm at 1-sigma confidence. The albedo decrease toward longer wavelengths is also apparent when using six wavelength bins over the same wavelength range. This can be interpreted as evidence for optically thick reflective clouds on the dayside hemisphere with sodium absorption suppressing the scattered light signal beyond ~450nm. Our best-fit albedo values imply that HD189733b would appear a deep blue color at visible wavelengths.

  18. Albedo calculations for candidate fusion reactor materials used in the inboard side of a compact tokamak reactor and the effects of using such materials on the tritium breeding

    International Nuclear Information System (INIS)

    In this paper the total neutron albedo and associated energy distributions for 10 candidate fusion reactor materials have been calculated. The angular distributions of reflected neutrons for monodirectional 14.1 MeV neutrons incident on slabs of Pb, Be, and W are presented and the dependence of albedo on neutron energy and incident angle has been investigated. Finally, the impact on the tritium breeding of the outboard blanket of the choice of material used in the inboard side of the reactor has been assessed. Tritium breeding ratio (TBR) calculations have shown the inadequacy of the neutron albedo concept in predicting the impact of inboard materials on the TBR of the reactor. (author)

  19. THE DEEP BLUE COLOR OF HD 189733b: ALBEDO MEASUREMENTS WITH HUBBLE SPACE TELESCOPE/SPACE TELESCOPE IMAGING SPECTROGRAPH AT VISIBLE WAVELENGTHS

    International Nuclear Information System (INIS)

    We present a secondary eclipse observation for the hot Jupiter HD 189733b across the wavelength range 290-570 nm made using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. We measure geometric albedos of Ag = 0.40 ± 0.12 across 290-450 nm and Ag < 0.12 across 450-570 nm at 1σ confidence. The albedo decrease toward longer wavelengths is also apparent when using six wavelength bins over the same wavelength range. This can be interpreted as evidence for optically thick reflective clouds on the dayside hemisphere with sodium absorption suppressing the scattered light signal beyond ∼450 nm. Our best-fit albedo values imply that HD 189733b would appear a deep blue color at visible wavelengths

  20. MERIS albedo climatology for FRESCO+ O2 A-band cloud retrieval

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2011-03-01

    Full Text Available A new global albedo climatology for Oxygen A-band cloud retrievals is presented. The climatology is based on MEdium Resolution Imaging Spectrometer (MERIS Albedomap data and its favourable impact on the derivation of cloud fraction is demonstrated for the FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A-band algorithm. To date, a relatively coarse resolution (1° × 1° surface reflectance dataset from GOME (Global Ozone Monitoring Experiment Lambert-equivalent reflectivity (LER is used in FRESCO+. The GOME LER climatology does not account for the usually higher spatial resolution of UV/VIS instruments designed for trace gas remote sensing which introduces several artefacts, e.g. in regions with sharp spectral contrasts like coastlines or over bright surface targets. Therefore, MERIS black-sky albedo (BSA data from the period October 2002 to October 2006 were aggregated to a grid of 0.25° × 0.25° for each month of the year and for different spectral channels. In contrary to other available surface reflectivity datasets, MERIS includes channels at 754 nm and 775 nm which are located close to the spectral windows required for O2 A-band cloud retrievals. The MERIS BSA in the near-infrared compares well to Moderate Resolution Imaging Spectroradiometer (MODIS derived BSA with an average difference lower than 1% and a correlation coefficient of 0.98. However, when relating MERIS BSA to GOME LER a distinctly lower correlation (0.80 and enhanced scatter is found. Effective cloud fractions from two exemplary months (January and July 2006 of Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY data were subsequently derived with FRESCO+ and compared to those from the Heidelberg Iterative Cloud Retrieval Utilities (HICRU algorithm. The MERIS climatology generally improves FRESCO+ effective cloud fractions. In particular small cloud fractions are in better agreement with HICRU. This is of importance for atmospheric

  1. NEOWISE REACTIVATION MISSION YEAR ONE: PRELIMINARY ASTEROID DIAMETERS AND ALBEDOS

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, C. R.; Cutri, R. M. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mainzer, A.; Masiero, J.; Bauer, J.; Kramer, E.; Sonnett, S.; Stevenson, R. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ (United States); Wright, E. L., E-mail: cnugent@ipac.caltech.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

    2015-12-01

    We present preliminary diameters and albedos for 7956 asteroids detected in the first year of the NEOWISE Reactivation mission. Of those, 201 are near-Earth asteroids and 7755 are Main Belt or Mars-crossing asteroids. 17% of these objects have not been previously characterized using the Near-Earth Object Wide-field Infrared Survey Explorer, or “NEOWISE” thermal measurements. Diameters are determined to an accuracy of ∼20% or better. If good-quality H magnitudes are available, albedos can be determined to within ∼40% or better.

  2. The Gamma-ray Albedo of the Moon

    OpenAIRE

    Moskalenko, Igor V.; Porter, Troy A.

    2007-01-01

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the a...

  3. An analytical solution for the monoenergetic diffusion equation in a multilayered slab: determination of albedo boundary condition

    International Nuclear Information System (INIS)

    In this work, we solve analytically, without losing generality, the neutron diffusion equation for monoenergetic neutrons in a multilayered slab. To this end, we initially determine the solution of the neutron diffusion equation for a generic slab using standard results of second order linear ordinary differential equation with constant coefficients. The global solution for the multilayered slab is then determined applying the boundary condition and continuity of the flux and current at interface. Once the neutron flux is known, the albedo boundary condition is straightly obtained for an arbitrary number of layers in the baffle-reflecting regions, by just using the definition of albedo. We also present numerical simulation for the results neutron flux and comparison with the in literature. (author)

  4. Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone.

    Science.gov (United States)

    Joshi, Manoj M; Haberle, Robert M

    2012-01-01

    M stars comprise 80% of main sequence stars, so their planetary systems provide the best chance for finding habitable planets, that is, those with surface liquid water. We have modeled the broadband albedo or reflectivity of water ice and snow for simulated planetary surfaces orbiting two observed red dwarf stars (or M stars), using spectrally resolved data of Earth's cryosphere. The gradual reduction of the albedos of snow and ice at wavelengths greater than 1 μm, combined with M stars emitting a significant fraction of their radiation at these same longer wavelengths, means that the albedos of ice and snow on planets orbiting M stars are much lower than their values on Earth. Our results imply that the ice/snow albedo climate feedback is significantly weaker for planets orbiting M stars than for planets orbiting G-type stars such as the Sun. In addition, planets with significant ice and snow cover will have significantly higher surface temperatures for a given stellar flux if the spectral variation of cryospheric albedo is considered, which in turn implies that the outer edge of the habitable zone around M stars may be 10-30% farther away from the parent star than previously thought.

  5. [Temporal and Spatial Characteristics of Lake Taihu Surface Albedo and Its Impact Factors].

    Science.gov (United States)

    Cao, Chang; Li, Xu-hui; Zhang, Mi; Liu, Shou-dong; Xiao, Wei; Xiao, Qi-tao; Xu, Jia-ping

    2015-10-01

    Lake surface albedo determines energy balance of water-atmospheric interface and water physical environment. Solar elevation angle, cloudiness, wind speed, water quality and other factors can affect lake surface albedo. Using solar radiation, wind speed, and water quality data (turbidity and chlorophyll-a concentration) which were observed in four eddy covariance sites (Meiliangwan, Dapukou, Bifenggang and Xiaoleishan i. e. MLW, DPK, BFG and XLS) in Lake Taihu and clearness index (k(t)), the influence of these factors on Lake Taihu surface albedo and the reasons that led to its spatial difference were investigated. The results showed that solar elevation angle played a leading role in the diurnal and seasonal change of lake surface albedo; lake surface albedo reached two peaks in 0 albedo increased with the increasing wind speed, turbidity and chlorophyll-a concentration. However, wind could indirectly affect surface albedo through leading to the changes in sediment resuspension and chlorophyll-a distribution. The sequence of albedo in the four sites was XLS > BFG > DPK > MLW. XLS and BFG belonged to the higher albedo group, while DPK and MLW belonged to the lower albedo group. The different biological environments caused by aquatic macrophytes and algae resulting in the spatial variation of Lake Taihu surface albedo. The relationship between albedo and chlorophyll-a concentration was not a very sensitive factor for indicating the outbreak of algae. This study can provide theoretical reference for lake albedo parameterization. PMID:26841592

  6. Characterizing intimate mixtures of materials in hyperspectral imagery with albedo-based and kernel-based approaches

    Science.gov (United States)

    Rand, Robert S.; Resmini, Ronald G.; Allen, David W.

    2015-09-01

    Linear mixtures of materials in a scene often occur because the pixel size of a sensor is relatively large and consequently they contain patches of different materials within them. This type of mixing can be thought of as areal mixing and modeled by a linear mixture model with certain constraints on the abundances. The solution to these models has received a lot of attention. However, there are more complex situations, such as scattering that occurs in mixtures of vegetation and soil, or intimate mixing of granular materials like soils. Such multiple scattering and microscopic mixtures within pixels have varying degrees of non-linearity. In such cases, a linear model is not sufficient. Furthermore, often enough, scenes may contain cases of both linear and non-linear mixing on a pixel-by-pixel basis. This study considers two approaches for use as generalized methods for un-mixing pixels in a scene that may be linear (areal mixed) or non-linear (intimately mixed). The first method is based on earlier studies that indicate non-linear mixtures in reflectance space are approximately linear in albedo space. The method converts reflectance to singlescattering albedo (SSA) according to Hapke theory assuming bidirectional scattering at nadir look angles and uses a constrained linear model on the computed albedo values. The second method is motivated by the same idea, but uses a kernel that seeks to capture the linear behavior of albedo in non-linear mixtures of materials. The behavior of the kernel method is dependent on the value of a parameter, gamma. Furthermore, both methods are dependent on the choice of endmembers, and also on RMSE (root mean square error) as a performance metric. This study compares the two approaches and pays particular attention to these dependencies. Both laboratory and aerial collections of hyperspectral imagery are used to validate the methods.

  7. Monte Carlo calculation of 60Co γ-ray's albedo-dose rate from the air

    International Nuclear Information System (INIS)

    The Monte Carlo calculation of 60Co γ-ray's albedo-dose rate from the air is reported. A formula is presented with which the relations of the albedo-doserate with some parameters are simulated and fitted

  8. MISR Level 2 FIRSTLOOK TOA/Cloud Albedo parameters V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the Level 2 FIRSTLOOK TOA/Cloud Albedo Product. It contains local,restrictive, and expansive albedo, with associated data, produced using ancillary inputs...

  9. The WISE Survey of the Albedo Distribution of Main Belt Asteroids

    NARCIS (Netherlands)

    Masiero, J.; Mainzer, A.; Grav, T.; Delbó, M.; Mueller, M.; WISE Team, [No Value

    2010-01-01

    Using date from the Wide-field Infrared Survey Explorer (WISE) we investigate the albedo distribution across the main belt of asteroids. When complete WISE will measure albedos and diameters for ~100,000 asteroids.

  10. Surface albedo following biochar application in durum wheat

    International Nuclear Information System (INIS)

    The agronomic use of charcoal from biomass pyrolysis (biochar) represents an interesting option for increasing soil fertility and sequestering atmospheric CO2. However, before moving toward large-scale biochar applications, additional research must evaluate all possible land–atmosphere feedbacks. Despite the increasing number of studies investigating the effect of biochar on soil physical, chemical and biological properties, only a few have been done on surface albedo variations on agricultural lands. The present work had the aim of characterizing the annual albedo cycle for a durum wheat crop in Central Italy, by means of a spectroradiometer measurement campaign. Plots treated with biochar, at a rate of 30–60 t ha−1, showed a surface albedo decrease of up to 80% (after the application) with respect to the control in bare soil conditions, while this difference tended to decrease during the crop growing season, because of the prevailing effect of canopy development on the radiometer response. After the post-harvesting tillage, the soil treated with biochar again showed a lower surface albedo value (<20–26% than the control), while the measurements taken in the second year after application suggested a clear decrease of biochar influence on soil color. The modeling of the surface energy balance highlighted changes in the partitioning of heat fluxes and in particular a substantial increase of ground heat fluxes on an annual basis. (letter)

  11. New OSL detector combination for albedo neutron dosimetry

    International Nuclear Information System (INIS)

    A new detector pair of α-Al2O3:C + Li2B4O7:Cu,Ag, based on evaluation using optically stimulated luminescence (OSL) technique, was placed in the Karlsruhe type albedo cassette and its neutron response was studied in monoenergetic neutron fields with energies in the range from 24 keV to 14.8 MeV and in the field of a bare 252Cf radionuclide source. The ability and usefulness of such an albedo neutron dosimeter for personnel neutron monitoring based on OSL technique is discussed. The OSL Hp(10) response of the α-Al2O3:C + Li2B4O7:Cu,Ag dosimeters was found to decrease by more than two orders of magnitude with increasing neutron energy, as known for albedo dosimeters and was comparable to the results reported for the combination of α-Al2O3:C + 6,7LiF OSL dosimeters. - Highlights: • Albedo neutron measurement using a new optically stimulated luminescence (OSL) detector combination. • OSL neutron dose indication of α-Al2O3:C + Li2B4O7:Cu,Ag detector pair. • Hp(10) response of the α-Al2O3:C + Li2B4O7:Cu,Ag OSL detectors for monoenergetic neutron energies. • Potential application for personnel neutron monitoring

  12. The albedo problem for pure-quadratic scattering

    International Nuclear Information System (INIS)

    The one speed and time-independent neutron transport equation can be considered for a homogeneous medium which thickness is identified as τ in plane geometry and has nucleus in it. Here, interaction of nucleuses which are in slab that its thickness is τ and neutrons that are incoming to the medium from outside is considered as depend on quadratic quantities. In other words, neutron-nucleus interactions are proportional with second degree of neutrons advent direction(μ ) and scattering direction (μ') . The Case's eigenfunctions and the orthogonality relations of them can be written for this scattering. In addition the half-space albedo problem can be investigated with the same way. In this study, the singular eigenfunctions method is used. For the predicted neutron fluxes over surfaces the albedo and the transmitting relations can be written easily. Thus the albedo and the transmitting values for the slab and the albedo values for the half-space can be found as numerical. To examine the accuracy of the results calculated data can be worked on by interpolation method. Thus, while the quadratic anisotropic coefficient goes to zero, the results are to be reduced to results in isotropic scattering condition. The interpolated results, which are calculated in this way, are achieved so convergent to isotropic results

  13. Forests, nitrogen and albedo, a very interesting trio indeed

    Directory of Open Access Journals (Sweden)

    Borghetti M

    2009-01-01

    Full Text Available A short comment is made on a recent paper (Ollinger et al. 2008 which shows that forest ecosystem carbon uptake in temperate and boreal forests is directly related to canopy nitrogen concentration and that both carbon uptake capacity and canopy nitrogen concentration are positively correlated with shortwave surface albedo measured with broad-band satellite sensors.

  14. WISE Albedos for Tens of Thousands of Main Belt Asteroids

    NARCIS (Netherlands)

    Masiero, Joseph R.; Mainzer, A. K.; Bauer, J.; Cutri, R.; Dailey, J.; Delbo, M.; Grav, T.; McMillan, R. S.; Mueller, M.; Walker, R.; Wright, E.; WISE Science Team, [No Value

    2010-01-01

    Using thermal IR data from the Wide-field Infrared Survey Explorer (WISE) mission we have calculated diameters for tens of thousands of previously known Main Belt asteroids. Using archival optical observations we have also determined albedos for each object. We present our results from this investig

  15. Size and Albedo of Irregular Saturnian Satellites from Spitzer Observations

    NARCIS (Netherlands)

    Mueller, Michael; Grav, T.; Trilling, D.; Stansberry, J.; Sykes, M.

    2008-01-01

    Using MIPS onboard the Spitzer Space Telescope, we observed the thermal emission (24 and, for some targets, 70 um) of eight irregular satellites of Saturn: Albiorix, Siarnaq, Paaliaq, Kiviuq, Ijiraq, Tarvos, Erriapus, and Ymir. We determined the size and albedo of all targets. An analysis of archive

  16. Summertime canopy albedo is sensitive to forest thinning

    NARCIS (Netherlands)

    Otto, J.; Berveiller, D.; Bréon, F.M.; Delpierre, N.; Geppert, G.; Granier, A.; Jans, W.W.P.; Knohl, A.; Moors, E.J.

    2013-01-01

    Despite an emerging body of literature linking canopy albedo to forest management, understanding of the process is still fragmented. We combined a stand-level forest gap model with a canopy radiation transfer model and satellite-derived model parameters to quantify the effects of forest thinning, th

  17. Albedo in the ATIC Experiment: Results of Measurements and Simulation

    Science.gov (United States)

    Sokolskaya, N. V.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2004-01-01

    Characteristics of albedo, or backscatter current, providing a 'background' for calorimeter experiments in high energy cosmic rays are analyzed. The comparison of experimental data obtained in the flights of the ATIC spectrometer is made with simulations performed using the GEANT 3.21 code. The influence of the backscatter on charge resolution in the ATIC experiment is discussed.

  18. Albedo enhancement of marine clouds to counteract global warming: impacts on the hydrological cycle

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G. [Indian Institute of Science, Divecha Center for Climate Change, Bangalore (India); Indian Institute of Science, Center for Atmospheric and Oceanic Sciences, Bangalore (India); Caldeira, Ken; Cao, Long; Ban-Weiss, George; Shin, Ho-Jeong [Carnegie Institution, Department of Global Ecology, Stanford, CA (United States); Nemani, Rama [NASA Ames Research Center, Moffett Field, CA (United States)

    2011-09-15

    Recent studies have shown that changes in solar radiation affect the hydrological cycle more strongly than equivalent CO{sub 2} changes for the same change in global mean surface temperature. Thus, solar radiation management ''geoengineering'' proposals to completely offset global mean temperature increases by reducing the amount of absorbed sunlight might be expected to slow the global water cycle and reduce runoff over land. However, proposed countering of global warming by increasing the albedo of marine clouds would reduce surface solar radiation only over the oceans. Here, for an idealized scenario, we analyze the response of temperature and the hydrological cycle to increased reflection by clouds over the ocean using an atmospheric general circulation model coupled to a mixed layer ocean model. When cloud droplets are reduced in size over all oceans uniformly to offset the temperature increase from a doubling of atmospheric CO{sub 2}, the global-mean precipitation and evaporation decreases by about 1.3% but runoff over land increases by 7.5% primarily due to increases over tropical land. In the model, more reflective marine clouds cool the atmospheric column over ocean. The result is a sinking motion over oceans and upward motion over land. We attribute the increased runoff over land to this increased upward motion over land when marine clouds are made more reflective. Our results suggest that, in contrast to other proposals to increase planetary albedo, offsetting mean global warming by reducing marine cloud droplet size does not necessarily lead to a drying, on average, of the continents. However, we note that the changes in precipitation, evaporation and P-E are dominated by small but significant areas, and given the highly idealized nature of this study, a more thorough and broader assessment would be required for proposals of altering marine cloud properties on a large scale. (orig.)

  19. Afforestation to mitigate climate change: impacts on food prices under consideration of albedo effects

    Science.gov (United States)

    Kreidenweis, Ulrich; Humpenöder, Florian; Stevanović, Miodrag; Bodirsky, Benjamin Leon; Kriegler, Elmar; Lotze-Campen, Hermann; Popp, Alexander

    2016-08-01

    Ambitious climate targets, such as the 2 °C target, are likely to require the removal of carbon dioxide from the atmosphere. Afforestation is one such mitigation option but could, through the competition for land, also lead to food prices hikes. In addition, afforestation often decreases land-surface albedo and the amount of short-wave radiation reflected back to space, which results in a warming effect. In particular in the boreal zone, such biophysical warming effects following from afforestation are estimated to offset the cooling effect from carbon sequestration. We assessed the food price response of afforestation, and considered the albedo effect with scenarios in which afforestation was restricted to certain latitudinal zones. In our study, afforestation was incentivized by a globally uniform reward for carbon uptake in the terrestrial biosphere. This resulted in large-scale afforestation (2580 Mha globally) and substantial carbon sequestration (860 GtCO2) up to the end of the century. However, it was also associated with an increase in food prices of about 80% by 2050 and a more than fourfold increase by 2100. When afforestation was restricted to the tropics the food price response was substantially reduced, while still almost 60% cumulative carbon sequestration was achieved. In the medium term, the increase in prices was then lower than the increase in income underlying our scenario projections. Moreover, our results indicate that more liberalised trade in agricultural commodities could buffer the food price increases following from afforestation in tropical regions.

  20. Exoplanet albedo spectra and colors as a function of planet phase, separation, and metallicity

    CERN Document Server

    Cahoy, Kerri L; Fortney, Jonathan J

    2010-01-01

    First generation optical coronagraphic telescopes will obtain images of cool gas and ice giant exoplanets around nearby stars. The albedo spectra of exoplanets at planet-star separations larger than about 1 AU are dominated by reflected light to beyond 1 {\\mu}m and are punctuated by molecular absorption features. We consider how exoplanet albedo spectra and colors vary as a function of planet-star separation, metallicity, mass, and observed phase for Jupiter and Neptune analogs from 0.35 to 1 {\\mu}m. We model Jupiter analogs with 1x and 3x the solar abundance of heavy elements, and Neptune analogs with 10x and 30x. Our model planets orbit a solar analog parent star at separations of 0.8 AU, 2 AU, 5 AU, and 10 AU. We use a radiative-convective model to compute temperature-pressure profiles. The giant exoplanets are cloud-free at 0.8 AU, have H2O clouds at 2 AU, and have both NH3 and H2O clouds at 5 AU and 10 AU. For each model planet we compute moderate resolution spectra as a function of phase. The presence a...

  1. Influence of soil moisture content on surface albedo and soil thermal parameters at a tropical station

    Science.gov (United States)

    Sugathan, Neena; Biju, V.; Renuka, G.

    2014-06-01

    Half hourly data of soil moisture content, soil temperature, solar irradiance, and reflectance are measured during April 2010 to March 2011 at a tropical station, viz., Astronomical Observatory, Thiruvananthapuram, Kerala, India (76°59'E longitude and 8°29'N latitude). The monthly, seasonal and seasonal mean diurnal variation of soil moisture content is analyzed in detail and is correlated with the rainfall measured at the same site during the period of study. The large variability in the soil moisture content is attributed to the rainfall during all the seasons and also to the evaporation/movement of water to deeper layers. The relationship of surface albedo on soil moisture content on different time scales are studied and the influence of solar elevation angle and cloud cover are also investigated. Surface albedo is found to fall exponentially with increase in soil moisture content. Soil thermal diffusivity and soil thermal conductivity are also estimated from the subsoil temperature profile. Log normal dependence of thermal diffusivity and power law dependence of thermal conductivity on soil moisture content are confirmed.

  2. Influence of soil moisture content on surface albedo and soil thermal parameters at a tropical station

    Indian Academy of Sciences (India)

    Neena Sugathan; V Biju; G Renuka

    2014-07-01

    Half hourly data of soil moisture content, soil temperature, solar irradiance, and reflectance are measured during April 2010 to March 2011 at a tropical station, viz., Astronomical Observatory, Thiruvananthapuram, Kerala, India (76° 59’E longitude and 8°29’N latitude). The monthly, seasonal and seasonal mean diurnal variation of soil moisture content is analyzed in detail and is correlated with the rainfall measured at the same site during the period of study. The large variability in the soil moisture content is attributed to the rainfall during all the seasons and also to the evaporation/movement of water to deeper layers. The relationship of surface albedo on soil moisture content on different time scales are studied and the influence of solar elevation angle and cloud cover are also investigated. Surface albedo is found to fall exponentially with increase in soil moisture content. Soil thermal diffusivity and soil thermal conductivity are also estimated from the subsoil temperature profile. Log normal dependence of thermal diffusivity and power law dependence of thermal conductivity on soil moisture content are confirmed.

  3. Effective Albedo of Vegetated Terrain at L-Band

    Science.gov (United States)

    Kurum, Mehmet; O'Neill, Peggy E.; Lang, Roger H.

    2011-01-01

    This paper derives an explicit expression for an effective albedo of vegetated terrain from the zero- and multiple- order radiative transfer (RT) model comparison. The formulation establishes a direct physical link between the effective vegetation parameterization and the theoretical description of absorption and scattering within the canopy. The paper will present an evaluation of the derived albedo for corn canopies with data taken during an experiment at Alabama A&M Winfield A. Thomas Agricultural Research Station near Huntsville, Alabama in June, 1998. The test site consisted of two 50-m x 60-m plots - one with a bare surface and the other with grass cover - and four 30-m x 50-m plots of corn at different planting densities. One corn field was planted at a full density of 9.5 plants/sq m while the others were planted at 1/3, 1/2 and 2/3 of the full density. The fields were observed with a truck-mounted L-band radiometer at incident angle of 15 degree for the period of two weeks. Soil moisture (SM) changed daily due to irrigation and natural rainfall. Variations in gravimetric SM from 18 % to 34 % were seen during this period. Ground truth data, including careful characterization of the corn size and orientation statistics, and its dielectric, was also collected and used to simulate the effective albedo for the vegetation. The single-scattering albedo is defined as the fractional power scattered from individual vegetation constituents with respect to canopy extinction. It represents single-scattering properties of vegetation elements only, and is independent of ground properties. The values of the albedo get higher when there is dense vegetation (i.e. forest, mature corn, etc.) with scatterers, such as branches and trunks (or stalks in the case of corn), which are large with respect to the wavelength. This large albedo leads to a reduction in brightness temperature in the zero-order RT solution (known as tau-omega model). Higher-order multiple-scattering RT

  4. Surface Albedo Variation and Its Influencing Factors over Dongkemadi Glacier, Central Tibetan Plateau

    OpenAIRE

    Jie Wang; Yuhuan Cui; Xiaobo He; Jian Zhang; Shijiang Yan

    2015-01-01

    Glacier albedo plays a critical role in surface-atmosphere energy exchange, the variability of which influences glacier mass balance as well as water resources. Dongkemadi glacier in central Tibetan Plateau was selected as study area; this research used field measurements to verify Landsat TM-derived albedo and MOD10A1 albedo product and then analyzed the spatiotemporal variability of albedo over the glacier according to them, as well as its influence factors and the relationship with glacier...

  5. Effects of Albedo Addition on Pomegranate Juice Physicochemical, Volatile and Chemical Markers

    OpenAIRE

    Vázquez-Araújo, Laura; IV, Edgar; Carbonell-Barrachina, Ángel

    2015-01-01

    Five commercial juices, representing the five clusters of this juice, were characterized before and after maceration with 10% pomegranate albedo (control- and albedo treated (AT)-juices, respectively). Commercial juices were macerated with albedo homogenate for 24 h, and then the albedo was removed. Total soluble solids, titratable acidity, maturity index (MI), total phenolic content (TPC), volatile composition, and flavor profile were evaluate in control- and AT-juices. From all physico-chem...

  6. The effects of additional black carbon on the albedo of Arctic sea ice: variation with sea ice type and snow cover

    Directory of Open Access Journals (Sweden)

    A. A. Marks

    2013-07-01

    Full Text Available The response of the albedo of bare sea ice and snow-covered sea ice to the addition of black carbon is calculated. Visible light absorption and light-scattering cross-sections are derived for a typical first-year and multi-year sea ice with both "dry" and "wet" snow types. The cross-sections are derived using data from a 1970s field study that recorded both reflectivity and light penetration in Arctic sea ice and snow overlying sea ice. The variation of absorption cross-section over the visible wavelengths suggests black carbon is the dominating light-absorbing impurity. The response of first-year and multi-year sea ice albedo to increasing black carbon, from 1 to 1024 ng g−1, in a top 5 cm layer of a 155 cm-thick sea ice was calculated using a radiative-transfer model. The albedo of the first-year sea ice is more sensitive to additional loadings of black carbon than the multi-year sea ice. An addition of 8 ng g−1 of black carbon causes a decrease to 98.7% of the original albedo for first-year sea ice compared to a decrease to 99.7% for the albedo of multi-year sea ice, at a wavelength of 500 nm. The albedo of sea ice is surprisingly unresponsive to additional black carbon up to 100 ng g−1 . Snow layers on sea ice may mitigate the effects of black carbon in sea ice. Wet and dry snow layers of 0.5, 1, 2, 5 and 10 cm depth were added onto the sea ice surface. The albedo of the snow surface was calculated whilst the black carbon in the underlying sea ice was increased. A layer of snow 0.5 cm thick greatly diminishes the effect of black carbon in sea ice on the surface albedo. The albedo of a 2–5 cm snow layer (less than the e-folding depth of snow is still influenced by the underlying sea ice, but the effect of additional black carbon in the sea ice is masked.

  7. Existence result for the kinetic neutron transport problem with a general albedo boundary condition

    International Nuclear Information System (INIS)

    We present an existence result for the kinetic neutron transport equation with a general albedo boundary condition. The proof is constructive in the sense that we build a sequence that converges to the solution of the problem by iterating on the albedo term. Both nonhomogeneous and albedo boundary conditions are studied. (authors)

  8. Implementation of solar-reflective surfaces: Materials and utility programs

    Energy Technology Data Exchange (ETDEWEB)

    Bretz, S.; Akbari, H.; Rosenfeld, A.; Taha, H.

    1992-06-01

    This report focuses on implementation issues for using solar-reflective surfaces to cool urban heat islands, with specific examples for Sacramento, California. Advantages of solar-reflective surfaces for reducing energy use are: (1) they are cost-effective if albedo is increased during routine maintenance; (2) the energy savings coincide with peak demand for power; (3) there are positive effects on environmental quality; and (4) the white materials have a long service life. Important considerations when choosing materials for mitigating heat islands are identified as albedo, emissivity, durability, cost, pollution and appearance. There is a potential for increasing urban albedo in Sacramento by an additional 18%. Of residential roofs, we estimate that asphalt shingle and modified bitumen cover the largest area, and that built-up roofing and modified bitumen cover the largest area of commercial buildings. For all of these roof types, albedo may be increased at the time of re-roofing without any additional cost. When a roof is repaired, a solar-reflective roof coating may be applied to significantly increase albedo and extend the life of the root Although a coating may be cost-effective if applied to a new roof following installation or to an older roof following repair, it is not cost-effective if the coating is applied only to save energy. Solar-reflective pavement may be cost-effective if the albedo change is included in the routine resurfacing schedule. Cost-effective options for producing light-colored pavement may include: (1) asphalt concrete, if white aggregate is locally available; (2) concrete overlays; and (3) newly developed white binders and aggregate. Another option may be hot-rolled asphalt, with white chippings. Utilities could promote solar-reflective surfaces through advertisement, educational programs and cost-sharing of road resurfacing.

  9. The Effect of Host Star Spectral Energy Distribution and Ice-Albedo Feedback on the Climate of Extrasolar Planets

    CERN Document Server

    Shields, Aomawa L; Bitz, Cecilia M; Pierrehumbert, Raymond T; Joshi, Manoj M; Robinson, Tyler D

    2013-01-01

    Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. Here we explore this effect using a one dimensional (1-D), line-by-line, radiative-transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy-balance climate model. A three-dimensional general circulation model is also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models we simulate planets covered by ocean, land, and water ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibit a stronger ice-albedo feedback. We find that ice-covered conditions occur on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO2 (present atmospheric level on Ea...

  10. Albedo of low-energy light ions: case of anisotropic approximation of the collision integral

    International Nuclear Information System (INIS)

    For diffusion and slowing-down of low-energy light ions, the linear transport equation in the path length form was rederived taking into account a common anisotropic approximation of the collision integral. Assuming that the transport cross section depends only on the ion initial energy, the equation was Laplace-transformed over the relative path length and half-space albedo problem was considered by using the ordinary DPN technique. The Laplace-transformed reflection function was found in the lowest order of DPN flux approximation, and then was inverted analytically leading to the distribution of backscattered particles in the relative path-length. For the general power potential V(R)∞R-1/m the particle reflection coefficient was obtained as a series, while for the special case of the inverse square potential (m=1/2) this coefficient was determined in a compact form. The present approach was compared with the TRIM simulations of helium ion reflection, as well as with the Tilinin - Betz fitting formula and the MARLOWE simulations of proton reflection. (author)

  11. Reflective Teaching

    Science.gov (United States)

    Farrell, Thomas S. C.

    2013-01-01

    Thomas Farrell's "Reflective Teaching" outlines four principles that take teachers from just doing reflection to making it a way of being. Using the four principles, Reflective Practice Is Evidence Based, Reflective Practice Involves Dialogue, Reflective Practice Links Beliefs and Practices, and Reflective Practice Is a Way of Life,…

  12. 9969 Braille: Deep Space 1 infrared spectroscopy, geometric albedo, and classification

    Science.gov (United States)

    Buratti, B.J.; Britt, D.T.; Soderblom, L.A.; Hicks, M.D.; Boice, D.C.; Brown, R.H.; Meier, R.; Nelson, R.M.; Oberst, J.; Owen, T.C.; Rivkin, A.S.; Sandel, B.R.; Stern, S.A.; Thomas, N.; Yelle, R.V.

    2004-01-01

    Spectra of Asteroid 9969 Braille in the 1.25-2.6 ??m region returned by the Deep Space 1 (DS1) Mission show a ???10% absorption band centered at 2 ??m, and a reflectance peak at 1.6 ??m. Analysis of these features suggest that the composition of Braille is roughly equal parts pyroxene and olivine. Its spectrum between 0.4 and 2.5 ??m suggests that it is most closely related to the Q taxonomic type of asteroid. The spectrum also closely matches that of the ordinary chondrites, the most common type of terrestrial meteorite. The geometric albedo of Braille is unusually high (pv = 0.34), which is also consistent with its placement within the rarer classes of stony asteroids, and which suggests it has a relatively fresh, unweathered surface, perhaps due to a recent collision. ?? 2003 Elsevier Inc. All rights reserved.

  13. Calculation of characteristics of the albedo muon flux in the stratosphere

    International Nuclear Information System (INIS)

    Problem of albedo muon flux formation in the stratosphere is considered. Calculation of energy and angular characteristics of albedo muon flux by geomagnetic cut-off rigidity R=1; 4.5; 15 GV within the altitude range of 20≤hμ≤50 km is carried out. Comparison of experimental and calculational results indicates their fair agreement. The calculation shows that degree of albedo muon flux anisotropy increases with muon energy increase and the flux value is comparable with direct albedo proton flux in the energy area exceeding 200 MeV. The maximum in the integral albedo muon flux is achieved at altitudes hμ ≅30 km

  14. Durability of high-albedo roof coatings and implications for cooling energy savings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bretz, S.E.; Akbari, H.

    1994-06-01

    Twenty-six spot albedo measurements of roofs were made using a calibrated pyranometer. The roofs were surfaced with either an acrylic elastomeric coating, a polymer coating with an acrylic base, or a cementitious coating. Some of the roofs` albedos were measured before and after washing to determine whether the albedo decrease was permanent. Data indicated that most of the albedo degradation occurred within the first year, and even within the first two months. On one roof, 70% of one year`s albedo degradation occurred in the first two months. After the first year, the degradation slowed, with data indicating small losses in albedo after the second year. Measurements of seasonal cooling energy savings by Akbari et al. (1993) included the effects of over two months of albedo degradation. We estimated {approximately}20% loss in cooling-energy savings after the first year because of dirt accumulation. For most of the roofs we cleaned, the albedo was restored to within 90% of its initial value. Although washing is effective at restoring albedo, the increase in energy savings is temporary and labor costs are significant in comparison to savings. By our calculations, it is not cost-effective to hire someone to clean a high-albedo roof only to achieve energy savings. Thus, it would be useful to develop and identify dirt-resistant high-albedo coatings.

  15. Effect of land cover change on snow free surface albedo across the continental United States

    Science.gov (United States)

    Wickham, J.; Nash, M. S.; Barnes, C. A.

    2016-11-01

    Land cover changes (e.g., forest to grassland) affect albedo, and changes in albedo can influence radiative forcing (warming, cooling). We empirically tested albedo response to land cover change for 130 locations across the continental United States using high resolution (30 m-×-30 m) land cover change data and moderate resolution (~ 500 m-×-500 m) albedo data. The land cover change data spanned 10 years (2001 - 2011) and the albedo data included observations every eight days for 13 years (2001 - 2013). Empirical testing was based on autoregressive time series analysis of snow free albedo for verified locations of land cover change. Approximately one-third of the autoregressive analyses for woody to herbaceous or forest to shrub change classes were not significant, indicating that albedo did not change significantly as a result of land cover change at these locations. In addition, ~ 80% of mean differences in albedo arising from land cover change were less than ± 0.02, a nominal benchmark for precision of albedo measurements that is related to significant changes in radiative forcing. Under snow free conditions, we found that land cover change does not guarantee a significant albedo response, and that the differences in mean albedo response for the majority of land cover change locations were small.

  16. Evaluating biases in simulated land surface albedo from CMIP5 global climate models

    Science.gov (United States)

    Li, Yue; Wang, Tao; Zeng, Zhenzhong; Peng, Shushi; Lian, Xu; Piao, Shilong

    2016-06-01

    Land surface albedo is a key parameter affecting energy balance and near-surface climate. In this study, we used satellite data to evaluate simulated surface albedo in 37 models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). There was a systematic overestimation in the simulated seasonal cycle of albedo with the highest bias occurring during the Northern Hemisphere's winter months. The bias in surface albedo during the snow-covered season was classified into that in snow cover fraction (SCF) and albedo contrast (β1). There was a general overestimation of β1 due to the simulated snow-covered albedo being brighter than the observed value; negative biases in SCF were not always related to negative albedo biases, highlighting the need for realistic representation of snow-covered albedo in models. In addition, models with a lower leaf area index (LAI) tend to produce a higher surface albedo over the boreal forests during the winter, which emphasizes the necessity of improving LAI simulations in CMIP5 models. Insolation weighting showed that spring albedo biases were of greater importance for climate. The removal of albedo biases is expected to improve temperature simulations particularly over high-elevation regions.

  17. PAMELA's measurements of geomagnetically trapped and albedo protons

    CERN Document Server

    Bruno, A; Barbarino, G C; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Bottai, S; Bravar, U; Cafagna, F; Campana, D; Carbone, R; Carlson, P; Casolino, M; Castellini, G; Christian, E C; De Donato, C; de Nolfo, G A; De Santis, C; De Simone, N; Di Felice, V; Formato, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S; Krutkov, S Y; Kvashnin, A N; Lee, M; Leonov, A; Malakhov, V; Marcelli, L; Martucci, M; Mayorov, A G; Menn, W; Mergè, M; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Munini, R; Osteria, G; Palma, F; Panico, B; Papini, P; Pearce, M; Picozza, P; Ricci, M; Ricciarini, S B; Ryan, J M; Sarkar, R; Scotti, V; Simon, M; Sparvoli, R; Spillantini, P; Stochaj, S; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G I; Voronov, S A; Yurkin, Y T; Zampa, G; Zampa, N; Zverev, V G

    2015-01-01

    Data from the PAMELA satellite experiment were used to perform a detailed measurement of under-cutoff protons at low Earth orbits. On the basis of a trajectory tracing approach using a realistic description of the magnetosphere, protons were classified into geomagnetically trapped and re-entrant albedo. The former include stably-trapped protons in the South Atlantic Anomaly, which were analyzed in the framework of the adiabatic theory, investigating energy spectra, spatial and angular distributions; results were compared with the predictions of the AP8 and the PSB97 empirical trapped models. The albedo protons were classified into quasi-trapped, concentrating in the magnetic equatorial region, and un-trapped, spreading over all latitudes and including both short-lived (precipitating) and long-lived (pseudo-trapped) components. Features of the penumbra region around the geomagnetic cutoff were investigated as well. PAMELA observations significantly improve the characterization of the high energy proton populat...

  18. Albedo decreasing trend. White cars proposal and new urban scenarios

    Directory of Open Access Journals (Sweden)

    Niccolò Casiddu

    2014-05-01

    Full Text Available Global warming caused the decrease of the albedo. Emission reduction is the most widely proposed response to this problem. However simple ideas such as cool roofs and cool pavements seem successful remedies to counter the threat. However in Italy another strategy appears more effective. By changing from dark to pastel bright automotive colours a considerable increase of the albedo can be hypothesized: the effect should be from 32% to 50% of the results obtained with an extensive application of the “cool roofs” strategy. Such a proposal involves the creation of new, unexpected cityscapes. The city is a place where the perception of space changes. The car, by definition is an object in motion, but still present, sometimes redundant in the urban landscape. What will be the perceived relationship with buildings, streets, squares where the cars are all white or pastel colour?

  19. NEOWISE diameters and albedos: now available on PDS!

    Science.gov (United States)

    Masiero, Joseph R.; Mainzer, Amy K.; Bauer, James M.; Cutri, Roc M.; Grav, Tommy; Kramer, Emily A.; Nugent, Carolyn; Sonnett, Sarah M.; Stevenson, Rachel; Wright, Edward L.

    2016-10-01

    We present the recent PDS release of minor planet physical property data from the WISE/NEOWISE fully cryogenic, 3-band cryo, and post-cryo surveys as well as the first year of the NEOWISE-Reactivation survey. This release includes 165,865 diameters, visible albedos, near-infrared albedos, and/or beaming parameters for 140,493 unique minor planets. The published data include near-Earth asteroids, Main Belt asteroids, Hildas, Jupiter Trojans, Centaurs, active Main Belt objects and irregular satellites of Jupiter and Saturn. We provide an overview of the available data and discuss the key features of the PDS data set. The data are available online at: http://sbn.psi.edu/pds/resource/neowisediam.html.

  20. Retrieval of Planetary Rotation and Albedo from DSCOVR data

    OpenAIRE

    Kane, S.R.; Domagal-Goldman, S. D.; Herman, J.R.; Robinson, T. D; Stine, A. R.

    2015-01-01

    The field of exoplanets has rapidly expanded from the exclusivity of exoplanet detection to include exoplanet characterization. A key step towards this characterization will be retrieval of planetary albedos and rotation rates from highly undersampled imaging data. The Deep Space Climate Observatory (DSCOVR) provides a unique opportunity to test such retrieval methods using high cadence data of the sunlit surface of the Earth. There are two NASA instruments on board DSCOVR that can be used to...

  1. Methods of albedo electron densimetry. 2. Two-channel methods

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, V.B. (Tomskij Politekhnicheskij Inst. (USSR). Nauchno-Issledovatel' skij Inst. Ehlektronnoj Introskopii)

    1981-12-01

    Two-channel methods of densimetry permitting to realize control over density of materials with fluctuating composition which have been developed on the basis of one-channel albedo electron methods are considered. The two-channel methods permits to decrease the errors as compared with one-channel ones and when central-peripheral method is applied - also to increase the sensitivity to density variation. The methods are intended for control density of porous materials, especially in powder metallurgy, ceramics production, etc.

  2. Extended HXR Sources - Albedo Patches or Coronal Sources

    Science.gov (United States)

    Dennis, Brian R.

    2011-01-01

    Extended HXR sources in the presence of compact footpoints have been reported based on visibility amplitudes from different detectors. Attempts have been made to determine the location and extent of these sources through direct imaging. Results of this work will be described for simulated sources and for specific flares at different solar longitudes, with a discussion of the possible nature of the extended sources as either albedo patches or coronal sources or a combination of the two.

  3. The albedo problem in the case of multiple synthetic scattering taking place in a plane-symmetric slab

    International Nuclear Information System (INIS)

    The albedo problem for a slab in the presence of synthetic scattering as a substitute for anisotropic scattering is treated within the framework of time-independent one-velocity transport theory. The transport equation is transformed into a Boltzmann-type equation, from which expressions for the coefficients of reflection and transmission are deduced. Some interesting limiting cases are discussed. Extensive tables of R- and T-values are established for various slab thicknesses, various angles of incidence and various types of synthetic scattering both in the conservative case and in an example which is representative of the nonconservative case. (author)

  4. Signatures of volatiles in the lunar proton albedo

    Science.gov (United States)

    Schwadron, N. A.; Wilson, J. K.; Looper, M. D.; Jordan, A. P.; Spence, H. E.; Blake, J. B.; Case, A. W.; Iwata, Y.; Kasper, J. C.; Farrell, W. M.; Lawrence, D. J.; Livadiotis, G.; Mazur, J.; Petro, N.; Pieters, C.; Robinson, M. S.; Smith, S.; Townsend, L. W.; Zeitlin, C.

    2016-07-01

    We find evidence for hydrated material in the lunar regolith using "albedo protons" measured with the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO). Fluxes of these albedo protons, which are emitted from the regolith due to steady bombardment by high energy radiation (Galactic Cosmic Rays), are observed to peak near the poles, and are inconsistent with the latitude trends of heavy element enrichment (e.g., enhanced Fe abundance). The latitudinal distribution of albedo protons anti-correlates with that of epithermal or high energy neutrons. The high latitude enhancement may be due to the conversion of upward directed secondary neutrons from the lunar regolith into tertiary protons due to neutron-proton collisions in hydrated regolith that is more prevalent near the poles. The CRaTER instrument may thus provide important measurements of volatile distributions within regolith at the Moon and potentially, with similar sensors and observations, at other bodies within the Solar System.

  5. Possible Albedo Proton Signature of Hydrated Lunar Surface Layer

    Science.gov (United States)

    Schwadron, N.; Wilson, J. K.; Looper, M. D.; Jordan, A.; Spence, H. E.; Blake, J. B.; Case, A. W.; Iwata, Y.; Kasper, J. C.; Farrell, W. M.; Lawrence, D. J.; Livadiotis, G.; Mazur, J. E.; Petro, N. E.; Pieters, C. M.; Robinson, M. S.; Smith, S. S.; Townsend, L. W.; Zeitlin, C. J.

    2015-12-01

    We find evidence for a surface layer of hydrated material in the lunar regolith using "albedo protons" measured by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO). Fluxes of these albedo protons, which are emitted from the regolith due to steady bombardment by high-energy radiation (Galactic Cosmic Rays), are observed to peak near the poles, and cannot be accounted for by either heavy element enrichment (e.g., enhanced Fe abundance), or by deeply buried (> 50 cm) hydrogenous material. The latitudinal distribution of albedo protons does not correlate with that of epithermal or high-energy neutrons. The high latitude enhancement may be due to the conversion of upward directed secondary neutrons from the lunar regolith into tertiary protons due to neutron-proton collisions in a thin (~ 1-10 cm) layer of hydrated regolith near the surface that is more prevalent near the poles. The CRaTER instrument thus provides critical measurements of volatile distributions within lunar regolith and potentially, with similar sensors and observations, at other bodies within the Solar System.

  6. Effect of the reflection of underlying surface on sky radiance distribution

    Institute of Scientific and Technical Information of China (English)

    Chunping Yang; Ling Wei; Jian Wu; Jie Leng

    2007-01-01

    Sky radiance might be influenced by the multiple reflectance between the earth's albedo surface and the atmosphere. Based on the Lambert's law and the radiative transfer equation (RTE), a model is developed to calculate the additional sky radiance at wavelengths of 0.4-3 μm due to the reflectance contribution of the underlying surface. The iterative method is used to calculate sky radiance without the reflectance from underlying surface. The hybrid modified delta-Eddington approximation is used to compute the atmospheric reflection of the radiation from the earth's surface. An interaction factor is introduced to deal with the multiple reflectance between the atmosphere and the underlying surface. The sky radiance increment is evaluated for some different albedos of the earth's surface. The results show that the sky radiance increment rises rapidly while viewing zenith angle is near to 90°, and the larger the albedo of the earth's surface is, the more obvious this effect appears.

  7. Reflection, Reflective Practice and Embodied Reflective Practice

    OpenAIRE

    Leigh, Jennifer S; Bailey, Richard

    2013-01-01

    Although widely employed in professional practice of all kinds, ‘reflection’ and ‘reflective practice’ can be considered ‘success words’. That is, they elicit positive and supportive responses and yet the concepts are vague, ill-defined, contradictory and reflective skills can be hard to teach. Using examples from education and somatic movement therapy, we argue that a purely analytical approach to reflective practice that involves reflecting on thoughts alone is likely to lead into a negativ...

  8. Advancing Glaciological Applications of Remote Sensing with EO-1: (1) Mapping Snow Grain Size and Albedo on the Greenland Ice Sheet Using an Imaging Spectrometer, and (2) ALI Evaluation for Subtle Surface Topographic Mapping via Shape-from Shading

    Science.gov (United States)

    2003-01-01

    The Hyperion sensor, onboard NASA's Earth Observing-1 (EO-1) satellite,is an imaging spectroradiometer with 220 spectral bands over the spectral range from 0.4 - 2.5 microns. Over the course of summer 2001, the instrument acquired numerous images over the Greenland ice sheet. Our main motivation is to develop an accurate and robust approach for measuring the broadband albedo of snow from satellites. Satellite-derived estimates of broadband have typically been plagued with three problems: errors resulting from inaccurate atmospheric correction, particularly in the visible wavelengths from the conversion of reflectance to albedo (accounting for snow BRDE); and errors resulting from regression-based approaches used to convert narrowband albedo to broadband albedo. A typerspectral method has been developed that substantially reduces these three main sources of error and produces highly accurate estimates of snow albedo. This technique uses hyperspectral data from 0.98 - 1.06 microns, spanning a spectral absorption feature centered at 1.03 microns. A key aspect of this work is that this spectral range is within an atmospheric transmission window and reflectances are largely unaffected by atmospheric aerosols, water vapor, or ozone. In this investigation, we make broadband albedo measurements at four sites on the Greenland ice sheet: Summit, a high altitude station in central Greenland; the ETH/CU camp, a camp on the equilibrium line in western Greenland; Crawford Point, a site located between Summit and the ETH/CU camp; and Tunu, a site located in northeastern Greenland at 2000 m. altitude. Each of these sites has an automated weather station (AWS) that continually measures broadband albedo thereby providing validation data.

  9. Shape and Albedo from Shading (SAfS) for Pixel-Level dem Generation from Monocular Images Constrained by Low-Resolution dem

    Science.gov (United States)

    Wu, Bo; Chung Liu, Wai; Grumpe, Arne; Wöhler, Christian

    2016-06-01

    Lunar topographic information, e.g., lunar DEM (Digital Elevation Model), is very important for lunar exploration missions and scientific research. Lunar DEMs are typically generated from photogrammetric image processing or laser altimetry, of which photogrammetric methods require multiple stereo images of an area. DEMs generated from these methods are usually achieved by various interpolation techniques, leading to interpolation artifacts in the resulting DEM. On the other hand, photometric shape reconstruction, e.g., SfS (Shape from Shading), extensively studied in the field of Computer Vision has been introduced to pixel-level resolution DEM refinement. SfS methods have the ability to reconstruct pixel-wise terrain details that explain a given image of the terrain. If the terrain and its corresponding pixel-wise albedo were to be estimated simultaneously, this is a SAfS (Shape and Albedo from Shading) problem and it will be under-determined without additional information. Previous works show strong statistical regularities in albedo of natural objects, and this is even more logically valid in the case of lunar surface due to its lower surface albedo complexity than the Earth. In this paper we suggest a method that refines a lower-resolution DEM to pixel-level resolution given a monocular image of the coverage with known light source, at the same time we also estimate the corresponding pixel-wise albedo map. We regulate the behaviour of albedo and shape such that the optimized terrain and albedo are the likely solutions that explain the corresponding image. The parameters in the approach are optimized through a kernel-based relaxation framework to gain computational advantages. In this research we experimentally employ the Lunar-Lambertian model for reflectance modelling; the framework of the algorithm is expected to be independent of a specific reflectance model. Experiments are carried out using the monocular images from Lunar Reconnaissance Orbiter (LRO

  10. [Temporal and Spatial Characteristics of Lake Taihu Surface Albedo and Its Impact Factors].

    Science.gov (United States)

    Cao, Chang; Li, Xu-hui; Zhang, Mi; Liu, Shou-dong; Xiao, Wei; Xiao, Qi-tao; Xu, Jia-ping

    2015-10-01

    Lake surface albedo determines energy balance of water-atmospheric interface and water physical environment. Solar elevation angle, cloudiness, wind speed, water quality and other factors can affect lake surface albedo. Using solar radiation, wind speed, and water quality data (turbidity and chlorophyll-a concentration) which were observed in four eddy covariance sites (Meiliangwan, Dapukou, Bifenggang and Xiaoleishan i. e. MLW, DPK, BFG and XLS) in Lake Taihu and clearness index (k(t)), the influence of these factors on Lake Taihu surface albedo and the reasons that led to its spatial difference were investigated. The results showed that solar elevation angle played a leading role in the diurnal and seasonal change of lake surface albedo; lake surface albedo reached two peaks in 0 BFG > DPK > MLW. XLS and BFG belonged to the higher albedo group, while DPK and MLW belonged to the lower albedo group. The different biological environments caused by aquatic macrophytes and algae resulting in the spatial variation of Lake Taihu surface albedo. The relationship between albedo and chlorophyll-a concentration was not a very sensitive factor for indicating the outbreak of algae. This study can provide theoretical reference for lake albedo parameterization.

  11. Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone

    CERN Document Server

    Joshi, M

    2012-01-01

    M-stars comprise 80% of main-sequence stars, and so their planetary systems provide the best chance for finding habitable planets, i.e.: those with surface liquid water. We have modelled the broadband albedo or reflectivity of water ice and snow for simulated planetary surfaces orbiting two observed red dwarf stars (or M-stars) using spectrally resolved data of the Earth's cryosphere. The gradual reduction of the albedos of snow and ice at wavelengths greater than 1 ?m, combined with M-stars emitting a significant fraction of their radiation at these same longer wavelengths, mean that the albedos of ice and snow on planets orbiting M-stars are much lower than their values on Earth. Our results imply that the ice/snow albedo climate feedback is significantly weaker for planets orbiting M-stars than for planets orbiting G-type stars such as the Sun. In addition, planets with significant ice and snow cover will have significantly higher surface temperatures for a given stellar flux if the spectral variation of c...

  12. Climatic Benefit of Swiss Forest Cover Change: Including Albedo Change into Net Carbon Balance

    Science.gov (United States)

    Schwaab, J.; Lehning, M.; Bebi, P.

    2012-12-01

    Forests influence climate through physical, chemical and biological processes. It has been shown that warming caused by the comparatively low albedo of forests (albedo-effect), can reduce or even exceed cooling caused by carbon storage in forests (CO2-effect). Although warming caused by albedo and the amount of carbon storage depend on local characteristics, studies are lacking that investigate the combined local patterns of albedo and CO2-effect. Our study area, Switzerland, provides a variety of geographical features and thus the possibility to show how different geographical variables influence the two effects. We used the concept of radiative forcing to compare the effect of a changing albedo and a change in atmospheric CO2 concentration due to land cover change in the past. The change of forest cover was analysed over a period of 12 years based on aerial photographs. We estimate the albedo-effect by combining albedo data derived from the satellite sensor MODIS and data on snow cover derived from the satellite sensor AVHRR. Changes in carbon storage were calculated as differences in biomass and soil stocks of specific land cover classes. We found carbon storage induced cooling to be higher than albedo induced warming everywhere in Switzerland. However, especially in altitudes over 1200 m the albedo-effect reduced the benefits of carbon storage by more than 50%. In lower altitudes the albedo change was less important. The albedo-effect in altitudes above 1200 m was more relevant because of a more persistent snow-cover, a slightly higher global radiation and less additional carbon storage. The relevance of warming caused by an albedo change did not only depend on altitude, but also on the characteristics of forest cover change. While transitions from open land to open forest were accompanied by high albedo changes, the albedo change was only marginal if open forest turned into closed forest. Since snow cover has a large influence on the albedo effect, we included

  13. A REVISED ASTEROID POLARIZATION-ALBEDO RELATIONSHIP USING WISE/NEOWISE DATA

    International Nuclear Information System (INIS)

    We present a reanalysis of the relationship between asteroid albedo and polarization properties using the albedos derived from the Wide-field Infrared Survey Explorer. We find that the function that best describes this relation is a three-dimensional linear fit in the space of log (albedo)-log (polarization slope)-log (minimum polarization). When projected to two dimensions, the parameters of the fit are consistent with those found in previous work. We also define p* as the quantity of maximal polarization variation when compared with the albedo and present the best-fitting albedo-p* relation. Some asteroid taxonomic types stand out in this three-dimensional space, notably the E, B, and M Tholen types, while others cluster in clumps coincident with the S- and C-complex bodies. We note that both low albedo and small (D < 30 km) asteroids are underrepresented in the polarimetric sample, and we encourage future polarimetric surveys to focus on these bodies.

  14. Earth's albedo variations 1998-2014 as measured from ground-based earthshine observations

    CERN Document Server

    Palle, E; Montanes-Rodriguez, P Pilar; Shumko, A; Gonzalez-Merino, B; Lombilla, C Martinez; Jimenez-Ibarra, F; Shumko, S; Sanroma, E; Hulist, A; Miles-Paez, P; Murgas, F; Nowak, G; Koonin, SE

    2016-01-01

    The Earth's albedo is a fundamental climate parameter for understanding the radiation budget of the atmosphere. It has been traditionally measured from space platforms, but also from the ground for sixteen years from Big Bear Solar Observatory by observing the Moon. The photometric ratio of the dark (earthshine) to the bright (moonshine) sides of the Moon is used to determine nightly anomalies in the terrestrial albedo, with the aim is of quantifying sustained monthly, annual and/or decadal changes. We find two modest decadal scale cycles in the albedo, but with no significant net change over the sixteen years of accumulated data. Within the evolution of the two cycles, we find periods of sustained annual increases, followed by comparable sustained decreases in albedo. The evolution of the earthshine albedo is in remarkable agreement with that from the CERES instruments, although each method measures different slices of the Earth's Bond albedo.

  15. Can increasing albedo of existing ship wakes reduce climate change?

    Science.gov (United States)

    Crook, Julia A.; Jackson, Lawrence S.; Forster, Piers M.

    2016-02-01

    Solar radiation management schemes could potentially alleviate the impacts of global warming. One such scheme could be to brighten the surface of the ocean by increasing the albedo and areal extent of bubbles in the wakes of existing shipping. Here we show that ship wake bubble lifetimes would need to be extended from minutes to days, requiring the addition of surfactant, for ship wake area to be increased enough to have a significant forcing. We use a global climate model to simulate brightening the wakes of existing shipping by increasing wake albedo by 0.2 and increasing wake lifetime by ×1440. This yields a global mean radiative forcing of -0.9 ± 0.6 Wm-2 (-1.8 ± 0.9 Wm-2 in the Northern Hemisphere) and a 0.5°C reduction of global mean surface temperature with greater cooling over land and in the Northern Hemisphere, partially offsetting greenhouse gas warming. Tropical precipitation shifts southward but remains within current variability. The hemispheric forcing asymmetry of this scheme is due to the asymmetry in the distribution of existing shipping. If wake lifetime could reach ~3 months, the global mean radiative forcing could potentially reach -3 Wm-2. Increasing wake area through increasing bubble lifetime could result in a greater temperature reduction, but regional precipitation would likely deviate further from current climatology as suggested by results from our uniform ocean albedo simulation. Alternatively, additional ships specifically for the purpose of geoengineering could be used to produce a larger and more hemispherically symmetrical forcing.

  16. CVF spectrophotometry of Pluto - Correlation of composition with albedo

    International Nuclear Information System (INIS)

    The present time-resolved, 0.96-2.65-micron spectrophotometry for the Pluto-Charon system indicates night-to-night variations in the depths of the methane absorptions such that the bands' equivalent width is near minimum light. The interpretation of these data in terms of a depletion of methane in dark regions of the planet, relative to bright ones, is consistent with the Buie and Fink (1987) observations. The near-IR spectrum of Pluto seems to be dominated by surface frost. It is suggested that the dark equatorial regions of Pluto are redder than those of moderate albedo. 28 refs

  17. The scattering of radiation from a surface comprised of randomly distributed plates of differing reflective properties

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.M.R. [Computational Physics and Geophysics, Department of Earth Science and Engineering, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BP (United Kingdom)], E-mail: mmrw@nuclear-energy.demon.co.uk

    2008-08-15

    Using the equation of radiative transfer, we have studied the reflection and re-emergence of radiation from a statistically rough surface comprised of randomly distributed plates of differing reflectivities. The albedo and emergent angular distribution are obtained and compared with some approximate deterministic results; significant differences are noted. An estimate of the variance in the albedo is also given. The radiative transfer equation is solved using a two-dimensional stochastic ansatz of the same functional form as the random reflection coefficient. Applications to ice floes, tree canopies, the remote sensing of a forest of leaves and to the paint industry are noted.

  18. A simple albedo technique for calculating dose rate from scattered gamma rays

    International Nuclear Information System (INIS)

    This paper reports that the flux type concrete dose albedo for normally incident gamma rays is approximately a function of gamma energy only, regardless of the emerging angles. The flux type albedo for normally emerging gamma rays is also roughly a constant value over a wide range of incident angles for gamma energy greater than 0.66 MeV. Two concrete albedo curves are plotted as a function of gamma energy for a convenient estimation of the scatter dose rate

  19. System of data on albedo of low-energy photon radiation

    International Nuclear Information System (INIS)

    A set of data including semiempirical formulae for differential and spectral albedo, tables of the proper coefficients, ways of interpolation by energy and effective atomic number is prepared on the basis of calculations using the Monte Carlo method for photon radiation albedo. The set of data permits to obtain albedo characteristics in the energy range from 20 to 280 keV for any material with the effective atomic number from 4 to 30

  20. Vegetation controls on northern high latitude snow-albedo feedback: Observations and CMIP5 model simulations

    OpenAIRE

    Loranty, MM; Berner, LT; Goetz, SJ; Jin, Y.; Randerson, JT

    2014-01-01

    The snow-masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large-scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow-albedo feedback is controlled largely by the contrast between snow-covered and snow-free albedo (Δα), which influences predictions of future warming in coupled climate models, despite being poorly constrained at seasonal and century time scales. Here, ...

  1. The Dependence of the Ice-Albedo Feedback on Atmospheric Properties

    OpenAIRE

    von Paris, P.; Selsis, F.; Kitzmann, D.; Rauer, H.

    2013-01-01

    The ice-albedo feedback is a potentially important de-stabilizing effect for the climate of terrestrial planets. It is based on the positive feedback between decreasing surface temperatures, an increase of snow and ice cover and an associated increase in planetary albedo, which then further decreases surface temperature. A recent study shows that for M stars, the strength of the ice-albedo feedback is reduced This study investigates the influence of the atmosphere (in terms of surface pressur...

  2. A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data

    OpenAIRE

    N. F. Liu; Liu, Q.; Wang, L. Z.; Liang, S. L.; Wen, J.G.; Y. Qu; Liu, S H

    2013-01-01

    Land-surface albedo plays a critical role in the earth's radiant energy budget studies. Satellite remote sensing provides an effective approach to acquire regional and global albedo observations. Owing to cloud coverage, seasonal snow and sensor malfunctions, spatiotemporally continuous albedo datasets are often inaccessible. The Global LAnd Surface Satellite (GLASS) project aims at providing a suite of key land surface parameter datasets with high temporal resolution and high accuracy for a ...

  3. A revised asteroid polarization-albedo relationship using WISE/NEOWISE data

    OpenAIRE

    Masiero, Joseph R.; Mainzer, A. K.; Grav, T.; Bauer, J. M.; Wright, E. L.; McMillan, R. S.; Tholen, D. J.; Blain, A. W.

    2012-01-01

    We present a reanalysis of the relationship between asteroid albedo and polarization properties using the albedos derived from the Wide-field Infrared Survey Explorer. We find that the function that best describes this relation is a three-dimensional linear fit in the space of log (albedo)-log (polarization slope)-log (minimum polarization). When projected to two dimensions, the parameters of the fit are consistent with those found in previous work. We also define p^* as the quantity of maxim...

  4. A Method for Retrieving Daily Land Surface Albedo from Space at 30-m Resolution

    OpenAIRE

    Bo Gao; Huili Gong; Tianxing Wang

    2015-01-01

    Land surface albedo data with high spatio-temporal resolution are increasingly important for scientific studies addressing spatially and/or temporally small-scale phenomena, such as urban heat islands and urban land surface energy balance. Our previous study derived albedo data with 2–4-day and 30-m temporal and spatial resolution that have better spatio-temporal resolution than existing albedo data, but do not completely satisfy the requirements for monitoring high-frequency land surface cha...

  5. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations

    OpenAIRE

    Tao Wang; Shushi Peng; Gerhard Krinner; James Ryder; Yue Li; Sarah Dantec-Nédélec; Catherine Ottlé

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a d...

  6. Correction of broadband snow albedo measurements affected by unknown slope and sensor tilts

    OpenAIRE

    Weiser, Ursula; Olefs, Marc; Schöner, Wolfgang; Weyss, Gernot; Hynek, Bernhard

    2016-01-01

    Geometric effects induced by the underlying terrain slope or by tilt errors of the radiation sensors lead to an erroneous measurement of snow or ice albedo. Consequently, artificial diurnal albedo variations in the order of 1–20 % are observed. The present paper proposes a general method to correct tilt errors of albedo measurements in cases where tilts of both the sensors and the slopes are not accurately measured or known. We demonstrate that atmospheric parameters f...

  7. Mapping Surface Broadband Albedo from Satellite Observations: A Review of Literatures on Algorithms and Products

    OpenAIRE

    Ying Qu; Shunlin Liang; Qiang Liu; Tao He; Suhong Liu; Xiaowen Li

    2015-01-01

    Surface albedo is one of the key controlling geophysical parameters in the surface energy budget studies, and its temporal and spatial variation is closely related to the global climate change and regional weather system due to the albedo feedback mechanism. As an efficient tool for monitoring the surfaces of the Earth, remote sensing is widely used for deriving long-term surface broadband albedo with various geostationary and polar-orbit satellite platforms in recent decades. Moreover, the a...

  8. Incorporating remotely-sensed snow albedo into a spatially-distributed snowmelt model

    OpenAIRE

    Molotch, NP; Painter, TH; Bales, RC; Dozier, J.

    2004-01-01

    Basin-average albedo estimated from remotely-sensed Airborne Visible/Infrared Imaging Spectroradiometer (AVIRIS) data specific to the catchment typically differed by 20% from albedo estimated using a common snow-age-based empirical relation. In some parts of the basin, differences were as large as 0.31. Using the AVIRIS albedo estimates in a distributed snowmelt model that explicitly includes net solar radiation resulted in a much more accurate estimate of the timing and magnitude of snowmelt...

  9. Detecting Low-Contrast Features in the Cosmic Ray Albedo Proton Map of the Moon

    Science.gov (United States)

    Wilson, J. K.; Schwadron, N.; Spence, H. E.; Golightly, M. J.; Case, A. W.; Smith, S.; Blake, J. B.; Kasper, J.; Looper, M. D.; Mazur, J. E.; Townsend, L. W.; Zeitlin, C.; Stubbs, T. J.

    2014-01-01

    High energy cosmic rays constantly bombard the lunar regolith, producing (via nuclear evaporation) secondary 'albedo' or 'splash' particles like protons and neutrons, some of which escape back to space. Lunar Prospector and the Lunar Reconnaissance Orbiter (LRO), have shown that the energy distribution of albedo neutrons is modulated by the elemental composition of the lunar regolith, and by ice deposits in permanently shadowed polar craters. Here we investigate an analogous phenomenon with high energy ((is) approximately 100 MeV) lunar albedo protons.

  10. DOSIMETRIC PROPERTIES OF THE NEW TLD ALBEDO NEUTRON DOSEMETER AWST-TL-GD 04.

    Science.gov (United States)

    Haninger, T; Henniger, J

    2016-09-01

    A new official albedo dosemeter based on thermoluminescent detectors has been introduced in 2015 by the individual monitoring service of the Helmholtz Zentrum München for monitoring persons who are exposed occupationally against photon and neutron radiation. To enhance the sensitivity for fast neutrons, a new badge with an enlarged albedo window has been developed at TU Dresden. The properties of the new albedo dosemeter are discussed, and the results of official intercomparisons and field calibrations are shown. PMID:26405220

  11. New technique to improve the accuracy of albedo neutron dosimeter evaluations

    International Nuclear Information System (INIS)

    The calibration factor for albedo neutron dosimeters varies greatly depending upon the energy of the neutrons in the exposure. Calibration results obtained over an eight-year period at each Lawrence Livermore National Laboratory facility where neutron exposure may occur were reviewed. A stronger relationship than expected was found between the ratio of the readings of the 9-in. to 3-in. spheres and the percent thermal. Readings from personnel and albedo badges were reviewed. The readings were consistent with the use of a calibration factor for the albedo dosimeter which varies with changes in the ratio of the personnel and albedo dosimeter TLD readings. 2 references, 6 figures

  12. Neutronic calculations for a fast assembly by using two-group neutron albedo theory

    International Nuclear Information System (INIS)

    Under Two-Group Neutron Albedo Theory, the effective neutron multiplication factor, Keff, explicitly appears and therefore it is possible to obtain an explicit form of variation of Keff. A generalization of the two-group albedo theory can be used if a more detailed energy spectrum treatment is required. The two-group neutron albedo theory is well illustrated by the endeavor of calculating the key parameters for a fast assembly. The results obtained from diffusion approach and albedo method calculations have had excellent concordance. (author)

  13. Albedo neutron dosimetry and monitoring around the RECH-1 reactor neutron radiographic beam

    International Nuclear Information System (INIS)

    This paper describes the neutrons and gamma monitoring and albedo neutron dosimetry in a field around the RECH-1 neutron beam. Two kind of albedo dosimeters were used: Hankins and KfK Alnor. The calibration procedures and comparison of these albedo dosimeters performance were done. The dose equivalent results agree between 28%. The neutron dose distribution for person working near the beam, was obtained by routine monitoring with albedo dosimeter developed by Hankins. A monthly neutron dose with a maximum of 0,8 mSv and arithmetic mean of 0,4 mSv were found. The beam's gamma energy spectrum and its related dose were also studied. (author)

  14. Investigating the spread in surface albedo for snow-covered forests in CMIP5 models

    Science.gov (United States)

    Wang, Libo; Cole, Jason N. S.; Bartlett, Paul; Verseghy, Diana; Derksen, Chris; Brown, Ross; Salzen, Knut

    2016-02-01

    This study investigates the role of leaf/plant area index (LAI/PAI) specification on the large spread of winter albedo simulated by climate models. To examine the sensitivity of winter albedo to LAI, we perform a sensitivity analysis using two methods commonly used to compute albedo in snow-covered forests as well as diagnostic calculations within version 4.2 of the Canadian Atmospheric Model for which PAI is systematically varied. The results show that the simulated albedo is very sensitive to negative PAI biases, especially for smaller PAI values. The LAI and surface albedo of boreal forests in the presence of snow simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) models are evaluated using satellite observations. The evaluation of CMIP5 models suggest that inaccurate tree cover fraction due to improper plant functional type specification or erroneous LAI parameterization in some models explains, in part, an observed positive bias in winter albedo over boreal forest regions of the Northern Hemisphere. This contributes to a large intermodel spread in simulated surface albedo in the presence of snow over these regions and is largely responsible for uncertainties in simulated snow-albedo feedback strength. Errors are largest (+20-40%) in models with large underestimation of LAI but are typically within ±15% when simulated LAI is within the observed range. This study underscores the importance of accurate representation of vegetation distribution and parameters in realistic simulation of surface albedo.

  15. Investigating the spread of surface albedo in snow covered forests in CMIP5 models

    Science.gov (United States)

    Wang, Libo; Cole, Jason; Bartlett, Paul; Verseghy, Diana; Derksen, Chris; Brown, Ross; von Salzen, Knut

    2016-04-01

    This study investigates the role of leaf/plant area index (LAI/PAI) specification on the large spread of winter albedo simulated by climate models. To examine the sensitivity of winter albedo to LAI, we perform a sensitivity analysis using two methods commonly used to compute albedo in snow-covered forests as well as diagnostic calculations within version 4.2 of the Canadian Atmospheric Model for which PAI is systematically varied. The results show that the simulated albedo is very sensitive to negative PAI biases, especially for smaller PAI values. The LAI and surface albedo of boreal forests in the presence of snow simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) models are evaluated using satellite observations. The evaluation of CMIP5 models suggest that inaccurate tree cover fraction due to improper plant functional type specification or erroneous LAI parameterization in some models explains, in part, an observed positive bias in winter albedo over boreal forest regions of the Northern Hemisphere. This contributes to a large intermodel spread in simulated surface albedo in the presence of snow over these regions and is largely responsible for uncertainties in simulated snow-albedo feedback strength. Errors are largest (+20-40 %) in models with large underestimation of LAI but are typically within ±15% when simulated LAI is within the observed range. This study underscores the importance of accurate representation of vegetation distribution and parameters in realistic simulation of surface albedo.

  16. A Tailorable Structural Composite for GCR and Albedo Neutron Protection on the Lunar Surface Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A tailorable structural composite that will provide protection from the lunar radiation environment, including GCR and albedo neutrons will be developed. This...

  17. Derivation and Application of a Global Albedo yielding an Optical Brightness To Physical Size Transformation Free of Systematic Errors

    Science.gov (United States)

    Mulrooney, Dr. Mark K.; Matney, Dr. Mark J.

    2007-01-01

    Orbital object data acquired via optical telescopes can play a crucial role in accurately defining the space environment. Radar systems probe the characteristics of small debris by measuring the reflected electromagnetic energy from an object of the same order of size as the wavelength of the radiation. This signal is affected by electrical conductivity of the bulk of the debris object, as well as its shape and orientation. Optical measurements use reflected solar radiation with wavelengths much smaller than the size of the objects. Just as with radar, the shape and orientation of an object are important, but we only need to consider the surface electrical properties of the debris material (i.e., the surface albedo), not the bulk electromagnetic properties. As a result, these two methods are complementary in that they measure somewhat independent physical properties to estimate the same thing, debris size. Short arc optical observations such as are typical of NASA's Liquid Mirror Telescope (LMT) give enough information to estimate an Assumed Circular Orbit (ACO) and an associated range. This information, combined with the apparent magnitude, can be used to estimate an "absolute" brightness (scaled to a fixed range and phase angle). This absolute magnitude is what is used to estimate debris size. However, the shape and surface albedo effects make the size estimates subject to systematic and random errors, such that it is impossible to ascertain the size of an individual object with any certainty. However, as has been shown with radar debris measurements, that does not preclude the ability to estimate the size distribution of a number of objects statistically. After systematic errors have been eliminated (range errors, phase function assumptions, photometry) there remains a random geometric albedo distribution that relates object size to absolute magnitude. Measurements by the LMT of a subset of tracked debris objects with sizes estimated from their radar cross

  18. Some characteristics of the AEOI Neutriran Albedo Neutron Personnel Dosemeter

    International Nuclear Information System (INIS)

    The Neutriran Albedo Personnel Neutron Dosemeter (NAPND) is based on the combination of a sensitive polymer such as polycarbonate (PC) in contact with 6LiF or 10B pellets in a cadmium cover. By adding a 10B pellet in front, the design of the dosemeter can be such that when worn on the body, direct thermal neutron induced alpha tracks (TNIAT), albedo neutron induced alpha tracks (ANIAT) and fast neutron induced recoil tracks (FNIRT) can be simultaneously detected in a single electrochemically etched PC foil. To establish a national personnel neutron dosimetry service in Iran, different parameters such as the effect of 10B(n,α)7Li convertor thickness, Cd thickness and its diameter, dosemeter distance from the phantom, dosemeter angle with phantom and directional response were studied using different phantoms. Under optimised conditions, a sensitivity of 1500 tracks.cm-2.mSv-1 for 252Cf neutrons with a lowest value of 0.05 mSv was measured. The results of these studies are reported and discussed. (author)

  19. Lunar Proton Albedo Anomalies: Soil, Surveyors, and Statistics

    Science.gov (United States)

    Wilson, J. K.; Schwadron, N.; Spence, H. E.; Case, A. W.; Golightly, M. J.; Jordan, A.; Looper, M. D.; Petro, N. E.; Robinson, M. S.; Stubbs, T. J.; Zeitlin, C. J.; Blake, J. B.; Kasper, J. C.; Mazur, J. E.; Smith, S. S.; Townsend, L. W.

    2014-12-01

    Since the launch of LRO in 2009, the CRaTER instrument has been mapping albedo protons (~100 MeV) from the Moon. These protons are produced by nuclear spallation, a consequence of galactic cosmic ray (GCR) bombardment of the lunar regolith. Just as spalled neutrons and gamma rays reveal elemental abundances in the lunar regolith, albedo protons may be a complimentary method for mapping compositional variations. We presently find that the lunar maria have an average proton yield 0.9% ±0.3% higher than the average yield in the highlands; this is consistent with neutron data that is sensitive to the regolith's average atomic weight. We also see cases where two or more adjacent pixels (15° × 15°) have significantly anomalous yields above or below the mean. These include two high-yielding regions in the maria, and three low-yielding regions in the far-side highlands. Some of the regions could be artifacts of Poisson noise, but for completeness we consider possible effects from compositional anomalies in the lunar regolith, including pyroclastic flows, antipodes of fresh craters, and so-called "red spots". We also consider man-made landers and crash sites that may have brought elements not normally found in the lunar regolith.

  20. Analytical modeling of thermoluminescent albedo detectors for neutron dosimetry.

    Science.gov (United States)

    Glickstein, S S

    1983-02-01

    In order to gain an in-depth understanding of the neutron physics of a 6LiF TLD when used as an albedo neutron dosimeter, an analytical model was developed to simulate the response of a 6LiF chip. The analytical model was used to examine the sensitivity of the albedo TLD response to incident monoenergetic neutrons and to evaluate a multiple chip TLD neutron dosimeter. Contrary to initial experimental studies, which were hampered by statistical uncertainties, the analytical evaluation revealed that a three-energy-group detector could not reliably measure the dose equivalent to personnel exposed to multiple neutron spectra. The analysis clearly illustrates that there may be order of magnitude errors in the measured neutron dose if the dosimeter has not been calibrated for the same flux spectrum to which it is exposed. As a result of this analysis, it was concluded that, for personnel neutron monitoring, a present TLD badge must be calibrated for the neutron spectrum into which the badge is to be introduced. The analytical model used in this study can readily be adopted for evaluating other possible detectors and shield material that might be proposed in the future as suitable for use in neutron dosimetry applications. PMID:6826377

  1. 利用中国通量网和MODIS数据评估MISR地表反照率产品%Evaluation of MISR surface albedo data using ChinaFLUX and MODIS data

    Institute of Scientific and Technical Information of China (English)

    吴宏伊; 童玲

    2012-01-01

    Land surface albedo is a critical variable reflecting the surface energy balance. This paper validated and analyzed MISR surface albedo data through in-situ measurements from ChinaFLUX and MODIS albedo products. Eight sites in ChinaFLUX were chosen and corresponding satellite products were extracted. The results showed that MISR shortwave albedo data agree with ground measurements in many sites. The differences between these two data source are less than 0. 04 in most cases. MISR albedo data match MODIS albedo products even better. For all sites, the bias is 0.018 and RMSe is about 0. 04. Generally, MISR has surface albedo products with high inversion quality.%地表反照率是反映地表能量平衡的重要参数.本文通过中国陆地生态系统通量观测研究网络的实测反照率和MODIS的地表反照率产品对MISR的短波反照率数据进行验证和分析:提取了中国通量网中的8个站点的数据和对应的MODIS、MISR的反照率产品用于验证.验证的结果显示,在多数站点,MISR短波反照率能与地面数据相吻合,大部分的反演误差都集中在0.04以内;MISR与MODIS短波反照率的吻合度更高,总体的误差为0.018,均方根误差在0.04左右.总的来说,MISR地表反照率产品具有较高的反演质量.

  2. EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY

    International Nuclear Information System (INIS)

    First generation space-based optical coronagraphic telescopes will obtain images of cool gas- and ice-giant exoplanets around nearby stars. Exoplanets lying at planet-star separations larger than about 1 AU-where an exoplanet can be resolved from its parent star-have spectra that are dominated by reflected light to beyond 1 μm and punctuated by molecular absorption features. Here, we consider how exoplanet albedo spectra and colors vary as a function of planet-star separation, metallicity, mass, and observed phase for Jupiter and Neptune analogs from 0.35 to 1 μm. We model Jupiter analogs with 1x and 3x the solar abundance of heavy elements, and Neptune analogs with 10x and 30x the solar abundance of heavy elements. Our model planets orbit a solar analog parent star at separations of 0.8 AU, 2 AU, 5 AU, and 10 AU. We use a radiative-convective model to compute temperature-pressure profiles. The giant exoplanets are found to be cloud-free at 0.8 AU, possess H2O clouds at 2 AU, and have both NH3 and H2O clouds at 5 AU and 10 AU. For each model planet we compute moderate resolution (R = λ/Δλ ∼ 800) albedo spectra as a function of phase. We also consider low-resolution spectra and colors that are more consistent with the capabilities of early direct imaging capabilities. As expected, the presence and vertical structure of clouds strongly influence the albedo spectra since cloud particles not only affect optical depth but also have highly directional scattering properties. Observations at different phases also probe different volumes of atmosphere as the source-observer geometry changes. Because the images of the planets themselves will be unresolved, their phase will not necessarily be immediately obvious, and multiple observations will be needed to discriminate between the effects of planet-star separation, metallicity, and phase on the observed albedo spectra. We consider the range of these combined effects on spectra and colors. For example, we find that the

  3. Global climate impacts of bioenergy from forests: implications from biogenic CO2 fluxes and surface albedo

    Science.gov (United States)

    Cherubini, Francesco; Bright, Ryan; Strømman, Anders

    2013-04-01

    Production of biomass for bioenergy can alter biogeochemical and biogeophysical mechanisms, thus affecting local and global climate. Recent scientific developments mainly embraced impacts from land use changes resulting from area-expanded biomass production, with several extensive insights available. Comparably less attention, however, is given to the assessment of direct land surface-atmosphere climate impacts of bioenergy systems under rotation such as in plantations and forested ecosystems, whereby land use disturbances are only temporary. In this work, we assess bioenergy systems representative of various biomass species (spruce, pine, aspen, etc.) and climatic regions (US, Canada, Norway, etc.), for both stationary and vehicle applications. In addition to conventional greenhouse gas (GHG) emissions through life cycle activities (harvest, transport, processing, etc.), we evaluate the contributions to global warming of temporary effects resulting from the perturbation in atmospheric carbon dioxide (CO2) concentration caused by the timing of biogenic CO2 fluxes and in surface reflectivity (albedo). Biogenic CO2 fluxes on site after harvest are directly measured through Net Ecosystem Productivity (NEP) chronosequences from flux towers established at the interface between the forest canopy and the atmosphere and are inclusive of all CO2 exchanges occurring in the forest (e.g., sequestration of CO2 in growing trees, emissions from soil respiration and decomposition of dead organic materials). These primary data based on empirical measurements provide an accurate representation of the forest carbon sink behavior over time, and they are used in the elaboration of high-resolution IRFs for biogenic CO2 emissions. Chronosequence of albedo values from clear-cut to pre-harvest levels are gathered from satellite data (MODIS black-sky shortwave broadband, Collection 5, MCD43A). Following the cause-effect chain from emissions to damages, through radiative forcing and changes

  4. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique improve the simulation accuracy of mean seasonal (October throughout May snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the

  5. The influence of rolled erosion control systems on soil temperature and surface albedo: part I. A greenhouse experiment

    International Nuclear Information System (INIS)

    A greenhouse study examined the influences of various surface covers (a bare control soil and seven rolled erosion control systems—RECS) on surface radiative properties, and soil temperature. In our companion paper we examine relationships with soil moisture, biomass production, and nutrient assimilation. Randomization and replication were key components to our study of microclimate under tropical radiation conditions. The bare Oxisol control soil exhibited the most extreme microclimatic conditions with the lowest albedo (not significantly different from that of P300© North American Green, a dark green polypropylene system), and the highest mean and maximum hourly temperatures recorded at depths of 5 and 8 cm. This hostile climatic environment was not conducive to biomass production or moisture storage and it is likely that the observed soil surface crusts impeded plant emergence. Rolled erosion control systems, on the other hand, generally moderated soil temperatures by reflecting more shortwave radiation, implying less heat energy at the surface for conduction to the soil. The result was that RECS exhibited lower mean soil temperatures, higher minimum temperatures and lower maximum soil temperatures. An aspen excelsior system (Curlex I© Excelsior) had the highest albedo and the soil beneath this system exhibited the greatest temperature modulation. Open-weave systems composed of jute (Geojute© Price & Pictures) and coconut fibers (BioD-Mat 70© RoLanka) were the RECS most similar in temperature response to the bare control soil. Other systems examined were intermediate in their temperature response and surface albedo (i.e., SC150BN© North American Green, C125© North American Green and Futerra© Conwed Fibers). (author)

  6. ALBEDO MODELS FOR SNOW AND ICE ON A FRESHWATER LAKE. (R824801)

    Science.gov (United States)

    AbstractSnow and ice albedo measurements were taken over a freshwater lake in Minnesota for three months during the winter of 1996¯1997 for use in a winter lake water quality model. The mean albedo of new snow was measured as 0.83±0.028, while the...

  7. Assimilation of satellite observed snow albedo in a land surface model

    NARCIS (Netherlands)

    Malik, M.J.; Velde, van der R.; Vekerdy, Z.; Su, Z.

    2012-01-01

    This study assesses the impact of assimilating satellite-observed snow albedo on the Noah land surface model (LSM)-simulated fluxes and snow properties. A direct insertion technique is developed to assimilate snow albedo into Noah and is applied to three intensive study areas in North Park (Colorado

  8. The influence of inter-annually varying albedo on regional climate and drought

    KAUST Repository

    Meng, Xianhong

    2013-05-05

    Albedo plays an important role in land-atmosphere interactions and local climate. This study presents the impact on simulating regional climate, and the evolution of a drought, when using the default climatological albedo as is usually done in regional climate modelling, or using the actual observed albedo which is rarely done. Here, time-varying satellite derived albedo data is used to update the lower boundary condition of the Weather Research and Forecasting regional climate model in order to investigate the influence of observed albedo on regional climate simulations and also potential changes to land-atmosphere feedback over south-east Australia. During the study period from 2000 to 2008, observations show that albedo increased with an increasingly negative precipitation anomaly, though it lagged precipitation by several months. Compared to in-situ observations, using satellite observed albedo instead of the default climatological albedo provided an improvement in the simulated seasonal mean air temperature. In terms of precipitation, both simulations reproduced the drought that occurred from 2002 through 2006. Using the observed albedo produced a drier simulation overall. During the onset of the 2002 drought, albedo changes enhanced the precipitation reduction by 20 % on average, over locations where it was active. The area experiencing drought increased 6.3 % due to the albedo changes. Two mechanisms for albedo changes to impact land-atmosphere drought feedback are investigated. One accounts for the increased albedo, leading to reduced turbulent heat flux and an associated decrease of moist static energy density in the planetary boundary layer; the other considers that enhanced local radiative heating, due to the drought, favours a deeper planetary boundary layer, subsequently decreasing the moist static energy density through entrainment of the free atmosphere. Analysis shows that drought related large-scale changes in the regional climate favour a

  9. ARM Climate Research Facility Spectral Surface Albedo Value-Added Product (VAP) Report

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, S; Gaustad, K; Long, C; Mlawer, E

    2011-07-15

    This document describes the input requirements, output data products, and methodology for the Spectral Surface Albedo (SURFSPECALB) value-added product (VAP). The SURFSPECALB VAP produces a best-estimate near-continuous high spectral resolution albedo data product using measurements from multifilter radiometers (MFRs). The VAP first identifies best estimates for the MFR downwelling and upwelling shortwave irradiance values, and then calculates narrowband spectral albedo from these best-estimate irradiance values. The methodology for finding the best-estimate values is based on a simple process of screening suspect data and backfilling screened and missing data with estimated values when possible. The resulting best-estimate MFR narrowband spectral albedos are used to determine a daily surface type (snow, 100% vegetation, partial vegetation, or 0% vegetation). For non-snow surfaces, a piecewise continuous function is used to estimate a high spectral resolution albedo at 1 min temporal and 10 cm-1 spectral resolution.

  10. Retrieval of Planetary Rotation and Albedo from DSCOVR data

    CERN Document Server

    Kane, S R; Herman, J R; Robinson, T D; Stine, A R

    2015-01-01

    The field of exoplanets has rapidly expanded from the exclusivity of exoplanet detection to include exoplanet characterization. A key step towards this characterization will be retrieval of planetary albedos and rotation rates from highly undersampled imaging data. The Deep Space Climate Observatory (DSCOVR) provides a unique opportunity to test such retrieval methods using high cadence data of the sunlit surface of the Earth. There are two NASA instruments on board DSCOVR that can be used to achieve this task: the NASA instruments Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). Here we briefly describe the properties of these instruments and the exoplanetary science that can be explored with their data products. These are described within the context of future NASA direct imaging missions for exoplanets.

  11. Radiative Albedo from a Linearly Fibered Half Space

    CERN Document Server

    Grzesik, J A

    2016-01-01

    A growing acceptance of fiber reinforced composite materials imparts some relevance to exploring the effects which a predominantly linear scattering lattice may have upon interior radiant transport. Indeed, a central feature of electromagnetic wave propagation within such a lattice, if sufficiently dilute, is ray confinement to cones whose half-angles are set by that between lattice and the incident ray. When such propagation is subordinated to a viewpoint of photon transport, one arrives at a somewhat simplified variant of the Boltzmann equation with spherical scattering demoted to its cylindrical counterpart. With a view to initiating a hopefully wider discussion of such phenomena, we follow through in detail the half-space albedo problem. This is done first along canonical lines that harness the Wiener-Hopf technique, and then once more in a discrete ordinates setting via flux decomposition along the eigenbasis of the underlying attenuation/scattering matrix. Good agreement is seen to prevail. We further s...

  12. A digital file of the lunar normal Albedo

    Science.gov (United States)

    Wildey, R.L.

    1977-01-01

    A digital file of the normal albedo of the Moon has been produced at a resolution of about 1/550 of a lunar diameter (about 6.3 km). The file was produced from five photographs taken with the 61-cm reflector of the Northern Arizona University Astrophysical Observatory. No mosaicking was necessary. Spatial control is selenodetic rather than landmark-morphologic. Photometric control is provided through a combination of electrography and regular photoelectric photometry. Pixel photometric function corrections are employed. The file was provided as data base for the Lunar Consortium. Brief discussion of the scientific implications of the frequency histogram is offered, and the negligibility of lunar limb darkening below e{open} = 77?? is affirmed. It is specifically desired not to withhold these data from publication while more significant and detailed scientific interpretation is carried on. ?? 1977 D. Reidel Publishing Company, Dordrecht-Holland.

  13. Modeling radiative transfer in tropical rainforest canopies: sensitivity of simulated albedo to canopy architectural and optical parameters

    Directory of Open Access Journals (Sweden)

    Sílvia N. M. Yanagi

    2011-12-01

    Full Text Available This study evaluates the sensitivity of the surface albedo simulated by the Integrated Biosphere Simulator (IBIS to a set of Amazonian tropical rainforest canopy architectural and optical parameters. The parameters tested in this study are the orientation and reflectance of the leaves of upper and lower canopies in the visible (VIS and near-infrared (NIR spectral bands. The results are evaluated against albedo measurements taken above the K34 site at the INPA (Instituto Nacional de Pesquisas da Amazônia Cuieiras Biological Reserve. The sensitivity analysis indicates a strong response to the upper canopy leaves orientation (x up and to the reflectivity in the near-infrared spectral band (rNIR,up, a smaller sensitivity to the reflectivity in the visible spectral band (rVIS,up and no sensitivity at all to the lower canopy parameters, which is consistent with the canopy structure. The combination of parameters that minimized the Root Mean Square Error and mean relative error are Xup = 0.86, rVIS,up = 0.062 and rNIR,up = 0.275. The parameterizations performed resulted in successful simulations of tropical rainforest albedo by IBIS, indicating its potential to simulate the canopy radiative transfer for narrow spectral bands and permitting close comparison with remote sensing products.Este estudo avalia a sensibilidade do albedo da superfície pelo Simulador Integrado da Biosfera (IBIS a um conjunto de parâmetros que representam algumas propriedades arquitetônicas e óticas do dossel da floresta tropical Amazônica. Os parâmetros testados neste estudo são a orientação e refletância das folhas do dossel superior e inferior nas bandas espectrais do visível (VIS e infravermelho próximo (NIR. Os resultados são avaliados contra observações feitas no sítio K34 pertencente ao Instituto Nacional de Pesquisas da Amazônia (INPA na Reserva Biológica de Cuieiras. A análise de sensibilidade indica uma forte resposta aos parâmetros de orienta

  14. MISR Level 3 Component Global Albedo product in netCDF format covering a month V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MISR Level 3 Component Global Albedo publicly available product in netCDF format covering a month. (Suggested Usage: This file contains the global albedo product...

  15. MISR Level 3 FIRSTLOOK Global Albedo product in netCDF format covering a day V002

    Data.gov (United States)

    National Aeronautics and Space Administration — MISR Level 3 FIRSTLOOK Component Global Albedo publicly available product in netCDF format covering a day. (Suggested Usage: This file contains the global albedo...

  16. MISR Level 3 Component Global Albedo product in netCDF format covering a day V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MISR Level 3 Component Global Albedo publicly available product in netCDF format covering a day. (Suggested Usage: This file contains the global albedo product...

  17. MISR Level 3 FIRSTLOOK Global Albedo product in netCDF format covering a month V002

    Data.gov (United States)

    National Aeronautics and Space Administration — MISR Level 3 FIRSTLOOK Component Global Albedo publicly available product in netCDF format covering a month. (Suggested Usage: This file contains the global albedo...

  18. MISR Level 3 Component Global Albedo product in netCDF format covering a year V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MISR Level 3 Component Global Albedo publicly available product in netCDF format covering a year. (Suggested Usage: This file contains the global albedo product...

  19. Surface albedo darkening from wildfires in northern sub-Saharan Africa

    Science.gov (United States)

    Gatebe, C. K.; Ichoku, C. M.; Poudyal, R.; Román, M. O.; Wilcox, E.

    2014-05-01

    Northern sub-Saharan Africa (NSSA) has a wide variety of climate zones or biomes, where albedo dynamics are highly coupled with vegetation dynamics and fire disturbances. Quantifying surface albedo variations due to fire disturbances on time scales of several months to several years is complex and is made worse by lack of accurate and spatially consistent surface albedo data. Here, we estimate the surface albedo effect from wildfires in different land cover types in the NSSA region using Moderate Resolution Imaging Spectroradiometer (MODIS) multi-year observational data (2003-11). The average decrease in albedo after fires at the scale of 1 km MODIS footprint is -0.002 02 ± 0.000 03 for woody savanna and -0.002 22 ± 0.000 03 for savanna. These two land cover types together account for >86% of the total MODIS fire count between 2003 and 2011. We found that only a small fraction of the pixels (≦̸10%) burn in two successive years and about 47% had any fire recurrence in 9 years. The study also derived the trajectories of post-fire albedo dynamics from the percentages of pixels that recover to pre-fire albedo values each year. We found that the persistence of surface albedo darkening in most land cover types in the NSSA region is limited to about 6-7 years, after which at least 99% of the burnt pixels recover to their pre-fire albedo. Our results provide critical information for deriving necessary input to various models used in determining the effects of albedo change due to wild fires in the NSSA region.

  20. LRO/LAMP Maps of the Lunar Poles: Survey of Nightside and Dayside Far-UV Albedos

    Science.gov (United States)

    Retherford, K. D.; Gladstone, R.; Stern, S. A.; Miles, P. F.; Egan, A.; Hendrix, A. R.; Parker, J.; Kaufmann, D.; Horvath, D.; Greathouse, T. K.; Versteeg, M.; Steffl, A. J.; Mukherjee, J.; Davis, M. W.; Bayless, A. J.; Rojas, P.; Feldman, P. D.; Hurley, D. M.; Pryor, W. R.; Slater, D.

    2011-12-01

    The Lyman Alpha Mapping Project (LAMP) is an ultraviolet (UV) spectrograph on the Lunar Reconnaissance Orbiter (LRO) that is designed to map the lunar albedo at far-UV wavelengths. LAMP primarily measures interplanetary HI Lyman-alpha sky-glow and FUV starlight reflected from the night-side lunar surface to pioneer an innovative technique for studying the permanently shadowed regions (PSRs) near the poles. Dayside observations are also obtained, when convenient, using a pinhole in our aperture door to limit the bright flux to the dynamic range of our sensitive detector. The albedos determined using the two observing methods provide useful comparisons, since the nightside illumination is diffuse and the dayside solar illumination is not. The diffuse source lends itself to determination of the single scattering parameter, while the point source is useful for phase angle relation studies. We investigate the polar regions for large scale far-UV spectral trends related to general surface properties of the poles as determined with LRO and other recent missions, and report our initial results.

  1. Site-specific global warming potentials of biogenic CO2 for bioenergy: contributions from carbon fluxes and albedo dynamics

    International Nuclear Information System (INIS)

    Production of biomass for bioenergy can alter biogeochemical and biogeophysical mechanisms, thus affecting local and global climate. Recent scientific developments have mainly embraced impacts from land use changes resulting from area-expanded biomass production, with several extensive insights available. Comparably less attention, however, has been given to the assessment of direct land surface–atmosphere climate impacts of bioenergy systems under rotation such as in plantations and forested ecosystems, whereby land use disturbances are only temporary. Here, following IPCC climate metrics, we assess bioenergy systems in light of two important dynamic land use climate factors, namely, the perturbation in atmospheric carbon dioxide (CO2) concentration caused by the timing of biogenic CO2 fluxes, and temporary perturbations to surface reflectivity (albedo). Existing radiative forcing-based metrics can be adapted to include such dynamic mechanisms, but high spatial and temporal modeling resolution is required. Results show the importance of specifically addressing the climate forcings from biogenic CO2 fluxes and changes in albedo, especially when biomass is sourced from forested areas affected by seasonal snow cover. The climate performance of bioenergy systems is highly dependent on biomass species, local climate variables, time horizons, and the climate metric considered. Bioenergy climate impact studies and accounting mechanisms should rapidly adapt to cover both biogeochemical and biogeophysical impacts, so that policy makers can rely on scientifically robust analyses and promote the most effective global climate mitigation options. (letter)

  2. Approach and procedure of measuring the albedo of urban prototype%城市模型反射率测量方法与运用

    Institute of Scientific and Technical Information of China (English)

    谭康豪; 覃英宏; 苏益声; 梁槚; 庞如月

    2016-01-01

    介绍了一种测试城市模型反射率的试验方法。制作10个条形和十字形的城市模型进行测试,观测路面不同反射率对城市反射率的影响,并将实测模型反射率与ASTM E1918-06规范计算结果进行对比。研究发现:瞬时太阳辐射强度变化值在规范允许范围内,模型计算的反射率与ASTM E1918-06测量值的误差在0~0.1之间。当峡谷纵横比(建筑物高度与路面宽度之比)为1.0时,路面反射率从0.15提高到0.65,城市峡谷反射率增幅在0~0.30之间;提高路面反射率并不能有效提高城市峡谷反射率,尤其是纵横比较大的深峡谷。城市峡谷中的多重反射抑制城市反射率的提高。同时,反射路面将给行人增加额外的辐射通量,可能带来热不适感和眩光刺眼等问题。因此,应谨慎看待反射路面作为一个缓解城市热岛效应策略。%A new method of measuring the albedo of urban prototype is proposed.The method is used to measure ten urban prototypes with different pavement reflectivity and with south-north orientation,west-east orientation and cross-street orientation,respectively.The results are compared with those obtained by the ASTM E1918-06 and the modified ASTM E1918-06.It is found that when the variation of the incident solar intensity is less than 20 W/m2 (a tolerant error stated by ASTM E1918A),the ASTM E1918-06 can either underestimate or overestimate the albedo of the urban canyon prototype up to 0.10.For an urban canyon (UC)with an aspect ratio of 1.0,an change from 0.15 to 0.65 of pavement albedo would cause an increase of the albedo of the UC from about 0.15 to 0.35 if the albedo of the roof and wall is about 0.40. Raising the albedo of the pavement in a UC is not an effective way to increase the albedo of the urban area, especially for UC with great aspect ratio.For low aspect ratio UC,raising the albedo of the pavement or of the parking lot introduces a sizable

  3. Procedures for calculation of the albedo with OLI-Landsat 8 images: Application to the Brazilian semi-arid

    OpenAIRE

    Bernardo B. da Silva; Alexandra C. Braga; Célia C. Braga; Leidjane M. M. de Oliveira; Suzana M. G. L. Montenegro; Bernardo Barbosa Junior

    2016-01-01

    ABSTRACT The surface albedo plays an important role in the exchanges of energy and mass in the planetary boundary layer. Therefore, changes in albedo affect the balance of radiation and energy at the surface, which can be detected with its monitoring. Albedo determination has been performed through various sensors, but there is not yet any publication dealing with albedo calculation procedures using OLI (Operational Land Imager) - Landsat 8 images. The objective of the study is to present the...

  4. Representation of vegetation effects on the snow-covered albedo in the Noah land surface model with multiple physics options

    OpenAIRE

    Park, S.; Park, S. K.

    2015-01-01

    Snow albedo plays a critical role in calculating the energy budget, but parameterization of the snow surface albedo is still under great uncertainty. It varies with snow grain size, snow cover thickness, snow age, forest shading factor and other variables. Snow albedo of forest is typically lower than that of short vegetation; thus snow albedo is dependent on the spatial distributions of characteristic land cover and on the canopy density and structure. In the No...

  5. Arctic and Antarctic diurnal and seasonal variations of snow albedo from multiyear Baseline Surface Radiation Network measurements

    OpenAIRE

    Wang, Xianwei; Zender, Charles S

    2011-01-01

    This study analyzes diurnal and seasonal variations of snow albedo at four Baseline Surface Radiation Network stations in the Arctic and Antarctica from 2003 to 2008 to elucidate similarities and differences in snow albedo diurnal cycles across geographic zones and to assess how diurnal changes in snow albedo affect the surface energy budget. At the seasonal scale, the daily albedo for the perennial snow at stations South Pole and Georg von Neumayer in Antarctica has a similar symmetric varia...

  6. Applying measured reflection from the ground to simulations of thermal perfromance of solar collectors

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon

    2009-01-01

    and the azimuth of the surface in question. The paper will present an analysis of simulations of the thermal performance of solar collectors using the standard description of the albedo and using the albedo determined by the measurements. It will be elucidated how important an accurate description...... of the reflection from the ground is for the thermal performance of solar collectors.......Solar radiation on tilted and vertical surfaces in the Arctic is, in large parts of the year, strongly influenced by reflection from snow. In connection with planning and optimization of energy efficient buildings and solar energy systems in the Arctic, it is important to have an accurate...

  7. Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000-2013)

    NARCIS (Netherlands)

    Alexander, P. M.; Tedesco, M.; Fettweis, X.; Van De Wal, R. S W; Smeets, C. J P P; Van Den Broeke, M. R.

    2014-01-01

    Accurate measurements and simulations of Greenland Ice Sheet (GrIS) surface albedo are essential, given the role of surface albedo in modulating the amount of absorbed solar radiation and meltwater production. In this study, we assess the spatio-temporal variability of GrIS albedo during June, July,

  8. Planetary Temperatures : Early Estimates, Lowell, and the Albedo of the Earth

    Science.gov (United States)

    Lorenz, Ralph

    2016-10-01

    While it was recognized by Huygens, as soon as the architecture of the solar system was understood, that outer planets would be much cooler than Earth, quantitative estimation of planetary temperatures only became possible with understanding of radiant heat, and specifically the Stefan law relating heat flux to the fourth power of absolute temperature. This relation appears to have been first applied to planetary temperatures by the Danish physicist Christiansen in 1885, and he derived results for Mars and Saturn of -40 and -180C, rather reasonable values. However, the separate values of the solar constant, absolute planetary albedos (including that of the Earth) and the short- and long-wave transparency of planetary atmospheres were not known, although mountaintop measurements by Langley made some first steps to quantifying these effects. Lowell recognized that the Martian atmosphere was thinner than ours, but had more carbon dioxide, and so considered these factors to cancel out. However, he suggested that the Earth had a reflectivity of some 75%, such that darker Mars would absorb a larger fraction of incident sunlight than the Earth, compensating for Mars' greater distance from the sun and thus allowing clement temperatures. It is difficult not to see this as pushing the numbers to obtain a desired result, and indeed a robust refutation of his calculations swiftly followed by Poynting and Alfred Russel Wallace. I present a brief review of these early days of planetary climate modeling.

  9. Carbon nanohorn-based nanofluids: characterization of the spectral scattering albedo.

    Science.gov (United States)

    Mercatelli, Luca; Sani, Elisa; Giannini, Annalisa; Di Ninni, Paola; Martelli, Fabrizio; Zaccanti, Giovanni

    2012-01-01

    The full characterization of the optical properties of nanofluids consisting of single-wall carbon nanohorns of different morphologies in aqueous suspensions is carried out using a novel spectrophotometric technique. Information on the nanofluid scattering and absorption spectral characteristics is obtained by analyzing the data within the single scattering theory and validating the method by comparison with previous monochromatic measurements performed with a different technique. The high absorption coefficient measured joint to the very low scattering albedo opens promising application perspectives for single-wall carbon nanohorn-based fluid or solid suspensions. The proposed approximate approach can be extended also to other low-scattering turbid media.PACS: 78.35.+c Brillouin and Rayleigh scattering, other light scattering; 78.40.Ri absorption and reflection spectra, fullerenes and related materials; 81.05.U- carbon/carbon-based materials; 78.67.Bf optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures, nanocrystals, nanoparticles, and nanoclusters. PMID:22297089

  10. Accounting for spectral albedo, solar light penetration and impurity content in detailed snowpack simulations

    Science.gov (United States)

    Dumont, Marie; Lafaysse, Matthieu; Picard, Ghislain; Arnaud, Laurent; Libois, Quentin; Morin, Samuel

    2016-04-01

    The energy balance of the snowpack, driven in particular by its spectral albedo and the penetration depth of solar light, is of primary importance to drive the time evolution of snow on the ground. Here we introduce new developments of the detailed snowpack model SURFEX/ISBA-Crocus (Brun et al., 1992 ; Vionnet et al., 2012) which now includes a spectrally-resolved two-stream calculation of solar light absorption within the snowpack (Libois et al. ,2013) and of the spectral partitioning of the direct and diffuse atmospheric irradiance and a prognostic snow impurity content. The added value of these refined representation of processes is evaluated with respect to field measurements of snow spectral reflectance and snow water equivalent. Simulations were performed at Col de Porte site (Chartreuse, France, 1325 m a.s.l.) using in situ meteorological forcings during winter 2013-2014 and aerosols deposition fluxes from MOCAGE chemistry transport atmospheric model. A major Saharian dust deposition event occurred in February 2014. Using simulations and measurements, we investigate in particular the impact of this event on the physical characteristics of the snowpack with a special focus on metamorphism and on the timing of melt.

  11. Quantifying Reflection

    DEFF Research Database (Denmark)

    Alcock, Gordon Lindsay

    2013-01-01

    ´ These are all based on Blooms taxonomy and levels of competence and form a major part of individual student and group learning portfolios. Key Words :Project-Based learning, Reflective Portfolios, Self assessment, Defining learning gains, Developing learning strategies , Reflections on and for learning....... It contrasts the students’ self-assessment in a range of ‘product’ skills such as Revit, Structural Design, Mathematics of construction, Technical Installations; as well as ‘process’ competencies such as ‘Working in a team’, Sharing knowledge, Maintaining a portfolio and Reflecting ON learning and FOR learning......This paper documents 1st semester student reflections on “learning to learn” in a team-based PBL environment with quantitative and qualitative student reflective feedback on the learning gains of 60 Architectural Technology and Construction Management students at VIA University College, Denmark...

  12. Relations Between Albedos and Emissivities From MODIS and ASTER Data Over North African Desert

    Science.gov (United States)

    Zhou, L.; Dickinson, R.; Ogawa, K.; Tian, Y.; Jin, M.; Schmugge, T.; Tsvetsinskaya, E.

    2003-12-01

    This paper analyzes relations among MODIS surface albedos, ASTER broadband (3-14 μ m) emissivities, and a soil taxonomy map over the arid areas of Algeria, Libya, and Tunisia in North Africa at 30 second (about 1 km) and 2 minute (about 4 km) spatial resolutions. The MODIS albedo data are from 7 spectral bands and 3 broadbands during dust-free seasons and the emissivity data are derived from a linear combination of the waveband emissivities of the ASTER five thermal infrared channels. Both albedo and emissivity data in the study region show similar considerable spatial variability, larger than assumed by most climate models, and such variability is related to the surface types (sands, rock, and soil orders). Emissivity over bare soils exhibits statistically significant correlations with albedos at both broadbands and most of spectral bands and decreases linearly with albedos. Albedo and emissivity are more strongly correlated with each other than either is to the surface types, apparently because of their higher resolution either spatially or in surface mineralogy. This paper provides guidance for the possible inclusion of such correlation to specify albedo and emissivity in climate models.

  13. Atmospheric and Surface Contributions to Planetary Albedo and their Relationship to the Total Meridional Energy Transport

    Science.gov (United States)

    Donohoe, A.; Battisti, D. S.

    2010-12-01

    The meridional distribution of incident solar radiation and planetary albedo both contribute to the equator-to-pole gradient in absorbed solar radiation (ASR) in the observed climate system. While the former component is determined by the Earth-Sun geometry and composes 60% of the equator-to-pole gradient in ASR, the latter component makes a significant (40%) contribution to the ASR gradient and is potentially a function of climate state due to its dependence on both atmospheric and surface albedo. In turn, the equator-to-pole gradient in planetary albedo is found to be primarily (86% -89%) dictated by atmospheric albedo with meridional gradients in surface albedo playing a much smaller role in forcing the climate system on the equator-to-pole scale. Simulations of the pre-industrial climate system using the CMIP3 coupled models show large differences in the equator-to-pole gradient in planetary albedo which are mainly due to differences in the simulated cloud distribution, with surface processes playing a much smaller role. The inter-model spread in total meridional heat transport is also primarily (85% of the inter-model spread) due to differences in the simulated cloud distribution. Further model simulations demonstrate that the surface albedo changes associated with moving from the present climate to an ice free climate have a small effect on the equator-to-pole gradient of ASR as compared to the uncertainty in simulated cloud distributions, and hence a small effect on the meridional heat transport.

  14. Similar origin for low- and high-albedo Jovian Trojans and Hilda asteroids ?

    CERN Document Server

    Marsset, Michaël; Gourgeot, Florian; Dumas, Christophe; Birlan, Mirel; Lamy, Philippe; Binzel, Richard P

    2014-01-01

    Hilda asteroids and Jupiter Trojans are two low-albedo (p$_{\\rm v}$ ~ 0.07) populations for which the Nice model predicts an origin in the primordial Kuiper Belt region. However, recent surveys by WISE and the Spitzer Space Telescope (SST) have revealed that ~2% of these objects possess high albedos (p$_{\\rm v}$ > 0.15), which might indicate interlopers - that is, objects not formed in the Kuiper Belt - among these two populations. Here, we report spectroscopic observations in the visible and/or near-infrared spectral ranges of twelve high-albedo (p$_{\\rm v}$ > 0.15) Hilda asteroids and Jupiter Trojans. These twelve objects have spectral properties similar to those of the low- albedo population, which suggests a similar composition and hence a similar origin for low- and high-albedo Hilda asteroids and Jupiter Trojans. We therefore propose that most high albedos probably result from statistical bias or uncertainties that affect the WISE and SST measurements. However, some of the high albedos may be true and t...

  15. A global assessment of forest surface albedo and its relationships with climate and atmospheric nitrogen deposition.

    Science.gov (United States)

    Leonardi, Stefano; Magnani, Federico; Nolè, Angelo; Van Noije, Twan; Borghetti, Marco

    2015-01-01

    We present a global assessment of the relationships between the short-wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep ), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle-leaf forests (ENF); evergreen broad-leaf forests (EBF); deciduous needle-leaf forests (DNF); deciduous broad-leaf forests (DBF); and mixed-forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short-wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad-leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select 'pure' pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models. PMID:25044609

  16. On Spectral Invariance of Single Scattering Albedo for Weakly Absorbing Wavelengths

    Science.gov (United States)

    Marshak, Alexander

    2012-01-01

    The single scattering albedo omega (sub 0 lambda) in atmospheric radiative transfer is the ratio of the scattering coefficient to the total extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength A and droplet size r. In this presentation we will show that for water droplets at weakly absorbing wavelengths, the ratio omega (sub 0 lambda)(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo omega (sub 0 lambda) via one known spectrum omega (sub 0 lambda)(r(sub o)). We will provide a simple physical explanation of the discovered relationship. In addition to water droplets, similar linear relationships were found for the single scattering albedo of non-spherical ice crystals. The single scattering albedo $\\omega _ {0\\lambda }$ in atmospheric radiative transfer is the ratio of the scattering coefficient to the total extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, and thus the single scattering albedo, are functions of wavelength $\\lambda $ and droplet size $r$. We show that for water droplets at weakly absorbing wavelengths, the ratio $\\omega _ {0\\lambda } (r)$/$\\omega _ {0\\lambda } (r_{0})$ of two single scattering albedo spectra for two different droplet sizes is a linear function of $\\omega _{0\\lambda }(r)$. The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo $\\omega_{0\\lambda }(r)$ via one known spectrum $\\omega_{0\\lambda }(r_{0})$. We provide a simple physical explanation of the discovered relationship. Similar linear relationships characterize the single scattering albedo of non-spherical ice crystals.

  17. Remote sensing albedo product validation over heterogenicity surface based on WSN: preliminary results and its uncertainty

    Science.gov (United States)

    Wu, Xiaodan; Wen, Jianguang; Xiao, Qing; Peng, Jingjing; Liu, Qiang; Dou, Baocheng; Tang, Yong; Li, Xiuhong

    2014-11-01

    The evaluation of uncertainty in satellite-derived albedo products is critical to ensure their accuracy, stability and consistency for studying climate change. In this study, we assess the Moderate-resolution Imaging Spectroradiometer(MODIS) albedo 8 day standard product MOD43B3 using the ground-based albedometer measurement based on the wireless sensor network (WSN) technology. The experiment have been performed in Huailai, Hubei province. A 1.5 km*2 km area are selected as study region, which locates between 115.78° E-115.80° E and 40.35° N-40.37° N. This area is characterized by its distinct landscapes: bare ground between January and April, corn from May to Octorber. That is, this area is relatively homegeneous from January to Octorber, but in Novermber and December, the surface is very heterogeneous because of straw burning, as well as snow fall and snow melting. It is a big challenge to validate the MODIS albedo products because of the vast difference in spatial resolution between ground measurement and satellite measurement. Here, we use the HJ albedo products as the bridge that link the ground measurement with satellite data. Firstly, we analyses the spatial representativeness of the WSN site under green-up, dormant and snow covered situations to decide whether direct comparison between ground-based measurement and MODIS albedo can be made. The semivariogram is used here to describe the ground hetergeneity around the WSN site. In addition, the bias between the average albedo of the certain neighborhood centered at the WSN site and the center pixel albedo is also calculated.Then we compare the MOD43B3 value with the ground-based value. Result shows that MOD43B3 agree with in situ well during the growing season, however, there are relatively large difference between ground albedos and MCD43B3 albedos during dormant and snow-coverd periods.

  18. Climate implications of including albedo effects in terrestrial carbon policy

    Science.gov (United States)

    Jones, A. D.; Collins, W.; Torn, M. S.; Calvin, K. V.

    2012-12-01

    Proposed strategies for managing terrestrial carbon in order to mitigate anthropogenic climate change, such as financial incentives for afforestation, soil carbon sequestration, or biofuel production, largely ignore the direct effects of land use change on climate via biophysical processes that alter surface energy and water budgets. Subsequent influences on temperature, hydrology, and atmospheric circulation at regional and global scales could potentially help or hinder climate stabilization efforts. Because these policies often rely on payments or credits expressed in units of CO2-equivalents, accounting for biophysical effects would require a metric for comparing the strength of biophysical climate perturbation from land use change to that of emitting CO2. One such candidate metric that has been suggested in the literature on land use impacts is radiative forcing, which underlies the global warming potential metric used to compare the climate effects of various greenhouse gases with one another. Expressing land use change in units of radiative forcing is possible because albedo change results in a net top-of-atmosphere radiative flux change. However, this approach has also been critiqued on theoretical grounds because not all climatic changes associated with land use change are principally radiative in nature, e.g. changes in hydrology or the vertical distribution of heat within the atmosphere, and because the spatial scale of land use change forcing differs from that of well-mixed greenhouse gases. To explore the potential magnitude of this discrepancy in the context of plausible scenarios of future land use change, we conduct three simulations with the Community Climate System Model 4 (CCSM4) utilizing a slab ocean model. Each simulation examines the effect of a stepwise change in forcing relative to a pre-industrial control simulation: 1) widespread conversion of forest land to crops resulting in approximately 1 W/m2 global-mean radiative forcing from albedo

  19. Simultaneous improvement in water use, productivity and albedo through canopy structural modification

    Science.gov (United States)

    Drewry, Darren; Kumar, Praveen; Long, Stephen

    2015-04-01

    Agricultural lands provide a tremendous opportunity to address challenges at the intersection of food and water security and climate change. Global demand for the major grain and seed crops is beginning to outstrip production, while population growth and the expansion of the global middle class have motivated calls for a doubling of food production by the middle of this century. This is occurring as yield gains for the major food crops have stagnated. At current rates of yield improvement this doubling will not be achieved. Plants have evolved to maximize the capture of radiation in the upper leaves, resulting in sub-optimal monoculture crop fields for maximizing productivity and other biogeophysical services. Using the world's most important protein crop, soybean, as an example, we show that by applying numerical optimization to a micrometeorological crop canopy model that significant, simultaneous gains in water use, productivity and reflectivity are possible with no increased demand on resources. Here we apply the MLCan multi-layer canopy biophysical model, which vertically resolves the radiation and micro-environmental variations that stimulate biochemical and ecophysiological functions that govern canopy-atmosphere exchange processes. At each canopy level photosynthesis, stomatal conductance, and energy balance are solved simultaneously for shaded and sunlit foliage. A multi-layer sub-surface model incorporates water availability as a function of root biomass distribution. MLCan runs at sub-hourly temporal resolution, allowing it to capture variability in CO2, water and energy exchange as a function of environmental variability. By modifying total canopy leaf area, its vertical distribution, leaf angle, and shortwave radiation reflectivity, all traits available in most major crop germplasm collections, we show that increases in either productivity (7%), water use (13%) or albedo (34%) could be achieved with no detriment to the other objectives, under climate

  20. Simultaneous Improvement in Water Use, Productivity and Albedo Through Crop Structural Modification

    Science.gov (United States)

    Drewry, D.; Kumar, P.; Long, S.

    2014-12-01

    Agricultural lands provide a tremendous opportunity to address challenges at the intersection of climate change, food and water security. Global demand for the major grain and seed crops is beginning to outstrip production, while population growth and the expansion of the global middle class have motivated calls for a doubling of food production by the middle of this century. This is occurring as yield gains for the major food crops have stagnated. At current rates of yield improvement this doubling will not be achieved. Plants have evolved to maximize the capture of radiation in the upper leaves, resulting in sub-optimal monoculture crop fields for maximizing productivity and other biogeophysical services. Using the world's most important protein crop, soybean, as an example, we show that by applying numerical optimization to a micrometeorological crop canopy model that significant, simultaneous gains in water use, productivity and reflectivity are possible with no increased demand on resources. Here we apply the MLCan multi-layer canopy biophysical model, which vertically resolves the radiation and micro-environmental variations that stimulate biochemical and ecophysiological functions that govern canopy-atmosphere exchange processes. At each canopy level photosynthesis, stomatal conductance, and energy balance are solved simultaneously for shaded and sunlit foliage. A multi-layer sub-surface model accounts for water availability as a function of root biomass distribution. MLCan runs at sub-hourly temporal resolution, allowing it to capture variability in CO2, water and energy exchange as a function of environmental variability. By modifying total canopy leaf area, its vertical distribution, leaf angle, and shortwave radiation reflectivity, all traits available in most major crop germplasm collections, we show that increases in either productivity (7%), water use (13%) or albedo (34%) could be achieved with no detriment to the other objectives, under United

  1. Empirical models of monthly and annual surface albedo in managed boreal forests of Norway

    Science.gov (United States)

    Bright, Ryan M.; Astrup, Rasmus; Strømman, Anders H.

    2013-04-01

    As forest management activities play an increasingly important role in climate change mitigation strategies of Nordic regions such as Norway, Sweden, and Finland -- the need for a more comprehensive understanding of the types and magnitude of biogeophysical climate effects and their various tradeoffs with the global carbon cycle becomes essential to avoid implementation of sub-optimal policy. Forest harvest in these regions reduces the albedo "masking effect" and impacts Earth's radiation budget in opposing ways to that of concomitant carbon cycle perturbations; thus, policies based solely on biogeochemical considerations in these regions risk being counterproductive. There is therefore a need to better understand how human disturbances (i.e., forest management activities) affect important biophysical factors like surface albedo. An 11-year remotely sensed surface albedo dataset coupled with stand-level forest management data for a variety of stands in Norway's most productive logging region are used to develop regression models describing temporal changes in monthly and annual forest albedo following clear-cut harvest disturbance events. Datasets are grouped by dominant tree species and site indices (productivity), and two alternate multiple regression models are developed and tested following a potential plus modifier approach. This resulted in an annual albedo model with statistically significant parameters that explains a large proportion of the observed variation, requiring as few as two predictor variables: i) average stand age - a canopy modifier predictor of albedo, and ii) stand elevation - a local climate predictor of a forest's potential albedo. The same model structure is used to derive monthly albedo models, with models for winter months generally found superior to summer models, and conifer models generally outperforming deciduous. We demonstrate how these statistical models can be applied to routine forest inventory data to predict the albedo

  2. Neutron dose equivalent rate meter on the basis of the single sphere Albedo technique

    International Nuclear Information System (INIS)

    In area monitoring there is a need for a more accurate neutron reference dose rate meter, especially for the purpose of albedo dosemeter calibrations in neutron stray radiation fields of interest. The so-called Single Sphere Albedo Counter makes use of three active 3He proportional counters as thermal neutron detectors positioned in the centre and on the surface (albedo dosemeter configurations) of a polyethylene sphere. The linear combination of the detector readings allows for the indication of different quantities like H*(10),D,φ, and reduces the energy dependence significantly. The paper describes the dosimetric properties of a prototype instrument and its application in routine monitoring. (author)

  3. Charged pion albedo induced by cosmic antiproton interactions with the lunar surface

    International Nuclear Information System (INIS)

    We report the calculations of the energy spectra and fluxes of single and double albedo charged pions generated by cosmic proton and antiproton interactions with the lunar surface. Properties of such spectra and related fluxes are investigated in order to clarify some important facets of the antiproton detection via charged pion albedo flux from the lunar surface. Pion albedo measurement may represent a novel approach for the identification of cosmic antiprotons using the lunar surface as a calorimeter. Future scientific programs on the Moon designed to measure antiproton flux may benefit from the results of these calculations. (author)

  4. Measurement of the Absolute Hohlraum Wall Albedo Under Ignition Foot Drive Condition

    Energy Technology Data Exchange (ETDEWEB)

    Jones, O S; Glenzer, S H; Suter, L J; Turner, R E; Campbell, K M; Dewald, E L; Hammel, B A; Kauffman, R L; Landen, O L; Rosen, M D; Wallace, R J; Weber, F A

    2003-08-26

    We present the first measurements of the absolute albedos of hohlraums made from gold or from high-Z mixtures. The measurements are performed over the range of radiation temperatures (70-100 eV) expected during the foot of an indirect-drive temporally-shaped ignition laser pulse, where accurate knowledge of the wall albedo (i.e. soft x-ray wall re-emission) is most critical for determining capsule radiation symmetry. We find that the gold albedo agrees well with calculations using the super transition array opacity model, potentially providing additional margin for ICF ignition.

  5. Measurement of the absolute hohlraum wall albedo under ignition foot drive conditions

    Energy Technology Data Exchange (ETDEWEB)

    Suter, L J; Wallace, R J; Hammel, B A; Weber, F A; Landen, O L; Campbell, K M; DeWald, E L; Glenzer, S H; Rosen, M D; Jones, O S; Turner, R E; Kauffmann, R L; Hammer, J H

    2003-11-25

    We present the first measurements of the absolute albedos of hohlraums made from gold or from high-Z mixtures. The measurements are performed over the range of radiation temperatures (70-100 eV) expected during the foot of an indirect-drive temporally-shaped ignition laser pulse, where accurate knowledge of the wall albedo (i.e. soft x-ray wall re-emission) is most critical for determining capsule radiation symmetry. We find that the gold albedo agrees well with calculations using the super transition array opacity model, potentially providing additional margin for ICF ignition.

  6. Albedo protons and electrons at ISS - an important contribution to astronaut dose?

    Science.gov (United States)

    Norman, R. B.; Slaba, T. C.; Badavi, F. F.; Mertens, C. J.; Blattnig, S.

    2015-12-01

    Albedo particles, which are created by cosmic ray interactions in the atmosphere and are moving upwards away from the surface of the earth, are often considered a negligible contribution to astronaut radiation exposure on the International Space Station (ISS). Models of astronaut exposure, however, consistently underestimate measurements onboard ISS when these albedo particles are neglected. Recent measurements by instruments on ISS (AMS, PAMELA, and SEDA-AP) hint that there are high energy protons and electrons which are not being modeled and that may contribute to radiation exposure on ISS. Estimates of the contribution of radiation exposure on ISS due to albedo particles, along with open questions, will be discussed.

  7. Energy reflection coefficient of backscattered heavy ions

    International Nuclear Information System (INIS)

    An energy-dependent albedo problem, i.e., the energy-dependent leakage spectrum for a half-space of material irradiated by a monoenergetic beam of ions is investigated in this paper. For this purpose the flux decomposition procedure is applied. It is based on separation of the ion flux into terms that are exactly analytically solved and those calculated by the ordinary DPN approximation. Slowing down of particles is described by elastic scattering and various models for dealing with the anisotropy of ion scattering. The ion energy reflection coefficient is computed and compared to the values obtained by the exact and variational methods as well as DPN flux approximation

  8. Design of Nano-satellite Cluster Formations for Bi-Directional Reflectance Distribution Function (BRDF) Estimations

    OpenAIRE

    Nag, Sreeja

    2013-01-01

    The bidirectional reflectance distribution function (BRDF) of the Earth’s surface describes the directional and spectral variation of reflectance of a surface element. It is required for precise determination of important geophysical parameters such as albedo. BRDF can be estimated using reflectance data acquired at large 3D angular spread of solar illumination and detector directions and visible/near infrared (VNIR) spectral bands. This paper proposes and evaluates the use of nanosatellite c...

  9. Evaluation of BRDF Archetypes for Representing Surface Reflectance Anisotropy Using MODIS BRDF Data

    OpenAIRE

    Hu Zhang; Ziti Jiao; Yadong Dong; Xiaowen Li

    2015-01-01

    Bidirectional reflectance distribution function (BRDF) archetypes extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF/Albedo product over the global Earth Observing System Land Validation Core Sites can be used to simplify BRDF models. The present study attempts to evaluate the representativeness of BRDF archetypes for surface reflectance anisotropy. Five-year forward-modeled MODIS multi-angular reflectance (MCD-ref) and aditional actual MODIS multi-angular observat...

  10. ESTIMATION OF SURFACE ALBEDO DISTRIBUTION IN LUTZOW-HOLM BAY AND ITS NEIGHBORHOOD WITH NOAA/AVHRR DATA

    OpenAIRE

    ナカガワ, キヨタカ; Kiyotaka, Nakagawa

    1992-01-01

    A method has been developed for estimating the filtered narrow band surface albedo with NOAA/AVHRR data, and has been applied to analysis of the surface albedo distribution in Lutzow-Holm Bay and its neighborhood, Antarctica, in 1990. As a result, 16 maps of the surface albedo distribution have been drawn. From a comparison of the albedos inferred from satellite data with those actually observed in Ongul Strait, it is clear that the satellite-inferred, filtered narrow band albedos agree well ...

  11. An Alternative Approach to Mapping Thermophysical Units from Martian Thermal Inertia and Albedo Data Using a Combination of Unsupervised Classification Techniques

    Directory of Open Access Journals (Sweden)

    Eriita Jones

    2014-06-01

    Full Text Available Thermal inertia and albedo provide information on the distribution of surface materials on Mars. These parameters have been mapped globally on Mars by the Thermal Emission Spectrometer (TES onboard the Mars Global Surveyor. Two-dimensional clusters of thermal inertia and albedo reflect the thermophysical attributes of the dominant materials on the surface. In this paper three automated, non-deterministic, algorithmic classification methods are employed for defining thermophysical units: Expectation Maximisation of a Gaussian Mixture Model; Iterative Self-Organizing Data Analysis Technique (ISODATA; and Maximum Likelihood. We analyse the behaviour of the thermophysical classes resulting from the three classifiers, operating on the 2007 TES thermal inertia and albedo datasets. Producing a rigorous mapping of thermophysical classes at ~3 km/pixel resolution remains important for constraining the geologic processes that have shaped the Martian surface on a regional scale, and for choosing appropriate landing sites. The results from applying these algorithms are compared to geologic maps, surface data from lander missions, features derived from imaging, and previous classifications of thermophysical units which utilized manual (and potentially more time consuming classification methods. These comparisons comprise data suitable for validation of our classifications. Our work shows that a combination of the algorithms—ISODATA and Maximum Likelihood—optimises the sensitivity to the underlying dataspace, and that new information on Martian surface materials can be obtained by using these methods. We demonstrate that the algorithms used here can be applied to define a finer partitioning of albedo and thermal inertia for a more detailed mapping of surface materials, grain sizes and thermal behaviour of the Martian surface and shallow subsurface, at the ~3 km scale.

  12. The correction of albedo dosimeters readout at U400M LNR with the help of a spherical albedo system and comparison with other correction methods

    International Nuclear Information System (INIS)

    The results of readout correction for albedo dosimeters DVGN-01 with using of a spherical albedo system are presented. The measurements were carried out behind the U400M shielding. The functions of correction coefficients in dependence of neutron spectra 'hardness' have been approximated previously. The neutron spectra were measured in three places and the correction coefficients for DVGN-01 readout were estimated by these spectra. A good agreement was shown of the coefficients obtained with the help of these spectra and by the method of spherical albedo system. This is a real evidence of the correction method reliability. On the base of present results the correction coefficients were recommended for individual radiation control at LNR.

  13. A Cloud Hydrology and Albedo Synthesis Mission (CHASM)

    Science.gov (United States)

    Davies, Roger

    2004-01-01

    This slide presentation reviews the Cloud Hydrology and Albedo Synthesis Mission (CHASM). The interaction of clouds with radiation and the hydrological cycle represents a huge uncertainty in our understanding of climate science and the modeling of climate system feedbacks. Despite the recognized need for a unified treatment of cloud processes, the present global average values of remotely sensed cloud liquid water and theoretically accepted values used for cloud physics and precipitation modeling differ by an order of magnitude. This is due in part to sampling and saturation effects, as well as to threedimensional cloud structure effects. In recent work with the Multiangle Imaging SpectroRadiometer (MISR) on Terra, we have gained new insights as to how the remote sensing approach could be significantly improved using a new instrument that combines passive optical (visible and near infrared) and microwave measurements, both as pushbroom scanners with multiple viewing angles, to the degree that measurements of liquid water path over deep convective clouds over land also become possible. This instrument would also have the ability of measuring height-resolved cloud-tracked winds using a hyper stereo retrieval technique. Deployment into a precessing low earth orbit would be optimal for measuring diurnal cloud activity. We have explored an instrument design concept for this that looks promising if we can establish partnerships that provide launch and bus capabilities.

  14. Reflectance of Asteroid 4179 Toutatis Based on Space Optical Image

    Science.gov (United States)

    Zhao, D. F.; Liu, P.; Zhao, W.; Huang, C. N.; Zhang, H. W.; Tang, X. L.

    2016-01-01

    On 2012 December 13, Chang'e-2 probe made a success flyby for Asteroid 4179 Toutatis in deep space of about 7 million kilometers away from the earth, and acquired a series of optical images with high resolution better than 3 m. In this paper, we process the radiation calibration data of imaging camera by least square fitting method, to obtain the absolute calibration coefficient and relative calibration correction matrix, and to recover original intensity of asteroid and its real surface radiance. According to the Nicodemus' reflectance definition proposed by Hapke, the directional-hemispherical reflectance of Toutatis is obtained. The average surface albedo in R, G, and B spectrum bands are 0.2083, 0.1269, and 0.1346, respectively, and the asteroid's surface albedo is 0.1566. Data indicate that, Toutatis is, somewhat, a red body in visible spectrum.

  15. An evaluation of high-resolution regional climate model simulations of snow cover and albedo over the Rocky Mountains, with implications for the simulated snow-albedo feedback

    Science.gov (United States)

    Minder, Justin R.; Letcher, Theodore W.; Skiles, S. McKenzie

    2016-08-01

    The snow-albedo feedback (SAF) strongly influences climate over midlatitude mountainous regions. However, over these regions the skill of regional climate models (RCMs) at simulating properties such as snow cover and surface albedo is poorly characterized. These properties are evaluated in a pair of 7 year long high-resolution RCM simulations with the Weather Research and Forecasting model over the central Rocky Mountains. Key differences between the simulations include the computational domain (regional versus continental) and land surface model used (Noah versus Noah-MP). Simulations are evaluated against high-resolution satellite estimates of snow cover and albedo from the Moderate Resolution Imaging Spectroradiometer. Both simulations generally reproduce the observed seasonal and spatial variability of snow cover and also exhibit important biases. One simulation substantially overpredicts subpixel fractional snow cover over snowy pixels (by up to 0.4) causing large positive biases in surface albedo, likely due in part to inadequate representation of canopy effects. The other simulation exhibits a negative bias in areal snow extent (as much as 19% of the analysis domain). Surface measurements reveal large positive biases in snow albedo (exceeding 0.2) during late spring caused by neglecting radiative effects of impurities deposited onto snow. Semi-idealized climate change experiments show substantially different magnitudes of SAF-enhanced warming in the two simulations that can be tied to the differences in snow cover in their control climates. More confident projections of regional climate change over mountains will require further work to evaluate and improve representation of snow cover and albedo in RCMs.

  16. MODIS/COMBINED MCD43B3 Albedo 16-Day L3 Global 1km

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODerate-resolution Imaging Spectroradiometer (MODIS) BRDF/Albedo Model Parameters product (MCD43A1) contains three-dimensional (3D) data sets providing users...

  17. The role of albedo and accumulation in the 2010 melting record in Greenland

    International Nuclear Information System (INIS)

    Analyses of remote sensing data, surface observations and output from a regional atmosphere model point to new records in 2010 for surface melt and albedo, runoff, the number of days when bare ice is exposed and surface mass balance of the Greenland ice sheet, especially over its west and southwest regions. Early melt onset in spring, triggered by above-normal near-surface air temperatures, contributed to accelerated snowpack metamorphism and premature bare ice exposure, rapidly reducing the surface albedo. Warm conditions persisted through summer, with the positive albedo feedback mechanism being a major contributor to large negative surface mass balance anomalies. Summer snowfall was below average. This helped to maintain low albedo through the 2010 melting season, which also lasted longer than usual.

  18. Operational comparison of TLD albedo dosemeters and solid state nuclear tracks detectors in fuel fabrication facilities

    International Nuclear Information System (INIS)

    The authors carried out an operational study that compared the use of TLD albedo dosemeters and solid state nuclear tracks detector in plutonium environments of Japan Nuclear Cycle Development Inst., Tokai Works. A selected group of workers engaged in the fabrication process of MOX (Plutonium-Uranium mixed oxide) fuel wore both TLD albedo dosemeters and solid state nuclear tracks detectors. The TL readings were generally proportional to the counted etch-pits, and thus the dose equivalent results obtained from TLD albedo dosemeter agreed with those from solid state nuclear tracks detector within a factor of 1.5. This result indicates that, in the workplaces of the MOX fuel plants, the neutron spectrum remained almost constant in terms of time and space, and the appropriate range of field-specific correction with spectrum variations was small in albedo dosimetry. (authors)

  19. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo

    International Nuclear Information System (INIS)

    Carbon uptake by forestation is one method proposed to reduce net carbon dioxide emissions to the atmosphere and so limit the radiative forcing of climate change. But the overall impact of forestation on climate will also depend on other effects associated with the creation of new forests. In particular the albedo of a forested landscape is generally lower than that of cultivated land, especially when snow is lying, and decreasing albedo exerts a positive radiative forcing on climate. Here I simulate the radiative forcings associated with changes in surface albedo as a result of forestation in temperate and boreal forest areas, and translate these forcings into equivalent changes in local carbon stock for comparison with estimated carbon sequestration potentials. I suggest that in many boreal forest areas, the positive forcing induced by decreases in albedo can offset the negative forcing that is expected from carbon sequestration. Some high-latitude forestation activities may therefore increase climate change, rather that mitigating it as intended

  20. Albedo-adjusted fast-neutron diffusion coefficients in reactor reflectors

    International Nuclear Information System (INIS)

    In the newer, larger pressurized-water reactor cores, the calculated power distributions are fairly sensitive to the number of neutron groups used and to the treatment of the reflector cross sections. Comparisons between transport and diffusion calculations show that the latter substantially underpredict the reflector albedos in the fast (top) group and that the power distribution is shifted toward the core center when compared to 4-group transport theory results. When the fast-neutron diffusion coefficients are altered to make the transport- and diffusion-theory albedos agree, the power distributions are also brought into agreement. An expression for the fast-neutron diffusion coefficients in reflector regions has been derived such that the diffusion calculation reproduces the albedo obtained from a transport solution. In addition, a correction factor for mesh effects applicable to coarse mesh problems is presented. The use of the formalism gives the correct albedos and improved power distributions. (U.S.)

  1. On the calibration of the relation between geometric albedo and polarimetric properties for the asteroids

    CERN Document Server

    Cellino, A; Gil-Hutton, R; Tanga, P; Canada-Assandri, M; Tedesco, E F

    2015-01-01

    We present a new extensive analysis of the old problem of finding a satisfactory calibration of the relation between the geometric albedo and some measurable polarization properties of the asteroids. To achieve our goals, we use all polarimetric data at our disposal. For the purposes of calibration, we use a limited sample of objects for which we can be confident to know the albedo with good accuracy, according to previous investigations of other authors. We find a new set of updated calibration coefficients for the classical slope - albedo relation, but we generalize our analysis and we consider also alternative possibilities, including the use of other polarimetric parameters, one being proposed here for the first time, and the possibility to exclude from best-fit analyzes the asteroids having low albedos. We also consider a possible parabolic fit of the whole set of data.

  2. On the calibration of the polarimetric slope - albedo relation for asteroids: Work in progress

    Directory of Open Access Journals (Sweden)

    A. Cellino

    2011-09-01

    Full Text Available Asteroid polarimetry is known to be an excellent tool to derive information on the geometric albedo of these objects. This is made possible by the existence of a relation between the albedo and the morphology of the curve which describes the variation of the degree of linear polarization of asteroid light as a function of the illumination conditions. A major problem is that the calibration of the commonly accepted form of the polarization - albedo relation includes numerical coefficients which are affected by fairly high uncertainties. Following some recommendations issued by IAU Commission 15, we are trying to improve the albedo - polarization relation by taking advantage of new polarimetric data obtained in dedicated observation campaigns. We present here some very preliminary results.

  3. MISR Level 3 Component Global Albedo product covering a quarter (seasonal) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MISR Level 3 Component Global Albedo publicly available product covering a quarter (seasonal) to be used starting with MISR Release V3.2. (Suggested Usage: This...

  4. MISR Level 3 Component Global Albedo product covering a year V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MISR Level 3 Component Global Albedo publicly available product covering a year to be used starting with MISR Release V3.2. (Suggested Usage: This file contains the...

  5. MISR Level 3 FIRSTLOOK Component Global Albedo product covering a day V002

    Data.gov (United States)

    National Aeronautics and Space Administration — MISR Level 3 FIRSTLOOK Component Global Albedo publicly available product covering a day to be used starting with MISR Release V4.2. (Suggested Usage: This file...

  6. MISR Level 3 Component Global Albedo product covering a month V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MISR Level 3 Component Global Albedo publicly available product covering a month to be used starting with MISR Release V3.2. (Suggested Usage: This file contains...

  7. MISR Level 3 Component Global Albedo seasonal product in netCDF format V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MISR Level 3 Component Global Albedo publicly available product in netCDF format covering a quarter (seasonal). (Suggested Usage: This file contains the global...

  8. MISR Level 3 FIRSTLOOK Component Global Albedo product covering a month V002

    Data.gov (United States)

    National Aeronautics and Space Administration — MISR Level 3 FIRSTLOOK Component Global Albedo publicly available product covering a month to be used starting with MISR Release V4.2. (Suggested Usage: This file...

  9. MISR Level 3 Component Global Albedo product covering a day V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MISR Level 3 Component Global Albedo publicly available product covering a day to be used starting with MISR Release V3.2. (Suggested Usage: This file contains the...

  10. MODIS/COMBINED MCD43A3 Albedo 16-Day L3 Global 500m

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The MODerate-resolution Imaging Spectroradiometer (MODIS) BRDF/Albedo Model Parameters product (MCD43A1) contains three-dimensional (3D) data sets providing users...

  11. The extreme ultraviolet albedos of the planet Mercury and of the moon

    Science.gov (United States)

    Wu, H. H.; Broadfoot, A. L.

    1977-01-01

    The albedo of the moon in the far UV was measured by Mariner 10 at a solar phase angle of 74 deg, and the geometric albedo of Mercury was measured in same wavelength range (584-1657 A) at solar phase angles ranging from 50 to 120 deg. For both the moon and Mercury there is a general increase in albedo for wavelengths decreasing from 1657 to 584 A. The ratio of the albedos of Mercury and the moon increases from about 0.6 to 0.8 in the range 600-1600 A. This merely points to a difference in the surfaces of the moon and Mercury, there being insufficient data to make any conclusions regarding the nature of the difference.

  12. Glacier albedo decrease in the European Alps: potential causes and links with mass balances

    Science.gov (United States)

    Di Mauro, Biagio; Julitta, Tommaso; Colombo, Roberto

    2016-04-01

    Both mountain glaciers and polar ice sheets are losing mass all over the Earth. They are highly sensitive to climate variation, and the widespread reduction of glaciers has been ascribed to the atmospheric temperature increase. Beside this driver, also ice albedo plays a fundamental role in defining mass balance of glaciers. In fact, dark ice absorbs more energy causing faster glacier melting, and this can drive to more negative balances. Previous studies showed that the albedo of Himalayan glaciers and the Greenland Ice Sheet is decreasing with important rates. In this contribution, we tested the hypothesis that also glaciers in the European Alps are getting darker. We analyzed 16-year time series of MODIS (MODerate resolution Imaging Spectrometer) snow albedo from Terra (MOD13A1, 2000-2015) and Aqua (MYD13A1, 2002-2015) satellites. These data feature a spatial resolution of 500m and a daily temporal resolution. We evaluated the existence of a negative linear and nonlinear trend of the summer albedo values both at pixel and at glacier level. We also calculated the correlation between MODIS summer albedo and glacier mass balances (from the World Glaciological Monitoring Service, WGMS database), for all the glaciers with available mass balance during the considered period. In order to estimate the percentage of the summer albedo that can be explained by atmospheric temperature, we correlated MODIS albedo and monthly air temperature extracted from the ERA-Interim reanalysis dataset. Results show that decreasing trends exist with a strong spatial variability in the whole Alpine chain. In large glaciers, such as the Aletch (Swiss Alps), the trend varies significantly also within the glacier, showing that the trend is higher in the area across the accumulation and ablation zone. Over the 17 glaciers with mass balance available in the WGMS data set, 11 gave significant relationship with the MODIS summer albedo. Moreover, the comparison between ERA-Interim temperature

  13. Global Albedos of Pluto and Charon from LORRI New Horizons Observations

    OpenAIRE

    Buratti, B.J.; Hofgartner, J. D.; Hicks, M. D.; Weaver, H. A.; Stern, S. A.; Momary, T.; Mosher, J. A.; Beyer, R. A.; Young, L. A.; Ennico, K.; Olkin, C. B.

    2016-01-01

    The exploration of the Pluto-Charon system by the New Horizons spacecraft represent the first opportunity to understand the distribution of albedo and other photometric properties of the surfaces of objects in the Solar System's "Third Zone" within the context of a geologic world. Images of the entire illuminated surface of Pluto and Charon obtained by the Long Range Reconnaissance Imager (LORRI) camera provide a global map of Pluto that revealed surface albedo variegations larger than any ot...

  14. Structure of spontaneous fission spectrum of 252Cf and its impact on neutron albedo experiments' simulation

    International Nuclear Information System (INIS)

    Aimed at the problem of the energy spectrum of spontaneous fission source, which was used in neutron albedo experiments, we selected two sets of 252Cf fission spectra, which were fitted by formulae and were universally accepted. And they were applied in neutron albedo experiments independently. Neutron fluence and fission rate on each detecting point were compared and analyzed. The results show that Watt spectrum agrees the experiment data better than that of Maxwell spectrum. (authors)

  15. Technical Note: Evaluating a simple parameterization of radiative shortwave forcing from surface albedo change

    OpenAIRE

    R. M. Bright; Kvalevåg, M. M.

    2013-01-01

    Land use activities affect Earth's energy balance not only via biogeochemical emissions but also through perturbations in surface albedo, the latter of which is often excluded in impact assessment studies. In this short technical note, we present and compare a simple model for estimating shortwave radiative forcings at the top of Earth's atmosphere to a more sophisticated 8-stream radiative transfer model based on a discrete ordinate method. Outcomes from monthly albedo change simulati...

  16. Possibility for albedo estimation of exomoons: Why should we care about M dwarfs?

    OpenAIRE

    Dobos, Vera; Kereszturi, Ákos; Pál, András; Kiss, László L.

    2016-01-01

    Occultation light curves of exomoons may give information on their albedo and hence indicate the presence of ice cover on the surface. Icy moons might have subsurface oceans thus these may potentially be habitable. The objective of our paper is to determine whether next generation telescopes will be capable of albedo estimations for icy exomoons using their occultation light curves. The success of the measurements depends on the depth of the moon's occultation in the light curve and on the se...

  17. Surface Albedo Darkening from wildfires in Northern Sub-Saharan Africa

    Science.gov (United States)

    Gatebe, C. K.; Ichoku, C. M.; Poudal, R.; Roman, M. O.; Wilcox, E.

    2014-01-01

    Wildfires are recognized as a key physical disturbance of terrestrial ecosystems and a major source of atmospheric trace gases and aerosols. They are known to produce changes in landscape patterns and lead to changes in surface albedo that can persist for long periods. Here, we estimate the darkening of surface albedo due to wildfires in different land cover ecosystems in the Northern Sub-Saharan Africa using data from the Moderate Resolution Imaging Spectroradiometer (MODIS). We determined a decrease in albedo after fires over most land cover types (e.g. woody savannas: (-0.00352 0.00003) and savannas: (- 0.003910.00003), which together accounted for >86% of the total MODIS fire count between 2003 and 2011). Grasslands had a higher value (-0.00454 0.00003) than the savannas, but accounted for only about 5% of the total fire count. A few other land cover types (e.g. Deciduous broad leaf: (0.00062 0.00015), and barren: 0.00027 0.00019), showed an increase in albedo after fires, but accounted for less than 1% of the total fires. Albedo change due to wildfires is more important during the fire season (October-February). The albedo recovery progresses rapidly during the first year after fires, where savannas show the greatest recovery (>77%) within one year, while deciduous broadleaf, permanent wetlands and barren lands show the least one-year recovery (56%). The persistence of surface albedo darkening in most land cover types is limited to about six to seven years, after which at least 98% of the burnt pixels recover to their pre-fire albedo.

  18. Untersuchung eines möglichen Einflusses der Albedo auf die Mesopausenregion

    OpenAIRE

    Gebhardt, Vera

    2015-01-01

    Der Ausgangspunkt dieser Arbeit war die Tatsache, dass verschiedene Messmethoden der Albedo zu verschiedenen Ergebnissen geführt haben und es schwierig war, diese Ergebnisse zu validieren. Ziel war es, herauszufinden, ob es einen Zusammenhang zwischen der Variablität der Temperatur der oberen Mesopause und der Variabilität der Albedo gibt. Es hat sich gezeigt, dass im Temperaturverlauf der Mesopause zum Zeitpunkt der Äquinoktien ein sogenannter Dip auftritt, welcher auch im Jahresverlauf der ...

  19. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations

    OpenAIRE

    WANG, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    International audience Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow...

  20. Albedo impact on the suitability of biochar systems to mitigate global warming.

    Science.gov (United States)

    Meyer, Sebastian; Bright, Ryan M; Fischer, Daniel; Schulz, Hardy; Glaser, Bruno

    2012-11-20

    Biochar application to agricultural soils can change the surface albedo which could counteract the climate mitigation benefit of biochar systems. However, the size of this impact has not yet been quantified. Based on empirical albedo measurements and literature data of arable soils mixed with biochar, a model for annual vegetation cover development based on satellite data and an assessment of the annual development of surface humidity, an average mean annual albedo reduction of 0.05 has been calculated for applying 30-32 Mg ha(-1) biochar on a test field near Bayreuth, Germany. The impact of biochar production and application on the carbon cycle and on the soil albedo was integrated into the greenhouse gas (GHG) balance of a modeled pyrolysis based biochar system via the computation of global warming potential (GWP) characterization factors. The analysis resulted in a reduction of the overall climate mitigation benefit of biochar systems by 13-22% due to the albedo change as compared to an analysis which disregards the albedo effect. Comparing the use of the same quantity of biomass in a biochar system to a bioenergy district heating system which replaces natural gas combustion, bioenergy heating systems achieve 99-119% of the climate benefit of biochar systems according to the model calculation. PMID:23146092

  1. Near-infrared spectra of high-albedo outer main-belt asteroids

    Energy Technology Data Exchange (ETDEWEB)

    Kasuga, Toshihiro; Shirahata, Mai [National Institutes of Natural Science, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 (Japan); Usui, Fumihiko [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kuroda, Daisuke [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, 3037-5 Honjo, Kamogata-cho, Asakuchi, Okayama 719-0232 (Japan); Ootsubo, Takafumi [Department of Earth Science and Astronomy, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 (Japan); Okamura, Natsuko [Department of Complexity Science and Engineering, The University of Tokyo Kiban Bldg. 408, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Hasegawa, Sunao, E-mail: toshi.kasuga@nao.ac.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210 (Japan)

    2015-02-01

    Most outer main-belt asteroids have low albedos because of their carbonaceouslike bodies. However, infrared satellite surveys have revealed that some asteroids have high albedos, which may suggest the presence of unusual surface minerals for those primitive objects. We present new near-infrared (1.1–2.5 μm) spectra of four outer main-belt asteroids with albedos ≥ 0.1. The C-complex asteroids (555) Norma and (2542) Calpurnia are featureless and have (50%–60%) amorphous Mg pyroxenes that might explain the high albedos. Asteroids (701) Oriola (which is a C-complex asteroid) and (2670) Chuvashia (a D/T-type or M-type asteroid) show possible broad absorption bands (1.5–2.1 μm). The feature can be reproduced by either Mg-rich amorphous pyroxene (with 50%–60% and 80%–95% Mg, respectively) or orthopyroxene (crystalline silicate), which might be responsible for the high albedos. No absorption features of water ice (near 1.5 and 2.0 μm) are detected in the objects. We discuss the origin of high albedo components in the outer main-belt asteroids and their physical relations to comets.

  2. A climatology of visible surface reflectance spectra

    Science.gov (United States)

    Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas

    2016-09-01

    We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290-740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment-2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes.

  3. Observations of Reflectivity of the Martian Surface in the Mars Orbiter Laser Altimeter (MOLA) Investigation

    Science.gov (United States)

    Ivanov, Anton B.; Muhleman, Duane O.

    2000-01-01

    We are presenting results of calculation of the surface albedo of Mars at 1 micron wavelength from the Mars Orbiter Laser Altimeter (MOLA) reflectivity measurements. The Mars Global Surveyor Thermal Emission Spectrometer (MGS TES) 9 micron opacity is employed to remove opacity from the MOLA measurements.

  4. Inspiring Reflections

    DEFF Research Database (Denmark)

    Muchie, Mammo

    2011-01-01

    A numberof Chris Freeman's colleagues were asked to reflect on what they thought describes his life and work in a few words. Some of the colleagues replied including former SPRU students that were taught or supervised by Chris Freeman. Their views on what they thought were Chris Freeman's defining...... but also social exclusion, equity and social justice....

  5. Validation of GEOLAND-2 Spot/vgt Albedo Products by Using Ceos Olive Methodology

    Science.gov (United States)

    Camacho de Coca, F.; Sanchez, J.; Schaaf, C.; Baret, F.; Weiss, M.; Cescatti, A.; Lacaze, R. N.

    2012-12-01

    This study evaluates the scientific merit of the global surface albedo products developed in the framework of the Geoland-2 project based on SPOT/VEGETATION observations. The methodology follows the OLIVE (On-Line Validation Exercise) approach supported by the CEOS Land Product Validation subgroup (calvalportal.ceos.org/cvp/web/olive). First, the spatial and temporal consistency of SPOT/VGT albedo products was assessed by intercomparison with reference global products (MODIS/Terra+Aqua and POLDER-3/PARASOL) for the period 2006-2007. A bulk statistical analysis over a global network of 420 homogeneous sites (BELMANIP-2) was performed and analyzed per biome types. Additional sites were included to study albedo under snow conditions. Second, the accuracy and realism of temporal variations were evaluated using a number of ground measurements from FLUXNET sites suitable for use in direct comparison to the co-located satellite data. Our results show that SPOT/VGT albedo products present reliable spatial and temporal distribution of retrievals. The SPOT/VGT albedo performs admirably with MODIS, with a mean bias and RMSE for the shortwave black-sky albedo over BELMANIP-2 sites lower than 0.006 and 0.03 (13% in relative terms) respectively, and even better for snow free pixels. Similar results were found for the white-sky albedo quantities. Discrepancies are larger when comparing with POLDER-3 products: for the shortwave black-sky albedo a mean bias of -0.014 and RMSE of 0.04 (20%) was found. This overall performance figures are however land-cover dependent and larger uncertainties were found over some biomes (or regions) or specific periods (e.g. winter in the north hemisphere). The comparison of SPOT/VGT blue-sky albedo estimates with ground measurements (mainly over Needle-leaf forest sites) show a RMSE of 0.04 and a bias of 0.003 when only snow-free pixels are considered. Moreover, this work shows that the OLIVE tool is also suitable for validation of global albedo

  6. Predicting Clear-Sky Reflectance Over Snow/Ice in Polar Regions

    Science.gov (United States)

    Chen, Yan; Sun-Mack, Sunny; Arduini, Robert F.; Hong, Gang; Minnis, Patrick

    2015-01-01

    Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the nearinfrared (NIR; 1.24, 1.6 or 2.13 micrometers), visible (VIS; 0.63 micrometers) and vegetation (VEG; 0.86 micrometers) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) to help identify clouds and retrieve their properties in both snow-free and snow-covered conditions. Thus, it is critical to have reliable distributions of clear-sky albedo for all of these channels. In CERES Edition 4 (Ed4), the 1.24-micrometer channel is used to retrieve cloud optical depth over snow/ice-covered surfaces. Thus, it is especially critical to accurately predict the 1.24-micrometer clear-sky albedo alpha and reflectance rho for a given location and time. Snow albedo and reflectance patterns are very complex due to surface texture, particle shapes and sizes, melt water, and vegetation protrusions from the snow surface. To minimize those effects, this study focuses on the permanent snow cover of Antarctica where vegetation is absent and melt water is minimal. Clear-sky albedos are determined as a function of solar zenith angle (SZA) from observations over all scenes determined to be cloud-free to produce a normalized directional albedo model (DRM). The DRM is used to develop alpha(SZA=0 degrees) on 10 foot grid for each season. These values provide the basis for predicting r at any location and set of viewing & illumination conditions. This paper examines the accuracy of this approach for two theoretical snow surface reflectance models.

  7. Global warming and climate forcing by recent albedo changes on Mars

    Science.gov (United States)

    Fenton, L.K.; Geissler, P.E.; Haberle, R.M.

    2007-01-01

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by ???0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies. ??2007 Nature Publishing Group.

  8. Greenland surface albedo changes in July 1981–2012 from satellite observations

    International Nuclear Information System (INIS)

    Significant melting events over Greenland have been observed over the past few decades. This study presents an analysis of surface albedo change over Greenland using a 32-year consistent satellite albedo product from the global land surface satellite (GLASS) project together with ground measurements. Results show a general decreasing trend of surface albedo from 1981 to 2012 (−0.009 ± 0.002 decade−1, p < 0.01). However, a large decrease has occurred since 2000 (−0.028 ± 0.008 decade−1, p < 0.01) with most significant decreases at elevations between 1000 and 1500 m (−0.055 decade−1, p < 0.01) which may be associated with surface temperature increases. The surface radiative forcing from albedo changes is 2.73 W m−2 decade−1 and 3.06 W m−2 decade−1 under full-sky and clear-sky conditions, respectively, which indicates that surface albedo changes are likely to have a larger impact on the surface shortwave radiation budget than that caused by changes in the atmosphere over Greenland. A comparison made between satellite albedo products and data output from the Coupled Model Inter-comparison Project 5 (CMIP5) general circulation models (GCMs) shows that most of the CMIP5 models do not detect the significantly decreasing trends of albedo in recent decades. This suggests that more efforts are needed to improve our understanding and simulation of climate change at high latitudes. (letter)

  9. Multigroup Albedo Method applied to coupled neutron-gamma radiations shielding

    International Nuclear Information System (INIS)

    Shielding calculations for neutron-gamma radiation are usually done by using the full Theory of Transport or the Monte Carlo Techniques. After some works based on the Albedo Method, the shielding calculations for neutron-gamma radiation have a reliable tool with great didactical value which shows its clarity and simplicity for the resolution of cases that involve neutrons and photon shielding in nonmultiplying media. The excellent results of these works have motivated the elaboration and the development of this study that will be presented in this dissertation. The balance of a neutronic current entering a shield of two layers considering the coupling neutron-gamma will be determined by the Albedo Method. The shield will be composed of a layer of iron and another one of manganese with 10 cm of thickness each. The arrays of the materials coefficients will be obtained from the ANISN code. ANISN is a one dimensional deterministic code that is based on transport equation. The final results obtained by the Albedo Method will be compared with the ANISN results for an order of angular quadrature S2. The angular quadrature S2 admits that the radiation has two routes in the same direction what better describes the Albedo Method behavior. The results obtained by using the Albedo Method show an excellent agreement with the values predicted by the adopted deterministic code ANISN. Due to the excellent results, the multigroup Albedo Method should be applied to the shielding calculations with multiple layers. In conclusion the multigroup Albedo Method has the great ability in solving shielding problems concerning to the Nuclear Engineering. (author)

  10. Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Akbari, Hashem; Mahanama, Sarith; Sednev, Igor; Levinson, Ronnen

    2010-02-12

    The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present-day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and land surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe by 0.1. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the change in the total outgoing (outgoing shortwave+longwave) radiation and land surface temperature to a 0.1 increase in urban albedos for all global land areas. The global average increase in the total outgoing radiation was 0.5 Wm{sup -2}, and temperature decreased by {approx}0.008 K for an average 0.003 increase in surface albedo. These averages represent all global land areas where data were available from the land surface model used and are for the boreal summer (June-July-August). For the continental U.S. the total outgoing radiation increased by 2.3 Wm{sup -2}, and land surface temperature decreased by {approx}0.03 K for an average 0.01 increase in surface albedo. Based on these forcings, the expected emitted CO{sub 2} offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be {approx} 57 Gt CO{sub 2}. A more meaningful evaluation of the impacts of urban albedo increases on global climate and the expected CO{sub 2} offsets would require simulations which better characterizes urban surfaces and represents the full annual cycle.

  11. Scattering correction for {sup 241}Am-Be calibration of an individual albedo neutron dosemeter

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Bruno M.; Martins, Marcelo M.; Patrao, Karla C.S.; Fonseca, Evaldo S.; Pereira, Walsan W.; Mauricio, Claudia L.P., E-mail: brunofreitas@ird.gov.br, E-mail: marcelo@ird.gov.br, E-mail: karla@ird.gov.br, E-mail: evaldo@ird.gov.br, E-mail: walsan@ird.gov.br, E-mail: claudia@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The Instituto de Radioprotecao e Dosimetria (IRD), RJ, Brazil, runs an individual albedo neutron dosemeter service. The albedo dosemeter response varies strongly with neutron energy, falling down very steeply in the energy range of radionuclide neutron source. Moreover the largest number of workers exposed to neutrons in Brazil is exposed to scattered and moderated {sup 241}Am-Be fields. Therefore a study of the response of albedo dosemeter due to neutron scattering from {sup 241}Am-Be source is very important for IRD albedo dosemeter calibration. In this work, it has been evaluated the scattering neutron correction in the calibration of the albedo dosemeter from a {sup 241}Am-Be source in the Low Scattering Laboratory of the Neutron Laboratory of the Brazilian National Metrology Laboratory of Ionizing Radiations, where IRD albedo neutron dosemeter is calibrated. It was used the shadow cone technique and Bonner sphere spectrometer with the BUMS (Bonner sphere Unfolding Made Simple) unfolding software. Using the results obtained for the values of H{sub p}(10) and the reading of IRD albedo neutron dosemeter, new calibration factors, considering the scattering in the laboratory, were calculated. These calculated factors for irradiation without the shadow cone are approximately the same for both studied distances and similar with the one calculated without taking in account the scattering contribution for a source-detector distance of 1.00 m (7% difference), but about 20% higher at 2.25 m. For the neutron scattered beam (with shadow cone), the calibration factor values are about 30% and 25% lower, respectively, for 1.00 and 2.25 m. (author)

  12. Spatiotemporal variation of surface shortwave forcing from fire-induced albedo change in interior Alaska

    Science.gov (United States)

    Huang, Shengli; Dahal, Devendra; Liu, Heping; Jin, Suming; Young, Claudia J.; Liu, Shuang; Liu, Shu-Guang

    2015-01-01

    The albedo change caused by both fires and subsequent succession is spatially heterogeneous, leading to the need to assess the spatiotemporal variation of surface shortwave forcing (SSF) as a component to quantify the climate impacts of high-latitude fires. We used an image reconstruction approach to compare postfire albedo with the albedo assuming fires had not occurred. Combining the fire-caused albedo change from the 2001-2010 fires in interior Alaska and the monthly surface incoming solar radiation, we examined the spatiotemporal variation of SSF in the early successional stage of around 10 years. Our results showed that while postfire albedo generally increased in fall, winter, and spring, some burned areas could show an albedo decrease during these seasons. In summer, the albedo increased for several years and then declined again. The spring SSF distribution did not show a latitudinal decrease from south to north as previously reported. The results also indicated that although the SSF is usually largely negative in the early successional years, it may not be significant during the first postfire year. The annual 2005-2010 SSF for the 2004 fire scars was -1.30, -4.40, -3.31, -4.00, -3.42, and -2.47 Wm-2. The integrated annual SSF map showed significant spatial variation with a mean of -3.15 Wm-2 and a standard deviation of 3.26 Wm-2, 16% of burned areas having positive SSF. Our results suggest that boreal deciduous fires would be less positive for climate change than boreal evergreen fires. Future research is needed to comprehensively investigate the spatiotemporal radiative and non-radiative forcings to determine the effect of boreal fires on climate.

  13. Determination of the double angular and energy differential gamma-ray albedo for iron material by using Monte Carlo method

    International Nuclear Information System (INIS)

    The Monte Carlo method can be used to compute the gamma-ray backscattering albedo. This method was used by Raso to compute the angular differential albedo. Raso's results have been used by Chilton and Huddelston to adjust their well-known albedo formula. Here, an efficient estimator is proposed to compute the double-differential angular and energetic albedo from gamma-ray histories simulated in matter by the three-dimensional Monte Carlo transport code TRIPOLI. A detailed physical albedo analysis could be done in this way. The double-differential angular and energetic gamma-ray albedo is calculated for iron material for initial gamma-ray energies of 8, 3, 1, and 0.5 MeV

  14. Characterization of the High-Albedo NEA 3691 Bede

    Science.gov (United States)

    Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Rozitis, Benjamin; Jefferson, Jeffrey D.; Nelson, Tyler W.; Dotson, Jessie L.; Ryan, Erin L.; Howell, Ellen S.; Fernandez, Yanga R.; Lovell, Amy J.; Woodward, Charles E.; Harker, David E.

    2016-01-01

    Characterization of NEAs provides important inputs to models for atmospheric entry, risk assessment and mitigation. Diameter is a key parameter because diameter translates to kinetic energy in atmospheric entry. Diameters can be derived from the absolute magnitude, H(PA=0deg), and from thermal modeling of observed IR fluxes. For both methods, the albedo (pv) is important - high pv surfaces have cooler temperatures, larger diameters for a given Hmag, and shallower phase curves (larger slope parameter G). Thermal model parameters are coupled, however, so that a higher thermal inertia also results in a cooler surface temperature. Multiple parameters contribute to constraining the diameter. Observations made at multiple observing geometries can contribute to understanding the relationships between and potentially breaking some of the degeneracies between parameters. We present data and analyses on NEA 3691 Bede with the aim of best constraining the diameter and pv from a combination of thermal modeling and light curve analyses. We employ our UKIRT+Michelle mid-IR photometric observations of 3691 Bede's thermal emission at 2 phase angles (27&43 deg 2015-03-19 & 04-13), in addition to WISE data (33deg 2010-05-27, Mainzer+2011). Observing geometries differ by solar phase angles and by moderate changes in heliocentric distance (e.g., further distances produce somewhat cooler surface temperatures). With the NEATM model and for a constant IR beaming parameter (eta=constant), there is a family of solutions for (diameter, pv, G, eta) where G is the slope parameter from the H-G Relation. NEATM models employing Pravec+2012's choice of G=0.43, produce D=1.8 km and pv˜0.4, given that G=0.43 is assumed from studies of main belt asteroids (Warner+2009). We present an analysis of the light curve of 3691 Bede to constrain G from observations. We also investigate fitting thermophysical models (TPM, Rozitis+11) to constrain the coupled parameters of thermal inertia (Gamma) and surface

  15. Characterization of the high-albedo NEA 3691 Bede

    Science.gov (United States)

    Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Rozitis, Benjamin; Jefferson, Jeffrey D.; Nelson, Tyler W.; Dotson, Jessie L.; Ryan, Erin L.; Howell, Ellen S.; Fernandez, Yanga R.; Lovell, Amy J.; Woodward, Charles E.; Harker, David Emerson

    2016-10-01

    Characterization of NEAs provides important inputs to models for atmospheric entry, risk assessment and mitigation. Diameter is a key parameter because diameter translates to kinetic energy in atmospheric entry. Diameters can be derived from the absolute magnitude, H(PA=0deg), and from thermal modeling of observed IR fluxes. For both methods, the albedo (pv) is important – high pv surfaces have cooler temperatures, larger diameters for a given Hmag, and shallower phase curves (larger slope parameter G). Thermal model parameters are coupled, however, so that a higher thermal inertia also results in a cooler surface temperature. Multiple parameters contribute to constraining the diameter.Observations made at multiple observing geometries can contribute to understanding the relationships between and potentially breaking some of the degeneracies between parameters. We present data and analyses on NEA 3691 Bede with the aim of best constraining the diameter and pv from a combination of thermal modeling and light curve analyses. We employ our UKIRT+Michelle mid-IR photometric observations of 3691 Bede's thermal emission at 2 phase angles (27&43 deg 2015-03-19 & 04-13), in addition to WISE data (33deg 2010-05-27, Mainzer+2011).Observing geometries differ by solar phase angles and by moderate changes in heliocentric distance (e.g., further distances produce somewhat cooler surface temperatures). With the NEATM model and for a constant IR beaming parameter (eta=constant), there is a family of solutions for (diameter, pv, G, eta) where G is the slope parameter from the H-G Relation. NEATM models employing Pravec+2012's choice of G=0.43, produce D=1.8 km and pv≈0.4, given that G=0.43 is assumed from studies of main belt asteroids (Warner+2009). We present an analysis of the light curve of 3691 Bede to constrain G from observations. We also investigate fitting thermophysical models (TPM, Rozitis+11) to constrain the coupled parameters of thermal inertia (Gamma) and surface

  16. Cost analysis of stratospheric albedo modification delivery systems

    International Nuclear Information System (INIS)

    We perform engineering cost analyses of systems capable of delivering 1–5 million metric tonnes (Mt) of albedo modification material to altitudes of 18–30 km. The goal is to compare a range of delivery systems evaluated on a consistent cost basis. Cost estimates are developed with statistical cost estimating relationships based on historical costs of aerospace development programs and operations concepts using labor rates appropriate to the operations. We evaluate existing aircraft cost of acquisition and operations, perform in-depth new aircraft and airship design studies and cost analyses, and survey rockets, guns, and suspended gas and slurry pipes, comparing their costs to those of aircraft and airships. Annual costs for delivery systems based on new aircraft designs are estimated to be $1–3B to deliver 1 Mt to 20–30 km or $2–8B to deliver 5 Mt to the same altitude range. Costs for hybrid airships may be competitive, but their large surface area complicates operations in high altitude wind shear, and development costs are more uncertain than those for airplanes. Pipes suspended by floating platforms provide low recurring costs to pump a liquid or gas to altitudes as high as ∼ 20 km, but the research, development, testing and evaluation costs of these systems are high and carry a large uncertainty; the pipe system’s high operating pressures and tensile strength requirements bring the feasibility of this system into question. The costs for rockets and guns are significantly higher than those for other systems. We conclude that (a) the basic technological capability to deliver material to the stratosphere at million tonne per year rates exists today, (b) based on prior literature, a few million tonnes per year would be sufficient to alter radiative forcing by an amount roughly equivalent to the growth of anticipated greenhouse gas forcing over the next half century, and that (c) several different methods could possibly deliver this quantity for less

  17. Use of exact albedo conditions in numerical methods for one-dimensional one-speed discrete ordinates eigenvalue problems

    International Nuclear Information System (INIS)

    The use of exact albedo boundary conditions in numerical methods applied to one-dimensional one-speed discrete ordinates (Sn) eigenvalue problems for nuclear reactor global calculations is described. An albedo operator that treats the reflector region around a nuclear reactor core implicitly is described and exactly was derived. To illustrate the method's efficiency and accuracy, it was used conventional linear diamond method with the albedo option to solve typical model problems. (author)

  18. Comparison of ground-based and airborne snow surface albedo parameterizations in an alpine watershed: Impact on snowpack mass balance

    OpenAIRE

    Molotch, NP; Bales, RC

    2006-01-01

    Two commonly used snow surface albedo models were evaluated using albedo data from the Airborne Visible/Infrared Imaging Spectroradiometer (AVIRIS), and their influence on snowmelt timing and magnitude was assessed using a net radiation/temperature index snowmelt model, a series of satellite-based snow covered area scenes, and on-site snow surveys. Albedo estimates using an explicit representation of snow surface temperature, snow age, and solar illumination angle, based on the Biosphere Atmo...

  19. Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013)

    OpenAIRE

    P. M. Alexander; Tedesco, M.; X. Fettweis; R. S. W. van de Wal; C. J. P. P. Smeets; M. R. van den Broeke

    2014-01-01

    Accurate measurements and simulations of Greenland Ice Sheet (GrIS) surface albedo are essential, given the role of surface albedo in modulating the amount of absorbed solar radiation and meltwater production. In this study, we assess the spatio-temporal variability of GrIS albedo during June, July, and August (JJA) for the period 2000–2013. We use two remote sensing products derived from data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS), as well as...

  20. Human-Induced Landcover Changes Drive a Diminution of Land Surface Albedo in the Loess Plateau (China)

    OpenAIRE

    Jun Zhai; Ronggao Liu; Jiyuan Liu; Lin Huang; Yuanwei Qin

    2015-01-01

    A large decrease in the land surface albedo of the Loess Plateau was observed from 2000 to 2010, as measured using satellite imagery. In particular, ecological restoration program regions experienced a decrease in peak season land surface albedo exceeding 0.05. In this study, we examined the spatial and temporal patterns of variation during the peak season albedo in the Loess Plateau and analyzed its relationships with changes of anthropogenic and natural factors at the pixel level. Our analy...

  1. Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration

    OpenAIRE

    Hollinger, DY; Ollingerw, SV; Richardsonw, AD; Meyersz, TP; Dail, DB; Martinw, ME; Scott, NA; Arkebauerk, TJ; Baldocchi, DD; Clark, KL; Curtis, PS; Davis, KJ; Desai, AR; Dragonikk, D; Goulden, ML

    2010-01-01

    Vegetation albedo is a critical component of the Earth's climate system, yet efforts to evaluate and improve albedo parameterizations in climate models have lagged relative to other aspects of model development. Here, we calculated growing season albedos for deciduous and evergreen forests, crops, and grasslands based on over 40 site-years of data from the AmeriFlux network and compared them with estimates presently used in the land surface formulations of a variety of climate models. General...

  2. Analysis of the in situ and MODIS albedo variability at multiple time scales in the Sahel - art. no. D14119

    OpenAIRE

    Samain, O.; Kergoat, L.; Hiernaux, P.; Guichard, F; Mougin, Eric; Timouk, Franck; Lavenu, F

    2008-01-01

    The variability of the Sahelian albedo is investigated through the combined analysis of 5 years of in situ radiation data from the African Monsoon Multidisciplinary Analysis northernmost sites and remotely sensed albedo from 7 years of Moderate Resolution Imaging Spectroradiometer data. Both data sets are found to be in good agreement in terms of correlation and bias. The drivers of albedo variability are identified by means of in situ measurements of biological and physical properties of the...

  3. MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in Greenland

    OpenAIRE

    Wang, Xianwei; Zender, Charles S

    2010-01-01

    In situ measurements of snow albedo at five stations along a north–south transect in the dry-snow facies of the interior of Greenland follow the theoretically expected dependence of snow albedo with solar zenith angle (SZA). Greenland Climate Network (GC-Net) measurements from 1997 through 2007 exhibit the trend of modest surface brightening with increasing SZA on both diurnal and seasonal timescales. SZA explains up to 50% of seasonal albedo variability. The two other environmental factors c...

  4. Change in Urban Albedo in London: A Multi-scale Perspective

    Science.gov (United States)

    Susca, T.; Kotthaus, S.; Grimmond, S.

    2013-12-01

    Urbanization-induced change in land use has considerable implications for climate, air quality, resources and ecosystems. Urban-induced warming is one of the most well-known impacts. This directly and indirectly can extend beyond the city. One way to reduce the size of this is to modify the surface atmosphere exchanges through changing the urban albedo. As increased rugosity caused by the morphology of a city results in lower albedo with constant material characteristics, the impacts of changing the albedo has impacts across a range of scales. Here a multi-scale assessment of the potential effects of the increase in albedo in London is presented. This includes modeling at the global and meso-scale informed by local and micro-scale measurements. In this study the first order calculations are conducted for the impact of changing the albedo (e.g. a 0.01 increase) on the radiative exchange. For example, when incoming solar radiation and cloud cover are considered, based on data retrieved from NASA (http://power.larc.nasa.gov/) for ~1600 km2 area of London, would produce a mean decrease in the instantaneous solar radiative forcing on the same surface of 0.40 W m-2. The nature of the surface is critical in terms of considering the impact of changes in albedo. For example, in the Central Activity Zone in London pavement and building can vary from 10 to 100% of the plan area. From observations the albedo is seen to change dramatically with changes in building materials. For example, glass surfaces which are being used increasingly in the central business district results in dramatic changes in albedo. Using the documented albedo variations determined across different scales the impacts are considered. For example, the effect of the increase in urban albedo is translated into the corresponding amount of avoided emission of carbon dioxide that produces the same effect on climate. At local scale, the effect that the increase in urban albedo can potentially have on local

  5. Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and aerosol direct radiative forcing

    Directory of Open Access Journals (Sweden)

    L. Zhu

    2012-12-01

    Full Text Available This study develops an algorithm for representing detailed spectral features of vegetation albedo based on Moderate Resolution Imaging Spectrometer (MODIS observations at 7 discrete channels, referred to as the MODIS Enhanced Vegetation Albedo (MEVA algorithm. The MEVA algorithm empirically fills spectral gaps around the vegetation red edge near 0.7 μm and vegetation water absorption features at 1.48 and 1.92 μm which cannot be adequately captured by the MODIS 7 channels. We then assess the effects of applying MEVA in comparison to four other traditional approaches to calculate solar fluxes and aerosol direct radiative forcing (DRF at the top of atmosphere (TOA based on the MODIS discrete reflectance bands. By comparing the DRF results obtained through the MEVA method with the results obtained through the other four traditional approaches, we show that filling the spectral gap of the MODIS measurements around 0.7 μm based on the general spectral behavior of healthy green vegetation leads to significant improvement in the instantaneous aerosol DRF at TOA (up to 3.02 W m−2 difference or 48% fraction of the aerosol DRF, −6.28 W m−2, calculated for high spectral resolution surface reflectance from 0.3 to 2.5 μm for deciduous vegetation surface. The corrections of the spectral gaps in the vegetation spectrum in the near infrared, again missed by the MODIS reflectances, also contributes to improving TOA DRF calculations but to a much lower extent (less than 0.27 W m−2, or about 4% of the instantaneous DRF.

    Compared to traditional approaches, MEVA also improves the accuracy of the outgoing solar flux between 0.3 to 2.5 μm at TOA by over 60 W m−2 (for aspen 3 surface and aerosol DRF by over 10 W m−2 (for dry grass. Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol radiative forcing in the spectral range of 0.3 to 2.5 μm at

  6. Effect of Spectrally Varying Albedo of Vegetation Surfaces on Shortwave Radiation Fluxes and Aerosol Direct Radiative Forcing

    Science.gov (United States)

    Zhu, L.; Martins, J. V.; Yu, H.

    2012-01-01

    This study develops an algorithm for representing detailed spectral features of vegetation albedo based on Moderate Resolution Imaging Spectrometer (MODIS) observations at 7 discrete channels, referred to as the MODIS Enhanced Vegetation Albedo (MEVA) algorithm. The MEVA algorithm empirically fills spectral gaps around the vegetation red edge near 0.7 micrometers and vegetation water absorption features at 1.48 and 1.92 micrometers which cannot be adequately captured by the MODIS 7 channels. We then assess the effects of applying MEVA in comparison to four other traditional approaches to calculate solar fluxes and aerosol direct radiative forcing (DRF) at the top of atmosphere (TOA) based on the MODIS discrete reflectance bands. By comparing the DRF results obtained through the MEVA method with the results obtained through the other four traditional approaches, we show that filling the spectral gap of the MODIS measurements around 0.7 micrometers based on the general spectral behavior of healthy green vegetation leads to significant improvement in the instantaneous aerosol DRF at TOA (up to 3.02Wm(exp -2) difference or 48% fraction of the aerosol DRF, .6.28Wm(exp -2), calculated for high spectral resolution surface reflectance from 0.3 to 2.5 micrometers for deciduous vegetation surface). The corrections of the spectral gaps in the vegetation spectrum in the near infrared, again missed by the MODIS reflectances, also contributes to improving TOA DRF calculations but to a much lower extent (less than 0.27Wm(exp -2), or about 4% of the instantaneous DRF). Compared to traditional approaches, MEVA also improves the accuracy of the outgoing solar flux between 0.3 to 2.5 micrometers at TOA by over 60Wm(exp -2) (for aspen 3 surface) and aerosol DRF by over 10Wm(exp -2) (for dry grass). Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol radiative forcing in the spectral range of 0.3 to 2.5 micrometers at equator at the

  7. Changes in blast zone albedo patterns around new martian impact craters

    Science.gov (United States)

    Daubar, I. J.; Dundas, C. M.; Byrne, S.; Geissler, P.; Bart, G. D.; McEwen, A. S.; Russell, P. S.; Chojnacki, M.; Golombek, M. P.

    2016-03-01

    "Blast zones" (BZs) around new martian craters comprise various albedo features caused by the initial impact, including diffuse halos, extended linear and arcuate rays, secondary craters, ejecta patterns, and dust avalanches. We examined these features for changes in repeat images separated by up to four Mars years. Here we present the first comprehensive survey of the qualitative and quantitative changes observed in impact blast zones over time. Such changes are most likely due to airfall of high-albedo dust restoring darkened areas to their original albedo, the albedo of adjacent non-impacted surfaces. Although some sites show drastic changes over short timescales, nearly half of the sites show no obvious changes over several Mars years. Albedo changes are more likely to occur at higher-latitude sites, lower-elevation sites, and at sites with smaller central craters. No correlation was seen between amount of change and Dust Cover Index, relative halo size, or historical regional albedo changes. Quantitative albedo measurements of the diffuse dark halos relative to their surroundings yielded estimates of fading lifetimes for these features. The average lifetime among sites with measurable fading is ∼15 Mars years; the median is ∼8 Mars years for a linear brightening. However, at approximately half of sites with three or more repeat images, a nonlinear function with rapid initial fading followed by a slow increase in albedo provides a better fit to the fading behavior; this would predict even longer lifetimes. The predicted lifetimes of BZs are comparable to those of slope streaks, and considered representative of fading by global atmospheric dust deposition; they last significantly longer than dust devil or rover tracks, albedo features that are erased by different processes. These relatively long lifetimes indicate that the measurement of the current impact rate by Daubar et al. (Daubar, I.J. et al. [2013]. Icarus 225, 506-516. http://dx.doi.org/10.1016/j

  8. Calibration of the IRD two-component TLD albedo neutron dosemeter in some moderated neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Bruno M.; Silva, Ademir X. da, E-mail: bfreitas@nuclear.ufrj.br, E-mail: ademir@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Martins, Marcelo M.; Pereira, Walsan W.; Mauricio, Claudia L.P., E-mail: marcelo@ird.gov.br, E-mail: walsan@ird.gov.br, E-mail: claudia@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    In some stray neutron fields, like those found in practices involving the handling of radionuclide sources, the neutron calibration factor for albedo neutron dosemeter can vary widely compared to the factor for bare sources. This is the case for well logging, which is the area with the largest number of workers exposed to neutrons in Brazil. The companies employ routinely {sup 241}Am-Be neutron sources. The albedo response variation is mainly due to the presence of scattered and moderated neutrons. This paper studies the response variation of the two-component TLD albedo neutron dosemeter used in the neutron individual monitoring service of Instituto de Radioprotecao e Dosimetria, in different radionuclide neutron source beams. The neutron spectra were evaluated applying a Bonner sphere spectrometer with a {sup 6}LiI(Eu) detector in the Brazilian National Metrology Neutron Laboratory. Standard neutron sources of {sup 241}Am-Be and {sup 252}Cf were employed, besides {sup 238}Pu-Be. Measurements were also made with scattered and moderated neutron beams, including {sup 252}Cf(D{sub 2}O) reference spectrum, {sup 241}Am-Be moderated with paraffin and silicone and a thermal neutron flux facility. New neutron calibration factors, as a function of the incident to albedo neutron ratio, were proposed for use in the albedo algorithm for occupational fields where the primary neutron beam is one of those studied sources. (author)

  9. Radiative forcing over the conterminous United States due to contemporary land cover land use albedo change

    Science.gov (United States)

    Barnes, C. A.; Roy, D. P.

    2009-04-01

    Land cover and land use (LCLU) change affects Earth surface properties including albedo that impose a radiative forcing on the climate. Recently available satellite derived LCLU change data for the conterminous United States (CONUS) are used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 61 ecoregions covering 73% of the CONUS. Mean monthly broadband Moderate Resolution Imaging Spectroradiometer snow and snow-free albedo values are derived from decadal Landsat 60m LCLU classification maps located within ecoregions using a stratified random sampling methodology. These data and European Center for Medium-Range Weather Forecasts incoming surface solar radiation reanalysis are used to estimate ecoregion estimates of LCLU induced albedo change and surface radiative forcing. The results illustrate that radiative forcing due to contemporary LCLU albedo change varies geographically in sign and magnitude, with the most positive radiative forcing due to conversion of agriculture to other LCLU types, and the most negative radiative forcing due to forest loss, with snow modifying the results. At the ecoregion level this magnitude of radiative forcing is not insignificant, being similar in magnitude to global radiative forcing estimates due to LCLU change during the twentieth century.

  10. Observational determination of albedo decrease caused by vanishing Arctic sea ice.

    Science.gov (United States)

    Pistone, Kristina; Eisenman, Ian; Ramanathan, V

    2014-03-01

    The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 ± 0.9 W/m(2) of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming. PMID:24550469

  11. Intercomparison of MODIS Albedo Retrievals and In Situ Measurements Across the Global FLUXNET Network

    Science.gov (United States)

    Cescatti, Alessandro; Marcolla, Barbara; Vannan, Suresh K. Santhana; Pan, Jerry Yun; Roman, Miguel O.; Yang, Xiaoyuan; Ciais, Philippe; Cook, Robert B.; Law, Beverly E.; Matteucci, Girogio; Migliavacca, Mirco; Moors, Eddy; Richardson, Andrew D.; Seufert, Guenther; Schaaf, Crystal B.

    2012-01-01

    Surface albedo is a key parameter in the Earth's energy balance since it affects the amount of solar radiation directly absorbed at the planet surface. Its variability in time and space can be globally retrieved through the use of remote sensing products. To evaluate and improve the quality of satellite retrievals, careful intercomparisons with in situ measurements of surface albedo are crucial. For this purpose we compared MODIS albedo retrievals with surface measurements taken at 53 FLUXNET sites that met strict conditions of land cover homogeneity. A good agreement between mean yearly values of satellite retrievals and in situ measurements was found (R(exp 2)= 0.82). The mismatch is correlated to the spatial heterogeneity of surface albedo, stressing the relevance of land cover homogeneity when comparing point to pixel data. When the seasonal patterns of MODIS albedo is considered for different plant functional types, the match with surface observation is extremely good at all forest sites. On the contrary, in non-forest sites satellite retrievals underestimate in situ measurements across the seasonal cycle. The mismatch observed at grasslands and croplands sites is likely due to the extreme fragmentation of these landscapes, as confirmed by geostatistical attributes derived from high resolution scenes.

  12. Radiative forcing over the conterminous United States due to contemporary land cover land use albedo change

    Science.gov (United States)

    Barnes, Christopher; Roy, David P.

    2008-01-01

    Recently available satellite land cover land use (LCLU) and albedo data are used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 36 ecoregions covering 43% of the conterminous United States (CONUS). Moderate Resolution Imaging Spectroradiometer (MODIS) snow-free broadband albedo values are derived from Landsat LCLU classification maps located using a stratified random sampling methodology to estimate ecoregion estimates of LCLU induced albedo change and surface radiative forcing. The results illustrate that radiative forcing due to LCLU change may be disguised when spatially and temporally explicit data sets are not used. The radiative forcing due to contemporary LCLU albedo change varies geographically in sign and magnitude, with the most positive forcings (up to 0.284 Wm−2) due to conversion of agriculture to other LCLU types, and the most negative forcings (as low as −0.247 Wm−2) due to forest loss. For the 36 ecoregions considered a small net positive forcing (i.e., warming) of 0.012 Wm−2 is estimated.

  13. A Study on Parameterization of Surface Albedo over Grassland Surface in the Northern Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    LI Ying; HU Zeyong

    2009-01-01

    The relationship of surface albedo with the solar altitude angle and soil moisture is analyzed based ontwo-year (January 2002 to December 2003) observational data from the AWS (Automatic Weather Station) at MS3478 in the northern Tibetan Plateau during the experimental period of CEOP/CAMP-Tibet (Coordinated Enhanced Observing Period Asia-Australia Monsoon Project on the Tibetan Plateau). As a double-variable (solar altitude angle and soil moisture) function, surface albedo varies inconspicuously with any single factor. By using the method of approximately separating the double-variable function into two, one-factor functions (product and addition), the relationship of albedo with these two factors presents much better. The product and additional empirical formulae of albedo are then preliminarily fitted based on long-term experimental data. By comparison with observed values, it is found that the parameterization formulae fitted by using observational data are mostly reliable and their correlation coefficients are both over 0.6. The empirical formulae of albedo though, for the northern Tibetan Plateau, need to be tested by much more representative observational data with the help of numerical models and the retrieval of remote sensing data. It is practical until it is changed into effective parameterization formulae representing a grid scale in models.

  14. Satellite Remote Sensing of Snow/Ice Albedo over the Himalayas

    Science.gov (United States)

    Hsu, N. Christina; Gautam, Ritesh

    2012-01-01

    The Himalayan glaciers and snowpacks play an important role in the hydrological cycle over Asia. The seasonal snow melt from the Himalayan glaciers and snowpacks is one of the key elements to the livelihood of the downstream densely populated regions of South Asia. During the pre-monsoon season (April-May-June), South Asia not only experiences the reversal of the regional meridional tropospheric temperature gradient (i.e., the onset of the summer monsoon), but also is being bombarded by dry westerly airmass that transports mineral dust from various Southwest Asian desert and arid regions into the Indo-Gangetic Plains in northern India. Mixed with heavy anthropogenic pollution, mineral dust constitutes the bulk of regional aerosol loading and forms an extensive and vertically extended brown haze lapping against the southern slopes of the Himalayas. Episodic dust plumes are advected over the Himalayas, and are discernible in satellite imagery, resulting in dust-capped snow surface. Motivated by the potential implications of accelerated snowmelt, we examine the changes in radiative energetics induced by aerosol transport over the Himalayan snow cover by utilizing space borne observations. Our objective lies in the investigation of potential impacts of aerosol solar absorption on the Top-of-Atmosphere (TOA) spectral reflectivity and the broadband albedo, and hence the accelerated snowmelt, particularly in the western Himalayas. Lambertian Equivalent Reflectivity (LER) in the visible and near-infrared wavelengths, derived from Moderate Resolution Imaging Spectroradiometer radiances, is used to generate statistics for determining perturbation caused due to dust layer over snow surface in over ten years of continuous observations. Case studies indicate significant reduction of LER ranging from 5 to 8% in the 412-860nm spectra. Broadband flux observations, from the Clouds and the Earth's Radiant Energy System, are also used to investigate changes in shortwave TOA flux over

  15. Simulation Calculation and Distribution Characteristics of Terrain Reflected Radiation in Fujian Province

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the distribution characteristics of terrain reflected radiation in Fujian Province.[Method] Based on solar radiation data,digital elevation model (DEM) and surface meteorological observation data in Fujian Province,plus surface albedo obtained by using remote sensing inversion method,the distribution of terrain reflected radiation in Fujian Province from 1988 to 2007 was simulated,and then its temporal and spatial distribution characteristics was studied.[Result] The simulat...

  16. BIDIRECTIONAL REFLECTANCE MODELING OF THE GEOSTATIONARY SENSOR HIMAWARI-8/AHI USING A KERNEL-DRIVEN BRDF MODEL

    OpenAIRE

    Matsuoka, M.; Takagi, M; Akatsuka, S.; Honda, R.(Department of Physics, Tohoku University, Sendai 980-8578, Japan); Nonomura, A.; Moriya, H; Yoshioka, H.

    2016-01-01

    Himawari-8/AHI is a new geostationary sensor that can observe the land surface with high temporal frequency. Bidirectional reflectance derived by the Advanced Himawari Imager (AHI) includes information regarding land surface properties such as albedo, vegetation condition, and forest structure. This information can be extracted by modeling bidirectional reflectance using a bidirectional reflectance distribution function (BRDF). In this study, a kernel-driven BRDF model was applied to...

  17. HD 75289Ab revisited - Searching for starlight reflected from a hot Jupiter

    CERN Document Server

    Rodler, F; Henning, T

    2008-01-01

    Aims. We attempt to detect starlight reflected from a hot Jupiter, orbiting the main-sequence star HD 75289Ab. We report a revised analysis of observations of this planetary system presented previously by another research group. Methods. We analyse high-precision, high-resolution spectra, collected over four nights using UVES at the VLT/UT2, by way of data synthesis. We try to interpret our data using different atmospheric models for hot Jupiters. Results. We do not find any evidence for reflected light, and, therefore, establish revised upper limits to the planet-to-star flux ratio at the 99.9% significance level. At high orbital inclinations, where the best sensitivity is attained, we can limit the relative reflected radiation to be less than e = 6.7 x 10-5 assuming a grey albedo, and e = 8.3 x 10-5 assuming an Class IV function, respectively. This implies a geometric albedo smaller than p = 0.46 and p = 0.57, for the grey albedo and the Class IV albedo shape, respectively, assuming a planetary radius of 1....

  18. New Index for Soil Moisture Monitoring Based on ΔTs-Albedo Spectral Information%基于△Ts-Albedo光谱信息的土壤水分监测新指数研究

    Institute of Scientific and Technical Information of China (English)

    姚云军; 秦其明; 赵少华; 沈心一; 随欣欣

    2011-01-01

    Monitoring soil moisture by remote sensing has been an important problem for both agricultural drought monitoring and water resources management. In the present paper, we acquire the land surface temperature difference (ΔTs)and broadband albedo using MODIS Terra reflectance and land surface temperature products to construct the ΔTs-albedo spectral feature space.According to the soil moisture variation in spectral feature space, we put forward a simple and practical temperature difference albedo drought index (TDADI) and validate it using ground-measured 0 ~ 10 cm averaged soil moisture of Ningxia plain. The results show that the coefficient of determination (R2) of both them varies from 0. 36 to 0. 52, and TDADI has higher accuracy than temperature albedo drought index (TADI) for soil moisture retrieval. The good agreement of TDADI, Albedo/LST, LST/NDVI and TVDI for analyzing the trends of soil moisture change supports the reliability of TDADI. However, TDADI has been designed only at Ningxia plain and still needs further validation in other regions.%土壤水分的遥感监测在农业干旱和水资源管理方面具有重要的意义.利用MODIS反射率和温度产品来获取地表昼夜温差(△Ts)和宽波段反照率(Albedo),构建△Ts-Albedo光谱特征空间,提出温差-反照率干旱指数(temperature difference albedo drought index,TDADI)用来监测土壤水分,并利用宁夏实测0~10cm平均土壤含水量数据验证该指数的精度,结果表明:它们之间的相关性较好,R2变化范围为0.36~0.52.TDADI与TAD/相比,该指数具有更高的土壤水分监测精度.然而,由于数据获取的局限性,只采用了宁夏平原数据对TDADI进行验证,在其他区域仍需要进一步验证.

  19. Modeling Earth Albedo Currents on Sun Sensors for Improved Vector Observations

    DEFF Research Database (Denmark)

    Bhanderi, Dan

    2006-01-01

    Earth albedo influences vector measurements of the solar line of sight vector, due to the induced current on in the photo voltaics of Sun sensors. Although advanced digital Sun sensors exist, these are typically expensive and may not be suited for satellites in the nano or pico-class. Previously...... for modeling Sun sensor output by incorporating the Earth albedo model is presented. This model utilizes the directional information of in the Earth albedo model, which is achieved by Earth surface partitioning. This allows accurate simulation of the Sun sensor output and the results are consistent with Ørsted...... and useful for space environment simulations, and may be utilized to improve attitude estimation algorithms applying Sun sensor vector observations....

  20. Number albedo measurements for backscattered 1250 KeV photons from stratified lead layers

    International Nuclear Information System (INIS)

    A new treatment of the stratified combination of lead with other radiation shielding materials for the measurement of number albedo for backscattered 1250 keV photons has been carried out. The stratified combination has been found to attain higher shielding property as well as to acquire a virtual homogeneous entity with a definite effective atomic number. Number albedo measurements have been carried out with indigenously designed Uniform Sensitivity Photon Counter which avoids tedious response correction by inverse matrix method. The results when compared with the theoretically obtained values were found to have better agreement than those obtained experimentally by other workers. The measurements of number albedo values and the angular distribution of backscattered 1250 KeV photons for iron, aluminium and concrete stratified with lead have been reported. (author). 8 figs., 3 tabs., 19 refs