WorldWideScience

Sample records for albarrana uranium ores

  1. Processing of Sierra Albarrana uranium ores

    International Nuclear Information System (INIS)

    Uranium recovery by hydrometallurgy from brannerite, found in Hornachuelos (Cordoba) is described. It has been studied the acid and alkaline leaching and salt roasting, proving as more satisfactory the acid leaching. Besides the uranium solubilization by acid leaching, is described the further process to obtain pure uranyl nitrate. (Author)

  2. Processing of Sierra Albarrana uranium ores; Tratamiento de los minerales de uranio de Sierra Albarrana

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Jodra, L.; Perez Luina, A.; Perarnau, M.

    1960-07-01

    Uranium recovery by hydrometallurgy from brannerite, found in Hornachuelos (Cordoba) is described. It has been studied the acid and alkaline leaching and salt roasting, proving as more satisfactory the acid leaching. Besides the uranium solubilization by acid leaching, is described the further process to obtain pure uranyl nitrate. (Author)

  3. Studies on uranium ore processing

    International Nuclear Information System (INIS)

    For the exploitation of domestic uranium ore deposit, comprehensive studies on uranium ore processing of the Geum-San pit ore are carried out. Physical and chemical characteristics of the Geum-San ore are similar to those of Goe-San ore and the physical beneficiation could not be applicable. Optimum operating conditions such as uranium leaching, solid-liquid separation, solvent extraction and precipitation of yellow cake are found out and the results are confirmed by the continous operation of the micro-plant with the capacity of 50Kg, ore/day. In order to improve the process of ore milling pilot plant installed recently, the feasibility of raffinate-recycle and the precipitation methods of yellow cake are intensively examined. It was suggested that the raffinate-recycle in the leaching of filtering stage could be reduced the environmental contamination and the peroxide precipitation technique was applicable to improve the purity of yellow cake. The mechanism and conditions the third phase formation are thoroughly studied and confirmed by chemical analysis of the third phase actually formed during the operation of pilot plant. The major constituents of the third phase are polyanions such as PMosub(12)Osub(40)sup(3-) or SiMosub(12)Osub(40)sup(4-). And the formation of these polyanions could be reduced by the control of redox potential and the addition of modifier. (Author)

  4. Extraction of uranium from its ores

    International Nuclear Information System (INIS)

    The ore is ground and mixed with sulphuric acid to give a moist ore containing a sulphuric acid concentration of less than 4N without forming a continuous liquid phase. The moist ore is cured at from 500 to 1000 while passing an oxidising gas through it. Using this method it is possible to achieve uranium extractions of % or better in 24 hours or less. This invention provides an improved method for acid leaching of uranium from its ores and especially from those ores which contain uranium as a finely-diaseminated refractory material, such as brannerite or uraninite. (LL)

  5. Radiometric sorting of Rio Algom uranium ore

    International Nuclear Information System (INIS)

    An ore sample of about 0.2 percent uranium from Quirke Mine was subjected to radiometric sorting by Ore Sorters Limited. Approximately 60 percent of the sample weight fell within the sortable size range: -150 + 25 mm. Rejects of low uranium content (2 (2 counts/in2) but only 7.6 percent of the ore, by weight, was discarded. At 0.8-0.9 counts/cm2 (5-6 counts/in2) a significant amount of rejects was removed (> 25 percent) but the uranium loss was unacceptably high (7.7 percent). Continuation of the testwork to improve the results is proposed by trying to extend the sortable size range and to reduce the amount of fines during crushing

  6. Practice and prospect on bioleaching of uranium ore in China

    International Nuclear Information System (INIS)

    Developing situation on bioleaching of uranium ore in China is introduced. The selection and domestication of bacteria, development and application of biocntact oxidation tank, and practice on bioleaching of uranium ore in China are retrospeted and prospected. (authors)

  7. Modelling a uranium ore bioleaching process

    International Nuclear Information System (INIS)

    A dynamic simulation model for the bioleaching of uranium ore in a stope leaching process has been developed. The model incorporates design and operating conditions, reaction kinetics enhanced by Thiobacillus ferroxidans present in the leaching solution and transport properties. Model predictions agree well with experimental data with an average deviation of about ± 3%. The model is sensitive to small errors in the estimates of fragment size and ore grade. Because accurate estimates are difficult to obtain a parameter estimation approach was developed to update the value of fragment size and ore grade using on-line plant information

  8. Underground leaching of uranium ores

    International Nuclear Information System (INIS)

    Large amounts of low-grade U ore, not worth processing by conventional methods, are to be found at many sites in mine pillars, walls, and backfilling. Many proven deposits are not being mined because the geological conditions are difficult or the U ore is of relatively low grade. Factors such as radioactive emission, radon emanation, and the formation of radioactive dust give rise to health hazards. When U ores are treated above ground, enormous quantities of solid and liquid radioactive waste and mining spoil accumulate. The underground leaching of U is a fundamentally different kind of process. It is based on the selective dissolving of U at the place where it occurs by a chemical reagent; all that reaches the ground surface is a solution containing U, and after extraction of the U by sorption the reagent is used again. The main difficult and dangerous operations associated with conventional methods (excavation; extraction and crushing of the ore; storage of wastes) are avoided. Before underground leaching the ore formation has to be fractured and large ore bodies broken down into blocks by shrinkage stopping. These operations are carried out by advanced machinery and require the presence underground of only a few workers. If the ore is in seams, the only mining operation is the drilling of boreholes. The chemical reagent is introduced under pressure through one set of boreholes, while the U bearing solution is pumped out from another set. The process is monitored with the help of control boreholes. After extraction of the U by sorption, the reagent is ready to be used again. Very few operations are involved and insignificant amounts of dissolved U escape into the surrounding rock formations. Experience has shown that underground leaching reduces the final cost of the U metal, increases productivity, reduces capital expenditure, and radically improves working conditions

  9. Heap leaching of clay ish uranium ores

    International Nuclear Information System (INIS)

    This paper describes an experimental facility, built near El Lobo mine. In it we study the beneficiation of low-grade uranium ore. The mineral has a great amount of clay and fines. The flow-sheet used has four steps: head leaching, ph-ajustement, ion-exchange and participation. We show, also, the most interesting results. (Author)

  10. Economic evaluation of preconcentration of uranium ores

    International Nuclear Information System (INIS)

    The economics of two options for the preconcentration of low-grade uranium ores prior to hydrochloric acid leaching were studied. The first option uses flotation followed by wet high-intensity magnetic separation. The second option omits the flotation step. In each case it was assumed that most of the pyrite in the ore would be recovered by froth flotation, dewatered, and roasted to produce sulphuric acid and a calcine suitable for acid leaching. Savings in operating costs from preconcentration are offset by the value of uranium losses. However, a capital saving of approximately 6 million dollars is indicated for each preconcentration option. As a result of the capital saving, preconcentration appears to be economically attractive when combined with hydrochloric acid leaching. There appears to be no economic advantage to preconcentration in combination with sulphuric acid leaching of the ore

  11. Study on ore stacking after blasting for stope leaching uranium

    International Nuclear Information System (INIS)

    Geology of ore deposits, technical conditions, mining methods and blasting parameters of in-situ leaching uranium after blasting for an outcrop ore body are introduced. Long hole blast is beneficial technique and can bring better economic benefits

  12. Alternative leaching processes for uranium ores

    International Nuclear Information System (INIS)

    Laboratory studies have been carried out to compare the extraction of uranium from Australian ores by conventional leaching in sulphuric acid with that obtained using hydrochloric acid and acidified ferric sulphate solutions. Leaching with hydrochloric acid achieved higher extractions of radium-226 but the extraction of uranium was reduced considerably. The use of acidified ferric sulphate solution reduced acid consumption by 20-40% without any detrimental effect on uranium extraction. The ferric ion, which is reduced during leaching, can be reoxidized and recycled after the addition of acid makeup. Hydrogen peroxide was found to be an effective oxidant in conventional sulphuric acid leaching. It is more expensive than alternative oxidants, but it is non-polluting, lesser quantities are required and acid consumption is reduced

  13. Oxidizing roasting enhances extraction of uranium from some refractory ores

    International Nuclear Information System (INIS)

    Roasting in an oxidizing environment improves extraction of uranium from some refractory ores. Roasting of the ore tested also tends to reduce reagent costs and handling problems. Ores that may benefit from roasting include those of low uranium extractability that contain oxidizable organic materials or clay minerals. Roasting improves the porosity of ores by removing carbonaceous material and dehydrating clays, and it may even break down agglomerates of a clay-silica-organic nature. The result is better access of the leaching agent to the uranium-containing fractions of the ore

  14. Biosolubilization of uranyl ions in uranium ores by hydrophyte plants

    International Nuclear Information System (INIS)

    This paper investigated the bioleaching of uranyl ions from uranium ores, in aqueous medium by hydrophyte plants: Lemna minor, Azolla caroliniana and Elodea canadensis under different experimental conditions. The oxidation of U(IV) to U(VI) species was done by the atomic oxygen generated in the photosynthesis process by the aquatic plants in the solution above uranium ores. Under identical experimental conditions, the capacity of bioleaching of uranium ores decreases according to the following series: Lemna minor > Elodea canadensis > Azolla caroliniana. The results of IR spectra suggest the possible use of Lemna minor and Elodea canadensis as a biological decontaminant of uranium containing wastewaters. (author)

  15. Uranium mobilization from low-grade ore by cyanobacteria

    International Nuclear Information System (INIS)

    Three cyanobacterial isolates (two LPP-B forms and one Anabaena or Nostoc species) from different environments could mobilize uranium from low-grade ores. After 80 days, up to 18% uranium had been extracted from coal and 51% from a carbonate rock by the filamentous cyanobacterium OL3, a LPP-B form. Low growth requirements with regard to light and temperature optima make this strain a possible candidate for leaching neutral and alkaline low-grade uranium ores. (orig.)

  16. NRC's limit on intake of uranium-ore dust

    International Nuclear Information System (INIS)

    In 1960 the Atomic Energy Commission adopted an interim limit on the intake by inhalation of airborne uranium-ore dust. This report culminates two decades of research aimed at establishing the adequacy of that limit. The report concludes that the AEC underestimated the time that thorium-230, a constituent of uranium-ore dust, would remain in the human lung. The AEC assumed that thorium-230 in ore dust would behave like uranium with a 120-day biological half-life in the lung. This report concludes that the biological half-life is actually on the order of 1 year. Correcting the AEC's underestimate would cause a reduction in the permitted airborne concentration of uranium-ore dust. However, another factor that cancels the need for that reduction was found. The uranium ore dust in uranium mills was found to occur with very large particle sizes (10-micron activity median aerodynamic diameter). The particles are so large that relatively few of them are deposited in the pulmonary region of the lung, where they would be subject to long-term retention. Instead they are trapped in the upper regions of the respiratory tract, subsequently swallowed, and then rapidly excreted from the body through the gastrointestinal tract. The two effects are of about the same magnitude but in opposing directions. Thus the present uranium-ore dust intake limit in NRC regulations should provide a level of protection consistent with that provided for other airborne radioactive materials. The report recalculates the limit on intake of uranium-ore dust using the derived air concentrations (DAC) from the International Commission on Radiological Protection's recent Publication 30. The report concludes that the silica contained in uranium-ore dust is a greater hazard to workers than the radiological hazard

  17. Pulmonary function evaluations of dogs exposed to uranium ore dust

    International Nuclear Information System (INIS)

    Pulmonary function evaluations were conducted on dogs exposed to carnotite uranium ore dust. Significant changes were detected in the slope of the single-breath N2 washout curve, suggesting an uneven distribution of ventilation

  18. Present methods for mineralogical analysis of uranium ores

    International Nuclear Information System (INIS)

    Most promising methods of mineralogic analysis of uranium and uranium-containing minerals, ores and rocks are considered. They include X-ray diffraction, electron microscopy and fluorescence spectroscopy methods. Principle physical basis and capabilities of each method are described; examples of its practical application are presented. Comparative characteristic of method for mineralogic analysis of radioactive ores and their reprocessing products is given. Attention is paid to the equipment and various devices for analysis

  19. Uranium and thorium recovery in thorianite ore-preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Gaiotte, Joao V.M. [Universidade Federal de Alfenas, Pocos de Caldas, MG (Brazil); Villegas, Raul A.S.; Fukuma, Henrique T., E-mail: rvillegas@cnen.gov.br, E-mail: htfukuma@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas

    2011-07-01

    This work presents the preliminary results of the studies aiming to develop a hydrometallurgical process to produce uranium and thorium concentrates from thorianite ore from Amapa State, Brazil. This process comprises two major parts: acid leaching and Th/U recovery using solvent extraction strategies. Thorianite ore has a typical composition of 60 - 70% of thorium, 8 - 10% lead and 7 - 10% uranium. Sulfuric acid leaching operational conditions were defined as follows: acid/ore ratio 7.5 t/t, ore size below 65 mesh (Tyler), 2 hours leaching time and temperature of 100 deg C. Leaching tests results showed that uranium and thorium recovery exceeded 95%, whereas 97% of lead ore content remained in the solid form. Uranium and thorium simultaneous solvent extraction is necessary due to high sulfate concentration in the liquor obtained from leaching, so the Primene JM-T primary anime was used for this extraction step. Aqueous raffinate from extraction containing sulfuric acid was recycled to the leaching step, reducing acid uptake around 60%, to achieve a net sulfuric acid consumption of 3 t/t of ore. Uranium and thorium simultaneous stripping was performed using sodium carbonate solution. In the aqueous stripped it was added sulfuric acid at pH 1.5, followed by a second solvent extraction step using the tertiary amine Alamine 336. The following stripping step was done with a solution of sodium chloride, resulting in a final solution of 23 g L-1 uranium. (author)

  20. Large ore-concentrated area of uranium deposits and uranium metellogeny

    International Nuclear Information System (INIS)

    The formation of large ore-concentrated are results from the anomalous concentration of multi-mineral resources and large amount of ore materials during the process of geologic evolution history. Different ore-concentrated areas are characterized by different typical mineral resources and typical ore deposits. By taking uranium deposit as an example, the author recognizes 14 large ore-concentrated areas of uranium deposit in the world, and studies the time-space constraints of large ore-concentrated areas of uranium deposits and their relation with geodynamic evolution, and on the above basis, discusses the unusual concentration of ore elements in large ore-concentrated areas of uranium deposits, as well as proposes the characteristics of 'unusual concentration in certain points and areas' and 'explosion metallogeny in a short period of time' of multiple mineral resources. According to the three basic 'links', i.e. 'source, transportation and precipitation', the author proposes the metallogeny of large ore-concentrated areas of uranium deposits. Of them, the study on the deep-source metallogeny, water-rock intereaction of special alkaline fluid and precipitation environment has made a foundation for the establishment of prospecting model of large uranium ore-concentration areas

  1. Summary of the mineralogy of the Colorado Plateau uranium ores

    Science.gov (United States)

    Weeks, Alice D.; Coleman, Robert Griffin; Thompson, Mary E.

    1956-01-01

    In the Colorado Plateau uranium has been produced chiefly from very shallow mines in carnotite ores (oxidized vanadiferous uranium ores) until recent deeper mining penetrated black unoxidized ores in water-saturated rocks and extensive exploration has discovered many deposits of low to nonvanadiferous ores. The uranium ores include a wide range from highly vanadiferous and from as much as one percent to a trace of copper, and contain a small amount of iron and traces of lead, zinc, molybdenum, cobalt, nickel, silver, manganese, and other metals. Recent investigation indicates that the carnotite ores have been derived by progressive oxidation of primary (unoxidized) black ores that contain low-valent uranium and vanadium oxides and silicates. The uranium minerals, uraninite and coffinite, are associated with coalified wood or other carbonaceous material. The vanadium minerals, chiefly montroseite, roscoelite, and other vanadium silicates, occur in the interstices of the sandstone and in siltstone and clay pellets as well as associated with fossil wood. Calcite, dolomite, barite and minor amounts of sulfides, arsenides, and selenides occur in the unoxidized ore. Partially oxidized vanadiferous ore is blue black, purplish brown, or greenish black in contrast to the black or dark gray unoxidized ore. Vanadium combines with uranium to form rauvite. The excess vanadium is present in corvusite, fernandinite, melanovanadite and many other quadrivalent and quinquevalent vanadium minerals as well as in vanadium silicates. Pyrite and part or all of the calcite are replaced by iron oxides and gypsum. In oxidized vanadiferous uranium ores the uranium is fixed in the relatively insoluble minerals carnotite and tyuyamunite, and the excess vanadium commonly combines with one or more of the following: calcium, sodium, potassium, magnesium, aluminum, iron, copper, manganese, or barium, or rarely it forms the hydrated pentoxide. The relatively stable vanadium silicates are little

  2. Manual on laboratory testing for uranium ore processing

    International Nuclear Information System (INIS)

    Laboratory testing of uranium ores is an essential step in the economic evaluation of uranium occurrences and in the development of a project for the production of uranium concentrates. Although these tests represent only a small proportion of the total cost of a project, their proper planning, execution and interpretation are of crucial importance. The main purposes of this manual are to discuss the objectives of metallurgical laboratory ore testing, to show the specific role of these tests in the development of a project, and to provide practical instructions for performing the tests and for interpreting their results. Guidelines on the design of a metallurgical laboratory, on the equipment required to perform the tests and on laboratory safety are also given. This manual is part of a series of Technical Reports on uranium ore processing being prepared by the IAEA's Division of Nuclear Fuel Cycle and Waste Management. A report on the Significance of Mineralogy in the Development of Flowsheets for Processing Uranium Ores (Technical Reports Series No. 196, 1980) and an instruction manual on Methods for the Estimation of Uranium Ore Reserves (No. 255, 1985) have already been published. 17 refs, 40 figs, 17 tabs

  3. Evaluation of the effectiveness of the filtration leaching for uranium recovery from uranium ore

    OpenAIRE

    Bolat Uralbekov; Mukhambetkaly Burkitbayev; Bagdat Satybaldiev

    2015-01-01

    The physical and chemical processes taking place in filtration leaching of uranium from uranium ore sample by sulphuric acid solution have been studied by modern physico-chemical methods (X-ray diffraction, scanning electron spectroscopy, electron probe microanalysis, optical emission spectroscope, ICP OES). Column leaching test was carried out for ore samples obtained from a uranium in-situ leaching (ISL) mining site using deluted sulphuricacid to study the evolution of various elements conc...

  4. Processing of low grade uranium ores

    International Nuclear Information System (INIS)

    Four types of low-grade ores are studied: (1) Low-grade ores that must be extracted because they are enclosed in a normal-grade deposit. Heap leaching is the processing method which is largely used. (2) Normal-grade ores contained in low-amplitude deposits. They can be processed using in-place leaching as far as the operation does not need any large and expensive equipment. (3) Medium-grade ores in medium-amplitude deposits. A simplified conventional process can be applied using fast heap leaching. (4) Low-grade ores in large deposits. The report explains processing possibilities leading in most cases to the use of in-place leaching. The operating conditions of this method are laid out, especially the selection of the leaching agents and the preparation of the ore deposit

  5. Mining and processing of uranium ores at the Streltsovsky ore field

    Energy Technology Data Exchange (ETDEWEB)

    Ovseytchuk, V.A.; Litvinenko, V.G.; Kultishev, V.I. [Joint Stock Company, Priargunsky Industrial Mining and Chemical Union, Krasnokamensk, Chita Region (Russian Federation)

    2000-07-01

    The uranium deposits of Streltsovsky ore fields provide raw materials for Russian nuclear industry. For this region, it is important to achieve continued and increased activities in the recovery of mineral resources of uranium. Similarly, maintaining the mining and processing of uranium ores ensures the supply of raw materials for the nuclear industry. With the current operations, increasing the mining and processing activities would increase the cost of production of uranium oxides due to decreasing grades of ore body. After a review of the existing economic, technological and natural factors, a solution was proposed based on the joint application of underground mining and ore enrichment and processing with the help of hydrometallurgical process, in-situ leaching. Reduction of operation coasts and creation of radiation-safe working conditions could be achieved with the application of these systems involving concrete hardening in the mines and in-situ leaching of ore. With the help of economic-mathematical modeling, methods for rational application of various technologies could be determined and their processing parameters were specified. A reduction of coasts could be obtained and favorable conditions could be established for improvement in the treatment of lower grade ores by heap leaching. Application of purification of mine waters and tailing pond reduces the influence of the radiation and the impact on the natural environment. (author)

  6. Uranium Rirang ore processing: extraction of uranium from Rirang ore digestion solution with tributyl phosphate

    International Nuclear Information System (INIS)

    Uranium is extracted from Rirang ore acid digestion solution containing rare earths. A mixture of tributyl phosphate solvent and kerosene diluent is employed. Several parameters of solvent extraction have been studied included aqueous to organic phase ratio, H2O2 reductor concentration and Tbp concentration in the solvent mixture, as well as the aqueous to organic phase ratio in the stripping process. The optimum conditions for the extraction step include the use of 25% H2O2 (v/v), one to one aqueous to organic ratio, and 40% Tbp in kerosene. The extraction recovery for U, RE, Th, and PO43- are 99%, 4%, 70%, and 30%, respectively. The stripping step optimum conditions include the use of one to five organic to aqueous phase ratio 0.24 N HNO3. and the stripping recovery for U, RE, Th, and PO43- are 84%, 80%, 72%, and 83%, respectively

  7. 40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.

    Science.gov (United States)

    2010-07-01

    ... uranium, radium and vanadium ores subcategory. 440.30 Section 440.30 Protection of Environment... SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.30 Applicability; description of the uranium, radium and vanadium ores subcategory. The provisions of this subpart C are applicable...

  8. Bioleaching of low-grade uranium ore using Acidithiobacillus ferrooxidans

    OpenAIRE

    Pal, S; Pradhan, D.; T Das; Sukla, L. B.; Chaudhury, G. Roy

    2010-01-01

    Bioleaching of uranium was carried out with Turamdih ore sample procured from Uranium Corporation of India Limited, Jaduguda. The bacterial strain that was used in the leaching experiments was isolated from the Jaduguda mine water sample. Efficiency of bioleaching was studied by varying parameters like pulp density and initial ferrous concentration as source of energy. It is observed that the efficiency of bioleaching was 49% at 10% pulp density (w/v) and initial pH 2.0. Addition of external ...

  9. Bacteria heap leaching test of a uranium ore

    International Nuclear Information System (INIS)

    Column bioleaching test of a uranium ore was carried out. The optimum acidity, spraying intensity, spray-pause time ratio were determined. The potential, Fe and U concentrations in the leaching process were investigated. The effect of bacteria column leaching was compared with that of acid column leaching. The results show that bacteria column leaching can shorten leaching cycle, and the leaching rate of uranium increases by 9.7%. (authors)

  10. Uranium and Molybdenum extraction from a Cerro Solo deposit ore

    International Nuclear Information System (INIS)

    Cerro Solo, located in Chubut, Argentina, is a sandstone type uranium-molybdenum deposit. Good recovery of both elements can be achieved by acid leaching of the ore but the presence of molybdenum in pregnant liquors is an inconvenient to uranium separation and purification. A two steps process is developed. A selective alkaline leaching of the ore with sodium hydroxide allows separating and recovering of molybdenum and after solid-liquid separation, the ore is acid leached to recover uranium. Several samples averaging 0,2% uranium and 0,1% molybdenum with variable U/Mo ratio have been used and in both steps, leaching and oxidant reagents concentration, temperature and residence time in a stirred tank leaching have been studied. In alkaline leaching molybdenum recoveries greater than 96% are achieved, with 1% uranium extraction. In acid leaching up to 93% of the uranium is extracted and Mo/U ratio in solvent extraction feed is between 0,013 and 0,025. (author)

  11. Innovations and trends in uranium ore treatment

    International Nuclear Information System (INIS)

    During the last uranium boom in the nineteen seventies and eighties, some key innovations were introduced into the operations established during that period. Some of these were subsequently carried over into hydrometallurgical copper, gold and nickel-cobalt projects, and others have been added. Many of these are likely to be reflected in the new uranium projects sporned by the current era of increasing uranium demand and high prices

  12. Mining and milling of uranium ore: Indian scenario

    International Nuclear Information System (INIS)

    The occurrence of uranium minerals in Singhbhum Thrust belt of Eastern India has been known since 1937. In 1950, a team of geologists of the Atomic Minerals Division was assigned to closely examine this 160 km long belt. Since then, several occurrences of uranium have been found and a few of them have sufficient grade and tonnage for commercial exploitation. In 1967, the Government of India formed Uranium Corporation of India Ltd., under the administrative control of the Department of Atomic Energy, with the specific objective of mining and processing of uranium ore and produce uranium concentrates. At present the Corporation operates three underground uranium mines, one ore processing plant with expanded capacity, and two uranium recovery plants. Continuing investigations by the Atomic Mineral Division has discovered several new deposits and favourable areas. The most notable is the large Domiasiat deposit of the sandstone type found in the State of Meghalaya. This deposit is now being considered for commercial exploitation using the in-situ leaching technology. (author)

  13. South African gold and uranium ore mining in 1976

    International Nuclear Information System (INIS)

    1976 was a difficult year for the South African gold and uranium ore mining industry, the region of Witwatersrand (Transvaal province) producing some 75% of all the gold mined in the western world besides being an important producer of uranium oxide. Despite the gold production, declining since 1971, not showing a downward tendency anymore as far as the quantity was concerned, the economic result, however, deteriorated as a consequence of continuously falling gold prices, but also on account of the inflationary rise in wages and the prices for energy and materials. Much higher prices for uranium oxide, which some mines produce as interim products from the 'degolded' slurries of their gold ore leaching plants, improved the economic overall result only to a small degree. (orig.)

  14. Chlorine/chloride based processes for uranium ores

    International Nuclear Information System (INIS)

    The CE Lummus Minerals Division was commissioned by The Department of Supply and Services to develop order-of-magnitude capital and operating cost estimates for chlorine/chloride-based processes for uranium ores. The processes are designed to remove substantially all radioactive consituents from the ores to render the waste products harmless. Two processes were selected, one for a typical low grade ore (2 lb. U3O8/ton ore) and one for a high grade ore (50 lbs U3O8 /ton). For the low grade ore a hydrochloric acid leaching process was chosen. For high grade ore, a more complex process, including gaseous chlorination, was selected. Capital cost estimates were compiled from information obtained from vendors for the specified equipment. Building cost estimates and the piping, electrical and instrumentation costs were developed from the plant layout. Utility diagrams and mass balances were used for estimating utilities and consumables. Detailed descriptions of the bases for capital and operating cost estimates are given

  15. Bioleaching of low-grade uranium ore using Acidithiobacillus ferrooxidans

    International Nuclear Information System (INIS)

    Bioleaching of uranium was carried out with Turamdih ore sample procured from Uranium Corporation of India Limited, Jaduguda. The bacterial strain that was used in the leaching experiments was isolated from the Jaduguda mine water sample. Efficiency of bioleaching was studied by varying parameters like pulp density and initial ferrous concentration as source of energy. It is observed that the efficiency of bioleaching was 49% at 10% pulp density (w/v) and initial pH 2.0. Addition of external has no effect on efficiency of bioleaching showing domination of direct leaching mechanism over indirect. (author)

  16. Geostatistics applied to estimation of uranium bearing ore reserves

    International Nuclear Information System (INIS)

    A computer assisted method for assessing uranium-bearing ore deposit reserves is analyzed. Determinations of quality-thickness, namely quality by thickness calculations of mineralization, were obtained by means of a mathematical method known as the theory of rational variables for each drill-hole layer. Geostatistical results were derived based on a Fortrand computer program on a DEC 20/40 system. (author)

  17. Assessment of environmental impact and the contamination effects of uranium ore mining and uranium ore processing operations

    International Nuclear Information System (INIS)

    Studies concerning the contamination of the areas in proximity to the uranium ore exploitations and explorations (Banat, Oriental Carpathians, Apuseni Mountains) with uranium and radium from tailings, as well as the pollution source identification and their delimitation on maps are presented in this paper. The problem of correct understanding and interpretation of the contamination due to the mining activities has to be correlated with element migration from the mineralization by determining radioactive aureoles in water, soil and vegetation. Migration and pollution phenomena in different dispersive media have been studied for uranium, radium and other accompanying elements (Mo, Cu, Zn) from several deposits. Several indirect factors which may influence the pollution degree are studied, such as: water pH, water flow, valley slope and form, climate, altitude and vegetation presence on the dumps. Comparative studies of irradiation and pollution processes from uranium exploration and exploitation mining areas are also presented. (authors)

  18. Laser-induced breakdown spectroscopy measurements of uranium and thorium powders and uranium ore

    International Nuclear Information System (INIS)

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze depleted uranium and thorium oxide powders and uranium ore as a potential rapid in situ analysis technique in nuclear production facilities, environmental sampling, and in-field forensic applications. Material such as pressed pellets and metals, has been extensively studied using LIBS due to the high density of the material and more stable laser-induced plasma formation. Powders, on the other hand, are difficult to analyze using LIBS since ejection and removal of the powder occur in the laser interaction region. The capability of analyzing powders is important in allowing for rapid analysis of suspicious materials, environmental samples, or trace contamination on surfaces since it most closely represents field samples (soil, small particles, debris etc.). The rapid, in situ analysis of samples, including nuclear materials, also reduces costs in sample collection, transportation, sample preparation, and analysis time. Here we demonstrate the detection of actinides in oxide powders and within a uranium ore sample as both pressed pellets and powders on carbon adhesive discs for spectral comparison. The acquired LIBS spectra for both forms of the samples differ in overall intensity but yield a similar distribution of atomic emission spectral lines. - Highlights: • LIBS analysis of mixed actinide samples: depleted uranium oxide and thorium oxide • LIBS analysis of actinide samples in powder form on carbon adhesive discs • Detection of uranium in a complex matrix (uranium ore) as a precursor to analyzing uranium in environmental samples

  19. Continued Multicolumns Bioleaching for Low Grade Uranium Ore at a Certain Uranium Deposit

    Directory of Open Access Journals (Sweden)

    Gongxin Chen

    2016-01-01

    Full Text Available Bioleaching has lots of advantages compared with traditional heap leaching. In industry, bioleaching of uranium is still facing many problems such as site space, high cost of production, and limited industrial facilities. In this paper, a continued column bioleaching system has been established for leaching a certain uranium ore which contains high fluoride. The analysis of chemical composition of ore shows that the grade of uranium is 0.208%, which is lower than that of other deposits. However, the fluoride content (1.8% of weight is greater than that of other deposits. This can be toxic for bacteria growth in bioleaching progress. In our continued multicolumns bioleaching experiment, the uranium recovery (89.5% of 4th column is greater than those of other columns in 120 days, as well as the acid consumption (33.6 g/kg. These results indicate that continued multicolumns bioleaching technology is suitable for leaching this type of ore. The uranium concentration of PLS can be effectively improved, where uranium recovery can be enhanced by the iron exchange system. Furthermore, this continued multicolumns bioleaching system can effectively utilize the remaining acid of PLS, which can reduce the sulfuric acid consumption. The cost of production of uranium can be reduced and this benefits the environment too.

  20. Treatment of Abankor uranium ore by the Eluex process

    International Nuclear Information System (INIS)

    The Eluex process is a possible way of treating the Abankor uranium ore; this work represents a preliminary approach in the development of a process for this ore. However, a cost study would be necessary to enable the appropriate choice of a most adequate flowsheet. The parameters concerning comminution, extraction-purification and concentration for the Eluex process have been obtained. A leaching efficiency of up to 95% was reached with a mean consumption in acid (120 kg of sulfuric acid per metric ton of ore). The concentration-purification of the leach solution was carried out in two successive stages: a strong base ion exchange was used to yield an eluate (5 g U/1) that was then contacted, in a second step with a solvant (D2EHPA + Kerosene) to give an organic solution of 26g U/1. Ammonium uranyl tricarbonate (AUC) was obtained by combining the uranium stripping and cristallization processes in a single operation. A simulation of this last stage was carried out using Aspon plus software

  1. Analytical procedure for the radiometric determination of uranium in ores

    International Nuclear Information System (INIS)

    Two methods are described for the non-destructive determination of uranium in ores: a beta-gamma measuring method and a gamma-spectrometrical one. The first has the advantage that the analysis is not influenced by a radioactive unbalance in the sample (say by loss of radium as a result of chemical decomposition of the ores) and that it can be carried out with comparitively simple apparative expenditure. It is, however, relatively inaccurate (+-25%) and should only be used as a surveying method. The gamma-spectrometrical analysis (accuracy about +-10%) gives information about an unbalance present between U 238 and Ra 226 and thus enables an appropriate correction to be made. A thorium contribution with its decay products can also be corrected. (RB)

  2. Status Report from the United Kingdom [Processing of Low-Grade Uranium Ores

    International Nuclear Information System (INIS)

    The invitation to present this status report could have been taken literally as a request for information on experience gained in the actual processing of low-grade uranium ores in the United Kingdom, in which case there would have been very little to report; however, the invitation naturally was considered to be a request for a report on the experience gained by the United Kingdom of the processing of uranium ores. Lowgrade uranium ores are not treated in the United Kingdom simply because the country does not possess any known significant deposits of uranium ore. It is of interest to record the fact that during the nineteenth century mesothermal vein deposits associated with Hercynian granite were worked at South Terras, Cornwall, and ore that contained approximately 100 tons of uranium oxide was exported to Germany. Now only some 20 tons of contained uranium oxide remain at South Terras; also in Cornwall there is a small number of other vein deposits that each hold about five tons of uranium. Small lodes of uranium ore have been located in the southern uplands of Scotland; in North Wales lower palaeozoic black shales have only as much as 50 to 80 parts per million of uranium oxide, and a slightly lower grade carbonaceous shale is found near the base of the millstone grit that occurs in the north of England. Thus the experience gained by the United Kingdom has been of the treatment of uranium ores that occur abroad.

  3. Discussion on ore-controlling factors and metallogenic model of uranium ore-formation in Xieersu depression, south Songliao Basin

    International Nuclear Information System (INIS)

    Based on the geologic characteristics of Xieersu depression, uranium mineralization in this area is believed to be sandstone type of epigenic of multi times superimposition and the ore-formation is mainly controlled by the factors such as the uranium source, the development of interlayer oxidation zone, the variation of hydrodynamic conditions, etc.. A preliminary metallogenetic model has been set up. (authors)

  4. The uranium ore deposits in Ciudad Rodrigo Phyllites. about the possibility of new deposits

    International Nuclear Information System (INIS)

    The main features of the genesis of uranium deposits of the Fe mine type, are discussed in this paper. Pitchblende ore is related with phyllites bearing organic material and with geomorphological level, fossilized by eocene sediments. As a result, new uranium ore deposits are possible under Ciudad Rodrigo tertiary basin, tertiary cover depth being little more than three hundred feet. (Author)

  5. Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates

    NARCIS (Netherlands)

    Krajko, J.; Varga, Z.; Yalcintas, E.; Wallenius, M.; Mayer, K.

    2014-01-01

    A novel procedure has been developed for the measurement of 143Nd/144Nd isotope ratio in various uranium-bearing materials, such as uranium ores and ore concentrates (UOC) in order to evaluate the usefulness and applicability of variations of 143Nd/144Nd isotope ratio for provenance assessment in nu

  6. Current status the bearings of Uranium ores in the Slovak Republic

    International Nuclear Information System (INIS)

    At the mining over many centuries the mineral reserves especially of metallurgical and precious metals in Slovakia have exhausted. Their residues are now only mineralogical significance. The exceptions are bearings of uranium ore, where extensive geological surveys and smaller mining began on the Slovakia until in the year 1948 in the Novoveská Huta. In the last decade last century, the mining in the context attenuation of the mining industry was stopped. The bearings of uranium ore are occur in the arc of the Central Carpathians in the rocks of the Paleozoic - Permian from the Nové Mesto nad Váhom after the South Zemplín ( Rojkovič 1997 ) . About the ore of uranium on the Slovakia they have interested foreign companies and most of the exploration licenses is under the control of the companies from Canada and Australia, which exploring the bearings of Uranium ore since 2005. The expanse of exploration areas is today more than 300 km2 . The exploration of the Uranium bearings met resistance of the local governments and citizens of the concerned areas. They fear that foreign investors do not enter into exploration projects only from the aspect of mapping geological reserves of Uranium ore and do not intend Uranium mine. Aim of this paper is to give a characteristic of selected bearings of Uranium and point out environmental and functional and spatial implications eventual mining of Uranium ore. Key words: Bearings of Uranium Ore, Slovak Republic, exploration of Uranium Ores, Negative Consequences of Mining Uranium Ores on the Environment

  7. Tailing characterization and management system of Rirang uranium ores processing

    International Nuclear Information System (INIS)

    Tailings generated from Rirang uranium ore processing still contains both radioactive and non radioactive elements. This is due to the incomplete dissolution of such elements in the ore processing the aims of this investigation is to characterize the tailings elemental composition, to evaluate, and to plan a good tailings management system, hence, environmental contamination can be avoided. Several methods of analysis have been utilized; including Atomic Absorption Spectrophotometry (AAS), UV-Vis spectrophotometry, radiometry and gravimetry, to determine elements of interest i.e. silicon, rure earths, uranium, thorium, iron, nickel, zink, phosphor, vanadium, lead, molybdenum and radium. Based on the analytical data evaluation, it is concluded that big scale solid tailings (2,5 ton per day) should with water in a designated place before finally being stored in a 1500 cubic meter pond (pond No.1). Such a washing step is aimed to remove element from the tailings. The over flowing water is then fed into the second pond of 1200. cubic meter capacity. The liquid is then neutralized by adding CraO + NaOH and BaCl2 solution. The eff7uent contains considerably small amount of radioactive and non radioactive elements, hence suitable for direct disposal to the environment (water body)

  8. Blind River uranium deposits: the ores and their setting

    International Nuclear Information System (INIS)

    In the Blind River area, Proterozoic clastic sedimentary and minor volcanic rocks (Huronian Supergroup) unconformably overlie and transgress northward over dominantly granitic Archean terrane (2500 million years) and are intruded by Nipissing Diabase (2150 million years). Later deformations and metamorphic events are recognized. The Matinenda Formation (basal Huronian) comprises northward-derived arkose, quartzite, and pyritic, uraniferous oligomictic conglomerates, which contain 75 percent of Canada's uranium reserves. Historic grades approximate 2 pounds U3O8/ton (1 kilogram/metric ton), but lower grade material can be mined with increasing price. Some thorium and rare earths have been marketed. The conglomerate beds lie in southeasterly striking zones controlled by basement topography down-sedimentation from radioactive Archean granite. Distribution of monazite relative to uraninite and brannerite and the presence of uranium values in overlying polymictic conglomerates, which truncate the ore beds, indicate that the mineralization is syngenetic, probably placer. The role of penecontemporaneous mafic volcanics is problematical, but these could have been a source for sulphur in the pyrite. Drab-coloured rocks, uranium and sulphide mineralization, and a post-Archean regolith formed under reducing conditions all suggest a reducing environment. Sedimentary features indicate deposition in fast-flowing shallow water and possibly a cold climate. In the upper Huronian (Lorrain Formation), a monazite and iron oxide assemblage associated with red beds suggests a change to oxidizing conditions

  9. Analysis on uranium ore-formation conditions and prospecting direction of Wulanchabu depression in Erlian basin

    International Nuclear Information System (INIS)

    Through the analysis of uranium source conditions, deposition-tectonic evolution and the characteristics of uranium ore forming in Wulanchabu depression, conclusions are drawn as follows: Wulanchabu depression has favorable ore-forming geology conditions; sandstone-type uranium deposit should be searched in the valley of Saihan formation 'Zhurihe-Qiharigetu-Saihangaobi' in the east of Wulanchabu depression; syndeposition-epigenic alteration type uranium deposits can be exploited in Erlian formation of Erenzuoer north of the depression, and syndepositional type uranium deposit may lies in Naomugen formation of Chagan-Naomugen-Wulanhuxiu zone in the northwest of the depression. (authors)

  10. Uranium extraction from ores with lemon juice; II,b. uranium recovery from pregnant lemon juice liquors obtained by attacking phosphate ore and suggested flowsheet

    International Nuclear Information System (INIS)

    In order to recover uranium from the pregnant liquors obtained by attacking Safaga phosphate and Qatrani phosphatic sandstone ore materials with lemon juice, methylation for acidic fraction-salt separation has been carried out. Afterwards, separation of uranium from the associated calcium (mainly present in lemon juice liquors as citrate) has been performed by making-use of the wide difference in their water solubility. The solutions containing the separated uranium were then subjected to evaporation till dryness whereby the precipitated uranyl citrate was calcined at 500 degree C to obtain the yellow orange oxide powder (UO3). On the basis of one ton ore treatment, a flowsheet for uranium recovery from the two ore materials has been suggested

  11. Bioleaching - an alternate uranium ore processing technology for India

    International Nuclear Information System (INIS)

    Meeting the feed supply of uranium fuel in the present and planned nuclear reactors calls for huge demand of uranium, which at the current rate of production, shows a mismatch. The processing methods at UCIL (DAE) needs to be modified/changed or re-looked into because of its very suitability in near future for low-index raw materials which are either unmined or stacked around if mined. There is practically no way to process tailings with still some values. Efforts were made to utilize such resources (low-index ore of Turamdih mines, containing 0.03% U3O8) by NML in association with UCIL as a national endeavor. In this area, the R and D work showed the successful development of a bioleaching process from bench scale to lab scale columns and then finally to the India's first ever large scale column, from the view point of harnessing such a processing technology as an alternative for the uranium industry and nuclear sector in the country. The efforts culminated into the successful operation of large scale trials at the 2 ton level column uranium bioleaching that was carried out at the site of UCIL, Jaduguda yielding a maximum recovery of 69% in 60 days. This achievement is expected to pave the way for scaling up the activity to a 100T or even more heap bioleaching trials for realization of this technology, which needs to be carried out with the support of the nuclear sector in the country keeping in mind the national interest. (author)

  12. Standard practices for sampling uranium-Ore concentrate

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 These practices are intended to provide the nuclear industry with procedures for obtaining representative bulk samples from uranium-ore concentrates (UOC) (see Specification C967). 1.2 These practices also provide for obtaining a series of representative secondary samples from the original bulk sample for the determination of moisture and other test purposes, and for the preparation of pulverized analytical samples (see Test Methods C1022). 1.3 These practices consist of a number of alternative procedures for sampling and sample preparation which have been shown to be satisfactory through long experience in the nuclear industry. These procedures are described in the following order. Stage Procedure Section Primary Sampling One-stage falling stream 4 Two-stage falling stream 5 Auger 6 Secondary Sampling Straight-path (reciprocating) 7 Rotating (Vezin) 8, 9 Sample Preparation 10 Concurrent-drying 11-13 Natural moisture 14-16 Calcination 17, 18 Sample Packaging 19 Wax s...

  13. Comprehension of synergistic mechanisms for uranium extraction from phosphate ores

    International Nuclear Information System (INIS)

    Uranium VI is commonly extracted from phosphoric ores by a well-known process exploiting the synergistic mixture of two extractant molecules: HDEHP and TOPO. In the field of liquid-liquid extraction, synergistic combinations are common but the mechanisms at the origin of the synergy are not well understood. A multi-scale approach has been used to describe these mechanisms, combining two different descriptions: the molecular scale focuses on the ion point of view, while the supramolecular scale focuses on extractants' aggregation. These two approaches have been rationalized by molecular dynamics computations. The results allow describing the synergy through the structure of the complexes and aggregates. With the same approach, some bifunctional compounds, combining the two extracting sites in one molecule, have been studied and compared to the HDEHP/TOPO system in order to identify the origin of their increased capacities in extraction and selectivity. (author)

  14. Radiation protection problems connected with uranium ore mining at Kvanefjeld and uranium processing

    International Nuclear Information System (INIS)

    The average content of uranium at Kvanefjeld is 340 gram per metric ton of ore, equivalent to 4200 Bq kb-1 in SI radioactivity units. The corresponding number of thorium are 850 gram per metric ton of ore and 3500 Bq kg-1. The assessment of the radiation dose from external γ-radiation is based partly on the measured radiation levels in the Kvanefjeld plateau area and in the 1980-adit, and partly on measurements, with personal dosemeters, of the doses received by the work force in the adit. The contribution to the annual effective dose equivalent from extenal γ-radiation in an open pit - mine is, on this premise, estimate to be 2.5-3.7 mSv. Planning of a uranium mining and milling enterprise involves conccern about working conditions, but the sum of the calculated dose contributions from external γ-radiation, inhaled radon/thoron-daughter products and inhaled ore dust gives roughly estimated annual effective dose equivalent for work in the open pit-mine about 3.1-16.5 mSv (compared with the annual dose limit of 50 mSv recommended by the ICRP for occupatonally employed persons). (EG)

  15. Behavior of uranium under conditions of interaction of rocks and ores with subsurface water

    Science.gov (United States)

    Omel'Yanenko, B. I.; Petrov, V. A.; Poluektov, V. V.

    2007-10-01

    The behavior of uranium during interaction of subsurface water with crystalline rocks and uranium ores is considered in connection with the problem of safe underground insulation of spent nuclear fuel (SNF). Since subsurface water interacts with crystalline rocks formed at a high temperature, the mineral composition of these rocks and uranium species therein are thermodynamically unstable. Therefore, reactions directed toward the establishment of equilibrium proceed in the water-rock system. At great depths that are characterized by hindered water exchange, where subsurface water acquires near-neutral and reducing properties, the interaction is extremely sluggish and is expressed in the formation of micro- and nanoparticles of secondary minerals. Under such conditions, the slow diffusion redistribution of uranium with enrichment in absorbed forms relative to all other uranium species is realized as well. The products of secondary alteration of Fe- and Ti-bearing minerals serve as the main sorbents of uranium. The rate of alteration of minerals and conversion of uranium species into absorbed forms is slow, and the results of these processes are insignificant, so that the rocks and uranium species therein may be regarded as unaltered. Under reducing conditions, subsurface water is always saturated with uranium. Whether water interacts with rock or uranium ore, the equilibrium uranium concentration in water is only ≤10-8 mol/l. Uraninite ore under such conditions always remains stable irrespective of its age. The stability conditions of uranium ore are quite suitable for safe insulation of SNF, which consists of 95% uraninite (UO2) and is a confinement matrix for all other radionuclides. The disposal of SNF in massifs of crystalline rocks at depths below 500 m, where reducing conditions are predominant, is a reliable guarantee of high SNF stability. Under oxidizing conditions of the upper hydrodynamic zone, the rate of interaction of rocks with subsurface water

  16. Laser-induced breakdown spectroscopy measurements of uranium and thorium powders and uranium ore

    Science.gov (United States)

    Judge, Elizabeth J.; Barefield, James E., II; Berg, John M.; Clegg, Samuel M.; Havrilla, George J.; Montoya, Velma M.; Le, Loan A.; Lopez, Leon N.

    2013-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze depleted uranium and thorium oxide powders and uranium ore as a potential rapid in situ analysis technique in nuclear production facilities, environmental sampling, and in-field forensic applications. Material such as pressed pellets and metals, has been extensively studied using LIBS due to the high density of the material and more stable laser-induced plasma formation. Powders, on the other hand, are difficult to analyze using LIBS since ejection and removal of the powder occur in the laser interaction region. The capability of analyzing powders is important in allowing for rapid analysis of suspicious materials, environmental samples, or trace contamination on surfaces since it most closely represents field samples (soil, small particles, debris etc.). The rapid, in situ analysis of samples, including nuclear materials, also reduces costs in sample collection, transportation, sample preparation, and analysis time. Here we demonstrate the detection of actinides in oxide powders and within a uranium ore sample as both pressed pellets and powders on carbon adhesive discs for spectral comparison. The acquired LIBS spectra for both forms of the samples differ in overall intensity but yield a similar distribution of atomic emission spectral lines.

  17. Rirang uranium ore processing using base method with purification of uranium hydroxide from rare earths

    International Nuclear Information System (INIS)

    The experiment has been conducted to Rirang ore uranium extraction to produce ADU with composition of U = 71.29 %, Th = 0.004 % and RE2O3 = 4 %. Experiment to purify uranium hydroxide from rare earth with solvent extraction TBP/ kerosine has been done. Hydroxide solid state precipitated on pH 6.3 contains U, Th and RE, its dissolved by nitric acid, and than uranium nitrate was extracted, stripped and precipitated. The experiment parameters are HNO3; ratio A/O (v); amount of TBP/K; temperature and time. The experiment result is optimally uranium extraction condition at HNO3 = 5N; ratio A/O = 1 : 1 ; TBP/K =30 %; temperature = 25oC; Time = 5 minute and recovery U = 95.99 %; Th = 19.90 % and RE2O3 = 0.06 %. It result were optimally uranium stripping condition at HNO3 = 1 N; ratio O/A = 1:2; temperature = 25oC, time = 5 minute and recovery U = 78.21 %; Th = 40 % and RE2O3 = not detected. Optimum U precipitation condition with NH4OH reagent at pH 7.0 and time 1 hour to recover U = 98.75 % with yellow cake (ADU) which contents U 67.55 % and RE2O3 = not detected. The result is good if compared to its had been done before because rare earth not detected. (author)

  18. Method of gradual acid leaching of uranium ores of silicate and aluminosilicate nature

    International Nuclear Information System (INIS)

    Leaching uranium ore pulp is divided into two stages. The first stage takes place without any addition of a leaching agent at elevated pressure and temperature. In the second stage, sulfuric acid is added to the pulp (50 to 1000 kg per tonne of ore) or an oxidation agent. Leaching then proceeds according to routine procedures. The procedure is used to advantage for silicate or aluminosilicate ores which contain uranium minerals which are difficult to leach, pyrite and reducing substances. The two stage leaching allows to use the technology of pressure leaching, reduces consumption of sulfuric acid and oxidation agents and still achieves the required reduction oxidation potential. (E.S.)

  19. Isotope geochemistry of ore fluids for the Dongsheng sandstone-type uranium deposit,China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Dongsheng sandstone-type uranium deposit is one of the large-sized sandstone-type uranium deposits discovered in the northern part of the Ordos Basin of China in recent years. Geochemical characteristics of the Dongsheng uranium deposit are significantly different from those of the typical interlayered oxidized sandstone-type uranium ore deposits in the region of Middle Asia. Fluid inclusion studies of the uranium deposit showed that the uranium ore-forming temperatures are within the range of 150-160℃. Their 3He/4He ratios are within the range of 0.02-1.00 R/Ra, about 5-40 times those of the crust. Their 40Ar/36Ar ratios vary from 584 to 1243, much higher than the values of atmospheric argon. The δ18OH2O and δD values of fluid inclusions from the uranium deposit are -3.0‰- -8.75‰ and -55.8‰- -71.3‰, respectively, reflecting the characteristics of mixed fluid of meteoric water and magmatic water. The δ18OH2O and δD values of kaolinite layer at the bottom of the uranium ore deposit are 6.1‰ and -77‰, respectively, showing the characteristics of magmatic water. The δ13CV-PDB and δ18OH2O values of calcite veins in uranium ores are -8.0‰ and 5.76‰, respectively, showing the characteristics of mantle source. Geochemical characteristics of fluid inclusions indicated that the ore-formation fluid for the Dongsheng uranium deposit was a mixed fluid of meteoric water and deep-source fluid from the crust. It was proposed that the Jurassic-Cretaceous U-rich metamorphic rocks and granites widespread in the northern uplift area of the Ordos Basin had been weathered and denudated and the ore-forming elements, mainly uranium, were transported by meteoric waters to the Dongsheng region, where uranium ores were formed. Tectonothermal events and magmatic activities in the Ordos Basin during the Mesozoic made fluids in the deep interior and oil/gas at shallow levels upwarp along the fault zone and activated fractures, filling into U-bearing clastic

  20. Study On The Choice Of Leaching System For Thanh My, Quang Nam Province Uranium Ores Treatment

    International Nuclear Information System (INIS)

    In order to implement the plan of peaceful uses of atomic energy, the Radioactive and Rare Earth Geology Division have been carried out the uranium ores exploitation project in Thanh My area of Quang Nam province since 2010. The treatment uranium ores samples is one of works of this project. In order to preparing for uranium ores samples treatment, the Institute for Technology of Radioactive and Rare Elements have been studied and have chosen the heap leaching method for Thanh My uranium ore treatment. The ore, which contained less than 0.07% U, was crushed to -1 cm before being placed in the heap. The acid consumption for this heap leach operation was approximately ranged 40 kg - 45 kg of H2SO4 per tonne of ore, and oxidant 4 kg of MnO2 per tonne of ore. The entire treatment cycle required 20-25 days, the recovery exceeded 80%, the leached tails contained less than 0.01% U. The experimental results were comparable with those obtained in the field scale heap leaching in the world. (author)

  1. Design and construction of the multilayer cover for uranium ores landfills in Andujar (Spain) mining

    International Nuclear Information System (INIS)

    This report shows the design and construction of multilayer cover for the landfill of sterile uranium ores in Andujar Mining (Spain). The main chapters are: 1.- Decommissioning project of Uranium Mining in Andujar (Spain) 2.- Elements and design of cover. 3.- Characteristic material

  2. Study of a bacterial leaching program for uranium ores by Thiobacillus ferroxidans

    International Nuclear Information System (INIS)

    The development of a bacterial leaching program for uranium ores is studied. Three basic points are presented: isolation and purification of Thiobacillus ferroxidans, as well Thiobacillus thio oxidans; physiological studies of growth and respiratory metabolism of T. ferroxidans; uranium leaching from two types of ore by T. ferroxidans action, on laboratory, semi pilot and pilot scales. The bacterial leaching studies were carried out in shake flasks, percolation columns (laboratory and semi pilot) and in heap leaching (pilot). The potential of the ores studied in relation to bacterial action, was first showed in shake flask experiments. The production of H2 S O4 and Fe3+ was a result of the bacterial activity on both ore samples containing pyrite (Fe S2). These two bacterial products resulted in a high uranium and molybdenum extraction and a lower sulfuric acid consumption compared to the sterilized treatments. Similar results were obtained in percolation column at the same scale (lab). (author)

  3. New technology of bio-heap leaching uranium ore and its industrial application in Ganzhou uranium mine

    International Nuclear Information System (INIS)

    Bioleaching mechanism of uranium ore is discussed. Incubation and selection of new strain, biomembrane oxidizing tank--a kind of new equipment for bacteria culture and oxidation regeneration of leaching agent are also introduced. The results of industrial experiment and industrial production are summarized. Compared with conventional heap leaching, bioleaching period and acid amount are reduced, oxidant and leaching agent are saved, and uranium concentration in leaching solution is increased. It is the first time to realize industrial production by bio-heap leaching in Chinese uranium mine. New equipment-biomembrane oxidizing tank give the basis of bio-heap leaching industrial application. Bio-heap leaching process is an effective technique to reform technique of uranium mine and extract massive low-content uranium ore in China. (authors)

  4. The Alligator Rivers Analogue Project - Radionuclide migration around uranium ore bodies

    International Nuclear Information System (INIS)

    Uranium ore bodies in the Alligator Rivers Uranium Province in Australia have been studied since 1981 as analogues of radioactive waste repositories. The main objectives were to understand the processes governing the migration of radionuclides, particularly uranium- and thorium- series radionuclides, under groundwater flow, to develop and test models to describe this migration, and to demonstrate the applicability of the results to the safety analysis of radioactive waste repositories

  5. Carcinogenesis of inhaled radio daughters with uranium ore dust in beagle dogs

    International Nuclear Information System (INIS)

    Daily exposures of adult beagle dogs to inhaled radon daughters and to uranium ore dust for 4-1/2 to 6 yr have produced respiratory tract carcinomas, at similar cumulative working level months (WLM) of exposures to those which induced carcinomas in uranium miners. Biological data from the beagle-dog experiments can therefore be used for prediction of carcinogenic risk under changing exposure conditions in future uranium miners

  6. Chapter 3. Classical method of uranium leaching from ores and reasons for incomplete recovery at dumps of State Enterprise 'VOSTOKREDMET'. 3.3. Basic regularities of uranium ores leaching

    International Nuclear Information System (INIS)

    Present article is devoted to basic regularities of uranium ores leaching. It was found that the basic method of uranium ores enrichment and producing of reasonably rich and pure uranium concentrates (usually technical uranium oxide) is a chemical concentration concluded in selective uranium leaching from ore raw materials with further, uranium compounds - so called uranium chemical concentrates. Such reprocessing of uranium ores with the purpose of uranium chemical concentrates production, currently, are produced everywhere by hydrometallurgical methods. This method in comparison with enrichment and thermal reprocessing is a universal one. Hydrometallurgy - the part of chemical technology covering so called moist methods of metals and their compounds (in the current case, uranium) extraction from raw materials, where they are contained. It can be ores or ore concentrates produced by radiometric, gravitational, floatation enrichment, sometimes passed through high-temperature reprocessing or even industry wastes. The basic operation in hydrometallurgy is its important industrial element - metal or metals leaching as one or another compound. Leaching is conversion of one or several components to solution under impact of relevant technical solvents: water, water solutions, acids, alkali or base, solution of some salts and etc. The basic purpose of leaching in uranium technology is to obtain the most full and selective solution of uranium.

  7. The mineral composition and the ore types of the uranium-vanadium deposit Srednaya Padma (Onega region, Russian Federation)

    International Nuclear Information System (INIS)

    The deposit Srednaya Padma is the largest and best prospected of the uranium-vanadium deposits of the Onega region. There are abnormally high concentrations of gold, palladium, platinum, copper and molybdenum in the ores. The ore mineralization is located in the albite-mica-carbonate metasomatites upon the proterozoic aleorolites and schists. The ores are generally composed of albite, dolomite and micas. The main vanadium mineral is vanadian flogopite, the main uranium mineral is pitchblende. The proportions of the ore and ore-forming minerals are determined. The noble metal mineralization (which associates with selenides of lead, silver and bismuth) and the copper-molybdenum mineralization (represented by chalcopyrite and molybdenite) are spread extremely irregularly in the orebodies. The ores can be classified as carbonaceous by their compositions. Four mineral ore types, with regard to the mineralization composition of the ore, are determined: pitchblende-flogopite, noble metal-pitchblende-flogopite, sulphide-flogopite and hypergene. The ores are classified in three technological ore types (uranium-vanadium; uranium-vanadium with Au, Pd, Pt; vanadium with Cu, Mo) and two technological ore sorts (by the acid inventory in processing). The correlation between the composition of the ore and the technological processing parameters are determined. The specifics of the various ore types distribution in the orebodies are discovered. A comparison with the other U-V deposits of the Onega region is made. (author). 4 refs, 3 figs, 2 tabs

  8. PHASE ANALYSES OF URANIUM BEARING MINERALS FROM THE HIGH GRADE ORE, NOPAL I, PENA BLANCA, MEXICO

    International Nuclear Information System (INIS)

    The Nopal I uranium deposit is located in the Pena Blanca district, approximately 40 miles north of Chihuahua City, Mexico. The deposit was formed by hydrothermal processes within the fracture zone of welded silicic volcanic tuff. The ages of volcanic formations are between 35 to 44 m.y. and there was secondary silicification of most of the formations. After the formation of at least part of the uranium deposit, the ore body was uplifted above the water table and is presently exposed at the surface. Detailed petrographic characterization, electron microprobe backscatter electron (BSE) imagery, and selected x-ray maps for the samples from Nopal I high-grade ore document different uranium phases in the ore. There are at least two stages of uranium precipitation. A small amount of uraninite is encapsulated in silica. Hexavalent uranium may also have been a primary precipitant. The uranium phases were precipitated along cleavages of feldspars, and along fractures in the tuff. Energy dispersive spectrometer data and x-ray maps suggest that the major uranium phases are uranophane and weeksite. Substitutions of Ca and K occur in both phases, implying that conditions were variable during the mineralization/alteration process, and that compositions of the original minerals have a major influence on later stage alteration. Continued study is needed to fully characterize uranium behavior in these semi-arid to arid conditions

  9. Use of low-cost heat sources to improve the efficiency of heap leaching of uranium ores. Part of a coordinated programme on bacterial leaching of uranium ores

    International Nuclear Information System (INIS)

    Basic technical parameters are given of two solar heaters designed for use in heap leaching of uranium ores. Inexpensive and easily available materials such as flat glass panes, glass tubing and corrugated metal sheets were used in the construction of the heaters. Under optimum conditions, the heaters can produce temperature differentials of 520C (500C) at the flow rate of 30ml/min. The dependence of percent recovery on the temperature of solutions in heap leaching of ore from 'El Nopal' was studied. Even though no precise correlation was found, an increase in the temperature of solutions seems to improve the efficiency of heap leaching

  10. Advances in uranium ore processing and recovery from non-conventional resources

    International Nuclear Information System (INIS)

    The main topics covered by the technical sessions were: in situ and heap leaching, improvements in conventional acid and alkaline uranium ore processing, recovery of uranium from wet-process phosphoric acid and recovery of uranium from coal and from natural waters. The technical sessions concluded with three panel discussions dealing with pre-concentration and benefication, in situ and heap leaching, and recovery of uranium from wet-process phosphoric acid. The present volume includes 18 of the 27 presented papers. A separate abstract was prepared for each of these papers

  11. Mineralogy and uranium leaching of ores from Triassic Peribaltic sandstones

    OpenAIRE

    Gajda, Dorota; Kiegiel, Katarzyna; Zakrzewska-Koltuniewicz, Grazyna; Chajduk, Ewelina; Bartosiewicz, Iwona; Wolkowicz, Stanislaw

    2014-01-01

    The recovery of uranium and other valuable metals from Polish Peribaltic sandstones were examined. The solid–liquid extraction is the first stage of the technology of uranium production and it is crucial for the next stages of processing. In the laboratory experiments uranium was leached with efficiencies 71–100 % by acidic lixiviants. Satisfactory results were obtained for the alkaline leaching process. Almost 100 % of uranium was leached with alkaline carbonate solution. In post leaching so...

  12. Safe management of wastes from the mining and milling of uranium and thorium ores

    International Nuclear Information System (INIS)

    Wastes from the mining and milling of uranium and thorium ores pose potential environmental and public health problems because of their radioactivity and chemical composition. This document consists of two parts: a Code of Practice (Part I) and a Guide to the Code (Part II). The Code sets forth the requirements for the safe and responsible handling of the wastes resulting from the mining and milling of uranium and thorium ores, while the Guide presents further guidance in the use of the Code together with some discussion of the technology and concepts involved

  13. Bioleaching of UO22+ ions from poor uranium ores by means of cyanobacteria

    International Nuclear Information System (INIS)

    Uranium (VI) leaching, as uranyl ions, from ores with a poor content in util minerals, using some algae as: Porphyridium cruentum (Smith and Soerly) Naegeli, Spirulina platensis CNM-CB-02 and Nostoc linkia (Roth) Born and Flah was studied. The basic composition of these ores allowed the self-maintenance and self-development of these microorganisms, which have facilitated then the leaching of the uranium (VI) as UO22+ ions. The microbial leaching degree was comprised between 40-90%, depending on the used alga and experimental conditions. (author)

  14. Preconcentration of low-grade uranium ores with environmentally acceptable tailings, part I

    International Nuclear Information System (INIS)

    The low-grade ore sample used for this investigation originated from Agnew Lake Mines Limited, Espanola, Ontario. It contained about 1% pyrite and 0.057% uranium, mainly as uranothorite with a small amount of brannerite. Both of these minerals occur in the quartz-sericite matrix of a conglomerate. A preconcentration process has been developed to give a high uranium recovery, reject pyrite, radium and thorium from the ore and produce environmentally acceptable tailings. This process applies flotation in combination with high intensity magnetic separation and gravity concentration

  15. The primary discussion of the neutral network method application in prospecting uranium ore of radioactive geophysics

    International Nuclear Information System (INIS)

    On the basis of collecting a large number of radioactive geophysical data, the neural network method was introduced into the data-processing work of prospecting the uranium ore through radioactive geophysical method. After adequately analyze the characteristics of the measurement data, the BP model was established and the model calculating results were explained and compared by combining with the geological and geophysical information. The results showed that it was feasible to use the neural network method in forecasting the perspective region of prospecting uranium ore in radioactive geophysics. (authors)

  16. Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany

    International Nuclear Information System (INIS)

    The Erzgebirge ('Ore Mountains') area in the eastern part of Germany was a major source of uranium for Soviet nuclear programs between 1945 and 1989. During this time, the former German Democratic Republic became the third largest uranium producer in the world. The high abundance of uranium in the geological formations of the Erzgebirge are mirrored in the discovery of uranium by M. Klaproth close to Freiberg City in 1789 and the description of the so-called 'Schneeberg' disease, lung cancer caused in miners by the accumulation of the uranium decay product, radon, in the subsurfaces of shafts. Since 1991, remediation and mitigation of uranium at production facilities, rock piles and mill tailings has taken place. In parallel, efforts were initiated to assess the likely adverse effects of uranium mining to humans. The costs of these activities amount to about 6.5 109 Euro. A comparison with concentrations of depleted uranium at certain sites is given

  17. Application of gravimetric and aeromagnetic data to the study of uranium ore-formation of granite-type uranium deposits

    International Nuclear Information System (INIS)

    The emplacement status and dynamic field of magma of some granitic massifs in the south of China are analyzed by using gravimetric and aeromagnetic data in this paper, and granitic massifs are classified according to their intensity of dynamic field. Based on the inverse calculation of gravimetric data of Miaoershan-Yuechengling, Zhuguangshan and Guidong granitic massifs, the deep distribution form of these massifs is discussed, then three movement ways of magma flow are proposed, and finally, the emplacement sites of rich-large uranium deposits and area of uranium ore concentration, are pointed out, and the close relation between aeromagnetic anomalies and rich-large uranium deposits are pointed out as well

  18. Mineralogical, radiographic and uranium leaching studies on the uranium ore from Kvanefjeld, Ilimaussaq Complex, South Greenland

    International Nuclear Information System (INIS)

    102 samples of low-grade uranium ore from 70 drill holes at Kvanefjeld, Ilimaussaq alkaline intrusion, South Greenland were studied by means of autoradiography, fission-track investigations, microscopy, microprobe analyses and uraniumleaching experiments. The principal U-Th bearing mineral, steenstrupine, and several less common uranium minerals are disseminated in lujavrite (nepheline syenite) and altered volcanic rocks. Steenstrupine has average composition Nasub(6.7)Hsub(x)Casub(1.0) (REE+Y)sub(5.8)(Th,U)sub(0.5)(Mnsub(1.6)Fesub(1.8)Zrsub(0.3)Tisub(0.1)Alsub(o.2))Sisub(12)Osub(36)(Psub(4.3)Sisub(1.7))Osub(24)(F,OH) x nHsub(2)O; n and x are variable. It either is of magnetic origin (type A) or connected with metasomatic processes (type B), or occurs in late veins (type C). Preponderance of grains are metamict (usually 2000-5000 ppm U3O8) or altered (usually above 5000 ppm U3O8), sometimes zoned with both components present. Occasionally they are extremely altered with U content falling to 500-5000 ppm U3O8 and local accumulations of high-U minerals formed. Replacement by crystalline monazite (+- metamict uranothorite and other components) is locally important. Uranium recovery by carbonate leaching (NaHCO3+Na2CO3+O20) depends both on alteration of steenstrupine and on hydration of parent rocks. Yield is between 98 and 50%, the average U concentration in the examined rock around 350 ppm U. (author)

  19. Theoretical study on law of radon seepage exhalation from blasted uranium ore heap in shrinkage stope

    International Nuclear Information System (INIS)

    One dimensional differential equation for radon migration in the blasted uranium ore heap was established using radon seepage-diffusion migration theory, the formula for calculating the surface radon exhalation rate at the seepage exit in the blasted uranium ore heap was derived, and the methods for determining the relevant physical parameters were proposed. For a specific shrinkage stope, the influences of the air volume for ventilation, ore heap height and ore heap permeability on the radon exhalation rate were studied. The radon exhalation rate of the ore heap increases with the air volume for ventilation and gradually approaches its maximal value, but the growth rate decreases gradually with the increase of the air volume for ventilation. When the air volume for ventilation is small but is kept the same, the higher the ore heap is, the smaller the radon exhalation rate is. With the increase of the air volume for ventilation, the radon exhalation rate of the higher ore heap exceeds successively that of the lower ore heap, and the difference becomes larger and larger, and the higher the ore heap is, the larger the air volume for ventilation is for the radon exhalation rate to amount to its maximal value. The smaller the permeability of the ore heap is, the lower the radon exhalation rate of the heap is, the smaller the growth rate of the radon exhalation rate relative to the air volume is, and the larger the air volume for ventilation is for the radon exhalation rate to come to its maximal value. (authors)

  20. Non-neoplastic pulmonary disease from inhaled radon daughters with uranium ore dust in beagle dogs

    International Nuclear Information System (INIS)

    Daily exposures of adult beagle dogs to inhaled radon daughters plus uranium ore dust, with and without concurrent cigarette smoking, for 2 to 5-1/2 yr have produced massive pulmonary fibrosis and severe emphysema. The cumulative exposure doses are similar to those associated with a 5-fold or greater increase in death rate of uranium miners due to chronic respiratory insufficiency, including pneumoconiosis, pulmonary fibrosis, and emphysema

  1. Respiratory tract carcinogenesis in large and small experimental animal following daily inhalation of radon daughters and uranium ore dust

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, B.O.; Palmer, R.F.; Filipy, R.E.; Dagle, G.E.; McDonald, K.E.

    1977-01-01

    Uranium ore miners of the Colorado plateau suffer more than 6 times the normal incidence of lung cancer, and their mortality rates due to pneumoconiosis and emphysema are 5 times greater than in the general population. Inhalation exposures of beagle dogs and rodents to radon daughters and uranium ore dust were undertaken to determine which of these uranium mine air contaminants, and at what levels, are responsible for the high incidences of these diseases. Results are discussed.

  2. Heap leaching of clay ish uranium ores; Lixiviacion estatica de minerales arcillosos de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, E.; Sedano, A.

    1973-07-01

    This paper describes an experimental facility, built near El Lobo mine. In it we study the beneficiation of low-grade uranium ore. The mineral has a great amount of clay and fines. The flow-sheet used has four steps: head leaching, ph-ajustement, ion-exchange and participation. We show, also, the most interesting results. (Author)

  3. Bioleaching of low grade uranium ore containing pyrite using A. ferrooxidans and A. thiooxidans

    International Nuclear Information System (INIS)

    A process of uranium extraction from ore containing 3.1 % pyrite by bacterial leaching was investigated in shaken flasks during 90 days. The highest uranium recovery amounting to 85.1 % was obtained using binary mixture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans that was exceeding results obtained by traditional acid leaching technique up to 27 %. High uranium recovery was founded to be due to the high degree of pyrite dissolution that can be readily achieved by bacterial leaching (up to 98.0 %). (author)

  4. Determination of uranium content in phosphate ores using different measurement techniques

    Directory of Open Access Journals (Sweden)

    Mohammad A. Al-Eshaikh

    2016-01-01

    Full Text Available The most important unconventional source of uranium is found in phosphate deposits; unfortunately, nowadays its exploitation is limited by economic constraints. The uranium concentrations in phosphate ores in the world vary regionally and most countries with large phosphate deposits have either plant in operation to extract uranium or are at the stage of pilot extraction plants. The aim of this investigation is to evaluate uranium content in the Saudi phosphate ores for, at least, two reasons: firstly, upgrading the phosphate quality by removing the uranium content in order to reduce the radioactivity in the fertilizer products. Secondly, getting benefit from the extracted uranium for its domestic use as a fuel in nuclear power and desalination plants. The results of this study show that the uranium concentration in Saudi phosphate rocks is relatively low (less than 100 ppm, which is not economically encouraging for its direct extraction. However, its extraction as a byproduct from the phosphoric acid, which will have higher concentration could be quite promising and worth exploiting.

  5. Impact Of Low Grade Uranium Ores On The Echo System and the Workers of Phosphate Industry

    International Nuclear Information System (INIS)

    The present study aims to investigate the influence of uranium present in phosphate rocks as an environmental factor in the ccho system and on the workers of Abu-Zaabal Phosphate Company subjected to the inhalation of big quantities of rock phosphate dust during the benefication of the ore and the production of the fertilizers. Besides. extra amount of uranium reach the workers also through two path ways.The first is direct through eating contaminated planted grown in the near by area.The second is indirect through eating animals fed with contaminated plants. The uranium content is estimated in the soil samples at different depths, water (irrigation and drainage), air samples and plant samples (shoot and root) in Berseem from the four directions, urine samples from twenty workers in charge of the processing of phosphate compared to twenty volunteers far from the contaminated area.The results showed an elevated values for phosphorus and uranium in the air, water. soil and plant (Berseem) around Abu Zaabal Factory and extending to about 2 km from all directions. Urine may be considered as a biological indicator medium for the uptake of uranium in uranium miners and the workers in charge of ore processing and can represent the major route of excretion for the absorbed metal. Significant differences were shown between the uranium level in the urine of workers group and the control group

  6. Bioleaching of UO22+ ions from a Romanian poor uranium ore

    International Nuclear Information System (INIS)

    An experimental study on the bioleaching of a poor uranium ore by means of hydrophytic plants Lemna minor and Riccia fluitans, under various operating conditions is discussed. The maximum degree of bioleaching (42%) of the reduced uranium species to U(VI) has been attained for the ore-Lemna minor-alkaline carbonate solution system. The UO22+ ions amount accumulated in the plants is negligible as compared to the dissolved quantity, owing to the ionic competition between uranyl ions and the cations necessary to the mineral nutrition. The X-ray diffraction patterns prove that the uranium species in pyrochlore mineral are completely oxidized to U(VI), while thucolite is only partially turned into UO22+ ions, in the presence of living plants. (author)

  7. Chapter 3. Classical method of uranium leaching from ores and reasons for incomplete recovery at dumps of State Enterprise 'VOSTOKREDMET'. 3.2. Uranium extraction from the ore and classification of its losses

    International Nuclear Information System (INIS)

    Present article is devoted to uranium extraction from the ore and classification of its losses. It was found that uranium commodity balance that has decisive importance during the actual assessment of an enterprise's activity is formed on the basis of chemical sampling and weight accounting for the head grade delivered to the plant, together with the ore and produced finished product. Process balance reflects the actual process nature of uranium extraction from ore into the finished product, the basis of which is the chemical analysis of ore and hydrometallurgical redistribution products on basic operations of the manufacturing process. Technological balance enables, through an analytical approach, to identify uranium extraction by technological redistribution and, in whole, the percentage and weight outcome, uranium concentration degree and extent of process loss. Process extraction does not take into account mechanical losses and therefore, as a rule, exceeds the commodity to an extent of those losses. It was defined that sorption redistribution losses of plant's process flow diagram are uranium losses with hydrates, with slurry solution and with granule resin. Sum of these losses in ratio to uranium amount delivered for sorption defines the process extraction value of sorption redistribution. Total uranium technological extraction to finished product is defined by uranium comparing in residues released to tailings with its content in ore with a glance of increased solid volume.

  8. Assessment of natural radioactivity in aquifer medium bearing uranium ores in Koprubasi, Turkey

    Science.gov (United States)

    Simsek, Celalettin

    2008-10-01

    Koprubasi, located within Manisa Province near the Izmir, is the biggest uranium mine where uranium ores originate from Neogene aged altered sandstone and conglomerate layers. The main objective of this study is to determine the radiation hazard associated with radioactivity levels of uranium ores, and the rocks and sediments around Koprubasi. In this regard, measured activity levels of 226Ra, 232Th and 40K were compared with world averages. The average activity levels of 226 Ra, 232Th and 40K were measured to be 5369.75, 124.78 and 10.0 Bq/kg in uranium ores, 24.32, 52.94 and 623.38 Bq/kg in gneiss, 46.24, 45.13 and 762.26 Bq/kg in sandstone and conglomerate, 73.11, 43.15 and 810.65 Bq/kg in sediments, respectively. All samples have high 226Ra and 40K levels according to world average level. As these sediments are used as construction materials and in agricultural activities within the study area, the radiation hazard are calculated by using dose rate (D), annual effective dose rate (He), radium equivalent activity (Raeq) and radiation hazard index (Iyr). All the samples have Raeq levels that are lower than the world average limit of 370 Bq/kg. On the other hand, D, He and Iyr values are higher than world average values. These results indicate that the uranium ores in the Koprubasi is the most important contributor to the natural radiation level. The radioactivity levels of sediments and rocks make them unsuitable for use as agricultural soil and as construction materials. Moreover, it is determined that shallow groundwater in sediments and deep groundwater in conglomerate rocks and also surface water sources in the Koprubasi have high 226Ra content. According to environmental radioactive baseline, some environmental protection study must be taken in Koprubasi uranium site and the environment.

  9. Growth characteristics of a strain of iron-oxidizing bacterium and its application in bioleaching of uranium ores

    International Nuclear Information System (INIS)

    05B is a strain of iron-oxidizing bacterium which separated from a uranium ore. The effect of temperature, initial pH, inoculation amount and initial total iron concentration on the strain's growth and activities in bioleaching of uranium ores are studied. The results show that the optimum growth temperature is 40-45 degree C, the optimum inoculation pH value being 1.5-1.7, the optimum initial inoculation amount being 10%-20%, and the initial total iron concentration being not more than 5 g/L. 05B is fit for leaching of low grade uranium ores. (authors)

  10. Recent trends in research and development work on the processing of uranium ore in South Africa

    International Nuclear Information System (INIS)

    The rapid increases in the price of gold and uranium in recent years have coincided with an unprecedented increase in working costs at South African gold mines. A re-examination of the existing flowsheets for the recovery of uranium, gold, and pyrite from Witwatersrand ores, in the light of these economic trends, has resulted in the identification of a number of profitable areas for research and development. The main topics under investigation in South Africa in the processing of uranium ore are the use of physical methods of concentration such as flotation, gravity concentration, and wet high-intensity magnetic separation; the wider adoption of the 'reverse leach', in which prior acid leaching for uranium improves the subsequent extraction of gold; the use of higher leaching temperatures and higher concentrations of ferric ion in the leach to increase the percentage of uranium extracted, including the production of ferric ion from recycled solutions; the application of pressure leaching to the recovery of uranium from low-grade ores and concentrates; the development of a continuous ion-exchange contactor capable of handling dilute slurries, so that simpler and cheaper techniques of solid-liquid separation can be used instead of the expensive filtration and clarification steps, and the improvement of instrumentation for the control of additions of sulphuric acid and manganese dioxide to the leach. A brief description is given of the essential features of the new or improved processing techniques under development that hold promise of full-scale application at existing or future uranium plants

  11. Early Phanerozoic trace fossils from the Sierra Albarrana quartzites (Ossa-Morena Zone, Southwest Spain)

    NARCIS (Netherlands)

    Marcos, A.; Azor, A.; González, F.; Simancas, F.

    1991-01-01

    Three ichnogenera are described from a 50 to 500 m thick shallow-water sandstone-shale sequence (Sierra Albarrana Quartzites). The ichnofauna consists of the burrows of worm-like animals (Arenicolites, Monocraterion, and Skolithos). The age of this formation, previously considered to be Precambrian

  12. Sulphatising roasting of a Greenlandic uranium ore, reactivity of minerals and recovery

    International Nuclear Information System (INIS)

    Uranium in the lujavrite ore from Kvanefjeld, South Greenland, can be solubilised by sulphatising roasting at 700degC. The reactivity of various lujavrite minerals in the roasting process and the mechanism of the reaction were investigated by X-ray diffraction, optical microscopy, electron microprobe, thermal analysis, Moessbauer and infrared spectroscopy. Soluble sulphates are formed on the surface of the grains; an outer zone of the grains is transformed; usually a core remains unchanged. Variations in uranium recovery can be explained by variations in the contents of the uranium-bearing minerals, steenstrupine and uranium-containing pigmentary material (altered Zr containing silicate minerals), and in the degree of alteration os steenstrupine. Characterization of these minerals required many qualitative and a few quantitative electron microprobe analyses. (author)

  13. An Overview of Process Monitoring Related to the Production of Uranium Ore Concentrate

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis, Brent [Innovative Solutions Unlimited, LLC

    2014-04-01

    Uranium ore concentrate (UOC) in various chemical forms, is a high-value commodity in the commercial nuclear market, is a potential target for illicit acquisition, by both State and non-State actors. With the global expansion of uranium production capacity, control of UOC is emerging as a potentially weak link in the nuclear supply chain. Its protection, control and management thus pose a key challenge for the international community, including States, regulatory authorities and industry. This report evaluates current process monitoring practice and makes recommendations for utilization of existing or new techniques for managing the inventory and tracking this material.

  14. Determination of specific activity of 230Th in uranium ore samples

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new method suitable for determining specific activity of 230Th in uranium ore samples is built. The method is characterized by adding the 230Th/ 232Th standard dilution agent with lower activity ratio (Its 230Th/ 232Th activity ratio and 230Th have been known) to the samples and using isotopic dilution analysis. The method can be applied to analyses of 230Th specific activity in various 230Th/ 232Th activity ratio samples. The precision can also be improved.

  15. Optimum condition determination of Rirang uranium ores grinding using ball mill

    International Nuclear Information System (INIS)

    The grinding experiment on Rirang Uranium ore has been carried out with the aim is to find out the optimum condition of wet grinding using ball mill to produce particle size -325, -200 and -100 mesh. This will be used for decomposition feed the test was done by examine the parameters comparison of ore's weight against ball's weight and time of grinding. The test shown that the product of particle size -325 meshes was achieved optimum condition at the comparison ore's weight: ball = 1:3, grinding time 150 minutes, % solid 60, speed rotation of ball mill 60 rpm and recovery of grinding was 93.51 % of -325 mesh. The product of particle size -200 mesh was achieved optimum condition at comparison ore's weight: ball = 1:2, time of grinding 60 minutes, the fraction of + 200 mesh was regrind, the recovery of grinding 6.82% at particle size of (-200 + 250) mesh, 5.75 % at (-250 + 325)m mesh and, 47.93 % -325 mesh. The product of particle size -100 mesh was achieved the optimum condition at comparison ore's weight: ball = 1:2, time of grinding at 30 minutes particle size +100 mesh regrinding using mortar grinder, recovery of grinding 30.10% at particle size (-100 + 150) m, 12.28 % at (-150 + 200) mesh, 15.92 % at (-200 + 250) mesh, 12.44 % at (-250 + 325) mesh and 29.26 % -325 mesh. The determination of specific gravity of Rirang uranium ore was between 4.15 - 4.55 g/cm3

  16. Regularities of spatial association of major endogenous uranium deposits and kimberlitic dykes in the uranium ore regions of the Ukrainian Shield

    Science.gov (United States)

    Kalashnyk, Anna

    2015-04-01

    During exploration works we discovered the spatial association and proximity time formation of kimberlite dykes (ages are 1,815 and 1,900 Ga for phlogopite) and major industrial uranium deposits in carbonate-sodium metasomatites (age of the main uranium ore of an albititic formation is 1,85-1,70 Ga according to U-Pb method) in Kirovogradsky, Krivorozhsky and Alekseevsko-Lysogorskiy uranium ore regions of the Ukrainian Shield (UkrSh) [1]. In kimberlites of Kirovogradsky ore region uranium content reaches 18-20 g/t. Carbon dioxide is a major component in the formation of hydrothermal uranium deposits and the formation of the sodium in the process of generating the spectrum of alkaline ultrabasic magmas in the range from picritic to kimberlite and this is the connection between these disparate geochemical processes. For industrial uranium deposits in carbonate-sodium metasomatitics of the Kirovogradsky and Krivorozhsky uranium ore regions are characteristic of uranyl carbonate introduction of uranium, which causes correlation between CO2 content and U in range of "poor - ordinary - rich" uranium ore. In productive areas of uranium-ore fields of the Kirovogradsky ore region for phlogopite-carbonate veinlets of uranium ore albitites deep δ13C values (from -7.9 to -6.9o/oo) are characteristic. Isotope-geochemical investigation of albitites from Novokonstantynovskoe, Dokuchaevskoe, Partyzanskoe uranium deposits allowed obtaining direct evidence of the involvement of mantle material during formation of uranium albitites in Kirovogradsky ore region [2]. Petrological characteristics of kimberlites from uranium ore regions of the UkrSh (presence of nodules of dunite and harzburgite garnet in kimberlites, diamonds of peridotite paragenesis, chemical composition of indicator minerals of kimberlite, in particular Gruzskoy areas pyropes (Cr2O3 = 6,1-7,1%, MgO = 19,33-20,01%, CaO = 4,14-4,38 %, the content of knorringite component of most grains > 50mol%), chromites (Cr2O3 = 45

  17. REE characteristics of Shannan deposit district in Xiangshan uranium ore field and its geological significance

    International Nuclear Information System (INIS)

    REE geochemical characteristics of rock and ore are studied in Shannan deposit district of Xiangshan Uranium orefield. The mean values of Σ REE of both basement schist and volcanic rock are approximately equal. Σ REE gradually increases from rock, common ore to bonanza. REE distribution patterns of rocks are right declined type to light REE. REE distribution patterns of volcanic rock series are parallel and concordant, the volcanic rock series are homologous, and products of pulsating events of same magma chamber. Eu depletes remarkably in volcanic rock series and ores. On its way to surface, magma underwent high fractionation and crystallization, based on feature of REE component ratio, triangle diagram of light medium and heavy REE, and diagram of LREE/HREE-(Eu/ΣREE) × 100. U and REE enriched in hydrothermal solution of post-magmatism to provide substances for uranium metallogenesis. Both diagenesis of volcanic rock series and uranium metallogenesis in the mining district are constrained by volcano-magmatism. Metallogenic fluid is rich in volatiles, such as F, Cl, CO2 etc. Metallogenic substances are unloaded in reduction environment. Metallogenic temperature is probably less than 250℃. Genesis of bonanza is more complicated and likely superimposed by multi-metallogenesis. (authors)

  18. Evolutionary and geological factors controlling endogenic uranium mineralization and the potential for the discovery of new ore districts

    Science.gov (United States)

    Mashkovtsev, G. A.; Miguta, A. K.; Shchetochkin, V. N.

    2015-03-01

    The exhaustion of known surface and near-surface high-grade uranium deposits poses the serious problem of prospecting and exploration of new large endogenic deposits. A comparison of large data sets for endogenic deposits from the world's major uranium districts allowed the authors to develop an evolutionary geological model of large-scale uranium ore genesis, which reflects the succession and nature of preore, ore-forming, and post-ore processes. The study reveals a combination of general (recurrent) factors controlling the formation of ore districts with large-scale uranium mineralization regardless of the genesis and timing of the mineralization. At the same time, these factors depend on the regional setting and can vary considerably among deposits of the same type localized in different tectonic blocks with different characteristics and structural evolution. In connection with this, the exploration of major genetic types of deposits requires the application of specified criteria. Along with the consideration of the evolutionary geological model of ore formation, the study discusses a variety of tectono-magmatic, mineralogical, geochemical, radiogeochemical, and physicochemical factors and indications in three uranium districts (the Streltsovskoe, Elkon, and Central Ukrainian districts), which can form the basis for further uranium prospecting and exploration. Using a combination of favorable prerequisite conditions the study compares the possibilities for the discovery of large endogenic uranium deposits in several regions of Russia.

  19. Extraction of uranium from coarse ore and acid-curing and ferric sulphate-trickle leaching process

    International Nuclear Information System (INIS)

    On the basis of analysis of the problems in the technology of the traditional uranium hydrometallurgy and the limitations of thin layer leaching process (TLL), a new leaching system-acid-curing and ferric sulphate-trickle leaching (AFL) process (NGJ in Chinese) has developed for extraction of uranium from the coarse ore. The ferric sulphate solution was used for trickling the acid-cured uranium ore and the residual leaching reaction incomplete in TLL process can be improved in this process. And the AFL process has a wide applicability to China's uranium ores, being in competition with the traditional agitation leaching process for treating coarse ores. The uranium ore processing technology based on the AFL process will become one of the new basic technologies of uranium hydrometallurgy. A series of difficulties will be basically overcome associated with fine grinding because of its elimination in the presented process. Moreover, the situation of the present uranium hydrometallurgy can be also changed owing to without technological effluent discharge

  20. Optimization of operating parameters and rate of uranium bioleaching from a low-grade ore

    International Nuclear Information System (INIS)

    In this study the bioleaching of a low-grade uranium ore containing 480 ppm uranium has been reported. The studies involved extraction of uranium using Acidithiobacillus ferrooxidans derived from the uranium mine samples. The maximum specific growth rate (μmax) and doubling time (td) were obtained 0.08 h-1 and 8.66 h, respectively. Parameters such as Fe2+ concentration, particle size, temperature and pH were optimized. The effect of pulp density (PD) was also studied. Maximum uranium bio-dissolution of 100 ± 5 % was achieved under the conditions of pH 2.0, 5 % PD and 35 deg C in 48 h with the particles of d80 = 100 μm. The optimum concentration of supplementary Fe2+ was dependent to the PD. This value was 0 and 10 g of FeSO4·7H2O/l at the PD of 5 and 15 %, respectively. The effects of time, pH and PD on the bioleaching process were studied using central composite design. New rate equation was improved for the uranium leaching rate. The rate of leaching is controlled with the concentrations of ferric and ferrous ions in solution. This study shows that uranium bioleaching may be an important process for the Saghand U mine at Yazd (Iran). (author)

  1. Photoneutron logging system for direct uranium ore-grade determination

    International Nuclear Information System (INIS)

    A prototype photoneutron probe for direct uranium assay in exploratory boreholes has been built and field tested. An approx. 10-Ci 124Sb gamma-ray source together with a beryllium converter is used to produce neutrons that diffuse into the surrounding formation and cause fissions in any 235U present. The fission neutrons that return to the probe are energy analyzed and counted by a high-pressure helium detector, thus indicating the concentration of uranium. The response of the probe was measured in concrete models at the US Department of Energy (Grand Junction, Colorado) calibration facility and found to be approx. 35 counts/s for an 1% U3O8 concentration in an 11.4-cm-diam water-filled borehole (4.5 in.). The response is linear up to a concentration of at least 0.25% by weight U3O8. Effects resulting from changes in formation density, porosity, and neutron absorber content were also quantified, as well as the tool response as a function of borehole diameter and fluid. A logging vehicle was outfitted, and the photoneutron-based logging system was field tested at an exploration site near Canon City, Colorado. Logging data obtained in several open holes at this site are presented and compared to core chemical analyses and results obtained in the same holes using other logging methods. In about 1 month of field testing, the photoneutron-based uranium exploration system has proved to be simple to use and very reliable. 22 figures, 12 tables

  2. The radioprotection in the french uranium mines and ore factories

    International Nuclear Information System (INIS)

    A regulation concerning workers' radiation protection in mines has been recently introduced in the french Code Minier; it takes into account the ICPR recommendations of Publication 26 and the European directives of 1980 and 1984. This new regulation is being implemented with success in France since 1983. For workers' monitoring in uranium underground mines, an individual dosimeter measuring the three monthly dose equivalents (gamma, potential alpha energy, long-lived alpha emitters) is compulsory. The aim of the ambient monitoring is the early prevention of every defects in the primary and auxiliary ventilation, which is the basis of prevention

  3. On the deep origin of the ore-forming solutions in the uranium deposits in platform sequences of depressions (with the Shu-Sarysu Province as an example)

    International Nuclear Information System (INIS)

    Author concepts on the endogenous source of the ore substance and ore -forming solutions at the hydrogenous uranium deposits formation in the Cretaceous and Paleocene horizons in depressions of Kazakstan are outlined. (author)

  4. Bacterial community structure from the perspective of the uranium ore deposits of Domiasiat in India

    International Nuclear Information System (INIS)

    Domiasiat (25°30'N 91°30'E) located in the west Khasi hill district of Meghalaya in northeast India is one of the largest sandstone-type uranium (U) ore deposit in India containing 9.22 million tonnes of ore reserves with an average ore grade of around 0.1 % U3O8. This geographically distinct U deposit of Domiasiat is un-mined and harbours diverse group of bacteria surviving the stressful environmental conditions prevalent in the ore deposit. Studies show that the diverse bacteria belonged to 10 different bacterial groups with occurrence of some previously uncharacterized bacteria. The cultured identified bacteria have been reported to tolerate substantial concentration of U and other metals and showed potent capacity for uptake and precipitation of U. Studying the bacterial community associated with such pre-mined U ore deposit are advantageous as it not only generates the baseline information on microbial community structure as resourceful indicator to estimate the impact of mining to be undertaken in future but also identifies the bacteria which can be explored for their potential as bioremediation agents for radionuclide/multi-metal waste sites. (author)

  5. Lithofacies characteristics of ore-hosting horizon and its relationship to uranium mineralization in Qianjiadian uranium deposit, Songliao basin

    International Nuclear Information System (INIS)

    The host rocks of Qianjiadian uranium deposit in Songliao basin is composed of thick bed sand- bodies, which are formed by braided stream sediment in Yaojia formation. The thick bed sandbody has favorable upper and lower waterproof layer, and has lenticular mudstone interlayer in some parts. On plane, the flood plain face locates around the braided stream face, which is mainly composed of sediments of argillaceous rock. In the middle of braided stream, distributes interchannel sediments, which has thicker mudstone interlayer and thinner sand bodies, and the sand body of these place is more heterogeous than others. Based on the analysis on oxidation zone and uranium mineralization, it is found that the distribution and configuration of oxidation zone and ore bodies are obviously controlled by the lithofaties characteristics and sandbody heterogeneity of Yaojia formation. The reason is that the movement of uranium-bearing oxidizing ground water can be obstructed by interchannel sediments and pelitic interbeds of host sandstones. As a result, the redox interface will be developed and uranium can be concentrated in neighbouring sandstones. The sandbodies with greater homogeneity are favorable for the formation of oxidation zone, and sandbodies with greater heterogeneity are favorable for the uranium mineralization. (authors)

  6. Uranium-radiu relation concerning there migration from ore and waste dumps

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, M.; Georgescu, D.P.; Sporea, A.; Petrescu, S.; Popescu, C.; Georgescu, A. [Research and Design Inst. for Rare and Radioactive Metals, Bucharest (Romania)

    1998-12-31

    The study refers to uranium-radium migration from the dumps affected by alteration as well as recycling process due to the geochemical barriers in different dispersive media. The problem of correct understanding and interpretation of the contamination due to the mining activities (ore and waste dumps) is a difficult one. It has to be correlated with elements migration from the mineralization determining radioactive aureole in water, soil and vegetation (which are, in fact the means to locate some deposits). Migration and pollution phenomena in different dispersive media have been studied for uranium, radium and other accompanying elements from several deposits. Data obtained from the geochemical studies of the mineralization show a large variety of accompanying elements: Mo, Pb, Bi, Co, Cu, Ag, Tl, As and Li. In order to study the pollution processes, rock, soil, sediments, water and plants samples have been drown and analyzed for uranium, radium, and other twenty elements, determination using fluorimetry atomic absorption spectrometry and emission spectrography. Environmental pollution may be influenced by:mine waters draining in the hydrographic ne and hypergenetic levigation processes of uranium and radium from rocks and ores on the dumps and their transport into the rivers and sediments. (orig.)

  7. Guidebook on the development of projects for uranium mining and ore processing

    International Nuclear Information System (INIS)

    Bringing a uranium operation into production involves a sequence of interrelated steps. These are outlined in the simplified diagram of Fig. 1. The challenge is to determine how the various steps of the development sequence should function and whether the costs are sufficiently low to return a positive benefit to the owner. This Guidebook has been prepared to aid in the planning, development and implementation of feasible uranium projects. It is one in a series of publications by the IAEA. This guidebook is essentially the executive summary of the other publications. It is an overview of the systematic approach to project development. It might be viewed as the ''road map'' of a project. A list of other publications in this series is provided in the Bibliography. Each chapter of the Guidebook addresses a critical aspect of project development. Chapters follow a general sequence, but none should be considered in isolation. Each Chapter presents an overview of the requirements for reaching decisions necessary to advance a project. References are provided to more definitive information and to documents which will be required by technical personnel on a project. Such detailed publications include IAEA books such as ''An Instruction Manual on Methods for Estimation of Uranium Ore Reserves'', and the ''Significance of Mineralogy in the Development of Flow Sheets for Processing Uranium Ores''. This Guidebook does not detail how to do project development but rather what must be done to insure that all critical elements of a project are considered. Refs, figs and tabs

  8. The determination of trace elements in uranium ores by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    The determination of 17 trace elements (As, Ba, Co, Cr, Cu, Mo, Nb, Ni, Pb, Rb, Sr, Th, U, V, Y, Zn and Zr) in uranium ores by x-ray fluorescence spectrometry was investigated in this study. The determination of major elements was also necessary for the calculation of mass absorption coefficients. Initially a method was developed for the determination of the elements of interest in unmineralised silicates. Correction for absorption of radiation by the sample were made by means of mass absorption coefficients which were obtained from the relation between the inverse of the mass absorption coefficient and the intensity of the Compton scattering peak. The Feather and Willis method was used for determining the background intensity at the peak positions as well as for mass absorption coefficients. It was observed that the background intensity in the region of the uranium lines increases with increasing uranium content of the sample

  9. Significance of mineralogy in the development of flowsheets for processing uranium ores

    International Nuclear Information System (INIS)

    This report has been prepared from material developed at and subsequent to a consultants' meeting held in Vienna in January 1978. The main purpose of the meeting was to prepare a document in the form of a guide for planning and developing treatment flowsheets for uranium ore processing. It was apparent that ore mineralogy, analysed, described and interpreted in ways most meaningful to the metallurgist, is the most essential information required for forming the basis of such planning. This topic, here termed metallurgical mineralogy, is therefore a major theme of this publication. In preparing the report the Agency has borne in mind the important need to impart the experience and knowledge gained in the more developed countries to those who are in the early stages of exploiting their uranium resources. The contents may be criticized as lacking, in some respects, the requisite depth and detail of treatment. The Agency and the consultants are conscious of the need to expand the information in a number of ways. However, the report is presented in its present form in the belief that, as the first attempt to correlate, on a world-wide basis, ore type with processing, it will be considered as a useful basis for future development of these themes

  10. Thorium-uranium processing with gravity, magnetic and electrical separation in zarigan ore deposit

    International Nuclear Information System (INIS)

    Because of low grade of thorium and uranium in the Zarigan mineral deposit, the pre-concentration operation prior to leaching is necessary. From X-ray diffraction analysis results, it was clear that this ore has large amount of other minerals such as Feldespat, Quartz, Hematite, Titanomagnetite, and rare earths. In this paper the thorium enhancement grade in Zarigan deposit by using gravity, magnetic and electrical separations methods is reported. The output of a Jaw crusher was ground to 85 micron by using ball mill. Then about 95% of SiO2 was separated by using shaking table separation. The heavy concentrate of shaking table was processed by a high intensity magnetic separator and then the magnetic concentrate separated by a low intensity magnetic separator. Finally, the non magnetic concentrate of low magnetic separator was processed with the electrical separation. The grades of thorium and uranium in the non magnetic concentrate of low magnetic separator were increased to 4000 and 5000 ppm, respectively where only 15% of the initial feed (ore) was transferred to this concentrate. Therefore, this resulted in a decrease of acid consumption in the leaching processes and the efficiency enhancement of the process. The pre-treatment circuit of this ore was designed as Jaw crusher/ball mill/shaking table/high-magnetic separator/low-magnetic separator/electrical separator, respectively.

  11. Seismicity induced by mining operations in the surrounding of the uranium ore mine Schlema-Alberoda

    International Nuclear Information System (INIS)

    The uranium mine Schlema-Alberoda of the Wismut GmbH (Chemnitz, Federal Republic of Germany) is situated in the Westerzgebirge between the villages Aue, Schneeberg and Hartenstein. This 22 km2 large area contains the villages Bad Schlema with the districts Oberschlema, Niederschlema and Wildbach as well as the district Alberode of the village Aue. The most important waters are the Zwickauer Mulde flowing through this territory from the south to the north. This territory can be designated as a densely populated low mountain range landscape being characterized by mining operations for centuries. Subsequently to the year 1945, the former Soviet 'Saxonian mining administration' started the first explorations on uranium ores inter alia in the area around Schneeberg and Schlema. In the year 1946, the intensive exploration and exploitation began in the health resort Oberschlema well-known by the existence of water containing radium. Up to the year 1959, the part deposit Oberschlema was dismantled. The dismantling ranged till to a depth of 750 m. With the expansion of the explorations in north-western direction, in 1948 the first uranium containing corridors of the part deposit Niederschlema-Alberoda was verified. The mining activities began in the year 1949 and culminated in the midst of the 1960ies with an annual production of more than 4,000 tons of uranium. The 1,800 m floor level as the deepest floor level was reached in the year 1986. A total of 49.5 million cubic meters of rocks was dissolved, and a total of 80,500 tons of uranium ores was mined. These were nearly 35% of the total production of the former Soviet-German public limited company Wismut (SDAG Wismut).

  12. An investigation into heterogeneity in a single vein-type uranium ore deposit: Implications for nuclear forensics.

    Science.gov (United States)

    Keatley, A C; Scott, T B; Davis, S; Jones, C P; Turner, P

    2015-12-01

    Minor element composition and rare earth element (REE) concentrations in nuclear materials are important as they are used within the field of nuclear forensics as an indicator of sample origin. However recent studies into uranium ores and uranium ore concentrates (UOCs) have shown significant elemental and isotopic heterogeneity from a single mine site such that some sites have shown higher variation within the mine site than that seen between multiple sites. The elemental composition of both uranium and gangue minerals within ore samples taken along a single mineral vein in South West England have been measured and reported here. The analysis of the samples was undertaken to determine the extent of the localised variation in key elements. Energy Dispersive X-ray spectroscopy (EDS) was used to analyse the gangue mineralogy and measure major element composition. Minor element composition and rare earth element (REE) concentrations were measured by Electron Probe Microanalysis (EPMA). The results confirm that a number of key elements, REE concentrations and patterns used for origin location do show significant variation within mine. Furthermore significant variation is also visible on a meter scale. In addition three separate uranium phases were identified within the vein which indicates multiple uranium mineralisation events. In light of these localised elemental variations it is recommended that representative sampling for an area is undertaken prior to establishing the REE pattern that may be used to identify the originating mine for an unknown ore sample and prior to investigating impact of ore processing on any arising REE patterns.

  13. Sedimentary environment analysis of Yaojia formation--the ore-hosting stratum of Qianjiadian uranium deposit

    International Nuclear Information System (INIS)

    Qianjiadian uranium deposit is the first uranium deposit discovered in Songliao basin. In this paper, the sedimentary environment of Yaojia formation, the ore-hosting stratum of Qianjiadian uranium deposit and its relationship with uranium mineralization are studied from several aspects such as lithological combination, sedimentary structures, logging curves, thickness ratio of sandstone layer to mudstone layer, sedimentary petrology and petrological geochemistry. The sedimentary features are characterized by the average value 5.0 between thickness ratio of sandstone layer to mudstone layer of Yaojia formation, and typical tabular cross bedding and trough cross bedding. The lithology of Yaojia formation is mostly composed of intermediate to fine-grained sandstone and mudstone with less conglomerate, and the debris grains have moderate sorting and roundness. These indicate that the source area is far, and that the sediments underwent long-distance transportation before deposition. The large scale and stable extension sand body of the Yaojia formation demonstrated the sedimentary features ora large sedimentary basins. Therefore, the sedimentary environment of Yaojia formation in the study area should be far-sourced sandy braided stream in the united great Songliao basin. The uranium mineralization of Qianjiadian deposit is mainly controlled by the sand bodies of channel-bar and point-bar subfacies, and the scale of the mineralization is closely related to that of the sand bodies. (authors)

  14. PHASE ANALYSES OF URANIUM-BEARING MINERALS FROM THE HIGH GRADE ORE, NOPAL I, PENA BLANCA, MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    M. Ren; P. Goodell; A. Kelts; E.Y. Anthony; M. Fayek; C. Fan; C. Beshears

    2005-07-11

    The Nopal I uranium deposit is located in the Pena Blanca district, approximately 40 miles north of Chihuahua City, Mexico. The deposit was formed by hydrothermal processes within the fracture zone of welded silicic volcanic tuff. The ages of volcanic formations are between 35 to 44 m.y. and there was secondary silicification of most of the formations. After the formation of at least part of the uranium deposit, the ore body was uplifted above the water table and is presently exposed at the surface. Detailed petrographic characterization, electron microprobe backscatter electron (BSE) imagery, and selected x-ray maps for the samples from Nopal I high-grade ore document different uranium phases in the ore. There are at least two stages of uranium precipitation. A small amount of uraninite is encapsulated in silica. Hexavalent uranium may also have been a primary precipitant. The uranium phases were precipitated along cleavages of feldspars, and along fractures in the tuff. Energy dispersive spectrometer data and x-ray maps suggest that the major uranium phases are uranophane and weeksite. Substitutions of Ca and K occur in both phases, implying that conditions were variable during the mineralization/alteration process, and that compositions of the original minerals have a major influence on later stage alteration. Continued study is needed to fully characterize uranium behavior in these semi-arid to arid conditions.

  15. Fast quantification of uranium ores by X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    A fast and reliable method for batch quantification of uranium in mineral ores is described. It is based on the verification of the homogeneity of the samples through measuring the ratio of coherent and incoherent dispersion. A few samples, 6 or more, are taken from the whole batch and analyzed by fundamental parameters method. A calibration curve using Lancance-Traill or Lucas-Tooth algorithms is constructed in order that the absorption and enhancement effects could be corrected. Simple interpolation of the intensities of the remaining samples gives their concentration. (author)

  16. Nuclear wastes: Limousin: alert to pollution coming from old uranium ores

    International Nuclear Information System (INIS)

    At the middle of the debate is the pollution produced by the uranium ores of the Cogema deserted after more than fifty years of exploitation, failing cost effectiveness and often used as radioactive waste storage site. A pollution denounced for about ten years by Sources and Rivers of Limousin (S.R.L.) In 1999, this organization makes complaint with the county court for water pollution, neglected radioactive wastes and to endanger somebody s life. An other organization F.N.E. sues for damages someone being tried in a criminal court in this affair that it considers (F.N.E.) token of French nuclear channel drift. (N.C.)

  17. Assessment of gamma radiation exposure to drivers (contractual) engaged with transporting of uranium ore in uranium mines at Narwapahar Mines, India

    International Nuclear Information System (INIS)

    Due to radioactive nature of uranium ore and tailings sand, it is essential to assess the exposure of drivers and helpers, those are continuously engaged with transporting of it. The external exposure is due to gamma radiation, emitted by uranium progeny and its magnitude is therefore directly related to the ore grade. The major gamma emitters in the series are 214Pb and 214Bi. After uranium recovery in ore processing areas the waste generated in mill contains same magnitude of gamma emitters. Tailings sand is the waste generated from mill area, which is used for back filling in underground mine. This paper presents the results of estimation of external gamma radiation levels during transport and assesses the radiation dose to drivers and helpers

  18. Microcomputer-based pneumatic controller for neutron activation analysis. [For analyzing uranium ore samples

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, J.S.; Sand, R.J.

    1976-10-01

    A microcomputer-based pneumatic controller for neutron activation analysis was designed and built at the Savannah River Laboratory for analysis of large numbers of geologic samples for locating potential supplies of uranium ore for the National Uranium Resource Evaluation program. In this system, commercially available microcomputer logic modules are used to transport sample capsules through a network of pressurized air lines. The logic modules are interfaced to pneumatic valves, solenoids, and photo-optical detectors. The system operates from programs stored in firmware (permanent software). It also commands a minicomputer and a hard-wired pulse height analyzer for data collection and bookkeeping tasks. The advantage of the system is that major system changes can be implemented in the firmware with no hardware changes. This report describes the hardware, firmware, and software for the electronics system.

  19. Soil bacterial metagenomic analysis from uranium ore deposit of Domiasiat in Northeast India

    International Nuclear Information System (INIS)

    Total bacterial community analyses were performed for uranium ore deposit soil samples of Domiasiat utilizing cultivation-independent approach. Screening based on amplified ribosomal DNA restriction analysis (ARDRA) using MspI and HaeIII was performed to analyse 150 clones which generated 59 distinct ribo-types from the clone library. Representative 96 clone partial 16S rRNA gene were phylogenetically related to 10 different bacterial groups. Proteobacteria and Acidobacteria were the most abundant bacterial group while 7% of the clones represented novel bacterial lineages. The bacterial diversity obtained by the culture-independent approach presented a larger diversity of bacteria as compared to the conditioned cultivation method. The study also provides baseline me-tagenomic information to assess subsequent impact of environment perturbation consequent to uranium mining at the studied site. (author)

  20. Guidebook on design, construction and operation of pilot plants for uranium ore processing

    International Nuclear Information System (INIS)

    The design, construction and operation of a pilot plant are often important stages in the development of a project for the production of uranium concentrates. Since building and operating a pilot plant is very costly and may not always be required, it is important that such a plant be built only after several prerequisites have been met. The main purpose of this guidebook is to discuss the objectives of a pilot plant and its proper role in the overall project. Given the wide range of conditions under which a pilot plant may be designed and operated, it is not possible to provide specific details. Instead, this book discusses the rationale for a pilot plant and provides guidelines with suggested solutions for a variety of problems that may be encountered. This guidebook is part of a series of Technical Reports on uranium ore processing being prepared by the IAEA's Division of Nuclear Fuel Cycle and Waste Management. 42 refs, 7 figs, 3 tabs

  1. Production of ferric sulphate from pyrite by thiobacillus ferrooxidans. Application to uranium ore leaching

    International Nuclear Information System (INIS)

    A process for uranium extraction by oxidizing solutions of ferric sulphate produced by T. ferrooxidans from pyrite is developed. A new counting method specific of T. ferrooxidans is designed. An uranium resistant wild strain, with oxidizing properties as high as the strain ATCC 19859, is isolated. Optimal conditions for ferric sulphate production from pyrite are defined (pH 1.8, density of the medium 1.2%, pyrite granulometry < 60 micrometers). The comparison of oxidation of 2 pyrites evidences the effect of composition and crystal type on bacterial activity. Latency period is reduced by preliminary adaptation of bacteria to pyrite, a relatively important inoculum and association of T. ferrooxidans to T. thiooxidans. Free bacteria, but not adsorbed bacteria, play an important part in pyrite oxidation, indirectly by regeneration of ferric iron and by maintaining a high redox potential. Leaching of an uranium ore column by an acidic solution of ferric iron increase not only uranium extraction yield but also to decrease acid consumption in respect to acid leaching only

  2. An evaluation of the dissolution process of natural uranium ore as an analogue of nuclear fuel

    International Nuclear Information System (INIS)

    The assumption of congruent dissolution of uraninite as a mechanism for the dissolution behaviour of spent fuel was critically examined with regard to the fate of toxic radionuclides. The fission and daughter products of uranium are typically present in spent unreprocessed fuel rods in trace abundances. The principles of trace element geochemistry were applied in assessing the behaviour of these radionuclides during fluid/solid interactions. It is shown that the behaviour of radionuclides in trace abundances that reside in the crystal structure can be better predicted from the ionic properties of these nuclides rather than from assuming that they are controlled by the dissolution of uraninite. Geochemical evidence from natural uranium ore deposits (Athabasca Basin, Northern Territories of Australia, Oklo) suggests that in most cases the toxic radionuclides are released from uraninite in amounts that are independent of the solution behaviour of uranium oxide. Only those elements that have ionic and thus chemical properties similar to U4+, such as plutonium, americium, cadmium, neptunium and thorium can be satisfactorily modelled by the solution properties of uranium dioxide and then only if the environment is reducing. (84 refs., 7 tabs.)

  3. Investigation of the {sup 236}U/{sup 238}U isotope abundance ratio in uranium ores and yellow cake samples

    Energy Technology Data Exchange (ETDEWEB)

    Srncik, M. [Vienna Univ. (Austria). Dept. of Inorganic Chemistry; European Commission, Joint Research Centre, Karlsruhe (Germany). Institute for Transuranium Elements; Mayer, K.; Hrnecek, E.; Wallenius, M.; Varga, Z. [European Commission, Joint Research Centre, Karlsruhe (Germany). Institute for Transuranium Elements; Steier, P. [Vienna Univ. (Austria). VERA Lab.; Wallner, G. [Vienna Univ. (Austria). Dept. of Inorganic Chemistry

    2011-07-01

    Uranium ores and yellow cake samples of known geographic origin were investigated for their n({sup 236}U)/n({sup 238}U) isotope abundance ratio. Samples from four different uranium mines in Australia, Brazil and Canada were selected. Uranium was separated by UTEVA {sup registered} Resin and was measured by Accelerator Mass Spectrometry (AMS) at the Vienna Environmental Research Accelerator (VERA). The measurement of the isotope abundance ratio n({sup 236}U)/n({sup 238}U) will be used to investigate possible correlations between the original mineral (uranium ore) and the intermediate product (yellow cake). Such correlations are useful indicators for nuclear forensic or for non-proliferation purposes. (orig.)

  4. Uranium,Radium and Iron Absorption from Liquid Waste Uranium Ore Processing by Zeolite

    International Nuclear Information System (INIS)

    The aim of this work is to determine zeolites sorption capacity and the distribution coefficient of uranium, radium, and iron in zeolite-liquid waste system. Mineralogical composition of zeolite used in the experiment has been determine by examining the thin sections of zeolite grains under a microscope. Zeolite has ben activated by the dilute sulfuric acid or sodium hydroxide solution. The results show that the use of 0.25 N sodium hydroxide solution could be optimizing the zeolite for uranium and iron ions sorption and that of 0.1 N sulfuric acid solution is for radium sorption. The re-activation process has been carried out in three hours. Under such a condition, the sorption efficiency of zeolite to those ions have been known to be 45.85% for uranium, 96.63 % for iron and 87.80 % for radium. The distribution coefficients of uranium, radium and iron ion in zeolite-liquid waste system have been calculated 0.85, 7.02, and 28.65 ml/g respectively

  5. DEVELOPMENT OF X-RAY FLUORESCENCE TECHNIQUE FOR THE URANIUM DETERMINATION IN MONGOLIAN COAL, COAL ASH, AND PHOSPHATE ORE

    OpenAIRE

    Cherkashina, Tat`iana Yur`evna; Bolortuya, Damdinsuren; Revenko, Anatolii Grigor`evich; Zuzaan, Purev

    2014-01-01

    The results of the determination of uranium in Mongolian brown coal, coal ash, phosphate rock, and technological samples by X-ray fluorescence (XRF) spectrometry are presented. Technological samples were produced from phosphates by chemical treatment. Powder geological samples and Certified Reference Materials (CRMs) were pressed as tablets. For chosen conditions of the sample preparation procedure analytical figures of merit were carefully studied, as exemplified by the rock and uranium ore ...

  6. Preconcentration of uranium ores by radio-metric sorting; Preconcentration des minerais d'uranium par triage radiometrique

    Energy Technology Data Exchange (ETDEWEB)

    Avril, R.; Grenier, J. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The uranium ore chemical treatment plant at Bessines-sur-Gartempe is supplied entirely by the La Crouzille Mining Division of the French Atomic Energy Commission mainly from mining districts of Fanay, Margnac and Le BRUGEAUD in the Limousin province and also, for the remainder, by a certain amount of private production in the 'Massif Central'. The supply mixture, which is very heterogeneous, is enriched before being treated chemically. The pre-concentration operation is carried out in the divisions ore treatment work-shop. It consists in a stone removal operation using radiometric sorting along a continuous belt; this makes it possible to eliminate 50 pour cent of the only fraction which is thus treated - that from 50 to 120 mm; it represents 15 to 20 per cent of the total tonnage supplied to the plant. (authors) [French] L'usine chimique de traitement des minerais d'uranium de Bessines-sur-Gartempe est entierement alimentee par la Division Miniere de La Crouzille, du Commissariat a l'Energie Atomique, principalement a partir des ensembles miniers limousins de Fanay, Margnac et du Brugenud et, pour le complement, par une certaine production privee en provenance du Massif Central. Le melange d'alimentation, tres heterogene, est enrichi avant d'etre livre a la chimie. L'operation de preconcentration est realisee dans l'atelier de preparation des minerais de la division. Il s'agit d'un epierrage par triage radiometrique sur bande, en continu, qui permet d'eliminer 50 pour cent de la seule fraction granulometrique qui le subit - le 50-120 mm - soit encore 15 a 20 pour cent du tonnage global d'alimentation livre a l'usine. (auteurs)

  7. Uranium deposits of the Sierra Pena Blanca: Three examples of mechanisms of ore deposit formation in a volcanic environment

    International Nuclear Information System (INIS)

    The Nopal and Escuadra Formations (welded vitroclastic tuffs) contain the uranium deposits of Sierra Pena Blanca (Chihuahua, Mexico). These Tertiary formations (between 44 and 38 million years) overlie Cretaceous limestones. With mineralogical, petrographical, geochemical and fluid inclusion studies of the non-altered rocks of the uraniferous mineralization and the associated alteration three genetic types of ore deposits have been identified. Hydrothermal ore deposits (Nopal I). These ore deposits are linked to faults or a breccia pipe. They are mainly located in the Nopal Formation. Their history is complex and begins soon after the deposition of tuff. They are considered hydrothermal, even if some supergene alteration occurs during late stages. Oxidized mineralization (uranophane) succeeds reduced ore (uranium oxides-ilmenite and pitchblende-pyrite associations). The associated kaolinite has a high temperature habitus. The montmorillonite-zeolite association is local and occurs after kaolinization. Supergene ore deposit (Puerto III). Puerto III is a stratiform-shaped deposit. The only oxidized mineralization lies in the upper part of the Nopal Formation and is located under a silicified bed interpreted as a palaeosoil. Mixed ore deposit (Las Margaritas). This uranium-molybdenum deposit is located in the Escuadra Formation. The alteration products are kaolinite with a middle temperature habitus and alunite. The intensity of this alteration is lower than in the first hydrothermal type, but the volume of altered rock is greater. Uranium mineralizations (silicates, phosphates, vanadates) are associated with molybdenum minerals (sulphides and molybdates). This deposit is considered to be the result of an interaction, in a tectonic valley, between hydrothermal volcanic fluids and underground waters. (author)

  8. Hydrogeochemistry of uranium, daughter products and associated elements (lanthanides), application to ore prospection

    International Nuclear Information System (INIS)

    The behavior in ground water of uranium, daughter products with long half life (U234, Th230, Ra226) and stable (radiogenic lead) and lanthanides is studied by two complementary methods: 1) In situ multielement tracing in fracturated granitic rocks and porous sedimentary rocks of low permeability allowing to understand interactions between hydrodynamics and geochemistry. 2) Study of the properties of U234 and Pb236 which are mineralization tracers and are relatively independent of redox conditions, on the contrary U 238 has a low solubility in reducing medium. Three areas are studied: Bazois and Lodeve basin (France) and Cigar Lake (Canada). Radioactive disequilibriums are thoroughly studied when required by ore/rock interaction. Adsorption-desorption phenomena are of great importance in proposed prospection models. If prospection models based on alpha activity ratio U234/U238 and lead isotope ratio in ground water can be applied, an integrated prospection model requires more in situ and laboratory experiments

  9. The development of an ore reserve methodology for the Olympic Dam copper-uranium-gold deposit

    International Nuclear Information System (INIS)

    At the Olympic Dam copper-uranium-gold deposit in South Australia, evolution in the understanding of the controls on mineralisation coupled with the changing demands of the project have led to changes in the approach to reserve estimation. The project has moved into a phase where detailed stope mining reserves are now required as distinct from global ore reserves. To enable the selective manipulation of geological and assay information and its characterisation, a relational database has been developed. For reserve calculations themselves, initial computations were based on a system derived from that used for the Kambalda nickel orebodies. The Olympic Dam system differed mainly in the use of statistical analyses in the estimation of grade instead of the previous polygonal area of influence weighting method. Three dimensional weighting techniques are now being used for local reserve estimates

  10. Processing of Low-Grade Uranium Ores. Proceedings of a Panel

    International Nuclear Information System (INIS)

    The 22 specialists from 15 countries and one international organization who attended the meeting were asked to give an appraisal of the current situation with regard to the processing of low-grade uranium ores and make recommendations for a possible IAEA programme of activities. This publication covers the work of the panel. Contents: Status reports (13 reports); Technical reports (13 reports); Summaries of discussions; Recommendations of the panel. Each report is in its original language (16 English, 4 French, 2 Russian and 4 Spanish) and each technical report is preceded by an abstract in English and one in the original language if this is not English. The summaries of discussions and the panel recommendations are in English. (author)

  11. Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia

    International Nuclear Information System (INIS)

    In early 2009, a state policing agency raided a clandestine drug laboratory in a suburb of a major city in Australia. While searching the laboratory, they discovered a small glass jar labelled 'Gamma Source' and containing a green powder. The powder was radioactive. This paper documents the detailed nuclear forensic analysis undertaken to characterize and identify the material and determine its provenance. Isotopic and impurity content, phase composition, microstructure and other characteristics were measured on the seized sample, and the results were compared with similar material obtained from the suspected source (ore and ore concentrate material). While an extensive range of parameters were measured, the key 'nuclear forensic signatures' used to identify the material were the U isotopic composition, Pb and Sr isotope ratios, and the rare earth element pattern. These measurements, in combination with statistical analysis of the elemental and isotopic content of the material against a database of uranium ore concentrates sourced from mines located worldwide, led to the conclusion that the seized material (a uranium ore concentrate of natural isotopic abundance) most likely originated from Mary Kathleen, a former Australian uranium mine

  12. 252Cf-based borehole logging system for in-situ assaying of uranium ore

    International Nuclear Information System (INIS)

    A 252Cf based borehole logging system for in-situ assaying of uranium ore has been designed and constructed, and preliminary tests of system operation have been performed. The system employs a delayed neutron activation analysis (DNAA) technique for which the downhole feasibility was demonstrated by Kerr--McGee. DNAA measures uranium directly, thereby circumventing the disequilibrium problems which are inherent to natural gamma ray logging. An improved DNAA technique has been implemented which utilizes a smaller 252Cf source and is more sensitive than the Kerr--McGee system. In particular, the size of the 252Cf source has been reduced by more than a factor of 10 with respect to the source employed by Kerr--McGee. Shielding for the 252Cf source has been designed for ease of operation while meeting occupational radiological safety requirements. The present system is vehicle mounted and includes the downhole sonde, logging winch with 1,000 meters of 4HO cable, data handling electronics, data recording and display equipment, and source shielding. The design of the system includes the following features: logging speeds from stationary to 8 meters/min with the capacity for determining 0.01% U3O8 concentration at 1.5 meters/min; uranium concentration readout independent of source intensity; auxiliary neutron measurement for accurate correlation of DNAA signal to actual U3O8 present; natural gamma ray detector for gauging disequilibrium; and short normal resistivity for lithology. The present system is a fully operational prototype. An extensive field calibration and evaluation program will begin shortly to uncover design problems and to allow simplification of the system for production logging. Commercially available units will reflect the operational experience gained from the testing program

  13. Experience gained from the former uranium ore processing and the remediation of the site in Hungary

    International Nuclear Information System (INIS)

    Full text: Uranium ore processing started in Hungary in 1962 and was terminated in 1997 on economical reasons. The remediation of the site has started immediately and has been practically finished this year. In the poster a brief overview of the used processes, including the heap leaching will be presented including the overall remediation of the former processing site. The lessons learned both from the processing practice and the remediatation will be discussed, aiming at giving supporting tools for the development of new uranium production facilities. Main lessons are: - for the decreasing of the volume of waste rocks to be remediated the radiometric sorting should be placed in underground if possible, - for the heap leaching reusable pads are recommended instead of permanently expanding heaps. - the high contamination of groundwater around the tailings ponds is the consequence of the inadequate neutralization of the barren pulp - uranium contamination on the heap leaching site is the result of the leakage from the pipes rather than the seepage through the liner. Results of the six years' groundwater restoration practice on tailings ponds site will be also discussed together with the estimation of the decreasing of the concentrations of the principal pollutants in the groundwater in long-term. The presentation will highlight the applicability of the geoelectrical multielectrode measurements for monitoring of the contamination (with MgSO4, NaCl, CaCl2 etc.) of the groundwater around tailings piles. The method has proved to be excellent tool for screening large areas aiming at determining the extent of the polluted area. For the determination of the inhomogenity of the water content in the tailings piles neutron probing method was developed. Results are important for the physical stability analyses of the tailings piles. Results of the run of the experimental permeable reactive barrier (built in the frame of EU-sponsored PEREBAR project) also will be presented

  14. Schneeberg lung disease and uranium mining in the Saxon Ore Mountains (Erzgebirge).

    Science.gov (United States)

    Schüttmann, W

    1993-02-01

    The so-called Schneeberg lung disease is a form of bronchial or alveolar carcinoma caused by the effects of the radioactive gas radon and of its radioactive short half-life daughter products. This type of radiation-induced occupational cancer is the most common and the most important radiation injury among workers occupationally exposed to ionizing radiation. There have been many deaths from lung cancer, especially in the Soviet uranium mines in the Erzgebirge of Saxony in the former German Democratic Republic. The history of disease in these miners extends over five centuries; the first observations of their health hazard start in the Middle Ages. The discovery of the lung cancer component was made toward the end of the nineteenth century, and the suspicion that a connection might exist between this cancer type and exposure to ionizing radiation was voiced at the beginning of the twentieth century. In the first half of this century, further research was carried out on this disease in the Schneeberg area of the Erzgebirge. Before the end of World War II, guidelines were set up to define the acceptable limits of radon exposure in the ore mines of Saxony. After World War II, the American uranium mines in the Colorado Plateau used the German research results as a basis for working out their own radiation protection standard. The uranium mines under Soviet occupation in the former GDR, on the contrary, paid no attention to these research findings. For many years, no precautions were taken for the miners' working conditions. The consequence of this serious omission was an estimated 9,000 fatal cases of lung cancer among these underground miners. High concentrations of radon are to be found in indoor air of homes in some districts of the Erzgebirge, suggesting an increasing lung cancer risk for the local inhabitants. The significance of this finding is evaluated. PMID:8427263

  15. 铀矿大型矿集区与成矿作用%Large ore-concentrated area of uranium deposits and uranium metellogeny

    Institute of Scientific and Technical Information of China (English)

    仉宝聚

    2001-01-01

    The formation of large ore-concentated are results from the anomalous concentration of multi-mineral resources and large amount of ore materials during the process of geologic evolution history. Different ore-concentrated areas are characterized by different typical mineral resources and typical ore deposits. This paper, taking uranium deposit as on example, recognizes 14 large ore-concentrated areas of uranium deposit in the world, and studies the time-space constraints of large ore-concentrated areas of uranium deposits and their relation with geodynamic evolution, and on the above basis, discusses the unusual concentration of ore elements in large ore-concentrated areas of uranium deposits, as well as proposes the characteristics of “unusual concentration in certain points and areas” and “explosion metallogeny in a short period of time” of multiple mineral resources. According to the three basic “links”, i.e. “source, transportation and precipitation”, this paper proposes the metallogeny of large ore-concentrated areas of uranium deposits. Of them, the study on the deep-source metallogeny, water-rock intereaction of special alkaline fluid and precipitation environment has made a fundation for the establishment of prospecting model of large uranium ore-concentration arcas.%大型矿集区的形成,是在地质历史演化进程中,多矿种大矿量超常聚集的结果。不同的矿集区有不同的典型矿种和典型矿床。本文仅以铀矿为例,在世界范围内厘定出14个铀矿大型矿集区。本文研究铀矿大型矿集区时空分布规律与地球动力学演化的关系,在此基础上探讨了铀矿大型矿集区元素超常聚集规律,提出多矿种“点区超常聚集”和“短时限爆发成矿”特征。本文按照“源、运、积”3个环节,探讨铀矿大型矿集区的成矿作用,其中有关深源成矿、特殊碱质流体的水岩反应以及元素淀积环境的研究,为建立铀

  16. Exploring implicit dimensions underlying risk perception of waste from mining and milling of uranium ores in France

    International Nuclear Information System (INIS)

    Understanding public perceptions of risks is increasingly considered to be important in order to make sound policy decisions. For many years, social scientists have been working to understand why the public is so concerned about nuclear energy and radioactive waste. Indeed, risk perception studies have essentially focused on high-level nuclear waste. As a result, there is now a fair understanding of what determines public support or opposition to high-level nuclear waste storage and disposal facilities. However, to date, little research has been conducted into radioactive waste from mining and milling of uranium ores. In France, such waste have a much debated legal status, which illustrates their ambiguous origin (natural versus artificial) and the manner people can perceive them. Therefore, it seems relevant to explore the individual judgements, attitudes and beliefs towards risk associated with uranium mill tailings. The present study provides a structural model based on both the identification and analysis of implicit dimensions underlying risk perception (psychological, cultural, moral...) applied to the case of french uranium mill tailings. One objective of the research has been to develop an interview grid based on this conceptual model in order to elicit social demand beyond public attitudes. Semi-structured interviews have been conducted on site in french uranium bearing areas. The relationships inferred between identified risk characteristics and contextual risk perceptions suggest that five majors thematics (time, space, nature, ethics and trust) build determinants of the public's perceptions of risk related to waste from mining and milling of uranium ores. (author)

  17. Enumeration and characterization of microorganisms associated with the uranium ore deposit at Cigar Lake, Canada. Informal report

    International Nuclear Information System (INIS)

    The high-grade uranium deposit at Cigar Lake, Canada, is being investigated as a natural analog for the disposal of nuclear fuel waste. Geochemical aspects of the site have been studied in detail, but the microbial ecology has not been fully investigated. Microbial populations in an ore sample and in groundwater samples from the vicinity of the ore zone were examined to determine their effect on uranium mobility. Counts of the total number of bacteria and of respiring bacteria were obtained by direct microscopy, and the viable aerobic and anaerobic bacteria were assessed as colony forming units (CFUs) by the dilution plating technique. In addition, the population distribution of denitrifiers, fermenters, iron- and sulfur-oxidizers, iron- and sulfate-reducers, and methanogens was determined by the most probable number (MPN) technique

  18. Influence of radon-daughter exposure rate and uranium ore dust concentration on occurrence of lung tumors

    International Nuclear Information System (INIS)

    Groups of male SPF Wistar rats were exposed concurrently to several levels of radon daughters and uranium ore dust to study the effect of these variables on pulmonary disease states. Clinical pathology data at 1 yr postexposure indicate no significant differences among exposed animals when compared with controls. Preliminary histopathologic data suggest a trend toward increasing lung tumor risk as the exposure rate is decreased (constant total dose), but the differences are not statistically significant at the 0.05 level. A similar trend occurs with decrease in ore dust concentration (except for the 2560-WLM exposure group), but these differences are also not significant at the 0.05 level. The tumor risk is significantly (0.05 level) increased as the exposure level increases from approximately 320 and 640 WLM to 2560 WLM at the high ore dust concentration

  19. Multivariate approach to the chemical mapping of uranium in sandstone-hosted uranium ores analyzed using double pulse Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Klus, Jakub; Mikysek, Petr; Prochazka, David; Pořízka, Pavel; Prochazková, Petra; Novotný, Jan; Trojek, Tomáš; Novotný, Karel; Slobodník, Marek; Kaiser, Jozef

    2016-09-01

    The goal of this work is to provide high resolution mapping of uranium in sandstone-hosted uranium ores using Laser-Induced Breakdown Spectroscopy (LIBS) technique. In order to obtain chemical image with highest possible spatial resolution, LIBS system in orthogonal double pulse (DP LIBS) arrangement was employed. Owing to this experimental arrangement the spot size of 50 μm in diameter resulting in lateral resolution of 100 μm was reached. Despite the increase in signal intensity in DP LIBS modification, the detection of uranium is challenging. The main cause is the high density of uranium spectral lines, which together with broadening of LIBS spectral lines overreaches the resolution of commonly used spectrometers. It results in increased overall background radiation with only few distinguishable uranium lines. Three different approaches in the LIBS data treatment for the uranium detection were utilized: i) spectral line intensity, ii) region of apparent background and iii) multivariate data analysis. By utilizing multivariate statistical methods, a specific specimen features (in our case uranium content) were revealed by processing complete spectral information obtained from broadband echelle spectrograph. Our results are in a good agreement with conventional approaches such as line fitting and show new possibilities of processing spectral data in mapping. As a reference technique to LIBS was employed X-ray Fluorescence (XRF). The XRF chemical images used in this paper have lower resolution (approximately 1-2 mm per image point), nevertheless the elemental distribution is apparent and corresponds to presented LIBS experiments.

  20. Occupational diseases in uranium and ore miners related to radiation exposure in the Czech Republic in 2002 - 2007

    International Nuclear Information System (INIS)

    Dozens cases of disease of former or present uranium and ore miners are submitted to judgment as occupational diseases every year in the Czech Republic. Patients or attending physicians suggest that these cases are caused by occupational ionizing radiation. Only a part of these cases is qualified as occupational disease, nevertheless they can cause many juridical problems. The term 'occupational disease' is rather juridical term which underlies the right to financial compensation. The causal association with exposure to ionizing radiation cannot be indisputably verified by expert medical opinion. Most diseases in uranium and ore miners, which are proposed as occupational disease, are malignant tumors. The majority of judged cases are lung cancers from radioactive agents. The poster gives general information about all judged cases of occupational diseases in former uranium and ore miners in the Czech Republic in the years 2002-2007. It also provides short information about standards of professional radiation exposure assessment valid in the other countries. Most frequent diseases were lung cancers. Nevertheless the rate of lung cancers acknowledged as occupational disease decreases during the last two decades. Non-melanoma skin cancers are on the second place. The rate of skin cancers increases. We can explain this fact by better diagnostics and by new method which allows more precious assessment of the skin dose. The method is used since 2005. Leukemias are on the third place (1-2 cases in the year). (authors)

  1. Occupational diseases in uranium and ore miners related to radiation exposure in the Czech Republic in 2002 - 2007

    International Nuclear Information System (INIS)

    Dozens cases of disease of former or present uranium and ore miners are submitted to judgment as occupational diseases every year in the Czech Republic. Patients or attending physicians suggest that these cases are caused by occupational ionizing radiation. Only a part of these cases is qualified as occupational disease, nevertheless they can cause many juridical problems. The term 'occupational disease' is rather juridical term which underlies the right to financial compensation. The causal association with exposure to ionizing radiation cannot be indisputably verified by expert medical opinion. Most diseases in uranium and ore miners, which are proposed as occupational disease, are malignant tumors. The majority of judged cases are lung cancers from radioactive agents. The poster gives general information about all judged cases of occupational diseases in former uranium and ore miners in the Czech Republic in the years 2002 -2007. It also provides short information about standards of professional radiation exposure assessment valid in the other countries. Most frequent diseases were lung cancers. Nevertheless the rate of lung cancers acknowledged as occupational disease decreases during the last two decades. Non-melanoma skin cancers are on the second place. The rate of skin cancers increases. We can explain this fact by better diagnostics and by new method which allows more precious assessment of the skin dose. The method is used since 2005. Leukemias are on the third place (1-2 cases in the year). (authors)

  2. Size distribution of aerosol particles produced during mining and processing uranium ore.

    Science.gov (United States)

    Mala, Helena; Tomasek, Ladislav; Rulik, Petr; Beckova, Vera; Hulka, Jiri

    2016-06-01

    The aerosol particle size distributions of uranium and its daughter products were studied and determined in the area of the Rožná mine, which is the last active uranium mine in the Czech Republic. A total of 13 samples were collected using cascade impactors from three sites that had the highest expected levels of dust, namely, the forefield, the end of the ore chute and an area close to workers at the crushing plant. The characteristics of most size distributions were very similar; they were moderately bimodal, with a boundary approximately 0.5 μm between the modes. The activity median aerodynamic diameter (AMAD) and geometric standard deviation (GSD) were obtained from the distributions beyond 0.39 μm, whereas the sizes of particles below 0.39 μm were not differentiated. Most AMAD and GSD values in the samples ranged between 3.5 and 10.5 μm and between 2.8 and 5.0, respectively. The geometric means of the AMADs and GSDs from all of the underground sampling sites were 4.2 μm and 4.4, respectively, and the geometric means of the AMADs and GSDs for the crushing plant samplings were 9.8 μm and 3.3, respectively. The weighted arithmetic mean of the AMADs was 4.9 μm, with a standard error of 0.7 μm, according to the numbers of workers at the workplaces. The activity proportion of the radon progeny to (226)Ra in the aerosol was 0.61. PMID:27032340

  3. Detailed mineral and chemical relations in two uranium-vanadium ores

    Science.gov (United States)

    Garrels, Robert M.; Larsen, E. S.; Pommer, A.M.; Coleman, R.G.

    1956-01-01

    Channel samples from two mines on the Colorado Plateau have been studied in detail both mineralogically and chemically. A channel sample from the Mineral Joe No. 1 mine, Montrose County, Colo., extends from unmineralized rock on one side, through a zone of variable mineralization, into only weakly mineralized rock. The unmineralized rock is a fairly clean quartz sand cemented with gypsum and contains only minor amounts of clay minerals. One boundary between unmineralized and mineralized rock is quite sharo and is nearly at right angles to the bedding. Vanadium clay minerals, chiefly mixed layered mica-montmorillonite and chlorite-monmorillonite, are abundant throughout the mineralized zone. Except in the dark "eye" of the channel sample, the vanadium clay minerals are accompanied by hewettite, carnotite, tyuyamunite, and probably unidentified vanadates. In the dark "eye," paramontroseite, pyrite, and marcasite are abundant, and bordered on each side by a zone containing abundant corvusite. No recognizable uranium minerals were seen in the paramontroseite zone although uranium is abundant there. Coaly material is recognizable throughout all of the channel but is most abundant in and near the dark "eye." Detailed chemical studies show a general increase in Fe, Al, U, and V, and a decrease in SO4 toward the "eye" of the channel. Reducing capacity studies indicate that V(IV) and Fe(II) are present in the clay mineral throughout the channel, but only in and near the "eye" are other V(IV) minerals present (paramontroseite and corvusite). The uranium is sexivalent, although its state of combination is conjectural where it is associated with paramontroseite. Where the ore boundary is sharp, the boundary of introduced trace elements is equally sharp. Textural and chemical relations leave no doubt that the "eye: is a partially oxidized remnant of a former lower-valence ore, and the remainder of the channel is a much more fully oxidized remnant. A channel sample from the

  4. Cesium and strontium tolerant Arthrobacter sp. strain KMSZP6 isolated from a pristine uranium ore deposit.

    Science.gov (United States)

    Swer, Pynskhem Bok; Joshi, Santa Ram; Acharya, Celin

    2016-12-01

    Arthrobacter sp. KMSZP6 isolated from a pristine uranium ore deposit at Domiasiat located in North-East India exhibited noteworthy tolerance for cesium (Cs) and strontium (Sr). The strain displayed a high minimum inhibitory concentration (MIC) of 400 mM for CsCl and for SrCl2. Flow cytometric analysis employing membrane integrity indicators like propidium iodide (PI) and thiazole orange (TO) indicated a greater sensitivity of Arthrobacter cells to cesium than to strontium. On being challenged with 75 mM of Cs, the cells sequestered 9612 mg Cs g(-1) dry weight of cells in 12 h. On being challenged with 75 mM of Sr, the cells sequestered 9989 mg Sr g(-1) dry weight of cells in 18 h. Heat killed cells exhibited limited Cs and Sr binding as compared to live cells highlighting the importance of cell viability for optimal binding. The association of the metals with Arthrobacter sp. KMSZP6 was further substantiated by Field Emission-Scanning Electron Microscopy (FE-SEM) coupled with Energy dispersive X-ray (EDX) spectroscopy. This organism tolerated up to 1 kGy (60)Co-gamma rays without loss of survival. The present report highlights the superior tolerance and binding capacity of the KMSZP6 strain for cesium and strontium over other earlier reported strains and reveals its potential for bioremediation of nuclear waste. PMID:27620733

  5. Histopathologic, morphometric, and physiologic investigation of lungs of dogs exposed to uranium-ore dust

    International Nuclear Information System (INIS)

    The most consistent pulmonary-function change attributed to carnotite uranium-ore-dust exposure (at 15 mg/m3, for 4 h/day, 5 days/week) is an increased slope of the single-breath N2 washout curve, suggesting an uneven distribution of ventilation. This change was observed in dogs exposed for less than 1 year and continued through 4 years of exposure. Measurements of pulmonary resistance, after 27, 40 and 47 months exposure, showed slight age-related changes and increasing differences between control and exposed animals with duration of exposure. These two changes are suggestive of a bronchitic response, similar to the industrial bronchitis of mine workers. The most notable pulmonary lesions observed in dogs exposed for up to 4 years are: vesicular emphysema, peribronchiolitis and focal pneumoconiosis. Lesions of the major airways and upper respiratory tract, when present, were minimal in severity. Pulmonary vesicular emphysema was present in all but one of the examined dogs. The emphysema was dose-related, in that it was present only to a slight degree in dogs exposed for less than 3 years and, thereafter, increased in severity. Morphometric measurement data confirmed the value of the histopathologic grading system for the degree of emphysema. These data correlated best with the dynamic pulmonary compliance measurements

  6. Gamma-ray spectrometer measurement of 238U/235U in uranium ore from a natural reactor at Oklo, Gabon

    Science.gov (United States)

    Moxham, Robert M.

    1976-01-01

    About 20 years ago, Kuroda theorized that a high-grade uranium deposit emplaced about 2x109 years ago could achieve criticality and sustain a nuclear chain reaction, given a sufficient thickness of high-grade ore and an appropriate water content. Such a natural reactor was found in 1972 at the Oklo deposit, Gabon. The ore contains as much as 60 percent uranium, but the isotopic abundance of 235U is as little as 0.4 percent in contrast to the normal abundance of 0.7110 percent 235U. A sample from the Oklo deposit containing about 0.51 atom percent 235U (by mass spectrometer) was analyzed by a gamma-ray spectrometer system, using a high-purity planar germanium detector. The 235U was determined from its daughter's (234Th) 63.3 keV photopeak; the 235U was determined from its 143.8 and 163.4 keV photopeaks. The ratios of these photopeaks were compared with that from a standard having normal uranium isotopic content; the resulting calculations give a 235U abundance of 0.54 atom percent in the Oklo sample. The gamma-ray spectrum also contains lines from five other isotopes in the uranium series, which indicate the Oklo sample to be at or near secular equilibrium, as the time elapsed since the nuclear reaction ended was sufficient to permit the daughters to achieve equilibrium.

  7. Origin of gray-green sandstone in ore bed of sandstone type uranium deposit in north Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    LI; ZiYing; FANG; XiHeng; CHEN; AnPing; OU; GuangXi; XIAO; XinJian; SUN; Ye; LIU; ChiYang; WANG; Yi

    2007-01-01

    Dongsheng sandstone-type uranium deposit is located in the northern part of Ordos Basin, occurring in the transitional zones between gray-green and gray sandstones of Jurassic Zhiluo Formation. Sandstones in oxidized zone of the ore bed look gray-green, being of unique signature and different from one of ordinary inter-layered oxidation zone of sandstone-type uranium deposits. The character and origin of gray-green sandstones are systematically studied through their petrology, mineralogy and geochemistry. It is pointed out that this color of sandstones is originated from secondary oil-gas reduction processes after paleo-oxidation, being due to acicular-leaf chlorite covering surfaces of the sandstone grains. To find out the origin of gray-green sandstone and recognize paleo-oxidation zones in the ore bed are of not only theoretical significance for understanding metallogenesis of this kind of sandstone-type uranium deposit, but also very importantly practical significance for prospecting for similar kind of sandstone-type uranium deposit.

  8. Technical Report on the Behavior of Trace Elements, Stable Isotopes, and Radiogenic Isotopes During the Processing of Uranium Ore to Uranium Ore Concentrate

    Energy Technology Data Exchange (ETDEWEB)

    Marks, N. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Borg, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eppich, G. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gaffney, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Genneti, V. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hutcheon, I. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kristo, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lindvall, R. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ramon, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Robel, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberts, S. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schorzman, K. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sharp, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Singleton, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Williams, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-09

    The goals of this SP-1 effort were to understand how isotopic and elemental signatures behave during mining, milling, and concentration and to identify analytes that might preserve geologic signatures of the protolith ores. The impurities that are preserved through the concentration process could provide useful forensic signatures and perhaps prove diagnostic of sample origin.

  9. Technical Report on the Behavior of Trace Elements, Stable Isotopes, and Radiogenic Isotopes During the Processing of Uranium Ore to Uranium Ore Concentrate

    International Nuclear Information System (INIS)

    The goals of this SP-1 effort were to understand how isotopic and elemental signatures behave during mining, milling, and concentration and to identify analytes that might preserve geologic signatures of the protolith ores. The impurities that are preserved through the concentration process could provide useful forensic signatures and perhaps prove diagnostic of sample origin.

  10. Uranium Chemical and Radiological Risk Assessment for Freshwater Ecosystems Receiving Ore Mining Releases: Principles, Equations and Parameters

    Science.gov (United States)

    Beaugelin-Seiller, K.; Garnier-Laplace, J.; Gilbin, R.; Adam, C.

    2008-08-01

    Uranium is an element that has the solely characteristic to behave as significant hazard both from a chemical and radiological point of view. Exclusively of natural occurrence, its distribution into the environment may be influenced by human activities, such as nuclear fuel cycle, military use of depleted uranium, or coal and phosphate fertilizer use, which finally may impact freshwater ecosystems. Until now, the associated environmental impact and risk assessments were conducted separately. We propose here to apply the same methodology to evaluate the ecological risk due to potential chemotoxicity and radiotoxicity of uranium. This methodology is articulated into the classical four steps (EC, 2003: problem formulation, effect and exposure analysis, risk characterisation). The problem formulation dealt both with uranium viewed as a chemical element and as the three isotopes 234, 235 and 238 of uranium and their main daughters. Then, the exposure analysis of non-human species was led on the basis of a common conceptual model of the fluxes occurring in freshwater ecosystems. No-effect values for the ecosystem were derived using the same effect data treatment in parallel. A Species Sensitivity Distribution was fitted : (1) to the ecotoxicity data sets illustrating uranium chemotoxicity and allowing the estimation of a Predicted-No-Effect-Concentration for uranium in water expressed in μg/L; (2) to radiotoxicity effect data as it was done within the ERICA project, allowing the estimation of a Predicted No-Effect-Dose-Rate (in μGyṡh-1). Two methods were then applied to characterize the risk to the ecosystem: a screening method using the risk quotient approach, involving for the radiological aspect back calculation of the water limiting concentration from the PNEDR for each isotope taken into account and a probabilistic risk assessment. A former uranium ore mining case-study will help in demonstrating the application of the whole methodology.

  11. Radon and radioactivity at a town overlying Uranium ores in northern Greece.

    Science.gov (United States)

    Kourtidis, K; Georgoulias, A K; Vlahopoulou, M; Tsirliganis, N; Kastelis, N; Ouzounis, K; Kazakis, N

    2015-12-01

    Extensive measurements of (222)Rn in the town of Xanthi in N Greece show that the part of the town overlying granite deposits and the outcrop of a uranium ore has exceptionally high indoor radon levels, with monthly means up to 1500 Bq m(-3). A large number of houses (40%) in this part of the town exhibit radon levels above 200 Bq m(-3) while 11% of the houses had radon levels above 400 Bq m(-3). Substantial interannual variability as well as the highest in Europe winter/summer ratios (up to 12) were observed in this part of the town, which consist of traditional stone masonry buildings of the late 19th-early 20th century. Measurements of (238)U and (232)Th content of building materials from these houses as well as radionuclide measurements in different floors show that the high levels of indoor radon measured in these buildings are not due to high radon emanation rates from the building materials themselves but rather due to high radon flux from the soil because of the underlying geology, high radon penetration rates into the buildings from underground due to the lack of solid concrete foundations in these buildings, or a combination thereof. From the meteorological variables studied, highest correlation with indoor (222)Rn was found with temperature (r(2) = 0.65). An indoor radon prognostic regression model using temperature, pressure and precipitation as input was developed, that reproduced indoor radon with r(2) = 0.69. Hence, meteorology is the main driving factor of indoor radon, with temperature being the most important determinant. Preliminary flux measurements indicate that the soil-atmosphere (222)Rn flux should be in the range 150-250 Bq m(-2) h(-1), which is in the upper 10% of flux values for Europe.

  12. Determination of uranium in the red blood cells of the workers in the chemical processing of uranium ore

    International Nuclear Information System (INIS)

    Neutron activation analysis was used in determining uranium in the venous blood erythrocytes of controls and of workers exposed to occupational hazards in a uranium chemical treatment plant. While 4.1 +- 2.6 ppb of uranium was found in dry matter of the erythrocytes in controls, 6.5 +- 2.1 ppb of uranium was ascertained in dry matter of the erythrocytes in occupationally exposed workers of a wet preparation plant, and 37.2 +- 20.2 ppb of uranium in the erythrocytes in workers of a dry cleaning plant. (author)

  13. Two-stage fungal leaching of vanadium from uranium ore residue of the leaching stage using statistical experimental design

    International Nuclear Information System (INIS)

    Highlights: ► In this work, the percent of vanadium recovery from uranium mine waste was 44.8. ► Unlike autotrophs, Aspergillus niger is a suitable microorganism to deal with such a resource. ► In the first step of the present work, citric acid was produced more than the other acids. ► When sterilization of uranium ore waste is not economic, two-step bioleaching is an appropriate method. - Abstract: In this investigation, bioleaching of vanadium from uranium ore residue of the leaching stage was studied by Aspergillus niger in a two-step process at 30 °C and 150 rpm. The first step was initiated by growth of fungi in the absence of mine waste. Using response surface methodology, three factors were surveyed for fungal growth: initial pH, sucrose concentration and spore population. Also concentrations of oxalic, citric, and gluconic acids were measured as response in this step. During 30 days, maximum productions of these acids were 3265, 11578, and 7988 mg/l, respectively. Initial pH and sucrose concentration were significant factors for oxalic and citric acid production; however, for gluconic acid production sucrose concentration and spore population were significant. Then, the content of each flask was filtered and mine waste was added to liquor with pulp density of 3%. During 3 days, in the second step, vanadium recovered about 44.8% in the liquor

  14. 660铀矿田成矿地质特征及成矿预测%Geological characteristics and metallogenic prediction of No.660 uranium ore field

    Institute of Scientific and Technical Information of China (English)

    雷遥鸣

    2012-01-01

    火山岩型铀矿在我国铀矿资源中占有较大份额.660铀矿田是一个典型的火山岩型铀矿聚集区,对该区已发现的矿床、矿点以及成矿异常点(带)的地质特征进行研究分析,找出其矿化特征、矿体分布规律,总结出其控矿因素、成矿规律及成矿地质作用,并根据其成矿地质特征和找矿标志等,提出660铀矿田新一轮找矿预测区和方向.%Volcanic-type uranium deposits account for a large share in uranium ore resources of China. No. 660 uranium ore field is the metallogenie area of typical volcanic-type uranium deposits. The geo- logical features of discovered deposits, occurrences and metallogenic outliers (belt) in the region are studied in order to identify the mineralization characteristics and ore body distribution, and sum up its ore-controlling factors, regularities and geological roles of mineralization. According to its geological characteristics and mineralization abnormalities, a new target and direction of prospecting in No. 660 uranium ore field are pointed out.

  15. Use of sodium sulfide to restore aquifers subjected to in-situ leaching of uranium ore deposits

    International Nuclear Information System (INIS)

    Commonly used restoration techniques include ground water sweeping and recirculation of fresh water through the leached ore zone; however, such techniques introduce oxidizing waters into the ore zone. Consequently, redox-sensitive elements, such as uranium, arsenic, selenium, and molybdenum, may be difficult to restore to background levels because they continue to dissolve when these restoration techniques are used. To immobilize the redox-sensitive elements and restore tthe sediment. sediments as well as the ground water, it has been suggested that a reducing agent be circulated through the leached ore zone during restoration. We have conducted laboratory batch and flow-through column experiments to test the ability of sodium sulfide to enhance the restoration of sediment and solution typical of that found in a leached ore zone. Sodium sulfide effectively lowered the redox potential of the solution to the point that relatively insoluble minerals that contain the redox-sensitive elements should be stable. For some batch experiments, the uranium concentration of the solution decreased by more than three orders of magnitude, from 44 to 0.04 ppM. Although arsenic, selenium, and molybdenum were not present at contaminant levels in these solutions, we expect that, under the chemical conditions imposed by the sulfide, these three elements would also be immobilized because of the formation of insoluble sulfides or other sparingly soluble minerals. In the column experiments, we observed the formation and movement of a redox-interface, starting at the influent end of our columns. By the time ten pore volumes of the sulifide solution had flowed through the columns, the majority of the column had been altered from light gray in color to dark black, suggesting that sulfide minerals were forming throughout the sediment

  16. Isolation of thiobacillus ferrooxidans and thiobacillus thiooxidans from West Kalimantan and North Sumatera Uranium ore specimens

    International Nuclear Information System (INIS)

    Isolation of thiobacillus ferrooxidans (T. ferrooxidans) and thiobacillus thiooxidans (T. thiooxidans) from West Kalimantan and North Sumatera U ore specimens have been carried out. T. thiooxidans have the ability to oxidize sulfur to sulfate, and T. ferrooxidans oxidizes ferro iron to ferric iron. Silverman medium (9 K medium) was used as growth medium for T. ferrooxidans. Starkey medium was used as growth medium for T. thiooxidans. For fungi contamination test the medium of malt extract agar was used. Meat pepton was used for the heterotrophic microorganisms contamination test. Results of the experiment showed that isolates of T. ferrooxidans have been obtained from 3 West Kalimantan U ore specimens from 2 North Sumatera U ore specimens. T. thiooxidans have been isolated from 2 West Kalimantan U ore specimens, but none has been isolated from North Sumatera U ore specimens. T. ferrooxidans isolated from West Kalimantan and North Sumatera have been tested in different growth conditions to determine the rate of growth. (author)

  17. The uranium ore deposits in Ciudad Rodrigo Phyllites. about the possibility of new deposits; Los yacimientos uraniferos en las pizarras paleozoicas de Ciudad Rodrigo. sobre la posible existencia de nuevas mineralizaciones

    Energy Technology Data Exchange (ETDEWEB)

    Mingarro Martin, E.; Marin Benavente, C.

    1969-07-01

    The main features of the genesis of uranium deposits of the Fe mine type, are discussed in this paper. Pitchblende ore is related with phyllites bearing organic material and with geomorphological level, fossilized by eocene sediments. As a result, new uranium ore deposits are possible under Ciudad Rodrigo tertiary basin, tertiary cover depth being little more than three hundred feet. (Author)

  18. The efforts of sulfide minerals employing at BM-179 uranium ore Kalan-Kalbar to produce H2SO4 using contact process

    International Nuclear Information System (INIS)

    Eko Remaja BM-179 uranium ore processing conducted by BATAN to obtain U3O8 seems to be inefficient because at leaching state, it consumpts H2SO4 125 kg per ton ore. There is no information about the efforts of mineral sulfide employing at BM-179 ore to support uranium processing. The purpose of the study was the efforts to employ of mineral sulfide at ore's low uranium to produce H2SO4 using contact process, which it would be, used at leaching state of Eko Remaja BM-179 uranium ore processing Kalan-Kalbar. Magnetic separator, flotation, knelson concentrator and shake table could conduct the enrichment of sulfide minerals. The study reveals that magnetic separator method and flotation methods increased sulfur content significantly. Magnetic separator succeed to increase sulfur content to 9.58 times from sulfur's initial and produce 28.44 % H2SO4, while the flotation method increased sulfur's content to 4.71 times from sulfur's initial and produce 22.19 % H2SO4

  19. Radionuclide migration around uranium ore bodies - progress report on the Alligator rivers analogue project and proposals for future work

    International Nuclear Information System (INIS)

    The Australian Atomic Energy Commission has extensively evaluated uranium ore bodies in the Alligator Rivers Province of the Northern Territory of Australia as analogues of radioactive waste repositories. The objective has been to assist in the long-term prediction of the rate of transport of radionuclides through the geosphere. The research work was carried out by the AAEC in its laboratories at Lucas Heights and with extensive field trips in the Alligator Rivers Province, particularly at the uranium deposits at Ranger, Jabiluka, Nabarlek, and Koongarra. The results of the work over the last five years are briefly reviewed in this paper with emphasis on those obtained since the last review presented to the Natural Analogue Working Group in 1985. The results, their preliminary interpretation and their significance to the modelling and prediction of radionuclide transport, are discussed under the five main headings: Distribution of Uranium and Thorium Series Nuclides in Selected Uranium Deposits; The Role of Groundwater Colloids in the Transport of Radionuclides; The Study of Selected Fission Products; The Study of Transuranium Nuclides; and Application and Verification of Modelling Codes for the Transport of Radionuclides

  20. The regional distribution regularities of ore-hosting horizon, deposit type and mineralization age of China's sandstone-hosted uranium deposits

    International Nuclear Information System (INIS)

    The sandstone-hosted uranium deposits widespread in China's Meso-Cenozoic sedimentary basins are obviously different from each other in ore-hosting horizon, deposit type (ore-forming process) and in the spatial distribution of mineralization ages. All the above changes are originated from the specific characteristics of the tectonic evolution of each tectonic domain where the deposits occur, obeying the affect resulting from the collision of Indian plate and the subduction of Pacific plate respectively. Basins and sandstone-hosted uranium deposits in the Central domain are effected of both Indian and Pacific plates, and are of characteristics of the two metallogenic systems. (authors)

  1. Recovery of uranium low grade ores by froth flotation: study of the texture and synergetic effects of flotation reagents

    International Nuclear Information System (INIS)

    Due to the energy growing demand, uranium low grade ores may be those exploited in the future. Uranium ores conventional treatment does not often use mineral processing such as concentration methods for reducing leaching reagent consumption. The aim of this work is to develop an upgrading process to improve the operating process (alkaline heap leaching) taking into account the mineralogical and textural variability of the ore. The Trekkopje deposit is composed of calcrete and a gypscrete. The uranium bearing mineral is carnotite (K2(UO2)2 [VO4]2.3H2O). The gangue minerals are composed by silicates, such as quartz, feldspars, micas and Ca-minerals, calcite and gypsum (XRD and ICP-MS analysis). A SEM image processing was used to study the textural properties and the exposed free surface of mineral inclusions in clay clusters. In calcrete milled to -200 μm, 50 % of all carnotite is associated with clay clusters, which are composed by 98 % of palygorskite, 2 % of illite, montmorillonite, and interbedded clays (XRD and microprobe analysis). The carnotite grain size is 95 % less than 70 μm. Calcite is the main inclusion in clay clusters. Indeed, the calcite inclusions average rate in the clay clusters is 12 % and 5 % for carnotite inclusion. And the free exposed surface percentage of these minerals in clay clusters is 3 % and 6 %, thus indicating that the inclusions should not affect the behavior of mixed clay particles. However, ore flotation essays did not verify this hypothesis. Three minerals separation have been proposed based on the mineral ability to consume leaching reagents: separating Ca-minerals from silicates, palygorskite from gangue minerals and carnotite from gangue minerals. A study of silicates and Ca-minerals electrokinetic properties (electrophoresis) was carried out to select the collectors and the optimum pH range for selective flotation. Basic pH near neutral was proved to be optimal for the separation of gangue minerals with cationic or anionic

  2. Radiological safety in mining of low grade uranium ores: Four decades of monitoring and control in Indian mines

    International Nuclear Information System (INIS)

    Full text: Mining of low grade uranium ore involves deployment of large man power in many stopes simultaneously to achieve the production target. The first uranium mine in India commenced commercial operation in 1968 with production from shallower haulage levels. The mine is now operating up to a vertical depth of about 905 meters. Radiation exposure of workers is mainly from external gamma radiation and inhalation of radon progeny. The long lived alpha emitters in the airborne ore dust are relatively small in such mines. While gamma radiation is not amenable to control the radon and its progeny can be effectively reduced by adequate ventilation and a judicious distribution of ventilating air to the working zones and sealing of worked out areas. Workplace monitoring for radiological parameters in the mines commenced right from the beginning of the operations. Initially the effective dose to the workers was evaluated from the area monitoring and occupancy period of workers in different zones. Subsequently, SSNTD and TLD based personal dosimeters were developed and deployed in a phased manner. Average dose to the workers in the early stages was around 10 mSv/y. Ventilation was progressively improved by widening of air passages and increasing the fan capacity. The system itself was modified from the series to a parallel system of ventilation to supply fresh air to each operating haulage level and allow the used air to join the return air stream. The modifications had positive impact and the average doses have shown a downward trend are now around 5 mSv/y. Progressive mechanization of mining operations over the years has resulted in reduction of manpower and consequently in a reduction of the collective dose. Subsequently, three additional underground uranium mines have been opened with low grade uranium ores. Increasing ventilation has resulted in reduction of radon concentration to an average of around 0.3 KBq/m3 EER in Jaduguda mine. The internal and external

  3. Research on the possibility of concentrating low-grade uranium ores by bacterial leaching. Part of a coordinated programme on the bacterial leaching of uranium ores

    International Nuclear Information System (INIS)

    Effect of extraction reagents with solvents on the bacteria and the influence of eluants on the bacteria development was studied. To establish the effects of various solvents and eluants on the development of bacteria, on oxidizing capacity of Fe2+ to Fe3+, and to study their influence on bacteria morphology, bacteria strains were contacted with Alamine 336, trioctylamine, LIX and nitric eluant. Bacteria development and the oxidizing ability of Fe2+ to Fe3+ were significantly inhibited and morphological changes of individuals in the bacteria population were found. The bacteria populations resulted from ores had a more decreased resistance as the bacteria culture was better selected by repeated inoculations and incubations. In case of the bacterial leaching in heap or in situ a periodical extraction with solvents is required in order to allow the bacteria population between successive extraction stage be remade

  4. Method for determining microamounts of uranium in solutions from copper ores, by liquid-liquid extraction and spectrophotometry with arsenazo III

    International Nuclear Information System (INIS)

    A spectrophotometric method is described for determining small amounts of uranium in aqueous solutions from copper ores. Uranium is quantitatively separated in a single extraction by a solution of tri-n-octylphosphine oxide in benzene, using ethylendiaminetetracetic acid and sodium fluoride as complexing agents, for improving the selectivity of the procedure. An aliquot of the extract is diluted with a hydrocolloidal solution of arsenazo III. Optical density is measured at 650 nm. (Author) 3 refs

  5. Radioelemental equilibrium-disequilibrium studies on uranium ore of Chitrial Area, Nalgonda District, Andhra Pradesh, India

    International Nuclear Information System (INIS)

    This paper discusses the nature of radioactive occurrence in Chitrial Main Block in terms of distribution of uranium and radium with special emphasis on uranium and its disequilibrium behaviour based on the large number of higher order radioactive borehole core samples. The sample data is from eastern and western parts of the main block of Chitrial, which are close to the unconformity depth. The analytical results show that the radioelemental data of Chitrial area essentially belong to the same population and that there is a continuous influx of uranium into the system with strong disequilibrium in favour of parent uranium. (author)

  6. Geological-economic analysis on the exploration of backup resources for depleted mines in Lujing uranium ore-field, central-southern China

    International Nuclear Information System (INIS)

    With the geological-economic evaluation program for pithead heap-leaching mining uranium deposits developed by the authors and the data of column-leaching tests and the geological reserve, the geological-economic evaluation is made to the residual geological reserves of both Lujing and Huangfengling deposit, and the geological reserves of Yangjiaonao deposit of the depleted mines in Lujing uranium ore-field, central-southern China. The results of static analysis on these reserves show that the residual geological reserves of both Lujing and Huangfengling deposit belong to sub-profitable type, but the ones of Yangjiaonao deposit is profitable with 26.56% tax-before profit. 1 tU profitable type of ore from Yangjiaonao deposit can use 2.40-3.79 tU subprofitable type of ores from Lujing and Huangfengling deposit. In order to solving the problem on scarcity of backup resources of the depleted mines in Lujing uranium ore-field and using the existing sub-profitable type of geological reserves, it is suggested that the high grade of profitable type of deposits should be explored around the exhausting mines so that the production of the mines could be profitable by the pithead heap-leaching mining method with arrangement groups of both sub-profitable and profitable type of ores. (authors)

  7. (234)U/(238)U signatures associated with uranium ore bodies: part 3 Koongarra.

    Science.gov (United States)

    Lowson, Richard T

    2013-04-01

    The Koongarra ore body is an early Proterozoic U ore body in the Alligator Rivers U province, Northern Territory, Australia. It has surface expression with a redox front located ∼30 m below the surface. The (234)U/(238)U activity ratios (AR) for the ground water and the amorphous phase of the solid have been analysed for the ore zone and dispersion halo as a function of depth. The results display a (234)U/(238)U AR signature with depth which may be common to all U ore bodies. The (234)U/(238)U AR is depressed below secular equilibrium in the weathered material above the redox front; rises significantly above secular equilibrium in the vicinity of the redox front; and is followed by a gradual decrease with depth below the redox front. The amplitude of the profile is a function of local conditions. A model is proposed for the signature in which oxidising waters preferentially leach the (234)U sites at the redox front due to preconditioning of the (234)U sites by α recoil during the decay of (23)(8)U to (23)(4)U. Mass balance requires the solid material left behind the redox front to have a (234)U/(238)U AR reduced below 1. Local second order effects may be superimposed on the signature. The signature may have application to calibrating scenarios for nuclear waste repositories, assisting in understanding historical climates, economic evaluation of U ore bodies and U exploration. PMID:23142336

  8. Report on intercomparisons S-14, S-15, and S-16 of the determination of uranium and thorium in thorium ores

    International Nuclear Information System (INIS)

    Twenty-nine laboratories from 18 countries took part in this intercomparison, organized by the IAEA's Analytical Quality Control Service, to help laboratories engaged in this task to check the reliability of their results. An additional aim was to establish the concentrations of thorium and uranium in three large batches of thorium ores and certifying them as reference materials. The evaluation was based on 438 individual results (108 laboratory means) for thorium, and on 412 individual results (106 laboratory means) for uranium. The number of laboratory means per element and per sample varied from 34 to 38. The methods most frequently used in the determination of both elements were neutron activation analysis and radiometry. They were followed by spectrophotometry and X-ray fluorescence analysis for thorium and by fluorimetry, X-ray fluorescence analysis and spectrophotometry for uranium determination, respectively. The relative uncertainty of all computed overall medians which were used as the best estimations of true values, does not exceed +-10% and +-5% for the concentration values below and above 0.1%, respectively

  9. Utilization of low grade and waste uranium ores by means of biological processes. Part of a coordinated programme on bacterial leaching of uranium ores

    International Nuclear Information System (INIS)

    Investigation of the possible affect of bacteria in leaching uranium using alkaline carbonate medium has been investigated. Eleven strains of bacteria were isolated from the alkaline percolation solutions. Most belonged to the genus Thiobacillus. Each strain was characterized by growth under aerobic conditions in Levinthal - bouillon medium and under vaseline (semi-anaerobic in Hetehens medium. Growth of the bacteria was optimum at pH range 7 to 8 but a significant population was found to exist in alkaline leaching solutions of about pH 9 to 9.5 in heap leaching experiments. It was concluded that microbiological processes can play a role in alkaline heap leaching although the quantitative measure is yet uncertain

  10. Genesis and formation conditions of deposits in the unique Strel'tsovka Molybdenum-Uranium ore field: New mineralogical, geochemical, and physicochemical evidence

    Science.gov (United States)

    Aleshin, A. P.; Velichkin, V. I.; Krylova, T. L.

    2007-10-01

    The ambiguity of genetic interpretations of uranium ore formation at Mo-U deposits of the Strel’tsovka ore field led us to perform additional geochemical, mineralogical, and thermobarogeochemical studies. As a result, it has been established that closely related U and F were progressively gained in the Late Mesozoic volcanic rocks from the older basic volcanics (170 Ma) to the younger silicic igneous rocks (140 Ma). The Early Cretaceous postmagmatic hydrothermal epoch (140-125 Ma) is subdivided into preore, uranium ore, and first and second postore stages. The primary brannerite-pitchblende ore was formed in association with fluorite. At the first postore stage, this assemblage was replaced by a U-Si metagel, which was previously identified as coffinite. The metagel shows a wide compositional variation; its fine structure has been studied. The preore metasomatic alteration and related veined mineralization were formed under the effect of sodium (bicarbonate)-chloride solution at a temperature of 250-200°C. The uranium ore formation began with albitization and hematitization of rocks affected by supercritical fluid at 530-500°C; brannerite and pitchblende precipitated at 350-300°C. The chondrite-normalized REE patterns of pitchblende hosted in trachybasalt, trachydacite, and granite demonstrate a pronounced Sm-Nd discontinuity and a statistically significant tetrad effect of W type. These attributes were not established in REE patterns of rhyolites derived from the upper crustal magma chamber. This circumstance and a chronological gap of 5 Ma between silicic volcanism and ore formation do not allow us to suggest that uranium was derived from this magma chamber. According to the proposed model, the evolved silicic Li-F magma was a source of uranium. U4+, together with REE, was fractionated into the fluid phase as complex fluoride compounds. The uranium mineralization was deposited at a temperature barrier. It is suggested that hydromica alteration and the

  11. The actual status of uranium ore resources at Eko Remaja Sector: the need of verification of resources computation and geometrical form of mineralization zone by mining test

    International Nuclear Information System (INIS)

    Uranium ore resources calculation was done after ending all of geological work step. Estimation process of ore resources was started from evaluation drilling, continued with borehole logging. From logging, the result has presented in anomaly graphs, then was processed to determine thickness and grade value of ore. Those mineralization points were correlated one another to form mineralization zones which have direction of N 270 degree to N 285 degree with 70 degree dip to North. From Grouping the mineralization distribution, 19 mineralization planes was constructed which contain 553 ton of U3O8 measured. It is suggested that before expanding measured ore deposit area, mining test should be done first at certain mineralization planes to prove the method applied to calculate the reserve. Results form mining test could be very useful to reevaluate all the work-step done. (author); 4 refs; 2 tabs; 8 figs

  12. Molecular marker and stable carbon isotope analyses of carbonaceous Ambassador uranium ores of Mulga Rock in Western Australia

    Science.gov (United States)

    Jaraula, C.; Schwark, L.; Moreau, X.; Grice, K.; Bagas, L.

    2013-12-01

    Mulga Rock is a multi-element deposit containing uranium hosted by Eocene peats and lignites deposited in inset valleys incised into Permian rocks of the Gunbarrel Basin and Precambrian rocks of the Yilgarn Craton and Albany-Fraser Orogen. Uranium readily adsorbs onto minerals or phytoclasts to form organo-uranyl complexes. This is important in pre-concentrating uranium in this relatively young ore deposit with rare uraninite [UO2] and coffinite [U(SiO4)1-x(OH)4x], more commonly amorphous and sub-micron uranium-bearing particulates. Organic geochemical and compound-specific stable carbon isotope analyses were conducted to identify possible associations of molecular markers with uranium accumulation and to recognize effect(s) of ionizing radiation on molecular markers. Samples were collected from the Ambassador deposit containing low (2000 ppm) uranium concentrations. The bulk rock C/N ratios of 82 to 153, Rock-Eval pyrolysis yields of 316 to 577 mg hydrocarbon/g TOC (Hydrogen Index, HI) and 70 to 102 mg CO2/g TOC (Oxygen Index, OI) are consistent with a terrigenous and predominantly vascular plant OM source deposited in a complex shallow water system, ranging from lacustrine to deltaic, swampy wetland and even shallow lake settings as proposed by previous workers. Organic solvent extracts were separated into saturated hydrocarbon, aromatic hydrocarbon, ketone, and a combined free fatty acid and alcohol fraction. The molecular profiles appear to vary with uranium concentration. In samples with relatively low uranium concentrations, long-chain n-alkanes, alcohols and fatty acids derived from epicuticular plant waxes dominate. The n-alkane distributions (C27 to C31) reveal an odd/even preference (Carbon Preference Index, CPI=1.5) indicative of extant lipids. Average δ13C of -27 to -29 ‰ for long-chain n-alkanes is consistent with a predominant C3 plant source. Samples with relatively higher uranium concentrations contain mostly intermediate-length n

  13. Geochemical evidence for contribution of ore-forming materials from peraluminous granite basement-- Taking Fucheng pluton and No. 6722 uranium deposit in southern Jiangxi Province as examples

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Bangtong(章邦桐); CHEN; Peirong(陈培荣); YANG; Dongsheng(杨东生); KONG; Xinggong(孔兴功)

    2003-01-01

    Using the induced fission-track method, mobile uranium leaching and lead isotope analysis, this work obtianed geochemical features of the peraluminous Fucheng granite basement and the host rock (shoshonite) of the No. 6722 uranium deposit in southern Jiangxi Province. (i) Uranium contents of the leucocratic rock-forming minerals (0.18 ?g/g for quartz, 0.36 ?g/g for feldspar) are lower than the uranium content of the whole rock (4.6 ?g/g). Biotite and some accessory mineral inclusions (zircon, monazite and uraninite) are the main uranium carriers of the Fucheng granite pluton. The fissure uranium in altered minerals (hydromica and chlorite) increased evidently. (ii) Leachable rate of mobile uranium in the biotite granite is 10.4%, while that in the altered granite increased to 31%. (iii) Caculation based on lead isotopes shows that during alteration the Fucheng granite lost uranium (?U = ?37% - ?65%), whereas the Caotaobei shoshonite gained uranium (?U = +37%- +58%). These features suggest that the ore-forming material of the No. 6722 uranium deposit was mainly derived from the altered peraluminous granite basement of Fucheng pluton.

  14. Effects of barium chlorine treatment of uranium ore on /sup 222/Rn emanation and /sup 226/Ra leachability from mill tailings

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, S.A.; Church, S.L.; Whicker, F.W.

    1985-01-01

    The purpose of this laboratory study was to investigate the effectiveness of barium chloride treatment of uranium ore on /sup 222/Rn emanation from mill tailings, /sup 226/Ra level in waste-water, and the leachability of radium from tailings. It has been shown that barium sulfate is an excellent carrier for radium and that barium sulfate crystals have high retention capacity for radon gas produced by radium trapped within the lattice. Ground uranium ore from a mine in Wyoming was mixed with water to form a 1:1 ratio before barium and potassium chlorides were added at concentrations of 0, 10, 25, 50, and 100 mg per liter of slurry. The ore was then subjected to a simulated mill process using sulfuric acid leaching. The liquid representing tailings pond water was separated and analyzed for /sup 226/Ra and the solid fraction, representing mill tailings, was tested for radon emanation and the leachability of radium by deionized water. This study suggests that barium treatment of uranium ore prior to sulfuric acid leaching could be effective in reducing radon emanation from tailings and also in reducing the /sup 226/Ra concentration of waste-water. Leachability of radium from treated tailings was markedly reduced.

  15. Rirang Uranium Ore Processing System Design: Designing A Quencher Unit: A Continuous Quencher Has Been Designed

    International Nuclear Information System (INIS)

    The objective of the design is to make a laboratory scale quencher model that is used to facilitate the dissolution and sudden cooling of the digestion product of the Rirang ore. The designed quencher was based on the previous batch quenching data, feed capacity of 325 g/minute, and residence time of one and two hours for quenching tank and thickener, respectively. The cylindrical quenching tank has dimension of 30 cm diameter and 30 cm high. It has three 2,5 cm baffles and is equipped with a blade-impeller agitator. The bottom-pitched cylindrical thickener has the diameter of 56 cm. The thickener is divided into four zones including clarification, feed; critical, and compression with 5, 3, 3, and 4 cm zones height, respectively. In addition, the bottom pitch has 12,5 cm height. The quencher model is further used to conduct performance test against Rirang ore digestion product

  16. Ore reserve calculations of a sedimentary uranium deposit in Figueira, PR-Brazil

    International Nuclear Information System (INIS)

    The are reserve calculations of a sedimentary uranium deposit in Figueira-PR-Brazil are presented. The evalution of reserves was based on chemical and/or radiometric analisys from boreholes. Geoestatistical methods were used to study the spacial correlation between radiometric and'in situ' uranium content and to calculate the equivalent uranium content without the need for chemical analysis. To this end, a new method was developed based on the regression between accumulated chemical and radiometric grades as determined by increasing thicknesses defined from the maximum peak of the γ-ray logs. Thus, the effect of non-focalization of the probe and of the continuous logging was eliminated. The system of evalution used was two-dimensional using classical Kriging to calculate thicknesses and accumulations determined using distinct cut-off grades. (Author)

  17. Bacteriological lixiviation of low-grade uranium ores at low temperatures, by phiobacillus ferrooxidaus

    International Nuclear Information System (INIS)

    Laboratory experiments are described that, using selective and mutagenic agents, allowed the isolation of a strain of thiobacillus ferrooxidams capable of developing at 80C, and keeping its oxidesing characteristics tests showed that the isoled sample is capable of solubilizing 95% of the uranium content in samples with U3O8 content below 1000ppm

  18. First aid to fight hazards at the uranium ore processing plant at Seelingstaedt/Thuringia. Sofortgefahrenabwehr im Bereich der Uranerzaufbereitungsanlage Seelingstaedt/Thueringen

    Energy Technology Data Exchange (ETDEWEB)

    Gellermann, R.; Molitor, N.; Ripper, P. (Trischler und Partner GmbH, Darmstadt (Germany))

    Mining for uranium ore in Saxonia and Thuringen under the ownership of the German-Soviet group SDAG Wismut has severely affected the environment in the concerned regions over the last 45 years. By means of a special project, the article gives an overview of hazard potentials, acute hazards and envisaged first aid, as well as on additional measures to restore and revegetate the landscape. The state of knowledge on which the article is based is as at June 1991. (orig./HP).

  19. Age and origin of uraninite in the Elliot Lake, Ontario uranium ores

    International Nuclear Information System (INIS)

    There is a strong, positive linear correlation between the 204Pb/206Pb and 207Pb/206Pb ratios and between the 208Pb/206Pb and 207Pb/206Pb ratios in the galenas. The linear relation is interpreted to be the result of ''mixing'' of isotopically distinct Pb produced during two uraninite Pb loss episodes. A complete mixing of crustal Pb and radiogenic Pb released from the associated uraninite at a time T1 formed one end member of the observed trends. The other end member consists of radiogenic Pb released from the uraninite at a later time T2. The galena Pb isotope data indicate that T0, the inital age of the uraninite in the Elliot Lake ores, is 2200-3300 Ma, T1 is less than 2200 Ma, and T2 is less than 1350 Ma. Upper concordia intercepts for most uraninite grains range from 2210 +/- 430 Ma to 2575 +/- 180 Ma; lower concordia intercepts range from 1200 +/- 120 Ma to 1705 +/- 30 Ma. During the first Pb loss episode, at time T1, the centers of most uraninite grains released 45-90% of the accumulated Pb and the outer 5 μm region of the grains released 95-100% of the accumulated Pb. During the second Pb loss episode, at time T2, the grain exteriors released 2-6 times more Pb than the grain centers. A few highly fractured grains appear to have been ''reset'' at T1. The uraninite U-Pb data indicate that T0 greater than or equal to 1700 Ma. Together, the galena Pb isotope and uraninite U-Pb data require that T0 = 2560 +/- 50 Ma, T1, = 1700 +/- 50 Ma, and T2 = 500 +/- 180 Ma, if the 2350 +/- 100 Ma estimated age of deposition of the Huronian rocks (Roscoe, 1973) is correct, the 2560 +/- Ma obtained for the uraninite requires that the uraninite in the Elliot Lake ores is of detrital derivation

  20. Study of oxygen mass transfer coefficient and oxygen uptake rate in a stirred tank reactor for uranium ore bioleaching

    International Nuclear Information System (INIS)

    Highlights: ► Mass transfer coefficient does not depend on biomass concentration. ► The pulp density has a negative effect on mass transfer coefficient. ► The pulp density is the unique factor that affects maximum OUR. ► In this work, Neale’s correlation is corrected for prediction of mass transfer coefficient. ► Biochemical reaction is a limiting factor in the uranium bioleaching process. - Abstract: In this work, the volumetric oxygen mass transfer coefficient and the oxygen uptake rate (OUR) were studied for uranium ore bioleaching process by Acidthiobacillus ferrooxidans in a stirred tank reactor. The Box-Bohnken design method was used to study the effect of operating parameters on the oxygen mass transfer coefficient. The investigated factors were agitation speed (rpm), aeration rate (vvm) and pulp density (% weight/volume) of the stirred tank reactor. Analysis of experimental results showed that the oxygen mass transfer coefficient had low dependence on biomass concentration but had higher dependence on the agitation speed, aeration rate and pulp density. The obtained biological enhancement factors were equal to ones in experiments. On the other hand, the obtained values for Damkohler number (Da < 0.468) indicated that the process was limited by the biochemical reaction rate. Experimental results obtained for oxygen mass transfer coefficient were correlated with the empirical relations proposed by Garcia-Ochoa and Gomez (2009) and Neale and Pinches (1994). Due to the high relative error in the correlation of Neale and Pinches, that correlation was corrected and the coefficient of determination was calculated to be 89%. The modified correlation has been obtained based on a wide range of operating conditions, which can be used to determine the mass transfer coefficient in a bioreactor

  1. A study of the volatilization-excitation phenomena affecting to the efficiency of spectrochemical buffers applied to uranium ore analysis

    International Nuclear Information System (INIS)

    A direct-current arc emission spectroscopy method allowing the determination of Alm Ca, Fe, Mg, Mn, Na, P, Si and Ti in uranium ores and geological materials has been developed by studying the efficiency of Ag2O, BaCO3, Bi2O3, CuF2, CuO, Ga2O3, GeO2, graphite, K2CO3, Li2B4O7, Li2CO3, Ni, PbS, Sb2O4, SrCO3, Tl2O3 and ZnO as spectrochemical buffers. Volatilization-excitation mechanisms of Li2CO3: graphite, GeO2: graphite and SrCO3: graphite buffer mixtures have been specially considered. Procedures to investigate phenomena taking place in the electrode, anodic load and arc plasma have been selected. Intensity-time curves; voltage variation between electrodes; vapour diffussion through the electrode walls; load depletion; reaction products formation and temperature, electron pressure and ionization degree in the arc plasma have been studied. Measurements of plasma parameters are performed by introducing thermometric and manometric species in both the anode and the cathode electrodes. The effects of different alkalin matrices on transportation phenomena are also considered. Emission efficiency of some analytical lines has been investigated by the application of a mathematical model enclosing fundamental parameters of the arc plasma. Efficiency of scattered primary X-rays of various wavelengths has been studied as a correction of matrix effects in the uranium determination. Results illustrate that the incoherently-scattered MoKβsub(1,3) radiation is the optimum reference line. (author)

  2. Polyphase coffinite-like U-Si gel and its role in uranium redistribution in the Mo-U deposits of the Streltsovsky Ore Field (Transbaikalia, Russia)

    International Nuclear Information System (INIS)

    The Streltsovsky uranium ore field is located within the Mongol-Okhotsky Proterosoic-Paleozoic fold belt of Central Asia which divides the Siberian and Chinese platforms. It is a unique ore field related to areas of continental volcanism with total uranium reserves exceeding 250,000 tons. Nineteen Mo-U deposits are located in the Streltsovsky caldera which covers an area of about 140 km2. It is filled by Late Jurassic - Early Cretaceous sedimentary-volcanogenic strata consisting of basalt-dacite-liparite series with a total thickness reaching 1000 m. The caldera basement is composed of Precambrian - Early Paleozoic amphibolites, schists, marbles and granitic gneisses and Late Paleozoic granites. Several stages of hydrothermal mineralization developed after Mesozoic volcanism have been recognized. The earliest process consists in extensive illitization of basement rocks and caldera filling, which ended with formation of cryptocrystalline quartz veins with sulfides. Physical and chemical characteristics of the U-Si phases are reported and results discussed as follows. The nature of the U-Si phases is supposed to represent primary gels of variable U-Si composition formed by the post-ore hydrothermal fluids from primary uranium mineralization, through its partial replacement and simultaneous uranium redeposition. The numerous features of a former gel state of the U-Si phases can hardly be explained as resulting from metamictization of coffinite because primary structures of deposition of the polyphase U-Si aggregates on faces of fluorite cubes, in open space of pores, and along fissures represent evidences against a decomposition of initially crystalline coffinite. Moreover, no 'protocoffinite' crystals were found. Presence of coffinite nuclei in gel-like U-Si matter apparently might be explained as the beginning of gel crystallization similarly to opal crystallization when extremely small nuclei of cristobalite and α-quartz form in a silica gel. Extensive formation

  3. Study of Character and Trace of REE in Xiangshan Uranium Ore Field%相山铀矿田稀土元素地球化学特征及示踪研究

    Institute of Scientific and Technical Information of China (English)

    廖宇华

    2000-01-01

    Xiangshan Uranium ore fieled is a famous Volcanic type hydrothermal uranium ore field. The author studysgeochemical character of samples of REE of 4 reprentive uranium ores,of which are ore-host rock, uranium mine andpitchblende. This paper discusses material resource of rock-forming ore-forming, unveilings REE of uranium ore andmineralization of uranium of two difference geochemical types of mine,bring out relation of direct ratio, especialy urani-um and heavy REE in rich mine ore, which come from inner oviginal fluid and bring ont Co-precipitation. The strongeruranium-hydrothermal differntiation evolution is, the richer minerarli zation of uranium is.%相山铀矿田是我国著名的火山岩型热液铀矿田。作者对矿田4个有代表性的铀矿床的赋矿主岩、铀矿石、沥青铀矿样品稀土元素地球化学特征进行了研究,探讨了其成岩、成矿的物质来源,揭示了两种不同地球化学类型铀矿床的稀土元素与铀矿化呈正消长关系,尤其是富矿床中铀与重稀土元素,主要来自深部原生流体,并呈现出共沉淀的特点,含铀热液分异演化愈强,则铀矿化愈富。

  4. Studies on radioactivity distribution and radioactive mineral identification in uranium ores from Espinharas (PB), Brazil

    International Nuclear Information System (INIS)

    Studies about the identification of radioactive minerals in uranium bearing rocks from Espinharas (PB), Brazil are presented. Autoradiography with α-sensitive nuclear emulsions was utilized for determining radioctivity distributions and for localizing radioactive minerals, in combination with microscopy, X-ray diffractometry, PIXE and eletron microprobe analysis for its identification. Mineralized gneisse and feldspatic rock, the two principal samples studied, show distinct differences in radioactive distribution patterns, however the main carriers for U and Th seem to be the same. Microanalysis shows that elements are associated with Si, Ca, Fe and Al an some trace elements like Y, Zr, Ti, etc. U and Th are distributed uniformly in feldspatic rock and inhomogeneously in mineralized gneisse, indicating that the zonary structure of the radioactive cristals, frequently observed in gneisse, could be due to variable U:Th ratios. Chemical analysis, X-ray diffraction datas and microscopic studies indicates that the principal carrier for radioactivity in the rocks of Espinharas is a silicate mineral of U and Th, probably situaded in the series of transition: Coffinite -> uraninite, thorogummite -> thorianite. Some additional experiments about leachability of uranium with diluted sulfuric acid are reported, which confirm the different nature of radioactivity distribution in feldspatic and gneissic rocks. (author)

  5. Exposure of critical group of population to water radionuclides in area affected by uranium ore mining

    International Nuclear Information System (INIS)

    Waste waters from the uranium industry are decontaminated and then discharged into water courses. Inhabitants of the nearest village on the river form the critical group with regard to radiation burden. The critical radionuclides are Usub(nat), Ra 226, Pb 210 and Po 210 whose concentrations were determined in drinking water, in the water course and in plants watered with water from the river. From obtained data on the consumption of foods of own production and of water for drinking and cooking, a weighted sum was made of the intake of critical radionuclides per year on the conservative assumption that ingestion is the sole form of intake (permissible ingestion under Notice 59/72, Coll. of Laws). Under the said criteria the intake of radionuclides from water and foods of own production is for the critical population group 27 times less than the permissible intake for the population. Decontaminated waste waters from the operation of uranium industries contribute to the radiation burden of the population only negligibly. Radionuclides from the investigated sources represent a minute fraction of permissible intake. (author)

  6. Historical assessment of uranium release by the ore treatment unit - at Caldas, Minas Gerais, Brazil from 1999 to 2011

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, W.S.; Carmo, R.F.; Py Junior, D.A., E-mail: pereiraws@gmail.com [Industrias Nucleares do Brasil (INB), Pocos de Caldas, MG (Brazil). Unidade de Tratamento de Minerio. Grupo Multidisciplinar de Radioprotecao; Kelecom, A., E-mail: akelecom@id.uff.br [Universidade Federal Fluminense (LARARA-PLS/GETA/UFF), Niteroi, RJ (Brazil). Laboratorio de Radiobiologia e Radiometria Pedro Lopes dos Santos. Grupo de Estudos em Temas Ambientais; Pereira, J.R.S., E-mail: pereirarsj@gmail.com [Universidade Federal de Alfenas, Pocos de Caldas, MG (Brazil)

    2013-07-01

    The Ore Treatment Unit (OTU) is located at the source of three rivers: Ribeirao das Antas, Ribeirao do Soberbo and Corrego da Consulta. Each interface of installation with the environment, at the tree rivers, has been monitored for the release of radionuclides. At Ribeirao das Antas a weekly sample collection was made at point 014. At Ribeirao Soberbo there was a weekly sample collection at point 025, and at Corrego da Consulta a monthly collection was carried out at point 076. This work analyses the average annual releases of uranium from the historical series started in 1999 and ended in 2011. Points 014 and 025 showed average release of 0.12 Bq L{sup -1}. Point 076 showed somewhat higher average release, 1.27 Bq L{sup -1}. An Analysis Of Variance test (ANOVA) has been carried out to verify the existence of different means between these collecting points. The averages were considered statistically different. As a complementary analysis, the Student's t test was performed between the averages at considered points. Between points 014 and 025, the averages were considered identical. Between points 014 and 076, the average release at point 076 was considered higher than that at point 014. The same behavior was observed between points 025 and 076. The releases at point 076 were considered higher than those at point 025. Thus it can be concluded that releases at points 014 and 025 are identical and both are lower than releases at point 076. (author)

  7. Age and origin of uraninite in the Elliot Lake, Ontario uranium ores

    Energy Technology Data Exchange (ETDEWEB)

    Meddaugh, W.S.

    1983-01-01

    There is a strong, positive linear correlation between the /sup 204/Pb//sup 206/Pb and /sup 207/Pb//sup 206/Pb ratios and between the /sup 208/Pb//sup 206/Pb and /sup 207/Pb//sup 206/Pb ratios in the galenas. The linear relation is interpreted to be the result of ''mixing'' of isotopically distinct Pb produced during two uraninite Pb loss episodes. A complete mixing of crustal Pb and radiogenic Pb released from the associated uraninite at a time T/sub 1/ formed one end member of the observed trends. The other end member consists of radiogenic Pb released from the uraninite at a later time T/sub 2/. The galena Pb isotope data indicate that T/sub 0/, the inital age of the uraninite in the Elliot Lake ores, is 2200-3300 Ma, T/sub 1/ is less than 2200 Ma, and T/sub 2/ is less than 1350 Ma. Upper concordia intercepts for most uraninite grains range from 2210 +/- 430 Ma to 2575 +/- 180 Ma; lower concordia intercepts range from 1200 +/- 120 Ma to 1705 +/- 30 Ma. During the first Pb loss episode, at time T/sub 1/, the centers of most uraninite grains released 45-90% of the accumulated Pb and the outer 5 ..mu..m region of the grains released 95-100% of the accumulated Pb. During the second Pb loss episode, at time T/sub 2/, the grain exteriors released 2-6 times more Pb than the grain centers. A few highly fractured grains appear to have been ''reset'' at T/sub 1/. The uraninite U-Pb data indicate that T/sub 0/ greater than or equal to 1700 Ma. Together, the galena Pb isotope and uraninite U-Pb data require that T/sub 0/ = 2560 +/- 50 Ma, T/sub 1/, = 1700 +/- 50 Ma, and T/sub 2/ = 500 +/- 180 Ma, if the 2350 +/- 100 Ma estimated age of deposition of the Huronian rocks (Roscoe, 1973) is correct, the 2560 +/- Ma obtained for the uraninite requires that the uraninite in the Elliot Lake ores is of detrital derivation.

  8. Determination of elemental impurities and U and O isotopic compositions with a view to identify the geographical and industrial origins of uranium ore concentrates

    Science.gov (United States)

    Salaun, A.; Hubert, A.; Pointurier, F.; Aupiais, J.; Pili, E.; Richon, P.; Fauré, A.; Diallo, S.

    2012-12-01

    First events of illicit trafficking of nuclear and radiological materials occurred 50 years ago. Nuclear forensics expertise are aiming at determining the use of seized material, its industrial history and provenance (geographical area, place of production or processing), at assisting in the identification and dismantling of illicit trafficking networks. This information is also valuable in the context of inspections of declared facilities to verify the consistency of operator's declaration. Several characteristics can be used to determine the origin of uranium ore concentrates such as trace elemental impurity patterns (Keegan et al., 2008 ; Varga et al., 2010a, 2010b) or uranium, oxygen and lead isotopic compositions (Tamborini et al., 2002a, 2002b ; Wallenius et al., 2006; Varga et al., 2009). We developed analytical procedures for measuring the isotopic compositions of uranium (234U/238U and 235U/238U) and oxygen (18O/16O) and levels of elemental impurities (e.g. REE, Th) from very small amounts of uranium ore concentrates (or yellow cakes). Micrometer particles and few milligrams of material are used for oxygen isotope measurements and REE determination, respectively. Reference materials were analyzed by mass spectrometry (TIMS, SF-ICP-MS and SIMS) to validate testing protocols. Finally, materials of unknown origin were analyzed to highlight significant differences and determine whether these differences allow identifying the origin of these ore concentrates. References: Keegan, E., et al. (2008). Applied Geochemistry 23, 765-777. Tamborini, G., et al. (2002a). Analytical Chemistry 74, 6098-6101. Tamborini, G., et al. (2002b). Microchimica Acta 139, 185-188. Varga, Z., et al. (2009). Analytical Chemistry 81, 8327-8334. Varga, Z., et al. (2010a). Talanta 80, 1744-1749. Varga, Z., et al. (2010b). Radiochimica Acta 98, 771-778 Wallenius, M., et al. (2006). Forensic Science International 156, 55-62.

  9. 从某铀矿石硫酸浸出液中回收铀、铜试验研究%Experiment Research on Recovery of Uranium and Copper From Leaching Solution of Uranium Ore With Sulfuric Acid

    Institute of Scientific and Technical Information of China (English)

    刘辉; 周根茂; 孟运生; 郑英; 师留印; 程浩

    2013-01-01

      某铀矿石硫酸浸出液中含有铀和铜,研究了从中综合回收铀和铜。试验结果表明:采用201×7树脂吸附铀,用酸性氯化钠溶液淋洗负载树脂,然后用氢氧化钠溶液从淋洗液中沉淀铀,铀回收率为98.4%;对铀的吸附尾液,采用循环铁粉置换法回收铜,铜回收率为90%。采用该方法可实现铀、铜的综合回收。%Recovery of uranium and copper from sulfuric acid leaching solution of a uranium ore has been studied .The results showed that uranium recovery was 98 .4% by adsorption uranium using 201 × 7 resin from the leaching solution ,and desorption uranium using acidic sodium chloride solution from loaded resin ,then precipitating uranium from the stripping liquid .The copper in the adsorption tail liquid was be replaced using iron powder ,recovery of copper was 90% .Comprehensive recovery of uranium and copper can be realized by the method .

  10. Paradigmatic shifts in exploration process: The role of industry-academia collaborative research and development in discovering the next generation of uranium ore deposits

    International Nuclear Information System (INIS)

    Full text: Uranium exploration increased over the past decade in a sympathetic response to a rapid increase in the price of uranium, inspired by fuel supply-demand, and stock market dynamics. Exploration activity likely peaked during this cycle in 2008, with in excess of 850 companies, engaged in the global exploration of a portfolio of over 3000 projects. Global uranium exploration expenditures for the period 2004-2008 are estimated at US$3.2 billion -from US$130 million in 2004, to an estimated peak of US$1.2 billion in 2008. A major focus of the exploration effort has been on brown-fields exploration in historical uranium districts. Less effort has been devoted to exploration at green-field frontiers. An anticipated significant reduction in global exploration expenditures in 2009, and beyond, is anticipated concurrent with the global recession. There is not much evidence to indicate that significant brand-new, large, and higher grade, uranium deposits have been discovered during this uranium exploration cycle. It is likely that future uranium explorers will need to be more efficient, and effective in their efforts, and to adopt new, and innovative business strategies for their survival, and success. This paper addresses some of the fundamental reasons why major economic discoveries of uranium ore bodies have been elusive over the past two decades, through a cyclical model know as the 'learning curve', using the prolific Athabasca Basin, Saskatchewan, as an exemplar. This model incorporates elements relating exploration expenditure, quantities of discovered uranium, and the sequence of uranium deposit discoveries, to reveal that discovery cycles are epochal in nature, and that they are also intimately related to the development, and deployment of new exploration technologies. The history of uranium exploration is parsed into the early 'prospector' exploration phase (1960- 1980), and the current model driven phase (1981-present). The future of successful uranium

  11. A study of the efficiency of different spectrochemical buffers applied to the uranium ore analysis

    International Nuclear Information System (INIS)

    A direct-reading emission spectroscopy method allowing the determination of Al, Ca, Fe, Mg, Mn, Na, P, Si and Ti in geological materials, that are of interest for the prospecting and recovery of uranium, is proposed. Direct-current are between graphite electrodes Is used as the excitation source. Efficiency of Ag2O, BaCO3, Bi2O3, CuF2, CuO, Ga203, Ge02, graphite, K2CO3, H2B4O7, Li2CO3, Ni, PbS, Sb2o4 , SrC03, Ti2O3 and ZnO as spectrochemical buffers has been studied. It has been inferred that through a sample dilution with Li2CO3, SrC03 and graphite powder in the rations 1:10:10:20, respectively, the highest reduction of the matrix effects is achieved. Phosphorus determination Is better performed with PbS as spectrochemical buffer Instead of the indicated above. The action of the selected compounds Is completed by using Co, In, Li and Sr as internal standards, and, as a whole, satisfactory accuracy and reproducibility are attained. (Author) 7 refs

  12. Experimental design and optimization of leaching process for recovery of valuable chemical elements (U, La, V, Mo, Yb and Th) from low-grade uranium ore

    Energy Technology Data Exchange (ETDEWEB)

    Zakrzewska-Koltuniewicz, Grażyna, E-mail: g.zakrzewska@ichtj.waw.pl [Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw (Poland); Herdzik-Koniecko, Irena [Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw (Poland); Cojocaru, Corneliu [Institute of Macromolecular Chemistry “Petru Poni”, Aleea Grigore Ghica Voda, nr. 41A, 700487 Iasi (Romania); Chajduk, Ewelina [Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw (Poland)

    2014-06-30

    Highlights: • The experimental design for optimization of leaching process of uranium from low-grade ores was applied. • Multi-objective optimization method based on desirability approach was employed. • The recovery of associated metals like vanadium, molybdenum and lanthanides was considered. • The effects of factors were identified by 3-D surface plots. • The optimum condition for valuable metals: P = 5 bar, T = 120 °C and t = 90 min has been determined. - Abstract: The paper deals with experimental design and optimization of leaching process of uranium and associated metals from low-grade, Polish ores. The chemical elements of interest for extraction from the ore were U, La, V, Mo, Yb and Th. Sulphuric acid has been used as leaching reagent. Based on the design of experiments the second-order regression models have been constructed to approximate the leaching efficiency of elements. The graphical illustrations using 3-D surface plots have been employed in order to identify the main, quadratic and interaction effects of the factors. The multi-objective optimization method based on desirability approach has been applied in this study. The optimum condition have been determined as P = 5 bar, T = 120 °C and t = 90 min. Under these optimal conditions, the overall extraction performance is 81.43% (for U), 64.24% (for La), 98.38% (for V), 43.69% (for Yb) and 76.89% (for Mo) and 97.00% (for Th)

  13. Phosphoric ore treatment by roasting it with sodium carbonate and leaching it with ammonium citrate for the recovery of soluble phosphate and uranium

    International Nuclear Information System (INIS)

    By thermal treatment of phosphoric ore, with low phosphorus contents and iron, aluminum, and silicon impurities, basic fertilizers with P2O5 soluble in citric acid or ammonium citrate, can be produced. The phosphoric ore lightly grinded with alkaline salts like CO3Na2 y SiO2 is roasted between 800 to 1 000°C in rotary kilns. The roasted material contains from 25–30% of alkaline phosphates soluble in citrates. Phosphoric ore from the province of Napo-Ecuador with 24% of P2O5, 40% CaO in form of apatite, 20% of SiO2 and 7 g/ton U is tested by thermic differential analysis, roasting at 800°C for 2 hours with 50% w/w of sodium carbonate and 2% w/w of SiO2 by using a Nichols pilot furnace with 15 L of capacity which uses gas (propane-butane) as fuel, and agitated leaching with ammonium citrate (5% w/w). The initial ore and products are characterized by using atomic absorption spectrophotometry (Perkin Elmer AA400) and x-ray diffraction (Bruker D8 Advance). In the best conditions, 32% of phosphorus soluble in water is obtained as well as 40% of phosphorus and 56% uranium soluble in ammonium citrate. (author)

  14. Paradigmatic Shifts in Exploration Process: The Role of Industry-Academia Collaborative Research and Development in Discovering the Next Generation of Uranium Ore Deposits

    International Nuclear Information System (INIS)

    Uranium exploration increased over the past decade in a sympathetic response to a rapid increase in the price of uranium, inspired by fuel supply-demand and stock market dynamics. Exploration activity likely peaked during this cycle in 2008 with in excess of 900 companies engaged in the global exploration of a portfolio of over 3000 projects. Global uranium exploration expenditures for the period 2004–2008 are estimated at US$3.2 billion — from US$130 million in 2004 to an estimated peak of US$1.2 billion in 2008. A major focus of the exploration effort has been on brown-fields exploration in historical uranium districts. Less effort has been devoted to exploration at green-field frontiers. A significant reduction in global exploration expenditures in 2009 and beyond is anticipated concurrent with the global recession. There is not much evidence to indicate that brand-new, large, and higher grade, uranium deposits have been discovered during this uranium exploration cycle. It is likely that future uranium explorers will need to be more efficient and effective in their efforts and to adopt new and innovative business strategies for their survival and success. This paper addresses some of the fundamental reasons why major economic discoveries of uranium ore bodies have been elusive over the past two decades, through a cyclical model know as the ‘learning curve’, using the prolific Athabasca Basin, Saskatchewan, as an exemplar. This model relates exploration expenditure, quantities of discovered uranium, and the sequence of uranium deposit discoveries, to reveal that discovery cycles are epochal in nature and that they are also intimately related to the development and deployment of new exploration technologies. The history of uranium exploration is parsed into the early ‘prospector’ exploration phase (1960–1980) and the current ‘model driven’ phase (1981–present). The future of successful uranium exploration is envisaged as

  15. Foreign current situation of radioactive sorting of uranium ores%国外铀矿石放射性分选的现状

    Institute of Scientific and Technical Information of China (English)

    汪淑慧

    2013-01-01

    经放射性分选提高矿石品位后可以降低铀的加工成本,还可以使一些低品位资源得以利用.近年来放射性分选的发展重新受到重视,以俄罗斯于2008年投产的一个大型放射性分选厂为例进行介绍.%The distribution of uranium in the earth's crust is more extensive, but the high-grade uranium deposit is very few. The processing costs of uranium can be reduced and some low-grade resources can be taken advantage of after the ore grade is raised by radioactive sorting. In recent years, the development of radioactive sorting receives attentions again. A large radioactive sorting plant in Russia, which was put into operation in 2008, is introduced,including process flow of ore treatment and technical parameters.

  16. Determination of uranium, iron, copper, and nickel from ore samples by MEKC using N,N'-ethylene bis(salicylaldimine) as complexing reagent.

    Science.gov (United States)

    Mirza, Muhammed Aslam; Khuhawar, Muhammad Yar; Arain, Rafee

    2008-02-01

    An analytical procedure has been developed for the separation of dioxouranium(VI), iron(III), copper(II), nickel(II), cobalt(II), cobalt(III), palladium(II), and thorium(IV) by MEKC using N,N'-ethylene bis(salicylaldimine) (H(2)SA(2)en) as a complexing reagent with total runtime uranium ore samples indicating its presence within 103-1789 microg/g with RSD within 0.79-1.87%. Likewise copper, nickel, and iron in their combined matrix were also simultaneously determined with RSD 0.4-1.6% (n = 6). PMID:18186535

  17. A study and practice of heap construction by long hole blasting for in-place leaching of Jiaoping No. 1 ore body in No. 745 uranium mine

    International Nuclear Information System (INIS)

    In No. 745 Mine, there are a great number of residual low grade uranium orebodies and separate orebodies which can not be economically exploited by using conventional methods. In order to recover these uranium ore bodies, an experimental study on the in-place leaching was conducted on a 10 000 t scale at the open-pit bottom. In this test, the heap was constructed by the long hole blasting. On the basis of the practical conditions the suitable stope bottom structure was selected to achieve multi-point solution collection and leach solution leakage prevention. In order to control the heap shape and generate suitable relief space, special consideration was given to undercut slot layout and construction method. Intensive attention was paid to parameters of long hole blasting and the fragmentation size. (authors)

  18. Formation of neogenic ores on the dump-heaps of old uranium mines and on the mine-head of mines under exploitation; Formation de mineraux neogenes sur les haldes d'anciennes mines d'uranium et sur le carreau des mines en exploitation

    Energy Technology Data Exchange (ETDEWEB)

    Chervet, J. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The aim of this preliminary study is to assess straight away the major degradations suffered by primary and secondary uranium ores under the weathering action of air and water. The uranium ores concerned in this case are those stored in the open air. The pyritic ores are the most vulnerable: the interactions between the pyrite, or rather its oxidation products, and the uraniferous compounds are liable to lead to the formation of neogenic ores, which are of considerable importance in the natural lixiviation of uranium ore stocks. (author) [French] Cette etude preliminaire a pour but de fixer des a present les degradations majeures que subissent les mineraux d'uranium primaires et secondaires, sous l'action de l'air et des eaux meteoriques. Il s'agit en l'occurence des mineraux d'uranium constituant les minerais entreposes a l'air libre. Les minerais pyriteux sont les plus vulnerables: les interactions entre la pyrite ou plutot de ses produits d'oxydation avec les composes uraniferes sont susceptibles de former des mineraux neogenes dont l'importance est considerable dans la lixiviation naturelle des stocks de minerais d'uranium. (auteur)

  19. Research on uranium leaching of some uraniferous ploymetallic ore in Xinjiang%新疆某含铀多金属矿浸铀工艺研究

    Institute of Scientific and Technical Information of China (English)

    赵春; 张霖; 李清海; 郑元泽; 王清良; 胡鄂明; 王国全

    2012-01-01

    采用新疆某含铀多金属矿石,进行了矿石粒度、酸浓度、氧化剂种类及浓度、液固比对铀浸出效果的影响的搅拌浸出试验和柱浸试验,结果表明,该矿石适合酸法浸出,浸出性能好,属易浸矿石;矿石中CaO含量高导致酸耗较高,达到9%以上;酸法浸铀过程中BeO浸出很少,可考虑对浸铀渣进行Be()的提取利用;矿石粒度对浸出效果有较大影响,小粒级矿石浸出率高,浸出周期短,液固比小,但酸耗较高;氧化剂的加入对铀浸出率影响很小;矿层高度对浸出效果有一定影响,矿层高度越大,酸耗较低,液固比越小.为了提高堆浸技术经济指标,生产实际中可考虑增加堆高或串堆浸出,并在浸出中后期采取淋、停交替作业以及翻堆等措施.%The ploymetallic uranium ore from Xinjiang was processed and the influences of particle size, sulphuric acid concentration, types and concentration of oxidants, and the ratio of liquid to solid on uranium leaching were investigated and discussed by agitation leaching test and cylinder leaching test. The result shows that the ore, with a good leaching effect, is suitable for acid leaching and belongs to easy-leaching ore; the ore, with high content of CaO, leads to high acid consumption, reaching more than 9%; in the process of acid leaching of uranium, BeO leaches rarely, which may be considered for extracting and using of BeO; the particle size index affects greatly the leaching effect-small grade ore has a high leaching rate and short leaching cycle, but high consumption of acid; the addition of oxidant has little effect on uranium leaching rate; the seam height has effects on uranium leaching, the greater the height, the lower the acid consumption and the smaller ratio of liquid to solid. In order to improve the technological and economic indexes of heap leaching, in the actual production, it may be considered to increase the usage of high stack or heap leaching and

  20. 相山居隆庵矿床铀成矿流体特征及其来源探讨%Characteristics and origin of ore-forming fluid of Julong'an uranium deposit in Xiangshan uranium orefield

    Institute of Scientific and Technical Information of China (English)

    邱林飞; 欧光习; 张敏; 张建锋

    2012-01-01

    On the basis of field survey, comparative study of petrography, microthermometry, Laser Raman ingredient and gas chromatogram ingredient of fluid inclusions, the authors found out the basic characteristics (temperature, salinity, ingredients etc. )of the ore-forming fluids in the Julong'an uranium deposit. According to the compositions of carbon, hydrogen and oxygen stable isotopes of ore-forming fluids in combination with the characteristics of geological structure of the Julong'an uranium deposit, this paper investigated the origin of the ore-forming fluids. The results indicate that the ore-forming fluids were medium- to high- temperature and medium- to high- salinity fluids which were enriched with abundant ore-forming materials and volatiles such as CO2, H2 and CH4, and contained lots of such materials as alkali metals, P and halogen. The ore-forming fluids were mostly deep-derived (mantle source) fluids.%通过居隆庵矿床流体包裹体岩相学、显微测温学、单个流体包裹体激光拉曼成分及群体包裹体成分的对比研究,查明了成矿流体的基本性质(温度、盐度及成分等);根据成矿流体的碳、氢、氧等稳定同位素特征,并结合矿床的地质-构造特征,探讨了成矿流体的来源.研究表明,居隆庵矿床铀成矿流体为富含成矿物质及挥发分(CO2、H2、CHl4等)的中-高温、中-高盐度流体,其成分以C、H、O、N等为主,并溶有多种碱金属、P及卤素(F、C1)等微量组分的C-H-O流体,成矿流体具有深源(幔源)性的特点.

  1. Uranium

    International Nuclear Information System (INIS)

    The article includes a historical preface about uranium, discovery of portability of sequential fission of uranium, uranium existence, basic raw materials, secondary raw materials, uranium's physical and chemical properties, uranium extraction, nuclear fuel cycle, logistics and estimation of the amount of uranium reserves, producing countries of concentrated uranium oxides and percentage of the world's total production, civilian and military uses of uranium. The use of depleted uranium in the Gulf War, the Balkans and Iraq has caused political and environmental effects which are complex, raising problems and questions about the effects that nuclear compounds left on human health and environment.

  2. Field measurements of mixed exposure of operators to radioactive aerosol, gas and quartz in confinement of mining equipment cabs during open-pit mining of high-grade uranium ores

    International Nuclear Information System (INIS)

    A series of field measurements of miners mixed exposure to radon and daughters, uranium ore dust and respirable quartz, was conducted in an open-pit mine in Northern Saskatchewan during 1980-81. Control of radon gas levels in the mining equipment cabs is required. Dust may be reduced by minimizing the resuspension of dust from contaminated surfaces within the cabs

  3. Synergistic extraction of uranium from Korean black shale ore leach liquors using amine with phosphorous based extractant systems

    International Nuclear Information System (INIS)

    Synergistic extraction of uranium using amine combined with phosphorous based extractant systems was described. The present study focused on the continuous extraction processing of uranium to form precipitation under higher pH conditions and higher aqueous phase ratios. To address this, synergistic extraction studies were carried out with P-based extractants as synergists and investigations were done with better pairs with an amine-based extractant system. Finally, all of the developed synergistic extraction methodologies were compared with each other. This showed that Alamine 336 and D2EHPA was the best pair for uranium extraction, offering as much separation as possible from other associated metals. (author)

  4. Study of the combined effects of smoking and inhalation of uranium ore dust, radon daughters and diesel oil exhaust fumes in hamsters and dogs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cross, F.T.; Palmer, R.F.; Filipy, R.E.; Busch, R.H.; Stuart, B.O.

    1978-09-01

    Exposure to particulates from uranium ore dust and diesel exhaust soot provoked inflammatory and proliferative responses in lungs. Also exposure to radon and radon daughters yielded increased occurrences of bronchiolar epithelial hyperplasia and metaplastic changes of alveolar epithelium. The data suggest that this cellular change is also a precursor of premalignant change in hamsters. The authors suggest an animal model other than the hamster based on two observations: (1) the Syrian golden hamster has been shown to be highly refractory to carcinoma induction; and (2) that when exposed to realistic levels of agents in life-span exposure regimens, the hamster does not develop lesions. Dog studies with cigarette smoke exposure showed mitigating effects on radon daughter induced respiratory tract cancer. Two reasons are suggested although no empirical evidence was gathered. A strict comparison of human and animal exposures and interpolative models are not possible at this time. (PCS)

  5. Resources evaluation of layer-shaped volcanic lava-type uranium deposits in Dazhou ore-field,Gan-Hang uranium metallogenic belt%赣杭铀成矿带大洲矿田层状火山熔岩型铀矿资源评价

    Institute of Scientific and Technical Information of China (English)

    毛孟才

    2001-01-01

    本文全面总结了大洲铀矿田成矿地质背景及铀矿特征,分析了溶浸采矿条件,论述了大洲铀矿田溶浸采矿的可行性,并指明应用溶浸采矿技术重新评价赣杭铀成矿带硬岩型铀矿资源的必要性。%According to the technological requirements, using theory ofsolution mining, the author makes a resources evaluation of layer-shaped volcanic lava-type uranium deposits in Dazhou ore-field, Gan-Hang uranium metallogenic belt. This paper comprehensively summarizes the metallogenic geologic background and characteristics of uranium deposits in Dazhou uranium ore-field, analyses the conditions of solution mining and describes the feasibility of solution mining in Dazhou uranium ore-field, then proposes the necessity to reevaluate hard rock uranium resources in Gan-Hang uranium metallognic belt.

  6. Uranium

    International Nuclear Information System (INIS)

    The author discusses the contribution made by various energy sources in the production of electricity. Estimates are made of the future nuclear contribution, the future demand for uranium and future sales of Australian uranium. Nuclear power growth in the United States, Japan and Western Europe is discussed. The present status of the six major Australian uranium deposits (Ranger, Jabiluka, Nabarlek, Koongarra, Yeelerrie and Beverley) is given. Australian legislation relevant to the uranium mining industry is also outlined

  7. Uranium

    International Nuclear Information System (INIS)

    The development, prospecting, research, processing and marketing of South Africa's uranium industry and the national policies surrounding this industry form the headlines of this work. The geology of South Africa's uranium occurences and their positions, the processes used in the extraction of South Africa's uranium and the utilisation of uranium for power production as represented by the Koeberg nuclear power station near Cape Town are included in this publication

  8. Uranium

    International Nuclear Information System (INIS)

    The geological setting of uranium resources in the world can be divided in two basic categories of resources and are defined as reasonably assured resources, estimated additional resources and speculative resources. Tables are given to illustrate these definitions. The increasing world production of uranium despite the cutback in the nuclear industry and the uranium requirements of the future concluded these lecture notes

  9. Uranium recovery from phosphate rocks concentrated

    International Nuclear Information System (INIS)

    The reserves, geological data, chemical data and technical flowsheet from COPEBRAS and Goiasfertil ores are described, including the process of mining ore concentration. Samples of Goiasfertil ores are analysed by gravimetric analysis, for phosphate, and spectrofluorimetry for uranium. (author)

  10. The prospection of uranium and thorium ores in desert country and in equatorial forest regions of the Union Francaise

    International Nuclear Information System (INIS)

    Since it was founded, the D.R.E.M. has carried out important prospection work in the overseas territories which now make up the Communaute Francaise. This work, now involving almost a million km2, represents an experiment scarcely equalled throughout the world. Research in these territories presents both general and technical difficulties, which are especially severe in countries with extreme climates: deserts or dense equatorial forests. The adaptation of various methods of radioactive ore prospection to these regions is described, and also the results obtained. Three particular examples are given in detail: - general exploration in the Hoggar, and reconnoitring of particular indications; - general exploration in the equatorial forest of French Guyana; - detailed study of a sign of uraniferous occurrences and its surroundings in the equatorial zone (Mounana deposit near Franceville (Gabon)). (author)

  11. Chemical characterization of the quality of water in a dam under the influence of uranium mining, ore treatment unit, Caldas, Minas Gerais, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Thiago A. Vilas Boas; Azevedo, Heliana de; Ferrari, Carla R., E-mail: hazevedo@cnen.gov.br [Comissao Nacional de Energia Nuclear (LAPOC/CNEN), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas

    2011-07-01

    The Brazilian Nuclear Industries Ore Treatment Unit (UTM/INB), located in the plateau region of Pocos de Caldas - MG, is the first uranium extraction mine to have its deposits explored in Brazil. The Represa das Antas (RA) receives treated acidic effluents from waste rock dumps, originated from acid mine drainage from UTM/INB. At RA's downstream, the Represa Bortolan (RB) - focus of this study - can be located. The dam is characterized by the receiving of domestic and industrial residue discharges, in addition to the RA waters. Within this context, the purpose of the study is to evaluate if the release of the effluents treated by UTM/INB has influence over the chemical quality of the water at RB. Water samplings were carried out at RB in three different periods of the day (9am, 12pm and 4pm), during three consecutive days, on the surface, through and in the bottom of the water column. The evaluated chemical variables were: zinc (Zn), manganese (Mn), fluoride (F{sup -}), molybdenum (Mo), sulfate (SO{sub 4}{sup 2-}), uranium (U), thorium (Th), pH, dissolved oxygen, total phosphorus and total nitrogen. The results indicated that elevated Mn concentrations - above limits established by current legislation in Brazil - can be related to the treated effluent released by UTM/INB, since the metal Mn is one of the chemical components of the effluent in natura. Regarding the other chemical components (F{sup -}, Zn, Mo, SO{sub 4}{sup 2-}, U and Th), related to the acidic effluent's composition as well, their recorded values were found to be within the limits established by current legislation. (author)

  12. Analysis of the tectonic stress field in the Xiangshan uranium ore field,Linchuan area,Jiangxi China%江西临川地区相山铀矿田构造应力场分析

    Institute of Scientific and Technical Information of China (English)

    陈正乐; 喻建发; 杨农; 王平安; 宫红良; 韩凤彬; 周永贵; 邵飞; 唐湘生; 徐金山

    2011-01-01

    相山铀矿田是中国最大的、与火成岩有关的中低温热液型矿床,断裂构造控矿特征明显.目前该矿床的后备资源出现危机,因此开展矿田构造研究,为深部及其外围找矿提供科学指导迫在眉睫.在野外观测分析和节理、擦痕实地测量的基础上,利用构造解析法、共轭剪节理分析法、断层擦痕反演模拟法及X光岩组法等,通过吴氏网投图分析和计算机的反演计算,确定了相山铀矿田多期次构造活动的变形特征及其主应力方向;并根据构造变形叠加关系及其成岩时代的确定,推断了应力作用的期次和时代.为此,将相山铀矿田的构造应力场划分为3期6个阶段,包括:成矿前的基底变形和早期火山活动阶段,早期矿化蚀变和第一、第二主成矿阶段,及其成矿期后阶段,矿体局部被错断;并深入分析了不同阶段构造活动及其铀成矿特征,探讨了区域构造应力场的演变与铀成矿作用关系,认为两者具有一致性特征,进而指出了区域富大矿体产出的有利构造部住.%The Xiangshan uranium ore-field is the largest volcanic-related meso-epithermal deposit in China and the uranium-mineralization is tightly controlled by fault activities. As exploited and doveloped for many years, the ore-reserve resource of the deposit is in current crisis, although the potential reservoir is probably great. Therefore, the study in ore-field structures is imminent to provide scientific guidance for ore-prospecting in the deep and surrounding areas. This paper mainly presents field measurement results ofjoints and fault scratches to identify features of tectonic activities and the principal stress direction, using traditional and modern methods in tectonic stress field research. Stages and times of the tectonic stress field are also determined based on successively superimposed deformation relations and diagenesis ages of volcanic rocks. The result showed that the tectonic

  13. Working and benefit project by the in-situ leaching of the copper-uranium ore of the deposit named Luz del Cobre, in the municipality of Soyopa, state of Sonora, Mexico

    International Nuclear Information System (INIS)

    This research was carried out with the object to recover the existing uranium in the copper-uranium deposit of Luz del Cobre located at 1300 Kms. approximately of the NW of Mexico City in the state of Sonora this deposit is geologically formed by a partially mineralized chimney which contains 572,732 tons of uranium ore with an average of 362.26g. of U3O8 per ton, which represents 207,374 tons of U3O8 in situ. To recover the uranium from this deposit, the only technical and economical possibility which presents a real interest is the system of leaching in situ. This operation will consist in the selective dissolution of the copper and uranium through leaching solution with a pH varying from 2.2 to 2.5, leaving the gangue on the ground and collecting the enriched solutions at the lower level of the mine, precipitating the copper subsequently through scrap iron and recovering the uranium from the tails of the copper precipitation plant through an ionic interchange process in counter current and its subsequent elution solvent extraction, reextraction and precipitation. This system makes possible to recover an uranium concentrate up to 98% of U3O8 and practically free from impurities. The production cost would cost exceeding $300.00 Mexican currency per Kg of U3O8. (author)

  14. 相山矿田铀矿地质研究进展与趋势%Progress and trend in the research on uranium geology in Xiangshan ore field

    Institute of Scientific and Technical Information of China (English)

    张万良

    2012-01-01

    相山铀矿是华南最大的产于火山一侵入杂岩体中的热液脉型铀矿田。文章对相山铀矿地质研究的历史进行了简略回顾,重点阐述了铀矿地质研究的新进展,主要有:火山杂岩时代为早白垩世、火山岩浆具有反方向演化特点,成矿作用是一个相对连续的演化过程,铀矿类型归属斑岩型,属于与燕山晚期火山一斑岩作用有关的铀或铀一多金属矿床成矿系列。最后,文章展望了未来的研究方向。%Xiangshan ore field occurred in volcanic-intrusive complex body is the largest nyaromerinnl wein type uranium deposit in south China. This paper briefly reviews the history of geological research on Xiangshan uranium ore field' and mainly focuses on the new progress in the research on the uranium geology as fol- lows: the age of volcanic complex is confirmed as early Cretaceous, the magma of volcanic rocks is charac- terized by a reversal evolution, the mineralization shows a relatively continuous evolution process, the uranium deposit belongs to a porphyry type that can be classified into the uranium or uranium-polymetallogenic series related with the late Yanshanian volcano-porphyry. Finally, the future research trend is precllotocl_

  15. Behaviour of the pH adjustment, Ion exchange and concentrate precipitation stages in the acid leaching of uranium phosphate ores; Tratamiento de disoluciones de lixiviacion de minerales de uranio en presencia de fosfatos. Comportamiento en las etapas de ajuste de PH, cambio de ion y precipitacion de concentrados

    Energy Technology Data Exchange (ETDEWEB)

    Estrada Aguilar, J.; Uriarte Hueda, A.

    1962-07-01

    The uranium recovery from acid leach solutions of uranium-phosphate ores has been studied. Relations have been found between the solution characteristics and the results obtained at different stages of the process. The following data can thus be predicted: solids to remove and uranium recovery in the pH adjustment stage, uranium capacity of the resin, more suitable eluating agent, elution velocity and uranium concentration in the eluate in the ion exchange stage, and composition of the concentrate produced by direct precipitation of the eluate in the concentrate precipitation stage. (Author) 8 refs.

  16. The radon 222 transport in soils. The case of the storage of residues coming from uranium ores processing

    International Nuclear Information System (INIS)

    Uranium Mill Tailings (UMT) contain comparatively large quantities of radium-226. This radionuclide yields, by radioactive decay, the radioactive gas radon-222. Tailing piles are routinely covered to reduce the radon release-rate into the atmosphere. In order to assess the long term environmental impact of a UMT repository, mechanisms governing radon exhalation at the soil surface must be deciphered and understood. A model of radon transport in the unsaturated zone is developed for this purpose: water- and air-flow in the porous material are determined, as well as radon transport by diffusion in the pore space and advection by the gas phase. The radon transport model in the unsaturated zone - TRACI (which stands, in French, for Radon Transport within the Unsaturated Layer) - calculates moisture contents in the soil, Darcy's velocities of the liquid and gas phases, radon concentrations in the gas phase and radon flux at the soil surface. TRACI's results are compared with observations carried out on a UMT and a cover layer. Input parameters are derived from the textural analysis of the material under study, whereas upper boundary conditions are given by meteorological data. If we consider measurement errors and uncertainties on the porous medium characterisation, model's results are generally in good agreement with observations, at least on the long run. Moreover, data analysis shows hat transient phenomena are understood as well, in most situations. (author)

  17. Sedimentary rocks Uranium in Cerro Largo Province

    International Nuclear Information System (INIS)

    With the aim of the uranium minerals exploration has been carried out several studies by UTE technicians in Cerro Largo Province from 1968 to 1969. In uranium concentration has been found pyrite, phosphate, iron oxides and manganese in uranium. Furthermore in La Divisa Ore were studied concentration Uranium enrichment has been studied in La Divisa ore

  18. Assessment of alternatives for long-term management of uranium ore residues and contaminated soils located at DOE's Niagara Falls Storage Site

    Energy Technology Data Exchange (ETDEWEB)

    Merry-Libby, P.

    1984-11-05

    About 11,000 m/sup 3/ of uranium ore residues and 180,000 m/sup 3/ of wastes (mostly slightly contaminated soils) are consolidated within a diked containment area at the Niagara Falls Storage Site (NFSS) located about 30 km north of Buffalo, NY. The residues account for less than 6% of the total volume of contaminated materials but almost 99% of the radioactivty. The average /sup 226/Ra concentration in the residues is 67,000 pCi/g. Several alternatives for long-term management of the wastes and residues are being considered, including: improvement of the containment at NFSS, modification of the form of the residues, management of the residues separately from the wastes, management of the wastes and residues at another humid site (Oak Ridge, TN) or arid site (Hanford, WA), and dispersal of the wastes in the ocean. Potential radiological risks are expected to be smaller than the nonradiological risks of occupational and transportation-related injuries and deaths. Dispersal of the slightly contaminated wastes in the ocean is not expected to result in any significant impacts on the ocean environment or pose any significant radiological risk to humans. It will be necessary to take perpetual care of the near-surface burial sites because the residues and wastes will remain hazardous for thousands of years. If controls cease, the radioactive materials will eventually be dispersed in the environment. Predicted loss of the earthen covers over the buried materials ranges from several hundred to more than two million years, depending primarily on the use of the land surface. Groundwater will eventually be contaminated in all alternatives; however, the groundwater pathway is relatively insignificant with respect to radiological risks to the general population. A person intruding into the residues would incur an extremely high radiation dose.

  19. Assessment of alternatives for long-term management of uranium ore residues and contaminated soils located at DOE's Niagara Falls Storage Site

    International Nuclear Information System (INIS)

    About 11,000 m3 of uranium ore residues and 180,000 m3 of wastes (mostly slightly contaminated soils) are consolidated within a diked containment area at the Niagara Falls Storage Site (NFSS) located about 30 km north of Buffalo, NY. The residues account for less than 6% of the total volume of contaminated materials but almost 99% of the radioactivty. The average 226Ra concentration in the residues is 67,000 pCi/g. Several alternatives for long-term management of the wastes and residues are being considered, including: improvement of the containment at NFSS, modification of the form of the residues, management of the residues separately from the wastes, management of the wastes and residues at another humid site (Oak Ridge, TN) or arid site (Hanford, WA), and dispersal of the wastes in the ocean. Potential radiological risks are expected to be smaller than the nonradiological risks of occupational and transportation-related injuries and deaths. Dispersal of the slightly contaminated wastes in the ocean is not expected to result in any significant impacts on the ocean environment or pose any significant radiological risk to humans. It will be necessary to take perpetual care of the near-surface burial sites because the residues and wastes will remain hazardous for thousands of years. If controls cease, the radioactive materials will eventually be dispersed in the environment. Predicted loss of the earthen covers over the buried materials ranges from several hundred to more than two million years, depending primarily on the use of the land surface. Groundwater will eventually be contaminated in all alternatives; however, the groundwater pathway is relatively insignificant with respect to radiological risks to the general population. A person intruding into the residues would incur an extremely high radiation dose

  20. Temporal variability of radon in a remediated tailing of uranium ore processing – the case of Urgeiriça (central Portugal)

    International Nuclear Information System (INIS)

    Radon monitoring at different levels of the cover of the Urgeiriça tailings shows that the sealing is effective and performing as desired in terms of containing the strongly radioactive waste resulting from uranium ore processing. However, the analysis of the time series of radon concentration shows a very complex temporal structure, particularly at depth, including very large and fast variations from a few tens of kBq m−3 to more than a million kBq m−3 in less than one day. The diurnal variability is strongly asymmetric, peaking at 18 h/19 h and decreasing very fast around 21 h/22 h. The analysis is performed for summer and for a period with no rain in order to avoid the potential influence of precipitation and related environmental conditions on the radon variability. Analysis of ancillary measurements of temperature, relative humidity, wind speed and wind direction, as well as atmospheric pressure reanalysis data shows that the daily averaged radon concentration in the taillings material is anti-correlated with the atmospheric pressure and that the diurnal amplitude is associated with the magnitude of atmospheric pressure daily oscillations. - Highlights: • The temporal variability of radon at the Urgeiriça tailing is examined. • The cover of the tailing is effective in containing the strongly radioactive waste. • Radon concentration varies with depth and exhibits very large sub-daily variations. • The daily variability is strongly asymmetric and non-stationary. • Apparent influence of atmospheric pressure on radon concentration patterns

  1. Processing of lateritic ores

    International Nuclear Information System (INIS)

    Highly weathered or lateritic ores that contain high proportions of fine clay minerals present specific problems when they are processed to extract uranium. Of perhaps the greatest significance is the potential of the fine minerals to adsorb dissolved uranium (preg-robbing) from leach liquors produced by processing laterites or blends of laterite and primary ores. These losses can amount to 25% of the readily soluble uranium. The clay components can also restrict practical slurry densities to relatively low values in order to avoid rheology problems in pumping and agitation. The fine fractions also contribute to relatively poor solid-liquid separation characteristics in settling and/or filtration. Studies at ANSTO have characterised the minerals believed to be responsible for these problems and quantified the effects of the fines in these types of ores. Processing strategies were also examined, including roasting, resin-in-leach and separate leaching of the laterite fines to overcome potential problems. The incorporation of the preferred treatment option into an existing mill circuit is discussed. (author)

  2. Development of an extractive spectrophotometric method for estimation of uranium in ore leach solutions using 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) mixture as extractant and 2-(5-bromo-2-pyridylozo)-5-diethyl aminophenol (Br-PADAP) as chromophore.

    Science.gov (United States)

    Biswas, Sujoy; Pathak, P N; Roy, S B

    2012-06-01

    An extractive spectrophotometric analytical method has been developed for the determination of uranium in ore leach solution. This technique is based on the selective extraction of uranium from multielement system using a synergistic mixture of 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) in cyclohexane and color development from the organic phase aliquot using 2-(5-Bromo-2-pyridylazo)-5-diethyl aminophenol (Br-PADAP) as chromogenic reagent. The absorption maximum (λ(max)) for UO(2)(2+)-Br-PADAP complex in organic phase samples, in 64% (v/v) ethanol containing buffer solution (pH 7.8) and 1,2-cyclohexylenedinitrilotetraacetic acid (CyDTA) complexing agent, has been found to be at 576 nm (molar extinction coefficient, ɛ: 36,750 ± 240 L mol(-1)cm(-1)). Effects of various parameters like stability of complex, ethanol volume, ore matrix, interfering ions etc. on the determination of uranium have also been evaluated. Absorbance measurements as a function of time showed that colored complex is stable up to > 24h. Presence of increased amount of ethanol in colored solution suppresses the absorption of a standard UO(2)(2+)-Br-PADAP solution. Analyses of synthetic standard as well as ore leach a solution show that for 10 determination relative standard deviation (RSD) is uranium using standard addition method and was found to be accurate with a 98-105% recovery rate. The developed method has been applied for the analysis of a number of uranium samples generated from uranium ore leach solutions and results were compared with standard methods like inductively coupled plasma emission spectrometry (ICPAES). The determined values of uranium concentrations by these methods are within ± 2%. This method can be used to determine 2.5-250 μg mL(-1) uranium in ore leach solutions with high accuracy and precision. PMID:22381794

  3. 氧化还原障在热液铀矿成矿中的作用%The Role of Oxidizing Reducing Barrier in Mineralization of Hydrothermal Uranium Ore

    Institute of Scientific and Technical Information of China (English)

    李延河; 段超; 赵悦; 裴浩翔; 任顺利

    2016-01-01

    铀是变价元素,氧化还原条件控制铀的迁移和沉淀。铀在氧化环境中呈 U6+形式存在,在还原条件下则以 U4+形式存在。氧化态六价铀主要以可溶的碳酸铀酰/氟化铀酰络合物形式在水溶液中迁移,还原态四价铀主要以沥青铀矿和铀石等形式富集沉淀成矿。热液铀矿的形成需要一对空间上密切共生的氧化障/氧化剂和还原障/还原剂,二者缺一不可。首先,氧化障中氧化剂将富铀岩石中的铀大量氧化形成 U6+,溶解进入水溶液迁移;第二,高氧化性富铀溶液遇到还原障,U6+还原成 U4+沉淀下来,富集形成铀矿。前人虽然对铀的地球化学性质及氧化还原反应在铀成矿中作用已比较了解,但如何在实际铀矿成矿系统中准确识别氧化还原障,有效利用氧化还原障的控矿机理指导找矿,还存在一些模糊认识,制约了铀成矿理论的发展和找矿方法的提升。本文以我国最重要的砂岩型铀矿、火山岩型铀矿、花岗岩型铀矿和变质型铀矿为例,总结了与铀矿化有关的氧化还原障的主要类型,探讨了红层等蒸发盐地层(氧化障),有机质、煌斑岩等中基性岩脉(还原障)与铀矿之间的关系及控矿机制,揭示了成矿盆地中铀-煤、铀-气(油)共生的机制,阐明了翁泉沟硼、铁、铀矿共生原因,建立了不同类型铀矿成矿模型。%Uranium is a volatile element,and the redox conditions control the migration and precipitation of uranium.In the oxidation environment,uranium is in the form of U6 + ,and in the form of U4+ in reduction condition.The oxidation state of six valence uranium is mainly in soluble uranyl carbonate / uranyl fluoride complexes form,in aqueous solution migration,and the reductive tetravalent uranium is mainly enriched and precipitated in the form of pitchblende and coffinite in the ore-forming.The formation of

  4. Uranium and thorium

    International Nuclear Information System (INIS)

    Present article is devoted to uranium and thorium content in fluorite. In order to obtain the comprehensive view on uranium and thorium distribution in fluorite 100 fluorite samples of various geologic deposits and ores of Kazakhstan, Uzbekistan, Tajikistan and some geologic deposits of Russia were studied. The uranium and thorium content in fluorite of geologic deposits of various mineralogical and genetic type was defined.

  5. Uranium mining and milling

    International Nuclear Information System (INIS)

    In this report uranium mining and milling are reviewed. The fuel cycle, different types of uranium geological deposits, blending of ores, open cast and underground mining, the mining cost and radiation protection in mines are treated in the first part of this report. In the second part, the milling of uranium ores is treated, including process technology, acid and alkaline leaching, process design for physical and chemical treatment of the ores, and the cost. Each chapter is clarified by added figures, diagrams, tables, and flowsheets. (HK)

  6. Method for determining microamounts of uranium in solutions from copper ores, by liquid-liquid extraction and spectrophotometry with arsenazo III.; Metodo para determinar microcantidades de uranio en disoluciones de minerales de cobre, por extraccion liquido-liquido y espectrofotometria con arsenazo III

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, B.

    1972-07-01

    A spectrophotometric method is described for determining small amounts of uranium in aqueous solutions from copper ores. Uranium is quantitatively separated in a single extraction by a solution of tri-n-octylphosphine oxide in benzene, using ethylendiaminetetracetic acid and sodium fluoride as complexing agents, for improving the selectivity of the procedure. An aliquot of the extract is diluted with a hydrocolloidal solution of arsenazo III. Optical density is measured at 650 nm. (Author) 3 refs.

  7. Geochemistry and ore prospecting

    International Nuclear Information System (INIS)

    Applied geochemistry is a new technique which helps the geologist in detecting ore deposits. Some deposits, even when they are covered with rather thick surface structures, form around these zones where the infinitesimal content of some elements of soils or waters is notably different. These 'anomalies' may be contemporaneous to the deposit-structure (primary dispersion) or may have occurred later (secondary dispersion). Various factors rule these anomalies: ore-stability, soil homogeneity, water conditions, topography, vegetation, etc... Applied geochemistry is in fact the study of analysis techniques of metal traces in soils as well as the geological interpretation of observed anomalies. This report gives practical data on sampling methods, yields, costs and also on special problems of uranium geochemistry. (author)

  8. Application of GIS multi-source information covariance analytic algebraic method to estimation and evaluation of uranium ore-formation. A case from Jiangzha region in Sichuan province

    International Nuclear Information System (INIS)

    Estimation and evaluation of uranium resources in Jiangzha region, Sichuan Province are carried out through GIS multi-sources information covariance analytic algebraic method, and two class I prospective areas, one class II prospective area and one class III prospective area are identified finally. The result shows that this method is credible, and can be applied to the whole Nuoergai uranium orefield. (authors)

  9. Decree No. 78/84 of 5 September 1984 regulating safety and radiological protection in mines and related ore treatment and uranium recovery

    International Nuclear Information System (INIS)

    This Decree was issued in pursuance of Decree-Law No. 426/83 of 7 December 1983 which provides that safety and radiological protection regulations shall be made for activities involving the mining of uranium and related treatment of uranium. It lays down definitions of technical radiation protection terms and sets out the requirements for permissible concentrations and internal and sets out the requirements for permissible concentrations and internal and external dose-limits for workers and members of the public. The Decree also sets up a Radiological Protection Service responsible for ensuring that the provisions of the Decree are observed. (NEA)

  10. Factors influencing leaching of uranium ore by organic acids from Aspergillus niger%黑曲霉产有机酸浸出铀矿石的影响因素

    Institute of Scientific and Technical Information of China (English)

    王永东; 李广悦; 丁德馨; 胡南; 邓钦文; 周支香

    2012-01-01

    Leaching uranium ores by fungi is a promising new bioleaching approach, and organic acids play key roles. However, little is known about the relationships between uranium leaching rate and organic acids produced by fungi. To explore the effects of medium types, culture temperature and pH value on uranium leaching by organic acids from Aspergillus niger, a strain of them was separated and purified from some water samples from a uranium mine. PSA and PCS medium were used for culture of Aspergillus niger, and mixed organic acids with different pH value produced by Aspergillus niger at diverse culture temperature were obtained and applied to tests of uranium leaching. The results show that leaching rate of uranium has statistically significant difference for these organic acids produced at different conditions, because there are different ingredients in these organic acids. All factors including of medium type, culture temperature and pH could influence composition and quantity of mixed organic acids. When Aspergillus niger was cultured in different medium, the composition of mixed organic acids is different, mainly oxalic acid and citric acid, and uranium leaching rates also different. Uranium leaching is better for the products obtained in PSA medium than in PCS one no matter different pH and culture temperature (p<0. 05). For same medium, due to difference in pH value culture temperature uranium leaching rate is also different (p<0.05). For example, for PSA the best culture temperature and pH value are 25℃ and 2.3 respectively, and mean uranium leaching rate were 76.14% and 82.40% at these conditions. While for PCS, the best conditions were 30℃ and 2.0, and the mean uranium leaching rate were 56.60% and 67.91%, respectively. The results also show that there are interaction effects between culture temperature and pH value of mixed organic acids (p<0. 05). Main factor influencing uranium leaching rate is pH value, and the second their interaction effects. Culture

  11. Treatment of Mo-U ore of Pocos de Caldas (Minas Gerais, Brazil)

    International Nuclear Information System (INIS)

    Molybdenum-uranium ore compositions of surface material and deep material of Campo do Agostinho (MG, Brazil) are shown. Molybdenum extraction by natural leaching and by chemical leaching is considered as well as uranium extraction and its recovery

  12. Radioactivity and the French uranium bearing minerals; La radioactivite et les mineraux uraniferes francais

    Energy Technology Data Exchange (ETDEWEB)

    Guiollard, P.Ch.; Boisson, J.M.; Leydet, J.C. [Association Francaise de Micromineralogie, 13 - Carry le Rouet (France); Meisser, N. [Universite BFSH, Musee Geologique, Lausanne (Switzerland)

    1998-07-01

    This special issue of Regne Mineral journal is entirely devoted to the French uranium mining industry. It comprises 4 parts dealing with: the uranium mining industry in France (history, uranium rush, deposits, geologic setting, prosperity and recession, situation in 1998, ore processing); radioactivity and the uranium and its descendants (discovery, first French uranium bearing ores, discovery of radioactivity, radium and other uranium descendants, radium mines, uranium mines, atoms, elements and isotopes, uranium genesis, uranium decay, isotopes in an uranium ore, spontaneous fission, selective migration of radionuclides, radon in mines and houses, radioactivity units, radioprotection standards, new standards and controversies, natural and artificial radioactivity, hazards linked with the handling and collecting of uranium ores, conformability with radioprotection standards, radioactivity of natural uranium minerals); the French uranium bearing minerals (composition, crystal structure, reference, etymology, fluorescence). (J.S.)

  13. In situ leaching of uranium

    International Nuclear Information System (INIS)

    A process is described for the in-situ leaching of uranium-containing ores employing an acidic leach liquor containing peroxymonosulphuric acid. Preferably, additionally, sulphuric acid is present in the leach liquor. (author)

  14. The Espinharas uranium occurrence, Brazil

    International Nuclear Information System (INIS)

    Nuclam has been exploring for uranium in Brazil since 1976. During this period one uranium ore body has been found in the vicinity of Espinharas, a village in Paraiba State, northeast Brazil. According to present knowledge, the mineralized ore body is caused by metasomatic action. The history of discovery and the exploration work until the end of 1979 is given, showing the conceptual change with increasing knowledge of the mineralized zone. (author)

  15. Kvanefjeld uranium project

    International Nuclear Information System (INIS)

    The draft uranium project ''Kvanefjeld'' describes the establishment and operation of an industrial plant for exploiting the uranium deposit at Kvanefjeld. The draft project is part of the overall pre-feasibility project and is based on its results. The draft project includes two alternative locations for the processing plant and the tailings deposit plant. The ore reserve is estimated at 56 million tons with an average content of 365 PPM. The mine will be established as an open pit, with a slope angle of 55deg. Conventional techniques are used in drilling, blasting and handling the ore. Waste rock with no uranium content will be disposed of in two ponds near the mine. The waste rock volume is estimated at 80 million tons. A processing plant for extracting uranium from the ore will be established. The technical layout of the plant is based on the extraction experiments performed at Risoe from 1981-83. Yearly capacity is 4.2 million tons of ore. Electrical energy will be supplied from a hydroelectric station to be built at Johan Dahl Land. Thermal energy (steam/heat) will be supplied from a coal-fired district heating plant to be built in connection with the processing plant. Expected power consumption is estimated at 225 GWh/year. Heat consumption is of the same order. In the third year the plant is expected to operate at full capacity. Operating costs will be Dkr. 121/ton of ore from years 1 through 7. Consumption of chemicals will be reduced from the 7th year, and operating costs will consequently drop to Dkr. 115/ton of ore. Calculations show that industrial extraction of the uranium deposit in Kvanefjeld is economically advantageous. In addition, the economy of the project is expected to improve by extracting byproducts from the ore. (EG)

  16. Relationship between reducing medium in Zaohouhao uranium deposits and uranium mineralization

    International Nuclear Information System (INIS)

    In general, sandstone-type uranium deposits Rich by in the U6+ groundwater in sandstone migration to the edge of the interlayer oxidation zone in reductive effect or adsorption, the modes of action and become, to precipitate enrichment of uranium content and adsorption uranium form existence, the uranium mineralization of Zaohuohao uranium deposits and the reducing medium of lower member of Zhiluo Formation in Saul closely. Its uranium ore-forming process can be divided into basically ore-hosted strata, the ancient sedimentary pre enrichment stage of the interlayer oxidation effect metallogenic phase, the mineral phases later reductive effect, reducing medium in uranium mineralization in the three stages plays an important role in the deposit features, rock geochemistry environment and ore-controlling factors have strong particularity, fellow by the formation of the reductive effect as uranium deposits celadon sandstone rock geochemistry exploration marks. (author)

  17. Biotechnology for uranium extraction and environmental control

    International Nuclear Information System (INIS)

    India is looking forward to augmenting mining and extraction of uranium mineral for its nuclear energy needs. Being a radio-active mineral, mining and processing of uranium ore deposits need be carried out in an environmentally acceptable fashion. In this respect, a biotechnological approach holds great promise since it is environment-friendly, cost-effective and energy-efficient. There are several types of microorganisms which inhabit uranium ore bodies and biogenesis plays an important role in the mineralisation and transport of uranium-bearing minerals under the earth's crust. Uranium occurrences in India are only meagre and it becomes essential to tap effectively all the available resources. Uraninite and pitchblende occurring along with sulfide mineralisation such as pyrite are ideal candidates for bioleaching. Acidithiobacillus ferrooxidans present ubiquitously in the ore deposits can be isolated, cultured and utilised to bring about efficient acidic dissolution of uranium. Many such commercial attempts to extract uranium from even lean ores using acidophilic autotrophic bacteria have been made in different parts of the world. Anaerobes such a Geobacter and Sulfate Reducing Bacteria (SRB) can be effectively used in uranium mining for environmental control. Radioactive uranium mined wastes and tailing dumps can be cleaned and protected using microorganisms. In this lecture use of biotechnology in uranium extraction and bioremediation is illustrated with practical examples. Applicability of environment-friendly biotechnology for mining and extraction of uranium from Indian deposits is outlined. Commercial potentials for bioremediation in uranium-containing wastes are emphasised. (author)

  18. Uranium tailings bibliography

    International Nuclear Information System (INIS)

    A bibliography containing 1,212 references is presented with its focus on the general problem of reducing human exposure to the radionuclides contained in the tailings from the milling of uranium ore. The references are divided into seven broad categories: uranium tailings pile (problems and perspectives), standards and philosophy, etiology of radiation effects, internal dosimetry and metabolism, environmental transport, background sources of tailings radionuclides, and large-area decontamination

  19. 高纯锗(HPGe)γ谱仪测定铀矿石中镭的方法研究%The Experiment Study on the Radium Measurment in Uranium ore with High Purity Germanium(HPGe) γSpectrometer

    Institute of Scientific and Technical Information of China (English)

    薛志伟; 高明明; 乔宁强; 王强; 朱晓贤

    2014-01-01

    为了改善由样品密度不同、厚度不同引起的测量误差,笔者采用压片法制样,然后密封于样品盒达到平衡,通过152 Eu对外界的电磁干扰进行内标校正,在高纯锗( HPGe)γ谱仪上测定铀矿石中镭的含量。测定结果的相对标准偏差( RSD/%)为2.43%,与射气法结果进行比较,相对误差在-5.31%~6.62%之间,方法的精密度和准确度均能满足实际生产需求,可操作性强,简便快速。%In order to reduce the measurement error caused by different sample thickness and density , the author uses compression method to get detection sample .The sample is sealed in a sample box to achieve balance , then we measure the radium content of uranium ore by using High purity germanium (HPGe) γspectrometer. The result is corrected by 152 Eu to avoid the electromagnetic disturbances .The relative standard deviation ( RSD%) of the determination results is 2.43%.Comparing with the emanation method results , the relative error are between -5.31%~6.62%.The method is able to meet the demands due to its advantages of easy operation and rapidness , the high precision and accuracy .

  20. OXYGEN ISOTOPE FRACTION ATION IN URANIUM OXIDES

    Institute of Scientific and Technical Information of China (English)

    郑永飞

    1995-01-01

    Thermodynamic oxygen isotope factors for uranium oxides have been calculated by means of the modified increment method.The sequence of 18O-enrichment in the uranium oxides with respect to the common rock-forming minerals is predicted as follows:spineluranium blacks≤coffiniteuranium oxides and water and between the uranium oxides and the other minerals have been obtained for 0-1200℃.The theoretical results are applicable to the isotopic geothermometry of uranium ores when pairing with other gangue minerals in hydrothermal uranium deposits.

  1. Thirty years of ore processing in Spain

    International Nuclear Information System (INIS)

    Spain's experience with the processing of uranium ores covers pegmatitic ores, vein-type deposits, sandstone ores, enrichments in metamorphic sediments, radioactive coals and nonconventional sources such as phosphoric acid and copper waters. Studies have also been conducted for the treatment of very poor ores, such as palaeozoic quartzites. The recovery of by-products (copper) is included in this experience. The technologies employed range from physical concentration, combustion and calcination to conventional treatment with acids and alkalis and leaching under pressure, static leaching and bacterial leaching. Special attention has been devoted to the recovery of uranium from liquids and the development of equipment for this purpose (especially for solvent extraction and continuous ion-exchange techniques). This activity has not been limited to conventional-size plants of 500-3000t/d. Interest in the development of small or remote mines has led to the creation of transportable and re-usable modular plants. Reducing the environmental impact is another aspect of interest. The purification of uranium concentrates and the manufacture of products of nuclear purity, both by wet (nitric acid - TBP) and by dry processes (fluidized beds), is another field in which Spain has made progress. The experience acquired in these 30 years of research and industrial practice and the innovative projets set up for the future could well serve as a good basis for other medium-sized countries wishing to establish a uranium industry. A description of the Spanish experience, indicating what is worth pursuing and what should be avoided, may help new countries to join the circle of uranium producers. (author)

  2. The radon 222 transport in soils. The case of the storage of residues coming from uranium ores processing; La migration du radon 222 dans un sol. Application aux stockages de residus issus du traitement des minerais d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, C

    2000-07-01

    Uranium Mill Tailings (UMT) contain comparatively large quantities of radium-226. This radionuclide yields, by radioactive decay, the radioactive gas radon-222. Tailing piles are routinely covered to reduce the radon release-rate into the atmosphere. In order to assess the long term environmental impact of a UMT repository, mechanisms governing radon exhalation at the soil surface must be deciphered and understood. A model of radon transport in the unsaturated zone is developed for this purpose: water- and air-flow in the porous material are determined, as well as radon transport by diffusion in the pore space and advection by the gas phase. The radon transport model in the unsaturated zone - TRACI (which stands, in French, for Radon Transport within the Unsaturated Layer) - calculates moisture contents in the soil, Darcy's velocities of the liquid and gas phases, radon concentrations in the gas phase and radon flux at the soil surface. TRACI's results are compared with observations carried out on a UMT and a cover layer. Input parameters are derived from the textural analysis of the material under study, whereas upper boundary conditions are given by meteorological data. If we consider measurement errors and uncertainties on the porous medium characterisation, model's results are generally in good agreement with observations, at least on the long run. Moreover, data analysis shows hat transient phenomena are understood as well, in most situations. (author)

  3. Uranium production from imported raw material at Sillamaee in 1949-1989

    International Nuclear Information System (INIS)

    Ores, ore concentrates and chemical concentrates imported mainly from Czechoslovakia and German Democratic Republic were processed at Sillamaee plant in the years 1949-1989. The paper describes the development of uranium extraction and the equipment used. (author)

  4. Uranium extraction technology

    International Nuclear Information System (INIS)

    In 1983 the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA) and the IAEA jointly published a book on Uranium Extraction Technology. A primary objective of this report was to document the significant technological developments that took place during the 1970s. The purpose of this present publication is to update and expand the original book. It includes background information about the principle of the unit operations used in uranium ore processing and summarizes the current state of the art. The publication also seeks to preserve the technology and the operating 'know-how' developed over the past ten years. This publication is one of a series of Technical Reports on uranium ore processing that have been prepared by the Division of Nuclear Fuel Cycle and Waste Management at the IAEA. A complete list of these reports is included as an addendum. Refs, figs and tabs

  5. Cenozoic Tectonic Evolution and its Influence on Uranium Ore-forming Processes in the Xiazhuang Ore Field, Northern Guangdong Province%粤北下庄矿田新生代构造演化及其对铀成矿的影响

    Institute of Scientific and Technical Information of China (English)

    王军; 赖中信; 张辉仁; 汤世凯; 杨坤光

    2011-01-01

    The Nanling area in northern Guangdong Province is important for its granitic uranium deposits. The characteristics of the structures and ESR ages of the hydrothermal quartz show that the ore field underwent three stages of structural deformation in Cenozoic; (65. 5 -55. Oma) differential uplifting of land mass and colossal faults movements; Ⅱ (40.3 The Earth is a dynamic system in which rocks deform under various physical and chemical conditions. A continuous improvement of the related testing and analysis techniques during the past decades has enabled the rheology of the Earth materials to be studied successfully in the laboratory and made important advances in the interpretation of natural deformation and structure in the crust and upper mantle. The goal of this paper is to provide a succinct overview on technical developments of experimental rock deformation equipment with a particular focus on the Paterson High-Pressure High-Temperature Testing System ( HPT). The HPT is an internally-heated gas-confining medium high temperature (up to~1500℃ ) and high pressure (up to 700MPa) triaxial deformation apparatus. Unlike the solidmedium Criggs apparatus, the HPT can measure temperature, confine pressure, differential stress and strain with great accuracy and precision so that high quality mechanical data can be obtained. The HPT allows various types of tests to be carried out in compression, extension and torsion: constant strain rate, creep (constant stress), relaxation, etc. , depending on the capabilities of the actuator system fitted. Using the pore fluid system equipped with the apparatus, one can also automatically control the pore fluid pressure and measure the volume of pore fluid entering or leaving the specimen, and subsequently the volume change of the specimen during an experimental deformation. The apparatus is regarded as the most powerful testing tool in the research of mechanical behavior and physical properties of minerals and rocks. This paper

  6. Uranium deposit research, 1983

    International Nuclear Information System (INIS)

    Research on uranium deposits in Canada, conducted as a prerequisite for assessment of the Estimated Additional Resources of uranium, revealed that (a) the uranium-gold association in rudites of the Huronian Supergroup preferably occurs in the carbon layers; (b) chloritized ore at the Panel mine, Elliot Lake, Ontario, occurs locally in tectonically disturbed areas in the vicinity of diabase dykes; (c) mineralization in the Black Sturgeon Lake area, Ontario, formed from solutions in structural and lithological traps; (d) the Cigar Lake deposit, Saskatchewan, has two phases of mineralization: monomineralic and polymetallic; (e) mineralization of the JEB (Canoxy Ltd.) deposit is similar to that at McClean Lake; (f) the uranium-carbon assemblage was identified in the Claude deposit, Carswell Structure; and (g) the Otish Mountains area, Quebec, should be considered as a significant uranium-polymetallic metallogenic province

  7. Some aspects related to the Romanian management on safety and security of uranium mining operation, processing and disposal

    International Nuclear Information System (INIS)

    The Safety and Security as well the radiological consequences during the uranium mining operations, tailings management, uranium processing, transport and disposal of waste in conventional landfill sites are matters of great importance. The Uranium National Company (CNU) from Romania is responsible for all aspects belonging to the management within uranium industry-the uranium ore extraction, transport and processing of uranium ore, concentrates processing, as well as disposal of sterile ore and waste. The paper presents specific problems related to the Safety and Security, the identification and evaluation of potential environmental risks, potential radiological consequences associated with the disposal of sterile and the uranium processing waste. (author)

  8. Kvanefjeld uranium project

    International Nuclear Information System (INIS)

    The purpose of the Kvanefjeld uranium project is to evaluate the possibility of a uranium production from the deposit at Narssaq, South Greenland. The project comprises investigations in the fields of geology, mining, process chemistry and technology, economy and environment protection. The predominant uraniferous rock is a nepheline syenite called lujavrite in which the main uranium mineral is steenstrupine. The deposit can be mined in an open pit. Calculations have shown a resource of 56 million tonnes of ore with an average grade of 365 ppm corresponding to 20,400 tonnes of uranium. The uranium is extracted by a sodium carbonate solution at 260degC in an autoclave. A pilot plant has been established including ball mill, continuous pipe autoclave and a belt filter for separation of leach liquor and residue. The uranium is finally precipitated as UO2 by reduction in an autoclave at 260degC. With the existing ore sample, recoveries of more than 80% have been obtained. The carbonate leaching causes a low solubility of most contaminants in the tailings. A draft project has been prepared for an industrial plant in Greenland. The total investments have been calculated at 3 x 109 Dkr. Electrical energy is assumed to be supplied by a hydropower plant at Johan Dahl Land. The mine and mill are expected to employ 500-600 persons. (author)

  9. Application of inertia cone crushers in Fuzhou uranium mine

    International Nuclear Information System (INIS)

    Inertia cone crusher is a high-efficiency, super-fine crushing equipment with the unique principle and structure. It features high reduction ratio and low power consumption. The final product size can be within the narrow scope. The inertia cone crusher is suitable for crushing uranium ores. The application of the crusher in Fuzhou Uranium Mine is summarized. The result has shown that the inertia cone crusher has good application prospects in percolation leaching circuit of uranium ore. (authors)

  10. Effect of Microorganisms on In Situ Uranium Mining

    OpenAIRE

    Yates, Marylynn V.; Brierley, James A.; Brierley, Corale L.; Follin, Steven

    1983-01-01

    The extraction of some metal values, e.g., uranium or copper, may be accomplished by using solutions to remove metals from ore bodies without practicing conventional mining. This process is referred to as in situ leaching and has been used industrially to recover uranium. The growth of microbial populations during in situ leaching is believed to be one of the causes of flow path plugging in the ore body, which results in decreased uranium production. Leach solution and solid samples from well...

  11. Underground bioleaching: extracting from low-grade ore

    International Nuclear Information System (INIS)

    In 1984, Denison Mines began a research and demonstration project on the engineering aspects of bacterial leaching of low-grade uranium ore at Elliot Lake. The leaching solution was acidic mine water enriched in bacterial nutrients and innoculated with Thiobacillus ferrooxidans. Leaching of one stope was found to be impeded by fungi of the genus penicillium. Although fungal growth on leaching stopes must be prevented, research is proceeding on the potential use of the fungi to concentrate uranium from bioleaching solutions

  12. Entry of Rio Tinto into Iron Ore Development in Western Australia

    OpenAIRE

    Ayumu Sugawara

    2012-01-01

    This paper examines the historical process behind the development of iron ore in the state of Western Australia by the British mining company Rio Tinto from 1959 to 1962. To analyze Rio Tito's iron ore operations, the author applies Michael Porter's 'five forces' concept. In its uranium case, Rio Tinto had strong bargaining powers in relationships with governments as buyers, which were the reasons for its successes. However, in the Western Australian iron ore case this factor did not influenc...

  13. Selective separation of uranium

    International Nuclear Information System (INIS)

    A process for the selective separation of uranium from elements accompanying it in a uranium-containing ore is claimed. It comprises preparing a uranium-containing solution; adding hydrochloric acid in an amount sufficient to form complex anions of the type (UO2Clsub(n))sup(2-n) where n is 3 or 4, or sulfuric acid in an amount sufficient to form complex anions of the type UO2(SO4)sub(m)sup(2-2m) where m is 2 or 3; adding a cationic surface active agent which forms a difficultly soluble precipitate with the complex anion; subjecting the solution to a gas flotation step to produce a foam fraction containing the pecipitate and a liquid fraction; separating the two fractions; and recovering uranium from the foam fraction

  14. Yellow cake to ceramic uranium dioxide

    International Nuclear Information System (INIS)

    This overview article first reviews the processes for converting uranium ore concentrates to ceramic uranium dioxide at the Port Hope Refinery of Eldorado Resources Limited. In addition, some of the problems, solutions, thoughts and research direction with respect to the production and properties of ceramic UO2 are described

  15. Study of the Utah uranium-milling industry. Volume II. Utah energy resources: uranium

    International Nuclear Information System (INIS)

    This report is a general overview of the uranium mining and milling industry and its history and present status with particular reference to Utah. This volume serves two purposes: (1) it serves as a companion volume to Volume I, which is a policy analysis; and (2) it serves as one of a set of energy resource assessment studies previously performed by the authors. The following topics are covered: development of the uranium industry on the Colorado Plateau with emphasis on Utah; geology of uranium; uranium reserves; uranium exploration in Utah; uranium ore production and mining operation in Utah; uranium milling operations in Utah; utilization of uranium; uranium mill tailings; and future outlook. Appendices on pricing of uranium and incentives for production since World War II are also presented

  16. Uranium industry annual 1993

    International Nuclear Information System (INIS)

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U3O8 (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U3O8 (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world's largest producer in 1993 with an output of 23.9 million pounds U3O8 (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market

  17. Uranium industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

  18. The physical hydrogeology of ore deposits

    Science.gov (United States)

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  19. Current situation and problems to be studied for uranium bearing coal deposit mining in China

    International Nuclear Information System (INIS)

    Uranium bearing coal deposits are a specific kind of uranium ore resources. Since uranium bearing coal can generate electricity, provide heat and recover uranium during the process of hydrometallurgy, it is necessary to mine these deposits. This paper summarizes the experiences in uranium bearing coal deposit mining, suggests research topics in this area. It is hoped that these studies can promote the development of uranium bearing coal deposit mining. (authors)

  20. Energies and media nr 28. Uranium mining exploitations and residues. Uranium mines in Niger. Depleted uranium as a by-product of enrichment

    International Nuclear Information System (INIS)

    After some comments on recent events in the nuclear sector in different countries (USA, China, India, UK, Sweden, Italy and France), this publication addresses the issue of uranium mining exploitations and of their residues. It comments the radioactivity in mining areas, briefly discusses the issue of low doses, describes the uranium ore and its processing, indicates which are the various residues of the mining activity (sterile uncovered tailings, non exploitable mineralized rocks, ore and residue processing, residue radioactivity, mine closing down, witnesses on health in ancient mines). Some reflections are stated about uranium mines in Niger, and about depleted uranium as a by-product of the enrichment activity

  1. Based on matlab 3d visualization programming in the application of the uranium exploration

    International Nuclear Information System (INIS)

    Combined geological theory, geophysical curve and Matlab programming three dimensional visualization applied to the production of uranium exploration. With a simple Matlab programming, numerical processing and graphical visualization of convenient features, and effective in identifying ore bodies, recourse to ore, ore body delineation of the scope of analysis has played the role of sedimentary environment. (author)

  2. Uranium exploration and mining in Australia

    International Nuclear Information System (INIS)

    Uranium minerals were discovered in Australia in the years 1850 to 1900 already, but most of them were not recognised as such. It was not until 1894 that the first significant uranium find was made in Carcoar, west of Sydney. At that time, the uranium output of the world, which only amounted to a few hundred cwts, was for the most part obtained from mining areas close to the border between Saxony and Bohemia. In South Australia, uranium ore was mined experimentally for the production of radium at Radium Hill from 1906 onwards and at Mt. Painter from 1910 onwards. It was not until World War II, however, that uranium gained importance as a valuable raw material that could also be used for military purposes. The second phase of uranium mining in Australia commenced in 1944. Within ten years Australia's presumed uranium potential was confirmed by extensive exploration. The development of uranium mining in Australia is described in the present paper. (orig.)

  3. Inherently safe in situ uranium recovery

    Science.gov (United States)

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  4. Uranium mining in India - past, present and future

    International Nuclear Information System (INIS)

    The mining of uranium in India in the past, present and future is discussed. Uranium Corporation of India Ltd under the administrative control of Department of Atomic Energy was formed with a specific objective of mining and milling of uranium ore in the country. Uranium recovery plants, expansion mill, bye products recovery plant were set up. Underground mining, tailing disposal, land acquisition, rehabilitation and reclaimation are discussed. Cost reduction measures in mining operations are also discussed. (N.B.)

  5. The uranium bearing shale ore-body at St-Hippolyte (Haut-Rhin). An example of research with statistical methods; Le gisement des schistes uraniferes de St-Hippolyte (Haut-Rhin). Exemple d'etude par calculs statistiques

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The uranium bearing shale ore-body at St-Hippolyte was mainly proved by drillings, the results of which were studied through statistical methods. The author gives an account of his conclusions regarding the distribution of mineralization, its origin and, the estimate of reserves. The uranium mineralization is irregularly distributed in shales. On a vertical line, levels could be singled out: they are similar, as far as lithology is concerned, but each of them is characterized by a grade-population, according to a lognormal distribution. Horizontally, a connection is noted between grades and the overlying barren sandstone bed. These considerations, as well as a statistical study of U/Ra ratio, induced the author to consider that the mineralization of the richest level has an hydrothermal origin. It is only through an uranium diffusion from that level that the others are mineralized. The uranium which is contained in poorest beds has a syn-genetic origin. Furthermore, statistical methods bring us to an evaluation of reserves. In such a case, the evaluation is equivalent to the ore obtained by common arithmetical methods. Moreover, we are able to state precisely the upper and lower limits where a true tonnage or a true grade could be given with a definite value of statistical certainty. Then the author has been able to study the separation of reserves in grade-groups and to foresee the effect of sorting in connection with the lower possible grade and with extraction units (wagons, lorries, etc...), on which the sorting will be done. To conclude, the author indicates the value of both classical and statistical methods. These two techniques are completing each other and they solve different problems. (author) [French] Le gisement des schistes uraniferes de St-Hippolyte a ete reconnu essentiellement par sondages, dont les resultats ont ete etudies par les methodes du calcul statistique. L'auteur expose les conclusions auxquelles il a ete amene et qui concernent: la

  6. The Kintyre uranium project

    International Nuclear Information System (INIS)

    The Kintyre Uranium Project is being developed by Canning Resources Pty Ltd, a subsidiary of Rio Tinto (formerly CRA). The work on the project includes the planning and management of a number of background environmental studies. The company has also commissioned studies by external consultants into process technologies, mining strategies and techniques for extracting the uranium ore from the waste rock. In addition, Canning Resources has made a detailed assessment of the worldwide market potential for Australian uranium in the late 1990s and into the 21st century. The most significant factor affecting the future of this project is the current product price. This price is insufficient to justify the necessary investment to bring this project into production

  7. Training manual for uranium mill workers on health protection from uranium

    International Nuclear Information System (INIS)

    This report provides information for uranium mill workers to help them understand the radiation safety aspects of working with uranium as it is processed from ore to yellowcake at the mills. The report is designed to supplement the radiation safety training provided by uranium mills to their workers. It is written in an easily readable style so that new employees with no previous experience working with uranium or radiation can obtain a basic understanding of the nature of radiation and the particular safety requirements of working with uranium. The report should be helpful to mill operators by providing training material to support their radiation safety training programs

  8. Elkon - A new world class Russian uranium mine

    International Nuclear Information System (INIS)

    Full text: The uranium deposits of Elkon district are located in the south of Republic of Sakha Yakutia. Deposits contain about 6% of the world known uranium resources: 342 409 tonnes of in situ or 288 768 tonnes of recoverable RAR + Inferred resources. Most significant uranium resources of Elkon district (261 768 tonnes) were identified within five deposits of Yuzhnaya zone. The uranium grade averages 0.15%. Gold, silver and molybdenum are by-products. Principal resources are proposed to be mined by conventional underground method. Location, shape and dimensions of uranium ore bodies are primarily controlled by NW-SE oriented and steeply SW dipping faults of Mesozoic age and surrounding pyrite-carbonate-potassium feldspar alteration zones. Country rocks are Archean gneisses. Deposits are of metasomatic geological type. Principal mineralization is represented by brannerite. The Yuzhnaya zone is about 20 km long. It was explored by underground workings and drill holes. Upper limit of ore bodies is at a depth of between 200 m and 500 m. Depth persistence exceeds 2 000 m. Uranium mining enterprise Elkon was established in November 2007. It is a 100% Atomredmetzoloto subsidiary. The planned producing capacity is 5 000 m tU/year. It will perform the entire works related to uranium mining, milling, ore sorting, processing and uranium dioxide production. Technology of ore processing assumes primary radiometric sorting, thickening, sulphide flotation for gold concentrate extraction, subsequent autoclave sulphuric-acid uranium leaching from flotation tails and uranium adsorption onto resin, roasting and heap leaching for uranium from low grade ores, cyanide leaching of gold. Due to a considerable abundance of brannerite ore is classified as refractory. Elkon development include 4 main stages: feasibility study and infrastructure development (2008- 2010), mine and mill construction (2010-2015), pilot production (2013-2015), mine development and achieving full capacity

  9. Modelling study on uranium migration in rocks under weathering condition

    International Nuclear Information System (INIS)

    A modelling study has been completed to understand the effect of rock alteration on uranium migration at the Koongarra ore deposit, Australia. The model considers the weathering process, the mechanism and rate of chlorite alteration, a major mineral of the host rock, and assumes the presence of reversible sorption sites of chlorite and the presence of reversible and irreversible sorption sites of the weathering products. One- and two-dimensional, calculated uranium concentrations were compared with those observed. Good agreement between the calculated and observed uranium concentration profiles was obtained only when an appropriate fraction of uranium is fixed to the irreversible sorption sites of Fe-minerals produced during weathering of chlorite. On the other hand, the conventional Kd model failed to estimate an adequate uranium concentration profile. The results suggest that the fixation of uranium to Fe-minerals has dominated the migration of uranium in the vicinity of the Koongarra ore deposit

  10. Analysis of nuclear reaction products and materials; Preliminary treatment of uranium analysis

    International Nuclear Information System (INIS)

    Pre-treatment of samples is necessary to be done in order to achieve the efficient steps and accurate results of uranium analysis. The pre-treatment is particularly affected by the type of sample, the uranium concentration predicated in the sample, and the uranium analytical method which will be applied. A brief discussion about the pre-treatment of uranium analysis in the uranium ore processing and the reprocessing of spent fuel is given. (author)

  11. ALKALINE CARBONATE LEACHING PROCESS FOR URANIUM EXTRACTION

    Science.gov (United States)

    Thunaes, A.; Brown, E.A.; Rabbitts, A.T.

    1957-11-12

    A process for the leaching of uranium from high carbonate ores is presented. According to the process, the ore is leached at a temperature of about 200 deg C and a pressure of about 200 p.s.i.g. with a solution containing alkali carbonate, alkali permanganate, and bicarbonate ion, the bicarbonate ion functionlng to prevent premature formation of alkali hydroxide and consequent precipitation of a diuranate. After the leaching is complete, the uranium present is recovered by precipitation with NaOH.

  12. Iron Ore Spies

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China has begun to attack industrial spies to prevent state security from being compromised Four employees of Rio Tinto, including Hu Shitai, former head of Rio’s Shanghai office and Rio’s China iron ore division, were detained in Shanghai on July 5, on charges of espionage. A senior executive of

  13. Kinetics of Uranium Extraction from Uranium Tailings by Oxidative Leaching

    Science.gov (United States)

    Zhang, Biao; Li, Mi; Zhang, Xiaowen; Huang, Jing

    2016-07-01

    Extraction of uranium from uranium tailings by oxidative leaching with hydrogen peroxide (H2O2) was studied. The effects of various extraction factors were investigated to optimize the dissolution conditions, as well as to determine the leaching kinetic parameters. The behavior of H2O2 in the leaching process was determined through scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX) and x-ray diffraction analysis of leaching residues. Results suggest that H2O2 can significantly improve uranium extraction by decomposing the complex gangue structures in uranium tailings and by enhancing the reaction rate between uranium phases and the leaching agent. The extraction kinetics expression was changed from 1 - 3(1 - α)2/3 + 2(1 - α) = K 0(H2SO4)-0.14903(S/L)-1.80435( R o)0.20023 e -1670.93/T t ( t ≥ 5) to 1 - 3(1 - α)2/3 + 2(1 - α) = K 0(H2SO4)0.01382(S/L)-1.83275( R o)0.25763 e -1654.59/T t ( t ≥ 5) by the addition of H2O2 in the leaching process. The use of H2O2 in uranium leaching may help in extracting uranium more efficiently and rapidly from low-uranium-containing ores or tailings.

  14. Kinetics of Uranium Extraction from Uranium Tailings by Oxidative Leaching

    Science.gov (United States)

    Zhang, Biao; Li, Mi; Zhang, Xiaowen; Huang, Jing

    2016-05-01

    Extraction of uranium from uranium tailings by oxidative leaching with hydrogen peroxide (H2O2) was studied. The effects of various extraction factors were investigated to optimize the dissolution conditions, as well as to determine the leaching kinetic parameters. The behavior of H2O2 in the leaching process was determined through scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX) and x-ray diffraction analysis of leaching residues. Results suggest that H2O2 can significantly improve uranium extraction by decomposing the complex gangue structures in uranium tailings and by enhancing the reaction rate between uranium phases and the leaching agent. The extraction kinetics expression was changed from 1 - 3(1 - α)2/3 + 2(1 - α) = K 0(H2SO4)-0.14903(S/L)-1.80435(R o)0.20023 e -1670.93/T t (t ≥ 5) to 1 - 3(1 - α)2/3 + 2(1 - α) = K 0(H2SO4)0.01382(S/L)-1.83275(R o)0.25763 e -1654.59/T t (t ≥ 5) by the addition of H2O2 in the leaching process. The use of H2O2 in uranium leaching may help in extracting uranium more efficiently and rapidly from low-uranium-containing ores or tailings.

  15. [Detection of trace uranium in air with field spectrometry].

    Science.gov (United States)

    Yang, Ya-Xin; Xiao, Sai-Jin; Liu, Qing-Cheng; Huang, Long-Zhu; Peng, Dao-Feng; Zheng, Yong-Ming

    2012-07-01

    As a natural radioactive element, uranium and its compounds exist as aerosol and transfer in air. In gas phase, uranium can cause various kinds of radioactive damage to human body. The change in its concentration in a local area is related to the exploration and utilization of nuclear energy. Therefore, the development of field method for rapid uranium detection in air sample is very important. In this contribution, the air samples over uranium ores collected by a general pump was absorbed with 2.0 mol x L(-1) nitrate and then reacted with solid reagent kit. When the reaction between trace uranium and chromogenic reagent was finished, the homemade portable photometer was used to measure the absorbance. The results showed that the concentration of uranium in air samples over low grade uranium ores can be successfully determined by the present method and the values agree with that obtained by ICP-MS. The RSD measured by the new method was 1.72%. The application of the new field spectrometry in discriminating uranium ores from other ores has the potential advantages of easy operation, cost-saving and high accuracy. PMID:23016358

  16. 10 CFR 40.66 - Requirements for advance notice of export shipments of natural uranium.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Requirements for advance notice of export shipments of natural uranium. 40.66 Section 40.66 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE... natural uranium. (a) Each licensee authorized to export natural uranium, other than in the form of ore...

  17. Technological pretreatment of the synchysite non-oxidized ore

    Science.gov (United States)

    Munkhtsetseg, B.; Burmaa, G.

    2013-06-01

    Mongolia has rich deposits of rare, precious, and poly-metallic ores. Nowadays, it is important to research separation of rare earth elements oxides concentrates from the ores, analyze their unique physical chemical characteristics, and purified it. Our investigation on raw materials focuses on rare earth non-oxidized ores. Main mineral in this rock sample is Synchysite (LnCa(CO3)2F. We did technological and thermal pretreatment: direct sulphurization (H2SO4), sulphurization with subsequent roasting (800°C+H2SO4), sulphurization prior to roasting (H2SO4+650°C). Sulphurization method based on dissolution of rare earth mineral into sulfuric acid (93%) according to the reaction. The amount of rare earth element oxides is almost 10 times greater (29.16%) after direct sulphurization process, almost 8 times greater (21.14%) after sulphurization with subsequent roasting, and almost 20 times greater (44.62%) after sulphurization prior to roasting process. After those technological pretreatment raw material's micro elements Thorium and Uranium contents are reduced as follows: H2SO4>800°C+H2SO4>H2SO4+650°C. These results show that cerium group rare earth elements have very good solubility in water at +2°C temperature and decreasing micro elements content uranium and thorium good pretreatment condition is prior to roasting (H2SO4+650°C) of synchysite non-oxidized ore.

  18. Speciation and Precipitation of Uranium Complexes in Hydrothermal Solutions Related to Granite—type Uranium Deposits

    Institute of Scientific and Technical Information of China (English)

    陈培荣; 章邦桐; 等

    1992-01-01

    Uranium-bearing hydrothermal solutions during the stage of ore deposition are weakly alkaline and of the Ca2+ -Na+/HCO3- -F- type.UO2(CO3)22- and UO2F4-, are dominant in the hydrothermal solutions with respect to their activity.Wall-rock hydrothermal alterations ,temperature and pressure drop and the reducing capability of rock assemblage (Δeh) led to a decrease in Eh of the hydrothermal solutions and an increase in Eh at which uranium began precipitating.Therefore,the mechanism of uranium precipitation is essentially the reduction of uranium complexes.The granite-type uranium deposits are the most important type of uranium resources in China.Discussions will be made in this paper concerning the hydrothermal speciation and precipitation mech-anisms of uranium complexes in the light of fluid inclusion and geological data from some major de-posits of this type in South China.

  19. Uranium production cycle: Argentine situation

    International Nuclear Information System (INIS)

    Full text: In Argentina, nuclear power plants at Atucha and Embalse are in operation with very high plant load factors. Atucha II is under construction with the expected start-up in 2012. The long term nuclear power plan of Argentina envisages additional seven units in the next 25 years. It is estimated that the cumulative uranium requirements for these nuclear power plants will be about 30000 tU. However the estimated uranium reserves of Argentina at present in different categories is only approximately 15000 tU. Sierra Pintada mine, south west of the Mendoza province, was in production from 1975 to 1995 and was kept in stand-by from 1995. Quartz, feldspar, calcite, and kaolinite are the most abundant minerals in the ore. The rock is formed by moderately well-sorted grains of quartz, feldspar, and rock fragments, all cemented by calcite with minor clay replacement. The mine is an open pit and at 0.025%U cut off about 6500 tU reserves were estimated. Average grade is 0.076% U. The barren - ore rock ratio is 10:1 and barren benches are 10m and ore benches 2.5 m in height. So far 13400000 m3 of barren rock, 376000 t low grade ore and 2500000t plant feed ore has been mined out. The Sierra Pintada mine is expected to restart operations by 2010. The major problems in restarting this mine are the mining laws, community issues and apprehensions of the local tourism and wine industries. The paper will discuss the mining law in Argentina vis-a-vis the uranium situation and exploration programme for the the next years. (author)

  20. Research on forecasting models of cost of natural uranium production

    International Nuclear Information System (INIS)

    The forecasting model is established for the product cost of long term or short term on the basis of the history data of natural uranium, focusing on the relationship between the factors such as the ore grade, excavate rate, digging depth and ore properties, and the product cost of natural uranium. Another forecasting model is founded for sub-product cost using symbolic statistical linear regression method. The models described above are applied to the product cost of some uranium mine corporation. The method is easy, practical and reliable with reference value. (authors)

  1. A study about the possible mining and benefit of the uranium ores of the ''Las Margaritas'' deposit, in Sierra de Pena Blanca, municipality of Villa Aldama, State of Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Considering all the characteristics of the deposit as well as its location in relation to the others, the necessary personnel, the extraction yield the structural conditions, etc. we can say that an advisable method of exploitation is the open pit method because in that way we can resolve a great number of problems, principally the high radiation to which the personnel would be exposed in a subterraneous work. The deposit reserves are 1,221,868 tons of ore with an average of 880 grams of U3O8 per ton. During the exploitation at open pit 1,147,025 tons will be extracted and through subterraneous work other 50,406 tons will be recuperated. The exploitation will cost $84.00 Mexican currency per ton. According to the experimental studies about the mineral which will be treated it has been concluded that the conventional acid leaching is the appropriate treatment to be followed since the recoveries were of 88 to 95%. However, it is suggested to make more studies about the metallurgical aspect and industrial engineering studies in order to lower costs, since these are theoretical and can be improved in the practice. (author)

  2. Limno-chemical and microbiology aspects in Uranium Pit Mine Lake (Osamu Utsumi), in Antas and Bortolan reservoirs under the influence of effluent Ore Treatment Unit, Caldas - Minas Gerais State, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ronqui, Leilane B.; Nasciment, Marcos R.L. do; Roque, Claudio V.; Bruschi, Armando; Borba Junior, Palvo J.; Nascimento, Heliana A. F. do, E-mail: leilanebio@yahoo.com.br, E-mail: pmarcos@cnen.gov.br, E-mail: cvroque@cnen.gov.br, E-mail: abruschi@cnen.gov.br, E-mail: jouber_borba@hotmail.com, E-mail: hazevedo@cnen.gov.br [Comissao Nacional de Energia Nuclear (LAPOC/CNEN), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas; Almeida, Tito C.M. de, E-mail: titoalmeida2008@gmail.com [Universidade do Vale do Itajai (CTT-Mar/UNIVALI), SC (Brazil). Centro de Ciencias Tecnologicas da Terra e do Mar

    2013-07-01

    Due to high natural radioactivity there in Pocos de Caldas Plateau (Minas Gerais State, Brazil) and the existence of the first uranium mine in Brazil (Pit Mine Osamu Utsumi - Mineral Treatment Unit/Brazilian Nuclear Industries, MTU/BNI), which is characterized by an open-pit mine presents as increased environmental liability the formation of acid mine drainage, this study was conducted to evaluate the limno-chemicals and microbiology aspects (protozooplankton and bacterioplankton) belonging to uranium pit mine lake (PM) and evaluate the possible effects of acid effluents treated and discharged by MTU/BNI in Antas reservoir-AR and downstream of this, the Bortolan reservoir-BR. Besides the realization of abiotic and microbiology analysis of protozooplankton and bacterioplankton; was held standardization and deployment of the Fluorescence 'In Situ' Hybridization (FISH) technical using oligonucleotide probes for extremophile Archaea and Bacteria. According to the results, the PM showed the highest values for the chemical variables, lower pH values, lower protozooplankton density, however, protozooplanktonic high biomass showing the presence of tolerant species in this extreme environment. Antas and Bortolan reservoirs showed differences in the abiotic and biotic variables, AR showed suffer greater interference of acid effluents released at P41point and downstream of this at P14 point, lower protozooplankton biomass, lower bacterial density and pollution characteristics of inorganic sources. Using the FISH technique standard in this study to water bodies evaluated, it was possible to detect the presence of the extremophile bacteria of the Archaea domain in the three water bodies. The results of this study contribute to the knowledge of the pit mine lakes limnology which have become a major concern due to increased mining in the open. (author)

  3. Limno-chemical and microbiology aspects in Uranium Pit Mine Lake (Osamu Utsumi), in Antas and Bortolan reservoirs under the influence of effluent Ore Treatment Unit, Caldas - Minas Gerais State, Brazil

    International Nuclear Information System (INIS)

    Due to high natural radioactivity there in Pocos de Caldas Plateau (Minas Gerais State, Brazil) and the existence of the first uranium mine in Brazil (Pit Mine Osamu Utsumi - Mineral Treatment Unit/Brazilian Nuclear Industries, MTU/BNI), which is characterized by an open-pit mine presents as increased environmental liability the formation of acid mine drainage, this study was conducted to evaluate the limno-chemicals and microbiology aspects (protozooplankton and bacterioplankton) belonging to uranium pit mine lake (PM) and evaluate the possible effects of acid effluents treated and discharged by MTU/BNI in Antas reservoir-AR and downstream of this, the Bortolan reservoir-BR. Besides the realization of abiotic and microbiology analysis of protozooplankton and bacterioplankton; was held standardization and deployment of the Fluorescence 'In Situ' Hybridization (FISH) technical using oligonucleotide probes for extremophile Archaea and Bacteria. According to the results, the PM showed the highest values for the chemical variables, lower pH values, lower protozooplankton density, however, protozooplanktonic high biomass showing the presence of tolerant species in this extreme environment. Antas and Bortolan reservoirs showed differences in the abiotic and biotic variables, AR showed suffer greater interference of acid effluents released at P41point and downstream of this at P14 point, lower protozooplankton biomass, lower bacterial density and pollution characteristics of inorganic sources. Using the FISH technique standard in this study to water bodies evaluated, it was possible to detect the presence of the extremophile bacteria of the Archaea domain in the three water bodies. The results of this study contribute to the knowledge of the pit mine lakes limnology which have become a major concern due to increased mining in the open. (author)

  4. Metallogenic characteristic of Sasyk-kul lake water type uranium deposit

    International Nuclear Information System (INIS)

    Sasyk-kul lake water type uranium deposit is located in Pamirs uranium metallogenic area, the ore body is the lake water, uranium concentration of lake water reaches the level of industrial production solution, and can be regarded as one of special type of hydrogenic uranium deposit. Uranium metallogenesis not only includes surficial infiltration origin but also deep geothermal water origin, main reason of uranium concentration was caused by evaporation under condition of arid climate, and the deposit can be classified to the polygenetic uranium deposit. (authors)

  5. Uranium prospection in Venezuela

    International Nuclear Information System (INIS)

    Full text: The worldwide increase of energy consumption and high fossil fuels costs generates the necessity of alternative energy sources. At present, nuclear energy is substituting the use of hydrocarbons, due to its high performance and contribution to environmental preservation, since it avoids the emission of greenhouse gases. Uranium consumer countries will continue to increase its demand, and even, is expected the incorporation of new reactors in countries with emerging economies. Base in the statement considered above, investment in new mineral deposit is justified. At present, some countries are motivated to start or continue the uranium exploration because of the evolution of the nuclear energy industry. Venezuela started exploration in the mid of 1970s, and stopped at 1980s. Our purpose is to evaluate uranium resources potential in the country, both for own use or export. In order to locate potential areas for exploration, in this initial phase all data from previous period is being compiled, incorporating information from oil exploration (seismic data, wells profiles, etc.). This information is been digitalized to generate a database into a geographical information system. Preliminary results show three areas of interest, where new geological, geochemical and geophysical surveys are propose. At this time, we do not have specific information about ore reserves, but we have anomalous areas that have been established as starting points to continue the uranium exploration in the country. (author)

  6. An Approach to Reduce Load on the Acid Leaching Circuit of the Commercial Uranium Recovery Plant at Jaduguda, India

    OpenAIRE

    Rao, G. V.; Prakash, S.

    1998-01-01

    The commercial uranium recovery plant at Jaduguda, Bihar, India, currently treats around 900 tonnes of ore per day from the Jaduguda mine, containing around 0.05% U3O8. Subsequent to removal of the sulphide minerals present in the ore by flotation, nearly 95% of the tailings are being treated in the acid leaching circuit to recover the uranium values. Laboratory investigations on the bulk flotation tailings revealed that around 63% of the uranium values are associated with feebly magnetic mat...

  7. Complexing and hydrothermal ore deposition

    CERN Document Server

    Helgeson, Harold C

    1964-01-01

    Complexing and Hydrothermal Ore Deposition provides a synthesis of fact, theory, and interpretative speculation on hydrothermal ore-forming solutions. This book summarizes information and theory of the internal chemistry of aqueous electrolyte solutions accumulated in previous years. The scope of the discussion is limited to those aspects of particular interest to the geologist working on the problem of hydrothermal ore genesis. Wherever feasible, fundamental principles are reviewed. Portions of this text are devoted to calculations of specific hydrothermal equilibriums in multicompone

  8. From history of reception of native uranium

    International Nuclear Information System (INIS)

    Full text: Tajikistan is a mountainous country. In its recourses may found almost all chemistry elements of periodic system. Not a secret that in practical solving of problem of uranium Soviet country in 40th and after years important role play uranium resources of the Tajikistan. Academic V. Vernandskiy in his diary rouse an alarm for work state on proceeding for uranium in Soviet Union. He was entirely aware of important appeared in world, particularly, in war period in connection to open possibility of carrying out of nuclear chain reaction. He not agreed the decision to close works in Taboshar uranium mine (North Tajikistan) taking all possible actions to destroy this decision. V. Vernandskiy write that physicists 'direct all efforts for study nuclear and its theory, and here (e.g. Kapitsa, Landau) make a lot of important - but life order ore-chemical direction', which means that task of extraction of isotope of uranium-235 from uranium ore. It should mention that aim directed search of uranium ores in Tajikistan appeared in after-war years and result with openness of a number of mines, from 1926 was known Taboshar uranium mine, from ore of which, periodically was found radium. Discovery of number of uranium mines in that region did that region as with priority on organization of their industry manufacture and proceeding. With Decision of created 30 June 1941 emergency party-state body - State defense commission (SDC) from 27 November 1942 in Tajikistan was organized mining of uranium ore and its proceeding up to concentrate. Implementation of those jobs was ordered to Ministry of color metallurgy of USSR, and after two years Order of SDC from 8 December 1944 No. 7102 this industry transferred to People Secretariat on internal affairs of USSR (NKVD USSR). By order of SDC from 12 May 1945 was created in region of Leninobod-city the specialized mining plant No.6 (from 1967 Leninobod mining plant, and from 1990 State enterprise 'Vostokredmet'). On base of local

  9. Study for uranium advantage as byproduct of the phosphorite from Brazilian Northeast

    International Nuclear Information System (INIS)

    The distribution and recovery of uranium contained in marine phosphates from Northeast Brazil were investigated by treating these ores with hydrochloric acid. The average content of uranium in the phosphorite was found to be about 0.03%. The leaching of phosphate from the ore and the amount of solubilized uranium supplied the basic information for the uranium recovery. The solutions, obtained in laboratory, leaching the phosphorite with hydrochloric acid contained 40.70 mg:U/l. An analytical method to control the uranium solubilization was outlined. A liquid-liquid extraction of uranium from these leaching solutions was performed using mixture of 3.3% di-(2-ethyl-hexyl)-phosphoric acid and 2.2% TBP in kerosene. After extraction the phosphoric acid free from uranium is sent to the calcium hydrogeno-phosphate production. The uranium is stripped from the organic phase by alkaline treatment and then precipitated as diuranate. (Author)

  10. A study of the efficiency of different spectrochemical buffers applied to the uranium ore analysis; Estudio de la eficiencia de diversos reguladores espectroqimicos aplicados al analisis de minerales de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Roca, M.; Diaz Guerra, J. P.

    1981-07-01

    A direct-reading emission spectroscopy method allowing the determination of Al, Ca, Fe, Mg, Mn, Na, P, Si and Ti in geological materials, that are of interest for the prospecting and recovery of uranium, is proposed. Direct-current are between graphite electrodes Is used as the excitation source. Efficiency of Ag{sub 2}O, BaCO{sub 3}, Bi{sub 2}O{sub 3}, CuF{sub 2}, CuO, Ga{sub 2}0{sub 3}, Ge0{sub 2}, graphite, K{sub 2}CO{sub 3}, H{sub 2}B{sub 4}O{sub 7}, Li{sub 2}CO{sub 3}, Ni, PbS, Sb{sub 2}o{sub 4} , SrC0{sub 3}, Ti{sub 2}O{sub 3} and ZnO as spectrochemical buffers has been studied. It has been inferred that through a sample dilution with Li{sub 2}CO{sub 3}, SrC0{sub 3} and graphite powder in the rations 1:10:10:20, respectively, the highest reduction of the matrix effects is achieved. Phosphorus determination Is better performed with PbS as spectrochemical buffer Instead of the indicated above. The action of the selected compounds Is completed by using Co, In, Li and Sr as internal standards, and, as a whole, satisfactory accuracy and reproducibility are attained. (Author) 7 refs.

  11. Evaluation of the uranium immobilization potential of vetiver plants grown on processed solid waste of uranium industry of Jaduguda, India

    International Nuclear Information System (INIS)

    Remediation of contaminated sites using specific plant or plant groups may offer a cheap, renewable and promising technique to minimize the long-term ecological adverse impact of the waste disposal. The major components of process waste of uranium industry are uranium series radionuclides, heavy metals inherently present in the ore, chemical additives and residual uranium. Among the radionuclides quantitative content of residual uranium is highest in the disposed process waste of uranium mill. In view of this fact experiments were conducted to study the uranium immobilization potential of a phytoremediator that can grow and survive in the complex tailings (fine solid process waste) environment. Vetiver grass (Chrysopogon zizanioides (L.) Nash) was selected for translocation and immobilization studies of uranium. The grass was planted in uranium mill tailing ponds at Jaduguda, Jharkhand, India and periodic sampling was carried out to investigate the extent of uranium uptake. The acid aliquot of dry or wet ash samples of plant and soil were subjected to solvent extraction followed by UV-Fluorimetry for uranium estimation. It has been observed that the grass could immobilize up to 8 ppm uranium within 6 months after planting. Uranium is preferably immobilized at the root and translocation of uranium to upper plant parts (shoot) is low compared to roots. The uranium uptake got saturated after a particular concentration range. The increased level of uranium in the soil covering of tailings needs further investigation. (author)

  12. Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites.

    Science.gov (United States)

    Saunders, James A; Pivetz, Bruce E; Voorhies, Nathan; Wilkin, Richard T

    2016-12-01

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are important in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of uranium ores is a process of contacting the uranium mineral deposit with leaching and oxidizing (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality degradation from: 1) potential excursions of leaching solutions away from the injection zone into down-gradient, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential mobilization and migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies data gaps in mitigating these vulnerabilities, and discusses the hydrogeological characterization involved in developing a monitoring program. PMID:27576149

  13. 铀储层结构与成矿流场研究:揭示东胜砂岩型铀矿床成矿机理的一把钥匙%Uranium Reservoir Architecture and Ore-forming Flow Field Study: A Key of Revealing Dongsheng Sandstone-type Uranium Deposit Mineralization Mechanism

    Institute of Scientific and Technical Information of China (English)

    焦养泉; 吴立群; 荣辉; 彭云彪; 万军伟; 苗爱生

    2012-01-01

    In Dongsheng uranium deposit of northeast Ordos Basin, on the base of sendimetology setting study of uranium reservoir, the reservoir of sandstone-type uranium, external configuration and internal structure of uranium reservoir in Zhiluo Formation were portrayed in detail, by means of sandstone distributary system, barrier bed thickness and quantitative analysis of porosity, which showed quantitative heterogeneity of uranium reservoir. According to basin evolutionary stage, uranium metalizing chronology and 3D visualized platform of geological spatial information, palaeogeomorphology of five important evolutionary phases in study area was recovered and the spatial position of uranium reservoir of each evolutionary phase was located precisely. This revealed spatial configuration evolutionary process of uranium reservoir in Zhiluo Formation from depositional stage to uranium metallizing stage, then to uranium reform stage. On the base of basin evolutionary study, palaeogeomorphology study and quantitative heterogeneity analysis of uranium reservoir, plaeo-groundwater system structure and parametric spatial variation of five different stages were reconstructed. Metallogenic paleo-flow field characteristics and its evolutionary rule of five evolutionary stages in study area were reproduced by using groundwater numerical simulation. Generally, metallogenic flow field characteristics were controlled by the external configuration and internal heterogeneity of uranium reservoir, which affected the development of interlayer oxidation zone and mineralization process. When the paleo-groundwater of uranium reservior formation stage was in agreement with ground-water flow field of main metallizing phase, uranium deposited easily. When they were vertical, mineralization ability decreased.%以鄂尔多斯盆地北部的砂岩型铀矿为目标,在铀储层形成发育的沉积学背景研究基础上,重点通过砂分散体系、沉积物粒度、隔挡层厚度和孔隙度的

  14. The chemical industry of uranium in France; L'industrie chimique de l'uranium en France

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B. [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires

    1955-07-01

    The actual CEA program is concerned with the construction of two large graphite reactors, each of those containing at least one hundred tons of uranium metal with nuclear purity. The uranium for these two reactors will be regularly supplied by new resources discovered in France and Madagascar in the last five years. The working and treatment of such ore have led to the creation of an important french industry of which the general outline and principle are described. The operated ores have got different natures and concentration, individual characteristics are described for the main ores.The most high-grade ore are transported to a central plant in Bouchet near Paris; the low-grade ore are concentrated by physical methods or chemical processes of which principles and economy are studied with constancy. The acid processes are the only used until now, although the carbonated alkaline processes has been studied in France. The next following steps after the acid process until the obtention of uranium rich concentrate are described. The purification steps of uranium compounds to nuclear purity material are described as well as the steps to elaborate metal of which the purity grade will be specify. Finally, the economic aspects of uranium production difficulty will be considered in relation with technical progresses which we can expect to achieve in the future. (M.P.)

  15. Radiation protection as part of a uranium mine pre-feasibility study

    International Nuclear Information System (INIS)

    Golder Associates Ltd. (Golder) has conducted a number of pre-feasibility studies for prospective uranium mining projects. This work has ranged from a preliminary scoping analysis of the viability of a particular project to a formal pre-feasibility study. This paper will address the radiation protection requirements for uranium mining and the impact of these radiation protection requirements on the feasibility of a uranium production project. As is discussed, the ore grades of an ore body will strongly influence the choice of mining methods that are available for any specific project. This in turn will affect the projected capital and operating costs for a prospective uranium production facility. (author)

  16. Hunting for Iron Ore Bargains

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    One of China’s leading steel mills has turned to smaller mines for long-term, lowcost iron ore supplies china’s oldest steel producer is looking to South America to fulfill its iron ore needs in the face of rising prices from

  17. Possibilities of uranium recovering as by product of copper lixiviation solution in Salobo 3-Alfa-Carajas

    International Nuclear Information System (INIS)

    Geochemical and geophysics regional surveys performed by Nuclebras in 'Carajas, Para' State, show several favourable areas for uranium prospecting, including the 'Salobo 3-Alfa' copper mine. Some studies for increasing the Knowledge of uranium quantity and proportion and for accompanying the pilot plant installation, aiming the uranium extraction during the cycel of ore treatment in 'Salobo 3-Alfa' mine are described

  18. Uranium recovery from wet process phosphoric acid

    International Nuclear Information System (INIS)

    In the field of metallurgy, specifically processes for recovering uranium from wet process phosphoric acid solution derived from the acidulation of uraniferous phosphate ores, problems of imbalance of ion exchange agents, contamination of recycled phosphoric acid with process organics and oxidizing agents, and loss and contamination of uranium product, are solved by removing organics from the raffinate after ion exchange conversion of uranium to uranous form and recovery thereof by ion exchange, and returning organics to the circuit to balance mono and disubstituted ester ion exchange agents; then oxidatively stripping uranium from the agent using hydrogen peroxide; then after ion exchange recovery of uranyl and scrubbing, stripping with sodium carbonate and acidifying the strip solution and using some of it for the scrubbing; regenerating the sodium loaded agent and recycling it to the uranous recovery step. Economic recovery of uranium as a by-product of phosphate fertilizer production is effected. (author)

  19. Restructuring of uranium industry in Romania

    International Nuclear Information System (INIS)

    A project is described which aims at evaluation of uranium industry and assessment of the technical options for lowering production costs for uranium ore and, implicitly, for nuclear fuel. The main objective is defining the optimal technical and organisational solutions leading to a functional restructuring of this activity, as well as, to implementing modern techniques, technologies and procedures, and, at the same time to lowering the economical and environmental costs. This project is performed in co-operation with IAEA in the frame of TC-ROM/3/003, 'Restructuring the Uranium Mining Industry' project. The following results of carrying out this project are expected: refurbishment of processes and technological procedures, re-dimensioning uranium industry in accordance with the dimensions of nuclear power programme, reducing the environmental impact and lowering the uranium cost

  20. 相山铀矿田成矿后隆升剥露的磷灰石裂变径迹分析%A study on fission track of post-ore uplifted and exhumed apatite in Xiangshan uranium ore field

    Institute of Scientific and Technical Information of China (English)

    张万良

    2012-01-01

    The current landscape of Xiangshan uranium orefield is characterized by the typical eroded low mountain area. The erosion distribution clearly shows that the orefield are still in the stage of surface erosion. Themochronological dating was used to studing the uplift processes of the orefied. Fission track age of apatite from 7 porphyroclastic lava samples are (78. 7 ± 7. 1) -(34. 5 ± 4.1) Ma, the elevation weighted average age 61. 1 Ma. Cooling rate of the porphyroclasts lava is 7. 6℃/Ma during 140. 3 - 61. 1 Ma period, and 1. 2℃/Ma, 54 m/Ma in 61.1 Ma-modern period. It is inferred that thickness about 3. 3 km have been eroded away from the the orefield in Cenozoic. Era.%相山铀矿田现今的地貌以典型的低山侵蚀区为特征,侵蚀区的分布规律清楚地表明相山矿田目前仍处于地表侵蚀阶段.7个碎斑熔岩样品的磷灰石裂变径迹年龄为(78.7±7.1)~(34.5±4.1)Ma,高程加权平均年龄61.1 Ma,碎斑熔岩在140.3~61.1Ma间,冷却速率7.6℃/Ma;从61.1Ma至现代,冷却速率为1.2℃/Ma,隆升速率为54 m/Ma,即新生代以来相山矿田剥蚀了的厚度约3.3 km.

  1. IAEA Activities on Uranium Resources and Production, and Databases for the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    In recent years rising expectation for nuclear power has led to a significant increase in the demand for uranium and in turn dramatic increases in uranium exploration, mining and ore processing activities worldwide. Several new countries, often with limited experience, have also embarked on these activities. The ultimate goal of the uranium raw material industry is to provide an adequate supply of uranium that can be delivered to the market place at a competitive price by environmentally sound, mining and milling practices. The IAEA’s programme on uranium raw material encompass all aspects of uranium geology and deposits, exploration, resources, supply and demand, uranium mining and ore processing, environmental issues in the uranium production cycle and databases for the uranium fuel cycle. Radiological safety and environmental protection are major challenges in uranium mines and mills and their remediation. The IAEA has revived its programme for the Uranium Production Site Appraisal Team (UPSAT) to assist Member States to improve operational and safety performances at uranium mines and mill sites. The present paper summarizes the ongoing activities of IAEA on uranium raw material, highlighting the status of global uranium resources, their supply and demand, the IAEA database on world uranium deposit (UDEPO) and nuclear fuel cycle information system (NFCIS), recent IAEA Technical Meetings (TM) and related ongoing Technical Cooperation (TC) projects. (author)

  2. Uranium from seawater

    International Nuclear Information System (INIS)

    A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 105, which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 103 in seawater instead of the reported values of 105. However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 105 in fresh water. However, the system was not tested in seawater

  3. Uranium from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, D.; Folkendt, M.

    1982-09-21

    A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 10/sup 5/, which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 10/sup 3/ in seawater instead of the reported values of 10/sup 5/. However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 10/sup 5/ in fresh water. However, the system was not tested in seawater.

  4. Technique for recovering uranium from sludge-like uranium-bearing wastes using hydrochloric acid

    International Nuclear Information System (INIS)

    Sludge-like uranium-bearing wastes generated from uranium refining and conversion R and D facilities are stored at the Ningyo-toge Environmental Engineering Center of the Japan Atomic Energy Agency. So far, approximately 1500 t of uranium wastes with radioactivity levels exceeding 10,000 Bq/g have been generated. We have proposed an environmentally benign aqueous process for recovering uranium from wastes using hydrochloric acid (HCl). This makes it possible to dispose of the wastes easily, and to reclaim uranium as a resource. In this process, first, the uranium content in the calcium fluoride (CaF2) sludge along with the entire sludge is dissolved almost completely in aqueous solutions containing HCl and aluminum chloride. The uranium species are then recovered as peroxide from the CaF2 sludge solution. Their characteristics are similar to those specified for uranium ore concentrate. After recovering the uranium content, the uranium concentration in the solution is reduced to below 0.01 mg/L using an iminodiacetic chelating resin. Also, the uranium concentration of the precipitate generated by the neutralization of the barren solution falls below 1 Bq/g. (author)

  5. Morphological Comparison of U3O8 Ore Concentrates from Canada Key Lake and Namibia Sources

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Daniel S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tandon, Lav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Patrick Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    Uranium ore concentrates from two different sources were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The ore powders are referred to as Namibia (id. no. 90036, LIMS id. no. 18775) and Canada Key Lake (id. no. 90019, LIMS id. no. 18774). Earlier work identified the ores as the U₃O₈ phase of uranium oxide using x-ray diffraction. Both sets of powders were in the form of dark brown to black powder fines. However, the Canada Key Lake concentrates contained larger chunks of material on the millimeter scale that were easily visible to the unaided eye. The powders were mounted for SEM examination by hand dispersing a small amount onto conductive sticky tape. Two types of applicators were used and compared: a fine-tipped spatula and a foam-tipped applicator. The sticky tape was on a standard SEM “tee” mount, which was tapped to remove loose contamination before being inserted into the SEM.

  6. Uranium resources, production and fuel fabrication

    International Nuclear Information System (INIS)

    Almost all the known disseminated and vein-type uranium deposits in India are located in the Precambrian igneous and metamorphic complexes in the Peninsular Shield; the most significant reserves occur in the Singhbhum Thrust Belt of Bihar. Adequate resources of uranium to meet the country's fuel requirements for the nuclear power programme have been established. The Uranium Corporation of India has been operating commercially an underground uranium mine and a mill at Jaduguda (Bihar) since 1968. The uranium ore body is mined by the cut-and-fill method. The present mine workings, 530 m below ground level, comprise many innovative features, namely, a tower-mounted Koepe winder system, skip-loading with an underground crushing system, concrete headframe, etc. Surveillance, control and monitoring systems, especially required in the mining of low grade uranium ores, have been successfully introduced. The uranium mill adjacent to the mine uses the acid leach and ion-exchange processes of recovery. The effluents are suitably treated in a specially designed tailings pond. Other accessory economic minerals, namely chalcopyrite, molybdenite and magnetite, are profitably recovered as by-products. Fuel fabrication commenced in India with the manufacture of aluminium-clad metallic uranium fuel for the CIR reactor. Power reactor oxide fuel manufacture has been carried out initially at Trombay for the Rajasthan Power Reactor I (RAPP-I). For transferring the technology developed, industrial-scale plants have been set up in the Nuclear Fuel Complex (NFC) at Hyderabad for the manufacture of zirconium-clad natural uranium fuel for PHWRs and low enrichment uranium fuel for the BWR Tarapur Power Station

  7. Uranium in situ leaching

    International Nuclear Information System (INIS)

    Despite the depressed situation that has affected the uranium industry during the past years, the second Technical Committee Meeting on Uranium In Situ Leaching, organized by the International Atomic Energy Agency and held in Vienna from 5 to 8 October 1992, has attracted a relatively large number of participants. A notable development since the first meeting was that the majority of the contributions came from the actual operators of in situ leaching uranium production. At the present meeting, presentations on operations in the USA were balanced by those of the eastern European and Asian countries. Contributions from Bulgaria, China, Czechoslovakia, Germany (from the operation in the former German Democratic Republic), the Russian Federation and Uzbekistan represent new information not commonly available. In situ leach mining is defined in one of the paper presented as a ''mining method where the ore mineral is preferentially leached from the host rock in place, or in situ, by the use of leach solutions, and the mineral value is recovered. Refs, figs and tabs

  8. Depending on scientific and technological progress to prospect for superlarge uranium deposits. Across-century target for uranium resources exploration work in China

    International Nuclear Information System (INIS)

    After over 30 years' development, uranium resources exploration work in China has resulted in the discovery of more than 10 economic types of uranium deposits in 23 provinces (regions) of the whole country and large quantities of uranium reserves have been submitted which guarantee the development of nuclear industry in China. However, characteristics such as smaller size of deposits and ore bodies, and lower ore grade of discovered China's uranium deposits have brought about a series of problems on how to economically exploit and utilize these uranium resources. To prospect for superlarge uranium deposits is a guarantee of making uranium resources essentially meet the demand for the long-term development of nuclear industry in China, and is an important way of improving economic benefits in mining China's uranium resources. It is an important mark for uranium geological exploration work to go up a new step as well. China exhibits the geological environment in which various types of superlarge uranium deposits can be formed. Having the financial support from the state to uranium resources exploration work, having professional uranium exploration teams well-experienced in ore prospecting, having modernized uranium exploration techniques and equipment and also having foreign experience in prospecting for superlarge uranium deposits as reference, it is entirely possible to find out superlarge uranium deposits in China at the end of this century and at the beginning of next century. In order to realize the objective, the most important prerequisite is that research work on metallogenetic geological theory and exploration techniques and prospecting methodology for superlarge uranium deposits must be strengthened, and technical quality of the geological teams must be improved. Within this century, prospect targets should be selected and located accurately to carry out the emphatic breakthrough in exploration strategy

  9. Canada's uranium industry - the next decade

    International Nuclear Information System (INIS)

    Uranium is a unique commodity. It is both a metal and a fuel. It has both commercial and military uses. It yields 'clean energy' but presents environmental concerns. All of these factors have an impact on the commerce of uranium. Being a metal, uranium is extracted from ore like many other metallic minerals. As a fuel, it is subject to the vagaries of energy commodity market forces. The history of uranium in the first nuclear weapons has led to national governments carefully controlling production and sale of uranium. The spectre of radioactive contamination of the environment adds further to the public concern over the disposal of low-level radioactive wastes from uranium processing and use. There have been a number of excellent reviews on the commercial aspects of the uranium industry. In this discussion, these aspects will be briefly summarized to provide a general picture of the strengths of the Canadian uranium industry and the pressures to which it is being subjected currently. The principal thrust of this paper will be to outline Canada's resource strength and to identify some factors which will affect Canada's ability to continue holding a sizeable share of the world uranium market

  10. Modelling Singhbhum uranium mineralization in the light of Proterozoic uranium metallogeny

    International Nuclear Information System (INIS)

    In mineral deposit modelling, a conceptual or genetic model is preferred to other ones when it is not dogmatic. The characteristics and genesis of major Proterozoic uranium deposits, such as the quartz-pebble conglomerate -type deposits, Franceville deposit, copper belt type deposits, Beaverlodge lake deposits, unconformity - type deposits, the fluidized hematite breccia deposit of Olympic dam, and the albitite - type deposits are discussed. They are grouped into four principal genetic types: (a) palaeoplacer - type, (b) (diagenetic - ) metamorphic - type, (c) the hydrothermal hematitic breccia type, and (d) metasomatic - type. There may be some amount of overprinting of a principal mechanism of ore formation by the features of a later process. In 'a' the original depositional and diagenetic features are still considerably maintained. Type 'b' is generally polygenetic and their genetic history is not always traceable. Type 'c' is hydrothermal, but atypical is being hematite-rich and the nature and origin of the ore fluid and the source of ore-elements in the hydrothermal fluid are far from clear. Albitite - uranium is also an important ore type in the Proterozoic, but far less discussed in the geological literature in English. 'a' and 'b' and 'd' are divisible into sub-types, depending on details. Occurrence along a zone of pronounced ductile (-brittle) shearing close to an Archean-Proterozoic boundary, ore participation in the metamorphic-metasomatic petrography and the ore bodies obeying the L-S structures, confirm an earlier conclusion that the uranium mineralization along the Singhbhum copper-uranium belt belongs to the metamorphic-metasomatic type. It rather belongs to the Beaverlodge lake sub-type. (author). 42 refs., 7 figs

  11. Uranium mining and production of concentrates in India

    International Nuclear Information System (INIS)

    In order to meet the uranium requirements for the atomic power programme of the country, uranium deposits were explored, mined and concentrates were produced indigenously. The geology of the areas, mode of entries and the various extraction methods deployed in different mines with their constraints are described. The various equipments used in mining and processing activities are elaborated. The flow sheets for processing the uranium ore and that of the effluent treatment plant are given in detail. The future plans of the company for undertaking the new projects to meet the demand of uranium requirement for the increasing nuclear power programme are given. (author). 18 figs

  12. Review of recent developments in uranium extraction technology

    International Nuclear Information System (INIS)

    Developments in uranium ore processing technology since the AAEC Symposium on Uranium Processing in July 1972 are reviewed. The main developments include the use of autogenous or semi-autogenous grinding, beneficiation techniques such as radiometric sorting, flotation, magnetic and gravity seperation, strong acid and ferric bacterial leaching processes, solution mining and heap leaching operations, horizontal belt filters for solid-liquid separation, continuous ion exchange processes for use with solutions containing up to 8 wt % solids, hydrogen peroxide and ammonia for the precipitation of uranium to improve product yield and purity, and the recovery of by-product uranium from the manufacture of phosphoric acid and copper processing operations

  13. Measurements of uranium in soils and small mammals

    International Nuclear Information System (INIS)

    The objective of this study was to evaluate the bioavailability of uranium to a single species of small mammal, Peromyscus maniculatus rufinus (Merriam), white-footed deer mouse, from two different source terms: a Los Alamos National Laboratory dynamic weapons testing site in north central New Mexico, where an estimated 70,000 kg of uranium have been expended over a 31-y period; and an inactive uranium mill tailings pile located in west central New Mexico near Grants, which received wastes over a 5-y period from the milling of 2.7 x 109 kg of uranium ore

  14. Amenability of low-grade uranium towards column bioleaching by acidithiobacillus ferrooxidans

    International Nuclear Information System (INIS)

    R and D studies were carried out at NML using Acidithiobacillus ferrooxidans (Ac.Tf) in column for the bio-recovery of uranium from the low-grade uranium ore containing 0.024% U3O8 of Turamdih mines, Singhbhum. A recovery of 55.48% uranium was obtained in bio-leaching as against ∼ 44.9% in sterile control in 30 days at 1.7 pH in a column containing 2.5kg ore of particle size mainly in the range 5-1mm. In the large scale column, leaching with 80kg ore of particle size ∼ 0.5cm, uranium bio-recovery was found to be 69.8% in comparison to a recovery of 55% in control set at 1.7 pH in 50 days. The uranium recoveries followed indirect leaching mechanism. (author)

  15. Kinetics of cyaniding of gold comprising ores

    International Nuclear Information System (INIS)

    Present article is devoted to kinetics of cyaniding process of gold comprising ores. Thus in laboratory conditions the researches on leaching of gold and silver from ores of various deposits of Tajikistan by means of cyaniding were conducted. The results of laboratory researches on cyaniding of ores of various deposits are presented. The flowsheet of cyaniding of gold comprising ores was elaborated.

  16. The features of aeromagnetic anomalies (ΔT) on south margin of Chaling-Yongxing basin and its relation to uranium mineralizatioon

    International Nuclear Information System (INIS)

    By contrasting the interpreted results of aeromagnetic anomalies in uranium mineralization area with a known uranium orebody, it indicates that aeromagnetic anomalies are related to uranium mineralization. Accordingly, the predication of other aeromagnetic anomalies which are similar to the known ore area may reflect the hidden uranium mineralization of distinct scale. The relative enriched area of magnetic minerals may represent a favorabel reduction environment of uranium deposition

  17. Radiological hazards to uranium miners

    International Nuclear Information System (INIS)

    The purpose of the present document is to review and assess the occupational hazards to uranium miners in Canada. Amendments to regulations set the maximum permissible dose to uranium miners at 50 mSv per year. Uranium miners are exposed to radon and thoron progeny, external gamma radiation and long-lived alpha-emitting radionuclides in dust. The best estimate for the lifetime risk of inhaled radon progeny is about 3 x 10-4 lung cancers per WLM for the average miner, with a range of uncertainty from about 1 -6 x 10-4 per WLM. This central value is nearly twice as high as that recommended by the ICRP in 1981. The probability of serious biological consequences following exposure to external gamma rays is currently under review but is expected to be in the range of 3 - 6 x 10-2 Sv-1. Dosimetric calculations indicate that the stochastic risks per WLM of thoron progeny are about one-third of those for radon progeny. The annual limits on intake of inhaled ore dusts recommended by the ICRP are probably too low by at least a factor of two for the type of ore and dust normally encountered in underground uranium mines in Ontario; this is due in part to the fact that the average diameter of these dusts is five times greater than the value used by the ICRP. Radiological exposures of uranium miners in Canada were reviewed. The biological impact of these exposures were compared with those of conventional accidents on the basis of the years of normal life expectancy that are lost or seriously impaired due to occupational hazards. The objectives in considering all occupational risks are to reduce the total risk from all causes and to use funds spent for health protection as effectively as possible

  18. Uranium (Yeelirrie) Agreement Act, 1978 - No 110 of 1978

    International Nuclear Information System (INIS)

    This Act ratifies an Agreement between the State of Western Australia and Western Mining Corporation Ltd. with respect to the mining and treatment of certain uranium ore reserves. It lays down detailed provisions concerning the obligations of the State and of the Corporation and provides, in particular, for the construction and operation by the Corporation of a metallurgical research plant following prior approval by the State, as well as for a uranium ore mining and treatment project to be proposed to the State within 4 years of the date of the Agreement. (NEA)

  19. Bibliography on Saskatchewan uranium inquiries and the northern and global impact of the uranium industry

    International Nuclear Information System (INIS)

    In recent years Saskatchewan, Canada has become the major site for the expansion of the world-wide uranium industry. Largely due to the higher concentration of ore in the province and reduced exploitation elsewhere, by 1984 Canada had become the world's leading non-communist producer of uranium. This expansion has remained one of the most controversial political and ecological issues in Saskatchewan for nearly a decade. What follows is a comprehensive bibliography on the Saskatchewan uranium mining inquiries that paralleled the growth of this industry in the province and on the northern and global impact of the uranium industry. It is the culmination of more than three years of research including in-depth content analysis of transcripts of uranium mining inquiries held in Saskatchewan between 1977-1980

  20. The uranium in Kvanefjeld

    International Nuclear Information System (INIS)

    The report is a final thesis at the study of biology at the University of Copenhagen. It examines on a theoretical basis a number of possible environmental effects from a uranium mining and milling project under consideration at the Kvanefjeld site near Narssaq in South Greenland. An introductory description and discussion of the advantages and limitations of ecological baseline studies and dose committment assessments as a tool for planning and decision making is given. The leaching and atmospheric dispersion of particles, heavy metals, radionuclides and other elements from future waste rock and ore piles as well as from mill tailings at the Kvanefjeld site are analysed and discussed. Also, the mobility, transport and accumulation of potentially toxic elements in local terrestrial and aquatic ecosystems and food chains are examined. The resulting human burden are discussed with special attention given to the impact on the local population from eating lamb and seafood. A special quantitative analysis of the dispersion and biological uptake of fluoride, which is found in high concentrations in the ore, is given, focusing on the possible human intake of fluoride-polluted arctic char (Salvelinus alpinus) caught in Narrssaq River. The report at the end gives consideration to the long term problems of controlling mill tailings, discussing among other things the long term human exposure to radon and thoron daughters. (author)

  1. Determination of {sup 2}30Th (Ionium) in uranium ores and wastes from uranium reprocessing. IV. Calculation of ionium separation yield; Determinacion de {sup 2}39Th (Ionio) en minerales y residuos del procesado de Uranio. IV: Determinacion del rendimiento en la separacion del {sup 2}30 Th

    Energy Technology Data Exchange (ETDEWEB)

    Galiano Sedano, J. A.; Acena Barrenechea, M. L.

    1974-07-01

    For determining ionium ({sup 2}30Th) in minerals and uranium processing wastes by precipitation with fluorhidric acid, using lanthanum as carrier, and selective extraction with tenoytrifluoroacetone (TTA) followed by radiometric determination of the isolated nuclide, it is necessary the use of a tracer since the chemical yield of the separation ranges between wide limits. In this paper, the use of the beta-emitter {sup 2}34Th as the most convenient tracer is discussed. Equations are derived for correcting for counting errors introduced by other thorium isotopes which are present either in the sample or in the tracer, as well as for calculating the chemical yield of the separation. These equations have been experimentally checked by ionium determinations carried out with different types of samples. (Author) 18 refs.

  2. Biosorption of uranium, thorium and radium

    International Nuclear Information System (INIS)

    The present study provides a historical background of uranium ore processing, radium extraction, and thorium production; a summary of the development of environmental regulations relative to uranium mill tailing (UMT) management; and an overview of the major factors influencing the biosorption of radionuclides. In addition, kinetic and mass transfer parameters of uranium uptake from synthetic solutions and UMT effluents by calcium alginate beads were determined. Kinetic values vm and K for uranium biosorption were calculated to be 10.3 mg/L/min and 63 g bead/L, respectively. A mathematical expression was derived to determine the associated biosorption diffusion coefficient which was calculated to be 9.20 x 10-8 cm2/s. The importance of these findings as they relate to the literature are discussed

  3. Measurements of 234U, 238U and 230Th in excreta of uranium-mill crushermen

    International Nuclear Information System (INIS)

    Uranium and thorium levels in excreta of uranium mill crushermen who are routinely exposed to airborne uranium ore dust were measured. The purpose was to determine whether 230Th was preferentially retained over either 234U or 238U in the body. Urine and fecal samples were obtained from fourteen active crushermen with long histories of exposure to uranium ore dust, plus four retired crushermen and three control individuals for comparison. Radiochemical procedures were used to separate out the uranium and thorium fractions, which were then electroplated on stainless steel discs and assayed by alpha spectrometry. Significantly greater activity levels of 234U and 238U were measured in both urine and fecal samples obtained from uranium mill crushermen, indicating that uranium in the inhaled ore dust was cleared from the body with a shorter biological half-time than the daughter product 230Th. The measurements also indicated that uranium and thorium separate in vivo and have distinctly different metabolic pathways and transfer rates in the body. The appropriateness of current ICRP retention and clearance parameters for 230Th in ore dust is questioned

  4. Aeromagnetic gradient survey and elementary application in sandstone type uranium deposits prospecting

    International Nuclear Information System (INIS)

    The principle,advantage and data processing of aeromagnetic gradient survey approach is introduced in this paper, and used to identify the shallow surface faults, uranium ore-forming environment and depth of magnetic body for the prospecting of sandstone type uranium deposits. (authors)

  5. Recent activities and trends in the uranium market

    International Nuclear Information System (INIS)

    Implementing the large number of nuclear power plant projects worldwide presupposes a considerable increase in the production of natural uranium. Preparations have been made: Higher uranium prices stimulate investments into future mines and into uranium exploration. In some countries, the uranium industry is undergoing structural changes so as to be able to meet future requirements. The terms and conditions laid down in long-term uranium supply contracts (prices and fixed delivery volumes) provide present and future producers with the necessary security in investing and planning. The electricity utilities have accepted the shift from a former 'buyer's market' to a 'seller's market' and adapted their uranium supply strategies accordingly. Numerous uranium mines, most of them small, with relatively low uranium ore concentrations, are under construction or in the commissioning phase. However, as secondary sources (fuels not made up of fresh uranium) are gradually coming to an end, many more uranium deposits need to be found and developed to commercial maturity in order to ensure uranium supply also on the long term. The steadily growing industries in the front end and the back end of the fuel cycle have intensified concerns about the non-proliferation of nuclear fuels. However, political considerations with respect to proliferation resistant uranium supply strategies have met with scepticism right from the outset. (orig.)

  6. Uranium extraction from colofanite via organic solvents

    International Nuclear Information System (INIS)

    This work describes the use of pure or combined extractants dissolved in organic solvents for quantitative uranium recovery from colofanite, a fluoroapatite ore, from Itataia, Santa Quiteria, Ceara, Brazil. This ore contains the highest brazilian uranium reserve. The metal is associated to phosphate species. The ore is digested with sulfuric acid (wet process), producing phosphoric acid, which is used for manufacturing of fertilizers and animal food. >From the acid leaching, some systems for uranium recovery were tested. Among them, PC88A (2-ethyl-hexyl phosphonic acid, mono-2-ethyl-hexyl ester) 40% vol. and DEHPA (di(2-ethyl-hexyl)phosphoric acid) 40% vol. in kerosene presented the highest values for the distribution coefficient (D) for uranium. When synergistic systems were employed, the best results were obtained for DEHPA 40%vol. + PC88A 40%vol. and DEHPA 40% vol. + TOPO (trioctylphosphine oxide) 5% vol. in kerosene. 15% wt/v sodium carbonate was the best medium for uranium stripping and separation from iron, the main interfering element. Uranium was precipitated as sodium diuranate by adding sodium hydroxide (5,0 mol L-1). Thorium in the raffinate was extracted by TOPO (0,1% vol.) in cyclohexane. The radioactivity level of the final aqueous waste is similar to natural background, according to CNEN-NE 6.05 Norm. After neutralization, the solid can be co-processed, according to the Directory 264 from the National Brazilian Environmental Council (CONAMA), whereas the treated effluent can be discarded according to the Directory 357 from CONAMA. (author)

  7. Towards a Model for Albitite-Type Uranium

    OpenAIRE

    Andy Wilde

    2013-01-01

    Albitite-type uranium deposits are widely distributed, usually of low grade (<1% U3O8), but are often large and collectively contain over 1 million tonnes of U3O8. Uranium is hosted in a wide range of metamorphic lithologies, whose only common characteristic is that they have been extensively mylonitised. Ore minerals are disseminated and rarely in megascopic veins, within and adjacent to albitised mylonites. Grain size is uniformly fine, generally less than 50 microns. Scanning electr...

  8. Recovery of uranium in mine waters

    International Nuclear Information System (INIS)

    In a brief introductory survey the author indicates the date on which leaching was first observed in the CEA mines and lists the main factors necessary for, or favourable to, the solubilization of uranium in mines. Information is given on the various sources of this type at present identified in France and the methods used to recover uranium in mines situated near ore-concentration plants. An explanation is given for the use of the calcium precipitation technique in connection with waters produced in mines not situated near ore-concentration plants. Data are given on the results of laboratory tests carried out on waters containing uranium, together with a description of an industrial-scale facility built in consequence of these tests. Details are given of the statistical results obtained. The author concludes by outlining the programme which will be implemented in the near future with a view to increasing the tonnage of uranium produced by in situ leaching and indicates that the CEA engineers are very optimistic about the prospects of this new low-cost method of producing uranium. (author)

  9. The beginning of uranium production in Estonia

    International Nuclear Information System (INIS)

    Large amounts of uranium available in the Estonian black alum (Dictyonema) shale created intense interest towards this low-grade ore in the very beginning of the atomic era. Various selective leaching and concentration technologies were tried with both roasted and native shale, at first at the Narva Pilot Plant and thereafter at the Sillamaee. Even though most of the USSR leading research and development centers participated in this effort, industrial uranium production turned out to be both technologically possible, but at the same time economically untenable at this time, just as it was the case in Sweden. (author)

  10. Hydrogeochemistry and uranium fixation in the Cigar Lake uranium deposit, northern Saskatchewan

    International Nuclear Information System (INIS)

    The 1.3 billion year old Cigar Lake uranium deposit, discovered by COGEMA in 1981, is a very rich and large mineralization of uraninite-pitchblende and coffinite in the Athabasca Sandstone in northern Saskatchewan. The mineralization occurs at the -450 m deep unconformity contact of the sandstone with the underlying high-grade rocks of the basement. The sandstone, particularly its basal unit, is the regional aquifer and, due to permeability caused by extensive fracturing, groundwater is found in all parts of the deposit. The composition of this groundwater has been studied in detail over the past 3 years. The compositions of the groundwaters from different parts of the deposit reveal a reduced, redox-buffered, steady-state system of water interaction with the ore and host rock. All groundwaters, including those in contact with the mineralization, are dilute, neutral pH waters containing low concentrations of dissolved uranium (∼10-7.9 to 10-9 mol/L U). Concentrations of dissolved radium-226 and radon-222 are also low except in groundwaters sampled within the ore zone. The redox chemistry is controlled by a number of different processes, including inorganic and organic reactions, bacterial activity and radiolysis of water in the ore zone. The iron-redox couple is the main process controlling the redox conditions in the present dynamic system. The formation of iron colloids in the ore zone and the retention of these colloids in the bordering clay zone restrict the migration of naturally occurring radionuclides, such as uranium, thorium and radium, from the ore. Information from the redox, colloid and isotope chemistries is used to discuss the history of uranium fixation in this deposit. (author)

  11. A literature survey of the matallurgical aspects of minerals in Witwatersrand gold ores

    International Nuclear Information System (INIS)

    This survey reviews the information in the literature on the auriferous rock formations in the Witwatersrand-Orange Free State gold-mining area, the gold-bearing horizons, and the mineralogy and petrography of the different ore types. The metallurgical aspects of the gold, silver, uranium, platinum-group elements, cobalt, nickel, copper, and chromite in these ores are examined and, on the strength of this information, a list is given of those problems in metallurgical extraction that are of a mineralogical nature. Finally, a number of research projects, aimed to support current research at the Council for Mineral Technology, are suggested

  12. Metallogenesis of Devonian—Carboniferous Strata—bound Carbonate—type Uranium Deposits in South China

    Institute of Scientific and Technical Information of China (English)

    庞玉蕙

    1990-01-01

    This paper deais with the geological conditions.mineralization characteristics,genetic types and space-time distribution of the Devonian-Carboniferous strata-bound carbonate-type uranium deposits in South China.These ore deposits are genetically classified as the leaching type and the leaching-hydrothermal superimposed type,These ore deposits are confined mainly to the strata (D2-3,C1)of platform-lagoon carbonate facies.Unique tectonic settings are a vital factor leading to the formation of these uranium deposits.A metallogenetic model for these uranium deposits has been proposed.

  13. Geochemical characteristics of Dongsheng sandstone-type uranium deposit, Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    SUN Yuzhuang; LIU Chiyang; DAI Shifeng; QIN Peng

    2007-01-01

    Generally, sandstone-type uranium deposits can be divided into three zones according to their redox conditions: oxidized zone, ore zone and reduced zone. The Dongsheng uranium deposit belongs to this type. In order to study its geochemical characteristics, 11 samples were taken from the three zones of the Dongsheng uranium deposit. Five samples of them were collected from the oxidized zone, four samples from the ore zone and two samples from the reduced zone. These samples were analyzed using organic and inorganic geochemical methods. The results of GC traces and ICP-MASS indicate that the three zones show different organic and inorganic geochemical characteristics.

  14. Search for an elusive 4.4-MeV α emitter in uranium minerals

    International Nuclear Information System (INIS)

    A search for an unidentified 4.4-MeV α-emitter in Belgian Congo pitchblende and uranium raffinates is described, and a history of observations of 4.4-MeV activity over the last 55 years in radiogenic haloes, zinc ores, monazite, thorite, huttonite, ultrabasic and other abyssal rocks, osmiridium, uranium ores, and raffinates of uranium is given. No evidence of excess 4.4-MeV activity was shown in any of the chemically separated fractions investigated. Upper limits for 4.4-MeV α activity in each of four studied samples are given

  15. Uranium exploration and mining operations in central and western Africa

    International Nuclear Information System (INIS)

    Uranium has been known in central Africa since 1915 with ore mines in Zaire being worked from 1945-1960. In the 1960s uranium exploration located two more deposits in Gabon and Niger. The uranium operations in both these countries are described. This includes an account of the company working the deposits, the geological environment of the deposits and the mining methods used in each part of the mines. Other uranium deposits in central and western Africa are listed and the mining operation described briefly. The uranium market has been depressed and production levels have been lower than normal. However, production could be increased in the existing uranium districts. Alternatively, new production centres could be sought in other countries. (U.K.)

  16. Reductive dissolution approaches to removal of uranium from contaminated soils

    International Nuclear Information System (INIS)

    Traditional approaches to uranium recovery from ores have employed oxidation of U(IV) minerals to form the uranyl cation which is subsequently complexed by carbonate or maintained in solution by strong acids. Reductive approaches for uranium decontamination have been limited to removing soluble uranium from solutions by formation of U4+ which readily hydrolyses and precipitates. As part of the Uranium in Soils Integrated Demonstration, we have developed a reductive approach to solubilization of uranium from contaminated soils which employs reduction to destabilize U(VI) solid and sorbed species, and strong chelators for U(IV) to prevent hydrolysis and solubilize the reduced from. This strategy has particular application to sites where the uranium is present primarily as intractable U(VI) phases and where high fractions of the contamination must be removed to meet regulatory requirements

  17. New developments on the uranium sector in Australia

    International Nuclear Information System (INIS)

    Australia is one of the richest countries as far as uranium is concerned. The Jabiluka deposit alone is considered to be the largest single uranium deposit of the Western world. The overall known assured uranium reserves in Australia amount to 465.000 tons U3O8 at cost ranges between 15 and 30 US Dollar per pound U3O8, i.e. approximately 21% of the known world reserves. Most of the Australien uranium ore is of relatively high grade and nearly all of it could be mined from open pit. At this stage Mary Kathleen in Queensland is the only producing uranium mine in Australia. The actual political attitude of the Australian government prevents the Australian uranium industry from beeing further developed. (orig.) 891 HP/orig. 892 MKO

  18. Uranium enrichment

    International Nuclear Information System (INIS)

    GAO was asked to address several questions concerning a number of proposed uranium enrichment bills introduced during the 100th Congress. The bill would have restructured the Department of Energy's uranium enrichment program as a government corporation to allow it to compete more effectively in the domestic and international markets. Some of GAO's findings discussed are: uranium market experts believe and existing market models show that the proposed DOE purchase of a $750 million of uranium from domestic producers may not significantly increase production because of large producer-held inventories; excess uranium enrichment production capacity exists throughout the world; therefore, foreign producers are expected to compete heavily in the United States throughout the 1990s as utilities' contracts with DOE expire; and according to a 1988 agreement between DOE's Offices of Nuclear Energy and Defense Programs, enrichment decommissioning costs, estimated to total $3.6 billion for planning purposes, will be shared by the commercial enrichment program and the government

  19. How to go on with Czech uranium: does current uranium mining in the Czech Republic cover Czech nuclear power plants' needs?

    International Nuclear Information System (INIS)

    The overview covers the history of uranium mining in the Czech Republic (description of the deposits and overview of their exploitation) and current needs for uranium and the status of uranium resources in the Czech Republic (uranium mining at the Rozna deposit, overview of exploitation of the deposit, uranium ore reserves, possibilities of future use of the Rozna deposit, the Brzkov and Horni Veznice deposits, and the use of mine waters as a secondary uranium source). It is concluded that in view of the current development of uses of raw materials for the power sector worldwide and increasing dependence of many countries (including the Czech Republic) on imports of such raw materials (often from politically unstable countries) it is strategically important to maintain domestic uranium mining to cover the needs of the Czech power sector. Uranium reserves and preconditions for their mining still exist in this country. (P.A.)

  20. URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    S. J. Goldstein, S. Luo, T. L. Ku, and M. T. Murrell

    2006-04-01

    Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit.

  1. URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO

    International Nuclear Information System (INIS)

    Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit

  2. Uranium metallogenic geological conditions and prediction vision in Linxi-Wulanhaote region

    International Nuclear Information System (INIS)

    Linxi-Wulanhaote region, where the Mesozoic marginal-Pacific metallogenic domain superimposed the Paleozoic Paleo-Asian metallogenic domain, is a significant polymetallic metallogenic province and a Uranium mineralization vision area with prospecting potential. According to the special region of metallogenic geological environment, the distribution of Uranium deposits (mineral occurrence) and uranium mineralization types, geophysical and geochemical prospecting anomalous features and ore-forming geological background was studied, and summarizes the uranium mineralization geological characteristics, mineralization and metallogenic regularity, preliminary several differentiate uranium metallogenic areas. According to forecasting criterion and the prediction model, screening prospecting prospect areas. (authors)

  3. Experimental study of in situ leaching uranium mining for low permeable sandstone uranium deposits using some surfactant

    International Nuclear Information System (INIS)

    In-situ leaching mining of low-permeable sandstone uranium deposit is difficult in technology now. The application of surfactant to in-situ leaching uranium mining of low permeable sandstone uranium deposit was studied using agitation leaching and column leaching for some uranium deposit in Xinjiang, China. The leaching solutions were adopted 10 g/L H2SO4 with different concentrations of the surfactant P. The results from agitation leaching experiments show that adding surfactant P can enhance the leaching rate, and the leaching rate of uranium reaches the highest which is 92.6% at 10 mg/L surfactant P. The results of column leaching show that the hydraulic conductivity of ore was increased by 28.8%, and the leaching rate of uranium was increased by 32% which reached 85.79%, when the leaching solutions were added 10 mg/L surfactant P. The surfactant decreases the surface tension of solution, which further increases the wetting capacity of solution to ore,so the adding of surfactant P could promote the leaching of uranium and increase the leaching rate. For low permeable sandstone uranium deposit, the in-situ leaching mining may be operated through adding suitable surfactant into leaching solutions. (authors)

  4. Genetic relationship between L granite body and 3701 uranium deposit

    International Nuclear Information System (INIS)

    The ore deposit occurs in carbonate rocks situated in the exocontact zone (0 - 120 m) with the L granite body. The mineralization is hosted by argillaceous limestone of the middle Devonian Yingtang Formation. The ore bodies are in lenticular or stratifed form. The ores are fine vein-type and disseminated type. Four stages of mineralization in the deposit are recognized. Industrial mineral is pitchblende which occurs as micro-impregnation and micro-vein in the calcite, and fills or replaces its associated minerals. Gangue minerals are chiefly calcite, pyrite, galena, sphalerite, chalcopyrite and tennantite etc. The host rocks of the ore-veins show weak hydrothermal alterations with plane and linear distribution. The L granite body with an area of 238 km2 is a single-stage intrusive batholith which mainly consists of coarse-medium grained biotite granites. Because the urnium mineralization age (65.0 - 30.7 Ma) is much younger than that of the L granite (318 -202 Ma), it may be considered that the deposit is genetically not related to activity of the L granitic magma. However, the granitic rocks may play an important role in the formation of the 3701 uranium deposit in following hands: providing a large number of uranium and lead; providing minor amounts of surfur, carbon and trace elements; forming impermeable basement to promote the accumulation of uranium-bearing solution; providing an additional heat source for heating ore-bearing solution and its convective circulation

  5. Uranium deposits of the Alligator Rivers area, Northern Territory, Australia

    International Nuclear Information System (INIS)

    Information collected during the excursion to ore-mining centres of North Australia on the situation and geology of the region, comparative characteristics of deposits Ranger 1, Kungarra, Nabarlec as well as results of the studies of Nabarlec ores and geochronometric data on pitchblendes of this deposit is presented. In the process of the formation of commercial concentrations of uranium in Alligator River four principal stages are distinguished: 1 - sedimentation-diagenetic (approximately 2.2-2.0 billion years); 2 - stage of folding and metamorphic transformation of sediments (approximation 2.0-1.5 billion years); 3 - stage of post-platform protoactivity (approximately 1.7, 1.65, 1.4-1.2 billion years); 4 - activization of tectonic movements on the boundary of the Late Riphean-Paleozoic (0.7-0.6 billion years). At all stages of the after-ore history platform series with sills of dolerites have played the role of covers protecting ores against washouts. At the Neogene - Quaternary time the laterization of rocks in this region have stimulated the evacuation of uranium from surface outcrops of ore bodies. It is proposed to classify these deposits with the gold-uranium type of epigenetic concentrations within a separate group of stratiform deposits of the polygeneous type

  6. Characterization of uranium bearing material using x-ray fluorescence and direct gamma-rays measurement techniques

    International Nuclear Information System (INIS)

    Uranium ore can be easily detected due to various gamma-ray energies emitted from uranium daughters particularly from 238U daughters such as 214Bi, 214Pb and 226Ra. After uranium is extracted from uranium ore, only low energy gamma-rays emitted from 235U may be detected if the detector is placed in close contact to the specimen. In this research, identification and characterization of uranium bearing materials is experimentally investigated using direct measurement of gamma-rays from 235U in combination with the x-ray fluorescence (XRF) technique. Measurement of gamma-rays can be conducted by using high purity germanium (HPGe) detector or cadmium telluride (CdTe) detector while a 57Coradioisotope-excited XRF spectrometer using CdTe detector is used for elemental analysis. The proposed technique was tested with various uranium bearing specimens containing natural, depleted and enriched uranium in both metallic and powder forms

  7. Characterization of uranium bearing material using x-ray fluorescence and direct gamma-rays measurement techniques

    Science.gov (United States)

    Mujaini, M.; Chankow, N.; Yusoff, M. Z.; Hamid, N. A.

    2016-01-01

    Uranium ore can be easily detected due to various gamma-ray energies emitted from uranium daughters particularly from 238U daughters such as 214Bi, 214Pb and 226Ra. After uranium is extracted from uranium ore, only low energy gamma-rays emitted from 235U may be detected if the detector is placed in close contact to the specimen. In this research, identification and characterization of uranium bearing materials is experimentally investigated using direct measurement of gamma-rays from 235U in combination with the x-ray fluorescence (XRF) technique. Measurement of gamma-rays can be conducted by using high purity germanium (HPGe) detector or cadmium telluride (CdTe) detector while a 57Coradioisotope-excited XRF spectrometer using CdTe detector is used for elemental analysis. The proposed technique was tested with various uranium bearing specimens containing natural, depleted and enriched uranium in both metallic and powder forms.

  8. Extractive electrospray ionization mass spectrometry for uranium chemistry studies.

    Science.gov (United States)

    Chen, Huanwen; Luo, Mingbiao; Xiao, Saijin; Ouyang, Yongzhong; Zhou, Yafei; Zhang, Xinglei

    2013-01-01

    Uranium chemistry is of sustainable interest. Breakthroughs in uranium studies make serious impacts in many fields including chemistry, physics, energy and biology, because uranium plays fundamentally important roles in these fields. Substantial progress in uranium studies normally requires development of novel analytical tools. Extractive electrospray ionization mass spectrometry (EESI-MS) is a sensitive technique for trace detection of various analytes in complex matrices without sample pretreatment. EESI-MS shows excellent performance for monitoring uranium species in various samples at trace levels since it tolerates extremely complex matrices. Therefore, EESI-MS is an alternative choice for studying uranium chemistry, especially when it combines ion trap mass spectrometry. In this presentation, three examples of EESI-MS for uranium chemistry studies will be given, illustrating the potential applications of EESI-MS in synthesis chemistry, physical chemistry, and analytical chemistry of uranium. More specifically, case studies on EESI-MS for synthesis and characterization of novel uranium species, and for rapid detection of uranium and its isotope ratios in various samples will be presented. Novel methods based on EESI-MS for screening uranium ores and radioactive iodine-129 will be presented. PMID:24349940

  9. Jabiluka gold-uranium project

    International Nuclear Information System (INIS)

    The Jabiluka gold-uranium deposit, 230km east of Darwin in the Alligator Rivers Region of the Northern Territory, was discovered by Pancontinental Mining Limited in 1971. Jabiluka, with reserves in excess of 200,000 tonnes of contained U3O8 in two deposits 500 metres apart, is the world's largest high grade uranium deposit and also contains nearly 12 tonnes of gold. It is proposed that only the larger deposit, Jabiluka II will be mined - by underground extraction methods, and that 275,000 tonnes of ore per year will be mined and processed to produce 1,500 tonnes of U3O8 and up to 30,000 oz of gold. The revenue from the uranium sales is estimated to be of the order of A$100 million per year at A$30/lb. By the end of 1982 all necessary mining and environmental approvals had been obtained and significant marketing progress made. With the Australian Labor Party winning Commonwealth Government in the 1983 election, Pancontinental's permission to seek sales contracts was withdrawn and development of the Jabiluka deposit ceased. Jabiluka remains undeveloped - awaiting a change in Australian Government policy on uranium. figs., maps

  10. Exploration for uranium and other nuclear materials

    International Nuclear Information System (INIS)

    Prospecting and exploration for uranium and other nuclear minerals have one advantage over prospecting for other metals because of their inherent radioactivity. Radioactivity in the earth is not confined solely to these elements but also to radiations coming from cosmic rays and from fallouts from large-scale atomic and nuclear explosions. The primary uranium mineral is uranimite, however, concentrations of other uranium minerals may also lead to an economic deposit. Thorium is about three times more abundant than uranium in the earth's crust. Uranium is practically found in many types of geologic environment it being ubiquitous and very mobile. Uranium deposits are classified in a descriptive manner, owing to lack of basic information as to its origin. These classifications are peneconcordant, for deposits as conglomerates and sandstones, discordant for vein pegmatite and contact metamorphic deposits, concordant for deposits in shales and phosphate rocks, and miscellaneous for deposits in beach and placer sands containing mostly thorium minerals. The different exploration techniques and their associated instrumentations are discussed from a regional scale survey to a detailed survey. To date, only the Larap copper-molybdenum-magnetite deposit at the Paracale district, Camarines Norte in the Philippines, has been found to contain uranium as discrete uraninite grains in the ore mineral assemblage of the deposit

  11. Uranium Mining and Remediation in India

    International Nuclear Information System (INIS)

    The paper describes the present situation of uranium mining and remediation in India. In India, the nuclear energy sector encompassing the complete fuel cycle is under the control of Department of Atomic Energy, Government of India. Uranium Corporation of India Ltd. (UCIL), a public sector undertaking under Department of Atomic Energy, with its headquarter at Jaduguda has been operating four underground mines, one opencast mine and two ore processing plants in East Singhbhum district of Jharkhand state. All these units are located in a geologically significant province - called Singhbhum Shear Zone, known for its uranium-copper resources. In addition, two large uranium mining and processing projects have been planned in the States of Andhra Pradesh and Meghalaya. These mines will be brought into production during the period between 2007 and 2012, and thereby increase the uranium production in the country for India's nuclear power programme. Though the mining operations for uranium in India commenced way back in the year 1968, no uranium mine has been closed so far in India. (author)

  12. Geology and mining development of the C-09 uranium deposit

    International Nuclear Information System (INIS)

    The uranium deposit at Campo do Cercado is the first one in Brazil to reach the stage of mining operations. Located in the alkaline volcanic complex of Pocos de Caldas, the deposit is divided into three ore bodies which lie at the edge of a secondary crater in the caldera. Uranium ore occurs in the primary form in association with volcanic breccia belts (body A), as well as a result of hydrothermal action (body B); it is also present in the secondary form (body E) as a product of the leaching of the breccia belts by the oxidation front, followed by concentration and deposition in a reduction zone. The mineralization takes the form of black uranium oxides (UO2/UO3), and, more rarely, coffinite. Pyrite, galena and fluorite are almost always present. Molybdenum is also found in close association with the uranium ore in quantities considered economically viable. The ore reserves of the Pocos de Caldas plateau are estimated at 26,800 t. (author)

  13. Total-Count Calibration Blocks for use in uranium Exploration

    DEFF Research Database (Denmark)

    Løvborg, Leif

    Transportable calibration blocks for field scintillometers and borehole probes were manufactured from concrete and installed at calibration sites in Denmark and Greece. The concrete mixes were prepared from aggregates of quartz sand and crushed uranium-thorium ore. Hater-reducing agents and silica...

  14. An analysis of the heap construction by long hole blasting for in-situ leaching of blasted ore

    International Nuclear Information System (INIS)

    The author establishes specific requirements for heap construction by blasting on the basis of the mechanism for in situ leaching of blasted ore, analyses the feasibility of heap construction by long hole blasting, selection of the blast plan and the relevant technological problems, and gives a case of heap construction by long hole blasting in Renhua uranium mine

  15. Environmental protection of uranium mines and mills in India: regulator's perspective

    International Nuclear Information System (INIS)

    Uranium mining and milling involves mining of the uranium ore from underground or open cast mine and chemically processing of the mined out ore to recover the uranium values. The storage of excavated waste rock, the disposal of radium containing mine water to water bodies, the venting out of radon containing mine exhaust to the open atmosphere constitute the environmental radiological hazards from a uranium mine. After chemical processing of the ore in a mill, the bulk of the radioactivity originally present in the ore along with the added chemicals finds its way in the mill tailings. Therefore, it warrants adequate safety measures for protection of the environment from the adverse effects of chemicals and radioactivity. These safety aspects of the uranium mines and mills and the impact on the environment are reviewed by the Atomic Energy Regulatory Board (AERB), the national regulatory body of India. This paper discusses the regulatory framework, regulatory issues associated with uranium mines and mills and the safety stipulations laid down during the consenting process of the new projects so that the environment around uranium mine and mill is adequately protected. (author)

  16. The study on the characteristic of Shuangqiao fault and the ore-control action of it in Daqiaowu deposit

    International Nuclear Information System (INIS)

    Shuangqiao fault is the most important one to control uranium ore bodies in Daqiaowu district of Quzhou area, Zhejiang province, but there is the obvious argument about the attitude which results in the restriction of the U- prognosis in the area. It aims at finding out the movement and ore-control action of the fault by the study on the characteristic of geometry and kinematics. and combining with geophysics in the depth. The Shuangqiao fault's trend is SE instead of NW by researching, and it has the polygenetic movement. There are two obvious stages of tension about the Shuangqiao fault which tally with the two stages of mineralization in Daqiaowu deposit to show the controlled action to ore bodies by it. By the study in-depth, the Shuangqiao fault can lead the metallogenic hydrothermal, and the secondary faults which connect with it can store the ore bodies. The point that the hanging side of fault can control the ore bodies is put forward by making a synthesis of tectonic assembled form and ore-control factors in Daqiaowu deposit. This view is approved by exploration to provide the reference for disposition of uranium prospecting. (authors)

  17. Existing and new techniques in uranium exploration

    International Nuclear Information System (INIS)

    The demands on uranium exploration over the next 25 years will be very great indeed and will call for every possible means of improvement in exploration capability. The first essential is to increase geological knowledge of the mode of occurrence of uranium ore deposits. The second is to improve existing exploration techniques and instrumentation while, at the same time, promoting research and development on new methods to discover uranium ore bodies on the earth's surface and at depth. The present symposium is an effort to increase co-operation and the exchange of information in the critical field of uranium exploration techniques and instrumentation. As an introduction to the symposium a brief review is presented, firstly of what can be considered as existing techniques and, secondly, of techniques which have not yet been used on an appreciable scale. Some fourteen techniques used over the last 30 years are identified and their appropriate application, advantages and limitations are briefly summarized and the possibilities of their further development considered. The aim of future research on new techniques, in addition to finding new ways and means of identifying surface deposits, should be mainly directed to devising methods and instrumentation capable of detecting buried ore bodies that do not give a gamma signal at the surface. To achieve this aim, two contributory factors are essential: adequate financial support for research and development and increased specialized training in uranium exploration and instrumentation design. The papers in this symposium describe developments in the existing techniques, proposals for future research and development and case histories of exploration programmes

  18. Tramp uranium

    International Nuclear Information System (INIS)

    Many utilities have implemented a no leaker philosophy for fuel performance and actively pursue removing leaking fuel assemblies from their reactor cores whenever a leaking fuel assembly is detected. Therefore, the only source for fission product activity in the RCS when there are no leaking fuel assemblies is tramp uranium. A technique has been developed that strips uranium impurities from ZrCl4. Unless efforts are made to remove natural uranium impurities from reactor materials, the utilities will not be able to reduce the RCS specific 131I activity in PWRs to below the lower limit of ∼1.0 x 10-4 μCi/g

  19. Uranium mineralization in response to regional metamorphism at Lilljuthatten, Sweden

    International Nuclear Information System (INIS)

    A multidisciplinary approach of geologic, petrographic, geochemical, and isotopic studies has been used to examine the uranium ore deposit of Lilljuthatten, Sweden, and its relationship to the Olden Granite. Analyses of six mineralized and five nonmineralized whole-rock drill core samples from the uranium deposit at Lilljuthatten yield a lead-lead isochron age of 420 + or - 1 m.y. This age corresponds to the last stage of the Caledonian orogeny, which indicates that the ore deposit most likely formed as a result of this event. None of the isotopic systems examined have completely retained the intrusive age of the Olden Granite, but data for several systems suggest an age of approximately 1,650 m.y. A model for the genesis of the ore deposit is proposed

  20. Uranium deposits in magmatic and metamorphic rocks

    International Nuclear Information System (INIS)

    The association of uranium with certain types of magmatic and metamorphic rocks is well known. They have consequently been explored and studied quite extensively. In recent years interest in them has been eclipsed by the discovery of larger, lower cost deposits in other geological environments. Nonetheless, magmatic and metamorphic rocks continue to be important sources of uranium and large areas of the Earth's crust with such rocks are prospective locations for additional discoveries. As future exploration and development could be more difficult the full importance of individual deposits may not be recognized until after many years of investigation and experience. In addition to being important host rocks, magmatic and metamorphic rocks have been of considerable interest to uranium geologists as they are considered to be important source rocks for uranium and thus can lead to deposits nearby in other environments. Furthermore, these rocks provide important information on the geochemical cycle of uranium in the Earth's crust and mantle. Such information can lead to identification of uranium provinces and districts and to a basic understanding of processes of formation of uranium deposits. The International Atomic Energy Agency convened a Technical Committee Meeting on Uranium Deposits in Magmatic and Metamorphic Rocks. The meeting was held in Salamanca, Spain, from 29 September to 3 October 1986. It was followed by a two day field trip to uranium deposits in the Ciudad Rodrigo and Don Benito areas. The meeting was attended by 48 participants from 22 countries. Two panels were organized for discussion of the following topics: (1) ore deposit genesis and characterization and (2) exploration and resource assessment. The technical papers together with the panel reports form this publication. The scope and variety of the papers included and the panel reports provide a good coverage of current knowledge and thinking on uranium in magmatic and metamorphic rocks

  1. Research on Magnesite Ore Purification

    Directory of Open Access Journals (Sweden)

    Berisha, K.

    2009-12-01

    Full Text Available Magnesite ore, consisting mainly of magnesite, MgCO3 is a chief mineral source for production of high quality refractory materials based on highly pure MgO. However, the presence of calcium and silicium mineral impurities in the ore adversely affect refractoriness. The removal of silicate minerals is now a routine process but it is not so for calcium minerals impurities. In this work, the new method for the removal of calcium mineral impurities from magnesite ore has been investigated. It is based on extraction of calcium hydroxide from the calcined hydrated ore with the solution of magnesium nitrate. The results show that it is possible to remove up to 65–83 % of calcium oxide (CaO within five minutes, and up to 88–95 % within an hour. The process itself is complex, but mainly under mass transfer control. It is possible to use waste materials produced as fertilizer in agriculture thus helping in environmental protection.

  2. The history of uranium mining and the Navajo people.

    Science.gov (United States)

    Brugge, Doug; Goble, Rob

    2002-09-01

    From World War II until 1971, the government was the sole purchaser of uranium ore in the United States. Uranium mining occurred mostly in the southwestern United States and drew many Native Americans and others into work in the mines and mills. Despite a long and well-developed understanding, based on the European experience earlier in the century, that uranium mining led to high rates of lung cancer, few protections were provided for US miners before 1962 and their adoption after that time was slow and incomplete. The resulting high rates of illness among miners led in 1990 to passage of the Radiation Exposure Compensation Act.

  3. Application of inertia cone crushers in heap leaching uranium mines

    International Nuclear Information System (INIS)

    Inertia cone crusher is a high-efficiency, super-fine crushing device with unique principle and structure. The inertia cone crusher has high reduction ratio and low power consumption, and can control final products in narrow scope. It is suitable for crushing uranium ores in heap leaching mines. The particular characters and structure of the inertia cone crusher are briefly introduced. Application of the inertia cone crusher in uranium mines is summarized. It is indicated that the inertia cone crusher has good application prospects in uranium mines. (authors)

  4. Effect of peroxodisulfate on uranium leaching with ammonium bicarbonate

    Directory of Open Access Journals (Sweden)

    Nurbek Nurpeisov

    2013-05-01

    Full Text Available In this study, uranium leaching from ore material using acid solution and bicarbonate in a presence peroxodisulfate ion was examined. For experiments two different tips of leaching methods were used: leaching in static and dynamic conditions. The determination of uranium concentrations in product solutions were analyzed by titrimetric (by ammonia vanadate solution method. The maximum yield of uranium leached with ammonium bicarbonate in a presence of ammonium peroxodisulfate (5 g/L was only 33%, which is half the corresponding value obtained by sulfuric acid (65%.

  5. Uranium separations using extraction chromatography

    International Nuclear Information System (INIS)

    In the analysis of environmental samples for uranium and thorium pollutants and at natural levels for the dating of geological samples there was felt a need to develop better uranium and thorium, separation procedures to replace the established anion exchange method used at AEA Technology plc. This was the first aim of the PhD research. Separation of uranium from thorium prior to measurement of the isotopes by alpha spectrometry was necessary due to the similar alpha energies of 234U and 230Th. TRU and UTEVA extraction chromatography resins (EIChroM Industries) were investigated as potential replacements to the anion exchange separation method. The resins are claimed by EIChroM to offer the advantage of providing an actinide specific separation while reducing the separation time from 2 to 0.5 days; the volume of acidic waste produced by a factor of 3, therefore, the cost of analysis was reduced. A uranium and thorium separation procedure using the UTEVA extraction chromatography resin was developed. The uranium and thorium were sorbed by the UTEVA resin from 2M nitric acid. The thorium was then eluted from the resin with 5M hydrochloric acid and the uranium with 0.02M hydrochloric acid. The separation procedure was then evaluated using uraninite ore, coral, granite and lake sediment reference materials. The uranium and thorium concentrations and the 234U/238U and 230Th/234U activity ratio values determined for the reference material were in good agreement with certified values. The presence of plutonium was found to interfere with the measurement of uranium and thorium by alpha spectrometry. This was due to the similar alpha energies of uranium, thorium and plutonium. The co-elution of plutonium with uranium and thorium from the UTEVA resin was prevented by the inclusion of a reduction step using iron (II) sulphamate. The resulting plutonium (III) was not retained by the UTEVA column. The chemical recoveries for the procedure were similar to those for anion

  6. Quantitative radiochemical method for determination of major sources of natural radioactivity in ores and minerals

    Science.gov (United States)

    Rosholt, J.N.

    1954-01-01

    When an ore sample contains radioactivity other than that attributable to the uranium series in equilibrium, a quantitative analysis of the other emitters must be made in order to determine the source of this activity. Thorium-232, radon-222, and lead-210 have been determined by isolation and subsequent activity analysis of some of their short-lived daughter products. The sulfides of bismuth and polonium are precipitated out of solutions of thorium or uranium ores, and the ??-particle activity of polonium-214, polonium-212, and polonium-210 is determined by scintillation-counting techniques. Polonium-214 activity is used to determine radon-222, polonium-212 activity for thorium-232, and polonium-210 for lead-210. The development of these methods of radiochemical analysis will facilitate the rapid determination of some of the major sources of natural radioactivity.

  7. Uranium Market

    International Nuclear Information System (INIS)

    The main fuel component for commercial nuclear power reactors is Uranium. When compared to fossil fuels, it has a competitive edge due to factors such as economics and environmental conditions and in particular due to its international market availability. Uranium world demand reached to 67 320 tU in 2004, which was covered with additional sources. To project the uranium markets behavior requires to know and to accept some conditions tied to the demand, such as the electrical world consumption, the greenhouse effect; water desalination, production of hydrogen, industrial heat, the innovative development of nuclear reactors, and the average time of 10 years between the beginning of exploration programs and definition of deposits, which it owes mainly to the difficulty of achieving the legal, environmental and local community authorizations, to open new mining centers. Uranium market future projections, made by IAEA experts in 2001, that considered middle and high demand scenarios, concluded that cumulatively to year 2050, with regard to demand it will be required 5.4 and 7.6 million tons of uranium respectively, and with regard to the uranium price, it should present a sustained increase. In the last years the situation of the uranium market has changed dramatically. In August 2006 the price of uranium reached to USD 106/kgU in the spot market, surpassing all the made projections. The increase in price that has stayed in rise in the last five years is reactivating the prospection and exploration efforts anywhere in the world, and competition between prospective areas of potential resources mainly in less explored territories

  8. Discourse characteristics of ore-bearing aquifer of Chaidenghao in Husiliang area

    International Nuclear Information System (INIS)

    Call Sri Lanka article focuses primarily on wood board beam region trench features lots of ore-bearing aquifer, located in the ore-bearing aquifer under Zhiluo lower sub-section; A brief introduction to the work area's geology and stratigraphic structure, and a brief description of the main ore purpose of the lower layer Zhiluo under sub-section lithology; Shows aquifer top, bottom and described its characteristics, the two formed a 'watertight-water-impermeable' good hydrogeological structure of the ancient interlayer oxidation zone formation to create a favorable space. Based on the above description and analysis of the location of uranium mineralization in good condition, have a good vision of the mineralization. (author)

  9. Mineralogical test as a preliminary step for metallurgical proses of Kalan ores

    International Nuclear Information System (INIS)

    Mineralogical tests as a preliminary step for hydrometallurgy of Kalan ores, including Eko Remaja and Rirang have been carried out to identify the elements and minerals content which affect the metallurgical process, especially the leaching and purification of uranium. Mineralogical tests have been done by means of radioactive and radioluxugraph tests to identify radioactive minerals; thin specimen analysis, Scanning Electron Microscopy (SEM) to identify elements and morphology, EPMA to analyse qualitatively the elements, X-ray Diffractometer (XRD) to identify of minerals content; and X-ray Fluorescence (XRF) and chemical analyses to determine total elements qualitatively and quantitatively. The experimental results show that the Eko Remaja ores contain uraninite and brannerite, iron and titan oxides, sulfides, phosphates and silicates minerals, while the Rirang ores contain uraninite, monazite and molybdenite

  10. Radioactive waste accumulations at non-uranium facilities as a potential source for uranium production

    International Nuclear Information System (INIS)

    Among mineral sources for natural radionuclides it is possible to distinguish traditional (uranium, uranium-bearing and thorium deposits) and not traditional sources (a wide spectrum of nonradioactive deposits of noble, rare, colour, black and other metals, gas, oil, coal, construction materials, etc.) which result to natural radionuclides mobilization. Natural radionuclides containing in sub clarke (background) amounts in non-radioactive ores and host rocks can accumulate during mining, milling, enrichment, metallurgical and chemical processing, transportation in various products, wastes and equipment. From one side they can present economic interest as potential source for reprocessing and uranium production. From the other side they are regarded as a source of water, ground and atmosphere contamination, expanding harmful influence on population and surrounding environment. Large volumes of non-radioactive ores development suppose significant natural radionuclides amounts in processing products and wastes. Uranium and radionuclides recovery and reprocessing from these products and wastes can satisfy some future nuclear power plants fuel requirements as well as solve the problem of territories rehabilitation and wastes disposal. Costs for uranium production from such non-traditional sources should be partly covered from environmental budget. Non radioactive resources can be classified into three types basing on degree of their contaminating effect and negative influence on the environment: I. Most dangerous: Natural radionuclides concentrations exceed allowable concentration in atmosphere: recent and buried Au, Pt, Sn, Zr, Ti, W, Ta, Nb, REE placers; ores of Ta, Nb, REE deposits; coal, lignite, fuel slates, peat. II. Medium danger: High concentrations of radioactive elements occur in some cases: glass sand; construction materials (gravel, sand, clay); oil and accompanying waters, fuel gases. III. Potentially dangerous: Dangerous elevated concentration of

  11. Method of continuous pressure leaching of ores

    International Nuclear Information System (INIS)

    Ore leaching, especially suspensions of ground ore or fine ore fractions from physical treatment was divided into two operations. The former, i.e., ore mixing with technical grade concentrated sulfuric acid proceeded in a separate mixer. The mixture was then transported into an autoclave where the actual leaching proceeded for 2 to 4 hours. The extracted mixture was discharged through the autoclave bottom. The leaching autoclave used can be without any inner structures. The separation of mixing from the actual leaching allows processing ores with high levels of clay components, increasing operating reliability of the facility, reducing consumption of special structural materials and energy, and increasing process efficiency. (E.S.)

  12. Sweetwater Uranium Project. Draft environmental statement

    International Nuclear Information System (INIS)

    The proposed action is the issuance of a Source Material License to Minerals Exploration Company for the construction and operation of the proposed Sweetwater Uranium Mill with a nominal capacity of 3000 tons (2.7 x 106 kg) per day of uranium ore in Wyoming. The applicant proposes also to construct a heap-leaching and resin ion-exchange facility to extract uranium from low-grade ores and mine water. Impacts to the area due to the operation of the Sweetwater Uranium Mine/Mill Project will result in: Alternations of up to 2200 acres by the mill, mine pit area, and roads, and about 3450 acres of Battle Spring Flat to be inundated by mine dewatering operations; increase in the existing background radiation levels; socioeconomic effects on Rawlins and other nearby areas; and tailings from the mill will be produced at a rate of about 3000 tons (2.7 x 106 kg) per day and will be stored onsite in a lined impoundment. Conditions for the issuance of the license are given

  13. Radiation protection in uranium mining and milling industry

    International Nuclear Information System (INIS)

    The first phase of the Nuclear Fuel Cycle is exploration for uranium and the next is mining and milling of uranium ore. This phase is mostly characterised by low levels of radioactivity and radiation exposure of the workers involved. Yet it is a paradoxical truth that incidence of cancer among the work force, especially miners, due to occupational radiation exposure (from radon and decay products) has been proved only in uranium mines in the entire Nuclear Fuel Cycle. Of course such incidence occurred before the detrimental effect of radiation exposure was realised and understood. Therefore it is important to familiarise oneself with the radiation hazards prevalent in the uranium mining and milling facilities so as to take appropriate remedial measures for the protection of not only the workers but also the public at large. There are both open cast and underground uranium mines around the world. Radiation hazards are considerably less significant in open cast mines than in underground mines unless the ore grade is very high. By default therefore the discussion which ensues relates mainly to radiation hazards in underground uranium mines and associated milling operations. The discussion gives a brief outline of typical uranium mine and mining and milling operations. This is followed by a description of the radiation hazards therein and protection measures that are to be taken to minimise radiation exposure. (author)

  14. Code of practice on radiation protection in the mining and milling of radioactive ores 1987

    International Nuclear Information System (INIS)

    This Code was formulated under provisions of the Environment Protection (Nuclear Codes) Act 1978 in close consultation with the Governments of the States and the Northern Territory. It is a major revision of the Code of Practice on Radiation Protection in the Mining and Milling of Radioactive Ores (1980), incorporating changes flowing from advances in internationally agreed radiation protection philosophy, and experience gained in Australia in uranium mining and milling operations and the extraction of monazite from mineral sands. The Code specifies the standards, practices, procedures, and measures to prevent or limit risk to employees and to the public from uranium mining and milling, mineral sands operations and extraction of radioactive ores. To assist the industry in meeting the requirements and responsibilities imposed by the Code, guidelines to the former Code will be reviewed and, if appropriate, revised. New guidelines to assist compliance with changed requirements will also be prepared. The Act provides for the revision of codes of practice. The Code of Practice on Radiation Protection in the Mining and Milling of Radioactive Ores (1987) will be reviewed from time to time and revised if necessary to ensure that the highest standards of radiation protection in the mining and milling of radioactive ores are maintained

  15. Statistical data of the uranium industry

    International Nuclear Information System (INIS)

    The ''Statistical Data of the Uranium Industry'' is a compilation of historical facts and figures through 1976. These statistics are based primarily on information provided voluntarily by the uranium exploration, mining, and milling companies. This publication is compiled and revised annually by the Grand Junction Office. The production and ore reserve information has been compiled in a manner which avoids disclosure of proprietary information. Due to increased interest in higher-cost and lower-grade resources, four new categories of information are provided: (1) an estimate of the $50 per pound or less reserves and potential resources (p. 21-22, 26, 43), (2) preproduction and postproduction uranium mineral inventories (p. 34-39), (3) size-depth-thickness and size-grade matrices (p. 64-70), and (4) average U3O8 prices for delivery commitments

  16. Field Testing of Downgradient Uranium Mobility at an In-Situ Recovery Uranium Mine

    Science.gov (United States)

    Reimus, P. W.; Clay, J. T.; Rearick, M.; Perkins, G.; Brown, S. T.; Basu, A.; Chamberlain, K.

    2015-12-01

    In-situ recovery (ISR) mining of uranium involves the injection of O2 and CO2 (or NaHCO3) into saturated roll-front deposits to oxidize and solubilize the uranium, which is then removed by ion exchange at the surface and processed into U3O8. While ISR is economical and environmentally-friendly relative to conventional mining, one of the challenges of extracting uranium by this process is that it leaves behind a geochemically-altered aquifer that is exceedingly difficult to restore to pre-mining geochemical conditions, a regulatory objective. In this research, we evaluated the ability of the aquifer downgradient of an ISR mining area to attenuate the transport of uranium and other problem constituents that are mobilized by the mining process. Such an evaluation can help inform both regulators and the mining industry as to how much restoration of the mined ore zone is necessary to achieve regulatory compliance at various distances downgradient of the mining zone even if complete restoration of the ore zone proves to be difficult or impossible. Three single-well push-pull tests and one cross-well test were conducted in which water from an unrestored, previously-mined ore zone was injected into an unmined ore zone that served as a geochemical proxy for the downgradient aquifer. In all tests, non-reactive tracers were injected with the previously-mined ore zone water to allow the transport of uranium and other constituents to be compared to that of the nonreactive species. In the single-well tests, it was shown that the recovery of uranium relative to the nonreactive tracers ranged from 12-25%, suggesting significant attenuation capacity of the aquifer. In the cross-well test, selenate, molybdate and metavanadate were injected with the unrestored water to provide information on the transport of these potentially-problematic anionic constituents. In addition to the species-specific transport information, this test provided valuable constraints on redox conditions within

  17. Measurements of /sup 234/U, /sup 238/U and /sup 230/Th in excreta of uranium-mill crushermen

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.R.; Jackson, P.O.; Brodacynski, G.G.; Scherpelz, R.I.

    1982-07-01

    Uranium and thorium levels in excreta of uranium mill crushermen who are routinely exposed to airborne uranium ore dust were measured. The purpose was to determine whether /sup 230/Th was preferentially retained over either /sup 234/U or /sup 238/U in the body. Urine and fecal samples were obtained from fourteen active crushermen with long histories of exposure to uranium ore dust, plus four retired crushermen and three control individuals for comparison. Radiochemical procedures were used to separate out the uranium and thorium fractions, which were then electroplated on stainless steel discs and assayed by alpha spectrometry. Significantly greater activity levels of /sup 234/U and /sup 238/U were measured in both urine and fecal samples obtained from uranium mill crushermen, indicating that uranium in the inhaled ore dust was cleared from the body with a shorter biological half-time than the daughter product /sup 230/Th. The measurements also indicated that uranium and thorium separate in vivo and have distinctly different metabolic pathways and transfer rates in the body. The appropriateness of current ICRP retention and clearance parameters for /sup 230/Th in ore dust is questioned.

  18. Age, sedimentary environments, and other aspects of sandstone and related host rocks for uranium deposits

    International Nuclear Information System (INIS)

    Project II of the Uranium Geology Working Group was assigned to the study of sedimentary basins and sandstone - type uranium deposits. About 40% of the worlds's uranium resources are contained in sandstone-type deposits, which has led to extensive research. The research was carried out mainly by correspondence, and the results reported by 21 geologists from 10 nations are summarized in this report. It investigated five topics dealing with important aspects of the geology of uranium ores in sandstone host formations: age of host rock; partitioning of uranium between continental and marine sediments; latitude limitation on formation of sandstone deposits; effect of rock formation dip on sandstone ores; usefulness of stable isotope and fluid inclusion studies. The results of studies on these subjects form part of a wider programme of the Working Group, whose final results will be presented at the 27th International Geological Congress in Moscow in 1984

  19. Eldorado Port Hope refinery - uranium production (1933-1951)

    International Nuclear Information System (INIS)

    Since the discovery of pitchblende in 1930 by Gilbert LaBine at Great Bear Lake (GBL), North West Territories, uranium has played a central role in the growth of the Canadian mining sector and it in turn has propelled the country into it's present position as the world's top uranium producer. The rich ore mined there was used originally by Eldorado Gold Mines Limited to build a business based on the extraction of radium, which was selling at $70,000 a gram at the time, and silver which was present in the ore in commercial amounts. The mine site on GBL became known as Port Radium. In 1933 Eldorado brought a refinery on-line at Port Hope, Ontario nearly 4,000 miles away from the mine, and began to produce radium, silver and uranium products. Initially uranium played a minor role in the business and the products were sold into the ceramics industry to manufacture a variety of crockery with long-lasting colours. In addition, there were sales and loans of uranium products to research laboratories that were exploring nuclear energy for possible use in weapons and power generation, as the potential for this was clearly understood from 1939 onwards. These laboratories included the National Research Council (George Laurence), Columbia University (Enrico Fermi) and International Chemical Industries (J.P. Baxter). With the beginning of World War II the radium business suffered from poor sales and by 1940 the mine was closed but the refinery continued operation, using accumulated stockpiles. By 1942 uranium had become a strategic material, the mine was reopened, and the refinery began to produce large quantities of uranium oxide destined for The Manhattan Project. As events unfolded Eldorado was unable to produce sufficient ore from GBL so that a large quantity of ore from the Belgian Congo was also processed at Port Hope. Ultimately, as a result of the efforts of this enterprise, World War II was finally ended by use of atomic weapons. After World War II the refinery

  20. A study on hydrogen, oxygen, carbon, sulfur and lead isotopes in the rich uranium deposit No.201

    International Nuclear Information System (INIS)

    The uranium deposit No.201 located in Indonesian granite is one of the richest uranium deposits of granite type in China. An attempt is made to investigate the sources of ore-forming solutions and ore-forming materials, and to presume the environment of ore formation in the light of the study on composition of stable isotopes such as hydrogen, oxygen, carbon, sulfur and lead. The research results indicate that the ore-forming fluids in the deposit is mainly composed of meteoric water, the ore-forming materials principally came from pre-Yanshanian granite Massif and possibly, partly from the lower crust, and metallogenesis was undertaken under relatively stable physicochemical conditions

  1. The uranium industry of South Africa

    International Nuclear Information System (INIS)

    This paper was originally published in 1954 and is reproduced in this centenary issue of the journal of the South African Institute of Mining and Metallurgy. South Africa's economy was (and is) based on mining. The early history of the uranium mining industry (until 1954) is discussed in detail, together with its status and economy. The first quantitative assessment of the uranium potential of the Witwatersrand goldfield was made in 1945 when it was reported that South Africa had one of the largest low-grade uranium fields in the world. The first metallurgical plants brought considerable benefit to the area. The process of uranium extraction was basically similar to that employed in the recovery of gold. It could be divided into the same three main headings: agitation, filtration and precipitation. It was predicted that the program, in full swing, would possibly consume as much as 20,000 tons of manganese ore a month, as the extraction process requires dioxide. It was for this reason that manganese recovery plants have been incorporated in the process. Other materials that were to be used in large quantities were lime, limestone, animal glue and water. Considering the increasing importance of uranium in the economy of the country, the question of secrecy was becoming a problem. At that time the demand for South African uranium was guaranteed by a ten-year agreement with the British and American authorities. 3 figs

  2. Uranium enrichment

    International Nuclear Information System (INIS)

    Canada is the world's largest producer and exporter of uranium, most of which is enriched elsewhere for use as fuel in LWRs. The feasibility of a Canadian uranium-enrichment enterprise is therefore a perennial question. Recent developments in uranium-enrichment technology, and their likely impacts on separative work supply and demand, suggest an opportunity window for Canadian entry into this international market. The Canadian opportunity results from three particular impacts of the new technologies: 1) the bulk of the world's uranium-enrichment capacity is in gaseous diffusion plants which, because of their large requirements for electricity (more than 2000 kW·h per SWU), are vulnerable to competition from the new processes; 2) the decline in enrichment costs increases the economic incentive for the use of slightly-enriched uranium (SEU) fuel in CANDU reactors, thus creating a potential Canadian market; and 3) the new processes allow economic operation on a much smaller scale, which drastically reduces the investment required for market entry and is comparable with the potential Canadian SEU requirement. The opportunity is not open-ended. By the end of the century the enrichment supply industry will have adapted to the new processes and long-term customer/supplier relationships will have been established. In order to seize the opportunity, Canada must become a credible supplier during this century

  3. Selective Removal of Uranium from the Washing Solution of Uranium-Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Han, G. S.; Kim, G. N.; Koo, D. S.; Jeong, J. W.; Choi, J. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This study examined selective removal methods of uranium from the waste solution by ion exchange resins or solvent extraction methods to reduce amount of the 2{sup nd} waste. Alamine-336, known as an excellent extraction reagent of uranium from the leaching solution of uranium ore, did not remove uranium from the acidic washing solution of soil. Uranyl ions in the acidic waste solution were sorbed on ampholyte resin with a high sorption efficiency, and desorbed from the resin by a washing with 0.5 M Na{sub 2}CO{sub 3} solution at 60 .deg. C. However, the uranium dissolved in the sulfuric acid solution was not sorbed onto the strong anion exchanger resins. A great amount of uranium-contaminated (U-contaminated) soil had been generated from the decommissioning of a uranium conversion plant. Our group has developed a decontamination process with washing and electrokinetic methods to decrease the amount of waste to be disposed of. However, this process generates a large amount of waste solution containing various metal ions.

  4. Development of a stable uranium recovery regulatory framework for uranium recovery activities in the United States

    International Nuclear Information System (INIS)

    The U.S. Nuclear Regulatory Commission (NRC) has historically regulated operations at all uranium and thorium recovery facilities under the authority of the Atomic Energy Act of 1954, as amended. Uranium recovery facilities are those plants, or portions of facilities that process uranium- or thorium-bearing material primarily for its source material content. The uranium recovery industry expressed some concerns over several aspects of the NRC's practices, as described in the NRC's guidance documents. In April 1998, the National Mining Association submitted a report to the Commission, that identified specific concerns with NRC's current position and guidance regarding concurrent jurisdiction at uranium mills; dual regulatory authority at in situ leach facilities; the use of mill tailings impoundments for disposal of radioactive material other than 11e.(2) byproduct material; and the ability to process alternate feed material at uranium mills. The NRC staff addressed most of these concerns in two SECY (staff recommendations) papers that were concurrently provided to the Commission, along with a SECY paper on a draft rulemaking plan relating to these and other issues. The issues addressed in these papers included a new rulemaking, disposal of materials other than 11 e.(2) byproduct material, processing of materials other than natural ores, and improved efficiency for regulating in situ leach uranium facilities. The Commission issued final policy decisions on these issues and directions for NRC staff to implement those decisions in July 2000. (author)

  5. Final environmental statement related to the Minerals Exploration Company, Sweetwater Uranium Project (Sweetwater County, Wyoming). Docket No. 40-8584

    International Nuclear Information System (INIS)

    The proposed action is the issuance of a Source Material License to Minerals Exploration Company (MEC) for the construction and operation of the proposed Sweetwater Uranium Mill in Sweetwater County, Wyoming, with a nominal capacity of 3000 tons (2.7 x 106 kg) per day of uranium ore. As part of this proposal, the applicant proposes also to construct a heap leaching and resin ion-exchange facility to extract uranium from low-grade ores and mine water. Conditions for the protection of the environment are set forth

  6. The effect of sedimentation background of depression target stratum containing mineral in Erlian basin, Ulanqab to uranium mineralization type

    International Nuclear Information System (INIS)

    The ore bearing stratum in depression of Ulanqab contains target stratum of lower cretaceous Saihan formation, upper cretaceous Erlian formation, paleogene system etc. The uranium mineralization type which have found by now contains sandstone type, mudstone type and coal petrography. The genetic type of mineral deposit contains paleovalley-type, reformed type after superposition with sedimentation and diagenesis by sedimentation. Uranium mineralization of both the natural type and genetic type have close relationship with its ore bearing stratum. Different geological background forms different sedimentary system combination, and different sedimentary system combination forms different uranium mineralization type. (authors)

  7. Perspective and resource evaluation and metallogenic studies on sandstone-type uranium deposit in Qianjiadian depression of Songliao Basin

    International Nuclear Information System (INIS)

    The geotectonic evolution history of the southeastern part of Songliao Basin has been clearly described and it is pointed out that both of the provenance rocks and evolution features of the studied area are favorable to the formation of U-rich sandstone bodies, development of interlayered oxidation and providing uranium source for mineralization. Yaojia Formation in Qianjiadian depression has been found out to be the favorable target ore bed for looking for sandstone-type uranium deposit. On the basis of analysis of metallogenetic conditions, the perspective target area has been circled and a sandstone-type uranium deposit with a certain amounts of uranium tonnages has been discovered. The achievements and data have been gotten in the following aspects: constitution and features of ore-forming beds and sandstone bodies, uranium existence forms and mineralogical and chemical compositions of the ores, associated elements and their economic values for comprehensive mining. The study of metallogenetic features and mechanism of the uranium deposit suggested that pre-enrichment of uranium during the depositional-diagenetic stage provide a good basis for uranium mineralization, and hereafter interlayered oxidation as well as oil-gas reduction processes played a decisive role to uranium mineralization. U-Pb isotopic studies indicate that the ores have two isochron ages of 53±3 Ma and 7.0±0 Ma, corresponding to the periods of arid and semiarid paleo-climates which are favorable to interlayered oxidation development and uranium mineralization. It is concluded that the Qianjiadian sandstone-type uranium deposit is genetically related to interlayered oxidation and secondary reduction of oil-gas. The metallogenic model of Qianjiadian uranium deposit was set up. (authors)

  8. Formation conditions of paleovalley uranium deposits hosted in upper Eocene-lower Oligocene rocks of Bulgaria

    Science.gov (United States)

    Vinokurov, S. F.; Strelkova, E. A.

    2016-03-01

    The uranium deposits of Bulgaria related to the Late Alpine tectonomagmatic reactivation are subdivided into two groups: exogenic-epigenetic paleovalley deposits related to the basins filled with upper Eocene-lower Oligocene volcanic-sedimentary rocks and the hydrothermal deposits hosted in the coeval depressions. The geological and lithofacies conditions of their localization, the epigenetic alteration of rocks, mineralogy and geochemistry of uranium ore are exemplified in thoroughly studied paleovalley deposits of the Maritsa ore district. Argumentation of the genetic concepts providing insights into both sedimentation-diagenetic and exogenic-epigenetic mineralization with development of stratal oxidation zones is discussed. A new exfiltration model has been proposed to explain the origin of the aforementioned deposits on the basis of additional analysis with consideration of archival factual data and possible causes of specific ningyoite uranium ore composition.

  9. Measurement of moisture in mill feed ore

    Energy Technology Data Exchange (ETDEWEB)

    Timm, A.R.; Moench, P.; Moisel, E. (Council for Mineral Technology, Randburg (South Africa))

    1985-04-01

    The control of the moisture in the feed to a mill is very important for efficient mill operation. Water is added continuously to the ore fed to a mill to maintain a suitable mix of ore and moisture in the mill. However, problems arise because of the large variation in the moisture content of the ore, which affects the efficiency of the grind. If too little moisture is present, the mill is unable to grind the ore finely enough, creating instead a thick 'porridge' that causes the mill to choke up. On the other hand, too much moisture results in inefficient grinding because the ore is flushed through the mill too quickly. Several techniques are available for measuring moisture and Mintek undertook an investigation in an attempt to develop a reliable robust moisture meter suitable for monitoring the moisture content of ore, which include the following: neutron backscattering, infrared absorption, microwaves, capacitance and moisture as a function of conductivity.

  10. Study on leaching of refractory uranium in clay

    International Nuclear Information System (INIS)

    The leaching characteristcs of uranium-bearing clay of deposit A and other uranium deposits ar described. The causes of leaching refractoriness of the uranium in clay have been discussed. The research results show that the reason of leaching refractoriness of the uranium in clay is associated with recryctallization of clay minerals (including opel and goethite) during metamorphism of rocks. The probable course of forming refractory uranium in clay may be: adsorption of U+6 by clay minerals; reduction of U+6 to U+4; recrystalization of the clay mineral and U+4 exists at closed or semi-closed state in it. The results show that in order to leach the refractory uranium in clay, the uranium-bearing mineral should be made to produce new faultiness for reopening the passages into the mineral, thereby the uranium existing at closed or semi-closed state is exposed, and at the same time U+4 is oxidized to U+6. The middle-low temperature oxidation roasting, pressure alkaline leaching (160-180 deg C), and leaching with concentrated acid are efficient in treating the refractory type uranium ore

  11. Long-term leaching of uranium from different waste matrices.

    Science.gov (United States)

    Patra, A Chakrabarty; Sumesh, C G; Mohapatra, S; Sahoo, S K; Tripathi, R M; Puranik, V D

    2011-03-01

    A semi-dynamic leaching test was carried out for metallurgical wastes and ore samples from the uranium and copper mining industry over a 142 day period using distilled water and 0.1N NaNO(3) as solvents. Laser fluorimetry was used as the analytical technique to determine the total uranium content in the leachates. The cumulative leach fraction (CLF) of uranium release from the samples was calculated to be 0.22, 0.22, 0.07 and 0.39% for rock, uranium tailings, copper kinker ash samples and copper tailings respectively using distilled water as solvent and 0.31, 0.27, 0.05 and 0.59% for the same matrices using 0.1N NaNO(3). The release of mobile uranium fraction was very slow, being faster in the initial stage and then attained a near steady state condition. The diffusion coefficient and bulk release of uranium from the samples have been calculated. The processes governing the release of uranium from these matrices have been identified to be surface wash-off and diffusion. Hence the use of weak solvents (leach out the mobile/exchangeable fraction of uranium) under semi-dynamic conditions aids the determination of leaching parameters and identification of the leaching mechanism for mobile uranium fraction from different matrices by slow leaching processes. PMID:21084148

  12. The structural and genetic position uranium-thorium mineralization of Azov megablock

    OpenAIRE

    Katalenets A.I.

    2014-01-01

    The genetic characteristics of development and placement uranium-thorium mineralization and distribution of their concentrations in Azov megablock areas are examined. The main structures of Azov megablock areas controlling of distribution of metasomatic types and ore occurrence related with them are set. Preliminary basis for the allocation of boundaries and areas of ore districts is created. Considered theoretical and practical problem associated with the establishment of regional character...

  13. National uranium resource evaluation. Geology and recognition criteria for sandstone uranium deposits of the salt wash type, Colorado Plateau Province. Final report

    International Nuclear Information System (INIS)

    The uranium-vanadium deposits of the Salt Wash Member of the Morrison Formation in the Colorado Plateau are similar to sandstone uranium deposits elsewhere in the USA. The differences between Salt Wash deposits and other sandstone uranium deposits are also significant. The Salt Wash deposits are unique among sandstone deposits in that they are dominantly vanadium deposits with accessory uranium. The Salt Wash ores generally occur entirely within reduced sandstone, without adjacent tongues of oxidized sandstone. They are more like the deposits of Grants, which similarly occur in reduced sandstones. Recent studies of the Grants deposits have identified alteration assemblages which are asymmetrically distributed about the deposits and provide a basis for a genetic model for those deposits. The alteration types recognized by Shawe in the Slick Rock district may provide similar constraints on ore formation when expanded to broader areas and more complete chemical analyses

  14. National uranium resource evaluation. Geology and recognition criteria for sandstone uranium deposits of the salt wash type, Colorado Plateau Province. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thamm, J.K.; Kovschak, A.A. Jr.; Adams, S.S.

    1981-01-01

    The uranium-vanadium deposits of the Salt Wash Member of the Morrison Formation in the Colorado Plateau are similar to sandstone uranium deposits elsewhere in the USA. The differences between Salt Wash deposits and other sandstone uranium deposits are also significant. The Salt Wash deposits are unique among sandstone deposits in that they are dominantly vanadium deposits with accessory uranium. The Salt Wash ores generally occur entirely within reduced sandstone, without adjacent tongues of oxidized sandstone. They are more like the deposits of Grants, which similarly occur in reduced sandstones. Recent studies of the Grants deposits have identified alteration assemblages which are asymmetrically distributed about the deposits and provide a basis for a genetic model for those deposits. The alteration types recognized by Shawe in the Slick Rock district may provide similar constraints on ore formation when expanded to broader areas and more complete chemical analyses.

  15. Apache Trail uranium prospect, White Signal district, Grant County, New Mexico

    Science.gov (United States)

    Bauer, Herman L.

    1951-01-01

    The Apache Trail uranium prospect in the White Signal district, Grant County. N. Mex., was mapped by the Geological Survey in May 1950. Pre-Cambrian granite is cut by a diabase dike and a parallel quartz-hematite vein, both of which strike easterly and dip 60 to 65 degrees north. Small quantities of copper carbonates and bismuth-gold ore have been mined. The quartz-hematite vein is moderately radioactive and, although no uranium minerals were seen, two samples contained about 0.01 percent uranium. The diabase dike locally contains torbernite. Two samples of diabase contained about 0.04 percent uranium.

  16. Mortality patterns among a retrospective cohort of uranium mill workers

    International Nuclear Information System (INIS)

    The long-term health effects associated with the milling of uranium ore are of interest particularly because of exposures to uranium and thorium-230. Excess risks of pulmonary and lymphatic malignancies have been suggested by previous epdiemiologic studies of persons milling or smelting uranium ores, and nephrotoxic effects of uranium have been reported in both man and animals. To test these three previously reported associations and to assess all cause-specific mortality patterns among uranium mill workers, we carried out a retrospective cohort study of 2002 uranium millers employed in any of seven mills at least one year before 1972. Ninety-eight percent (98%) followup of the cohort through 1977 resulted in 533 deaths observed versus 605 expected from US White male mortality rates. Mortality from most causes was lower than expected. Significant excess risks were found only for nonmalignant respiratory disease and miscellaneous accidents but not for any of the three diseases of a priori interest. However, nonsignificant excesses were found for lymphatic malignancies after 20 years latency and for death due to chronic nephritis among short-term workers

  17. Development of Novel Sorbents for Uranium Extraction from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wenbin; Taylor-Pashow, Kathryn

    2014-01-08

    As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be

  18. Uranium series disequilibrium in the Bargmann property area of Karnes County, Texas

    International Nuclear Information System (INIS)

    Historical evidence is presented for natural uranium series radioactive disequilibrium in uranium bearing soils in the Bargmann property area of karnes County on the Gulf Coastal Plain of south Texas. The early history of uranium exploration in the area is recounted and records of disequilibrium before milling and mining operations began are given. The property contains an open pit uranium mine associated with a larger ore body. In 1995, the US Department of Energy (DOE) directed Oak Ridge National Laboratory (ORNL) to evaluate the Bargmann tract for the presence of uranium mill tailings (ORNL 1996). There was a possibility that mill tailings had washed onto or blown onto the property from the former tailings piles in quantities that would warrant remediation under the Uranium Mill Tailings Remediation Action Project. Activity ratios illustrating disequilibrium between 226Ra and 238U in background soils during 1986 are listed and discussed. Derivations of uranium mass-to-activity conversion factors are covered in detail

  19. Uranium series disequilibrium in the Bargmann property area of Karnes County, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, J.R.

    1998-02-01

    Historical evidence is presented for natural uranium series radioactive disequilibrium in uranium bearing soils in the Bargmann property area of karnes County on the Gulf Coastal Plain of south Texas. The early history of uranium exploration in the area is recounted and records of disequilibrium before milling and mining operations began are given. The property contains an open pit uranium mine associated with a larger ore body. In 1995, the US Department of Energy (DOE) directed Oak Ridge National Laboratory (ORNL) to evaluate the Bargmann tract for the presence of uranium mill tailings (ORNL 1996). There was a possibility that mill tailings had washed onto or blown onto the property from the former tailings piles in quantities that would warrant remediation under the Uranium Mill Tailings Remediation Action Project. Activity ratios illustrating disequilibrium between {sup 226}Ra and {sup 238}U in background soils during 1986 are listed and discussed. Derivations of uranium mass-to-activity conversion factors are covered in detail.

  20. Uranium-Series Disequilibria in the Groundwater of the Shihongtan Sandstone-Hosted Uranium Deposit, NW China

    Directory of Open Access Journals (Sweden)

    Xinjian Peng

    2015-12-01

    Full Text Available Uranium (U concentration and the activities of 238U, 234U, and 230Th were determined for groundwaters, spring waters, and lake water collected from the Shihongtan sandstone-hosted U ore district and in the surrounding area, NW China. The results show that the groundwaters from the oxidizing aquifer with high dissolved oxygen concentration (O2 and oxidation-reduction potential (Eh are enriched in U. The high U concentration of groundwaters may be due to the interaction between these oxidizing groundwaters and U ore bodies, which would result in U that is not in secular equilibrium. Uranium is re-precipitated as uraninite on weathered surfaces and organic material, forming localized ore bodies in the sandstone-hosted aquifer. The 234U/238U, 230Th/234U, and 230Th/238U activity ratios (ARs for most water samples show obvious deviations from secular equilibrium (0.27–2.86, indicating the presence of water-rock/ore interactions during the last 1.7 Ma and probably longer. The 234U/238U AR generally increases with decreasing U concentrations in the groundwaters, suggesting that mixing of two water sources may occur in the aquifer. This is consistent with the fact that most of the U ore bodies in the deposit have a tabular shape originati from mixing between a relatively saline fluid and a more rapidly flowing U-bearing meteoric water.

  1. Environmental Radioactive Impact Associated to Uranium Production

    Directory of Open Access Journals (Sweden)

    Fernando P. Carvalho

    2011-01-01

    Full Text Available Problem statement: One century of uranium mining in Europe and North-America created a legacy of ore mining and milling sites needing rehabilitation for environmental and human safety. In the last decades developments of uranium mining displaced the core of this activity to Australia, Canada and African countries. In the coming years, uranium mining is expected to grow further, in those countries and elsewhere, due to the possible increase of nuclear power production and thus the amount of radioactive and toxic tailing materials will grow. Approach: International radiation protection guidelines and legislation have known recent developments and set the radiation dose limit applied to members of the public at 1 mSv y-1. Taking into account past and present uranium waste management and environmental remediation measures adopted already in some countries, we assessed the implications of enforcing this new dose limit in uranium milling and mining areas. Results: The radioactive impact of uranium mining and milling was illustrated through case studies. Environmental radioactivity monitoring and surveillance carried out in areas impacted by uranium mining and milling industry showed generally that dose limit for members of the public was exceeded. The compliance with this dose limit is nowadays the main goal for environmental remediation programs of legacy sites implemented in European Union countries. Taking into account the new radiation protection regulations, a change is required in mining practices from traditionally reactionary (problem solving to proactive (integrated management and life-cycle approach. Conclusion: A new paradigm in uranium mining should be implemented worldwide to ensure reduced environmental radioactivity impact current and future reduced radiation risk exposure of population.

  2. Sintering Characteristics of Indian Chrome Ore Fines

    Science.gov (United States)

    Nandy, Bikash; Chaudhury, Manoj Kumar; Paul, Jagannath; Bhattacharjee, D.

    2009-10-01

    Chrome ore concentrate consists of high-temperature melting oxides such as Cr2O3, MgO, and Al2O3. The presence of these refractory constituents makes the ore a very high melting mineral. Hence, it is difficult to produce sinter from chrome ore by a pyrometallurgical route. Currently, chrome ore is ground to below 75 μm, pelletized, heat hardened through carbothermic reaction at 1300 °C to 1400 °C, and then charged into a submerged electric arc furnace (EAF), along with lumpy ore for ferrochrome/charge-chrome production. Electricity is a major cost element in this extraction process. This work explores the sinterability of chrome ore. The objective of this study was to: (1) determine whether chrome ore is sinterable and, if so, (2) ascertain ways of achieving satisfactory properties at a low temperature of sintering. Sintering of the raw material feed could be a way to reduce electricity consumption, because during sintering a partial reduction of minerals is expected along with agglomeration. Studies carried out by the authors show that it is possible to agglomerate chrome ore fines through sintering. The chrome ore sinter thus produced was found to be inferior in strength, comparable to that of an iron ore sinter, but strength requirements may not be the same for both. Because the heat generation during chrome ore sintering is high owing to some exothermic reactions, compared with iron ore, and because chrome ore contains a high amount of fines, shallow-bed-depth sinter cake production was attempted in the laboratory-scale pot-sintering machine. The sintered product was found to be a good conductor of electricity because of the presence of phases such as magnetite and maghemite. This characteristic of the chrome ore sinter will subsequently have a favorable impact in terms of power consumption during the production of ferrochrome in a submerged EAF. The sinter made was melted in the arc furnace and it was found that the specific melting energy is comparable to

  3. Industrial development of a simulation method for ore recovery evaluation

    International Nuclear Information System (INIS)

    The purpose of downstream geostatistics is to provide to engineers, responsible for mining project studies, with a method for predicting the ore reserve recovery coming from different mining methods and for choosing the best one according to economic criteria. In the case of the BEN LOMOND uranium deposit, the metal recovery at the production stage depends on the geometry of mineralized lenses. For the first step of this study the usual technique for constructing a numerical model of deposit has been used. But this does not reproduce the geological structures very precisely. The recovered reserves have been computed for three more or less selective mining methods. This has been done inputing the outlines of stopes on a digitalizer. In the case of a cut and fill method an automatic algorithm for the optimization under constraints has been developed

  4. Kvanefjeld uranium project

    International Nuclear Information System (INIS)

    This report contains a description and an investment estimate for the infrastructure connected with establishing uranium mining activities at Narssaq. The infrastructure comprises dwellings for employess, etc., personnel and cargo transport, incl. harbours, primary storage facilities and supply routes. The report does not cover the production plant, ore and tailings transport systems, energy supply, nor workshop and administration buildings. The report assumes that the Greenland mining enterprise will employ approx. 280 persons in mining and administration, and approx. 300 persons in processing plants, etc. An increased population will also provide increased demand for shops, institutions and facilities for leisure activities. It is expected that areas will be reserved for local shops, and one or two day-care institutions for children will be built. The increase in cargo transport to and from production plants and in connection with population growth will necessitate the construction of new harbours and/or extension of the existing harbour in Narssaq. The annual volumes of coal and chemical products in bulk for the processing plant will amount to approx. 160,000 t. Approx. 8,000 tons a year will be needed to satisfy the requirements of both mining and the increased population. The present volume passing through the harbour in Narssaq is approx. 7,000 t. (EG)

  5. Total-Count Calibration Blocks for use in uranium Exploration

    DEFF Research Database (Denmark)

    Løvborg, Leif

    Transportable calibration blocks for field scintillometers and borehole probes were manufactured from concrete and installed at calibration sites in Denmark and Greece. The concrete mixes were prepared from aggregates of quartz sand and crushed uranium-thorium ore. Hater-reducing agents and silica...... dust added to the cement paste produced concretes of acceptable porosity and pore structure. The content of ore was adjusted to provide block grades of approximately 2, 140, and 540 units of radioelement concentration (Ur). Thorium was estimated to contribute 0.39 ± 0.02 Ur per ppm Th. The adopted...

  6. Effect of microorganisms on in situ uranium mining

    International Nuclear Information System (INIS)

    The extraction of some metal values, e.g., uranium or copper, may be accomplished by using solutions to remove metals from ore bodies without practicing conventional mining. This process is referred to as in situ leaching and has been used industrially to recover uranium. The growth of microbial populations during in situ leaching is believed to be one of the causes of flow path plugging in the ore body, which results in decreased uranium production. Leach solution and solid samples from well casings and submersible pumps were collected from an in situ mining operation experiencing plugging problems. Bacillus sp., Micrococcus sp., pseudomonads, and xanthomonads were isolated from these samples on concentrations of 105 colony-forming units per milliliter. A mixed culture of these organisms was inoculated into a uranium core specimen in the laboratory to assess the role of microbes in the plugging problem. A one-third decrease in permeability was effected in 16 days. Hydrogen peroxide killed the microorganisms in the core and alleviated the plugging problems. Periodically injecting hydrogen peroxide into the ore body through the production wells may reduce microbial plugging problems

  7. Statistical model of global uranium resources and long-term availability

    Directory of Open Access Journals (Sweden)

    Monnet Antoine

    2016-01-01

    Full Text Available Most recent studies on the long-term supply of uranium make simplistic assumptions on the available resources and their production costs. Some consider the whole uranium quantities in the Earth's crust and then estimate the production costs based on the ore grade only, disregarding the size of ore bodies and the mining techniques. Other studies consider the resources reported by countries for a given cost category, disregarding undiscovered or unreported quantities. In both cases, the resource estimations are sorted following a cost merit order. In this paper, we describe a methodology based on “geological environments”. It provides a more detailed resource estimation and it is more flexible regarding cost modelling. The global uranium resource estimation introduced in this paper results from the sum of independent resource estimations from different geological environments. A geological environment is defined by its own geographical boundaries, resource dispersion (average grade and size of ore bodies and their variance, and cost function. With this definition, uranium resources are considered within ore bodies. The deposit breakdown of resources is modelled using a bivariate statistical approach where size and grade are the two random variables. This makes resource estimates possible for individual projects. Adding up all geological environments provides a repartition of all Earth's crust resources in which ore bodies are sorted by size and grade. This subset-based estimation is convenient to model specific cost structures.

  8. BIOREMEDIATION OF LOW GRADE ORES

    OpenAIRE

    Rashmi Mishra*

    2016-01-01

    The research work presented in this paper is on a Bioremediation for the recovery of zinc from mining waste i.e. Low grade ore of Hindustan Zinc Limited. They are waste product for the mines, as the recovery process is expensive compared to the recovery product moreover it causes lots of pollution   Bioleaching Studies were carried out at different pH using mixed culture grown from mine water. Recovery of zinc in control set (without culture) was 8% in 37 days and at the same pH ...

  9. 1株分离于铀矿的可利用玉米秸秆高效产氢的芽孢杆菌%Biohydrogen production by a newly strain of Bacillus isolated from uranium ore using cornstalk as feedstock

    Institute of Scientific and Technical Information of China (English)

    张晓; 何晓锐; 庞园涛; 朱艳杰; 黄建新

    2015-01-01

    A newly bacterial strain w-14,efficiently transforming cornstalk to hydrogen,had been isolated from uranium ore samples with strictly anaerobic culturing method.It was finally nomenclatured as Clostridium butyricum on the basis of series of standard identification methods.The influences of glycolysis temperature,glycolysis time,glycolysis pH,bran koji concentration of Trichoderma koningii and Aspergillus bran koji e.t.c on the the substrate saccharification efficiency and hydrogen production by the strain w-14 were investigated.Two periods of fermentation were used to discuss the effect of glycolysis (glycolysis temperature,glycolysis time,glycolysis pH,bran koji concentration of Trichoderma koningii and Aspergillus bran koji) on the substrate saccharification efficiency and hydrogen production by the strain w-14.At the optimum of variables combination,such as 20 g/L of bran koji,an initial pH of 5.0,incubating at 45 ℃ for 84 h by the Two stages of fermentation technology,the maximum reducing sugar content (402 mg/g-cs) and cumulative H2 yield of 99.7 mL/g-cs were obtained.Orthogonal design were used to optimize bio-hydrogen production from cornstalk glycolytic substrates by submerged fermentation.The maximum cumulative H2 yield of 140.24 mL/g-cs,increased by 41.38%,was achieved at the optimized hydrogen production conditions from the assistance of orthogonal design.Furthermore,it demonstrated that maximum cumulative H2 and the hydrogen content could reach 140.24 mL/g-cs,55.63% respectively in 5 L batch fermentation tank.%采用二重叠皿隔绝空气培养法从铀矿中分离获得1株可利用玉米秸秆高效产氢的菌株w-14,经生理生化及16S rRNA基因序列分析鉴定为丁酸梭菌(Clostridium butyricum);通过两段发酵技术,研究了用木霉、曲霉菌制备的纤维素酶麸曲酵解玉米秸秆的温度、时间、pH、麸曲用量对底物的糖化效率和w-14菌株利用玉米秸秆酵解物产氢的影

  10. International training course on uranium exploration

    International Nuclear Information System (INIS)

    Full text: As part of its Technical Assistance Programme for developing countries, the IAEA has conducted a series of training courses in prospecting for nuclear raw materials for example, in 1974 a regional course on uranium and thorium prospecting was held in India, and an interregional training course on uranium geochemical prospecting methods was held in Austria in 1975. In September 1977, another interregional training course on uranium geochemical prospecting methods was held at Skofja Loka, Slovenia, Yugoslavia. Twenty-four delegates from Afghanistan, Algeria, Argentina, Bolivia, Chile, Colombia, Czechoslovakia, India, Indonesia, Malaysia, Philippines, Portugal, Sri Lanka, Turkey, Venezuela and Yugoslavia participated in the four-week training course. The Federal Republic of Yugoslavia acted as host for the course. The Skofja Loka area was selected because it contains sedimentary rocks with known uranium mineralization, and presented ideal conditions (soil, drainage and topography) for Uranium geochemical surveys. In addition, the participants could benefit from a technical visit to a very interesting type of uranium mineralization near the town of Gorenje Vaz. Several well-known geologists, such as Dr. A. Grimbert (France) and Prof. Ian Nichol (Canada) were present as guest lecturers. In the first week the lectures dealt with the basic concepts of geochemical exploration for uranium, as well as preparing the participants for the field work. In addition to specific topics on geochemistry and uranium behaviour in the natural environment, the lectures also covered other topics of interest, such as world uranium resources and demand, types of uranium deposits and technical advances in exploration equipment. A visit to the Zirovski Vrh uranium mine was made, where the participants saw different techniques for mining ore bodies with complex structure and rapid change in grade concentration. At the end of the mine tour, there was a lengthy discussion of

  11. Uranium industry annual 1996

    International Nuclear Information System (INIS)

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs

  12. Uranium industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  13. Uranium industry annual, 1991

    International Nuclear Information System (INIS)

    In the Uranium Industry Annual 1991, data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2. A feature article entitled ''The Uranium Industry of the Commonwealth of Independent States'' is included in this report

  14. Geology of the Alligator Rivers Uranium Field

    International Nuclear Information System (INIS)

    The uranium deposits of Ranger 1, Koongarra, Jabiluka One and Two, and Nabarlek are in the Alligator Rivers Uranium Field, the northeastern part of the Pine Creek Geosyncline. Lower Proterozoic metasediments, which were metamorphosed mainly to amphibolite-grade and multiply isoclinally folded at about 1800 Ma, host much of the uranium and overlie or grade into the Archaean to Lower Proterozoic granitoid Nanambu Complex. In the northeast of the Field the metasediments grade into schist and gneiss forming the outer parts of the Lower Proterozoic Nimbuwah Complex; the inner parts of this Complex contain granodioritic and tonalitic migmatite and granitoid rocks which were emplaced before the 1800 Ma event. The metasediments are intruded by pre-orogenic and post-orogenic tholeiitic dolerite, by synorogenic granite, and by later minor phonolite and dolerite dykes. All but the minor dykes are overlain with marked unconformity by Carpentarian (Middle Proterozoic) sandstone with basalt flows, which conceals older rocks over most of the southeastern half of the area. The pre-Carpentarian (pre-Middle Proterozoic) rocks are deeply weathered and lateritised and are covered extensively by Mesozoic and Cainozoic sediment. The uranium is mainly contained in the lower member of the Cahill Formation, comprising mica quartz schist, magnesite and carbonaceous schist, which is chloritised around the uranium occurrences and along faults, shears and some stratigraphic breaks. The ore zones are located in breccia. The stratabound nature of the ore suggests that it has formed partly syngenetically; however, epigenetic processes appear essential for the development of such high-grade deposits. (author)

  15. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.M.; Brock, M.L.; Garland, P.A.; White, M.B.; Daniel, E.W. (comps.)

    1978-06-01

    A compilation of 490 references is presented which is the second in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base is one of six created by the Ecological Sciences Information Center, Oak Ridge National Laboratory, for the Grand Junction Office of the Department of Energy. Major emphasis for this volume has been placed on uranium geology, encompassing deposition, genesis of ore deposits, and ore controls; and prospecting techniques, including geochemistry and aerial reconnaissance. The following indexes are provided to aid the user in locating references of interest: author, geographic location, quadrangel name, geoformational feature, taxonomic name, and keyword.

  16. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography

    International Nuclear Information System (INIS)

    A compilation of 490 references is presented which is the second in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base is one of six created by the Ecological Sciences Information Center, Oak Ridge National Laboratory, for the Grand Junction Office of the Department of Energy. Major emphasis for this volume has been placed on uranium geology, encompassing deposition, genesis of ore deposits, and ore controls; and prospecting techniques, including geochemistry and aerial reconnaissance. The following indexes are provided to aid the user in locating references of interest: author, geographic location, quadrangel name, geoformational feature, taxonomic name, and keyword

  17. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography. Vol. 2, Rev. 1

    International Nuclear Information System (INIS)

    This bibliography, a compilation of 490 references, is the second in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base is one of six data bases created by the Ecological Sciences Information Center, Oak Ridge National Laboratory, for the Grand Junction Office of the Department of Energy. Major emphasis for this volume has been placed on uranium geology, encompassing deposition, genesis of ore deposits, and ore controls; and prospecting techniques, including geochemistry and aerial reconnaissance. The following indexes are provided to aid the user in locating references of interest: author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword

  18. Study of fluid inclusion from uranium deposit No.302 in north Guangdong

    International Nuclear Information System (INIS)

    The temperature of fluid inclusions in gangue minerals such as calcite, quartz, fluorite was measured and carbon isotope composition of Calcite was studied for uranium deposit No.302 in north Guangdong in this paper. It shows that the homogeneous temperature and salinity decreased from the early ore-forming period to late ore-forming period, and the early ore-forming period had at least two-staged fluid process with medium-high temperature and salinity. The carbon isotopic composition of δ13CPDB of calcites of different stages are: -0.614%--0.971% which indicates that the carbon maybe came from deep crust. (authors)

  19. Uranium in Nova Scotia: a background summary for the uranium inquiry, Nova Scotia

    International Nuclear Information System (INIS)

    Since the mid 1970's Nova Scotia has experienced increased exploration for a number of commodities including uranium. The exploration activity for uranium has resulted in discovery of significant occurrences of the element. It became obvious to the Government of Nova Scotia that a segment of the population of the Province is concerned about the potential hazards associated with the exploration, mining and milling stages of the uranium industry. Public concern has resulted in the appointment of a Commissioner under the Public Inquiries Act of Nova Scotia to inquire and make recommendations to the Governor-in-Council on all aspects of exploration, development, mining, processing, storage, waste management and transportation of uranium in any form. The regulation of mineral exploration and mining activities is carried out by the Nova Scotia Department of Mines and Energy through the Mineral Resources Act of the Province of Nova Scotia. The regulation of the special radioactive aspects involved in the mining and processing of uranium ore is the responsibility of the federal Atomic Energy Control Board. The purposes of this report is to: outline the history of uranium exploration in Nova Scotia; summarize the results of geological surveys by provincial and federal government agencies, universities and exploration companies which document the natural levels of radioactivity in the Province; briefly outline the physical and chemical characteristics of uranium and thorium which make these elements unique and a potential environmental and health concern; outline chronologically the steps taken by the Nova Scotia Department of Mines and Energy to monitor and regulate uranium exploration activities; classify the types of uranium deposits known to occur in Nova Scotia and describe their main geological features; outline the role of the Nova Scotia Department of Mines and Energy in the regulation of mining activities in the Province. The report is written for the interested

  20. Electrolytic extraction of uranium from Egyptian phosphorites

    Energy Technology Data Exchange (ETDEWEB)

    Madkour, L.H. [Dept. of Chemistry, Faculty of Science, Tanta Univ. (Egypt)

    1995-02-01

    Nile Valley phosphate deposits (East Luxor locality), considered in Egypt as a rather rich source of uranium, is subjected to mineralogical, chemical, spectral and infrared spectrometric analyses. A process is proposed for the hydrometallurgical treatment of the phosphate rock for the recovery of uranium and the production of phosphatic fertilizers, without polluting the environment with radioactive materials. A uraniferous iron phosphate concentrate (2.5% U) which is produced as a by-product, is separately processed in an alkaline leaching step using a high concentration of both Na{sub 2}CO{sub 3} and NaHCO{sub 3} under oxidizing conditions. The product, sodium uranyl tricarbonate complex Na{sub 4}UO{sub 2}(CO{sub 3}){sub 3} liquor, is converted into the conventional uranium concentrate of sodium diuranate Na{sub 2}U{sub 2}O{sub 7} through sodic decomposition treatment. Uranium metal is cathodically deposited from a number of solutions containing the ore metal concentrate liquor, and a complexing agent at controlled pH. The effects of various factors on the deposition of uranium are discussed. The results of spectrophotometric and chemical analyses revealed that the purity of the deposited metal is > 99%. (orig.)

  1. Uranium mineral base of the Republic of Uzbekistan

    International Nuclear Information System (INIS)

    The main uranium estimated and inferred resources making up the mineral base of Republic of Uzbekistan are located in the Central Kyzylkum uranium ore province. Uranium deposits of the province belong to two types: sandstone and black-shale ones. Twenty-two deposits of the sandstone type have been identified in the Central Kyzylkum province and 5 deposits of the black-shale type have been discovered in the province. 114.7 Kt of uranium of the sandstone type from 138.8 Kt can be extracted by underground leaching with operation costs not more than $40/kg of uranium, 24.2 Kt will cost up to $130/kg due to complex geo-technical conditions. 36.0 Kt of uranium from 47.0 Kt of the black-shale type are open pittable with subsequent heap leaching with operation cost not more than $40/kg of uranium. 11.0 Kt located deeper can be mined out with operation costs up to $130/kg. As for 1 January 1999, inferred traditional resources (EAR-II+SP or P1+P2) are 242.7 Kt of uranium, including 188.8 Kt of the sandstone type and 53.9 Kt of black-shale type. Small, 3%, reduction of the inferred resources compared with 1 January 1997 occurred because part of these resources was provided up to EAR-I category after further exploration. Navoi Hydro-Metallurgical Plant (NHMP) deals with uranium operation on the territory of Uzbekistan since 1956. The NHMP comprises following mining operations: Severnoe operation in Uchkuduk, operation in Zafarabad and Yuzhnoe operation in Nurabad. Five modern towns with total population about 500 000 have been constructed on the base of the uranium mining industry. Background radioactivity of territory of Uzbekistan is defined by radionuclides (mainly uranium and thorium) dispersed in rocks and soils. Technogenic radionuclide pollution of territory of Uzbekistan occurs due to mining operation activity in general. Environmental conditions in underground waters on areas of mineral deposits are unfavorable even before mining. The underground waters are highly

  2. Uranium: War, Energy and the Rock That Shaped the World; Uranium: la biographie

    Energy Technology Data Exchange (ETDEWEB)

    Zoellner, T.

    2009-07-01

    Having traveled extensively through the savannah of Africa, the mountains of Eastern Europe, and the deserts of Utah, the author delves into the complex science, politics and history of uranium, which presents the best and worst of mankind: the capacity for scientific progress and political genius; the capacity for nihilism, exploitation, and terror. Because the author covers so much ground, from the discovery of radioactivity, through the development of the atomic bomb, he does not go into great depth on any one topic. Nonetheless, he paints vivid pictures of uranium's impact, including forced labor in Soviet mines and lucky prospectors who struck it rich in harsh environments, the spread of uranium smuggling, as well as an explanation of why it was absurd to claim that Saddam Hussein was attempting to purchase significant quantities of uranium from Niger. The only shortcoming is the author's omission of the issue of radioactive wastes generated by nuclear power. The author knows well what uranium looks like, why peril pulses in its every atom, and how scientists exploit its nuclear volatility. The drama is found in the weaponry uranium has spawned as demonstrated at Hiroshima and Nagasaki. In pursuit of this raw power, the U.S. let Navajos die extracting needed ore and let southwestern cities sicken beneath clouds from reckless testing. The Soviet Union sentenced tens of thousands to lethal gulag mines. Israel diverted ore through deception on the high seas. Pakistan stole European refining technology. Alive with devious personalities, the author's narrative ultimately exposes the frightening vulnerability of a world with too many sources of a dangerous substance and too little wisdom to control it

  3. The prospects for Canadian uranium

    International Nuclear Information System (INIS)

    The 1980s have seen a decline in markets for uranium concentrate, largely as a result of falling estimates for reactor fuel requirements and rising inventories. Spot market prices fell to $44 in September 1982, but have since risen back to $60. World production also fell in 1982 and is not expected to increase significantly before 1990. Some opportunities exist for Canadian producers with new low-cost deposits to replace high-cost producers in Canada and other countries, particularly the United States. There will be strong competition between Canadian producers as well as from Australia. Australia's reserves are somewhat larger than Canada's, although the reported ore grades tend to be lower than those of Saskatchewan

  4. Estimating gold-ore mineralization potential within Topolninsk ore field (Gorny Altai)

    Science.gov (United States)

    Timkin, T.; Voroshilov, V.; Askanakova, O.; Cherkasova, T.; Chernyshov, A.; Korotchenko, T.

    2015-11-01

    Based on the results of ore and near-ore metasomatite composition analysis, the factors and indicators of gold-ore mineralization potential were proposed. Integration of the obtained data made it possible to outline magmatic, structural, and lithological factors, as well as direct and indirect indicators of gold-ore mineralization. Applying multidimensional analysis inherent to geochemical data, the spatial structure was investigated, as well as the potential mineralization was identified. Based on the developed and newly-identified mineralization, small (up to medium-sized) mineable gold-ore deposits in skarns characterized by complex geological setting was identified.

  5. Uranium distribution in mineral phases or rocks by a five phase sequential extraction procedure

    International Nuclear Information System (INIS)

    Sequential extraction techniques are used to measure the fractionation of uranium and thorium series nuclides in iron/clay/quartz phases etc. as part of the uranium/thorium desequilibria database preparation and understand how the two (or more) separated phases are related to the ore minerals and their accessibility to groundwater. Samples have been characterized for elemental associations and mineralogical distributions. Special attention was given to those elements which have particular significance for the geochemical modelling including species such as phosphate. In the secondary ore body, crystalline iron minerals such as limonite and pyrite appear as the significant mineral phase associated with uranium accumulation. The Morgan's and Tamm's solution extractable minerals (adsorbed and carbonate, and amorphous iron minerals respectively) are accessible to groundwater and so their 234U/238U activity ratios, less than unity, are equal to that of the groundwater. The remaining resistant minerals (mainly quartz) are the significant mineral phase found to be enrich with 234U by the alpha recoil effect. However, in the shallow region of the primary ore body, the Tamm's solution extractable minerals (secondary uranium minerals such as autunite and torbernite - uranyl phosphates) are the significant mineral phase associated with the uranium accumulation. In the deeper region of the primary ore body, the 6 M HCl extractable minerals (clay and some refactory minerals) seems to be predominant. 5 refs., 1 tab., 3 figs

  6. Fuzzy Comprehensive Appraisal of Concealed Ore Deposits

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, the transformation from the fuzzy to the accurate process is exemplified by the Jiaodong gold ore deposits concentrated region where the mathematical analysis is used to appraise and forecast regional concealed gold ore deposits. In this sense, this paper presents a new way to the appraisal of the non-traditional mineral resources.

  7. Iron from Zealandic bog iron ore -

    DEFF Research Database (Denmark)

    Lyngstrøm, Henriette Syrach

    2011-01-01

    og geologiske materiale, metallurgiske analyser og eksperimentel arkæologiske forsøg - konturerne af en jernproduktion med udgangspunkt i den sjællandske myremalm. The frequent application by archaeologists of Werner Christensen’s distribution map for the occurrence of bog iron ore in Denmark (1966...... are sketched of iron production based on bog iron ore from Zealand....

  8. The Luster of Iron Ore Prices

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China battles its way out of an iron ore stalemate by finding alternative supplier After months of seesawing, China’s iron ore negotiators appear to be breaking through the tight encirclement of suppliers. On August 17, the China Iron and Steel Association (CISA) announced that Fortescue

  9. Recent developments in Australia's uranium mining industry

    International Nuclear Information System (INIS)

    Uranium is produced at two mining/milling operations in Australia - Ranger in the Alligator Rivers Region of the Northern Territory, and Olympic Dam in South Australia. In 1996, Ranger produced 4138 tonnes (t) U3O8 from stockpiled ore mined from Ranger No. 1 Orebody. The capacity of the Ranger mill is being expanded to 5000 tonnes per annum (tpa) U3O8 to coincide with the commencement of mining from No. 3 Orebody in mid-1997. The Olympic Dam copper-uranium-gold-silver deposit is the world's largest deposit of low cost uranium. The operation currently has an annual production of 85,000 t copper, 1700 t U3O8 and associated gold and silver. WMC Ltd proposes to expand annual production to 200 000 t copper and approximately 4600 t U3O8 by end of 1999. The environmental impact of the expansion is being assessed jointly by both Commonwealth and South Australian Governments. A draft Environmental Impact Statement (EIS) was released in May. Since its election in March 1996, the Liberal/National Party Coalition Government has made a number of changes to the Commonwealth Government's policies relating to uranium mining, including removal of the former Government's 'three mines' policy, and relaxation of the guidelines for foreign investment in Australian uranium mines. These changes, together with an improved outlook for the uranium market, have resulted in proposals to develop new mines at Jabiluka (Northern Territory), Kintyre (Western Australia) and Beverley (South Australia). Energy Resources of Australia Ltd proposes to develop an underground mine at Jabiluka with the ore to be processed at Ranger mill. Initial production will be 1800 tpa U3O8 which will increase to 4000 tpa U3O8 by the 14th year. The draft EIS was released for public comment in October 1996, and the final EIS is to be released in June 1997. Canning Resources Ltd proposes to mine the Kintyre deposit by open cut methods commencing in 1999 with an annual production of 1200 tpa U3O8. Heathgate Pty. Ltd

  10. Uranium enrichment

    International Nuclear Information System (INIS)

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector

  11. Estimation of potential uranium resources

    International Nuclear Information System (INIS)

    Potential estimates, like reserves, are limited by the information on hand at the time and are not intended to indicate the ultimate resources. Potential estimates are based on geologic judgement, so their reliability is dependent on the quality and extent of geologic knowledge. Reliability differs for each of the three potential resource classes. It is greatest for probable potential resources because of the greater knowledge base resulting from the advanced stage of exploration and development in established producing districts where most of the resources in this class are located. Reliability is least for speculative potential resources because no significant deposits are known, and favorability is inferred from limited geologic data. Estimates of potential resources are revised as new geologic concepts are postulated, as new types of uranium ore bodies are discovered, and as improved geophysical and geochemical techniques are developed and applied. Advances in technology that permit the exploitation of deep or low-grade deposits, or the processing of ores of previously uneconomic metallurgical types, also will affect the estimates

  12. Characteristics of uranium districts of the Russian Federation

    International Nuclear Information System (INIS)

    Uranium deposits are discovered in 15 ore districts of the Russian Federation. They are subdivided into four groups: Streltsovsky district with existing production centre, Stavropolsky district with depleted deposits, three prospective districts and ten reserve districts. The overview of new data on these districts is presented. Streltsovsky district with Priargunsky Production Centre include 19 molybdenum-uranium deposits of structure-bound volcanic type in caldera. The main activities in Stavropolsky district with two depleted uranium deposits are connected with restoration works and wastes rehabilitation. Except Streltsovsky district there are no more deposits in the Russian Federation prepared for uranium production. At the same time some uranium deposits of Vitimsky, Zauralsky, and West-Siberian districts are prospective for new development of production centres. They belong to the sandstone type, related to paleovalley or basal channel, and are suitable for ISL operation. The deposits of the other districts are considered to be reserve and considered unprofitable for uranium production at present and in the nearest future. The biggest of them is Aldansky district with gold-uranium deposits in potassium metasomatites in areas of Mesozoic activation of Archean cratons. Central Transbaikalsky, Yeniseisky, Yergeninsky, Onezhsky, Ladozhsky, Bureinsky, Khankaisky, Volgo-Uralsky reserve districts include mainly small-size deposits of vein, volcanic, surficial and metasomatite types with low uranium grades. (author)

  13. Genetic engineering microbes for bioremediation/ biorecovery of uranium

    International Nuclear Information System (INIS)

    Bioremediation (both bioremoval and biorecovery) of metals is considered a feasible, economic and eco-friendly alternative to chemical methods of metal extraction, particularly when the metal concentration is very low. Scanty distribution along with poor ore quality makes biomining of uranium an attractive preposition. Biosorption, bioprecipitation or bioaccumulation of uranium, aided by recombinant DNA technology, offer a promising technology for recovery of uranium from acidic or alkaline nuclear waste, tailings or from sea-water. Genetic engineering of bacteria, with a gene encoding an acid phosphatase, has yielded strains that can bioprecipitate uranium from very low concentrations at acidic-neutral pH, in a relatively short time. Organisms overproducing alkaline phosphatase have been selected for uranium precipitation from alkaline waste. Such abilities have now been transferred to the radioresistant microbe Deinococcus radiodurans to facilitate in situ bioremediation of nuclear waste, with some success. Sulfate-reducing bacteria are being characterized for bioremediation of uranium in tailings with the dual objective of uranium precipitation and reduction of sulfate to sulphide. Certain marine cyanobacteria have shown promise for uranium biosorption to extracellular polysaccharides, and intracellular accumulation involving metal sequestering metallothionin proteins. Future work is aimed at understanding the genetic basis of these abilities and to engineer them into suitable organisms subsequently. As photosynthetic, nitrogen-fixing microbes, which are considerably resistant to ionizing radiations, cyanobacteria hold considerable potential for bioremediation of nuclear waste. (author)

  14. Lead isotopes as seepage indicators around a uranium tailings dam

    Energy Technology Data Exchange (ETDEWEB)

    Gulson, B.L.; Mizon, K.J.; Korsch, M.J.; Noller, B.N.

    1989-03-01

    Lead isotope ratios and lead concentrations have been measured in water from 26 bores around the Ranger uranium tailings dam, Northern Territory, Australia, and from the dam itself to determine possible migration of lead derived from the radioactive decay of uranium. Lead isotope compositions have also been measured for the particulates retained on selected filters. The concentration of lead in the bore waters is extremely low (usually < 1 ppb). The /sup 206/Pb//sup 204/Pb ratio measured in the bore waters differs by more than a factor of 100 from that in the tailings dam and shows no evidence of lead derived from a significant uranium accumulation. It may be possible to distinguish between lead from the tailings dam and that derived from a nearby uranium ore body.

  15. Lead isotopes as seepage indicators around a uranium tailings dam

    International Nuclear Information System (INIS)

    Lead isotope ratios and lead concentrations have been measured in water from 26 bores around the Ranger uranium tailings dam, Northern Territory, Australia, and from the dam itself to determine possible migration of lead derived from the radioactive decay of uranium. Lead isotope compositions have also been measured for the particulates retained on selected filters. The concentration of lead in the bore waters is extremely low (usually 206Pb/204Pb ratio measured in the bore waters differs by more than a factor of 100 from that in the tailings dam and shows no evidence of lead derived from a significant uranium accumulation. It may be possible to distinguish between lead from the tailings dam and that derived from a nearby uranium ore body

  16. Main geological settings of uranium mineralization in the Baltic shield

    International Nuclear Information System (INIS)

    Uranium and uranium-associated deposits of the Baltic Shield occur in a variety of structurematter settings. Most prospective of the latter are (1) Zones of structure-stratigraphic unconformity (SSU): those of Prevendian SSU in the basement of the Russian platform, those of Preriphean SSU in the basement of Pasha-Ladoga, Tersky bereg and other Riphean troughs, and those of Preyatulian SSU in the basement of Early Proterozoic superimposed depressions. (2) Zones of fold-fracture dislocations (FFD) in the Early Proterozoic troughs characterized with widespread black shale. Uranium mineralization occurrences within the old uranium-bearing SSU zones are of different grade: high-grade ore in the Preriphean SSU zone, low-grade ore but of significant content in the Prevendian SSU zone, ore of an uncertain,by now, grade in the Preyatulian SSU zone. The prospect for the first zone has been determined so far by the discovery of the Karku deposit in the Pasha-Ladoga trough, for the second - by the discovery of the Ratnitsa, Ryabinovka and other deposits, and, finally, for the third one - by the presence of numerous poorly studied ore mineralization occurrences - Palozerj-1,2, Maimjarvi-1, etc. Regionally, the distribution of uranium mineralization restricted to the SSU zones is controlled by a variety of factors: linear grabens complicated by fold-fracture zones on the boundaries of major earth crust blocks (Preriphean SSU), by the juncture of the Russian plate rock complex with the Baltic Shield structures, by the localization within the regional fracture-block zone (Prevendian SSU, by occurrence on the slope of the Early Protewrozoic superimposed depression complicated by deep fault zones (Preyatulian SSU). All SSUs result from the flat dip of sedimentary rocks (Vendian, Riphean, Yatulian ones) onto the rocks of the Archean-Proterozoic or Archean basement. The latter rocks are heterogeneous in composition, contain carbonaceous and carbon-bearing varieties, display intensive

  17. Morphological Comparison of U3O8 Ore Concentrates from Canada Key Lake and Namibia Sources

    International Nuclear Information System (INIS)

    Uranium ore concentrates from two different sources were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The ore powders are referred to as Namibia (id. no. 90036, LIMS id. no. 18775) and Canada Key Lake (id. no. 90019, LIMS id. no. 18774). Earlier work identified the ores as the U3O8 phase of uranium oxide using x-ray diffraction. Both sets of powders were in the form of dark brown to black powder fines. However, the Canada Key Lake concentrates contained larger chunks of material on the millimeter scale that were easily visible to the unaided eye. The powders were mounted for SEM examination by hand dispersing a small amount onto conductive sticky tape. Two types of applicators were used and compared: a fine-tipped spatula and a foam-tipped applicator. The sticky tape was on a standard SEM 'tee' mount, which was tapped to remove loose contamination before being inserted into the SEM.

  18. Uranium recovery from wet process phosphoric acid

    International Nuclear Information System (INIS)

    Improvement in the process for recovering uranium from wetprocess phosphoric acid solution derived from the acidulation of uraniferous phosphate ores by the use of two ion exchange liquidliquid solvent extraction circuits in which in the first circuit (A) the uranium is reduced to the uranous form; (B) the uranous uranium is recovered by liquid-liquid solvent extraction using a mixture of mono- and di-(Alkyl-phenyl) esters of orthophosphoric acid as the ion exchange agent; and (C) the uranium oxidatively stripped from the agent with phosphoric acid containing an oxidizing agent to convert uranous to uranyl ions, and in the second circuit (D) recovering the uranyl uranium from the strip solution by liquid-liquid solvent extraction using di(2ethylhexyl)phosphoric acid in the presence of trioctylphosphine oxide as a synergist; (E) scrubbing the uranium loaded agent with water; (F) stripping the loaded agent with ammonium carbonate, and (G) calcining the formed ammonium uranyl carbonate to uranium oxide, the improvement comprising: (1) removing the organics from the raffinate of step (B) before recycling the raffinate to the wet-process plant, and returning the recovered organics to the circuit to substantially maintain the required balance between the mono and disubstituted esters; (2) using hydogren peroxide as the oxidizing agent in step (C); (3) using an alkali metal carbonate as the stripping agent in step (F) following by acidification of the strip solution with sulfuric acid; (4) using some of the acidified strip solution as the scrubbing agent in step (E) to remove phosphorus and other impurities; and (5) regenerating the alkali metal loaded agent from step (F) before recycling it to the second circuit

  19. Chapter 2: uranium mines and mills

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, W.J.

    1983-03-01

    This chapter will be included in a larger ASCE Committee Report. Uranium mining production is split between underground and open pit mines. Mills are sized to produce yellowcake concentrate from hundreds to thousands of tons of ore per day. Miner's health and safety, and environmental protection are key concerns in design. Standards are set by the US Mine Safety and Health Administration, the EPA, NRC, DOT, the states, and national standards organizations. International guidance and standards are extensive and based on mining experience in many nations.

  20. Nuclear Security in the Uranium Extraction Industry

    International Nuclear Information System (INIS)

    This publication provides States and operators with advice for defining, implementing, maintaining or enhancing their nuclear security regime for the protection of uranium ore concentrate against unauthorized removal. It defines prudent management practice as required by IAEA recommendations document IAEA Nuclear Security Series No. 13, Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5), for this category of material. This advice can be adopted in the form of regulations or applied as voluntary standards. States, regulatory bodies, and industry may choose to tailor their implementation of this advice to meet their national circumstances

  1. Uranium in Precambrian granitic rocks of the St. Francois Mountains, southeastern Missouri, with comments on uranium resource potential

    International Nuclear Information System (INIS)

    Red granites of the St. Francois Mountains are highly radioactive and contain 4 to 34 ppM uranium. The most radioactive is the Graniteville Granite which contains an average of 16.9 ppM U and 42.6 ppM Th. The Butler Hill and Breadtray Granites also contain anomalous amounts, averaging 6.2 and 5.6 ppM U and 23.5 and 20.5 ppM Th respectively. Other Precambrian granitic rocks have normal concentrations of U and Th. Fission track ''maps'' indicate that high concentrations of uranium are associated with magnetite in the red granites; this uranium is presumed to be readily leachable by hydrothermal or supergene solutions. No uranium minerals or ore grade concentrations of uranium were observed in or near the granites, but there are conceptual reasons for the possible existence of uranium deposits in intragranitic veins and onlapping Cambrian-Ordovician sedimentary rocks. Although the red granites constitute a good potential source of uranium, there is not much evidence for uranium having been mobilized. Identification of features such as lamprophyre dikes and ''episyenite'' alteration, or sedimentary rocks containing reductants, would be of value for exploration and would permit more favorable resource appraisal

  2. Effect of mineral constituents in the bioleaching of uranium from uraniferous sedimentary rock samples, Southwestern Sinai, Egypt

    International Nuclear Information System (INIS)

    Bioleaching, like Biotechnology uses microorganisms to extract metals from their ore materials, whereas microbial activity has an appreciable effect on the dissolution of toxic metals and radionuclides. Bioleaching of uranium was carried out with isolated fungi from uraniferous sedimentary rocks from Southwestern Sinai, Egypt. Eight fungal species were isolated from different grades of uraniferous samples. The bio-dissolution experiments showed that Aspergillus niger and Aspergillus terreus exhibited the highest leaching efficiencies of uranium from the studied samples. Through monitoring the bio-dissolution process, the uranium grade and mineralogic constituents of the ore material proved to play an important role in the bioleaching process. The tested samples asserted that the optimum conditions of uranium leaching are: 7 days incubation time, 3% pulp density, 30 °C incubation temperature and pH 3. Both fungi produced the organic acids, namely; oxalic, acetic, citric, formic, malonic, galic and ascorbic in the culture filtrate, indicating an important role in the bioleaching processes. - Highlights: • Aspergillus niger and Aspergillus terreus are the only isolates achieved highest leaching efficiency of uranium from the studied samples. • Bioleaching process directly related to variations in mineral constituents and uranium grades. • The optimum conditions of uranium bioleaching from its ores, were found to be 7 days, 3% pulp density, pH 3 and 30 °C. • A. niger and A. terreus organic acids play an important and effective role for uranium leaching process

  3. Uranium industry annual, 1986

    International Nuclear Information System (INIS)

    Uranium industry data collected in the EIA-858 survey provide a comprehensive statistical characterization of annual activities of the industry and include some information about industry plans over the next several years. This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities utility market requirements and related topics

  4. Recognition of a new uranium province from the Precambrian of Sweden

    International Nuclear Information System (INIS)

    The Arjeplog-Arvidsjaur uranium province, situated immediately south of the Arctic circle, comprises a group of mineralizations with a potential of over 10000 tonnes uranium. It occurs close to the margin of a Middle-Proterozoic continent. The individual mineralizations are associated with soda-metasomatism, have pitch-blende as dominant ore-mineral and have U-Pb dates in the range 1740-1850 m.y. (author)

  5. Testing of IAEA standard reference materials by Research and Development Institute, Czechoslovak Uranium Industry

    International Nuclear Information System (INIS)

    The Institute have partaken of attestations for a number of years. It has thus obtained a number of reference materials and could completely test the accuracy of the analytical methods used. The materials being tested included uranium and thorium ores, milk, whey, sea sediments and algae. The methods used included X-ray fluorescence analysis, high resolution gamma spectrometry, atomic absorption spectrometry, radiometric methods. Uranium was determined by spectrophotometry using Arsenazo III. (M.D.). 2 tabs., 17 refs

  6. The Kayelekera uranium deposit, northern Malawi : past exploration activities, economic geology and decay series disequilibrium

    OpenAIRE

    Bowden, R A; Shaw, Richard

    2007-01-01

    The present paper describes the exploration and evaluation work carried out by the Central Electricity Generating Board on the Kayelekera uranium deposit in Northern Malawi between 1983 and 1991. This is one of the largest Karoo age sandstone hosted uranium deposits yet discovered. Approximately 200 boreholes, y60% of which were fully cored, were drilled into the deposit during this evaluation. An important part of the ore reserve estimation undertaken by the Central Electricit...

  7. Application of blasting vibration measurement to underground deep-hole blasting of a uranium deposit

    International Nuclear Information System (INIS)

    Aimed at the potential vibration damage to residents' houses on surface after underground deep-hole blasting of a uranium deposit in stope leaching, two real-time blasting vibration measurements were made. The safe distance and safety criterion of maximum charge weight on millisecond delay explosive in large-scale blasting of the uranium deposit were summed up. These data can provide the design basis for future large scale ore stacking by blasting. (authors)

  8. Sandbox experiments on Uraninite Ore: ERT and SP measurments.

    Science.gov (United States)

    Singh, R. K.

    2015-12-01

    Nuclear energy, considering its own intrinsic merits, would be a leading source for meeting the energy requirement in present and future scenario. Concealed Uranium deposits under sedimentary cover, with poor surface indications calls for reorientation of survey with large inputs involving integrated geophysical approach. Sand Box experiments have been carried out over Uraninite ore. The tank is a glass fish tank (height 39 cm, length 75 cm, width 30 cm). It was filled with sand up to 35 cm high. The sand was saturated from below to minimize the entrapment of the gas bubbles. The average size for sand grains is ~ 0.295mm. The formation factor of the sand is 3.5, with a negligible surface conductivity because of the coarse nature of the sand grains. The dimension of considered Uraninite ore sample is 4cm x 4cm x 4cm. The depth of top of the ore sample is kept at 3cm. In this paper both resistivity and self-potential measurements were carried out for possible detection of Uraninite. The resistivity measurements were made with 64 non-polarizable electrodes using Electrical Resistivity Tomography (ERT) equipment of FlashRes Universal developed by ZZ Resistivity Imaging Pty. Ltd. We have used screws of length 3cm as electrodes. The separation between these electrodes are ~ 1cm. The resistivity tomography results clearly outlines the target Uraninite body. The resistivity tomography results also detects small heterogeneities associated with air bubbles possibly due to unsaturated pore spaces. SP measurements were made using two non-polarizing Pb/PbCl2 electrodes and a Fluke 289 voltmeter (sensitivity 0.001 mV, internal impedance 100 MOhm). The reference electrode was located on the corner of the sandbox. The other electrode was used to scan the electrical potential at the surface of the sand. SP measurements were made with a spacing of 3 cm over the same ERT profile. The SP results also shows a dip (or a low SP anomaly) over the target ore body sample. Thus, both SP and

  9. Humeca Uranium Mill. Nuclear Regulatory Commission's final environmental statement

    International Nuclear Information System (INIS)

    The Humeca Uranium Mill is a carbonate-leach uranium ore refining plant with a capacity of about 500 tons of ore per day. Although the present licensing action does not extend to mining, the statement considers the environmental impact of the combined mining and milling project to be conducted by Rio Algom Corporation. The environmental impact, including adverse and beneficial environmental effects of the Rio Algom Uranium Mill, is as follows. (1) Temporary (about 10 years) reassignment of use of about 120 acres of land out of the total 2,573 acres controlled by Rio Algom Corporation. (2) The removal of an estimated 8.4 million pounds of uranium concentrates as a natural resource. This material will eventually be used to produce approximately 6.09 x 106 megawatt-days of electricity. (3) Removal and diversion of approximately 100 gallons per minute of local groundwater. (4) Stimulation of the local economy through payment of taxes and direct employment of about 200 persons in San Juan County over the next 10 years. Rio Algom estimates they will pay out over $11 million in salaries over this period of time. (5) The creation of stabilized tailings piles covering about 45 acres involving approximately 1,850,000 tons of solids containing solidified waste chemical and radioactive uranium and its daughter products. (6) Discharge of small quantities of chemicals and radioactive materials (that are not expected to produce discernible effects) into the local environs

  10. Towards a Model for Albitite-Type Uranium

    Directory of Open Access Journals (Sweden)

    Andy Wilde

    2013-01-01

    Full Text Available Albitite-type uranium deposits are widely distributed, usually of low grade (<1% U3O8, but are often large and collectively contain over 1 million tonnes of U3O8. Uranium is hosted in a wide range of metamorphic lithologies, whose only common characteristic is that they have been extensively mylonitised. Ore minerals are disseminated and rarely in megascopic veins, within and adjacent to albitised mylonites. Grain size is uniformly fine, generally less than 50 microns. Scanning electron microscopy reveals that spatial association between uranium and various Ti-bearing phases is common. Gangue minerals include albite, carbonates (calcite and dolomite, and sodic pyroxene and amphibole. The ore rarely contains economic metals apart from uranium, phosphorous at Itataia being an exception. There is widespread evidence of hydrothermal zirconium mobility and hydrothermal zircon and other Zr phases are frequent and in some cases abundant gangue minerals. Positive correlations are noted between uranium and various high field strength elements. The group remains poorly described and understood, but a link to iron-oxide copper-gold (IOCG deposits and/or carbonatite and/or alkaline magmatism is plausible.

  11. Radiation hazards in uranium mining. Epidemiological and dosimetric approaches

    International Nuclear Information System (INIS)

    Potential health hazards resulting from exposure to various sources of radiation associated with uranium mining have been reviewed: 1) epidemiological observations on groups of miners exposed in the past to high concentrations of radon progeny have been interpreted to suggest a lifetime risk of about 3 x 10-4 lung cancers per WLM; 2) the total risk of serious health effects resulting from exposure of workers to whole body gamma-radiation might be taken to be about 2 x 10-2 per Sv; and 3) the potential health effects of inhalation of thoron progeny or of radioactive ore dusts can only be estimated from dosimetric calculations. A review of the uncertainties involved in these calculations suggests that ICRP estimates of the potential toxicity of inhaled thoron progeny are as good as those for inhaled radon progeny. However, the potential health hazards from inhaled uranium and thorium ore dusts have probably been overestimated by a factor of 2 to 10-fold

  12. Hydrogeochemical methods for studying uranium mineralization in sedimentary rocks

    International Nuclear Information System (INIS)

    The role of hydrogeochemical studies of uranium deposits is considered, which permits to obtain data on ore forming role of water solutions. The hydrogeochemistry of ore formation is determined as a result of physicochemical analysis of mineral paragenesis. Analysis results of the content of primary and secondary gaseous - liquid inclusions into the minerals are of great importance. Another way to determine the main features of ore formation hydrogeochemistry envisages simultaneous analysis of material from a number of deposits of one genetic type but in different periods of their geochemical life: being formed, formed and preserved, and being destructed. Comparison of mineralogo-geochemical zonation and hydrogeochemical one in water-bearing horizon is an efficient method, resulting in the objective interpretation of the facts. The comparison is compulsory when determining deposit genesis

  13. Advances in research of sulphide ore textures and their implications for ore genesis

    Institute of Scientific and Technical Information of China (English)

    GU Lianxing; ZHENG Yuanchuan; TANG Xiaoqian; WU Changzhi; HU Wenxuan

    2006-01-01

    Important advances in research of sulphide ore textures in recent years have deepened our understanding of ore genesis of related mineral deposits. Pressure solution of sulphide minerals has been suggested as a mechanism for remobilization of ore materials,whereas pressure solution of the gangues is believed to raise the grade of the primary ores. We have known that precipitation of base metal sulphides from fluids prefers crystal and crack surfaces of pyrite to form overgrowth. Therefore, pyrite-bearing embryo beds in a sedimentary sequence can be acted as effective crystal seed beds and are favorable for fluid overprinting to form huge statabound deposits. Texture studies of various sulphides can be used to interpret the entire history of sedimentation, diagenesis, deformation and metamorphism of the ores. The study of chalcopyrite disease in sphalerite has brought about the idea of zone refining, and given a new explanation to metal zonation in massive sulphide deposits. Ductile shearing of sulphide ores may form ore mylonites, which will become oreshoots enriched in Cu, Au and Ag during late-stage fluid overprinting. Despite that various modern analytical techniques are being rapidly developed, ore microscopy remains to be an unreplaceable tool for ore geologists. Combined with these modern techniques, this tool will help accelerate the development of theories on ore genesis.

  14. Contribution to the methods for estimating uranium deposits (1963)

    International Nuclear Information System (INIS)

    Having defined a deposit of economic value according to the marginal theory, the author discriminates several categories of ore reserves according to the degree of knowledge of the deposit and according to the mining stage where the ore is considered. He dismisses the conventional French classification of 'on sight', 'probable' and 'possible' ore categories and suggests more suitable ones. The 'sensu stricto', ore reserves are those for which the random error can be calculated. The notion of the natural contrast of grades in an ore deposit (absolute dispersion coefficient α) is introduced in relation to this topic. The author considers three types of mining exploration. The first is the random exploration so often met; the second is the logical exploration based on a systematic location of underground works, bore-holes, etc. The third, and hardest to achieve, is the one which minimizes exploration costs for a given level of accuracy. Part of the publication deals with sampling errors such as those resulting from the quartering of a heap of ore (theory of Pierre GY) or those resulting from the use of radiometric measurement of grade. Another part deals with the extension error (entailed by the assimilation of samples to the deposit they are issued from) and gives the essential formulae in order to appraise the random error (Geo-statistics of Matheron). As to the estimator itself the work shows how the disharmony between the ore sample and the associated influence zone can be solved by the way of 'kriging'. The thesis gives numerous examples of the various numerical parameters, characteristics of an uranium deposit (absolute dispersion coefficient) or of an uranium ore (liberation parameter) as well as a few examples of linear correlations between gamma radioactivity and uranium grade. Three complete examples of reserve evaluation are given. The end of the thesis deals with the notion of ruin risk which has to be taken in some cases. A detailed alphabetical index is

  15. Uranium Industry Annual, 1992

    International Nuclear Information System (INIS)

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ''Decommissioning of US Conventional Uranium Production Centers,'' is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2

  16. Uranium Industry Annual, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  17. Transport and deposition of gold with uranium and platinum-group elements in unconformity-related uranium deposits

    International Nuclear Information System (INIS)

    The Jabiluka unconformity-related uranium deposit contains 8 million gms of gold (at an average grade of 10 gms/tonne) in addition to 207,000 tonnes U3O8 and significant palladium (at grades of up to 100 gms/tonne). Other uranium deposits of the Alligators Rivers Uranium Field, Northern Territory, Australia (Koongarra, Nabarlek) also contain traces of gold. The E1 Sherana and Rockhole deposits (South Alligator Valley, Northern Territory) produced minor gold during the nineteen fifties and the Coronation Hill gold palladium and platinum deposit (South Alligator Valley) was originally mined for uranium. It therefore appears that solutions which carry uranium are capable of transporting ore-forming amounts of gold and in some instances palladium and platinum, elements traditionally regarded as immobile. This paper presents evidence on the nature of the ore-forming solutions involved in mineralisation at the Jabiluka, Nabarlek and Koongarra deposits and examines possible transport and depositional mechanisms of U, Au and platinum group elements

  18. Determination of uranium and thorium in monazite bearing sand by gamma ray spectrometry

    International Nuclear Information System (INIS)

    Monazite is one of the most important natural geological mineral due to the presence of heavy metals, rare earth and natural radioactive elements. Monazite is also an important ore for thorium, lanthanum, and cerium. It is very important to assess the concentration of uranium and thorium in various monazite samples observed in Indian coasts and their relative abundance. In addition to thorium, availability of uranium in monazite is also of interest because of an alternate source for the uranium fuel cycle operation going on in our country. The relative abundance of uranium in monazite bearing sands can be represented by the activity ratio of uranium to thorium in the samples. In the present study an attempt has been made to estimate the activity ratios of uranium to thorium in some of the monazite bearing beach sands collected from our coastal regions by using high resolution gamma ray spectrometry techniques

  19. Structural and hydrothermal modification of the Gaertner uranium deposit, Key Lake, Saskatchewan, Canada

    International Nuclear Information System (INIS)

    The Key Lake uranium deposits are located at the southeastern edge of the Athabasca Basin, approximately 240 km north of La Ronge, Saskatchewan. Key Lake Mining Corporation is at present the world's largest uranium producer with an annual rated production of approximately 12 million pounds of U3O8. The Gaertner deposit consists of massive aggregates of uranium and nickel minerals immediately above the Early/Middle Proterozoic unconformity at its intersection with the Key Lake structural zone. Peripheral ore shoots extend along fractures into the wall rocks. The main ore minerals are uraninite and coffinite which are accompanied by Ni-arsenides, Ni-sulpharsenides and Ni-, Fe-, Pb-, Co- and Cu-sulphides. Radially textured anisotropic uraninite in the Gaertner deposit represents the oldest mineralization phase dated at 1255+-12 Ma. A series of tectonic events and accompanying hydrothermal mobilization and alteration resulted in modifications of the original monomineralic uranium orebody. Based on ore microscopic examinations and field observations in the Gaertner open pit, the following modification stages are identified: 1. ∼900 Ma: Fracturing of radially textured anisotropic uraninite, the oldest recognised uranium ore, subsequent introduction of Ni, As, S, Fe, Co and Cu. Radiometric dating of associated coffinite indicates an age of approximately 900 Ma. 2. ∼300 Ma: Renewed fracturing of the nickeliferous uranium ore stockwork, hydrothermal carbonate and clay alteration with dispersion of mobilized elements into the wall rocks, and multiple redistribution/introduction of U under varying physico-chemical conditions. On the basis of isotropy and optical reflectivity, four uraninite/pitchblende generations are distinguished in addition to a second nickel mineral suite and a coffinite phase. 3. <300 Ma: Vertical offset within the deposit under shallow conditions. Hydrothermal activity is not apparent. (author). 13 refs, 10 figs

  20. Geochemical orientation survey of stream sediment, stream water, and ground water near uranium prospects, Monticello area, New York. National Uranium Resource Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    Rose, A. W.; Smith, A. T.; Wesolowski, D.

    1982-08-01

    A detailed geochemical test survey has been conducted in a 570 sq km area around six small copper-uranium prospects in sandstones of the Devonian Catskill Formation near Monticello in southern New York state. This report summarizes and interprets the data for about 500 stream sediment samples, 500 stream water samples, and 500 ground water samples, each analyzed for 40 to 50 elements. The groundwater samples furnish distinctive anomalies for uranium, helium, radon, and copper near the mineralized localities, but the samples must be segregated into aquifers in order to obtain continuous well-defined anomalies. Two zones of uranium-rich water (1 to 16 parts per billion) can be recognized on cross sections; the upper zone extends through the known occurrences. The anomalies in uranium and helium are strongest in the deeper parts of the aquifers and are diluted in samples from shallow wells. In stream water, copper and uranium are slightly anomalous, as in an ore factor derived from factor analysis. Ratios of copper, uranium, and zinc to conductivity improve the resolution of anomalies. In stream sediment, extractable uranium, copper, niobium, vanadium, and an ore factor furnish weak anomalies, and ratios of uranium and copper to zinc improve the definition of anomalies. The uranium/thorium ratio is not helpful. Published analyses of rock samples from the nearby stratigraphic section show distinct anomalies in the zone containing the copper-uranium occurrences. This report is being issued without the normal detailed technical and copy editing, to make the data available to the public before the end of the National Uranium Reconnaissance Evaluation program.

  1. A quantitative radiochemical method for the determination of the major sources of natural radioactivity in ores and minerals

    Science.gov (United States)

    Rosholt, John Nicholas, Jr.

    1953-01-01

    The determination of Th232, Rn222, and Pb210 by isolation and subsequent activity analysis of some of their short-lived daughter products is described. The sulfides of bismuth and polonium are precipitated out of solutions of thorium or uranium ores, and the alpha particle activity of PO214. PO212 and PO210 is determined by scintillation counting techniques. PO214 activity is used to determine Rn222, PO212 activity for Th232, and PO210 for Pb210.

  2. Advances on application of remote sensing technology to uranium prospecting in northwest of China

    International Nuclear Information System (INIS)

    Some advances on application of remote sensing technology to uranium prospecting in northwest of China since 21st century are presented in this paper. They included: (1) application of ETM multi-spectral remote sensing technology to identify the sandstone-type uranium ore-controlling structure in north of Ordos Basin and investigate the uranium metallogenetic geological conditions in Qiangtang Basin, Tibet, (2) application of ASTER multi-spectral and QuickBird high spatial resolution remote sensing technology to extract and analyze the oil-gas reduced alteration in Bashibulake uranium ore district, Xinjiang, (3) discovery of Salamubulake uranium metallogenetic belt in Keping, Xinjiang, using ASTER multi-spectral, QuickBird high spatial resolution, and CASI/SASI airborne hyper-spectral remote sensing comprehensively, and (4) application of CASI/SASI airborne hyper-spectral remote sensing technology to extract volcanicrock type uranium mineralization alteration in Baiyanghe area, Xinjiang. These application advances show the good application effects of remote sensing technology to uranium exploration in northwest of China, which provides important references for making further uranium prospecting using remote sensing technology. (authors)

  3. Complexing with tetracycline in the separation of some elements interfering with the activation analysys of uranium

    International Nuclear Information System (INIS)

    In this work, an analytical method for uranium separation from Th, Zn, Na, Ta, Fe, W, Mo, Ag and lanthanides was studied. These elements form interfering radioisotopes in the gamma ray spectrum of 239 Np and some fission products formed by uranium activation with thermal neutrons. The adequate conditions for separation were studied using solvent extraction technique and tetracycline as an extracting agent. Separation of uranium from Na, Ag and Zn was achieved by controlling pH. Diethlenetriaminepentaacetic acid was used as masking agent for the uranium separation from Fe, Th and lanthanides. For other elements the separation was partial, meaning that about 11% of W, 32% of Mo and 5% of T a were extracted together with uranium into the organic phase. Chemical separation uranium by means of extraction with tetracycline prior to irradiation presented a recovery of 97% for uranium. The method was applied to the determination of uranium and the ratio235 U/238U in ores of monazite, pechblende S-7, provided by the International Atomic Energy Agency and an ore denominated 'goianite' natural of the state of Goias. (Author)

  4. Iron Ore Talks, A Prolonged Race

    Institute of Scientific and Technical Information of China (English)

    Zang Kejia

    2009-01-01

    @@ At press time,Chinese steel makers and the World's biggest iron ore minersstill did not reach the final agreement upon the iron ore price,past the original deadline June 30.Since Rio Tinto and Japan's Nippon Steel Corp.reached the 33percent price cut,the iron ore negotiation went into the even harder period.The China Iron and Steel Association (CISA)issued the statement several times that they would not accept the 33 percent cut,but adhere to 40 percent,however,with the negotiation approaching to the end,the situation for China becomes more unoptimistic.

  5. Analytical Methods for Uranium Concentration Measurements

    International Nuclear Information System (INIS)

    A survey of analytical procedures for the determination of uranium, as performed for NMM in the United States of America, is presented. Methods are outlined for the measurement of the element in a variety of materials, i.e. ores, concentrates, uranium metal, alloys, ceramics, compounds of uranium, scrap processing solutions, residues, and waste stream products. It is not intended as a complete résumé dealing with the subject, but it does offer measurement methods believed to give precise and accurate results of a high order. Because of the monetary value of the materials, and the transfer activities from one installation to another, involving payments or credits, burn-up charges, use charges, etc., it is essential that such methods are used. Methods of analysis to a large extent are dictated by the types of material to be analysed. The use of gravimetric methods are reviewed pertaining to product materials, which are generally defined as uranium metal, or compounds of the metal, such as oxides, halides, or nitrates. A pyro-hydrolysis technique is included under this heading. Non-volatile metallic impurities are determined spectroscopically, and the gravimetric results are corrected accordingly. Volumetric procedures, the ''workhorse'' methods for determining uranium, are thoroughly explored. The technique is applicable to all types of material, providing the uranium available for measurement is present in milligram quantities. Due to the valence states of uranium, reduction-oxidation schemes are particularly attractive. Dissolution problems, separation of interfering elements, reduction steps, and oxidation titrations of reduced uranium are discussed. The application of certain spectrophotometric and fluorometric procedures for analysing low-grade materials are included. Various separation steps incorporated in the procedures before the determination of uranium are reviewed. Along these lines the utilization of differential colorimetry is examined for determining

  6. Evaluation of long-lived Alpha (llα) activity associated with respirable dust in the underground Narwapahar uranium mine in India

    International Nuclear Information System (INIS)

    Uranium mining activities, in general, produce dust particle of different size in and around the location of operations being actually carried out. The most prominent being that of respirable size. Meticulously, the airborne uranium ore dust in underground uranium mines contains long-lived alpha (llα) emitters of the natural uranium decay chain. The main mining operations such as drilling, blasting, mucking, loading-dumping etc. generate ore dust of different particle size which becomes dispersed in the mine environment and gives rise to an inhalation hazard. The present work has been done in underground U mine at Narwapahar (ore grade about 0.043 % U3O8). The objective of the present study is to estimate the long lived alpha activity associated with the airborne respirable particulate in the underground mine at Narwapahar

  7. Laboratory investigations of refractory uranium minerals from the Kvanefjeld uranium deposit, Greenland

    International Nuclear Information System (INIS)

    The project described in this report is a contribution to a large project on the beneficiation of the Kvanefjeld uranium deposit in the Ilimaussaq intrusion in South Greenland. The main object of our project has been to undertake laboratory experiments on steenstrupine in order to define the optimum extraction conditions. A pressurized carbonate leaching method was introduced. The Risoe experiments are carried out on bulk samples of the ore while we decided to study the minerals, first of all steenstrupine, and carbonate solutions as leaching media. Our experiments demonstrated that the leaching conditions arrived at by the Risoe group give the highest recovery and thus may be termed the optimum conditions using sodium carbonate leaching methods. Studies of the solid products left after the leaching experiments by means of the electron microprobe show that the grains of steenstrupine remain and that the leaching of uranium proceeds from the margins of the grains and towards their interior. We decided also to study the effect of applying ammonium sulphate solutions. These gave significantly higher recoveries. We consider the results of the experiments using ammonium sulphate solutions as an essential new information on the extractability of the Kvanefjeld ore and as a main result of our study. It is demonstrated that in the 13 types of rocks examined, including lujavrites, 25-75 % of the thorium and 2-58 % of the uranium contained in the rocks can be leached out and are thus not firmly bound in the minerals. (author)

  8. Application of alkaline leaching to the extraction of uranium from shale of the Vosges; Application de la lixiviation alcaline a l'extraction de l'uranium du schiste des Vosges

    Energy Technology Data Exchange (ETDEWEB)

    Mouret, P.; Pottier, P.; Le Bris, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Soudan, P. [Centre d' Etude de Lalumine, Compagnie Pechiney (France)

    1958-07-01

    Description of chemical treatment of Vosges shales to obtain uranium by alkaline leaching. Mineralogy aspects of ore, physical and chemical conditions of leaching, solid/liquid separation, uranium recovery by either ion exchange process or electrolytic precipitation. (author)Fren. [French] Description du traitement chimique des schistes des Vosges pour extraire l'uranium en milieu alcalin. L'aspect mineralogique, les conditions physiques et chimiques de la lixiviation, la separation solide/liquide et la recuperation de l'uranium soit par echangeurs d'ions, soit par precipitation electrolytique y sont exposes. (auteur)

  9. Urinary excretion of uranium in adult inhabitants of the Czech Republic.

    Science.gov (United States)

    Malátová, Irena; Bečková, Věra; Kotík, Lukáš

    2016-02-01

    The main aim of this study was to determine and evaluate urinary excretion of uranium in the general public of the Czech Republic. This value should serve as a baseline for distinguishing possible increase in uranium content in population living near legacy sites of mining and processing uranium ores and also to help to distinguish the proportion of the uranium content in urine among uranium miners resulting from inhaled dust. The geometric mean of the uranium concentration in urine of 74 inhabitants of the Czech Republic was 0.091 mBq/L (7.4 ng/L) with the 95% confidence interval 0.071-0.12 mBq/L (5.7-9.6 ng/L) respectively. The geometric mean of the daily excretion was 0.15 mBq/d (12.4 ng/d) with the 95% confidence interval 0.12-0.20 mBq/d (9.5-16.1 ng/d) respectively. Despite the legacy of uranium mines and plants processing uranium ore in the Czech Republic, the levels of uranium in urine and therefore, also human body content of uranium, is similar to other countries, esp. Germany, Slovenia and USA. Significant difference in the daily urinary excretion of uranium was found between individuals using public supply and private water wells as a source of drinking water. Age dependence of daily urinary excretion of uranium was not found. Mean values and their range are comparable to other countries, esp. Germany, Slovenia and USA.

  10. Evaluation of the Cerro Solo nuclear ore, province of Chubut. Geological characteristics of the deposit and of the basin. Pt. 2

    International Nuclear Information System (INIS)

    The Cerro Solo uranium ore deposit, is located 420 km west from Trelew city, Chubut province, in the extra-andean. The geologic environment belongs to the northwest edge portion of the intracratonic San Jorge Gulf Basin. The uraniferous district is named Pichinanes Ridge district. The mineralization lies 25 to 130 m depth, and is hosted by Los Adobes formation aged Aptian-Albian, made up by conglomerates, sandstones, coarse-sandstones and less abundant siltstones and claystones. The Cerro Solo ore deposit that belongs to the sandstone type-uranium occurrences are lenticular or tabular shaped, associated with organic material and pyrite, generally roughly parallel to the bedding (Trend-Type). The uranium minerals are uraninite and coffinite associated with organic material and pyrite, and frequently hematite, goethite, calcite, siderite and barite are observed. (Author)

  11. Decommissioning and rehabilitation of uranium and thorium production facilities

    International Nuclear Information System (INIS)

    The use of nuclear energy for military as well as for peaceful purposes was and remains closely connected with the mining and processing of uranium ore and, to a lesser extent, of thorium ore. Mining and processing of radioactive ores are characterised by the generation of huge amounts of radioactive residues, massive impacts upon ecosystems, landscape reshaping (or devastation in some places), and the monostructural socio-economic orientation of human settlement areas. However, a great number of the mines and mills commissioned during the cold war have been already closed, either for deposits being depleted of economically recoverable resources or on political grounds. The specifics of uranium/thorium mining and milling make high demands on the decommissioning and rehabilitation of the facilities which in addition to radiological aspects would have to address issues such as water pollution control and soil conservation, future site re-use, landscaping, and infrastructure development. The present paper gives an overview of the state of decommissioning and rehabilitation. Radiological specifics and their integration into the decommissioning and rehabilitation management are demonstrated for the rehabilitation of uranium mining legacies in Saxony and Thuringia. (orig.)

  12. Uranium processing and properties

    CERN Document Server

    2013-01-01

    Covers a broad spectrum of topics and applications that deal with uranium processing and the properties of uranium Offers extensive coverage of both new and established practices for dealing with uranium supplies in nuclear engineering Promotes the documentation of the state-of-the-art processing techniques utilized for uranium and other specialty metals

  13. Issues in uranium availability

    International Nuclear Information System (INIS)

    The purpose of this publication is to show the process by which information about uranium reserves and resources is developed, evaluated and used. The following three papers in this volume have been abstracted and indexed for the Energy Data Base: (1) uranium reserve and resource assessment; (2) exploration for uranium in the United States; (3) nuclear power, the uranium industry, and resource development

  14. Cuddapah uranium province, Andhra Pradesh role of basement granites, tectonism and geochemistry

    International Nuclear Information System (INIS)

    The Cuddapah Uranium Province encompasses two economically viable genetic types of uranium deposits as the carbonate-hosted stratabound uranium deposits around Tummalapalle-Rachakuntapalle area, and the unconformity-proximal type in basement granitoids and overlying Srisailam/Banganapalle quartzite in the Lambapur-Peddagattu-Chitrial-Koppunuru area . Besides, the basin characteristically hosts important occurrences, of fracture controlled uranium mineralisation in Gulcheru quartzite near Gandi and in basement granitoid around Lakkireddipalle-Rayachoti; shear-controlled along the thrusted eastern margin of Cuddapah basin in basic metavolcanics and schists at Gudarukoppu and Kasturigattu. In the northern part of the basin, uranium deposits of Lambapur, Peddagattu, Chitrial, and Koppunuru area characteristically show association of ore bodies along structures formed by intersection of prominent basement fractures with the unconformity separating Srisailam and Palnad sediments from the basement. In the southwestern part of the basin, potential carbonate-hosted, stratabound uranium mineralisation extends over a 160 km long belt from Chelumpalli to Maddimadugu with large-tonnage, low-grade, uranium deposits in Tummallapalle-Rachakuntapalle area. The unconformity-proximal and fracture controlled deposits/prospects characteristically share a common source for uranium, repeated tectonism, weathering of the basement granitoids and episodic, epigenetic hydrothermal processes of uranium mineralisation. This paper evaluates the role of granitoids spatially and temporally associated with uranium mineralisation in making the Cuddapah Basin a unique uranium province. (author)

  15. Production of Solar Cells in Space from Non Specific Ores by Utilization of Electronically Enhanced Sputtering

    Science.gov (United States)

    Curreri, Peter A.

    2009-01-01

    An ideal method of construction in space would utilize some form of the Universal Differentiator and Universal Constructor as described by Von Neumann (1). The Universal Differentiator is an idealized non ore specific extractive device which is capable of breaking any ore into its constituent elements, and the Universal Constructor can utilize these elements to build any device with controllability to the nanometer scale. During the Human Exploration Initiative program in the early 1990s a conceptual study was done (2) to understand whether such devices were feasible with near term technology for the utilization of space resources and energy. A candidate system was proposed which would utilize electronically enhanced sputtering as the differentiator. Highly ionized ions would be accelerated to a kinetic energy at which the interaction between them and the lattice elections in the ore would be at a maximum. Experiments have shown that the maximum disintegration of raw material occurs at an ion kinetic energy of about 5 MeV, regardless of the composition and structure of the raw material. Devices that could produce charged ion beams in this energy range in space were being tested in the early 1990s. At this energy, for example an ion in a beam of fluorine ions yields about 8 uranium ions from uranium fluoride, 1,400 hydrogen and oxygen atoms from ice, or 7,000 atoms from sulfur dioxide ice. The ions from the disintegrated ore would then be driven by an electrical field into a discriminator in the form of a mass spectrometer, where the magnetic field would divert the ions into collectors for future use or used directly in molecular beam construction techniques. The process would require 10-7 Torr vacuum which would be available in space or on the moon. If the process were used to make thin film silicon solar cells (ignoring any energy inefficiency for beam production), then energy break even for solar cells in space would occur after 14 days.

  16. Uranium industry annual 1985

    International Nuclear Information System (INIS)

    This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities, utility market requirements, and related topics. A glossary and appendices are included to assist the reader in interpreting the substantial array of statistical data in this report and to provide background information about the survey

  17. In situ leaching of uranium: Technical, environmental and economic aspects

    International Nuclear Information System (INIS)

    Within the framework of its activities in nuclear raw materials the International Atomic Energy Agency has convened a series of meetings to discuss various aspects of uranium ore processing technology, recovery of uranium from non-conventional resources and development of projects for the production of uranium concentrates including economic aspects. As part of this continuing effort to discuss and document important aspects of uranium production the IAEA convened a Technical Committee Meeting on Technical, Economic and Environmental Aspects of In-Situ Leaching. Although the use of this technique is limited by geological and economic constraints, it has a significant potential to produce uranium at competitive prices. This is especially important in the current uranium market which is mainly characterised by large inventories, excess production capability and low prices. This situation is not expected to last indefinitely but it is unlikely to change drastically in the next ten years or so. This Technical Committee Meeting was held in Vienna from 3 to 6 November 1987 with the attendance of 24 participants from 12 countries. Eight papers were presented. Technical sessions covered in-situ mining research, environmental and licensing aspects and restoration of leached orebodies; the technological status of in-situ leaching, the current status and future prospects of in-situ leaching of uranium in Member States, general aspects of planning and implementation of in-situ projects and the economics of in-situ leaching. Refs, figs and tabs

  18. Geological Characteristics of Epithermal Ore Concentrated Areas and Epithermal Ore Deposits in China

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The epithermal ore concentrated area is located in Southwestern China. We systematically study the regional geological characteristics such as the basement of Proterozoic, the capping bed, Moho, geothermal feature and tectonics, and discuss the relationship between distributed characteristics of the epithermal ore deposits and ore-control factors in this paper. It is concluded that the conditions, under which the epithermal ore deposits form, are huge thick basement of Proterozoic, long-time and wide-scope developed capping bed and weak magmatic activity. The basement of Proterozoic that enriches volcanic matters and carbon and the carbonaceous-bearing and paleo-pool-bearing capping bed provides main ore source. The large and deep faults and paleopool accordance with gravity anomaly gradient control the distribution of epithermal ore deposits. The lithologic assembles of microclastic rocks and carbonate rocks in the capping bed provide spaces of ore precipitation and create conditions of ore precipitation. The coincidence of many geological factors above forms the epithermal ore concentrated area.

  19. Research of Geochemical Associations of Nephelin Ores

    Science.gov (United States)

    Vulf, M.; Simonov, K.; Sazonov, A.

    The instant paper concerns research of distribution petrogenic chemical members in urtit ore body of Kia-Shaltyrsk deposit. Rocks of the deposit are ore for producing alum earth. Actuality of the subject based on outlooks of detection noble metal ore-bearing (Au, Pt, Pd, Rh, Ru) in alkaline rocks of Siberia, including rocks of Kia-Shaltyrsk deposit (Kuznetsk Alatau). The main purpose of analysis of distribution of members is directed to detection of a non-uniformity of distribution of substance and segments enriched with alum earth and noble members. The basic solved problems are following: o Creation regression models of ore body; o Definition of cumulative distribution functions of members in a contour of ore body; o The analysis of the obtained outcomes in geologic terms. For construction regression models the full-scale data was used, which was presented by the results of the spectral and silicate analyses of gold and petrogenic members containing 130 assays arranged in ore body. A non-linear multiparameter model of the ore body based on components of nephelin ore using neural net approach was constructed. For each member the corresponding distribution function is produced. The model is constructed on the following members: Au, Al2O3, SiO2, Fe2O3, CaO, MgO, SO3, R2O ((Na2O+K2O) -1) and losses of burning. The error of model forecasting membersS concentrations was from 0.02 up to 20%. Large errors basically connected with assays located near contact of ore body and ad- jacent strata or with very high concentrations of members; also they can be connected with different genesis of rocks or superposition of other processes. The analysis of concentrations of members and normalised absolute errors of the fore- cast has shown, that all members can be sectioned into two groups: first: Al2O3, SiO2, R2O, Fe2O3 and second: Au, losses of burning, CaO, MgO, SO3. The distribution of 1 gold is tightly connected with calcium and losses of burning and spatially linked with zones

  20. A study of radon emanation from waste rock at Northern Territory uranium mines

    International Nuclear Information System (INIS)

    Field measurements were made of radon emanation rates from waste rock sources at Ranger, Nabarlek and Rum Jungle, three Northern Territory uranium mine sites. The preliminary mean emanation rate was approximately 50 Bq m-2s-2 per percent ore grade

  1. Developed methodology for geological control of the secondary uranium concentrations at Osamu Utsumi Mine

    International Nuclear Information System (INIS)

    It is presented a methodology to localize correctly and specify the quality of diverses secondary uranium concentrations facies. To support the mining operations, maps (vertical and horizontal sections and diagram blocks) were elaborated. Theoretical and pratical studies of the genesis and lithological and structural characteristics of the ore deposit done to improve the prospecting works on the Pocos de Caldas Plateau. (Author)

  2. Localization of uranium rich mineralization in sandstone bodies, Akouta deposit, Republic of Niger

    Energy Technology Data Exchange (ETDEWEB)

    Sanguinetti, H.; Oumarou, J. (Cominak, Arlit (Republique du Niger)); Chantret, F. (COGEMA, Chatillon-sous-Bagneux (France))

    1982-03-08

    Uranium rich accumulations in Akouta's ore body occur in bottom set layers of sandstone in which accumulated preferentially plant debris which were submitted to early pyritisation. These reducing beds in aquiferous sandstone shaped locally the redox front line and are a great help in checking the mineralisation for mining geologists.

  3. The South Greenland uranium exploration programme

    International Nuclear Information System (INIS)

    This is the final report of the reconnaissance phase of the SYDURAN Project which was initiated in 1st. December 1978 to outline areas of increased uranium potential where more detailed prospection would be warranted. Districts and smaller zones in South Greenland which have the potential for containing economically exploitable uranium occurrences were defined using airborne gamma-spectroscopic, reconnaissance geochemical and geological methods. Other districts and areas have been shown to have no uranium potential and can be eliminated. The three promising districts are: 1. a 2000 square kilometre sub-circular district surrounding Ilimaussaq complex in which there are small high grade pitchblende occurences in faults and fractures in the surrounding granite. 2. the eastern area of the Motzfeldt Centre where large parts of the centre is mineralised and may give rise to exploitable, large tonnage, low grade uranium ore with associated niobium and rare earth elements in extractable quantities. 3. uraniferous rich districts or zones associated with the migmatitic supracrustal units in the area between Kap Farvel and Lindenows Fjord. The areas which were eliminated from having any uranium potential include: the Ketilidian supracrustal unit. the Nunarssuit alkaline complex. The uranium mineralisation in South Greenland is confined to two Proterozoic episodes: a) a late phase of granitisation and migmatisation with the formation of disseminated uraninite in the Migmatite Complex in the south of the project area between 1700-1800 m.y. and, b) hydrothermal activity associated with Gardar magmatic events between 1090-1170 m.y. in the central Granite Zone. Future work should be directed towards the definition and location of drilling targets. (EG)

  4. Treatment of radioactive wastes from uranium concentrating

    International Nuclear Information System (INIS)

    Radioactive wastes from uranium and thorium ore processing pose potential environmental and public health problems because of their radioactivity and chemical composition. The radionuclides exist in these wastes are those resulting from the uranium 238, uranium 235 and thorium 232 decay series. The most important radionuclide in U 238 decay series are uranium 234, thorium 230, radium 226 and some short lived radionuclides such as radon-222. Radium 226 is the nuclide of principal concern from the standpoint of the assessment and control of the radiological hazard associated with the wastes. Thus determination of uranium, thorium and radium concentration in wastes resulting from nuclear fuel cycle is very important because of its potential hazard. Various analytical methods such as fluorimetry, neutron activation analysis, radon emanation, spectrophotometry and spectroscopy are used for determination of these radionuclides. Uranium and thorium are separated from interfering element by ion exchange chromatography and measured by spectrophotometry method using arsenazo III and thorin as indicator. Radium is separated from interfering elements and α-emitters by coprecipitation of radium barium sulphate and measured by counting α-particles with surface barrier detector. Regarding to physical and chemical characteristic of waste being investigated, decontamination factors and treatment methods, chemical precipitation and coprecipitation procedure were carried out in this research work. By adding barium chloride, radium is separated from liquid waste and optimum condition were determined. Precipitation with lime and sodium-hydroxide were also studied and good result were obtained. The results show that by neutralization of waste by lime and sodium hydroxide more than 99.9% of activity was removed from stream. Advantage and disadvantage of each methods were studied and finally, effluent resulted from treatment were discharged after analysis with γ-spectroscopy and

  5. Radionuclides in sheep grazing near old uranium mines

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fernando P.; Oliveira, Joao M.; Malta, M. [Instituto Superior Tecnico/Campus Tecnologico e Nuclear/ (IST/CTN), Universidade de Lisboa, Estrada Nacional 10 - ao km 139,7, - 2695-066 Bobadela LRS (Portugal); Lemos, M.E. [Servicos de Alimentacao e Veterinaria da Regiao Centro, Bairro Na Sra dos Remedios, 6300 Guarda (Portugal); Vala, H.; Esteves, F. [Escola Superior Agraria de Viseu, Quinta da Alagoa, Estrada de Nelas, Ranhados,3500-606 Viseu (Portugal)

    2014-07-01

    During the past century extensive uranium mining took place in Portugal for radium and uranium production. Many uranium deposits were mined as open pits and after ore extraction and transportation to milling facilities, mining wastes were left on site. One uranium ore mining site, Boco Mine, was extracted in the 1960's and 70's and mining waste and open pits were left uncovered and non-remediated since closure of uranium mining activities. During the nineties a quarry for sand extraction was operated in the same site and water from a local stream was extensively used in sand sieving. Downstream the mine areas, agriculture soils along the water course are currently used for cattle grazing. Water from this stream, and water wells, soil, pasture and sheep meat were analyzed for radionuclides of the uranium series. The U- series radionuclide {sup 226}Ra was generally the highest in concentrations especially in soil, pasture, and in internal organs of sheep. Ra-226 concentrations averaged 1093±96 Bq/kg (dry weight) in soil, 43±3 Bq/kg (dw) in pasture, and 0.76±0.41 Bq/kg (dw) in muscle tissue of sheep grown there. Other sheep internal organs displayed much higher {sup 226}Ra concentrations, such as the brain and kidneys with 7.7±2.3 Bq/kg (dw) and 28±29 Bq/kg (dw), respectively. Results of tissue sample analysis for sheep grown in a comparison area were 2 to 11 times lower, depending on the tissue. Absorbed radiation doses for internal organs of sheep were computed and may exceed 20 mSv/y in the kidney. Although elevated, this absorbed radiation dose still is below the threshold for biological effects on mammals. Nevertheless, enhanced environmental radioactive contamination mainly due to radium was observed in the area of influence of this legacy uranium mine and there is potential food chain transfer for humans (authors)

  6. ANALYSIS ON THE ORE-FORMING CONDITIONS OF THE SANDSTONE TYPE URANIUM DEPOSIT IN THE NORTHEAST UPLIFT OF SONGLIAO BASIN%松辽盆地东北隆起区砂岩型铀矿成矿条件分析

    Institute of Scientific and Technical Information of China (English)

    杨海波; 钟延秋

    2011-01-01

    运用水成矿理论,对松辽盆地东北隆起区砂岩型铀矿成矿的铀源、构造、沉积、水文地质、古气候等条件进行了分析,认为该区具有良好的砂岩型铀矿成矿地质条件.具体表现在区内存在受构造运动影响地层隆起遭受剥蚀的构造天窗,在盆地边缘发育向南西倾斜的斜坡带;有利铀成矿的河流相、三角洲相砂体发育;泥岩-砂岩-泥岩结构层发育良好,有含水透水层和隔水层;补-径-排机制较完善,水动力条件较好,具有渗入型自流水盆地特征.该区具有良好的勘探前景.%With the theory of hydrogenic uranium deposit, the conditions of uranium source, geological structure, hydrology, sedimentation and paleo-climate for the metallogenesis of sandstone type uranium deposits in the northeast uplift of Songliao Basin are analyzed. The following geological conditions are considered favorable for the metallogenesis of sandstone type uranium deposits in this area: Influenced by tectonic movements, stratum uplifting and erosion, a structural inlier is formed in the area; A SW-trending slope belt is developed in the margin of the basin; The well developed sand bodies of fluvial facies and delta facies are deposited; an interlayer zone of mudstone-sandstone-mudstone is developed with permeable bed and impermeable bed; The supply-passage-discharge system is complete with favorable hydraulic condition and the characteristics of secondary seeping artesian basin. As a result, the prospects of uranium in the northeast uplift of Songliao Basin are encouraging.

  7. Geological-economic evaluation model for pithead heap-leaching uranium deposits of hard-rock

    International Nuclear Information System (INIS)

    By analyzing the technical flow of pithead heap-leaching uranium deposits of hard-rock type, the authors analyze its 14 cost items such as ore mining fee and major materials fee etc., and set up a geological-economic evaluation model. Under this geological-evaluation model a computer evaluating program is made in Ziyuan and Lujing uranium ore-fields. The results of static evaluation show that or mining fee is the main part and amortization of both building and equipment and major materials fee are the secondary parts in the total cost of pithead heap-leaching mining. The computer program may assist decision-making in the way of helping decision-makers to select scientificaly the average grade of ore in pithead heap-leaching mining under a total cost. (authors)

  8. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico.

    Science.gov (United States)

    Goldstein, Steven J; Abdel-Fattah, Amr I; Murrell, Michael T; Dobson, Patrick F; Norman, Deborah E; Amato, Ronald S; Nunn, Andrew J

    2010-03-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ( approximately 10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that (230)Th/(238)U activity ratios range from 0.005 to 0.48 and (226)Ra/(238)U activity ratios range from 0.006 to 113. (239)Pu/(238)U mass ratios for the saturated zone are 1000 times lower than the U mobility. Saturated zone mobility decreases in the order (238)U approximately (226)Ra > (230)Th approximately (239)Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit. PMID:20136119

  9. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.J.; Abdel-Fattah, A.I.; Murrell, M.T.; Dobson, P.F.; Norman, D.E.; Amato, R.S.; Nunn, A. J.

    2009-10-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ({approx}10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that {sup 230}Th/{sup 238}U activity ratios range from 0.005-0.48 and {sup 226}Ra/{sup 238}U activity ratios range from 0.006-113. {sup 239}Pu/{sup 238}U mass ratios for the saturated zone are <2 x 10{sup -14}, and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order {sup 238}U{approx}{sup 226}Ra > {sup 230}Th{approx}{sup 239}Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  10. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico

    International Nuclear Information System (INIS)

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low (∼10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that 230Th/238U activity ratios range from 0.005-0.48 and 226Ra/238U activity ratios range from 0.006-113. 239Pu/238U mass ratios for the saturated zone are -14, and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order 238U∼226Ra > 230Th∼239Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  11. Mechanism of mechanical activation for sulfide ores

    Institute of Scientific and Technical Information of China (English)

    HU Hui-ping; CHEN Qi-yuan; YIN Zhou-lan; HE Yue-hui; HUANG Bai-yun

    2007-01-01

    Structural changes for mechanically activated pyrite, sphalerite, galena and molybdenite with or without the exposure to ambient air, were systematically investigated using X-ray diffraction analysis(XRD), particle size analysis, gravimetrical method, X-ray photo-electron spectroscopy(XPS) and scanning electron microscopy(SEM), respectively. Based on the above structural changes for mechanically activated sulfide ores and related reports by other researchers, several qualitative rules of the mechanisms and the effects of mechanical activation for sulfide ores are obtained. For brittle sulfide ores with thermal instability, and incomplete cleavage plane or extremely incomplete cleavage plane, the mechanism of mechanical activation is that a great amount of surface reactive sites are formed during their mechanical activation. The effects of mechanical activation are apparent. For brittle sulfide ores with thermal instability, and complete cleavage plane, the mechanism of mechanical activation is that a great amount of surface reactive sites are formed, and lattice deformation happens during their mechanical activation. The effects of mechanical activation are apparent. For brittle sulfide ores with excellent thermal stability, and complete cleavage plane, the mechanism of mechanical activation is that lattice deformation happens during their mechanical activation. The effects of mechanical activation are apparent. For sulfide ores with high toughness, good thermal stability and very excellent complete cleavage plane, the mechanism of mechanical activation is that lattice deformation happens during their mechanical activation, but the lattice deformation ratio is very small. The effects of mechanical activation are worst.

  12. Depleted Uranium Management

    International Nuclear Information System (INIS)

    The paper considers radiological and toxic impact of the depleted uranium on the human health. Radiological influence of depleted uranium is less for 60 % than natural uranium due to the decreasing of short-lived isotopes uranium-234 and uranium-235 after enrichment. The formation of radioactive aerosols and their impact on the human are mentioned. Use of the depleted uranium weapons has also a chemical effect on intake due to possible carcinogenic influence on kidney. Uranium-236 in the substance of the depleted uranium is determined. The fact of beta-radiation formation in the uranium-238 decay is regarded. This effect practically is the same for both depleted and natural uranium. Importance of toxicity of depleted uranium, as the heavier chemical substance, has a considerable contribution to the population health. The paper analyzes risks regarding the use of the depleted uranium weapons. There is international opposition against using weapons with depleted uranium. Resolution on effects of the use of armaments and ammunitions containing depleted uranium was five times supported by the United Nations (USA, United Kingdom, France and Israel did not support). The decision for banning of depleted uranium weapons was supported by the European Parliament

  13. Ores and Climate Change - Primary Shareholders

    Science.gov (United States)

    Stein, Holly J.; Hannah, Judith L.

    2015-04-01

    Many in the economic geology community concern themselves with details of ore formation at the deposit scale, whether tallying fluid inclusion data to get at changes in ore-forming fluids or defining structures that aid and abet mineralization. These compilations are generally aimed at interpretation of events at the site of ore formation, with the goal being assignment of the deposit to a sanctioned ore deposit model. While providing useful data, this approach is incomplete and does not, by itself, serve present-day requirements for true interdisciplinary science. The ore-forming environment is one of chaos and disequilibrium at nearly all scales (Stein, 2014). Chaos and complexity are documented by variably altered rocks, veins or disseminated mineralization with multi-generational fluid histories, erratic and unusual textures in host rocks, and the bitumen or other hydrocarbon products entwined within many ore deposits. This should give pause to our drive for more data as a means to find "the answer". The answer lies in the kind of data collected and more importantly, in the way we interpret those data. Rather than constructing an ever-increasing catalog of descriptive mutations on sanctioned ore deposit models (e.g., IOGC or Iron-Oxide Copper Gold deposits), the way forward is to link source and transport of metals, sulfur, and organic material with regional and ultimately whole Earth chemical evolution. Important experimental work provides chemical constraints in controlled and behaved environments. To these data, we add imagination and interpretation, always tying back to field observations. In this paper, several key points are made by way of ore deposit examples: (1) many IOCG deposits are outcomes of profound changes in the chemistry of the Earth's surface, in the interplay of the atmosphere, hydrosphere, biosphere, and lithosphere; (2) the redox history of Fe in deep earth may be ultimately expressed in the ore-forming sequence; and (3) the formation of

  14. FLUORESCENT X-RAY-ANALYSIS OF URANIUM USING INTERNAL STANDARD AND FILTER METHODS

    OpenAIRE

    Arikan, P.; Özmen, A.

    1987-01-01

    Interna1 standard and filter methods for fluorescent X-ray analysis of uranium in ores are investigated. In the first method, successful application of strontium K-X internal standard line for uranium L-X analyte line is carried out. Standardization with strontium eliminated the absorption-enhancement effect in analysis. In the second method, strontium and thorium are chosen as filters for uranium L-X and K-X fluorescent rays respectively. Attenuation (Hull) filters are used to remove ULβ, UK...

  15. Final environmental statement related to the operation of the Teton Uranium ISL Project (Docket No). 40-8781

    International Nuclear Information System (INIS)

    This Final Environmental Impact Statement is issued by the US Nuclear Regulatory Commission in response to the request by Teton Exploration Drilling, Inc. for the issuance of an NRC Source and Byproduct Material License authorizing operation of the proposed Teton Project to mine uranium in situ by injecting a carbonate/bicarbonate lixiviant into the ore body. The statement considers: (1) alternative of no licensing action, (2) alternative energy sources, and (3) alternatives if uranium ore is mined and refined on the site. The proposed action is to grant a Source and Byproduct Material License to the applicant subject to the stipulated license condition

  16. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography. Vol. 2, Rev. 1. [490 references

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.M.; Brock, M.L.; Garland, P.A.; White, M.B.; Daniel, E.W. (comps.)

    1979-07-01

    This bibliography, a compilation of 490 references, is the second in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base is one of six data bases created by the Ecological Sciences Information Center, Oak Ridge National Laboratory, for the Grand Junction Office of the Department of Energy. Major emphasis for this volume has been placed on uranium geology, encompassing deposition, genesis of ore deposits, and ore controls; and prospecting techniques, including geochemistry and aerial reconnaissance. The following indexes are provided to aid the user in locating references of interest: author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.

  17. Radon in Uranium Mining. Proceedings of a Panel

    International Nuclear Information System (INIS)

    A considerable increase in uranium production capacity is foreseen over the next decades to provide fuel for a rapidly expanding nuclear power industry. The problems that arise with this anticipated increase in production have far reaching implications on, for example, availability of ore, mining methods, mine and mill construction facilities, environmental impacts, all of which require careful attention within the uranium mining industry. The International Atomic Energy Agency is concerned in assisting with the study of all such problems, including, among others, the effect which radiological and waste management legislative controls will have on uranium costs and ore reserves. The essential requirement is that the health of uranium miners should be safeguarded. Most Governments of uranium-producing countries already have legislation limiting the permissible amounts of radon in working uranium mines, and many have also indicated that permitted levels may be more rigorous in future years. To comply with these regulations uranium mining companies and organizations must invest considerable sums on new ventilation and protective systems. This expenditure will, in many cases, increase the total cost of uranium production and, in some mines, may raise the cost above acceptable economic limits. The present estimated uranium reserves are classified on the basis of 'estimated cost of production' figures and these may, therefore, require modification. This, in turn, might affect the uranium fuel situation for future nuclear power programmes. To discuss this, and the related subjects of mine ventilation and radon emanation in mines, the Agency convened a Panel on Radon in Uranium Mining from 4 to 7 September 1973 which, at the invitation of the United States Government, was held in Washington, D.C. Nine participants and nine observers from six countries were present at the meeting. The principal subject was the theme of the first session. It was recognized that, while the

  18. 新疆塔里木盆地北缘铀矿勘查中高分辨率遥感分析应用%Application of High Resolution Remote Sensing Technology to Uranium Ore Exploration in North Fringe of Tarim Basin, Xingjiang, China

    Institute of Scientific and Technical Information of China (English)

    叶发旺; 刘德长

    2012-01-01

    高分辨率遥感技术(包括高空间分辨率和高光谱分辨率)是新世纪以来地质勘查领域的重要新技术、新方法.本文以新疆塔里术盆地北缘巴什布拉克铀矿区和柯坪地区为例,研究了 Quickbird高空间分辨率卫星遥感技术和CASI(Compact Airborne Spectrographic Imager)/SASI(Shortwave infrared Airborne Spectrographic Imager)航空高光谱遥感技术在铀矿勘查中的应用.首先,介绍了 Quickbird和CASI/SASI高分辨率遥感数据的特点和处理方法;然后,分析了 Quickbird高空间分辨率遥感技术在新疆塔里木盆地北缘巴什布拉克铀矿区油气还原褪色蚀变识别与空间分布规律分析中的应用,为铀矿油气还原成因研究和外围找矿方向提供重要依据;并研究了Quickbird与CASI/SASI两种高分辨率遥感技术在新疆塔里木盆地北缘柯坪地区铀矿勘查中的应用,发现了萨拉姆布拉克铀矿化带及其铀矿化蚀变空间分布特征,确定了铀矿化蚀变类型,预测了铀矿找矿靶区,为该地区铀矿勘查的新突破提供了重要依据.上述应用表明,高分辨率遥感技术在铀矿地质勘查领域可以取得很好的应用效果,值得广大遥感地质工作者今后进一步深入挖掘其应用潜力.%High resolution remote sensing technology ( including high spatial resolution and hyper-spectral resolution) is an important new technology in field of geological exploration since the new century. In order to present the application of high resolution remote sensing technology in geological field, the Quick-bird high spatial resolution satellite remote sensing technology and CASI (Compact Airborne Spectro-graphic Imager)/SASI (Shortwave infrared Airborne Spectrographic Imager) airborne hyper-spectral remote sensing technology were used to mine the uranium exploration information in north fringe of Tarim Basin, Xingjiang, in this paper. In first part, the feature and processing method of Quickbird and CASI

  19. Mineralogical variations across Mariano Lake roll-type uranium deposits, McKinley County

    International Nuclear Information System (INIS)

    Mineralogy of core samples from the Mariano orebody was determined. The data obtained were used to develop exploration tools for roll-type uranium deposits. Preliminary interpretations of the physical and chemical conditions of ore deposition were made on the basis of paragenetic relationships. The host sandstones occur between the bentonitic rock units and contain scattered intercalations of detrital montmorillonitic material in the form of clay galls, stringers, and lenses derived from these bentonites. Authigenic clay minerals identified in the host rocks include cellular montmorillonite, platy chlorite, and pseudohexagonal books of kaolinite. The cellular montmorillonite is concentrated in the oxidized zone and appears to have formed prior to ore deposition. Authigenic chlorite is most abundant in the ore zone and has formed at the expense of cellular montmorillonite; its formation is interpreted as being related to the ore-forming processes. Kaolinite in sandstones is the last clay mineral to form and is enriched in the reduced zone. Calcite, considered typical of such deposits, is not found in this orebody. Iron-titanium oxides and their alteration products are the most abundant heavy-mineral species in the host rocks. In addition to anatase and rutile, the alteration products include hematite in the oxidized zone and pyrite in the ore and reduced zones. Carbonaceous material introudced later into the potential ore zone appears to have been responsible for the decomposition of Fe-Ti oxides and the formation of pyrite. The paragenetic relationship indicates oxidation of pyrite by mineralizing solutions, resulting in reduction and subsequent deposition of uranium. The positive correlation between organic carbon and uranium suggests that carbonaceous material also acted as a reductant for uranium

  20. IAEA activities on uranium resources and production and databases for the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Full text: Natural uranium (∼99.3% U-238+ ∼ 0.7 % U-235) is the basic raw material for nuclear fuel. The present generation of nuclear power reactors derive energy from the 'fission' of U-235, the only 'fissile' isotope in nature. These reactors also transmute the more abundant U-238 to man-made fissile isotope Pu-239, which could be subjected to multiple recycling, as fuel, in fast reactor for efficient utilization of natural uranium resources and to ensure long term sustainability of nuclear energy. Uranium is mostly mined and produced in countries without a nuclear power programme. On the other hand, uranium is mostly consumed in countries with nuclear power, but having no uranium. In recent years, rising expectation for nuclear power has led to increase in uranium exploration, mining and ore processing activities all over the world and several new countries, with a limited experience, have embarked on uranium exploration, mining and production. Uranium and its daughter products are radioactivity and health hazardous. Radiological safety is a major challenge in uranium production cycle and in uranium mine and mill remediation and reclamation. Another specific challenge being faced currently by uranium raw material industry is the retired or ageing manpower and lack of experienced staff around the world. The IAEA's programme on 'Uranium Resources and Production and Databases for the Nuclear Fuel Cycle' encompass all aspects of uranium geology and deposits, exploration, resources, supply and demand, uranium mining and processing, environmental issues related to uranium production cycle and databases for uranium fuel cycle. The IAEA collaborates with OECD/NEA in producing an authoritative and updated document on uranium resources, production and demand, popularly known as Red Book, which is published biennially by OECD/NEA. As a spin-off from uranium resources activities, two reports titled, 'Analysis of Uranium to 2060' and 'Red Book Retrospective - Country