WorldWideScience

Sample records for alaskan tussock tundra

  1. Atmospheric methane sources: Alaskan tundra bogs, an alpine fen, and a subarctic boreal marsh

    OpenAIRE

    Sebacher, Daniel I.; Harriss, Robert C.; Bartlett, Karen B.; Sebacher, Shirley M.; Grice, Shirley S.

    2011-01-01

    Methane (CH4) flux measurements from Alaskan tundra bogs, an alpine fen, and a subarctic boreal marsh were obtained at field sites ranging from Prudhoe Bay on the coast of the Arctic Ocean to the Alaskan Range south of Fairbanks during August 1984. In the tundra, average CH4 emission rates varied from 4.9 mg CH4 m-2 d-1 (moist tundra) to 119 mg CH4 m-2 d-1 (waterlogged tundra). Fluxes averaged 40 mg CH4 m-2 d-1 from wet tussock meadows in the Brooks Range and 289 mg CH4 m-2 d-1 from an alpine...

  2. CO2 flux from tundra lichen, moss, and tussock, Council, Alaska: Assessment of spatial representativeness

    Science.gov (United States)

    Kim, Y.; Chae, N.

    2012-12-01

    CO2 flux-measurement in dominant tundra vegetation on the Seward Peninsula of Alaska was examined for spatial representativeness, using a manual chamber system. In order to assess the representativeness of CO2 flux, a 40 m × 40 m (5-m interval; 81 total points) plot was used in June, August, and September of 2011. Average CO2 fluxes in lichen, moss, and tussock tundra were 3.4 ± 2.7, 4.5 ± 2.9, and 7.2 ± 5.7 mgCO2/m2/m during growing season, respectively, suggesting that tussock tundra is a significant CO2 source, especially considering the wide distribution of tussock tundra in the circumpolar region. Further, soil temperature, rather than soil moisture, held the key role in regulating CO2 flux at the study site: CO2 flux from tussock increased linearly as soil temperature increased, while the flux from lichen and moss followed soil temperature nearly exponentially, reflecting differences in surface area covered by the chamber system. Regarding sample size, the 81 total sampling points over June, August, and September satisfy an experimental average that falls within ±10% of full sample average, with a 95% confidence level. However, the number of sampling points for each variety of vegetation during each month must provide at least ±20%, with an 80% confidence level. In order to overcome the logistical constraints, we were required to identify the site's characteristics with a manual chamber system over a 40 m × 40 m plot and to subsequently employ an automated chamber for spatiotemporal representativeness.

  3. Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan arctic tundra.

    Science.gov (United States)

    Boelman, Natalie T; Gough, Laura; Wingfield, John; Goetz, Scott; Asmus, Ashley; Chmura, Helen E; Krause, Jesse S; Perez, Jonathan H; Sweet, Shannan K; Guay, Kevin C

    2015-04-01

    Climate warming is affecting the Arctic in multiple ways, including via increased dominance of deciduous shrubs. Although many studies have focused on how this vegetation shift is altering nutrient cycling and energy balance, few have explicitly considered effects on tundra fauna, such as the millions of migratory songbirds that breed in northern regions every year. To understand how increasing deciduous shrub dominance may alter breeding songbird habitat, we quantified vegetation and arthropod community characteristics in both graminoid and shrub dominated tundra. We combined measurements of preferred nest site characteristics for Lapland longspurs (Calcarius lapponicus) and Gambel's White-crowned sparrows (Zonotrichia leucophrys gambelii) with modeled predictions for the distribution of plant community types in the Alaskan arctic foothills region for the year 2050. Lapland longspur nests were found in sedge-dominated tussock tundra where shrub height does not exceed 20 cm, whereas White-crowned sparrows nested only under shrubs between 20 cm and 1 m in height, with no preference for shrub species. Shrub canopies had higher canopy-dwelling arthropod availability (i.e. small flies and spiders) but lower ground-dwelling arthropod availability (i.e. large spiders and beetles). Since flies are the birds' preferred prey, increasing shrubs may result in a net enhancement in preferred prey availability. Acknowledging the coarse resolution of existing tundra vegetation models, we predict that by 2050 there will be a northward shift in current White-crowned sparrow habitat range and a 20-60% increase in their preferred habitat extent, while Lapland longspur habitat extent will be equivalently reduced. Our findings can be used to make first approximations of future habitat change for species with similar nesting requirements. However, we contend that as exemplified by this study's findings, existing tundra modeling tools cannot yet simulate the fine-scale habitat

  4. Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska.

    Science.gov (United States)

    Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2015-02-01

    Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage. PMID:25156129

  5. Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra.

    Science.gov (United States)

    Blanc-Betes, Elena; Welker, Jeffrey M; Sturchio, Neil C; Chanton, Jeffrey P; Gonzalez-Meler, Miquel A

    2016-08-01

    Arctic winter precipitation is projected to increase with global warming, but some areas will experience decreases in snow accumulation. Although Arctic CH4 emissions may represent a significant climate forcing feedback, long-term impacts of changes in snow accumulation on CH4 fluxes remain uncertain. We measured ecosystem CH4 fluxes and soil CH4 and CO2 concentrations and (13) C composition to investigate the metabolic pathways and transport mechanisms driving moist acidic tundra CH4 flux over the growing season (Jun-Aug) after 18 years of experimental snow depth increases and decreases. Deeper snow increased soil wetness and warming, reducing soil %O2 levels and increasing thaw depth. Soil moisture, through changes in soil %O2 saturation, determined predominance of methanotrophy or methanogenesis, with soil temperature regulating the ecosystem CH4 sink or source strength. Reduced snow (RS) increased the fraction of oxidized CH4 (Fox) by 75-120% compared to Ambient, switching the system from a small source to a net CH4 sink (21 ± 2 and -31 ± 1 mg CH4  m(-2)  season(-1) at Ambient and RS). Deeper snow reduced Fox by 35-40% and 90-100% in medium- (MS) and high- (HS) snow additions relative to Ambient, contributing to increasing the CH4 source strength of moist acidic tundra (464 ± 15 and 3561 ± 97 mg CH4  m(-2)  season(-1) at MS and HS). Decreases in Fox with deeper snow were partly due to increases in plant-mediated CH4 transport associated with the expansion of tall graminoids. Deeper snow enhanced CH4 production within newly thawed soils, responding mainly to soil warming rather than to increases in acetate fermentation expected from thaw-induced increases in SOC availability. Our results suggest that increased winter precipitation will increase the CH4 source strength of Arctic tundra, but the resulting positive feedback on climate change will depend on the balance between areas with more or less snow accumulation than they are currently

  6. Relative contributions of rhizosphere and microbial respiration to belowground and total ecosystem respiration in arctic tussock tundra: results of a 13C pulse-chase experiment

    Science.gov (United States)

    Segal, A. D.; Sullivan, P.; Weintraub, M. N.; Darrouzet-Nardi, A.; Steltzer, H.

    2011-12-01

    Many arctic ecosystems that have historically been strong carbon (C) sinks are becoming sources of C to the atmosphere. Although ecosystem respiration is the largest C flux out of ecosystems, our ability to model respiration lags considerably behind our ability to model photosynthesis in the Arctic. Understanding the controls on respiration is especially important for an ecosystem which appears to be experiencing the greatest climate warming and also contains large stores of soil C. Partitioning respiration into its component fluxes and identifying factors controlling respiration of each component is a critical first step towards improving our ability to model changes in respiration. However, partitioning belowground constituents has proven to be challenging in most ecosystems. Therefore, to accurately estimate rhizosphere respiration and bulk soil microbial respiration in moist acidic tussock tundra, we selected an isotopic method that results in minimal disturbance of belowground processes. In mid July of 2011, we introduced a 13CO2 label into a clear ecosystem CO2 flux chamber, allowed the vegetation to incorporate the label through photosynthesis and returned 2 days and 4 days after labeling to follow the movement of the 13C signal. A smaller CO2 flux chamber was used to chase the label separately in tussock and inter-tussock areas. All above ground plant tissue was clipped immediately before the chase measurements and soil cores were taken immediately after chasing the label. Syringe samples (n=5 or 6) were collected from the small flux chamber at regular intervals as CO2 concentrations were allowed to build, and Keeling plots were used to estimate δ13C of belowground respiration. After completing the field measurements, the soil cores were sorted into live roots and root free soil. Samples of each were incubated in mason jars placed in a 10°C water bath. The jars were scrubbed free of CO2 and syringe samples were collected from each jar after CO2

  7. Emissions of biogenic sulfur gases from Alaskan tundra

    Science.gov (United States)

    Hines, Mark E.; Morrison, Michael C.

    1992-01-01

    Fluxes of the biogenic sulfur gases carbonyl sulfide (COS), dimethyl sulfide (DMS), methyl mercaptan (MeSH), and carbon disulfide (CS2) were determined for several freshwater and coastal marine tundra habitats using a dynamic enclosure method and gas chromatography. In the freshwater tundra sites, highest emissions, with a mean of 6.0 nmol/m(sup -2)H(sup -1) (1.5-10) occurred in the water-saturated wet meadow areas inhabited by grasses, sedges, and Sphagnum mosses. In the drier upland tundra sites, highest fluxes occurred in areas inhabited by mixed vegetation and labrador tea at 3.0 nmol/m(sup -2)h(sup -1) (0-8.3) and lowest fluxes were from lichen-dominated areas at 0.9 nmol/m(sup -2)h(sup -1). Sulfur emissions from a lake surface were also low at 0.8 nmol/m(sup -2)h(sup -1). Of the compounds measured, DMS was the dominant gas emitted from all of these sites. Sulfure emissions from the marine sites were up to 20-fold greater than fluxes in the freshwater habitats and were also dominated by DMS. Emissions of DMS were highest from intertidal soils inhabited by Carex subspathacea (150-250 nmol/m(sup -2)h(sup -1)). This Carex sp. was grazed thoroughly by geese and DMS fluxes doubled when goose feces were left within the flux chamber. Emissions were much lower from other types of vegetation which were more spatially dominant. Sulfure emissions from tundra were among the lowest reported in the literature. When emission data were extrapolated to include all tundra globally, the global flux of biogenic sulfur from this biome is 2-3 x 10(exp 8) g/yr. This represents less than 0.001 percent of the estimated annual global flux (approximately 50 Tg) of biogenic sulfur and less than 0.01 percent of the estimated terrestrial flux. The low emissions are attributed to the low availability of sulfate, certain hydrological characteristics of tundra, and the tendency for tundra to accumulate organic matter.

  8. Constraint of soil moisture on CO2 efflux from tundra lichen, moss, and tussock in Council, Alaska using a hierarchical Bayesian model

    Directory of Open Access Journals (Sweden)

    Y. Kim

    2014-04-01

    Full Text Available The tundra ecosystem is quite vulnerable to drastic climate change in the Arctic, and the quantification of carbon dynamics is of significant importance in response to thawing permafrost, changes in the snow-covered period and snow and shrub community extent, and the decline of sea ice in the Arctic. Here, CO2 efflux measurements using a manual chamber system within a 40 m × 40 m (5 m interval; 81 total points plot were conducted in dominant tundra vegetation on the Seward Peninsula of Alaska, during the growing seasons of 2011 and 2012, for the assessment of the driving parameters of CO2 efflux. We applied a hierarchical Bayesian (HB model – which is a function of soil temperature, soil moisture, vegetation type and thaw depth – to quantify the effect of environmental parameters on CO2 efflux, and to estimate growing season CO2 emission. Our results showed that average CO2 efflux in 2011 is 1.4-fold higher than in 2012, resulting from the distinct difference in soil moisture between the two years. Tussock-dominated CO2 efflux is 1.4 to 2.3 times higher than those measured in lichen and moss communities, reflecting tussock as a significant CO2 source in the Arctic, with wide area distribution on a circumpolar scale. CO2 efflux followed soil temperature nearly exponentially from both the observed data and the posterior medians of the HB model. This reveals soil temperature as the most important parameter in regulating CO2 efflux, rather than soil moisture and thaw depth. Obvious changes in soil moisture during the growing seasons of 2011 and 2012 resulted in an explicit difference in CO2 efflux – 742 and 539 g CO2 m−2 period−1 in 2011 and 2012, respectively, suggesting that the 2012 CO2 emission rate was constrained by 27% (95% credible interval: 17–36% compared to 2011, due to higher soil moisture from severe rain. Estimated growing season CO2 emission rate ranged from 0.86 Mg CO2 period−1 in 2012 to 1.2 Mg CO2 period−1 in 2011

  9. Constraint of soil moisture on CO2 efflux from tundra lichen, moss, and tussock in Council, Alaska, using a hierarchical Bayesian model

    Science.gov (United States)

    Kim, Y.; Nishina, K.; Chae, N.; Park, S. J.; Yoon, Y. J.; Lee, B. Y.

    2014-10-01

    The tundra ecosystem is quite vulnerable to drastic climate change in the Arctic, and the quantification of carbon dynamics is of significant importance regarding thawing permafrost, changes to the snow-covered period and snow and shrub community extent, and the decline of sea ice in the Arctic. Here, CO2 efflux measurements using a manual chamber system within a 40 m × 40 m (5 m interval; 81 total points) plot were conducted within dominant tundra vegetation on the Seward Peninsula of Alaska, during the growing seasons of 2011 and 2012, for the assessment of driving parameters of CO2 efflux. We applied a hierarchical Bayesian (HB) model - a function of soil temperature, soil moisture, vegetation type, and thaw depth - to quantify the effects of environmental factors on CO2 efflux and to estimate growing season CO2 emissions. Our results showed that average CO2 efflux in 2011 was 1.4 times higher than in 2012, resulting from the distinct difference in soil moisture between the 2 years. Tussock-dominated CO2 efflux is 1.4 to 2.3 times higher than those measured in lichen and moss communities, revealing tussock as a significant CO2 source in the Arctic, with a wide area distribution on the circumpolar scale. CO2 efflux followed soil temperature nearly exponentially from both the observed data and the posterior medians of the HB model. This reveals that soil temperature regulates the seasonal variation of CO2 efflux and that soil moisture contributes to the interannual variation of CO2 efflux for the two growing seasons in question. Obvious changes in soil moisture during the growing seasons of 2011 and 2012 resulted in an explicit difference between CO2 effluxes - 742 and 539 g CO2 m-2 period-1 for 2011 and 2012, respectively, suggesting the 2012 CO2 emission rate was reduced to 27% (95% credible interval: 17-36%) of the 2011 emission, due to higher soil moisture from severe rain. The estimated growing season CO2 emission rate ranged from 0.86 Mg CO2 in 2012 to 1

  10. Domibacillus tundrae sp. nov., isolated from active layer soil of tussock tundra in Alaska, and emended description of the genus Domibacillus.

    Science.gov (United States)

    Gyeong, Hye Ryeon; Baek, Kiwoon; Hwang, Chung Yeon; Park, Key Hun; Kim, Hye Min; Lee, Hong Kum; Lee, Yoo Kyung

    2015-10-01

    A novel Gram-stain-positive, spore-forming, aerobic, motile and rod-shaped bacterium designated strain PAMC 80007T was isolated from an active layer soil sample of Council, Alaska. Optimal growth of strain PAMC 80007T was observed at 30 °C, pH 7.0 and in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain PAMC 80007T belonged to the genus Domibacillus. This strain was closely related to Domibacillus enclensis (98.3 %), Domibacillus robiginosus (98.3 %) and Domibacillus indicus (97.2 %). Genomic DNA G+C content was 43.5 mol% and genomic relatedness analyses based on the average nucleotide identity and the genome-to-genome distance showed that strain PAMC 80007T is clearly distinguished from the closely related species of the genus Domibacillus. The major fatty acids (>5 %) were iso-C15 : 0 (24.7 %), C16 : 1ω11c (16.8 %), anteiso-C15 : 0 (16.5 %), C16 : 0 (15.6 %) and anteiso-C17 : 0 (8.7 %). The major respiratory isoprenoid quinones were menaquinone-6 (MK-6) and menaquinone-7 (MK-7), and the polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid, phospholipid and two unidentified lipids. meso-Diaminopimelic acid (type A1γ) was present in the cell-wall peptidoglycan, and the major whole-cell sugar was ribose with a minor quantity of glucose. Results from a polyphasic study suggested that strain PAMC 80007T represents a novel species of the genus Domibacillus for which the name Domibacillus tundrae sp. nov. is proposed. The type strain is PAMC 80007T ( = JCM 30371T = KCTC 33549T = DSM 29572T). An emended description of the genus Domibacillus is also provided.

  11. Paenibacillus tundrae sp. nov. and Paenibacillus xylanexedens sp. nov., Psychrotolerant, Xylan-Degrading, Bacteria from Alaskan Tundra

    Science.gov (United States)

    Psychrotolerant, xylan-degrading, strains of bacteria were isolated from soil beneath moist non-acidic and acidic tundra in northern Alaska. Phylogenetic analysis based on 16S rRNA gene sequences revealed that each strain belonged to the genus Paenibacillus. The highest levels of 16S rRNA gene sim...

  12. Carbon and nutrient responses to fire and climate warming in Alaskan arctic tundra

    Science.gov (United States)

    Jiang, Y.; Rastetter, E. B.; Shaver, G. R.; Rocha, A. V.; Kwiatkowski, B.; Pearce, A.; Zhuang, Q.; Mishra, U.

    2015-12-01

    Fire frequency has dramatically increased in the tundra of northern Alaska, which has major implications for the carbon budget of the region and the functioning of these ecosystems that support important wildlife species. We applied the Multiple Element Limitation (MEL) model to investigate both the short- and long-term post-fire succession of plant and soil carbon, nitrogen, and phosphorus fluxes and stocks along a burn severity gradient in the 2007 Anaktuvuk River Fire scar in northern Alaska. We compared the patterns of biomass and soil carbon, nitrogen and phosphorus recoveries with different burn severities and warming intensities. Modeling results indicated that the early regrowth of post-fire tundra vegetation was limited primarily by its canopy photosynthetic potential, rather than nutrient availability. The long-term recovery of C balance from fire disturbance is mainly determined by the internal redistribution of nutrients among ecosystem components, rather than the supply of nutrients from external sources (e.g., nitrogen deposition and fixation, phosphorus weathering). Soil organic matter is the principal source of plant-available nutrients and determines the spatial variation of vegetation biomass across the North Slope of Alaska. Across the North Slope of Alaska, we examined the effects of changes in N and P cycles on tundra C budgets under climate warming. Our results indicate that the ongoing climate warming in Arctic enhances mineralization and leads to a net transfer of nutrient from soil organic matter to vegetation, thereby stimulating tundra plant growth and increased C sequestration in the tundra ecosystems.

  13. Blood lead concentrations in Alaskan tundra swans: linking breeding and wintering areas with satellite telemetry

    Science.gov (United States)

    Ely, Craig R.; Franson, Christian

    2014-01-01

    Tundra swans (Cygnus columbianus) like many waterfowl species are susceptible to lead (Pb) poisoning, and Pb-induced mortality has been reported from many areas of their wintering range. Little is known however about Pb levels throughout the annual cycle of tundra swans, especially during summer when birds are on remote northern breeding areas where they are less likely to be exposed to anthropogenic sources of Pb. Our objective was to document summer Pb levels in tundra swans throughout their breeding range in Alaska to determine if there were population-specific differences in blood Pb concentrations that might pose a threat to swans and to humans that may consume them. We measured blood Pb concentrations in tundra swans at five locations in Alaska, representing birds that winter in both the Pacific Flyway and Atlantic Flyway. We also marked swans at each location with satellite transmitters and coded neck bands, to identify staging and wintering sites and determine if winter site use correlated with summer Pb concentrations. Blood Pb levels were generally low (return migration to Alaska, rather than on the summer breeding grounds. Blood Pb levels varied significantly across the five breeding areas, with highest concentrations in birds on the North Slope of Alaska (wintering in the Atlantic Flyway), and lowest in birds from the lower Alaska Peninsula that rarely migrate south for winter.

  14. Summertime surface O3 behavior and deposition to tundra in the Alaskan Arctic

    Science.gov (United States)

    Van Dam, Brie; Helmig, Detlev; Doskey, Paul V.; Oltmans, Samuel J.

    2016-07-01

    Atmospheric turbulence quantities, boundary layer ozone (O3) levels, and O3 deposition to the tundra surface were investigated at Toolik Lake, AK, during the 2011 summer season. Beginning immediately after snowmelt, a diurnal cycle of O3 in the atmospheric surface layer developed with daytime O3 maxima, and minima during low-light hours, resulting in a mean amplitude of 13 ppbv. This diurnal O3 cycle is far larger than observed at other high Arctic locations during the snow-free season. During the snow-free months of June, July, and August, O3 deposition velocities were ˜3 to 5 times faster than during May, when snow covered the ground most of the month. The overall mean O3 deposition velocity between June and August was 0.10 cm s-1. The month of June had the highest diurnal variation, with a median O3 deposition velocity of 0.2 cm s-1 during the daytime and 0.08 cm s-1 during low-light conditions. These values are slightly lower than previously reported summertime deposition velocities in northern latitudes over tundra or fen. O3 loss during low-light periods was attributed to a combination of surface deposition to the tundra and stable boundary layer conditions. We also hypothesize that emissions of reactive biogenic volatile organic compounds into the shallow boundary layer may contribute to nighttime O3 loss.

  15. Influence of the Tussock Growth Form on Arctic Ecosystem Carbon Stocks

    Science.gov (United States)

    Curasi, S.; Rocha, A. V.; Sonnentag, O.; Wullschleger, S. D.; Myers-Smith, I. H.; Fetcher, N.; Mack, M. C.; Natali, S.; Loranty, M. M.; Parker, T.

    2015-12-01

    The influence of plant growth forms on ecosystem carbon (C) cycling has been under appreciated. In arctic tundra, environmental factors and plant traits of the sedge Eriophorum vaginatum cause the formation of mounds that are dense amalgamations of belowground C called tussocks. Tussocks have important implications for arctic ecosystem biogeochemistry and C stocks, but the environmental and biological factors controlling their size and distribution across the landscape are poorly understood. In order to better understand how landscape variation in tussock size and density impact ecosystem C stocks, we formed the Carbon in Arctic Tussock Tundra (CATT) network and recruited an international team to sample locations across the arctic. The CATT network provided a latitudinal and longitudinal gradient along which to improve our understanding of tussocks' influence on ecosystem structure and function. CATT data revealed important insights into tussock formation across the arctic. Tussock density generally declined with latitude, and tussock size exhibited substantial variation across sites. The relationship between height and diameter was similar across CATT sites indicating that both biological and environmental factors control tussock formation. At some sites, C in tussocks comprised a substantial percentage of ecosystem C stocks that may be vulnerable to climate change. It is concluded that the loss of this growth form would offset C gains from projected plant functional shifts from graminoid to shrub tundra. This work highlights the role of plant growth forms on the magnitude and retention of ecosystem C stocks.

  16. Cesium-137 inventories in Alaskan Tundra, lake and marine sediments: An indicator of recent organic material transport?

    International Nuclear Information System (INIS)

    Tundra sampling was accomplished in 1989--1990 at Imnavait Creek, Alaska (68 degree 37' N, 149 degree 17' W). Inventories of 137Cs (102--162 mBq/cm2) are close to expectations, based upon measured atmospheric deposition for this latitude. Accumulated inventories of 137Cs in tundra decrease by up to 50% along a transect to Prudhoe Bay (70 degree 13' N, 148 degree 30' W). Atmospheric deposition of 137Cs decreased with latitude in the Arctic, but declines in deposition would have been relatively small over this distance (200 km). This suggests a recent loss of 137Cs and possibly associated organic matter from tundra over the northern portions of the transect between Imnavait Creek and Prudhoe Bay. Sediments from Toolik Lake (68 degree 38' N, 149 degree 38' W) showed widely varying 137Cs inventories, from a low of 22 mBq/cm2 away from the lake inlet, to a high between 140 to >200 mBq/cm2 near the main stream inflow. This was indicative of recent accumulation of cesium and possibly organic material associated with it in arctic lakes, although additional sampling is needed

  17. Spatial and Temporal Variation in Primary Productivity (NDVI) of Coastal Alaskan Tundra: Decreased Vegetation Growth Following Earlier Snowmelt

    Science.gov (United States)

    Gamon, John A.; Huemmrich, K. Fred; Stone, Robert S.; Tweedie, Craig E.

    2015-01-01

    In the Arctic, earlier snowmelt and longer growing seasons due to warming have been hypothesized to increase vegetation productivity. Using the Normalized Difference Vegetation Index (NDVI) from both field and satellite measurements as an indicator of vegetation phenology and productivity, we monitored spatial and temporal patterns of vegetation growth for a coastal wet sedge tundra site near Barrow, Alaska over three growing seasons (2000-2002). Contrary to expectation, earlier snowmelt did not lead to increased productivity. Instead, productivity was associated primarily with precipitation and soil moisture, and secondarily with growing degree days, which, during this period, led to reduced growth in years with earlier snowmelt. Additional moisture effects on productivity and species distribution, operating over a longer time scale, were evident in spatial NDVI patterns associated with microtopography. Lower, wetter regions dominated by graminoids were more productive than higher, drier locations having a higher percentage of lichens and mosses, despite the earlier snowmelt at the more elevated sites. These results call into question the oft-stated hypothesis that earlier arctic growing seasons will lead to greater vegetation productivity. Rather, they agree with an emerging body of evidence from recent field studies indicating that early-season, local environmental conditions, notably moisture and temperature, are primary factors determining arctic vegetation productivity. For this coastal arctic site, early growing season conditions are strongly influenced by microtopography, hydrology, and regional sea ice dynamics, and may not be easily predicted from snowmelt date or seasonal average air temperatures alone. Our comparison of field to satellite NDVI also highlights the value of in-situ monitoring of actual vegetation responses using field optical sampling to obtain detailed information on surface conditions not possible from satellite observations alone.

  18. Tundra vegetation effects on pan-Arctic albedo

    International Nuclear Information System (INIS)

    Recent field experiments in tundra ecosystems describe how increased shrub cover reduces winter albedo, and how subsequent changes in surface net radiation lead to altered rates of snowmelt. These findings imply that tundra vegetation change will alter regional energy budgets, but to date the effects have not been documented at regional or greater scales. Using satellite observations and a pan-Arctic vegetation map, we examined the effects of shrub vegetation on albedo across the terrestrial Arctic. We included vegetation classes dominated by low shrubs, dwarf shrubs, tussock-dominated graminoid tundra, and non-tussock graminoid tundra. Each class was further stratified by bioclimate subzones. Low-shrub tundra had higher normalized difference vegetation index values and earlier albedo decline in spring than dwarf-shrub tundra, but for tussock tundra, spring albedo declined earlier than for low-shrub tundra. Our results illustrate how relatively small changes in vegetation properties result in differences in albedo dynamics, regardless of shrub growth, that may lead to differences in net radiation upwards of 50 W m-2 at weekly time scales. Further, our findings imply that changes to the terrestrial Arctic energy budget during this important seasonal transition are under way regardless of whether recent satellite observed productivity trends are the result of shrub expansion. We conclude that a better understanding of changes in vegetation productivity and distribution in Arctic tundra is essential for accurately quantifying and predicting carbon and energy fluxes and associated climate feedbacks.

  19. Research on dynamics of tundra ecosystems and their potential response to energy research development. Progress report, 1 April 1982-March 1983

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.

    1983-02-15

    Bryophyte species distributions were analyzed with respect to microtopography at an alpine tundra site in central Alaska which is dominated by tussocks of Eriophorum vaginatum. Bryophyte distributions were found to be significantly correlated with slope but not with azimuth. Different types of tussocks and hollows and mats between tussocks also supported different bryophyte floras. Water loss resistances of three species of moss did not account for differences in their distributions.

  20. 2015 DOE Final UF Report. Effects of Warming the Deep Soil and Permafrost on Ecosystem Carbon Balance in Alaskan Tundra. A Coupled Measurement and Modeling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Schuur, Edward [Univ. of Florida, Gainesville, FL (United States)

    2015-06-11

    The major research goal of this project was to understand and quantify the fate of carbon stored in permafrost ecosystems using a combination of field and laboratory experiments to measure isotope ratios and C fluxes in a tundra ecosystem exposed to experimental warming. Field measurements centered on the establishment of a two-factor experimental warming using a snow fence and open top chambers to increase winter and summer temperatures alone, and in combination, at a tundra field site at the Eight Mile Lake watershed near Healy, Alaska. The objective of this experimental warming was to significantly raise air and deep soil temperatures and increase the depth of thaw beyond that of previous warming experiments. Detecting the loss and fate of the old permafrost C pool remains a major challenge. Because soil C has been accumulating in these ecosystems over the past 10,000 years, there is a strong difference between the radiocarbon isotopic composition of C deep in the soil profile and permafrost compared to that near the soil surface. This large range of isotopic variability is unique to radiocarbon and provides a valuable and sensitive fingerprint for detecting the loss of old soil C as permafrost thaws.

  1. Fire occurrence and tussock size modulate facilitation by Ampelodesmos mauritanicus

    Science.gov (United States)

    Incerti, Guido; Giordano, Daniele; Stinca, Adriano; Senatore, Mauro; Termolino, Pasquale; Mazzoleni, Stefano; Bonanomi, Giuliano

    2013-05-01

    Facilitation has been reported for a wide range of plant communities, with evidence of interactions between protégé and nurse plants shifting during their ontogenetic cycles. This study showed that large Ampelodesmos mauritanicus tussocks can act as nurse for different species, but only after fire occurrence. Large tussocks are typically composed by an external belt of living tillers surrounding dead standing tillers in the inner area, thus being arranged as a “ring” shape. A low plant diversity in unburned sites, dominated by intact Ampelodesmos tussocks, was related to the intense aboveground competition due to space physical limitation by standing tillers, as well as to the reduction of light availability at ground level. In contrast, after burning, tussocks resprouted only in their external belts, leaving empty inner areas. During post-fire recovery, several species (e.g. Plantago spp., Trifolium spp., Carlina spp.) recolonize the bare soil among different tussocks. On the other hand, a moss (Funaria hygrometrica) and several herbaceous and woody plants (e.g. Spartium junceum, Calicotome villosa, Quercus pubescens subsp. pubescens) were selectively distributed within the ash-full central areas of burned Ampelodesmos tussocks. In summary, the study reported evidence of changing prevalence in the interplay of competition and facilitation effects between small and large Ampelodesmos tussocks, respectively. These results suggest a broad significance of the interactions between fire occurrence and ontogenetic phases of the dominant species in affecting the restoration dynamics of natural plant communities.

  2. Changes in tundra vascular plant biomass over thirty years at Imnavait Creek, Alaska, and current ecosystem C and N dynamics.

    Science.gov (United States)

    Bret-Harte, M. S.; Shaver, G. R.; Euskirchen, E. S.; Huebner, D. C.; Drew, J. W.; Cherry, J. E.; Edgar, C.

    2015-12-01

    Understanding the magnitude of, and controls over, carbon fluxes in arctic ecosystems is essential for accurate assessment and prediction of their responses to climate change. In 2013, we harvested vegetation and soils in the most common plant community types in source areas for fluxes measured by eddy covariance towers located in three representative Alaska tundra ecosystems along a toposequence (a ridge site of heath tundra and moist non-acidic tundra, a mid-slope site of moist acidic tussock tundra, and a valley bottom site of wet sedge tundra and moist acidic tussock tundra) at Imnavait Creek, Alaska. This harvest sought to relate biomass, production, composition, and C and N stocks in soil and vegetation, to estimates of net ecosystem CO2 exchange obtained by micrometeorological methods. Soil C and N stocks in the seasonally unfrozen soil layer were greatest in the wet sedge community, and least in the heath community. In contrast, moist acidic tussock tundra at the valley bottom site had the highest C and N stocks in vascular plant biomass, while nearby wet sedge tundra had the lowest. Overall, soil C:N ratio was highest in moist acidic tussock tundra at the mid-slope site. Aboveground biomass of vascular plants in moist acidic tundra at the mid-slope site was nearly three times higher than that measured thirty years earlier in vegetation harvests of nearby areas at Imnavait Creek. Other harvests from sites near Toolik Field Station suggest that vascular plant biomass in moist acidic tundra has increased in multiple sites over this time period. Increased biomass in the mid-1990s corresponds with a switch from mostly negative to mostly positive spatially-averaged air temperature anomalies in the climate record. All our sites have been annual net sources of CO2 to the atmosphere over nine years of measurement, but in the last two years, the valley bottom site has been a particularly strong source, due to CO2 losses in fall and winter that correspond with a

  3. Succession Stages of Tundra Plant Communities Following Wildfire Disturbance in Arctic Alaska

    Science.gov (United States)

    Breen, A. L.; Hollingsworth, T. N.; Mack, M. C.; Jones, B. M.

    2015-12-01

    Rapid climate change is affecting climate-sensitive disturbance regimes throughout the world. In particular, the impacts of climate change on Arctic disturbance regimes are poorly understood because landscape-scale disturbances are infrequent or occur in remote localities. Wildfire in Arctic Alaska is presently limited by ignition source and favorable burn weather. With rapid climate change, a lengthening growing season, and subsequent increase in plant biomass and productivity, wildfire frequency and annual area burned in tundra ecosystems is expected to increase over the next century. Yet, post-fire tundra vegetation succession is inadequately characterized except at a few point locations. We identify succession stages of tussock tundra communities following wildfire using a chronosequence of 65 relevés in 10 tundra fire scars (1971-2011) and nearby unburned tundra from sites on the Seward Peninsula and northern foothills of the Brooks Range. We used the Braun-Blanquét approach to classify plant communities, and applied nonmetric multidimentional scaling (NMDS) to identify ecological gradients underlying community differentiation. The ordination revealed a clear differentiation between unburned and burned tundra communities. Ecological gradients, reflected by ordination axes, correspond to fire history (e.g., time since last fire, number of times burned, burn severity) and a complex productivity gradient. Post-fire species richness is less than unburned tundra; primarily reflected as a decrease in lichen species and turnover of bryophyte species immediately post-fire. Species richness of grasses increases post-fire and is greatest in communities that burned more than once in the past 30 years. Shrub cover and total aboveground biomass are greatest in repeat burn sites. We review and discuss our results focusing on the implications of a changing tundra fire regime, its effect on vegetation succession trajectories, and subsequent rates of carbon sequestration and

  4. Biogeochemical modeling of tundra recovery following thermal erosion of permafrost

    Science.gov (United States)

    Pearce, A. R.; Rastetter, E. B.; Bowden, W. B.

    2011-12-01

    We simulate the biogeochemical recovery of tundra from a thermal erosion disturbance using the Multiple Element Limitation model (MEL) and compare model results with soil organic matter and nutrient chemistry measurements collected across a chronosequence of thermal erosion features. Thermal erosion of permafrost initially depletes the tundra of much of its vegetation and shallow soil organic matter. However, several decades later, there is often little distinguishing these scars from the surrounding undisturbed tundra. As thermal erosion features become more abundant on the arctic landscape, we desire to understand how the pools of carbon and nutrients rebuild after these disturbances. MEL is a plot-scale, process-based model that optimizes the acquisition of eight resources (light, water, CO2, PO4, NH4, NO3, DON and N-fixation) by vegetation based on how much of each is required and the effort needed to acquire it. Model output includes pool sizes of carbon, nitrogen and phosphorus in vegetation, litter, young soil organic matter and old soil organic matter and the fluxes among these pools over time. This calibration of MEL, operating on a daily timestep, was created with published data collected at or near the Toolik Field Station (Toolik Lake, AK, USA) from moist acidic tussock tundra sites. We corroborate our calibration with data from plot manipulations (N and P fertilization, greenhouse, and shade house) performed as part of the NSF Arctic LTER project. The initial conditions for the recovery simulations reflect post-failure observations of some of the variation in soil organic matter, and soil and water nutrient chemistry. With sufficient nutrients from residual soil or supplied in soil water from upslope, the model indicates that vegetation can recover within several decades, but recovery of C and nutrients lost from soils may take hundreds of years.

  5. Correlations between the Heterogeneity of Permafrost Thaw Depth and Vegetation in Boreal Forests and Arctic Tundra in Alaska.

    Science.gov (United States)

    Uy, K. L. Q.; Natali, S.; Kholodov, A. L.; Loranty, M. M.

    2015-12-01

    Global climate change induces rapid large scale changes in the far Northern regions of the globe, which include the thickening of the active layer of arctic and subarctic soils. Active layer depth, in turn, drives many changes to the hydrology and geochemistry of the soil, making an understanding of this layer essential to boreal forest and arctic tundra ecology. Because the structure of plant communities can affect the thermal attributes of the soil, they may drive variations in active layer depth. For instance, trees and tussocks create shade, which reduces temperatures, but also hold snow, which increases temperature through insulation; these aspects of vegetation can increase or decrease summer thaw. The goal of this project is to investigate correlations between the degree of heterogeneity of active layer depths, organic layer thickness, and aboveground vegetation to determine how these facets of Northern ecosystems interact at the ecosystem scale. Permafrost thaw and organic layer depths were measured along 20m transects in twenty-four boreal forest and tundra sites in Alaska. Aboveground vegetation along these transects was characterized by measuring tree diameter at breast height (DBH), tussock dimensions, and understory biomass. Using the coefficient of variation as a measure of heterogeneity, we found a positive correlation between thaw depth variability and tussock volume variability, but little correlation between the former and tree DBH variability. Soil organic layer depth variability was also positively correlated with thaw depth variability, but weakly correlated with tree and tussock heterogeneity. These data suggest that low vegetation and organic layer control the degree of variability in permafrost thaw at the ecosystem scale. Vegetation can thus affect the microtopography of permafrost and future changes in the plant community that affect vegetation heterogeneity will drive corresponding changes in the variability of the soil.

  6. Potential responses of tundra ecosystems to perturbations from energy development. Part I. Annual report, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.

    1986-01-01

    The necessity to determine general effects of perturbations in the arctic resulting from energy development is the impetus for this research which quantifies the patterns of water and nutrient flux from fellfield through tussock tundra into riparian plant communities. The evaluation of the effects of this mass flow on plant productivity is one of the objectives of the proposed research. The second major goal is to quantify the effects of changes of this water and nutrient flux resulting from slope perturbations, such as increased water flow, fertilizer application, blading and vehicle tracks. Demographic studies of fellfield, tussock tundra, and riparian vegetation and the dynamics of rodent activity in regard to nutrient transfer will broaden the understanding of the biology of a small watershed. Results of the integrated subprojects will be used to test the main hypotheses of this project which concern patterns of water and nutrient flux from slopes into the riparian vegetation as a results of slope perturbations. With the obtained information, nutrient and water flux routines of ARTUS will be expanded, and a specific slope and watershed model developed.

  7. Ground-Based Hyperspectral Characterization of Alaska Tundra Vegetation along Environmental Gradients

    OpenAIRE

    Marcel Schwieder; Epstein, Howard E.; Raynolds, Martha K.; Marcel Buchhorn; Walker, Donald A.; Birgit Heim

    2013-01-01

    Remote sensing has become a valuable tool in monitoring arctic environments. The aim of this paper is ground-based hyperspectral characterization of Low Arctic Alaskan tundra communities along four environmental gradients (regional climate, soil pH, toposequence, and soil moisture) that all vary in ground cover, biomass, and dominating plant communities. Field spectroscopy in connection with vegetation analysis was carried out in summer 2012, along the North American Arctic Transect (NAAT). S...

  8. Roots in the tundra

    NARCIS (Netherlands)

    Wang, Peng

    2016-01-01

    Global climate has been warming up for the last decades and it will continue in this century. The Arctic is the part of the globe that warms fastest and is more sensitive to climate warming. Aboveground productivity of Arctic tundra has been shown to increase in response to warmer climates. However,

  9. Tundra in the rain

    DEFF Research Database (Denmark)

    Keuper, Frida; Parmentier, Frans-Jan; Blok, Daan;

    2012-01-01

    tundra (northeast Siberia) and a dry Sphagnum fuscum-dominated bog (northern Sweden). Positive responses to approximately doubled ambient precipitation (an increase of 200 mm year-1) were observed at the Siberian site, for B. nana (30 % larger length increments), Salix pulchra (leaf size and length...

  10. The Blazing Arctic? Linkages of Tundra Fire Regimes to Climatic Change and Implications for Carbon Cycling (Invited)

    Science.gov (United States)

    Hu, F.; Higuera, P. E.; Walsh, J. E.; Chapman, W.; Duffy, P.; Brubaker, L.; Chipman, M. L.

    2010-12-01

    Among the major challenges in anticipating Arctic changes are “surprises” stemming from changes in system components that have remained relatively stable in the historic record. Tundra burning is potentially one such component. We conducted charcoal analysis of lake sediments from several tundra regions to evaluate the uniqueness of recent tundra fires, and examined potential climatic controls of Alaskan tundra fires from CE 1950-2009. A striking example of tundra burning is the 2007 Anaktuvuk River (AR) Fire, an unusually large fire in the tundra of the Alaskan Arctic. This fire doubled the area burned north of 68 oN in that region since record keeping began in 1950. Analysis of lake-sediment cores reveals peak values of charcoal accumulation corresponding to the AR Fire in 2007, with no evidence of other fire events in that area throughout the past five millennia. However, a number of tundra fires, including one as large as the AR Fire, have occurred over the past 60 years in western Alaska, where average summer temperatures are substantially higher than the AR area. In addition, charcoal analysis of lake sediments from interior and northwestern Alaska suggests that during certain periods of the Late Glacial and Holocene, tundra fire frequencies were as high as those of the modern boreal forests. These records along with the AR and historic fires demonstrate that tundra ecosystems support diverse fire regimes and can burn frequently. Reconciling these dramatic differences in tundra fire regimes requires knowledge of climate-fire relationships. Atmospheric reanalysis suggests that the AR Fire was favored by exceptionally warm/dry weather conditions in summer and early autumn. Boosted regression tree modeling shows that warm, dry summer conditions can explain up to 95% of the inter-annual variability in tundra area burned throughout Alaska over the past 60 years and that the response of tundra burning to climatic warming is non-linear. Additionally, tundra area

  11. Coupled long-term summer warming and deeper snow alters species composition and stimulates gross primary productivity in tussock tundra.

    Science.gov (United States)

    Leffler, A Joshua; Klein, Eric S; Oberbauer, Steven F; Welker, Jeffrey M

    2016-05-01

    Climate change is expected to increase summer temperature and winter precipitation throughout the Arctic. The long-term implications of these changes for plant species composition, plant function, and ecosystem processes are difficult to predict. We report on the influence of enhanced snow depth and warmer summer temperature following 20 years of an ITEX experimental manipulation at Toolik Lake, Alaska. Winter snow depth was increased using snow fences and warming was accomplished during summer using passive open-top chambers. One of the most important consequences of these experimental treatments was an increase in active layer depth and rate of thaw, which has led to deeper drainage and lower soil moisture content. Vegetation concomitantly shifted from a relatively wet system with high cover of the sedge Eriophorum vaginatum to a drier system, dominated by deciduous shrubs including Betula nana and Salix pulchra. At the individual plant level, we observed higher leaf nitrogen concentration associated with warmer temperatures and increased snow in S. pulchra and B. nana, but high leaf nitrogen concentration did not lead to higher rates of net photosynthesis. At the ecosystem level, we observed higher GPP and NEE in response to summer warming. Our results suggest that deeper snow has a cascading set of biophysical consequences that include a deeper active layer that leads to altered species composition, greater leaf nitrogen concentration, and higher ecosystem-level carbon uptake. PMID:26747269

  12. Alaskan Commodities Irradiation Project

    International Nuclear Information System (INIS)

    The ninety-ninth US Congress commissioned a six-state food irradiation research and development program to evaluate the commercial potential of this technology. Hawaii, Washington, Iowa, Oklahoma and Florida as well as Alaska have participated in the national program; various food products including fishery products, red meats, tropical and citrus fruits and vegetables have been studied. The purpose of the Alaskan study was to review and evaluate those factors related to the technical and economic feasibility of an irradiator in Alaska. This options analysis study will serve as a basis for determining the state's further involvement in the development of food irradiation technology. 40 refs., 50 figs., 53 tabs

  13. Cold season emissions dominate the Arctic tundra methane budget.

    Science.gov (United States)

    Zona, Donatella; Gioli, Beniamino; Commane, Róisín; Lindaas, Jakob; Wofsy, Steven C; Miller, Charles E; Dinardo, Steven J; Dengel, Sigrid; Sweeney, Colm; Karion, Anna; Chang, Rachel Y-W; Henderson, John M; Murphy, Patrick C; Goodrich, Jordan P; Moreaux, Virginie; Liljedahl, Anna; Watts, Jennifer D; Kimball, John S; Lipson, David A; Oechel, Walter C

    2016-01-01

    Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥ 50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y(-1), ∼ 25% of global emissions from extratropical wetlands, or ∼ 6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming. PMID:26699476

  14. Continuous monitoring of soil gas efflux with Forced Diffusion (FD) chamber technique in a tundra ecosystem, Alaska

    Science.gov (United States)

    Kim, Y.; Park, S. J.; Lee, B. Y.

    2015-12-01

    Continuous measurements of soil carbon dioxide (CO2) efflux provide essential information about the soil carbon budget in response to an abruptly changing climate at Arctic and Subarctic scales. The Forced Diffusion (FD) chamber technique has a gas permeable membrane, which passively regulates the mixing of atmosphere and soil air in the chamber, in place of the active pumping system inside a regular dynamics efflux chamber system (Risk et al., 2011). Here the system has been modified the sampling routine to eliminate the problem of sensor drift. After that, we deployed the FD chamber system in a tundra ecosystem over the discontinuous permafrost regime of Council, Alaska. The representative understory plants are tussock (17 %), lichen (32 %), and moss (51 %), within a 40 נ40 m plot at an interval of five meters (81 points total) for efflux-measurement by dynamic chamber. The FD chamber monitored soil CO2 efflux from moss, lichen, and tussock regimes at an interval of 30 min during the growing season of 2015. As the results, mean soil CO2 effluxes in sphagnum moss, lichen, and tussock were 1.98 ± 1.10 (coefficient of variance: 55.8 %), 3.34 ± 0.84 (CV: 25.0 %), and 5.32 ± 1.48 (CV: 27.8 %) gCO2/m2/d, respectively. The difference between the 30-min efflux interval and the average efflux of three 10-min intervals is not significant for sphagnum (n = 196), lichen (n = 918), and tussock (n = 918) under a 95 % confidence level. The deploying interval was then set to 30 min and synchronized with eddy covariance tower data. During the deployment period of 2015, soil CO2 efflux over moss, lichen, and tussock using the FD chamber system were 44 ± 24, 73 ± 18, and 117 ± 33 gCO2/m2/period, respectively. Using the dynamic chamber, mean ecosystem respiration (Re) ranges for moss, lichen, and tussock were 2.2-2.6, 1.8-2.0, and 3.3-3.6 gCO2/m2/d, respectively, during June and July of 2015. These techniques provide the representativeness of spatiotemporal variation of soil

  15. Ice-active proteins from New Zealand snow tussocks, Chionochloa macra AND C. rigida.

    Science.gov (United States)

    Wharton, D A; Selvanesan, L; Marshall, C J

    2010-01-01

    The ice active protein profile of New Zealand snow tussocks Chionochloa macra and C. rigida consisted of ice nucleation activity but no antifreeze or recrystallization inhibition activity. The ice nucleation activity was similar in the two species, despite them being collected at different altitudes and at different times. The activity is intrinsic to the plant and is associated with the surface of the leaves. Snow tussocks collect water from fog. Nucleation sites on the surface of their leaves may aid the efficiency of this process. PMID:20919453

  16. Alaska North Slope Tundra Travel Model and Validation Study

    Energy Technology Data Exchange (ETDEWEB)

    Harry R. Bader; Jacynthe Guimond

    2006-03-01

    The Alaska Department of Natural Resources (DNR), Division of Mining, Land, and Water manages cross-country travel, typically associated with hydrocarbon exploration and development, on Alaska's arctic North Slope. This project is intended to provide natural resource managers with objective, quantitative data to assist decision making regarding opening of the tundra to cross-country travel. DNR designed standardized, controlled field trials, with baseline data, to investigate the relationships present between winter exploration vehicle treatments and the independent variables of ground hardness, snow depth, and snow slab thickness, as they relate to the dependent variables of active layer depth, soil moisture, and photosynthetically active radiation (a proxy for plant disturbance). Changes in the dependent variables were used as indicators of tundra disturbance. Two main tundra community types were studied: Coastal Plain (wet graminoid/moist sedge shrub) and Foothills (tussock). DNR constructed four models to address physical soil properties: two models for each main community type, one predicting change in depth of active layer and a second predicting change in soil moisture. DNR also investigated the limited potential management utility in using soil temperature, the amount of photosynthetically active radiation (PAR) absorbed by plants, and changes in microphotography as tools for the identification of disturbance in the field. DNR operated under the assumption that changes in the abiotic factors of active layer depth and soil moisture drive alteration in tundra vegetation structure and composition. Statistically significant differences in depth of active layer, soil moisture at a 15 cm depth, soil temperature at a 15 cm depth, and the absorption of photosynthetically active radiation were found among treatment cells and among treatment types. The models were unable to thoroughly investigate the interacting role between snow depth and disturbance due to a

  17. An Alaskan legend

    Science.gov (United States)

    Mann, H.; Blodgett, R.B.

    2009-01-01

    Jack Lee is a prominent personality, an Alaskan individualist and a skeptic worthy of remembrance if for no other reason than being inextricably associated with the catastrophic Katmai eruption in 1912. Jack remains a provocative reminder of Alaska's pre-1958 drilling and was quite possibly the earliest observer (excepting natives and possibly Russians) of the oil seeps in the area now encompassed by the Becharof National Wildlife Refuge. His observation of the impressive live oil seeps in the Ugashik and Becharof Lakes area, and his subsequent involvement in the early drilling entirely consumed his future interests. He is a firm believer that individualism and suspicion are powerful tools when forced to reconsider alternatives to readily accepted interpretations of modern exploration results. His individualism and sometimes annoying, but thought-provoking skepticism remains useful in any field where clich??s provide safe guards from new concepts.

  18. Grass allometry and estimation of above-ground biomass in tropical alpine tussock grasslands

    NARCIS (Netherlands)

    Oliveras Menor, I.; Eynden, van der M.; Malhi, Y.; Cahuana, N.; Menor, C.; Zamora, F.; Haugaasen, T.

    2014-01-01

    The puna/páramo grasslands span across the highest altitudes of the tropical Andes, and their ecosystem dynamics are still poorly understood. In this study we examined the above-ground biomass and developed species specific and multispecies power-law allometric equations for four tussock grass speci

  19. Effects of sedge and cottongrass tussocks on plant establishment patterns in a post-mined peatland, northern Japan

    OpenAIRE

    Koyama, Asuka; Tsuyuzaki, Shiro

    2010-01-01

    Facilitation (positive inter-specific interaction) plays an important role in promoting succession in harsh environments. To examine whether tussocks facilitate the establishment of other species, after peat mining, investigations were carried out in a formerly Sphagnum-dominated wetland (Sarobetsu mire, northern Japan). Two tussock-forming species, Carex middendorffii and Eriophorum vaginatum, have established in sparsely vegetated areas, with a dry ground surface, since peat extraction ende...

  20. Drivers of post-fire successional trajectories in arctic tundra: the importance of physical and biophysical interactions

    Science.gov (United States)

    Rocha, A. V.; Jiang, Y.; Rastetter, E. B.; Drysdale, J.; Kremers, K.; Shaver, G. R.

    2013-12-01

    Fires in arctic tundra are rare with return intervals in the hundreds to thousands of years, but these events have large implications for carbon and energy fluxes in an environmentally changing and sensitive ecosystem. Permafrost degradation, species composition shifts, and ecosystem function alterations are just a few of the potential consequences of fire that could feedback on future climate change. Here we describe remote sensing, eddy covariance, thaw depth, and biomass measurements along an arctic tundra chronosequence to understand long-term post-fire carbon and energy budgets. Historical remote sensing and fire perimeter data were used to choose sites that were representative of a 0-6, 18, and 36 year old fire scar, which were paired with a representative nearby unburned control. Fires caused successional changes to carbon and energy budgets through changes to the soil thermal regime, caused by decreased organic layer from combustion, and shifts from tussock to grass and shrub dominated systems. Measurements and modeling with the Multiple Element Limitation (MEL) model indicate that nutrients played a key role in these shifts and that these dynamics change are controlled by biophysical conditions immediately after fire (i.e. residual organic layer depth) and climate during early succession. Results highlight the importance of initial conditions in determining the successional trajectory of arctic tundra and yield important insights on how these systems will respond to future climate change.

  1. Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem.

    Science.gov (United States)

    Johnston, Eric R; Rodriguez-R, Luis M; Luo, Chengwei; Yuan, Mengting M; Wu, Liyou; He, Zhili; Schuur, Edward A G; Luo, Yiqi; Tiedje, James M; Zhou, Jizhong; Konstantinidis, Konstantinos T

    2016-01-01

    How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 g) are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth) by sequencing, and the recovery of 27 high-quality, almost complete (>80% completeness) population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart) tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity). Collectively, our results revealed that

  2. Metagenomics reveals pervasive bacterial populations and reduced community diversity across the Alaska tundra ecosystem

    Directory of Open Access Journals (Sweden)

    Eric Robert Johnston

    2016-04-01

    Full Text Available How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 grams are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth by sequencing, and the recovery of twenty-seven high-quality, almost complete (>80% completeness population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity. Collectively

  3. Evaluation of Moderate-Resolution Imaging Spectroradiometer (MODIS) Snow Albedo Product (MCD43A) over Tundra

    Science.gov (United States)

    Wang, Zhuosen; Schaaf, Crystal B.; Chopping, Mark J.; Strahler, Alan H.; Wang, Jindi; Roman, Miguel O.; Rocha, Adrian V.; Woodcock, Curtis E.; Shuai, Yanmin

    2012-01-01

    This study assesses the MODIS standard Bidirectional Reflectance Distribution Function (BRDF)/Albedo product, and the daily Direct Broadcast BRDF/Albedo algorithm at tundra locations under large solar zenith angles and high anisotropic diffuse illumination and multiple scattering conditions. These products generally agree with ground-based albedo measurements during the snow cover period when the Solar Zenith Angle (SZA) is less than 70deg. An integrated validation strategy, including analysis of the representativeness of the surface heterogeneity, is performed to decide whether direct comparisons between field measurements and 500- m satellite products were appropriate or if the scaling of finer spatial resolution airborne or spaceborne data was necessary. Results indicate that the Root Mean Square Errors (RMSEs) are less than 0.047 during the snow covered periods for all MCD43 albedo products at several Alaskan tundra areas. The MCD43 1- day daily albedo product is particularly well suited to capture the rapidly changing surface conditions during the spring snow melt. Results also show that a full expression of the blue sky albedo is necessary at these large SZA snow covered areas because of the effects of anisotropic diffuse illumination and multiple scattering. In tundra locations with dark residue as a result of fire, the MODIS albedo values are lower than those at the unburned site from the start of snowmelt.

  4. A Two-dimensional Heat Transfer Model for Atmosphere-land System in the Lake-dominated Alaskan Arctic

    Institute of Scientific and Technical Information of China (English)

    LING Feng; ZHANG Ting-jun

    2002-01-01

    Understanding lake ice growth and its sensitivity to climate change is vital to understand the thermal regime of thaw lake systems and predict their response to climate change. In this paper, a physically-based, two-dimensional, non-steady mathematical model is developed for studying the role of shallow tundra lakes in the Alaskan Arctic. Both the radiation absorption in lake water and the phasechange in permafrost are considerd in the model. The materials the model includes are snow, ice, water, unfrozen and frozen soil (peat, silt,sand and gravel). The basic inputs to the model observed mean daily air temperature and snow depth. The ability of this model to simulate lake ice growth and thickness variation, lake water temperature distribution, the thermal regime of permafrost and talik dynamics beneath lakes, and thawing rate of permafrost below and adjacent to shallow thaw lakes offers the potential to describe the effects of climate change in the Alaskan Arctic.

  5. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model

    Science.gov (United States)

    Euskirchen, E.S.; Carman, T.B.; McGuire, Anthony David

    2013-01-01

    The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf-out, dynamic vegetation models simulated over regional to global scales typically assume some average leaf-out for all of the species within an ecosystem. Here, we make use of air temperature records and observations of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest, and perform model simulations for the years 1970 -2100. Over the course of the model simulations, we found changes in ecosystem composition under this new phenology algorithm compared to simulations with the previous phenology algorithm. These changes were the result of the differential timing of leaf-out, as well as the ability for the groupings of species to compete for nitrogen and light availability. Regionally, there were differences in the trends of the carbon pools and fluxes between the new phenology algorithm and the previous phenology algorithm, although these differences depended on the future climate scenario. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape, and that dynamic vegetation models should consider variation in leaf-out by groupings of species within these ecosystems to make more accurate projections of future plant distributions and carbon cycling in Arctic regions.

  6. The Alaskan gas pipeline conflict

    Energy Technology Data Exchange (ETDEWEB)

    Savich, P.; Fraser, N.M.; Hippel, K.W.

    1983-03-01

    A new conflict analysis technique is employed to study the dispute surrounding the selection of a natural gas pipeline route to transport gas from the American state of Alaska and also northern Canada to southern markets in the United States and Canada. The improved metagame analysis algorithm is the type of conflict analysis method that is used for providing a framework to study systematically the Alaskan gas pipeline controversy and to put the historical information into proper perspective. In addition, the methodology is utilized for predicting the possible feasible political solutions to the conflict.

  7. Phenological dynamics of arctic tundra vegetation and its implications on satellite imagery interpretation

    Science.gov (United States)

    Juutinen, Sari; Aurela, Mika; Mikola, Juha; Räsänen, Aleksi; Virtanen, Tarmo

    2016-04-01

    Remote sensing is a key methodology when monitoring the responses of arctic ecosystems to climatic warming. The short growing season and rapid vegetation development, however, set demands to the timing of image acquisition in the arctic. We used multispectral very high spatial resolution satellite images to study the effect of vegetation phenology on the spectral reflectance and image interpretation in the low arctic tundra in coastal Siberia (Tiksi, 71°35'39"N, 128°53'17"E). The study site mainly consists of peatlands, tussock, dwarf shrub, and grass tundra, and stony areas with some lichen and shrub patches. We tested the hypotheses that (1) plant phenology is responsive to the interannual weather variation and (2) the phenological state of vegetation has an impact on satellite image interpretation and the ability to distinguish between the plant communities. We used an empirical transfer function with temperature sums as drivers to reconstruct daily leaf area index (LAI) for the different plant communities for years 2005, and 2010-2014 based on measured LAI development in summer 2014. Satellite images, taken during growing seasons, were acquired for two years having late and early spring, and short and long growing season, respectively. LAI dynamics showed considerable interannual variation due to weather variation, and particularly the relative contribution of graminoid dominated communities was sensitive to these phenology shifts. We have also analyzed the differences in the reflectance values between the two satellite images taking account the LAI dynamics. These results will increase our understanding of the pitfalls that may arise from the timing of image acquisition when interpreting the vegetation structure in a heterogeneous tundra landscape. Very high spatial resolution multispectral images are available at reasonable cost, but not in high temporal resolution, which may lead to compromises when matching ground truth and the imagery. On the other hand

  8. Ground-Based Hyperspectral Characterization of Alaska Tundra Vegetation along Environmental Gradients

    Directory of Open Access Journals (Sweden)

    Marcel Schwieder

    2013-08-01

    Full Text Available Remote sensing has become a valuable tool in monitoring arctic environments. The aim of this paper is ground-based hyperspectral characterization of Low Arctic Alaskan tundra communities along four environmental gradients (regional climate, soil pH, toposequence, and soil moisture that all vary in ground cover, biomass, and dominating plant communities. Field spectroscopy in connection with vegetation analysis was carried out in summer 2012, along the North American Arctic Transect (NAAT. Spectral metrics were extracted, including the averaged reflectance and absorption-related metrics such as absorption depths and area of continuum removal. The spectral metrics were investigated with respect to “greenness”, biomass, vegetation height, and soil moisture regimes. The results show that the surface reflectances of all sites are similar in shape with a reduced near-infrared (NIR reflectance that is specific for low-growing biomes. The main spectro-radiometric findings are: (i Southern sites along the climate gradient have taller shrubs and greater overall vegetation biomass, which leads to higher reflectance in the NIR. (ii Vegetation height and surface wetness are two antagonists that balance each other out with respect to the NIR reflectance along the toposequence and soil moisture gradients. (iii Moist acidic tundra (MAT sites have “greener” species, more leaf biomass, and green-colored moss species that lead to higher pigment absorption compared to moist non-acidic tundra (MNT sites. (iv MAT and MNT plant community separation via narrowband Normalized Difference Vegetation Index (NDVI shows the potential of hyperspectral remote sensing applications in the tundra.

  9. Value of Alaskan wetlands for waterfowl: Draft

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Few studies have focused specifically on use of Alaskan wetlands by waterfowl and only two of these have been published. However, substantial information on the...

  10. International Tundra Experiment ITEX Manual Second Edition

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Nonforest plots of Long Term Ecological Monitoring sites follow protocols developed for the International Tundra Experiment Walker et al. 1993, Walker 1996.

  11. Koyukuk NWR tundra/trumpeter swan survey

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A tundra/trumpeter swan survey was conducted on the Koyukuk National Wildlife Refuge from 14 August to 23 August 1984. Twenty-four six mile square plots were...

  12. Tundra Rehabilitation in Alaska's Arctic

    Science.gov (United States)

    Lynn, L. A.

    2012-12-01

    Oil exploration in Alaska's Arctic has been conducted for more than 40 years, resulting in over 3,640 ha of gravel fill placed for roads, pads, and airstrips to support the industry. Likewise, tundra disturbance from burying power lines and by tundra vehicle travel are also common. Rehabilitation of disturbed sites began around 2002, with well over 150 ha that has been previously treated or is currently being rehabilitated. Two primary goals of rehabilitation efforts have been 1) revegetation by indigenous species, and 2) limiting thermokarst. Early efforts were concerned that removing gravel and having exposed bare ground would lead to extensive subsidence and eolian erosion. Native grass cultivars (e.g. Poa glauca, Arctagrostis latifolia, and Festuca rubra) were seeded to create vegetation cover quickly with the expectation that these grasses would survive only temporarily. The root masses and leaf litter were also expected to trap indigenous seed to enhance natural recolonization by indigenous plants. Due to the remote location of these sites, many of which are only accessible by helicopter, most are visited only two to three times following cultivation treatments, providing a limited data pool. At many sites, the total live seeded grass cover declined about 15% over the first 5¬-6 years (from around 30% to 15% cover), while total live indigenous vascular cover increased from no or trace cover to an average of 10% cover in that time. Cover of indigenous vascular plants at sites that were not seeded with native grass cultivars averaged just less than 10% after 10 years, showing no appreciable difference between the two approaches. Final surface elevations at the sites affect local hydrology and soil moisture. Other factors that influence the success of vegetation cover are proximity to the Arctic coast (salt effects), depth of remaining gravel, and changes in characteristics of the near-surface soil. Further development of rehabilitation techniques and the

  13. Vegetation shifts observed in arctic tundra 17 years after fire

    NARCIS (Netherlands)

    Barret, K.; Rocha, A.V.; Weg, van de M.J.; Shaver, G

    2012-01-01

    With anticipated climate change, tundra fires are expected to occur more frequently in the future, but data on the long-term effects of fire on tundra vegetation composition are scarce. This study addresses changes in vegetation structure that have persisted for 17 years after a tundra fire on the N

  14. 1982 annual report and proposal for continuing research on the potential responses of tundra ecosystems to perturbations from energy development. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.

    1982-01-01

    The Arctic Tundra Simulator (ARTUS) describes the annual patterns of heat and water balance, carbon fixation, plant growth, and nitrogen and phosphorus cycling in tussock tundra. ARTUS runs in 1-day time steps for a growing season from 1 May to 17 September and can run for any number of years. The daily sequence of calculations is: environmental, soil processes, nutrient uptake, moss processes, and vascular plant processes. The model was validated by comparing calculated and measured annual totals of processes, peak season biomasses and nutrient contents, and seasonal progression of biomass, carbohydrate contents, and nutrient contents. The validation variables were peak season new leaf and stem biomass by species, peak season nitrogen and phosphorus contents by species, nitrogen and phosphorus uptake by species, ecosystem respiration, and peak season depth of thaw. Several experiments and sets of observations were used for validating ARTUS. Values for measured and simulated variables with different experimental treatments at Eagle Creek, data obtained from sites along the TAPS haul road and at Cape Thompson on vascular plant biomass and nutrient content were used for validating ARTUS.

  15. Research on dynamics of tundra ecosystems and their potential response to energy resource development. Progress report, May 1, 1978-April 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Miller, P.C.

    1979-01-01

    The ecological effects (costs and benefits) of impacts that can be expected from the development and utilization of energy resources in the arctic. The impacts selected for study are: altered nutrient availability (nitrogen and phosphorus); altered patterns of soil water drainage; and vehicle tracks. The general ecosystem characteristics chosen to provide integrative measures of the possible ecological effects include annual primary production and the relative aboveground growth of the different species or growth forms comprising the vegetation. Plant growth forms are defined by height, leaf longevity, position of the perennating bud, and rooting pattern. The growth forms and species selected are: erect deciduous shrubs (Betula nana, Vaccinium uliginosum, Salix pulchra); erect evergreen shrubs (Ledum palustre); prostrate evergreen shrub (Vaccinium vitis-idaea); tussock graminoid (Eriophorum vaginatum); rhizomatous graminoid (Carex bigelowii, Carex aquatilis, Eriophorum angustifolium); forb (Artemisia arctica); grass (Calamagrostis or Arctagrostis); cushion moss (Dicranum sp.); Sphagnum sp.; and Polytrichum commune. Progress is reported in field and laboratory studies. The main conclusion of the research is that species respond individually in terms of nutrient and total nonstructural carbohydrates accumulation to fertilization, and that the growth forms studied are not distinctive from each other on the basis of plant nutrition or growth. The explicit mechanism for integrating and guiding this research and for extrapolating the existing data base to make quantitative predictions of the effects of perturbations is a simulation model of arctic tundra vegetation and soil processes called ARTUS (Arctic Tundra Simulator). (JGB)

  16. Towards a global barcode library for Lymantria (Lepidoptera: Lymantriinae tussock moths of biosecurity concern.

    Directory of Open Access Journals (Sweden)

    Jeremy R deWaard

    Full Text Available BACKGROUND: Detecting and controlling the movements of invasive species, such as insect pests, relies upon rapid and accurate species identification in order to initiate containment procedures by the appropriate authorities. Many species in the tussock moth genus Lymantria are significant forestry pests, including the gypsy moth Lymantria dispar L., and consequently have been a focus for the development of molecular diagnostic tools to assist in identifying species and source populations. In this study we expand the taxonomic and geographic coverage of the DNA barcode reference library, and further test the utility of this diagnostic method, both for species/subspecies assignment and for determination of geographic provenance of populations. METHODOLOGY/PRINCIPAL FINDINGS: Cytochrome oxidase I (COI barcodes were obtained from 518 individuals and 36 species of Lymantria, including sequences assembled and generated from previous studies, vouchered material in public collections, and intercepted specimens obtained from surveillance programs in Canada. A maximum likelihood tree was constructed, revealing high bootstrap support for 90% of species clusters. Bayesian species assignment was also tested, and resulted in correct assignment to species and subspecies in all instances. The performance of barcoding was also compared against the commonly employed NB restriction digest system (also based on COI; while the latter is informative for discriminating gypsy moth subspecies, COI barcode sequences provide greater resolution and generality by encompassing a greater number of haplotypes across all Lymantria species, none shared between species. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the efficacy of DNA barcodes for diagnosing species of Lymantria and reinforces the view that the approach is an under-utilized resource with substantial potential for biosecurity and surveillance. Biomonitoring agencies currently employing the NB restriction

  17. Aspects of the grammar of Tundra Yukaghir

    NARCIS (Netherlands)

    M. Schmalz

    2013-01-01

    The present thesis is an attempt at a grammatical description of Tundra Yukaghir (TY), based on a variety of primary data including those collected by the author during three field trips from 2009 till 2012. TY is a highly endangered minority language spoken in north-eastern Russia. It has slightly

  18. Response of tundra ecosystems to elevated atmospheric carbon dioxide. [Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.; Grulke, N.E.

    1988-12-31

    Our past research shows that arctic tussock tundra responds to elevated atmospheric CO{sub 2} with marked increases in net ecosystem carbon flux and photosynthetic rates. However, at ambient temperatures and nutrient availabilities, homeostatic adjustments result in net ecosystem flux rates dropping to those found a contemporary CO{sub 2} levels within three years. Evidence for ecosystem-level acclimation in the first season of elevated CO{sub 2} exposure was found in 1987. Photosynthetic rates of Eriophorum vaginatum, the dominant species, adjusts to elevated CO{sub 2} within three weeks. Past research also indicates other changes potentially important to ecosystem structure and function. Elevated CO{sub 2} treatment apparently delays senescence and increases the period of positive photosynthetic activity. Recent results from the 1987 field season verify the results obtained in the 1983--1986 field seasons: Elevated CO{sub 2} resulted in increased ecosystem-level flux rates. Regressions fitted to the seasonal flux rates indicate an apparent 10 d extension of positive CO{sub 2} uptake reflecting a delay of the onset of plant dormancy. This delay in senescence could increase the frost sensitivity of the system. Major end points proposed for this research include the effects of elevated CO{sub 2} and the interaction of elevated atmospheric CO{sub 2} with elevated soil temperature and increased nutrient availability on: (1) Net ecosystem CO{sub 2} flux; (2) Net photosynthetic rates; (3) Patterns and resource controls on homeostatic adjustment in the above processes to elevated CO{sub 2}; (4) Plant-nutrient status, litter quality, and forage quality; (5) Soil-nutrient status; (6) Plant-growth pattern and shoot demography.

  19. Carbon cycling of alpine tundra ecosystems on Changbai Mountain and its comparison with arctic tundra

    Institute of Scientific and Technical Information of China (English)

    代力民; 吴钢; 赵景柱; 孔红梅; 邵国凡; 邓红兵

    2002-01-01

    The alpine tundra on Changbai Mountain was formed as a left-over ‘island' in higher elevations after the glacier retrieved from the mid-latitude of Northern Hemisphere to the Arctic during the fourth ice age. The alpine tundra on Changbai Mountain also represents the best-reserved tundra ecosystems and the highest biodiversity in northeast Eurasia. This paper examines the quantity of carbon assimilation, litters, respiration rate of soil, and storage of organic carbon within the alpine tundra ecosystems on Changbai Mountain. The annual net storage of organic carbon was 2092 t/a, the total storage of organic carbon was 33457 t, the annual net storage of organic carbon in soil was 1054 t/a, the total organic carbon storage was 316203 t, and the annual respiration rate of soil was 92.9% and was 0.52 times more than that of the Arctic. The tundra-soil ecosystems in alpine Changbai Mountain had 456081 t of carbon storage, of which, organic carbon accounted for 76.7% whereas the mineral carbon accounted for 23.3%.

  20. The unseen iceberg: plant roots in arctic tundra.

    Science.gov (United States)

    Iversen, Colleen M; Sloan, Victoria L; Sullivan, Patrick F; Euskirchen, Eugenie S; McGuire, A David; Norby, Richard J; Walker, Anthony P; Warren, Jeffrey M; Wullschleger, Stan D

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits - including distribution, chemistry, anatomy and resource partitioning - play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  1. Douglas-Fir Tussock Moth- and Douglas-Fir Beetle-Caused Mortality in a Ponderosa Pine/Douglas-Fir Forest in the Colorado Front Range, USA

    Directory of Open Access Journals (Sweden)

    José F. Negrón

    2014-12-01

    Full Text Available An outbreak of the Douglas-fir tussock moth, Orgyia pseudotsugata McDunnough, occurred in the South Platte River drainage on the Pike-San Isabel National Forest in the Colorado Front Range attacking Douglas-fir, Pseudotsuga menziesii (Mirb. Franco. Stocking levels, species composition, and tree size in heavily and lightly defoliated stands were similar. Douglas-fir tussock moth defoliation resulted in significant Douglas-fir mortality in the heavily defoliated stands, leading to a change in dominance to ponderosa pine, Pinus ponderosa Lawson. Douglas-fir beetle, Dendroctonus pseudotsuqae Hopkins, populations increased following the defoliation event but caused less mortality, and did not differ between heavily and lightly defoliated stands. Douglas-fir tussock moth-related mortality was greatest in trees less than 15 cm dbh (diameter at 1.4 m above the ground that grew in suppressed and intermediate canopy positions. Douglas-fir beetle-related mortality was greatest in trees larger than 15 cm dbh that grew in the dominant and co-dominant crown positions. Although both insects utilize Douglas-fir as its primary host, stand response to infestation is different. The extensive outbreak of the Douglas-fir tussock moth followed by Douglas-fir beetle activity may be associated with a legacy of increased host type growing in overstocked conditions as a result of fire exclusion.

  2. Engaging Alaskan Students in Cryospheric Research

    Science.gov (United States)

    Yoshikawa, K.; Sparrow, E. B.; Kopplin, M.

    2011-12-01

    The Permafrost/Active Layer Monitoring Program is an ongoing project, which builds on work begun in 2005 to establish long-term permafrost and active layer monitoring sites adjacent to schools in Alaskan communities and in the circumpolar permafrost region. Currently, there are about 200 schools in Alaska involved in the project including also Denali National Park and Preserve. The project has both scientific and outreach components. The monitoring sites collect temperature data on permafrost, and the length and depth of the active layer (the layer above the permafrost that thaws during summer and freezes again during winter). To ensure scientific integrity, the scientist installed all of the monitoring instruments and selected the sites representative of the surrounding biome and thermal conditions. This is a unique collaboration opportunity in that 1) uses scientifically accurate instruments, 2) is scientist led and supervised including instrumentation set-up and data quality check, 3)has teacher/student organized observation network, 4) increased spatial scale of monitoring sites that covers all of the Alaskan communities. Most of the monitoring sites are located in remote communities, where the majority of residents depend on a subsistence lifestyle. Changes in climate, length of seasons, and permafrost conditions directly impact natural resources and subsistence activities. Changes in permafrost conditions also affect local ecosystems and hydrological regimes, and can influence the severity of natural disasters. In addition to extending our knowledge of the arctic environment, the program involves school-age students. Several students have been using the data for their projects and have been inspired to continue their studies. The data gathered from these stations are shared with other schools and made available to the public through our web site (http://www.uaf.edu/permafrost). Also communities have increasingly become interested in this project not only as

  3. Ecological investigation of Alaskan resource development

    International Nuclear Information System (INIS)

    The objective of this research is to provide an integrated program for the definition of ecological consequences of resource developments in northern Alaska. Information is presented on affected populations of arctic foxes, small mammals, and tundra-nesting birds in the Prudhoe Bay oil field and along the Trans-Alaska Pipeline and haul road; findings from similar studies from the Colville River Delta and other affected habitats; field experiments to determine the sensitivity of lichen communities of the Brooks Range to sulfur dioxide concentrations likely to be encountered near pipeline pumping stations; and amounts of radionuclides from worldwide fallout in the lichen-caribou-Eskimo food chain

  4. Ecological investigation of Alaskan resource development

    International Nuclear Information System (INIS)

    The objective of this research is to provide an integrated program for the definition of ecological consequences of resource developments in northern Alaska. The qualitative and quantitative results obtained describe the environmental costs incurred by petroleum resource extraction and transportation, and the interaction of wildlife populations with industrial activities. Information is presented on: affected populations of arctic foxes, small mammals, and tundra-nesting birds along the Trans-Alaska pipeline and haul road; field studies on the nitrogen fixation patterns of lichens; and on amounts of radionuclides from worldwide fallout in the lichen-caribou-Eskimo food chain

  5. Evidence and Implications of Frequent Fires in Ancient Shrub Tundra

    Energy Technology Data Exchange (ETDEWEB)

    Higuera, P E; Brubaker, L B; Anderson, P M; Brown, T A; Kennedy, A T; Hu, F S

    2008-03-06

    Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birchdominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/- 90 s.d.; n = 44). Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleo-fires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21st century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere.

  6. Recent Arctic tundra fire initiates widespread thermokarst development

    Science.gov (United States)

    Jones, Benjamin M.; Grosse, Guido; Arp, Christopher D.; Miller, Eric K.; Liu, Lingli; Hayes, Daniel J.; Larsen, Christopher F.

    2015-01-01

    Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burn severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for ~50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.

  7. Continuous measurement of soil carbon efflux with Forced Diffusion (FD) chambers in a tundra ecosystem of Alaska.

    Science.gov (United States)

    Kim, Yongwon; Park, Sang-Jong; Lee, Bang-Yong; Risk, David

    2016-10-01

    Soil is a significant source of CO2 emission to the atmosphere, and this process is accelerating at high latitudes due to rapidly changing climates. To investigate the sensitivity of soil CO2 emissions to high temporal frequency variations in climate, we performed continuous monitoring of soil CO2 efflux using Forced Diffusion (FD) chambers at half-hour intervals, across three representative Alaskan soil cover types with underlying permafrost. These sites were established during the growing season of 2015, on the Seward Peninsula of western Alaska. Our chamber system is conceptually similar to a dynamic chamber, though FD is more durable and water-resistant and consumes less power, lending itself to remote deployments. We first conducted methodological tests, testing different frequencies of measurement, and did not observe a significant difference between collecting data at 30-min and 10-min measurement intervals (averaged half-hourly) (pgrowing period, in sphagnum, lichen, and tussock, respectively, corresponding to 83.8, 63.7, and 79.6% of annual carbon emissions. Growing season soil carbon emissions extrapolated over the region equated to 0.17±0.06 MgC over the measurement period. This was 47% higher than previous estimates from coarse-resolution manual chamber sampling, presumably because it better captured high efflux events. This finding demonstrates how differences in measurement method and frequency can impact interpretations of seasonal and annual soil carbon budgets. We conclude that annual CO2 efflux-measurements using FD chamber networks would be an effective means for quantifying growing and non-growing season soil carbon budgets, with optimal pairing with time-lapse imagery for tracking local and regional changes in environment and climate in a warming Arctic. PMID:27220095

  8. Carbon cycle uncertainty in the Alaskan Arctic

    Directory of Open Access Journals (Sweden)

    J. B. Fisher

    2014-02-01

    Full Text Available Climate change is leading to a disproportionately large warming in the high northern latitudes, but the magnitude and sign of the future carbon balance of the Arctic are highly uncertain. Using 40 terrestrial biosphere models for Alaska, we provide a baseline of terrestrial carbon cycle structural and parametric uncertainty, defined as the multi-model standard deviation (σ against the mean (x for each quantity. Mean annual uncertainty (σ/x was largest for net ecosystem exchange (NEE (−0.01± 0.19 kg C m−2 yr−1, then net primary production (NPP (0.14 ± 0.33 kg C m−2 yr−1, autotrophic respiration (Ra (0.09 ± 0.20 kg C m−2 yr−1, gross primary production (GPP (0.22 ± 0.50 kg C m−2 yr−1, ecosystem respiration (Re (0.23 ± 0.38 kg C m−2 yr−1, CH4 flux (2.52 ± 4.02 g CH4 m−2 yr−1, heterotrophic respiration (Rh (0.14 ± 0.20 kg C m−2 yr−1, and soil carbon (14.0± 9.2 kg C m−2. The spatial patterns in regional carbon stocks and fluxes varied widely with some models showing NEE for Alaska as a strong carbon sink, others as a strong carbon source, while still others as carbon neutral. Additionally, a feedback (i.e., sensitivity analysis was conducted of 20th century NEE to CO2 fertilization (β and climate (γ, which showed that uncertainty in γ was 2x larger than that of β, with neither indicating that the Alaskan Arctic is shifting towards a certain net carbon sink or source. Finally, AmeriFlux data are used at two sites in the Alaskan Arctic to evaluate the regional patterns; observed seasonal NEE was captured within multi-model uncertainty. This assessment of carbon cycle uncertainties may be used as a baseline for the improvement of experimental and modeling activities, as well as a reference for future trajectories in carbon cycling with climate change in the Alaskan Arctic.

  9. Report on the game conditions on the Alaskan Peninsula

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a report on the game conditions on the Alaska Peninsula. This report critically examines threats to the animals on the Alaskan Peninsula. Species covered...

  10. Development of Alaskan gas hydrate resources

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  11. Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, Walter C.

    1990-09-05

    OAK B188 Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}. Atmospheric CO{sub 2} is expected to double by the end of the next century. Global mean increases in surface air temperature of 1.5-4.5 C are anticipated with larger increases towards the poles predicted. Changes in CO{sub 2} levels and temperature could have major impacts on ecosystem functioning, including primary productivity, species composition, plant-animal interactions, and carbon storage. Until recently, there has been little direct information on the impact of changes in CO{sub 2} and temperature on native ecosystems. The study described here was undertaken to evaluate the effects of a 50 and 100% increase in atmospheric CO{sub 2}, and a 100% increase in atmospheric CO{sub 2} coupled with a 4 C summer air temperature rise on the structure and function of an arctic tussock tundra ecosystem. The arctic contains large stores of carbon as soil organic matter, much frozen in permafrost and currently not reactive or available for oxidation and release into the atmosphere. About 10-27% of the world's terrestrial carbon occurs in arctic and boreal regions, and carbon is accumulating in these regions at the rate of 0.19 GT y{sup -1}. Mean temperature increases of 11 C and summer temperature increases of 4 C have been suggested. Mean July temperatures on the arctic coastal plain and arctic foothills regions are 4-12 C, and mean annual temperatures are -7 to -13 C (Haugen, 1982). The projected temperature increases represent a substantial elevation above current temperatures which will have major impacts on physical processes such as permafrost development and development of the active layer, and on biological and ecosystem processes such as primary productivity, carbon storage, and species composition. Extreme nutrient and temperature limitation of this ecosystem raised questions of the responsiveness of arctic systems to elevated CO{sub 2}. Complex ecosystem interactions with the effects

  12. Isoprene emissions from a tundra ecosystem

    Directory of Open Access Journals (Sweden)

    M. J. Potosnak

    2013-02-01

    Full Text Available Whole-system fluxes of isoprene from a moist acidic tundra ecosystem and leaf-level emission rates of isoprene from a common species (Salix pulchra in that same ecosystem were measured during three separate field campaigns. The field campaigns were conducted during the summers of 2005, 2010 and 2011 and took place at the Toolik Field Station (68.6° N, 149.6° W on the north slope of the Brooks Range in Alaska, USA. The maximum rate of whole-system isoprene flux measured was over 1.2 mg C m−2 h−1 with an air temperature of 22 °C and a PAR level over 1500 μmol m−2 s−1. Leaf-level isoprene emission rates for S. pulchra averaged 12.4 nmol m−2 s−1 (27.4 μg C gdw−1 h−1 extrapolated to standard conditions (PAR = 1000 μmol m−2 s−1 and leaf temperature = 30 °C. Leaf-level isoprene emission rates were well characterized by the Guenther algorithm for temperature with published coefficients, but less so for light. Chamber measurements from a nearby moist acidic tundra ecosystem with little S. pulchra emitted significant amounts of isoprene, but at lower rates (0.45 mg C m−2 h−1 suggesting other significant isoprene emitters. Comparison of our results to predictions from a global model found broad agreement, but a detailed analysis revealed some significant discrepancies. An atmospheric chemistry box model predicts that the observed isoprene emissions have a significant impact on Arctic atmospheric chemistry, including a reduction of hydroxyl radical (OH concentrations. Our results support the prediction that isoprene emissions from Arctic ecosystems will increase with global climate change.

  13. Isoprene emissions from a tundra ecosystem

    Directory of Open Access Journals (Sweden)

    M. J. Potosnak

    2012-10-01

    Full Text Available Whole-system fluxes of isoprene from a~moist acidic tundra ecosystem and leaf-level emission rates of isoprene from a common species (Salix pulchra in that same ecosystem were measured during three separate field campaigns. The field campaigns were conducted during the summers of 2005, 2010 and 2011 and took place at the Toolik Field Station (68.6° N, 149.6° W on the north slope of the Brooks Range in Alaska, USA. The maximum rate of whole-system isoprene flux measured was over 1.2 mg C m−2 h−1 with an air temperature of 22 ° C and a PAR level over 1500 μmol m−2 s−1. Leaf-level isoprene emission rates for S. pulchra averaged 12.4 nmol m−2 s−1 (27.4 μg C gdw−1 h−1 extrapolated to standard conditions (PAR = 1000 μmol m−2 s−1 and leaf temperature = 30° C. Leaf-level isoprene emission rates were well characterized by the Guenther algorithm for temperature, but less so for light. Chamber measurements from a nearby moist acidic tundra ecosystem with less S. pulchra emitted significant amounts of isoprene, but at lower rates (0.45 mg C m−2 h−1. Comparison of our results to predictions from a global model found broad agreement, but a detailed analysis revealed some significant discrepancies. An atmospheric chemistry box model predicts that the observed isoprene emissions have a significant impact on Arctic atmospheric chemistry, including the hydroxyl radical (OH. Our results support the prediction that isoprene emissions from Arctic ecosystems will increase with global climate change.

  14. Matrix matters: differences of grand skink metapopulation parameters in native tussock grasslands and exotic pasture grasslands.

    Directory of Open Access Journals (Sweden)

    Konstanze Gebauer

    Full Text Available Modelling metapopulation dynamics is a potentially very powerful tool for conservation biologists. In recent years, scientists have broadened the range of variables incorporated into metapopulation modelling from using almost exclusively habitat patch size and isolation, to the inclusion of attributes of the matrix and habitat patch quality. We investigated the influence of habitat patch and matrix characteristics on the metapopulation parameters of a highly endangered lizard species, the New Zealand endemic grand skink (Oligosoma grande taking into account incomplete detectability. The predictive ability of the developed zxmetapopulation model was assessed through cross-validation of the data and with an independent data-set. Grand skinks occur on scattered rock-outcrops surrounded by indigenous tussock (bunch and pasture grasslands therefore implying a metapopulation structure. We found that the type of matrix surrounding the habitat patch was equally as important as the size of habitat patch for estimating occupancy, colonisation and extinction probabilities. Additionally, the type of matrix was more important than the physical distance between habitat patches for colonisation probabilities. Detection probability differed between habitat patches in the two matrix types and between habitat patches with different attributes such as habitat patch composition and abundance of vegetation on the outcrop. The developed metapopulation models can now be used for management decisions on area protection, monitoring, and the selection of translocation sites for the grand skink. Our study showed that it is important to incorporate not only habitat patch size and distance between habitat patches, but also those matrix type and habitat patch attributes which are vital in the ecology of the target species.

  15. Simulating the effects of temperature and precipitation change on vegetation composition in Arctic tundra ecosystems

    OpenAIRE

    Van Der Kolk, H; M. M. P. D. Heijmans; Van Huissteden, J.; Pullens, J. W. M.; Berendse, F.

    2016-01-01

    Over the past decades, vegetation has changed significantly along with climatic changes in the Arctic. Deciduous shrub cover is often assumed to expand in tundra landscapes, but more frequent abrupt permafrost thaw resulting in formation of thaw ponds could lead to vegetation shifts towards graminoid dominated wetland. Which mechanisms drive vegetation changes in the tundra ecosystem is still not sufficiently clear. In this study, the dynamic tundra vegetation model NUCOM-tundra was used to e...

  16. The Changing Seasonality of Tundra Nutrient Cycling: Implications for Arctic Ecosystem Function

    Science.gov (United States)

    Weintraub, M. N.; Steltzer, H.; Sullivan, P.; Schimel, J.; Wallenstein, M. D.; Darrouzet-Nardi, A.; Segal, A. D.

    2011-12-01

    Arctic soils contain large stores of carbon (C) and may act as a significant CO2 source with warming. However, the key to understanding tundra soil processes is nitrogen (N), as both plant growth and decomposition are N limited. However, current models of tundra ecosystems assume that while N limits plant growth, C limits decomposition. In addition, N availability is strongly seasonal with relatively high concentrations early in the growing season followed by a pronounced crash. We need to understand the controls on this seasonality to predict responses to climate change, but there are multiple questions that need answers: 1) What causes the seasonality in N? 2) Does microbial activity switch seasonally between C and N limitation? 3) How will a lengthening of the growing season alter overall ecosystem C and N dynamics, as a result of differential extension of the periods before and after the nutrient crash? We hypothesized that microbial activity is C limited early in the growing season, when N availability is higher and root exudate C is unavailable, and that microbial activity becomes N limited in response to plant N uptake and immobilization stimulated by root C. To address these questions we are conducting an accelerated snow-melt X warming field experiment in an Alaskan moist acidic arctic tundra community, and following plant and soil dynamics. Changes in the timing of C and N interactions in the different treatments will enable us to develop an enhanced mechanistic understanding of why the nutrient crash occurs and what the implications are for a lengthening of the arctic growing season. In 2010 we successfully accelerated snowmelt by 4 days. Both earlier snowmelt and warming accelerated early season plant life history events, with a few exceptions. However, responses to the combined treatment could not always be predicted from single factor effects. End of season life history events occurred later in response to the treatments, again with a few exceptions

  17. Effects of the Oil Spill on Alaskan Education.

    Science.gov (United States)

    Oldaker, Lawrence Lee

    Oil-industry-produced revenues, help finance Alaskan state and local governmental services including education. Capital losses incurred by the Exxon Corporation and by commerical fisheries as a consequence of the Exxon Valdez oil spill caused an economic recession, the result being diminished financing for a number of governmental programs and…

  18. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  19. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling

  20. Digital Necrobacillosis in Norwegian Wild Tundra Reindeer (Rangifer tarandus tarandus)

    DEFF Research Database (Denmark)

    Handeland, K.; Boye, Mette; Bergsjø, B.;

    2010-01-01

    Outbreaks of digital necrobacillosis in Norwegian wild tundra reindeer (Rangifer tarandus tarandus) are described. The outbreaks occurred in late summer and autumn 2007 and 2008, subsequent to periods with an unusually high number of days with precipitation and high air temperature. Lesions were...

  1. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities

    Science.gov (United States)

    Myers-Smith, Isla H.; Forbes, Bruce C.; Wilmking, Martin; Hallinger, Martin; Lantz, Trevor; Blok, Daan; Tape, Ken D.; Macias-Fauria, Marc; Sass-Klaassen, Ute; Lévesque, Esther; Boudreau, Stéphane; Ropars, Pascale; Hermanutz, Luise; Trant, Andrew; Siegwart Collier, Laura; Weijers, Stef; Rozema, Jelte; Rayback, Shelly A.; Schmidt, Niels Martin; Schaepman-Strub, Gabriela; Wipf, Sonja; Rixen, Christian; Ménard, Cécile B.; Venn, Susanna; Goetz, Scott; Andreu-Hayles, Laia; Elmendorf, Sarah; Ravolainen, Virve; Welker, Jeffrey; Grogan, Paul; Epstein, Howard E.; Hik, David S.

    2011-12-01

    Recent research using repeat photography, long-term ecological monitoring and dendrochronology has documented shrub expansion in arctic, high-latitude and alpine tundra ecosystems. Here, we (1) synthesize these findings, (2) present a conceptual framework that identifies mechanisms and constraints on shrub increase, (3) explore causes, feedbacks and implications of the increased shrub cover in tundra ecosystems, and (4) address potential lines of investigation for future research. Satellite observations from around the circumpolar Arctic, showing increased productivity, measured as changes in ‘greenness’, have coincided with a general rise in high-latitude air temperatures and have been partly attributed to increases in shrub cover. Studies indicate that warming temperatures, changes in snow cover, altered disturbance regimes as a result of permafrost thaw, tundra fires, and anthropogenic activities or changes in herbivory intensity are all contributing to observed changes in shrub abundance. A large-scale increase in shrub cover will change the structure of tundra ecosystems and alter energy fluxes, regional climate, soil-atmosphere exchange of water, carbon and nutrients, and ecological interactions between species. In order to project future rates of shrub expansion and understand the feedbacks to ecosystem and climate processes, future research should investigate the species or trait-specific responses of shrubs to climate change including: (1) the temperature sensitivity of shrub growth, (2) factors controlling the recruitment of new individuals, and (3) the relative influence of the positive and negative feedbacks involved in shrub expansion.

  2. [The gene pool of native inhabitants of the Samburg tundra].

    Science.gov (United States)

    Osipova, L P; Posukh, O L; Ivakin, E A; Kriukov, Iu A; Karafet, T M

    1996-06-01

    This study continues a series of investigations of the gene pool of native Siberian ethnic groups. In a population of Tundra Nentsi (Northern Samoyeds) and a group of Komi-Zyryans (Finno-Ugrian) (Samburg settlement, Tyumenskaya oblast, Yamalo-Nenetskii Autonomous okrug), gene markers of the following genetic systems were studied: blood groups (ABO, MNSs, Rhesus, Kell, Duffy, and P), erythrocyte acid phosphatase (AcP), phosphoglucomutase 1 (PGM 1), haptoglobin (Hp), and transferrin (Tf). The population of Samburg Tundra Nentsi was shown to have a close genetic relationship with the "core" of the Forest Nentsi population. In Northern Samoyeds, three carriers of the rare allele K (blood group Kell) were found for the first time. It is suggested that this allele was transferred into the population of Tundra Nentsi from Komi. Samburg Tundra Nentsi are found to have the maximum frequency of the allele PGM 1 (Posphoglucomutase 1) among aboriginal populations of northern Asia. Analysis of original data and the literature revealed a significant genetic distance between the Komi and Northern Samoyed populations. It was shown that Samburg Komi occupy an intermediate position between the clusters of Nenets populations and Finno-Ugrians (Komi) living in Komi Republic.

  3. Lepidoptera Larvae as an Indicator of Multi-trophic Level Responses to Changing Seasonality in an Arctic Tundra Ecosystem

    Science.gov (United States)

    Daly, K. M.; Steltzer, H.; Boelman, N.; Weintraub, M. N.; Darrouzet-Nardi, A.; Wallenstein, M. D.; Sullivan, P.; Gough, L.; Rich, M.; Hendrix, C.; Kielland, K.; Philip, K.; Doak, P.; Ferris, C.; Sikes, D.

    2011-12-01

    Earlier snowmelt and warming temperatures in the Arctic will impact multiple trophic levels through the timing and availability of food resources. Lepidoptera are a vital link within the ecosystem; their roles include pollinator, parasitized host for other pollinating insects, and essential food source for migrating birds and their fledglings. Multiple environmental cues including temperature initiate plant growth, and in turn, trigger the emergence of Lepidoptera and the migrations of birds. If snowmelt is accelerated and temperature is increased, it is expected that the Lepidoptera larvae will respond to early plant growth by increasing their abundance within areas that have accelerated snowmelt and warmer conditions. In May of 2011 in a moist acidic tussock tundra system, we accelerated snowmelt by 15 days through the use of radiation-absorbing fabric and warmed air and soil temperatures using open-top chambers, individually and in combination. Every 1-2 days from May 27th to July 8th, 2 minute searches were performed for Lepidoptera larvae in all treatments; when an animal was found, their micro-habitat, surface temperature, behavior, food source, and time of day were noted. The length, body and head width were measured, and the animals were examined for braconid wasp and tachinid fly parasites. Lepidoptera larvae collected in pitfall traps from May 26th to July 7th were also examined and measured. Total density of parasitized larvae accounted for 54% of observed specimens and 50% of pitfall specimens, indicating that Lepidoptera larvae serve an integral role as a host for other pollinators. Total larvae density was highest within the accelerated snowmelt plots compared to the control plots; 66% of observed live specimens and 63% of pitfall specimens were found within the accelerated snowmelt plots. Ninety percent of the total observed animals were found within the open-top warming chambers. Peak density of animals occurred at Solar Noon between 14:00 -15

  4. Identifying nitrogen limitations to organic sediments accumulation in various vegetation types of arctic tundra (Hornsund, Svalbard)

    Science.gov (United States)

    Skrzypek, G.; Wojtuń, B.; Hua, Q.; Richter, D.; Jakubas, D.; Wojczulanis-Jakubas, K.; Samecka-Cymerman, A.

    2015-12-01

    Arctic and subarctic regions play important roles in the global carbon balance. However, nitrogen (N) deficiency is a major constraint for organic carbon sequestration in the High Arctic. Hence, the identification of the relative contributions from different N-sources is critical for understanding the constraints that limit tundra growth. The stable nitrogen composition of the three main N-sources and numerous plants were analyzed in ten tundra types in the Fuglebekken catchment (Hornsund Fjord, Svalbard, 77°N 15°E). The percentage of the total tundra N-pool provided by seabirds' feces (colonially breeding, planktivorous Alle alle), ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by N2-fixation. The results clearly show that N-pool in the tundra is significantly supplemented by nesting seabirds. Thus, if they experienced substantial negative environmental pressure associated with climate change, it would adversely influence the tundra N-budget [1]. The growth rates and the sediment thickness (climatic conditions but also by birds' contribution to the tundra N-pool. [1] Skrzypek G, Wojtuń B, Richter D, Jakubas D, Wojczulanis-Jakubas K, Samecka-Cymerman A, 2015. Diversification of nitrogen sources in various tundra vegetation types in the high Arctic. PLoS ONE (in review).

  5. Wintertime ecosystem respiration shifts tundra from carbon sink to carbon source at tundra warming experiment

    Science.gov (United States)

    Webb, E.; Schuur, E. A.; Natali, S.; Bracho, R.

    2013-12-01

    Northern latitude ecosystems play a significant role in the global carbon (C) budget due to the roughly 1700 Pg of C stored in permafrost soils. As high latitudes warm, previously frozen C is expected to decompose, thereby increasing CO2 fluxes to the atmosphere and potentially creating a positive feedback to climate warming. While warming has been shown to increase plant C uptake during the growing season, these seasonal C gains may be offset on an annual basis by ecosystem respiration (Reco) during the remaining seven months of the year. Here we present research from the Carbon in Permafrost Experimental Heating Research (CiPEHR) project, a tundra ecosystem warming experiment in interior Alaska. We partitioned the non-growing season into three segments: fall (October 1 until first snow), winter (snow-covered period until spring), and spring (snow depth less than 30cm until melt out). During fall, we measured net ecosystem exchange and Reco using a static flux chamber. In winter, we measured Reco using chamber measurements and soda lime. For spring, we modeled fluxes based on known relationships between snow depth and photosynthetic rate of arctic evergreen species. We found that ecosystem warming caused plants to photosynthesize later in fall and increased C uptake during spring but also enhanced respiration during the long winter. We combined these off-season estimates with measurements from growing season auto-chamber data and found that despite the C gained during the growing season, ecosystem warming resulted in net annual C loss for the two years measured. This annual C loss was dependent on the magnitude of wintertime Reco. Our results indicate that snow depth, soil temperature, and day of season are the major determinants of wintertime Reco. Some climate models predict that arctic ecosystems will experience warmer winters with more snow. Thus, despite increased plant productivity during the growing season, we document that increased wintertime temperatures

  6. Phlorotannins from Alaskan Seaweed Inhibit Carbolytic Enzyme Activity

    OpenAIRE

    Joshua Kellogg; Grace, Mary H.; Mary Ann Lila

    2014-01-01

    Global incidence of type 2 diabetes has escalated over the past few decades, necessitating a continued search for natural sources of enzyme inhibitors to offset postprandial hyperglycemia. The objective of this study was to evaluate coastal Alaskan seaweed inhibition of α-glucosidase and α-amylase, two carbolytic enzymes involved in serum glucose regulation. Of the six species initially screened, the brown seaweeds Fucus distichus and Alaria marginata possessed the strongest inhibitory effec...

  7. Potential NEE Budget and Prediction of Future Emissions under Climate Change in an Arctic Wet Sedge Tundra, Barrow, Alaska .

    Science.gov (United States)

    Kalhori, A. A. M.; Oechel, W. C.; Burba, G. G.; Gioli, B.; Zona, D.; Murphy, P.; Goodrich, J. P.

    2015-12-01

    Arctic ecosystems are critically affected by climate change and also play an important role in the global carbon budget. Presented here is a 14-year study of growing season CO2 fluxes in an Alaskan wet sedge tundra ecosystem -which is about 2 km south of the Arctic Ocean and is adjacent to the NOAA Climate Monitoring & Diagnostic Laboratory (CMDL)- and the key environmental controls on these fluxes. We have measured net ecosystem exchange of CO2 (NEE) using the eddy covariance technique from 1998 to 2014 in order to quantify the long-term seasonal and inter-annual variability in the CO2 budget over this period. The WPL correction and the surface heating correction were applied to all CO2 flux data from the open-path instrument (Burba et al., 2008). Despite several gaps in measurement years, we found that growing season net CO2 uptake has significantly increased since the 2000s and that NEE is sensitive to dry conditions in tundra. Our data suggest this increase in CO2 uptake (larger than -6 μmol m-2 s-1) occurred during the initial thawing period and during the June-August growing season. However, there is a decreasing trend in total summer uptake beginning in 2011, continuing until the end of 2014. The mean diurnal pattern for the summer period over the course of 14 years (Figure below), indicates inter-annual variability associated with the key environmental controls on these CO2 fluxes. Monthly trends in Photosynthetically Active Radiation (PAR), net radiation, relative humidity as well as air temperature and soil temperature have consistently simultaneous effects on the variation in NEE. More significant effect of PAR than temperature on summer NEE had been observed for the first period of this study, however our ANOVA, multiple regression and t-test results showed a stronger effect of temperature than PAR in the recent years assuming that Arctic warming will be greater than average global warming. Also the diurnal pattern shows that the maximum daily carbon

  8. Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic.

    Directory of Open Access Journals (Sweden)

    Grzegorz Skrzypek

    Full Text Available Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle. Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard. The percentage of the total tundra N-pool provided by birds, ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere.

  9. Global assessment of experimental climate warming on tundra vegetation

    DEFF Research Database (Denmark)

    Elmendorf, Sarah C.; Henry, Gregory H.R.; Hollister, Robert D.;

    2012-01-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations...... of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups...... to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed...

  10. Climate sensitivity of shrub growth across the tundra biome

    DEFF Research Database (Denmark)

    Myers-Smith, Isla H; Elmendorf, Sarah C; Beck, Pieter SA;

    2015-01-01

    Rapid climate warming in the tundra biome has been linked to increasing shrub dominance1–4. Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost2,5–8, yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting...... or upper elevational range edges. Across latitude, climate sensitivity of growth was greatest at the boundary between the Low and High Arctic, where permafrost is thawing4 and most of the global permafrost soil carbon pool is stored9. The observed variation in climate–shrub growth relationships should...... be incorporated into Earth system models to improve future projections of climate change impacts across the tundra biome....

  11. Analysis of state of vehicular scars on Arctic Tundra, Alaska

    Science.gov (United States)

    Lathram, E. H.

    1974-01-01

    Identification on ERTS images of severe vehicular scars in the northern Alaska tundra suggests that, if such scars are of an intensity or have spread to a dimension such that they can be resolved by ERTS sensors (20 meters), they can be identified and their state monitored by the use of ERTS images. Field review of the state of vehicular scars in the Umiat area indicates that all are revegetating at varying rates and are approaching a stable state.

  12. How to preserve the tundra in a warming climate?

    Science.gov (United States)

    Käyhkö, Jukka

    2014-05-01

    The warming climate of the polar regions may change much of the current arctic-alpine tundra to forest or dense scrubland. This modification requires adaptation by traditional livelihoods such as reindeer herding, which relies on diverse, seasonal pasturelands. Vegetation change may also trigger positive warming feedbacks, where more abundant forest-scrub vegetation will decrease the global albedo. NCoE Tundra team investigates the complex climate-animal-plant interaction of the tundra ecosystem and aim to unravel the capability of herbivorous mammals to control the expansion of woody vegetation. Our interdisciplinary approach involves several work packages, whose results will be summarised in the presentation. In the ecological WPs, we study the dynamics of the natural food chains involving small herbivorous and the impacts of reindeer on the vegetation and the population dynamics of those arctic-alpine plants, which are most likely to become threatened in a warmer climate. Our study demonstrates the potential of a relatively sparse reindeer stocks (2-5 heads per km2) together with natural populations of arvicoline rodents to prevent the expansion of erect woody plants at the arctic-alpine timberline. In the climatic WPs we study the impact of grazing-dependent vegetation differences on the fraction of solar energy converted to heat. In the socio-economic WPs, we study the conditions for maintaining the economic and cultural viability of reindeer herding while managing the land use so that the arctic-alpine biota would be preserved.

  13. Anurans in a Subarctic Tundra Landscape Near Cape Churchill, Manitoba

    Science.gov (United States)

    Reiter, M.E.; Boal, C.W.; Andersen, D.E.

    2008-01-01

    Distribution, abundance, and habitat relationships of anurans inhabiting subarctic regions are poorly understood, and anuran monitoring protocols developed for temperate regions may not be applicable across large roadless areas of northern landscapes. In addition, arctic and subarctic regions of North America are predicted to experience changes in climate and, in some areas, are experiencing habitat alteration due to high rates of herbivory by breeding and migrating waterfowl. To better understand subarctic anuran abundance, distribution, and habitat associations, we conducted anuran calling surveys in the Cape Churchill region of Wapusk National Park, Manitoba, Canada, in 2004 and 2005. We conducted surveys along ~l-km transects distributed across three landscape types (coastal tundra, interior sedge meadow-tundra, and boreal forest-tundra interface) to estimate densities and probabilities of detection of Boreal Chorus Frogs (Pseudacris maculata) and Wood Frogs (Lithobates sylvaticus). We detected a Wood Frog or Boreal Chorus Frog on 22 (87%) of 26 transects surveyed, but probability of detection varied between years and species and among landscape types. Estimated densities of both species increased from the coastal zone inland toward the boreal forest edge. Our results suggest anurans occur across all three landscape types in our study area, but that species-specific spatial patterns exist in their abundances. Considerations for both spatial and temporal variation in abundance and detection probability need to be incorporated into surveys and monitoring programs for subarctic anurans.

  14. Changing Seasonality of Tundra Vegetation and Associated Climatic Variables

    Science.gov (United States)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Bieniek, P.; Epstein, H. E.; Comiso, J. C.; Pinzon, J.; Tucker, C. J.; Steele, M.; Ermold, W. S.; Zhang, J.

    2014-12-01

    This study documents changes in the seasonality of tundra vegetation productivity and its associated climate variables using long-term data sets. An overall increase of Pan-Arctic tundra greenness potential corresponds to increased land surface temperatures and declining sea ice concentrations. While sea ice has continued to decline, summer land surface temperature and vegetation productivity increases have stalled during the last decade in parts of the Arctic. To understand the processes behind these features we investigate additional climate parameters. This study employs remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2013. Maximum NDVI (MaxNDVI, Maximum Normalized Difference Vegetation Index), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), ocean heat content (PIOMAS, model incorporating ocean data assimilation), and snow water equivalent (GlobSnow, assimilated snow data set) are explored. We analyzed the data for the full period (1982-2013) and for two sub-periods (1982-1998 and 1999-2013), which were chosen based on the declining Pan-Arctic SWI since 1998. MaxNDVI has increased from 1982-2013 over most of the Arctic but has declined from 1999 to 2013 over western Eurasia, northern Canada, and southwest Alaska. TI-NDVI has trends that are similar to those for MaxNDVI for the full period but displays widespread declines over the 1999-2013 period. Therefore, as the MaxNDVI has continued to increase overall for the Arctic, TI-NDVI has been declining since 1999. SWI has large relative increases over the 1982-2013 period in eastern Canada and Greenland and strong declines in western Eurasia and southern Canadian tundra. Weekly Pan-Arctic tundra land surface temperatures warmed throughout the summer during the 1982-1998 period but display midsummer declines from 1999-2013. Weekly snow water equivalent over Arctic tundra has declined over

  15. Shrubs in the cold : interactions between vegetation, permafrost and climate in Siberian tundra

    NARCIS (Netherlands)

    Blok, D.

    2011-01-01

    The Arctic is experiencing strong increases in air temperature during the last decades. High-latitude tundra regions are very responsive to changes in temperature and may cause a shift in tundra vegetation composition towards greater dominance of deciduous shrubs. With increasing deciduous shrub cov

  16. The Cooling Capacity of Mosses: Controls on Water and Energy Fluxes in a Siberian Tundra Site

    NARCIS (Netherlands)

    Blok, D.; Heijmans, M.M.P.D.; Schaepman-Strub, G.; Ruijven, van J.; Parmentier, F.J.W.; Maximov, T.C.; Berendse, F.

    2011-01-01

    Arctic tundra vegetation composition is expected to undergo rapid changes during the coming decades because of changes in climate. Higher air temperatures generally favor growth of deciduous shrubs, often at the cost of moss growth. Mosses are considered to be very important to critical tundra ecosy

  17. [Alaskan commodities irradiation project: An options analysis study

    International Nuclear Information System (INIS)

    The ninety-ninth US Congress commissioned a six-state food irradiation research and development program to evaluate the commercial potential of this technology. Hawaii, Washington, Iowa, Oklahoma and Florida as well as Alaska have participated in the national program; various food products including fishery products, red meats, tropical and citrus fruits and vegetables have been studied. The purpose of the Alaskan study was to review and evaluate those factors related to the technical and economic feasibility of an irradiator in Alaska. This options analysis study will serve as a basis for determining the state's further involvement in the development of food irradiation technology

  18. Carbon dioxide and methane dynamics in Russian tundra

    DEFF Research Database (Denmark)

    Johansson, Paul Torbjörn; Kiepe, Isabell; Herbst, Mathias;

    interactions and the annual carbon dynamics. Here we present eddy correlation measurements of CO2 and CH4 exchange during the period from early spring to late autumn, covering the full growing season, i.e., mid June to mid September. We present preliminary seasonal budgets of carbon, greenhouse gas exchange......, and discuss possible implications of climatic change on this lowland tundra ecosystem. This study have been conducted as a part of the CARBO-North project (2006-2010), a project within the EU 6th framework programme, aiming at quantifying the carbon budget in Northern Russia across temporal and spatial scales....

  19. Phlorotannins from Alaskan Seaweed Inhibit Carbolytic Enzyme Activity

    Science.gov (United States)

    Kellogg, Joshua; Grace, Mary H.; Lila, Mary Ann

    2014-01-01

    Global incidence of type 2 diabetes has escalated over the past few decades, necessitating a continued search for natural sources of enzyme inhibitors to offset postprandial hyperglycemia. The objective of this study was to evaluate coastal Alaskan seaweed inhibition of α-glucosidase and α-amylase, two carbolytic enzymes involved in serum glucose regulation. Of the six species initially screened, the brown seaweeds Fucus distichus and Alaria marginata possessed the strongest inhibitory effects. F. distichus fractions were potent mixed-mode inhibitors of α-glucosidase and α-amylase, with IC50 values of 0.89 and 13.9 μg/mL, respectively; significantly more efficacious than the pharmaceutical acarbose (IC50 of 112.0 and 137.8 μg/mL, respectively). The activity of F. distichus fractions was associated with phlorotannin oligomers. Normal-phase liquid chromatography-mass spectrometry (NPLC-MS) was employed to characterize individual oligomers. Accurate masses and fragmentation patterns confirmed the presence of fucophloroethol structures with degrees of polymerization from 3 to 18 monomer units. These findings suggest that coastal Alaskan seaweeds are sources of α-glucosidase and α-amylase inhibitory phlorotannins, and thus have potential to limit the release of sugar from carbohydrates and thus alleviate postprandial hyperglycemia. PMID:25341030

  20. Analysis of Alaskan burn severity patterns using remotely sensed data

    Science.gov (United States)

    Duffy, P.A.; Epting, J.; Graham, J.M.; Rupp, T.S.; McGuire, A.D.

    2007-01-01

    Wildland fire is the dominant large-scale disturbance mechanism in the Alaskan boreal forest, and it strongly influences forest structure and function. In this research, patterns of burn severity in the Alaskan boreal forest are characterised using 24 fires. First, the relationship between burn severity and area burned is quantified using a linear regression. Second, the spatial correlation of burn severity as a function of topography is modelled using a variogram analysis. Finally, the relationship between vegetation type and spatial patterns of burn severity is quantified using linear models where variograms account for spatial correlation. These results show that: 1) average burn severity increases with the natural logarithm of the area of the wildfire, 2) burn severity is more variable in topographically complex landscapes than in flat landscapes, and 3) there is a significant relationship between burn severity and vegetation type in flat landscapes but not in topographically complex landscapes. These results strengthen the argument that differential flammability of vegetation exists in some boreal landscapes of Alaska. Additionally, these results suggest that through feedbacks between vegetation and burn severity, the distribution of forest vegetation through time is likely more stable in flat terrain than it is in areas with more complex topography. ?? IAWF 2007.

  1. Female-specific wing degeneration caused by ecdysteroid in the Tussock Moth, Orgyia recens: Hormonal and developmental regulation of sexual dimorphism

    Directory of Open Access Journals (Sweden)

    Saori Lobbia

    2003-04-01

    Full Text Available Females of the tussock moth Orgyia recens have vestigial wings, whereas the males have normal wings. During early pupal development, female wings degenerate drastically compared with those of males. To examine whether ecdysteroid is involved in this sex-specific wing development, we cultured pupal wings just after pupation with ecdysteroid (20-hydroxyecdysone, 20E. In the presence of 20E, the female wings degenerated to about one-fifth their original size. In contrast, the male wings cultured with 20E showed only peripheral degeneration just outside the bordering lacuna, as in other butterflies and moths. TUNEL analysis showed that apoptotic signals were induced by 20E over the entire region of female wings, but only in the peripheral region of male wings. Semi-thin sections of the wings cultured with ecdysteroid showed that phagocytotic hemocytes were observed abundantly throughout the female wings, but in only peripheral regions of male wings. These observations indicate that both apoptotic events and phagocytotic activation are triggered by ecdysteroid, in sex-specific and region-specific manners.

  2. Can antibrowsing defense regulate the spread of woody vegetation in arctic tundra?

    Science.gov (United States)

    Bryant, John P.; Joly, Kyle; Chapin, F. Stuart; DeAngelis, Donald L.; Kielland, Knut

    2014-01-01

    Global climate warming is projected to promote the increase of woody plants, especially shrubs, in arctic tundra. Many factors may affect the extent of this increase, including browsing by mammals. We hypothesize that across the Arctic the effect of browsing will vary because of regional variation in antibrowsing chemical defense. Using birch (Betula) as a case study, we propose that browsing is unlikely to retard birch expansion in the region extending eastward from the Lena River in central Siberia across Beringia and the continental tundra of central and eastern Canada where the more effectively defended resin birches predominate. Browsing is more likely to retard birch expansion in tundra west of the Lena to Fennoscandia, Iceland, Greenland and South Baffin Island where the less effectively defended non-resin birches predominate. Evidence from the literature supports this hypothesis. We further suggest that the effect of warming on the supply of plant-available nitrogen will not significantly change either this pan-Arctic pattern of variation in antibrowsing defense or the resultant effect that browsing has on birch expansion in tundra. However, within central and east Beringia warming-caused increases in plant-available nitrogen combined with wildfire could initiate amplifying feedback loops that could accelerate shrubification of tundra by the more effectively defended resin birches. This accelerated shrubification of tundra by resin birch, if extensive, could reduce the food supply of caribou causing population declines. We conclude with a brief discussion of modeling methods that show promise in projecting invasion of tundra by woody plants.

  3. Frequent fires in ancient shrub tundra: implications of paleorecords for arctic environmental change.

    Science.gov (United States)

    Higuera, Philip E; Brubaker, Linda B; Anderson, Patricia M; Brown, Thomas A; Kennedy, Alison T; Hu, Feng Sheng

    2008-01-01

    Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birch-dominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/- 90 s.d.; n = 44). Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleofires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21(st) century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as on land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere. PMID:18320025

  4. Frequent fires in ancient shrub tundra: implications of paleorecords for arctic environmental change.

    Directory of Open Access Journals (Sweden)

    Philip E Higuera

    Full Text Available Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birch-dominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/- 90 s.d.; n = 44. Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleofires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21(st century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as on land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere.

  5. Reporting and sealing regulations for Alaskan natives, a proposed rule: Report on public attitudes

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report covers the proposed reporting and sealing regulations for Alaskan natives- a report on public attitudes. At the direction of the U.S. congress, the...

  6. Traditional use of sea otters by Alaskan natives: A literature review

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The references cited in this report leave no doubt that sea otter fur was commonly used for clothing by all Alaskan natives who lived in contact with populations of...

  7. Development of Alaskan gas hydrate resources. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  8. Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Kathleen E.; Gieg, Lisa M.; Parisi, Victoria A.; Tanner, Ralph S.; Green Tringe, Susannah; Bristow, Jim; Suflita, Joseph M.

    2009-09-16

    Corrosion of metallic oilfield pipelines by microorganisms is a costly but poorly understood phenomenon, with standard treatment methods targeting mesophilic sulfatereducing bacteria. In assessing biocorrosion potential at an Alaskan North Slope oil field, we identified thermophilic hydrogen-using methanogens, syntrophic bacteria, peptideand amino acid-fermenting bacteria, iron reducers, sulfur/thiosulfate-reducing bacteria and sulfate-reducing archaea. These microbes can stimulate metal corrosion through production of organic acids, CO2, sulfur species, and via hydrogen oxidation and iron reduction, implicating many more types of organisms than are currently targeted. Micromolar quantities of putative anaerobic metabolites of C1-C4 n-alkanes in pipeline fluids were detected, implying that these low molecular weight hydrocarbons, routinely injected into reservoirs for oil recovery purposes, are biodegraded and provide biocorrosive microbial communities with an important source of nutrients.

  9. Air-cushion tankers for Alaskan North Slope oil

    Science.gov (United States)

    Anderson, J. L.

    1973-01-01

    A concept is described for transporting oil from the Arctic to southern markets in 10,000-ton, chemically fueled air-cushion vehicles (ACV's) configured as tankers. Based on preliminary cost estimates the conceptual ACV tanker system as tailored to the transportation of Alaskan North Slope oil could deliver the oil for about the same price per barrel as the proposed trans-Alaska pipeline with only one-third of the capital investment. The report includes the description of the conceptual system and its operation; preliminary cost estimates; an appraisal of ACV tanker development; and a comparison of system costs, versatility, vulnerability, and ecological effect with those of the trans-Alaska pipeline.

  10. Aerobic Methane Oxidation in Alaskan Lakes Along a Latitudinal Transect

    Science.gov (United States)

    Martinez-Cruz, K. C.; Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Anthony, P.; Thalasso, F.

    2013-12-01

    Karla Martinez-Cruz* **, Armando Sepulveda-Jauregui*, Katey M. Walter Anthony*, Peter Anthony*, and Frederic Thalasso**. * Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska. ** Biotechnology and Bioengineering Department, Cinvestav, Mexico city, D. F., Mexico. Methane (CH4) is the third most important greenhouse gas in the atmosphere, after carbon dioxide and water vapor. Boreal lakes play an important role in the current global warming by contributing as much as 6% of global atmospheric CH4 sources annually. On the other hand, aerobic methane oxidation (methanotrophy) in lake water is a fundamental process in global methane cycling that reduces the amount of CH4 emissions to the atmosphere. Several environmental factors affect aerobic methane oxidation in the water column both directly and indirectly, including concentration of CH4 and O2, temperature and carbon budgets of lakes. We analyzed the potential of aerobic methane oxidation (PMO) rates in incubations of water collected from 30 Alaskan lakes along a north-south transect during winter and summer 2011. Our findings showed an effect of CH4 and O2 concentrations, temperature and yedoma thawing permafrost on PMO activity in the lake water. The highest PMO rates were observed in summer by lakes situated on thawing yedoma permafrost, most of them located in the interior of Alaska. We also estimated that 60-80% of all CH4 produced in Alaskan lakes could be taken up by methanotrophs in the lake water column, showing the significant influence of aerobic methane oxidation of boreal lakes to the global CH4 budget.

  11. BRDF characteristics of tundra vegetation communities in Yamal, Western Siberia

    Science.gov (United States)

    Buchhorn, Marcel; Heim, Birgit; Walker, Donald A. Skip; Epstein, Howard; Leibman, Marina

    2013-04-01

    Satellite data from platforms with pointing capabilities (CHRIS/Proba, RapidEye) or from sensors with wide swath (AVHRR, MODIS, MERIS) is influenced by the bidirectional reflectance distribution function (BRDF). This effect can cause significant changes in the measured spectral surface reflectance depending on the solar illumination geometry and sensor viewing conditions. The Environmental Mapping and Analysis Program (EnMAP), a German hyperspectral mission with expected launch in 2016, will provide high spectral resolution observations with a ground sampling distance of 30 meters. Since the EnMAP sensor has pointing capabilities, both spectral and directional reflection characteristics need to be taken into account for the algorithms development for vegetation parameters. The 'hyperspectral method development for Arctic VEGetation biomes' (hy-Arc-VEG) project is part of the national preparation program for the EnMAP mission. Within the EnMAP projcect hy-Arc-VEG we developed a portable field spectro-goniometer, named ManTIS (Manual Transportable Instrument for Spherical BRDF observations), for the in-situ measurements of anisotropic effects of tundra surfaces (national and international patent pending - DE 102011117713.6). The goniometer was designed for field use in difficult as well as challenging terrain and climate. It is therefore of low weight, without electrical devices and weatherproof. It can be disassembled and packed into small boxes for transport. The current off-nadir viewing capacity is matched to the EnMAP sensor configuration (up to 30°). We carried out spectral field and goniometer measurements on the joint YAMAL 2011 expedition (RU-US-DE) organized by the Earth-Cryosphere Institute (ECI) in August 2011 on the Yamal Peninsula, northwestern Siberia, Russia. The field goniometer measurements (conducted under varying sun zenith angles) as well as field spectro-radiometrical measurements were carried out at the NASA Yamal Land Cover/Land Use Change

  12. Dynamics of the recovery of damaged tundra vegetation. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Amundsen, C.C.

    1976-01-01

    A study, begun in 1971, continues to document the environmental factors which affect the recovery of damaged tundra landscapes. A measurement technique was developed on Amchitka Island to allow the rapid acquisition of data on species presence and frequency across areas disturbed at various times and in various ways. Samples across all examples of aspect, slope steepness and exposure are taken. Studies now include Adak Island and the Point Barrow area. We have concluded that there was no directional secondary succession on the Aleutian tundra, although there was vigorous recovery on organic soils. Our study led to recommendations which resulted in less intensive reclamation management at a considerable financial saving and without further biological perturbation. Because of the increasing activity on tundra landscapes, for energy extraction, transportation or production, military or other reasons, we have expanded our sampling to other tundra areas where landscape disruption is occurring or is predicted.

  13. Tundra swan populations, productivity, and local movements on Selawik National Wildlife Refuge, northwest Alaska, 1985

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the monitoring of populations and production of tundra swans on Selawik National Wildlife Refuge in 1985 as part of a long-term study. Radio...

  14. Potential responses of tundra ecosystems to perturbations from energy development. Part I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.

    1986-01-01

    This report discusses research conducted to understand the effects of energy development on changes in nutrient status, changes in water flow and water availability, and changes in surface energy balance of the arctic tundra. (ACR)

  15. Tundra Disturbance and Recovery Nine Years After Winter Seismic Exploration in Northern Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Seismic exploration was conducted during the winters of 1984 and 1985 on the coastal plain tundra of the Arctic National Wildlife Refuge, Alaska. In 1986, 1989, and...

  16. Pacific Flyway management plan for the Western Population of tundra swans

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this plan is to establish guidelines for the cooperative management of the Western Population (WP) of tundra swans (Cygnus c. columbianus). This...

  17. Tundra swan populations, productivity, and local movements on Selawik National Wildlife Refuge, 1983 and 1984

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Studies were initiated in 1983 to document the abundance, productivity, and local movements of tundra swans on Selawik National Wildlife Refuge. An estimated 2700 -...

  18. Terrestrial bird populations and habitat use on coastal plain tundra of the Arctic National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report covers terrestrial bird populations and habitat use on the coastal plain tundra of the Arctic National Wildlife Refuge. Bird census plots were...

  19. Fourfold higher tundra volatile emissions due to arctic summer warming

    Science.gov (United States)

    Lindwall, Frida; Schollert, Michelle; Michelsen, Anders; Blok, Daan; Rinnan, Riikka

    2016-03-01

    Biogenic volatile organic compounds (BVOCs), which are mainly emitted by vegetation, may create either positive or negative climate forcing feedbacks. In the Subarctic, BVOC emissions are highly responsive to temperature, but the effects of climatic warming on BVOC emissions have not been assessed in more extreme arctic ecosystems. The Arctic undergoes rapid climate change, with air temperatures increasing at twice the rate of the global mean. Also, the amount of winter precipitation is projected to increase in large areas of the Arctic, and it is unknown how winter snow depth affects BVOC emissions during summer. Here we examine the responses of BVOC emissions to experimental summer warming and winter snow addition—each treatment alone and in combination—in an arctic heath during two growing seasons. We observed a 280% increase relative to ambient in BVOC emissions in response to a 4°C summer warming. Snow addition had minor effects on growing season BVOC emissions after one winter but decreased BVOC emissions after the second winter. We also examined differences between canopy and air temperatures and found that the tundra canopy surface was on average 7.7°C and maximum 21.6°C warmer than air. This large difference suggests that the tundra surface temperature is an important driver for emissions of BVOCs, which are temperature dependent. Our results demonstrate a strong response of BVOC emissions to increasing temperatures in the Arctic, suggesting that emission rates will increase with climate warming and thereby feed back to regional climate change.

  20. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature

    Science.gov (United States)

    Wang, Peng; Heijmans, Monique M. P. D.; Mommer, Liesje; van Ruijven, Jasper; Maximov, Trofim C.; Berendse, Frank

    2016-05-01

    Climate warming is known to increase the aboveground productivity of tundra ecosystems. Recently, belowground biomass is receiving more attention, but the effects of climate warming on belowground productivity remain unclear. Enhanced understanding of the belowground component of the tundra is important in the context of climate warming, since most carbon is sequestered belowground in these ecosystems. In this study we synthesized published tundra belowground biomass data from 36 field studies spanning a mean annual temperature (MAT) gradient from -20 °C to 0 °C across the tundra biome, and determined the relationships between different plant biomass pools and MAT. Our results show that the plant community biomass-temperature relationships are significantly different between above and belowground. Aboveground biomass clearly increased with MAT, whereas total belowground biomass and fine root biomass did not show a significant increase over the broad MAT gradient. Our results suggest that biomass allocation of tundra vegetation shifts towards aboveground in warmer conditions, which could impact on the carbon cycling in tundra ecosystems through altered litter input and distribution in the soil, as well as possible changes in root turnover.

  1. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature

    Science.gov (United States)

    Wang, Peng; Heijmans, Monique M. P. D.; Mommer, Liesje; van Ruijven, Jasper; Maximov, Trofim C.; Berendse, Frank

    2016-05-01

    Climate warming is known to increase the aboveground productivity of tundra ecosystems. Recently, belowground biomass is receiving more attention, but the effects of climate warming on belowground productivity remain unclear. Enhanced understanding of the belowground component of the tundra is important in the context of climate warming, since most carbon is sequestered belowground in these ecosystems. In this study we synthesized published tundra belowground biomass data from 36 field studies spanning a mean annual temperature (MAT) gradient from ‑20 °C to 0 °C across the tundra biome, and determined the relationships between different plant biomass pools and MAT. Our results show that the plant community biomass–temperature relationships are significantly different between above and belowground. Aboveground biomass clearly increased with MAT, whereas total belowground biomass and fine root biomass did not show a significant increase over the broad MAT gradient. Our results suggest that biomass allocation of tundra vegetation shifts towards aboveground in warmer conditions, which could impact on the carbon cycling in tundra ecosystems through altered litter input and distribution in the soil, as well as possible changes in root turnover.

  2. Impact of warming and drying on microbial activity in subarctic tundra soils: inferences from patterns in extracellular enzyme activity

    Science.gov (United States)

    Schade, J. D.; Natali, S.; Spawn, S.; Sistla, S.; Schuur, E. A. G.

    2014-12-01

    Permafrost contains a large pool of carbon that has accumulated for thousands of years, and remains frozen in organic form. As climate warms, permafrost thaw will increase rates of microbial breakdown of old soil organic matter (SOM), accelerating release of carbon to the atmosphere. Higher rates of microbial decomposition may also release reactive nitrogen, which may increase plant production and carbon fixation. The net effect on atmospheric carbon, and the strength of climate feedback, depends on the balance between direct and indirect effects of increased microbial activity, which depends on changes in soil conditions and microbial responses to them. In particular, soil moisture and availability of C and N for microbes strongly influence soil respiration and primary production. Current understanding of changes in these factors as climate warms is limited. We present results from analysis of soil extracellular enzyme activities (EEA) from a long-term warming and drying experiment in subarctic Alaskan tundra (the CiPEHR experiment) as an indicator of changes in soil microbial activity and relative availability of C and N for microbes. We collected soil samples from control (C), warming (W), and warming + drying (WD) treatments and used fluorometric methods to estimate EEA in shallow (0-5 cm) and deep (5-15) soils. We measured soil moisture, SOM, and C:N, and plant tissue C:N as an indicator of N availability. Activity of N-acquiring enzymes was higher in WD soils at both depths. Carbon EEA in W soils was lower in surface, but higher in deeper soils. We also found significantly lower soil C:N in both W and WD in deeper soils, where C:N was generally lower than surface. In general, EEA results suggest drying leads to increased C availability relative to N. This may be due to lower soil moisture leading to greater aeration of soils in WD plots relative to W plots, which may be saturated due to significant land subsidence. Greater aeration may increase efficiency of

  3. Shrub expansion and climate feedbacks in Arctic tundra

    Science.gov (United States)

    Loranty, Michael M.; Goetz, Scott J.

    2012-03-01

    Arctic tundra ecosystems stand to play a substantial role in both the magnitude and rate of global climate warming over the coming decades and centuries. The exact nature of this role will be determined by the combined effects of currently amplified rates of climate warming in the Arctic (Serreze et al 2000) and a series of related positive climate feedbacks that include mobilization of permafrost carbon (Schuur et al 2008), decreases in surface albedo (Chapin et al 2005) and evapotranspiration (ET) mediated increases in atmospheric water vapor (Swann et al 2010). Conceptually, these feedback mechanisms are intuitive and readily comprehensible: warming-induced permafrost thaw will make new soil carbon pools accessible for microbial respiration, and increased vegetation productivity, expansion of shrubs in particular, will lower surface reflectance and increase ET. However, our current understanding of these feedback mechanisms relies largely on limited and local field studies and, as such, the quantitative estimates of feedback effects on regional and global climate require spatial upscaling and uncertainty estimates derived from models. Moreover, the feedback mechanisms interact and their combined net effect on climate is highly variable and not well characterized. A recent study by Bonfils et al (2012) is among the first to explicitly examine how shrub expansion in tundra ecosystems will impact regional climate. Using an Earth system model, Bonfils et al find that an idealized 20% increase in shrub cover north of 60°N latitude will lead to annual temperature increases of 0.66 °C and 1.84 °C, respectively, when the shrubs are 0.5 m and 2 m tall. The modeled temperature increases arise from atmospheric heating as a combined consequence of decreased albedo and increased ET. The primary difference between the two cases is associated with the fact that tall shrubs protrude above the snow, thus reducing albedo year round, whereas short shrubs are completely

  4. Relationship of cyanobacterial and algal assemblages with vegetation in the high Arctic tundra (West Spitsbergen, Svalbard Archipelago

    Directory of Open Access Journals (Sweden)

    Richter Dorota

    2015-09-01

    Full Text Available The paper presents the results of a study of cyanobacteria and green algae assemblages occurring in various tundra types determined on the basis of mosses and vascular plants and habitat conditions. The research was carried out during summer in the years 2009-2013 on the north sea-coast of Hornsund fjord (West Spitsbergen, Svalbard Archipelago. 58 sites were studied in various tundra types differing in composition of vascular plants, mosses and in trophy and humidity. 141 cyanobacteria and green algae were noted in the research area in total. Cyanobacteria and green algae flora is a significant element of many tundra types and sometimes even dominate there. Despite its importance, it has not been hitherto taken into account in the description and classification of tundra. The aim of the present study was to demonstrate the legitimacy of using phycoflora in supplementing the descriptions of hitherto described tundra and distinguishing new tundra types. Numeric hierarchical-accumulative classification (MVSP 3.1 software methods were used to analyze the cyanobacterial and algal assemblages and their co-relations with particular tundra types. The analysis determined dominant and distinctive species in the communities in concordance with ecologically diverse types of tundra. The results show the importance of these organisms in the composition of the vegetation of tundra types and their role in the ecosystems of this part of the Arctic.

  5. Methane dynamics in warming tundra of Northeast European Russia

    Directory of Open Access Journals (Sweden)

    M. E. Marushchak

    2015-08-01

    Full Text Available Methane (CH4 fluxes were investigated in a subarctic Russian tundra site in a multi-approach study combining plot scale data, ecosystem scale eddy covariance (EC measurements and fine resolution land cover classification scheme for regional upscaling. The flux data as measured by the two independent techniques resulted in a seasonal (May–October 2008 cumulative CH4 emission of 2.4 (EC and 3.7 g CH4 m−2 (manual chambers for the source area representative of the footprint of the EC instruments. Upon upscaling for the entire study region of 98.6 km2, the chamber measured flux data yielded a regional flux estimate of 6.7 g CH4 m−2 yr−1. Our upscaling efforts accounted for the large spatial variability in the distribution of the various land cover types (LCTs predominant at our study site. In particular, wetlands with emissions ranging from 34 to 53 g CH4 m−2 yr−1 were the most dominant CH4 emitting surfaces. Emissions from thermokarst lakes were an order of magnitude lower, while the rest of the landscape (mineral tundra was a weak sink for atmospheric methane. Vascular plant cover was a key factor in explaining the spatial variability of CH4 emissions among wetland types, as indicated by the positive correlation of emissions with the leaf area index (LAI. As elucidated through a stable isotope analysis, the plant transport was the dominant CH4 release pathway that discriminates against heavier δ13C-CH4. The methane released from wetlands was lighter than that in the surface porewater and δ13C in the emitted CH4 correlated with the vascular plant cover (LAI implying that the plant-mediated CH4 release dominates. A mean value of δ13C obtained here for the emitted CH4, −68.2 ± 2.0 ‰, is within the range of values from other wetlands, thus reinforcing the use of inverse modeling tools to better constrain the CH4 budget. Based on the IPCC A1B emission scenario, a temperature increase of 7 °C has been predicted for the tundra region

  6. Methane dynamics in warming tundra of Northeast European Russia

    Science.gov (United States)

    Marushchak, M. E.; Friborg, T.; Biasi, C.; Herbst, M.; Johansson, T.; Kiepe, I.; Liimatainen, M.; Lind, S. E.; Martikainen, P. J.; Virtanen, T.; Soegaard, H.; Shurpali, N. J.

    2015-08-01

    Methane (CH4) fluxes were investigated in a subarctic Russian tundra site in a multi-approach study combining plot scale data, ecosystem scale eddy covariance (EC) measurements and fine resolution land cover classification scheme for regional upscaling. The flux data as measured by the two independent techniques resulted in a seasonal (May-October 2008) cumulative CH4 emission of 2.4 (EC) and 3.7 g CH4 m-2 (manual chambers) for the source area representative of the footprint of the EC instruments. Upon upscaling for the entire study region of 98.6 km2, the chamber measured flux data yielded a regional flux estimate of 6.7 g CH4 m-2 yr-1. Our upscaling efforts accounted for the large spatial variability in the distribution of the various land cover types (LCTs) predominant at our study site. In particular, wetlands with emissions ranging from 34 to 53 g CH4 m-2 yr-1 were the most dominant CH4 emitting surfaces. Emissions from thermokarst lakes were an order of magnitude lower, while the rest of the landscape (mineral tundra) was a weak sink for atmospheric methane. Vascular plant cover was a key factor in explaining the spatial variability of CH4 emissions among wetland types, as indicated by the positive correlation of emissions with the leaf area index (LAI). As elucidated through a stable isotope analysis, the plant transport was the dominant CH4 release pathway that discriminates against heavier δ13C-CH4. The methane released from wetlands was lighter than that in the surface porewater and δ13C in the emitted CH4 correlated with the vascular plant cover (LAI) implying that the plant-mediated CH4 release dominates. A mean value of δ13C obtained here for the emitted CH4, -68.2 ± 2.0 ‰, is within the range of values from other wetlands, thus reinforcing the use of inverse modeling tools to better constrain the CH4 budget. Based on the IPCC A1B emission scenario, a temperature increase of 7 °C has been predicted for the tundra region of European Russia by the

  7. Can lemmings control the expansion of woody plants on tundra?

    Science.gov (United States)

    Oksanen, Lauri; Oksanen, Tarja; Olofsson, Johan; Virtanen, Risto; Hoset, Katrine; Tuomi, Maria; Kyrö, Kukka

    2013-04-01

    The ongoing expansion of woody vegetation in the arctic, due to global warming, creates a positive feed back loop. Increasing abundance of woody plants reduces surface albedo both directly and via speeding up snow melt. Thus a successively greater fraction of incoming solar radiation is absorbed and converted to heat. Browsing mammals - both big and small - can prevent this by consuming woody plants. However, the grazer/browser community of many tundra areas is dominated by brown/Norwegian lemmings (Lemmus spp.) which eat graminoids and mosses and cannot use woody plants as forage. It would seem a priori likely that in such areas, mammalian herbivores speed up the expansion of woody plants by improving the chances of their seedlings to get established. We studied the impact of lemmings on woody plants by constructing lemming proof exclosures within piece high-altitude tundra at Joatkanjávri, northernmost Norway. The exclosures were constructed in 1998, during a period of low lemming densities, in snow-beds, where Norwegian lemmings (L. lemmus) were the only ecologically significant herbivorous mammals. (Reindeer migrate through the area in May, when snow-beds are inaccessible for them; during the fall migration, the area represents a dead end and is therefore avoided.) We chose pairs of maximally similar vegetation patches of 0.5 by 0.5 m and randomly assigned one of each pair to become an exclosure while the other plot was left open. The initial state of the vegetation was documented by the point frequency method. In 2008, after the 2007 lemming outbreak, the same documentation was repeated; thereafter the plots were harvested, the vegetation was sorted to species, oven dried and weighed. Exclusion of lemmings resulted to pronounced increase in community level plant biomass. Evergreen woody plants were especially favored by the exclusion of lemming: their above-ground biomass in exclosures was 14 times as great as their biomass on open reference plots. The

  8. Water track distribution and effects on carbon dioxide flux in an eastern Siberian upland tundra landscape

    International Nuclear Information System (INIS)

    Shrub expansion in tundra ecosystems may act as a positive feedback to climate warming, the strength of which depends on its spatial extent. Recent studies have shown that shrub expansion is more likely to occur in areas with high soil moisture and nutrient availability, conditions typically found in sub-surface water channels known as water tracks. Water tracks are 5–15 m wide channels of subsurface water drainage in permafrost landscapes and are characterized by deeper seasonal thaw depth, warmer soil temperatures, and higher soil moisture and nutrient content relative to adjacent tundra. Consequently, enhanced vegetation productivity, and dominance by tall deciduous shrubs, are typical in water tracks. Quantifying the distribution of water tracks may inform investigations of the extent of shrub expansion and associated impacts on tundra ecosystem carbon cycling. Here, we quantify the distribution of water tracks and their contribution to growing season CO2 dynamics for a Siberian tundra landscape using satellite observations, meteorological data, and field measurements. We find that water tracks occupy 7.4% of the 448 km2 study area, and account for a slightly larger proportion of growing season carbon uptake relative to surrounding tundra. For areas inside water tracks dominated by shrubs, field observations revealed higher shrub biomass and higher ecosystem respiration and gross primary productivity relative to adjacent upland tundra. Conversely, a comparison of graminoid-dominated areas in water tracks and inter-track tundra revealed that water track locations dominated by graminoids had lower shrub biomass yet increased net uptake of CO2. Our results show water tracks are an important component of this landscape. Their distribution will influence ecosystem structural and functional responses to climate, and is therefore of importance for modeling. (letter)

  9. Alaskan gas: plans proceed amid doubts on pricing

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, T.

    1978-03-13

    A 731-mile section of the 4800-mile Alaskan gas pipeline will be built by a group of natural gas companies in partnership with a unit of the Northwest Energy Co. Deliveries from the finished pipeline are scheduled to begin in 1983 at a rate of 2.6 billion cubic feet per day. Although the partnership was formed to provide financing to settle legal issues and obtain approvals, the primary concerns of price and distribution remain. Six of the partners will share equally in the pre-construction costs of $200 million and each will contract to transport gas volumes through the pipeline. Negotiations with several gas users are waiting for a wellhead price to be set before contracts can be signed. If a price is not set by Congress, the Federal Energy Regulatory Commission (FERC) will begin rate proceedings to do so. The questions of averaging Prudhoe Bay costs with those of less costly supplies and the size of the Canadian portion of the pipeline have not been resolved.

  10. Noninvasive Environmental Monitoring of Mercury in Alaskan Reindeer

    Directory of Open Access Journals (Sweden)

    Lawrence K. Duffy

    2005-01-01

    Full Text Available Reindeer, Rangifer tarandus, are terrestrial herbivores used by Alaskan Native herders for both subsistence food and commercial export. Reindeer are a renewable resource and as part of the food system are monitored for Mercury (Hg levels in relation to the changing Arctic environment. In this study, both free-ranging reindeer from the Seward Peninsula, Alaska, and reindeer reared at the University of Alaska Fairbanks were analyzed for total mercury (THg in their hair. Free-ranging reindeer of the Gray herd had mean hair THg levels of 75.4 ng gˉ1 (n=15, whereas the Noyakuk herd had mean THg levels in hair of 40.3 ng gˉ1 (n=12. The mean level in hair for THg in the university herd was 15.4 ng gˉ1 (n=46. Methylmercury also was analyzed in selected samples from both herds; the mean for the Gray herd (37.6 ng gˉ1, n=5 was higher than the mean for the Noyakuk herd (20.7 ng gˉ1, n=2. Higher THg concentrations in the Gray and Noyakuk herds, when compared to the UAF herd, support the hypothesis that reindeer with higher lichen and willow levels in their diet have higher levels of THg.

  11. What Does Matter?: Idols and Icons in the Nenets Tundra

    Directory of Open Access Journals (Sweden)

    Laur Vallikivi

    2011-08-01

    Full Text Available This paper examines a mission encounter in the Nenets reindeer herders’ tundra. In post-Soviet Arctic Russia, Pentecostal and Baptist missionaries of Russian and Ukrainian origin have been fighting against idolatry and trying to persuade the Nenets to burn their sacred images or khekhe’’. They claim that among the indigenous Siberians idolatry exists in its quintessential or prototypical form, as it is described in the Bible. I shall suggest that this encounter takes place in a gap, in which the Nenets and Protestant have different understandings of language and materiality. Missionaries rely simultaneously on the ‘modern’ ideology of signification and the ‘non-modern’ magic of the material. They argue that idols, which are ‘nothing’ according to the scriptures, dangerously bind the ‘pagans’’ minds. For reindeer herders, for whom sacred items occupy an important place in the family wellbeing, the main issue is how to sever the link with the spirits without doing any damage.

  12. Vectors and transmission dynamics for Setaria tundra (Filarioidea; Onchocercidae, a parasite of reindeer in Finland

    Directory of Open Access Journals (Sweden)

    Kuusela Jussi

    2009-01-01

    Full Text Available Abstract Background Recent studies have revealed expansion by an array of Filarioid nematodes' into the northern boreal region of Finland. The vector-borne nematode, Setaria tundra, caused a serious disease outbreak in the Finnish reindeer population in 2003–05. The main aim of this study was to understand the outbreak dynamics and the rapid expansion of S. tundra in the sub arctic. We describe the vectors of S. tundra, and its development in vectors, for the first time. Finally we discuss the results in the context of the host-parasite ecology of S. tundra in Finland Results Development of S. tundra to the infective stage occurs in mosquitoes, (genera Aedes and Anopheles. We consider Aedes spp. the most important vectors. The prevalence of S. tundra naturally infected mosquitoes from Finland varied from 0.5 to 2.5%. The rate of development in mosquitoes was temperature-dependent. Infective larvae were present approximately 14 days after a blood meal in mosquitoes maintained at room temperature (mean 21 C, but did not develop in mosquitoes maintained outside for 22 days at a mean temperature of 14.1 C. The third-stage (infective larvae were elongated (mean length 1411 μm (SD 207, and width 28 μm (SD 2. The anterior end was blunt, and bore two liplike structures, the posterior end slight tapering with a prominent terminal papilla. Infective larvae were distributed anteriorly in the insect's body, the highest abundance being 70 larvae in one mosquito. A questionnaire survey revealed that the peak activity of Culicidae in the reindeer herding areas of Finland was from the middle of June to the end of July and that warm summer weather was associated with reindeer flocking behaviour on mosquito-rich wetlands. Conclusion In the present work, S. tundra vectors and larval development were identified and described for the first time. Aedes spp. mosquitoes likely serve as the most important and competent vectors for S. tundra in Finland. Warm summers

  13. Rheological conditions for emplacement of Ural-Alaskan-type ultramafic complexes

    Science.gov (United States)

    Guillou-Frottier, Laurent; Burov, Evgueni; Augé, Thierry; Gloaguen, Eric

    2014-09-01

    Ural-Alaskan- (or Alaskan-) type complexes correspond to a particular class of ultramafic intrusions that attract particular attention due to their deep mantle origin and their platinum-group element (PGE) mineralization. When defined as massifs of dunite-clinopyroxenite, only forty-six complexes are reported in the literature. These large-scale dunite pipe-like structures are rarely isolated and they even can appear in clusters. To better understand genesis of these relatively young (bodies, twin bodies with similar shapes, and dismembered dunite bodies. PGE enrichment in Alaskan-type complexes is highest for the second category, where twin bodies are interpreted as horizontal sections of Y-shaped dunite pipes. To constrain mechanical properties of the lithosphere allowing emplacement of the Alaskan-type complexes, the forceful diapiric ascent hypothesis is investigated through numerical thermo-mechanical models. One hundred high resolution experiments accounting for realistic phase changes and softening mechanisms have been performed. The experiments show that with no rheological softening of the host rock and in case of a relatively weak ductile lower crust, the uprising magma tends to spread laterally without reaching the surface. To account for the forceful ascent of deep magmas, it is hence necessary to assume a strong lower crust rheology and strong local softening mechanisms. Besides reproducing the clustered distribution of the weakness zones representing magma pathways, these latter experiments reproduce large-scale pipe-like (cylindrical) structures, Y-shaped and funnel-shaped bodies, and laterally-shifted structures. Interestingly, zones of highest strain rates are located at the bottom parts of the inclined edges of Y-shaped and funnel-shaped bodies. The restricted age range of Alaskan-type complexes (< 460 Ma) would mean that prior to this time, the lower crust was less resistant due to the hotter geotherm, prohibiting the possibility of “Alaskan

  14. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source

    DEFF Research Database (Denmark)

    Nauta, Ake L.; Heijmans, Monique P.D.; Blok, Daan;

    2015-01-01

    Arctic tundra ecosystems are warming almost twice as fast as the global average1. Permafrost thaw and the resulting release of greenhouse gases from decomposing soil organic carbon have the potential to accelerate climate warming2,3. In recent decades, Arctic tundra ecosystems have changed rapidly4......, including expansion of woody vegetation5,6, in response to changing climate conditions. How such vegetation changes contribute to stabilization or destabilization of the permafrost is unknown. Here we present six years of field observations in a shrub removal experiment at a Siberian tundra site. Removing...... the shrub part of the vegetation initiated thawing of ice-rich permafrost, resulting in collapse of the originally elevated shrub patches into waterlogged depressions within five years. This thaw pond development shifted the plots from a methane sink into a methane source. The results of our field...

  15. Exporting Alaskan North Slope crude oil: Benefits and costs

    International Nuclear Information System (INIS)

    The Department of Energy study examines the effects of lifting the current prohibitions against the export of Alaskan North Slope (ANS) crude. The study concludes that permitting exports would benefit the US economy. First, lifting the ban would expand the markets in which ANS oil can be sold, thereby increasing its value. ANS oil producers, the States of California and Alaska, and some of their local governments all would benefit from increased revenues. Permitting exports also would generate new economic activity and employment in California and Alaska. The study concludes that these economic benefits would be achieved without increasing gasoline prices (either in California or in the nation as a whole). Lifting the export ban could have important implications for US maritime interests. The Merchant Marine Act of 1970 (known as the Jones Act) requires all inter-coastal shipments to be carried on vessels that are US-owned, US-crewed, and US-built. By limiting the shipment of ANS crude to US ports only, the export ban creates jobs for the seafarers and the builders of Jones Act vessels. Because the Jones Act does not apply to exports, however, lifting the ban without also changing US maritime law would jeopardize the jobs associated with the current fleet of Jones Act tankers. Therefore the report analyzes selected economic impacts of several maritime policy alternatives, including: Maintaining current law, which allows foreign tankers to carry oil where export is allowed; requiring exports of ANS crude to be carried on Jones Act vessels; and requiring exports of ANS crude to be carried on vessels that are US-owned and US-crewed, but not necessarily US-built. Under each of these options, lifting the export ban would generate economic benefits

  16. Modeling the spatiotemporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape

    Science.gov (United States)

    Kumar, Jitendra; Collier, Nathan; Bisht, Gautam; Mills, Richard T.; Thornton, Peter E.; Iversen, Colleen M.; Romanovsky, Vladimir

    2016-09-01

    Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to the atmosphere under warming climate scenarios. Ice-wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. This microtopography plays a critical role in regulating the fine-scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behavior under the current as well as changing climate. We present here an end-to-end effort for high-resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites near Barrow, Alaska, spanning across low to transitional to high-centered polygons, representing a broad polygonal tundra landscape. A multiphase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using a high-resolution lidar digital elevation model (DEM), microtopographic features of the landscape were characterized and represented in the high-resolution model mesh. The best available soil data from field observations and literature were utilized to represent the complex heterogeneous subsurface in the numerical model. Simulation results demonstrate the ability of the developed modeling approach to capture - without recourse to model calibration - several aspects of the complex thermal regimes across the sites, and provide insights into the critical role of polygonal tundra microtopography in regulating the thermal dynamics of the carbon-rich permafrost soils. Areas of significant disagreement between model results and observations highlight the importance of field-based observations of soil thermal and

  17. Shrub Abundance Mapping in Arctic Tundra with Misr

    Science.gov (United States)

    Duchesne, R.; Chopping, M. J.; Wang, Z.; Schaaf, C.; Tape, K. D.

    2013-12-01

    Over the last 60 years an increase in shrub abundance has been observed in the Arctic tundra in connection with a rapid surface warming trend. Rapid shrub expansion may have consequences in terms of ecosystem structure and function, albedo, and feedbacks to climate; however, its rate is not yet known. The goal of this research effort is thus to map large scale changes in Arctic tundra vegetation by exploiting the structural signal in moderate resolution satellite remote sensing images from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped onto a 250m Albers Conic Equal Area grid. We present here large area shrub mapping supported by reference data collated using extensive field inventory data and high resolution panchromatic imagery. MISR Level 1B2 Terrain radiance scenes from the Terra satellite from 15 June-31 July, 2000 - 2010 were converted to surface bidirectional reflectance factors (BRF) using MISR Toolkit routines and the MISR 1 km LAND product BRFs. The red band data in all available cameras were used to invert the RossThick-LiSparse-Reciprocal BRDF model to retrieve kernel weights, model-fitting RMSE, and Weights of Determination. The reference database was constructed using aerial survey, three field campaigns (field inventory for shrub count, cover, mean radius and height), and high resolution imagery. Tall shrub number, mean crown radius, cover, and mean height estimates were obtained from QuickBird and GeoEye panchromatic image chips using the CANAPI algorithm, and calibrated using field-based estimates, thus extending the database to over eight hundred locations. Tall shrub fractional cover maps for the North Slope of Alaska were constructed using the bootstrap forest machine learning algorithm that exploits the surface information provided by MISR. The reference database was divided into two datasets for training and validation. The model derived used a set of 19 independent variables(the three kernel weights, ratios and interaction terms

  18. Spatial pattern of soil carbon and nutrient storage at the Alpine tundra ecosystem of Changbai Mountain, China

    Institute of Scientific and Technical Information of China (English)

    WEIJing; WUGang; DENGHong-bing; ZHAOJing-zhu

    2004-01-01

    In August 2003, we investigated spatial pattern in soil carbon and nutrients in the Alpine tundra of Changbai Mountain, Jilin Province, China. The analytical results showed that the soil C concentrations at different depths were significantly(p<0.05) higher in Meadow alpine tundra vegetation than that in other vegetation types; the soil C (including inorganic carbon)concentrations at layer below 10 cm are significantly (p<0.05) higher than at layer of 10-20 cm among the different vegetation types; the spatial distribution of soil N concentration at top surface of 0-10 cm depth was similar to that at 10-20 cm; the soil P concentrations at different depths were significantly (p<0.05) lower at Lithic alpine tundra vegetation than that at other vegetation types; soil K concentration was significantly (p<0.05) higher in Felsenmeer alpine tundra vegetation and Lithic alpine tundra vegetation than that in Typical alpine tundra, Meadow alpine tundra, and Swamp alpine tundra vegetations.. However, the soil K had not significant change at different soil depths of each vegetation type. Soil S concentration was dramatically higher in Meadow alpine tundra vegetation than that in other vegetation types. For each vegetation type, the ratios of C: N, C: P, C: K and C: S generally decreased with soil depth. The ratio of C: N was significantly higher at 0-10 cm than that at 10-20 cm for all vegetation types except at the top layer of the Swamp alpine tundra vegetation. Our study showed that soil C and nutrients storage were significantly spatial heterogeneity.

  19. Terrimonas arctica sp. nov., isolated from Arctic tundra soil.

    Science.gov (United States)

    Jiang, Fan; Qiu, Xia; Chang, Xulu; Qu, Zhihao; Ren, Lvzhi; Kan, Wenjing; Guo, Youhao; Fang, Chengxiang; Peng, Fang

    2014-11-01

    A novel, Gram-stain-negative, aerobic, non-motile and rod-shaped bacterium, designated R9-86(T), was isolated from tundra soil collected near Ny-Ålesund, Svalbard Archipelago, Norway (78° N). Growth occurred at 4-28 °C (optimum, 22-25 °C) and at pH 6.0-9.0 (optimum, pH 7.0). Flexirubin-type pigments were absent. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain R9-86(T) belonged to the genus Terrimonas in the family Chitinophagaceae. 16S rRNA gene sequence similarities between strain R9-86(T) and the type strains of species of the genus Terrimonas with validly published names ranged from 93.7 to 95.0%. Strain R9-86(T) contained iso-C(15:1)-G (25.7%), iso-C(15:0) (24.5%), iso-C(17:0)-3OH (18.3%) and summed feature 3 (C(16:1)ω7c and/or C(16:1)ω6c, 8.7%) as its major cellular fatty acids; phosphatidylethanolamine and an unknown polar lipid as its main polar lipids, and MK-7 as its predominant respiratory quinone. The DNA G+C content was 48.4 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain R9-86(T) is considered to represent a novel species of the genus Terrimonas, for which the name Terrimonas arctica sp. nov. is proposed. The type strain is R9-86(T) ( =CCTCC AB 2011004(T) =NRRL B-59114(T)). PMID:25142212

  20. Modeling dynamics of tundra plant communities on the Yamal Peninsula, Russia

    Science.gov (United States)

    Yu, Q.; Epstein, H. E.; Walker, D. A.

    2010-12-01

    Multiple environmental drivers, including climate, soil conditions and herbivory, affect arctic tundra vegetation dynamics. These factors may have been evaluated individually in the past; however, their interactions contribute to more complicated tundra plant community dynamics and may represent a substantial source of uncertainty in predicting tundra ecosystem properties in the changing Arctic. This study investigates the effects of soils, grazing, and climate change on tundra plant communities at the plant functional type (PFT) level, based on previous integrated modeling research at the ecosystem level. The study area encompasses the Yamal Peninsula, northwestern Siberia, where soil and biomass data were collected along the Yamal Arctic Transect (YAT), to drive a nutrient-based tundra vegetation model (ArcVeg) and to validate the simulation results. We analyzed plant functional type biomass and net primary productivity (NPP), and found that with higher temperatures (+2°C mean growing season temperature), most plant functional types responded positively with increased biomass and NPP, while grazing suppressed such responses in both high and low soil organic nitrogen (SON) sites. The magnitudes of the responses to warming depended on SON and grazing intensity. Relatively, there were greater responses of biomass and NPP in low SON sites compared to high SON sites. Moss biomass (in contrast to other plant types) declined 34% with warming in the low SON site and 28% in the high SON site in subzone E (the most southern tundra subzone). Increases in Low Arctic shrub biomass with warming were 61% in the high SON site in subzone E and 96% in the low SON site. Decrease in moss biomass due to warming was mitigated about 2% by high grazing frequency (maximum of 25% of biomass removal every two years) in the high SON site in subzone E, with an opposite effect in the low SON site. High grazing frequency caused greater relative increases in total shrub biomass for both low

  1. Monitoring larval populations of the douglas-fir tussock moth and the western spruce budworm on permanent plots: Sampling methods and statistical properties of data. Forest Service general technical report

    Energy Technology Data Exchange (ETDEWEB)

    Mason, R.R.; Paul, H.G.

    1994-05-01

    Procedures for monitoring Larval populations of the Douglas-fir tussock moth and the western spruce budworm are recommended based on many years experience of sample these species in eastern Oregon and Washington. It is shown that statistically reliable estimates of larval density can be made for a population by sampling host trees in a series of permanent plots in a geographical monitoring unit. The most practical method is to estimate densities of both insect species simultaneously on a plot by the nondestructive sampling of foliage on lower crown branches of host trees. For best results, sampling methods need to be consistent with monitoring done annually to accumulate continuous databases that reflect the behavior of defoliator populations over a long period of time.

  2. Ambiguity in an Alaskan history theme park : Presenting "history as commodity" and "history as heritage"

    NARCIS (Netherlands)

    De Vries, Tity

    2007-01-01

    America's most northern history theme park has been located in Fairbanks, Alaska since 1967. This article focuses on the evolution of the Alaskaland/Pioneer Park: from a tourist attraction where Alaskan traditions of progress and boosterism ruled into a community park with a sincere concern for pres

  3. 25 CFR 243.4 - Who can own or possess Alaskan reindeer?

    Science.gov (United States)

    2010-04-01

    ... reindeer must, by the last day of September each year: (1) Provide us a copy of the contract with the Native reindeer owner; and (2) Provide us a written report of all Alaskan reindeer kept, born, died or...). (3) The permit-holder must report to us in writing by the last day of September each year on...

  4. Studies of the Northern Alaskan Coastal System: Ongoing project work and synthesis activities

    Science.gov (United States)

    Douglas, T. A.; Sturm, M.; Ashjian, C. J.; Jorgensen, T.; Oechel, W. C.; Ping, C.; Rhew, R. C.; Stieglitz, M.

    2006-12-01

    Six ongoing projects focus on a better understanding of processes occurring along the Arctic Alaskan Coast. These projects, grouped as "Studies of the Northern Alaskan Coastal System", or SNACS, combine field, laboratory, modeling and human dimensions research. They include: 1) an investigation of climate variability, ocean processes, sea ice, bowhead whales, and Inupiat subsistence whaling, 2) research on the impact of variability within the ocean and atmosphere on terrestrial fluxes of carbon dioxide, dissolved organic matter and energy, 3) an inventory and description of soil organic carbon fluxes and ground ice in the coastal environment, 4) a determination of whether arctic coastal terrestrial ecosystems are significant sources or sinks of atmospheric methyl halides, chloroform and methane, 5) development of generalized discharge- constituent relationships for arctic basins, and 6) an investigation of the processes controlling mercury deposition to the coastal system. Three broad themes unite the projects: 1) nutrient fluxes from rivers and shoreline erosion in the Arctic coastal zone, 2) impacts of cryospheric changes on the Alaskan Arctic Coast, and 3) potential rapid regime shifts controlled by atmospheric and meteorological processes that could affect the Alaskan Arctic Coast. Warming of the Arctic, particularly its impact on sea ice and nutrient transport in arctic rivers is already affecting fundamental coastal system processes. The six SNACS projects are helping to understand how these impacts will evolve and what their ramifications will be both within and outside of the Arctic.

  5. 77 FR 45921 - Alaskan Fuel Hauling as a Restricted Category Special Purpose Flight Operation

    Science.gov (United States)

    2012-08-02

    ... the Federal Register (74 FR 39242) in which the FAA proposed to specify Alaskan fuel hauling as a... Purpose Flight Operation AGENCY: Federal Aviation Administration (FAA), (DOT). ACTION: Notice of policy... submitted was, ``The transport of the fuel could be made safer by limiting the payload on each flight to...

  6. Alaskan Native Social Adjustment and the Role of Eskimo and Indian Music

    Science.gov (United States)

    Johnston, Thomas F.

    1976-01-01

    Suggests that research into the social and psychological implications of Alaskan Eskimo and Indian musical behavior will continue to provide useful clues to solving current inter-cultural and intra-cultural problems in changing Alaska, particularly within the real of Eskimo and Indian preschool and primary education. (Author/AM)

  7. EXAMINATION OF THE FEASIBILITY FOR DEMONSTRATION AND USE OF RADIOLUMINESCENT LIGHTS FOR ALASKAN REMOTE RUNWAY LIGHTING

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, G.; Perrigo, L.; Leonard, L.; Hegdal, L

    1984-01-01

    This report examines the feasibility of radioluminescent light applications for rural Alaskan airports. The work presented in this report covers four tasks: State of the Art Evaluation of Radioluminescent Lights, Environmental, Radiological, and Regulatory Evaluations, Engineering Evaluations, and Demonstration Plan Development.

  8. ELECTRIC VEHICLE CONVERSIONS USING ALTERNATIVE ENERGY TO DRIVE ALASKAN RURAL COMMUNITIES

    Science.gov (United States)

    This proposal concerns sustainable transportation in rural Alaskan communities which are not part of a road or electrical network (off grid). In most off-grid communities, the road networks generally are less than 50 square miles, so transportation needs are limited. This limi...

  9. Seasonal Variations of Biomass Burning Tracers in Alaskan Aerosols

    Science.gov (United States)

    Haque, M. M.; Kawamura, K.; Kim, Y.

    2015-12-01

    Biomass burning (BB) is a large source of atmospheric trace gases and aerosols. During the burning, several organic and inorganic gases and particles are emitted into the atmosphere. Here, we present seasonal variations of specific BB tracers such as levoglucosan, mannosan and galactosan, which are produced by pyrolysis of cellulose and hemicelluloses. We collected TSP aerosol samples (n= 32) from Fairbanks, Alaska in June 2008 to June 2009. Levoglucosan was detected as the dominant anhydrosugar followed by its isomers, mannosan and galactosan. The result of levoglucosan showed clear seasonal trends with winter maximum (ave.145 ng m-3) and spring minimum (12.3 ng m-3). The analyses of air mass back trajectories and fire spots demonstrated that anhydrosugars may be associated from residential heating and cooking in local region and Siberia in winter time. Levoglucosan showed significant positive correlation with EC (r= 0.67, p= 0.001) and OC (r= 0.51, p= 0.002) but there was no correlation with nss-K+ (r= -0.16, p= 0.37). The emission of K+ from biomass burning depends on burning condition and types of material burned. There are two possible reasons, which can be explained for the lack of correlation between levoglucosan and K+. First, specific burning materials may be used for residential heating, which can't produce K+. Secondly, K+ could be deposit on the surface of chimney breast and it can't emit into the atmosphere. Anhydrosugars contributed 4.4% to water-soluble organic carbon (WSOC) and 2.4% to organic carbon (OC). Their highest values of WSOC (8.1%) and OC (4.9%) in wintertime indicate that contribution of BB to Alaskan aerosols is important in winter period. The current study presents for the first time one-year observation on BB tracers in the subarctic region, which provide useful information to better understand the effect of biomass burning on subarctic atmosphere. It will also be helpful for further long-term climate studies in this region.

  10. Estimating carbon and energy fluxes in arctic tundra

    Science.gov (United States)

    Gokkaya, K.; Jiang, Y.; Rastetter, E.; Shaver, G. R.; Rocha, A. V.

    2013-12-01

    Arctic ecosystems are undergoing a very rapid change due to climate change and their response to climate change has important implications for the global energy budget and carbon (C) cycling. Therefore, it is important to understand how (C) and energy fluxes in the Arctic will respond to climate change. However, attribution of these responses to climate is challenging because measured fluxes are the sum of multiple processes that respond differently to environmental factors. For example, net ecosystem exchange of CO2 (NEE) is the net result of gross (C) uptake by plant photosynthesis (GPP) and (C) loss by ecosystem respiration (ER) and similarly, evapotranspiration (i.e. latent energy, LE) is the sum of transpiration and evaporation. Partitioning of NEE into GPP and ER requires nighttime measurements of NEE, when photosynthesis does not take place, to be extrapolated to daytime. This is challenging in the Arctic because of the long photoperiod during the growing season and the errors involved during the extrapolation. Transpiration (energy), photosynthesis (carbon), and vegetation phenology are inherently coupled because leaf stomata are the primary regulators of gas exchange. Our objectives in this study are to i) estimate canopy resistance (Rc) based on a light use efficiency model, ii) utilize the estimated Rc to predict GPP and transpiration using a coupled C and energy model and thus improve the partitioning of NEE and LE, and iii) to test ensemble Kalman filter (EnKF) to estimate model parameters and improve model predictions. Results from one growing season showed that the model predictions can explain 75 and 71% of the variance in GPP and LE in the Arctic tundra ecosystem, respectively. When the model was embedded within the EnKF for estimating Rc, the amount of variance explained for GPP increased to 81% but there was no improvement for the prediction of LE. This suggests that the factors controlling LE are not fully integrated in the model such as the

  11. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities

    Science.gov (United States)

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale. PMID:27149113

  12. Fungi benefit from two decades of increased nutrient availability in tundra heath soil

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Bååth, Erland

    2013-01-01

    of complex organic compounds such as vanillin, while warming has had no such effects. Furthermore, the NLFA-to-PLFA ratio for (13)C-incorporation from acetate increased in warmed plots but not in fertilized ones. Thus, fertilization cannot be used as a proxy for effects on warming in arctic tundra soils...

  13. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time.

    Science.gov (United States)

    Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Björk, Robert G; Bjorkman, Anne D; Callaghan, Terry V; Collier, Laura Siegwart; Cooper, Elisabeth J; Cornelissen, Johannes H C; Day, Thomas A; Fosaa, Anna Maria; Gould, William A; Grétarsdóttir, Járngerður; Harte, John; Hermanutz, Luise; Hik, David S; Hofgaard, Annika; Jarrad, Frith; Jónsdóttir, Ingibjörg Svala; Keuper, Frida; Klanderud, Kari; Klein, Julia A; Koh, Saewan; Kudo, Gaku; Lang, Simone I; Loewen, Val; May, Jeremy L; Mercado, Joel; Michelsen, Anders; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Pieper, Sara; Post, Eric; Rixen, Christian; Robinson, Clare H; Schmidt, Niels Martin; Shaver, Gaius R; Stenström, Anna; Tolvanen, Anne; Totland, Orjan; Troxler, Tiffany; Wahren, Carl-Henrik; Webber, Patrick J; Welker, Jeffery M; Wookey, Philip A

    2012-02-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.

  14. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities.

    Directory of Open Access Journals (Sweden)

    Adrian Zwolicki

    Full Text Available We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina. Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale.

  15. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities.

    Science.gov (United States)

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale. PMID:27149113

  16. Seasonal variability of leaf area index and foliar nitrogen in contrasting dry-mesic tundras

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Lemeur, Raoul;

    2009-01-01

    Assimilation and exchange of carbon for arctic ecosystems depend strongly on leaf area index (LAI) and total foliar nitrogen (TFN). For dry-mesic tundras, the seasonality of these characteristics is unexplored. We addressed this knowledge gap by measuring variations of LAI and TFN at five contras...

  17. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra

    NARCIS (Netherlands)

    Juszak, Inge; Eugster, Werner; Heijmans, Monique M.P.D.; Schaepman-Strub, Gabriela

    2016-01-01

    Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing.

  18. What are the main climate drivers for shrub growth in Northeastern Siberian tundra?

    NARCIS (Netherlands)

    Blok, D.; Sass-Klaassen, U.; Schaepman-Strub, G.; Heijmans, M.M.P.D.; Sauren, P.; Berendse, F.

    2011-01-01

    Deciduous shrubs are expected to rapidly expand in the Arctic during the coming decades due to climate warming. A transition towards more shrub-dominated tundra may have large implications for the regional surface energy balance, permafrost stability and carbon storage capacity, with consequences fo

  19. Variation in bird's originating nitrogen availability limits High Arctic tundra development over last 2000 year (Hornsund, Svalbard)

    Science.gov (United States)

    Skrzypek, Grzegorz; Wojtuń, Bronisław; Hua, Quan; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra

    2016-04-01

    Arctic and subarctic regions play important roles in the global carbon balance. However, nitrogen (N) deficiency is a major constraint for organic carbon sequestration in the High Arctic. Hence, the identification of the relative contributions from different N-sources is critical for understanding the constraints that limit tundra growth. The stable nitrogen composition of the three main N-sources and numerous plants were analyzed in ten tundra types (including those influenced by seabirds) in the Fuglebekken catchment (Hornsund, Svalbard, 77°N 15°E). The percentage of the total tundra N-pool provided by seabirds' feces (from planktivorous colonially breeding little auks Alle alle), ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment originated from birds (36%), atmospheric deposition (38%), and N2-fixation (26%). The results clearly show that N-pool in the tundra is significantly supplemented by nesting seabirds. Thus, if they experienced climate change induced substantial negative environmental pressure, it would adversely influence the tundra N-budget (Skrzypek et al. 2015). The growth rates and the sediment thickness (bird-N rich tundra with very diverse ages ranging from 235 to 2300 cal BP and thickness up to 110 cm. The growth rates for this tundra (62 cm core, 18 AMS 14C dates) were high (1.5-3.0 mm/yr) between 1568 and 1804 AD and then substantially declined for the period between 1804 and 1929 AD (0.2 mm/yr). These findings deliver an additional argument, that the organic matter accumulation is driven not only directly by climatic conditions but also by birds' contribution to the tundra N-pool. Skrzypek G, Wojtuń B, Richter D, Jakubas D, Wojczulanis-Jakubas K, Samecka-Cymerman A, 2015. Diversification of nitrogen sources in various tundra vegetation types in the high Arctic. PLoS ONE 10(9): e0136536.

  20. Snowmelt runoff from northern alpine tundra hillslopes: major processes and methods of simulation

    Directory of Open Access Journals (Sweden)

    W. L. Quinton

    2004-01-01

    Full Text Available In northern alpine tundra, large slope gradients, late-lying snow drifts and shallow soils overlying impermeable substrates all contribute to large hillslope runoff volumes during the spring freshet. Understanding the processes and pathways of hillslope runoff in this environment is, therefore, critical to understanding the water cycle within northern alpine tundra ecosystems. This study: (a presents the results of a field study on runoff from a sub-alpine tundra hillslope with a large snow drift during the spring melt period; (b identifies the major runoff processes that must be represented in simulations of snowmelt runoff from sub-alpine tundra hillslopes; (c describes how these processes can be represented in a numerical simulation model; and d compares field measurements with modelled output to validate or refute the conceptual understanding of runoff generation embodied in the process simulations. The study was conducted at Granger Creek catchment, 15 km south of Whitehorse, Yukon Territory, Canada, on a north-facing slope below a late-lying snow drift. For the freshet period, the major processes to be represented in a runoff model include the rate of meltwater release from the late-lying snowdrift, the elevation and thickness of the saturated layer, the magnitude of the soil permeability and its variation with depth. The daily cycle of net all-wave radiation was observed to drive the diurnal pulses of melt water from the drift; this, in turn, was found to control the daily pulses of flow through the hillslope subsurface and in the stream channel. The computed rate of frost table lowering fell within the observed values; however, there was wide variation among the measured frost table depths. Spatial variability in frost table depth would result in spatial variabilities in saturated layer depth and thickness, which would, in turn, produce variations in subsurface flow rates over the slope, including preferential flowpaths. Keywords

  1. Will Arctic ground squirrels impede or accelerate climate-induced vegetation changes to the Arctic tundra?

    Science.gov (United States)

    Dalton, J.; Flower, C. E.; Brown, J.; Gonzalez-Meler, M. A.; Whelan, C.

    2014-12-01

    Considerable attention has been given to the climate feedbacks associated with predicted vegetation shifts in the Arctic tundra in response to global environmental change. However, little is known regarding the extent to which consumers can facilitate or respond to shrub expansion. Arctic ground squirrels, the largest and most northern ground squirrel, are abundant and widespread throughout the North American tundra. Their broad diet of seeds, flowers, herbage, bird's eggs and meat speaks to the need to breed, feed, and fatten in a span of some 12-16 weeks that separate their 8-9 month bouts of hibernation with the potential consequence to impact ecosystem dynamics. Therefore Arctic ground squirrels are a good candidate to evaluate whether consumers are mere responders (bottom-up effects) or drivers (top-down) of the observed and predicted vegetation changes. As a start towards this question, we measured the foraging intensity (giving-up densities) of Arctic ground squirrels in experimental food patches within which the squirrels experience diminishing returns as they seek the raisins and peanuts that we provided at the Toolik Lake field station in northern Alaska. If the squirrels show their highest feeding intensity in the shrubs, they may impede vegetation shifts by slowing the establishment and expansion of shrubs in the tundra. Conversely, if they show their lowest feeding intensity within shrub dominated areas, they may accelerate vegetation shifts. We found neither. Feeding intensity varied most among transects and times of day, and least along a tundra-to-shrub vegetation gradient. This suggests that the impacts of squirrels will be heterogeneous - in places responders and in others drivers. We should not be surprised then to see patches of accelerated and impeded vegetation changes in the tundra ecosystem. Some of these patterns may be predictable from the foraging behavior of Arctic ground squirrels.

  2. The effect of a permafrost disturbance on growing-season carbon-dioxide fluxes in a high Arctic tundra ecosystem

    Science.gov (United States)

    Cassidy, Alison E.; Christen, Andreas; Henry, Gregory H. R.

    2016-04-01

    Soil carbon stored in high-latitude permafrost landscapes is threatened by warming and could contribute significant amounts of carbon to the atmosphere and hydrosphere as permafrost thaws. Thermokarst and permafrost disturbances, especially active layer detachments and retrogressive thaw slumps, are present across the Fosheim Peninsula, Ellesmere Island, Canada. To determine the effects of retrogressive thaw slumps on net ecosystem exchange (NEE) of CO2 in high Arctic tundra, we used two eddy covariance (EC) tower systems to simultaneously and continuously measure CO2 fluxes from a disturbed site and the surrounding undisturbed tundra. During the 32-day measurement period in the 2014 growing season, the undisturbed tundra was a small net sink (NEE = -0.1 g C m-2 d-1); however, the disturbed terrain of the retrogressive thaw slump was a net source (NEE = +0.4 g C m-2 d-1). Over the measurement period, the undisturbed tundra sequestered 3.8 g C m-2, while the disturbed tundra released 12.5 g C m-2. Before full leaf-out in early July, the undisturbed tundra was a small source of CO2 but shifted to a sink for the remainder of the sampling season (July), whereas the disturbed tundra remained a source of CO2 throughout the season. A static chamber system was also used to measure daytime fluxes in the footprints of the two towers, in both disturbed and undisturbed tundra, and fluxes were partitioned into ecosystem respiration (Re) and gross primary production (GPP). Average GPP and Re found in disturbed tundra were smaller (+0.40 µmol m-2 s-1 and +0.55 µmol m-2 s-1, respectively) than those found in undisturbed tundra (+1.19 µmol m-2 s-1 and +1.04 µmol m-2 s-1, respectively). Our measurements indicated clearly that the permafrost disturbance changed the high Arctic tundra system from a sink to a source for CO2 during the majority of the growing season (late June and July).

  3. Central planning, market and subsistence from a tundra perspective: Field experience with reindeer herders in the Kola Peninsula

    Directory of Open Access Journals (Sweden)

    Dessislav Sabev

    2002-04-01

    Full Text Available This paper is based on field experience in the tundra camp of a reindeer-herding brigade with mixed ethnic background (Komi, Sami, Nenets, Russians belonging to the ex-Sovkhoz of Krasnoschelie. Its purpose is to situate the new critical issues facing the reindeer-herding collectives after the economic collapse in Russia in 1998. My main argument is that the increasing economic isolation of the tundra periphery forces the herders to redefine their relationship with both the centre(s and the other tundra actors. Reindeer herding on the Kola Peninsula is analysed in relation to its heterogeneous economic system defined by the old Sovkhoz-like management and the new Western buyer of reindeer meat. Furthermore, the social environment in the herding territories has changed since the deterioration of the central planning economy, implying new renewable resources' users. After massive loss of jobs, militaries, miners and geologists came into the tundra for substantial hunting and fishing and so became actors in the local informal economy. Finally, tundra-located herders and hunters seem to be somewhere unified by a discourse against the town-based administrative power and economic actors such as mining industry. Therefore herders have to deal with both an old administrative system in the agrocentre and new realities in the tundra. Based on a case study of herding/hunting activities in a tundra camp, the paper analyses the social relationships between the different actors in the post-Soviet Kola tundra and express their quest for solutions.

  4. Long-term recovery patterns of arctic tundra after winter seismic exploration.

    Science.gov (United States)

    Jorgenson, Janet C; Ver Hoef, Jay M; Jorgenson, M T

    2010-01-01

    In response to the increasing global demand for energy, oil exploration and development are expanding into frontier areas of the Arctic, where slow-growing tundra vegetation and the underlying permafrost soils are very sensitive to disturbance. The creation of vehicle trails on the tundra from seismic exploration for oil has accelerated in the past decade, and the cumulative impact represents a geographic footprint that covers a greater extent of Alaska's North Slope tundra than all other direct human impacts combined. Seismic exploration for oil and gas was conducted on the coastal plain of the Arctic National Wildlife Refuge, Alaska, USA, in the winters of 1984 and 1985. This study documents recovery of vegetation and permafrost soils over a two-decade period after vehicle traffic on snow-covered tundra. Paired permanent vegetation plots (disturbed vs. reference) were monitored six times from 1984 to 2002. Data were collected on percent vegetative cover by plant species and on soil and ground ice characteristics. We developed Bayesian hierarchical models, with temporally and spatially autocorrelated errors, to analyze the effects of vegetation type and initial disturbance levels on recovery patterns of the different plant growth forms as well as soil thaw depth. Plant community composition was altered on the trails by species-specific responses to initial disturbance and subsequent changes in substrate. Long-term changes included increased cover of graminoids and decreased cover of evergreen shrubs and mosses. Trails with low levels of initial disturbance usually improved well over time, whereas those with medium to high levels of initial disturbance recovered slowly. Trails on ice-poor, gravel substrates of riparian areas recovered better than those on ice-rich loamy soils of the uplands, even after severe initial damage. Recovery to pre-disturbance communities was not possible where trail subsidence occurred due to thawing of ground ice. Previous studies of

  5. Circumpolar Dynamics of Arctic Tundra Vegetation in Relation to Temperature Trends

    Science.gov (United States)

    Epstein, H. E.; Bhatt, U. S.; Raynolds, M. K.; Walker, D. A.; Reichle, L.

    2015-12-01

    Arctic tundra vegetation has generally exhibited a "greening" trend for at least the past three decades. However, these temporal trends in tundra vegetation are highly heterogeneous in space across different arctic regions, as well as showing variability over time. The factors controlling this variability are likely numerous with complex interactions, however, a first approach is to examine how vegetation dynamics relate to trends in temperature. We used a 32-year record (1982-2013) of the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperatures from Advanced Very High Resolution Radiometer (AVHRR) sensors onboard NOAA satellites (GIMMS 3g dataset) to analyze observed changes in both aboveground tundra vegetation and surface temperatures. We divided the circumpolar dataset into two continental regions (North America and Eurasia), as well as by tundra subzone (A-E) sensu the Circumpolar Arctic Vegetation Map (CAVM). We 1) compared temporal trends in both MaxNDVI (peak values) and TI-NDVI (seasonally integrated values) with those of the Summer Warmth Index (SWI - sum of mean monthly temperatures > 0 °C); 2) assessed how the detrended interannual variabilities in NDVI compared to those of SWI; and 3) analyzed current and prior year SWI, as well as prior year NDVI, as controls on current year NDVI. Interannual coefficients of variation for SWI were 2.0 - 2.5 times greater than those for NDVI, and the temporal trendlines for NDVI were much "tighter" with greater r² values than those for SWI. Interannual variability in NDVI was greatest in the "Mid-Low" Arctic, whereas interannual variability in SWI was greatest in the most southern Arctic. Surprisingly, the observed relative rates of change in NDVI were greater than those of SWI for the warmer subzones for both North America and Eurasia. Finally, the change in NDVI from one year to the next was only weakly correlated with current year SWI. These results suggest that 1) there are clearly factors

  6. Impact of disability and other physical health issues on academic outcomes among American Indian and Alaskan Native college students: an exploratory analysis.

    Science.gov (United States)

    Patterson Silver Wolf Adelv Unegv Waya, David A; Vanzile-Tamsen, Carol; Black, Jessica; Billiot, Shanondora M; Tovar, Molly

    2015-01-01

    This study investigated whether self-identified disabilities among American Indian and Alaskan Native college students impact academic performance and persistence to graduation and explored the differences in health and academic grades between American Indian and Alaskan Native students and students of other racial and ethnic identities using the National College Health Assessment. Findings indicate that American Indian or Alaskan Native students have significantly lower grades than White and Asian students, and American Indian and Alaskan Native women report the highest incidence of health problems of any demographic group. Exploratory results point to future research to determine the full impact of disabilities and poor health on academic success. PMID:26151232

  7. Clinical pathology and assessment of pathogen exposure in southern and Alaskan sea otters

    Science.gov (United States)

    Hanni, K.D.; Mazet, J.A.K.; Gulland, F.M.D.; Estes, James; Staedler, M.; Murray, M.J.; Miller, M.; Jessup, David A.

    2003-01-01

    The southern sea otter (Enhydra lutris nereis) population in California (USA) and the Alaskan sea otter (E. lutris kenyoni) population in the Aleutian Islands (USA) chain have recently declined. In order to evaluate disease as a contributing factor to the declines, health assessments of these two sea otter populations were conducted by evaluating hematologic and/or serum biochemical values and exposure to six marine and terrestrial pathogens using blood collected during ongoing studies from 1995 through 2000. Samples from 72 free-ranging Alaskan, 78 free-ranging southern, and (for pathogen exposure only) 41 debilitated southern sea otters in rehabilitation facilities were evaluated and compared to investigate regional differences. Serum chemistry and hematology values did not indicate a specific disease process as a cause for the declines. Statistically significant differences were found between free-ranging adult southern and Alaskan population mean serum levels of creatinine kinase, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, calcium, cholesterol, creatinine, glucose, phosphorous, total bilirubin, blood urea nitrogen, and sodium. These were likely due to varying parasite loads, contaminant exposures, and physiologic or nutrition statuses. No free-ranging sea otters had signs of disease at capture, and prevalences of exposure to calicivirus, Brucella spp., and Leptospira spp. were low. The high prevalence (35%) of antibodies to Toxoplasma gondii in free-ranging southern sea otters, lack of antibodies to this parasite in Alaskan sea otters, and the pathogen's propensity to cause mortality in southern sea otters suggests that this parasite may be important to sea otter population dynamics in California but not in Alaska. The evidence for exposure to pathogens of public health importance (e.g., Leptospira spp., T. gondii) in the southern sea otter population, and the nai??vete?? of both populations to other pathogens (e

  8. Viability of the Alaskan breeding population of Steller’s eiders

    Science.gov (United States)

    Dunham, Kylee; Grand, James B.

    2016-10-11

    The U.S. Fish and Wildlife Service is tasked with setting objective and measurable criteria for delisting species or populations listed under the Endangered Species Act. Determining the acceptable threshold for extinction risk for any species or population is a challenging task, particularly when facing marked uncertainty. The Alaskan breeding population of Steller’s eiders (Polysticta stelleri) was listed as threatened under the Endangered Species Act in 1997 because of a perceived decline in abundance throughout their nesting range and geographic isolation from the Russian breeding population. Previous genetic studies and modeling efforts, however, suggest that there may be dispersal from the Russian breeding population. Additionally, evidence exists of population level nonbreeding events. Research was conducted to estimate population viability of the Alaskan breeding population of Steller’s eiders, using both an open and closed model of population process for this threatened population. Projections under a closed population model suggest this population has a 100 percent probability of extinction within 42 years. Projections under an open population model suggest that with immigration there is no probability of permanent extinction. Because of random immigration process and nonbreeding behavior, however, it is likely that this population will continue to be present in low and highly variable numbers on the breeding grounds in Alaska. Monitoring the winter population, which includes both Russian and Alaskan breeding birds, may offer a more comprehensive indication of population viability.

  9. Task 27 -- Alaskan low-rank coal-water fuel demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Development of coal-water-fuel (CWF) technology has to-date been predicated on the use of high-rank bituminous coal only, and until now the high inherent moisture content of low-rank coal has precluded its use for CWF production. The unique feature of the Alaskan project is the integration of hot-water-drying (HWD) into CWF technology as a beneficiation process. Hot-water-drying is an EERC developed technology unavailable to the competition that allows the range of CWF feedstock to be extended to low-rank coals. The primary objective of the Alaskan Project, is to promote interest in the CWF marketplace by demonstrating the commercial viability of low-rank coal-water-fuel (LRCWF). While commercialization plans cannot be finalized until the implementation and results of the Alaskan LRCWF Project are known and evaluated, this report has been prepared to specifically address issues concerning business objectives for the project, and outline a market development plan for meeting those objectives.

  10. Population decline in the Delta caribou herd with reference to other Alaskan herds

    Directory of Open Access Journals (Sweden)

    Patrick Valkenburg et al.

    1996-01-01

    Full Text Available After growing continuously for nearly 15 years, the Delta caribou herd began to decline in 1989. Most other Interior Alaskan herds also began declining. In the Delta herd, and in other herds, the declines were caused primarily by high summer mortality of calves and increased natural mortality of adult females. Other minor causes included increased winter mortality of calves, and reduced parturition rates of 3-year-old and older females. The decline in the Delta herd also coincided with increased wolf (Canis lupus numbers, winters with deeper than normal snow, and warm summers. Mean body weight of annual samples of 10-month-old female calves was consistently low during the decline. Except in some of the smallest Interior Alaskan herds, we conclude that evidence for population regulation in Alaskan caribou is weak, and that herds are likely to fluctuate within a wide range of densities due to complex interactions of predation and weather. Unless wolf numbers are influenced by man, the size of a caribou herd in a given year is likely to be largely a function of its size during the previous population low and the number of years of favorable weather in the interim.

  11. Alaska tundra vegetation trends and their links to the large-scale climate

    Science.gov (United States)

    Bieniek, P. A.; Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Comiso, J. C.

    2011-12-01

    The arctic Normalized Vegetation Index (NDVI) data set (a measure of vegetation photosynthetic capacity) has been used to document coherent temporal relationships between near-coastal sea ice, summer tundra land surface temperatures, and vegetation productivity throughout the Arctic (Bhatt et al. 2010). Land warming over North America has displayed larger trends (+30%) when compared to Eurasia (+16%) since 1982. In the tundra of northern Alaska the greatest change was found in absolute maximum NDVI along the Beaufort Sea coast (+14%). In contrast, tundra areas in southwest Alaska along the Bering Sea have seen a decline (-4%). Greenup date in these regions has been occurring as much as 1-4 days earlier per decade, but trends are mixed. Winter snow water equivalent (SWE) has only increased slightly (+0.1 mm/yr) in the Arctic region of Alaska since 1987 (R. Muskett, personal communication). These findings suggest that there have been changes in the seasonal climate in Alaska during the NDVI record. The tundra trends are further investigated by evaluating remotely sensed sea ice, surface air temperature, SWE, daily snow cover, and NDVI3g. While the snow data has a relatively short record (1999-2010), notable trends can be observed in snow melt, occurring as much 15 days earlier per decade in northern Alaska. Unfortunately, other snow data sets have been found to be problematic and could not be used to extend our analysis. This highlights the need for a long-term pan-arctic snow data set that is suitable for climate analysis. Possible climate drivers are also investigated. Results show that the summer tundra, in terms of NDVI and summer warmth index (SWI), has few direct links with the large-scale climate. However, the sea ice concentration along the coast of the tundra regions has strong preseason links to the large-scale climate. This suggests that the large-scale climate influences the sea ice concentration which then affects the NDVI and SWI. Three tundra regions

  12. InSAR detects increase in surface subsidence caused by an Arctic tundra fire

    Science.gov (United States)

    Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun

    2014-01-01

    Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.

  13. Vegetation Feedbacks Explain Recent High-latitude Summer Warming in Alaskan Arctic and Boreal Ecosystems

    Science.gov (United States)

    Chapin, F. S.; Beringer, J.; Copass, C.; Epstein, H.; Lloyd, A.; Lynch, A.; McGuire, A. D.; Sturm, M.

    2002-12-01

    Although General Circulation Models predict the observed winter and spring warming at high latitudes, there is no obvious physical mechanism in the climate system that can account for the significant increase in summer temperatures that has occurred at high latitudes during the past 30 years. We demonstrate that vegetation-induced feedbacks in snow properties and summer energy exchange with the atmosphere explain this recent summer warming. A combination of stand-age reconstructions, repeat photography, and satellite measures of vegetation greenness demonstrate an expansion of the distribution and an infilling of shrubs in moist tundra and of trees in forest tundra. These vegetation changes increase the depth and thermal resistance of the snow pack, causing a 3oC increase in winter soil temperature and an increase in winter decomposition and nutrient mineralization, which enhance plant growth. These vegetation changes also increase summer heat transport to the atmosphere by increasing radiation absorption (lower albedo) and the proportion of absorbed energy that is transferred to the atmosphere as sensible heat. The resulting increase in atmospheric heating, on a unit-area basis, is similar to effects of a doubling of atmospheric carbon dioxide or a 2% change in solar constant, such as occurred at the last glacial-interglacial boundary. Simulations with the regional climate model ARCSyM indicate that a change from shrubless tundra to shrub-dominated tundra on the North Slope of Alaska would increase July mean temperature by 1.5 to 3.5 degrees C, with the warming effects extending south into the boreal forest of interior Alaska. If these vegetation feedbacks to regional warming are widespread, as suggested by indigenous knowledge and the satellite record, they are of sufficient magnitude to explain the summer warming that has recently been observed in northern Alaska and other regions of the circumpolar Arctic.

  14. Bird communities of the arctic shrub tundra of Yamal: habitat specialists and generalists.

    Directory of Open Access Journals (Sweden)

    Vasiliy Sokolov

    Full Text Available BACKGROUND: The ratio of habitat generalists to specialists in birds has been suggested as a good indicator of ecosystem changes due to e.g. climate change and other anthropogenic perturbations. Most studies focusing on this functional component of biodiversity originate, however, from temperate regions. The Eurasian Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by domestic reindeer and growing human activity. METHODOLOGY/PRINCIPAL FINDINGS: Here we monitored bird communities in a tundra landscape harbouring shrub and open habitats in order to analyse bird habitat relationships and quantify habitat specialization. We used ordination methods to analyse habitat associations and estimated the proportions of specialists in each of the main habitats. Correspondence Analysis identified three main bird communities, inhabiting upland, lowland and dense willow shrubs. We documented a stable structure of communities despite large multiannual variations of bird density (from 90 to 175 pairs/km(2. Willow shrub thickets were a hotspot for bird density, but not for species richness. The thickets hosted many specialized species whose main distribution area was south of the tundra. CONCLUSION/SIGNIFICANCE: If current arctic changes result in a shrubification of the landscape as many studies suggested, we would expect an increase in the overall bird abundance together with an increase of local specialists, since they are associated with willow thickets. The majority of these species have a southern origin and their increase in abundance would represent a strengthening of the boreal component in the southern tundra, perhaps at the expense of species typical of the subarctic zone, which appear to be generalists within this zone.

  15. Soil Organic Matter Dynamics and Methane Fluxes at the Forest – Tundra Ecotone in Fennoscandia

    OpenAIRE

    Sjögersten, Sofie

    2003-01-01

    This thesis presents results from several studies that have focused on the carbon and nutrient dynamics in soils at the forest – tundra ecotone in Fennoscandia. The main objectives of the study were: (i) to investigate the links between the physical environment, above-ground vegetation communities, soil carbon storage, nutrient status and the chemical composition of the soil organic matter (SOM), and (ii) to quantify trace gas fluxes (methane and carbon dioxide) between mesic soils and the at...

  16. Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra

    International Nuclear Information System (INIS)

    Widespread increases in Arctic tundra productivity have been documented for decades using coarse-scale satellite observations, but finer-scale observations indicate that changes have been very uneven, with a high degree of landscape- and regional-scale heterogeneity. Here we analyze time-series of the Normalized Difference Vegetation Index (NDVI) observed by Landsat (1984–2012), to assess landscape- and regional-scale variability of tundra vegetation dynamics in the northwest Siberian Low Arctic, a little-studied region with varied soils, landscape histories, and permafrost attributes. We also estimate spatio-temporal rates of land-cover change associated with expansion of tall alder (Alnus) shrublands, by integrating Landsat time-series with very-high-resolution imagery dating to the mid-1960s. We compiled Landsat time-series for eleven widely-distributed landscapes, and performed linear regression of NDVI values on a per-pixel basis. We found positive net NDVI trends (‘greening’) in nine of eleven landscapes. Net greening occurred in alder shrublands in all landscapes, and strong greening tended to correspond to shrublands that developed since the 1960s. Much of the spatial variability of greening within landscapes was linked to landscape physiography and permafrost attributes, while between-landscape variability largely corresponded to differences in surficial geology. We conclude that continued increases in tundra productivity in the region are likely in upland tundra landscapes with fine-textured, cryoturbated soils; these areas currently tend to support discontinuous vegetation cover, but are highly susceptible to rapid increases in vegetation cover, as well as land-cover changes associated with the development of tall shrublands. (paper)

  17. Variability of Water Chemistry in Tundra Lakes, Petuniabukta Coast, Central Spitsbergen, Svalbard

    OpenAIRE

    Małgorzata Mazurek; Renata Paluszkiewicz; Grzegorz Rachlewicz; Zbigniew Zwoliński

    2012-01-01

    Samples of water from small tundra lakes located on raised marine terraces on the eastern coast of Petuniabukta (Ebbadalen, Central Spitsbergen) were examined to assess the changes in water chemistry that had occurred during the summer seasons of 2001–2003 and 2006. The unique environmental conditions of the study region include the predominance of sedimentary carbonate and sulphate rocks, low precipitation values, and an active permafrost layer with a maximum thickness of 1.2 m. The average ...

  18. A shrub bending model to calculate the albedo of shrub-tundra

    OpenAIRE

    Ménard, Cécile B.; Essery, Richard; Pomeroy, John; Marsh, Philip; Clark, Douglas B.

    2014-01-01

    At high latitudes, the albedo and energy budget of shrub-tundra landscapes is determined by the relationship between the fractional snow cover and the fraction of vegetation protruding above the snowpack. The exposed vegetation fraction is affected by the bending and/or burial of shrubs in winter and their spring-up during melt. Little is known about the meteorological conditions and snowpack and shrub properties required to cause bending, and few quantitative measurements of bending processe...

  19. Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra

    OpenAIRE

    Polyakov, Igor V; Tucker, Compton J.; Pinzon, Jorge E; Epstein, Howard E.; Comiso, Josefino C; Peter A. Bieniek; Walker, Donald A.; Raynolds, Martha K.; Bhatt, Uma S.

    2013-01-01

    Vegetation productivity trends for the Arctic tundra are updated for the 1982–2011 period and examined in the context of land surface temperatures and coastal sea ice. Understanding mechanistic links between vegetation and climate parameters contributes to model advancements that are necessary for improving climate projections. This study employs remote sensing data: Global Inventory Modeling and Mapping Studies (GIMMS) Maximum Normalized Difference Vegetation Index (MaxNDVI), Special Sensor ...

  20. Distribution patterns of typical enzyme activities in tundra soils on the Fildes Peninsula of maritime Antarctica

    Institute of Scientific and Technical Information of China (English)

    DING Wei; WANG Qing; ZHU Renbin; MA Dawei

    2015-01-01

    Soil enzyme activities can be used as indicators of microbial activity and soil fertility. In this paper, the activities of invertase (IA), phosphatase (PA) and urease (UA) were investigated in tundra soils collected from marine animal colonies, areas of human activity and background areas on Fildes Peninsula, maritime Antarctica. Soil enzyme activities were in the range of 1.0–82.7 mg·kg-1·h-1 for IA, 0.2–8.2 mg·kg-1·h-1 for PA and 0.2–39.8 mg·kg-1·h-1 for UA. The spatial distribution patterns for soil enzyme activities corresponded strongly with marine animal activity and human activity. Significantly higher soil IA and PA activities occurred in penguin colony soils, whereas seal colony soils showed higher UA activity. Statistical analysis indicated that soil IA activity was controlled by the levels of soil nutrients (TOC, TN and TP), PA activity was closely related with TP, and UA activity was affected by the soil pH. Overall, the deposition amount of penguin guano or seal excreta could impact the distribution of enzyme activity in Antarctic tundra soils. Multiple stepwise regression models were established between the enzyme activities, soil physicochemical properties and heavy metals Cu and Zn ([IA]=0.7[TP]–0.2[Cu]+22.3[TN]+15.1, [PA]=0.3[TP]+0.03[Mc]+0.2, [UA]=16.7[pH]–0.5[Cu]+ 0.4[Zn]–72.6). These models could be used to predict enzyme activities in the tundra soils, which could be helpful to study the effects of marine animal activity and environmental change on tundra ecosystems in maritime Antarctica.

  1. Microbial diversity in alpine tundra soils correlates with snow cover dynamics.

    Science.gov (United States)

    Zinger, Lucie; Shahnavaz, Bahar; Baptist, Florence; Geremia, Roberto A; Choler, Philippe

    2009-07-01

    The temporal and spatial snow cover dynamics is the primary factor controlling the plant communities' composition and biogeochemical cycles in arctic and alpine tundra. However, the relationships between the distribution of snow and the diversity of soil microbial communities remain largely unexplored. Over a period of 2 years, we monitored soil microbial communities at three sites, including contiguous alpine meadows of late and early snowmelt locations (LSM and ESM, respectively). Bacterial and fungal communities were characterized by using molecular fingerprinting and cloning/sequencing of microbial ribosomal DNA extracted from the soil. Herein, we show that the spatial and temporal distribution of snow strongly correlates with microbial community composition. High seasonal contrast in ESM is associated with marked seasonal shifts for bacterial communities; whereas less contrasted seasons because of long-lasting snowpack in LSM is associated with increased fungal diversity. Finally, our results indicate that, similar to plant communities, microbial communities exhibit important shifts in composition at two extremes of the snow cover gradient. However, winter conditions lead to the convergence of microbial communities independently of snow cover presence. This study provides new insights into the distribution of microbial communities in alpine tundra in relation to snow cover dynamics, and may be helpful in predicting the future of microbial communities and biogeochemical cycles in arctic and alpine tundra in the context of a warmer climate.

  2. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming

    Science.gov (United States)

    Xue, Kai; M. Yuan, Mengting; J. Shi, Zhou; Qin, Yujia; Deng, Ye; Cheng, Lei; Wu, Liyou; He, Zhili; van Nostrand, Joy D.; Bracho, Rosvel; Natali, Susan; Schuur, Edward. A. G.; Luo, Chengwei; Konstantinidis, Konstantinos T.; Wang, Qiong; Cole, James R.; Tiedje, James M.; Luo, Yiqi; Zhou, Jizhong

    2016-06-01

    Microbial decomposition of soil carbon in high-latitude tundra underlain with permafrost is one of the most important, but poorly understood, potential positive feedbacks of greenhouse gas emissions from terrestrial ecosystems into the atmosphere in a warmer world. Using integrated metagenomic technologies, we showed that the microbial functional community structure in the active layer of tundra soil was significantly altered after only 1.5 years of warming, a rapid response demonstrating the high sensitivity of this ecosystem to warming. The abundances of microbial functional genes involved in both aerobic and anaerobic carbon decomposition were also markedly increased by this short-term warming. Consistent with this, ecosystem respiration (Reco) increased up to 38%. In addition, warming enhanced genes involved in nutrient cycling, which very likely contributed to an observed increase (30%) in gross primary productivity (GPP). However, the GPP increase did not offset the extra Reco, resulting in significantly more net carbon loss in warmed plots compared with control plots. Altogether, our results demonstrate the vulnerability of active-layer soil carbon in this permafrost-based tundra ecosystem to climate warming and the importance of microbial communities in mediating such vulnerability.

  3. Wet meadow ecosystems contribute the majority of overwinter soil respiration from snow-scoured alpine tundra

    Science.gov (United States)

    Knowles, John F.; Blanken, Peter D.; Williams, Mark W.

    2016-04-01

    We measured soil respiration across a soil moisture gradient ranging from dry to wet snow-scoured alpine tundra soils throughout three winters and two summers. In the absence of snow accumulation, soil moisture variability was principally determined by the combination of mesotopographical hydrological focusing and shallow subsurface permeability, which resulted in a patchwork of comingled ecosystem types along a single alpine ridge. To constrain the subsequent carbon cycling variability, we compared three measures of effective diffusivity and three methods to calculate gradient method soil respiration from four typical vegetation communities. Overwinter soil respiration was primarily restricted to wet meadow locations, and a conservative estimate of the rate of overwinter soil respiration from snow-scoured wet meadow tundra was 69-90% of the maximum carbon dioxide (CO2) respired by seasonally snow-covered soils within this same catchment. This was attributed to higher overwinter soil temperatures at wet meadow locations relative to fellfield, dry meadow, and moist meadow communities, which supported liquid water and heterotrophic respiration throughout the winter. These results were corroborated by eddy covariance-based measurements that demonstrated an average of 272 g C m-2 overwinter carbon loss during the study period. As a result, we updated a conceptual model of soil respiration versus snow cover to express the potential for soil respiration variability from snow-scoured alpine tundra.

  4. Mapping wildfire burn severity in the Arctic Tundra from downsampled MODIS data

    Science.gov (United States)

    Kolden, Crystal A.; Rogan, John

    2013-01-01

    Wildfires are historically infrequent in the arctic tundra, but are projected to increase with climate warming. Fire effects on tundra ecosystems are poorly understood and difficult to quantify in a remote region where a short growing season severely limits ground data collection. Remote sensing has been widely utilized to characterize wildfire regimes, but primarily from the Landsat sensor, which has limited data acquisition in the Arctic. Here, coarse-resolution remotely sensed data are assessed as a means to quantify wildfire burn severity of the 2007 Anaktuvuk River Fire in Alaska, the largest tundra wildfire ever recorded on Alaska's North Slope. Data from Landsat Thematic Mapper (TM) and downsampled Moderate-resolution Imaging Spectroradiometer (MODIS) were processed to spectral indices and correlated to observed metrics of surface, subsurface, and comprehensive burn severity. Spectral indices were strongly correlated to surface severity (maximum R2 = 0.88) and slightly less strongly correlated to substrate severity. Downsampled MODIS data showed a decrease in severity one year post-fire, corroborating rapid vegetation regeneration observed on the burned site. These results indicate that widely-used spectral indices and downsampled coarse-resolution data provide a reasonable supplement to often-limited ground data collection for analysis and long-term monitoring of wildfire effects in arctic ecosystems.

  5. Element cycling in the dominant plant community in the Alpine tundra zone of Changbai Mountains, China

    Institute of Scientific and Technical Information of China (English)

    LIU Jing-shuang; YU Jun-bao

    2005-01-01

    Element cycling in the dominant plant communities including Rh. aureum, Rh. redowskianum and Vaccinium uliginosum in the Alpine tundra zone of Changbai Mountains in northeast China was studied. The results indicate that the amount of elements from litter decomposition was less than that of the plant uptake from soil, but that from plant uptake was higher than that in soil with mineralization process released. On the other hand, in the open system including precipitation input and soil leaching output, because of great number of elements from precipitation into the open system, the element cycling(except N, P) in the Alpine tundra ecosystem was in a dynamic balance. In this study, it was also found that different organ of plants had significant difference in accumulating elements. Ca, Mg, P and N were accumulated more obviously in leaves, while Fe was in roots. The degree of concentration of elements in different tissues of the same organ of the plants also was different, a higher concentration of Ca, Mg, P and N in mesophyll than in nerve but Fe was in a reversed order. The phenomenon indicates (1) a variety of biochemical functions of different elements, (2) the elements in mesophyll were with a shorter turnover period than those in nerve or fibre, but higher utilization rate for plant. Therefore, this study implies the significance of keeping element dynamic balance in the alpine tundra ecosystem of Changbai Mountains.

  6. Multisensor NDVI-Based Monitoring of the Tundra-Taiga Interface (Mealy Mountains, Labrador, Canada

    Directory of Open Access Journals (Sweden)

    Heather Ward

    2013-03-01

    Full Text Available The analysis of a series of five normalized difference vegetation index (NDVI images produced information about a Labrador (Canada portion of the tundra-taiga interface. The twenty-five year observation period ranges from 1983 to 2008. The series composed of Landsat, SPOT and ASTER images, provided insight into regional scale characteristics of the tundra-taiga interface that is usually monitored from coarse resolution images. The image set was analyzed by considering an ordinal classification of the NDVI to account for the cumulative effect of differences of near-infrared spectral resolutions, the temperature anomalies, and atmospheric conditions. An increasing trend of the median values in the low, intermediate and high NDVI classes is clearly marked while accounting for variations attributed to cross-sensor radiometry, phenology and atmospheric disturbances. An encroachment of the forest on the tundra for the whole study area was estimated at 0 to 60 m, depending on the period of observation, as calculated by the difference between the median retreat and advance of an estimated location of the tree line. In small sections, advances and retreats of up to 320 m are reported for the most recent four- and seven-year periods of observations.

  7. Changing Climate Sensitivity in Response to Forest-Tundra Snow Albedo Feedback during the mid to late Pliocene Cooling

    Science.gov (United States)

    Paiewonsky, P.

    2015-12-01

    The forest-tundra snow albedo feedback is an important feedback in Earth's climate system, especially due to its potential role in modulating glacial cycles. Until now, little research has been done on how the strength of this feedback might vary with the background climate state. Over the last 4 million years, I hypothesize that the feedback has been generally weaker under warm Northern Hemispheric conditions when tundra has been primarily confined to the high Arctic and forest has extended to most of the Arctic coastline than under cooler Northern Hemispheric conditions in which the forest-tundra boundary has generally lain to the south, extending across the interiors of the large continental land masses. To test the hypothesis of the weakened/strengthened feedback, I used an Earth System Model of Intermediate Complexity that consists of a dynamic terrestrial vegetation model coupled to a climate model. A set of time-slice experiments with different orbital and greenhouse gas concentrations were analyzed. In one set of experiments, the feedback gain with respect to annual average top-of-atmosphere net short wave radiation due to vegetation was 1.42 for modern conditions but only 1.14 for the mid-Pliocene. Additionally, we compared experiments with different shortwave-radiation parameterizations, which differed in the amount of shortwave energy flux reaching the surface (and subsequently affecting vegetative biomass). These techniques allowed us to isolate the mechanisms responsible for the varying strength of the forest-tundra snow albedo feedback. The results also show that many factors affect the strength of feedback. In this presentation I will concentrate on the availability of land for conversion of forest to tundra (and vice versa), cloud cover near the forest-tundra boundary, and the integrated surface insolation contrast between tundra and forest during the snow-covered season.

  8. Modeling dynamics of tundra plant communities on the Yamal Peninsula, Russia, in response to climate change and grazing pressure

    International Nuclear Information System (INIS)

    Understanding the responses of the arctic tundra biome to a changing climate requires knowledge of the complex interactions among the climate, soils and biological system. This study investigates the individual and interaction effects of climate change and reindeer grazing across a variety of climate zones and soil texture types on tundra vegetation community dynamics using an arctic vegetation model that incorporates the reindeer diet, where grazing is a function of both foliar nitrogen concentration and reindeer forage preference. We found that grazing is important, in addition to the latitudinal climate gradient, in controlling tundra plant community composition, explaining about 13% of the total variance in model simulations for all arctic tundra subzones. The decrease in biomass of lichen, deciduous shrub and graminoid plant functional types caused by grazing is potentially dampened by climate warming. Moss biomass had a nonlinear response to increased grazing intensity, and such responses were stronger when warming was present. Our results suggest that evergreen shrubs may benefit from increased grazing intensity due to their low palatability, yet a growth rate sensitivity analysis suggests that changes in nutrient uptake rates may result in different shrub responses to grazing pressure. Heavy grazing caused plant communities to shift from shrub tundra toward moss, graminoid-dominated tundra in subzones C and D when evergreen shrub growth rates were decreased in the model. The response of moss, lichen and forbs to warming varied across the different subzones. Initial vegetation responses to climate change during transient warming are different from the long term equilibrium responses due to shifts in the controlling mechanisms (nutrient limitation versus competition) within tundra plant communities.

  9. Modeling dynamics of tundra plant communities on the Yamal Peninsula, Russia, in response to climate change and grazing pressure

    Science.gov (United States)

    Yu, Q.; Epstein, H. E.; Walker, D. A.; Frost, G. V.; Forbes, B. C.

    2011-10-01

    Understanding the responses of the arctic tundra biome to a changing climate requires knowledge of the complex interactions among the climate, soils and biological system. This study investigates the individual and interaction effects of climate change and reindeer grazing across a variety of climate zones and soil texture types on tundra vegetation community dynamics using an arctic vegetation model that incorporates the reindeer diet, where grazing is a function of both foliar nitrogen concentration and reindeer forage preference. We found that grazing is important, in addition to the latitudinal climate gradient, in controlling tundra plant community composition, explaining about 13% of the total variance in model simulations for all arctic tundra subzones. The decrease in biomass of lichen, deciduous shrub and graminoid plant functional types caused by grazing is potentially dampened by climate warming. Moss biomass had a nonlinear response to increased grazing intensity, and such responses were stronger when warming was present. Our results suggest that evergreen shrubs may benefit from increased grazing intensity due to their low palatability, yet a growth rate sensitivity analysis suggests that changes in nutrient uptake rates may result in different shrub responses to grazing pressure. Heavy grazing caused plant communities to shift from shrub tundra toward moss, graminoid-dominated tundra in subzones C and D when evergreen shrub growth rates were decreased in the model. The response of moss, lichen and forbs to warming varied across the different subzones. Initial vegetation responses to climate change during transient warming are different from the long term equilibrium responses due to shifts in the controlling mechanisms (nutrient limitation versus competition) within tundra plant communities.

  10. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  11. Molecular detection of hematozoa infections in tundra swans relative to migration patterns and ecological conditions at breeding grounds.

    Directory of Open Access Journals (Sweden)

    Andrew M Ramey

    Full Text Available Tundra swans (Cygnus columbianus are broadly distributed in North America, use a wide variety of habitats, and exhibit diverse migration strategies. We investigated patterns of hematozoa infection in three populations of tundra swans that breed in Alaska using satellite tracking to infer host movement and molecular techniques to assess the prevalence and genetic diversity of parasites. We evaluated whether migratory patterns and environmental conditions at breeding areas explain the prevalence of blood parasites in migratory birds by contrasting the fit of competing models formulated in an occupancy modeling framework and calculating the detection probability of the top model using Akaike Information Criterion (AIC. We described genetic diversity of blood parasites in each population of swans by calculating the number of unique parasite haplotypes observed. Blood parasite infection was significantly different between populations of Alaska tundra swans, with the highest estimated prevalence occurring among birds occupying breeding areas with lower mean daily wind speeds and higher daily summer temperatures. Models including covariates of wind speed and temperature during summer months at breeding grounds better predicted hematozoa prevalence than those that included annual migration distance or duration. Genetic diversity of blood parasites in populations of tundra swans appeared to be relative to hematozoa prevalence. Our results suggest ecological conditions at breeding grounds may explain differences of hematozoa infection among populations of tundra swans that breed in Alaska.

  12. Molecular detection of hematozoa infections in tundra swans relative to migration patterns and ecological conditions at breeding grounds

    Science.gov (United States)

    Ramey, Andrew M.; Ely, Craig R.; Schmutz, Joel A.; Pearce, John M.; Heard, Darryl J.

    2012-01-01

    Tundra swans (Cygnus columbianus) are broadly distributed in North America, use a wide variety of habitats, and exhibit diverse migration strategies. We investigated patterns of hematozoa infection in three populations of tundra swans that breed in Alaska using satellite tracking to infer host movement and molecular techniques to assess the prevalence and genetic diversity of parasites. We evaluated whether migratory patterns and environmental conditions at breeding areas explain the prevalence of blood parasites in migratory birds by contrasting the fit of competing models formulated in an occupancy modeling framework and calculating the detection probability of the top model using Akaike Information Criterion (AIC). We described genetic diversity of blood parasites in each population of swans by calculating the number of unique parasite haplotypes observed. Blood parasite infection was significantly different between populations of Alaska tundra swans, with the highest estimated prevalence occurring among birds occupying breeding areas with lower mean daily wind speeds and higher daily summer temperatures. Models including covariates of wind speed and temperature during summer months at breeding grounds better predicted hematozoa prevalence than those that included annual migration distance or duration. Genetic diversity of blood parasites in populations of tundra swans appeared to be relative to hematozoa prevalence. Our results suggest ecological conditions at breeding grounds may explain differences of hematozoa infection among populations of tundra swans that breed in Alaska.

  13. Energy intensive industry for Alaska. Volume I: Alaskan cost factors; market factors; survey of energy-intensive industries

    Energy Technology Data Exchange (ETDEWEB)

    Swift, W.H.; Clement, M.; Baker, E.G.; Elliot, D.C.; Jacobsen, J.J.; Powers, T.B.; Rohrmann, C.A.; Schiefelbein, G.L.

    1978-09-01

    The Alaskan and product market factors influencing industry locations in the state are discussed and a survey of the most energy intensive industries was made. Factors external to Alaska that would influence development and the cost of energy and labor in Alaska are analyzed. Industries that are likely to be drawn to Alaska because of its energy resources are analyzed in terms of: the cost of using Alaska energy resources in Alaska as opposed to the Lower 48; skill-adjusted wage and salary differentials between relevant Alaskan areas and the Lower 48; and basic plant and equipment and other operating cost differentials between relevant Alaskan areas and the Lower 48. Screening and evaluation of the aluminum metal industry, cement industry, chlor-alkali industry, lime industry, production of methanol from coal, petroleum refining, and production of petrochemicals and agrichemicals from North Slope natural gas for development are made.

  14. Multi-decadal changes in tundra environments and ecosystems: Synthesis of the International Polar Year-Back to the Future Project (IPY-BTF)

    DEFF Research Database (Denmark)

    Callaghan, Terry V.; Tweedie, Craig E.; Åkerman, Jonas;

    2011-01-01

    Understanding the responses of tundra systems to global change has global implications. Most tundra regions lack sustained environmental monitoring and one of the only ways to document multi-decadal change is to resample historic research sites. The International Polar Year (IPY) provided a uniqu...

  15. The role of summer precipitation and summer temperature in establishment and growth of dwarf shrub Betula nana in northeast Siberian tundra

    DEFF Research Database (Denmark)

    Li, Bingxi; Heijmans, Monique M P D; Berendse, Frank;

    2016-01-01

    It is widely believed that deciduous tundra-shrub dominance is increasing in the pan-Arctic region, mainly due to rising temperature. We sampled dwarf birch (Betula nana L.) at a northeastern Siberian tundra site and used dendrochronological methods to explore the relationship between climatic...

  16. Two mechanisms of aquatic and terrestrial habitat change along an Alaskan Arctic coastline

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Schmutz, Joel A.; Urban, Frank E.; Jorgenson, M. Torre

    2010-01-01

    Arctic habitats at the interface between land and sea are particularly vulnerable to climate change. The northern Teshekpuk Lake Special Area (N-TLSA), a coastal plain ecosystem along the Beaufort Sea in northern Alaska, provides habitat for migratory waterbirds, caribou, and potentially, denning polar bears. The 60-km coastline of N-TLSA is experiencing increasing rates of coastline erosion and storm surge flooding far inland resulting in lake drainage and conversion of freshwater lakes to estuaries. These physical mechanisms are affecting upland tundra as well. To better understand how these processes are affecting habitat, we analyzed long-term observational records coupled with recent short-term monitoring. Nearly the entire coastline has accelerating rates of erosion ranging from 6 m/year from 1955 to 1979 and most recently peaking at 17 m/year from 2007 to 2009, yet an intensive monitoring site along a higher bluff (3–6 masl) suggested high interannual variability. The frequency and magnitude of storm events appears to be increasing along this coastline and these patterns correspond to a greater number of lake tapping and flooding events since 2000. For the entire N-TLSA, we estimate that 6% of the landscape consists of salt-burned tundra, while 41% is prone to storm surge flooding. This offset may indicate the relative frequency of low-magnitude flood events along the coastal fringe. Monitoring of coastline lakes confirms that moderate westerly storms create extensive flooding, while easterly storms have negligible effects on lakes and low-lying tundra. This study of two interacting physical mechanisms, coastal erosion and storm surge flooding, provides an important example of the complexities and data needs for predicting habitat change and biological responses along Arctic land–ocean interfaces.

  17. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    Science.gov (United States)

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication. PMID:26956177

  18. Phytomass patterns across a temperature gradient of the North American arctic tundra

    Science.gov (United States)

    Epstein, Howard E.; Walker, Donald A.; Raynolds, Martha K.; Jia, Gensuo J.; Kelley, Alexia M.

    2008-09-01

    Only a few studies to date have collectively examined the vegetation biomass and production of arctic tundra ecosystems and their relationships to broadly ranging climate variables. An additional complicating factor for studying vegetation of arctic tundra is the high spatial variability associated with small patterned-ground features, resulting from intense freeze-thaw processes. In this study, we sampled and analyzed the aboveground plant biomass components of patterned-ground ecosystems in the Arctic of northern Alaska and Canada along an 1800-km north-south gradient that spans approximately 11°C of mean July temperatures. Vegetation biomass was analyzed as functions of the summer warmth index (SWI-sum of mean monthly temperatures > 0°C). The total absolute biomass (g m-2) and biomass of shrubs increased monotonically with SWI, however, biomass of nonvascular species (mosses and lichens), were a parabolic function of SWI, with greatest values at the ends of the gradient. The components of plant biomass on patterned-ground features (i.e., on nonsorted circles or within small polygons) were constrained to a greater degree with colder climate than undisturbed tundra, likely due to the effect of frost heave disturbances on the vegetation. There were also clear differences in the relative abundances of vascular versus nonvascular plants on and off patterned-ground features along the SWI gradient. The spatial patterns of biomass differ among plant functional groups and suggest that plant community responses to temperature, and land-surface processes that produce patterned-ground features, are quite complex.

  19. Nitrogen deposition but not climate warming promotes Deyeuxia angustifolia encroachment in alpine tundra of the Changbai Mountains, Northeast China.

    Science.gov (United States)

    Zong, Shengwei; Jin, Yinghua; Xu, Jiawei; Wu, Zhengfang; He, Hongshi; Du, Haibo; Wang, Lei

    2016-02-15

    Vegetation in the alpine tundra area of the Changbai Mountains, one of two alpine tundra areas in China, has undergone great changes in recent decades. The aggressive herb species Deyeuxia angustifolia (Komarov) Y. L. Chang, a narrow-leaf small reed, was currently encroaching upon the alpine landscape and threatening tundra biota. The alpine tundra of the Changbai Mountains has been experiencing a warmer climate and receiving a high load of atmospheric nitrogen deposition. In this study, we aimed to assess the respective roles of climate warming and atmospheric nitrogen deposition in promoting the upward encroachment of D. angustifolia. We conducted experiments for three years to examine the response of D. angustifolia and a native alpine shrub, Rhododendron chrysanthum, to the conditions in which temperature and nitrogen were increased. Treatments consisting of temperature increase, nitrogen addition, temperature increase combined with nitrogen addition, and controls were conducted on the D. angustifolia communities with three encroachment levels (low, medium, and high levels). Results showed that 1) D. angustifolia grew in response to added nutrients but did not grow well when temperature increased. R. chrysanthum showed negligible responses to the simulated environmental changes. 2) Compared to R. chrysanthum, D. angustifolia could effectively occupy the above-ground space by increasing tillers and growing rapidly by efficiently using nitrogen. The difference in nitrogen uptake abilities between the two species contributed to expansion of D. angustifolia. 3) D. angustifolia encroachment could deeply change the biodiversity of tundra vegetation and may eventually result in the replacement of native biota, especially with nitrogen addition. Our research indicated that nutrient perturbation may be more important than temperature perturbation in promoting D. angustifolia encroachment upon the nutrient- and species-poor alpine tundra ecosystem in the Changbai

  20. Inter-annual carbon dioxide uptake of a wet sedge tundra ecosystem in the Arctic

    OpenAIRE

    Harazono, Yoshinobu; Mano, Masayoshi; Miyata, Akira; Zulueta, Rommel C.; Oechel, Walter C.

    2011-01-01

    The CO2 flux of a wet sedge tundra ecosystem in the Arctic, at Barrow, Alaska, has been measured by the eddy correlation method since spring 1999, and the CO2 uptake by the vegetation during the spring and growing periods was examined between 1999 and 2000. CO2 flux changed to a sink immediately after the spring thaw in 1999 and the photosynthetic activity was high in the first half of the growing period. At this time the air temperature was low and solar radiation was high. In the 2000 seaso...

  1. Carbon dioxide exchange in three tundra sites show a dissimilar response to environmental variables

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe; Lund, Magnus; Christensen, Torben Røjle;

    2015-01-01

    variability. An improved understanding of the control of ancillary variables on net ecosystem exchange (NEE), gross primary production (GPP) and ecosystem respiration (Re) will improve the accuracy with which CO2 exchange seasonality in Arctic tundra ecosystems is modelled. Fluxes were measured with the eddy...... Lake. Growing season NEE correlated mainly to cumulative radiation and temperature-related variables at Zackenberg, while at Daring Lake the same variables showed significant correlations with the partitioned fluxes (GPP and Re). Stordalen was temperature dependent during the growing season. This study...

  2. Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    Science.gov (United States)

    Huemmrich, Karl Fred; Gamon, John A.; Tweedie, Craig E.; Campbell, Petya K. Entcheva; Landis, David R.; Middleton, Elizabeth M.

    2013-01-01

    Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow, AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013 plus or minus 0.0002, 0.0018 plus or minus 0.0002, and 0.0012 plus or minus 0.0001 mol C mol (exp -1) absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Along the transect, area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. The patch-level statistical discriminant functions applied to in situ hyperspectral reflectance data collected along the transect successfully unmixed cover fractions of the vegetation functional types. The unmixing functions, developed from the transect data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine variability in distribution of the vegetation functional types for an area near Barrow, AK. Spatial variability of LUE was derived from the observed functional type distributions. Across this landscape, a

  3. First Record of Setaria Tundra in Danish Roe Deer (Capreolus Capreolus)

    DEFF Research Database (Denmark)

    Enemark, Heidi L.; Harslund, Jakob le Fèvre; Oksanen, A.;

    2011-01-01

    No previous finds of the mosquito-borne filarioid nematode Setaria tundra have been reported from Denmark, although it was described decades ago in Swedish and Norwegian reindeer as well as in roe deer from Germany, Bulgaria and more recently also from Italy and Finland. Setaria spp. are usually...... and thereby larger numbers of mosquitoes, it is important to monitor this vector-borne parasite. This will not only increase the understanding of factors promoting its expansion but also help to predict disease outbreaks....

  4. Enhanced biological degradation of crude oil in a Spitsbergen tundra site

    International Nuclear Information System (INIS)

    A series of oil-contaminated tundra plots on Spitsbergen was treated with combinations of five different fertilizer additives. Both organic and mineral nutrient sources were used, alone or in combination. Biological degradation of oil was recorded in all of the plots. The extent of degradation depended on the type of fertilizer added. The local conditions influence oil degradation significantly, as well as the effect of the fertilizer. Urea, SkogAN (a slow releasing fertilizer), and a blend of fish meals all give high degrees of oil degradation. Both the microbial parameters and the total heterotrophic respiration are influenced by the addition of fertilizers. 6 refs., 13 figs., 3 tabs

  5. Carbon dioxide exchange of the Arctic tundra in the northern part of European Russia

    DEFF Research Database (Denmark)

    Kiepe, Isabell; Johansson, Paul Torbjörn; Friborg, Thomas;

    , in the Pechora basin of the northern Komi Republic. The site is of lowland tundra type (underlain by permafrost) with predominating grasses, low shrubs, lichens and mosses interspersed with thermokarst lakes. The max. active layer thickness ranges from 90 cm till over 160 cm on the mineral slope and from 35 till...... on the transition period at the end of the growth season, which is a part of the year when predicted changes in temperature is likely to have the most pronounced effects on the exchange of GHGs. The net ecosystem CO2 exchange reflects two important influences on the opposed fluxes, gross photosynthesis...

  6. Fine-scale population genetic structure in Alaskan Pacific halibut (Hippoglossus stenolepis)

    Science.gov (United States)

    2010-01-01

    Pacific halibut collected in the Aleutian Islands, Bering Sea and Gulf of Alaska were used to test the hypothesis of genetic panmixia for this species in Alaskan marine waters. Nine microsatellite loci and sequence data from the mitochondrial (mtDNA) control region were analyzed. Eighteen unique mtDNA haplotypes were found with no evidence of geographic population structure. Using nine microsatellite loci, significant heterogeneity was detected between Aleutian Island Pacific halibut and fish from the other two regions (FST range = 0.007–0.008). Significant FST values represent the first genetic evidence of divergent groups of halibut in the central and western Aleutian Archipelago. No significant genetic differences were found between Pacific halibut in the Gulf of Alaska and the Bering Sea leading to questions about factors contributing to separation of Aleutian halibut. Previous studies have reported Aleutian oceanographic conditions at deep inter-island passes leading to ecological discontinuity and unique community structure east and west of Aleutian passes. Aleutian Pacific halibut genetic structure may result from oceanographic transport mechanisms acting as partial barriers to gene flow with fish from other Alaskan waters.

  7. Using smooth sheets to describe groundfish habitat in Alaskan waters, with specific application to two flatfishes

    Science.gov (United States)

    Zimmermann, Mark; Reid, Jane A.; Golden, Nadine

    2016-10-01

    In this analysis we demonstrate how preferred fish habitat can be predicted and mapped for juveniles of two Alaskan groundfish species - Pacific halibut (Hippoglossus stenolepis) and flathead sole (Hippoglossoides elassodon) - at five sites (Kiliuda Bay, Izhut Bay, Port Dick, Aialik Bay, and the Barren Islands) in the central Gulf of Alaska. The method involves using geographic information system (GIS) software to extract appropriate information from National Ocean Service (NOS) smooth sheets that are available from NGDC (the National Geophysical Data Center). These smooth sheets are highly detailed charts that include more soundings, substrates, shoreline and feature information than the more commonly-known navigational charts. By bringing the information from smooth sheets into a GIS, a variety of surfaces, such as depth, slope, rugosity and mean grain size were interpolated into raster surfaces. Other measurements such as site openness, shoreline length, proportion of bay that is near shore, areas of rocky reefs and kelp beds, water volumes, surface areas and vertical cross-sections were also made in order to quantify differences between the study sites. Proper GIS processing also allows linking the smooth sheets to other data sets, such as orthographic satellite photographs, topographic maps and precipitation estimates from which watersheds and runoff can be derived. This same methodology can be applied to larger areas, taking advantage of these free data sets to describe predicted groundfish essential fish habitat (EFH) in Alaskan waters.

  8. An assessment of the carbon balance of arctic tundra: comparisons among observations, process models, and atmospheric inversions

    Science.gov (United States)

    McGuire, A.D.; Christensen, T.R.; Hayes, D.; Heroult, A.; Euskirchen, E.; Yi, Y.; Kimball, J.S.; Koven, C.; Lafleur, P.; Miller, P.A.; Oechel, W.; Peylin, P.; Williams, M.

    2012-01-01

    Although arctic tundra has been estimated to cover only 8% of the global land surface, the large and potentially labile carbon pools currently stored in tundra soils have the potential for large emissions of carbon (C) under a warming climate. These emissions as radiatively active greenhouse gases in the form of both CO2 and CH4 could amplify global warming. Given the potential sensitivity of these ecosystems to climate change and the expectation that the Arctic will experience appreciable warming over the next century, it is important to assess whether responses of C exchange in tundra regions are likely to enhance or mitigate warming. In this study we compared analyses of C exchange of Arctic tundra between 1990–1999 and 2000–2006 among observations, regional and global applications of process-based terrestrial biosphere models, and atmospheric inversion models. Syntheses of the compilation of flux observations and of inversion model results indicate that the annual exchange of CO2 between arctic tundra and the atmosphere has large uncertainties that cannot be distinguished from neutral balance. The mean estimate from an ensemble of process-based model simulations suggests that arctic tundra acted as a sink for atmospheric CO2 in recent decades, but based on the uncertainty estimates it cannot be determined with confidence whether these ecosystems represent a weak or a strong sink. Tundra was 0.6 °C warmer in the 2000s compared to the 1990s. The central estimates of the observations, process-based models, and inversion models each identify stronger sinks in the 2000s compared with the 1990s. Similarly, the observations and the applications of regional process-based models suggest that CH4 emissions from arctic tundra have increased from the 1990s to 2000s. Based on our analyses of the estimates from observations, process-based models, and inversion models, we estimate that arctic tundra was a sink for atmospheric CO2 of 110 Tg C yr-1 (uncertainty between a

  9. TISSUE DISTRIBUTION OF PCBS AND ORGANOCHLORINE PESTICIDES IN ALASKAN NORTHERN FUR SEALS: COMPARISON OF VARIOUS CONGENER CLASSIFICATION SCHEMES

    Science.gov (United States)

    Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) are believed to adversely affect reproduction and cause health problems in Pinnipeds 1-4. In this study, 145 PCB congeners and OCPs were analyzed in 10 juvenile male northern fur seals, Callorhinus ursinus, collected from Alaskan...

  10. Urban American Indian/Alaskan Natives Compared to Non-Indians in Out-of-Home Care

    Science.gov (United States)

    Carter, Vernon B.

    2011-01-01

    Historically, American Indian/Alaskan Native (AI/AN) children have been disproportionately represented in the foster care system. In this study, nationally representative child welfare data from October 1999 was used to compare urban AI/AN children to non-Indian children placed into out-of-home care. Compared to non-Indian children, urban AI/AN…

  11. Social Disruption and Psychological Stress in an Alaskan Fishing Community: The Impact of the Exxon Valdez Oil Spill.

    Science.gov (United States)

    Picou, J. Steven; And Others

    Technological accidents such as the Exxon Valdez oil spill in 1989 create man-made disaster situations that threaten community survival and the well-being and quality of life of community residents. This paper focuses on the social and psychological impact of the 1989 oil spill on Cordova, an isolated Alaskan community with high economic…

  12. Size and mass of grit in gizzards of Sandhill Cranes, Tundra Swans, and Mute Swans

    Science.gov (United States)

    Franson, J.C.; Hansen, S.P.; Duerr, A.E.; DeStefano, S.

    2001-01-01

    Because it has been suggested that waterbirds may ingest lost or discarded lead fishing weights as grit, we examined grit in the gizzards of Sandhill Cranes (Grus canadensis), Tundra Swans (Cygnus columbianus), and Mute Swans (Cygnus olor), three species where individuals have been poisoned by the ingestion of lead fishing weights. The greatest proportion (by mass) of grit in gizzards of Sandhill Cranes consisted of particles with a minimum dimension of 2.36-4.75 mm. Grit particles in swans were much smaller, with the most prevalent (by mass) being 0.6-1.18 mm. The greatest dimension of the largest grit particle found in cranes and swans was 17.4 mm and 14.0 mm, respectively. The U.S. Environmental Protection Agency has proposed a ban on lead fishing weights of ???25.4 mm in any dimension. Based on the size of grit particles that we found in gizzards of Sandhill Cranes, Mute Swans, and Tundra Swans, we believe it is unlikely that individuals of those species would ingest, as grit, lead fishing weights larger than 25.4 mm in any dimension. Received 10 January 2001, accepted 28 February 2001.

  13. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology

    Science.gov (United States)

    Liljedahl, Anna K.; Boike, Julia; Daanen, Ronald P.; Fedorov, Alexander N.; Frost, Gerald V.; Grosse, Guido; Hinzman, Larry D.; Iijma, Yoshihiro; Jorgenson, Janet C.; Matveyeva, Nadya; Necsoiu, Marius; Raynolds, Martha K.; Romanovsky, Vladimir E.; Schulla, Jörg; Tape, Ken D.; Walker, Donald A.; Wilson, Cathy J.; Yabuki, Hironori; Zona, Donatella

    2016-04-01

    Ice wedges are common features of the subsurface in permafrost regions. They develop by repeated frost cracking and ice vein growth over hundreds to thousands of years. Ice-wedge formation causes the archetypal polygonal patterns seen in tundra across the Arctic landscape. Here we use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over sub-decadal timescales. Initial thaw drains polygon centres and forms disconnected troughs that hold isolated ponds. Continued ice-wedge melting leads to increased trough connectivity and an overall draining of the landscape. We find that melting at the tops of ice wedges over recent decades and subsequent decimetre-scale ground subsidence is a widespread Arctic phenomenon. Although permafrost temperatures have been increasing gradually, we find that ice-wedge degradation is occurring on sub-decadal timescales. Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff, in particular due to changes in snow distribution as troughs form. We predict that ice-wedge degradation and the hydrological changes associated with the resulting differential ground subsidence will expand and amplify in rapidly warming permafrost regions.

  14. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows

    Science.gov (United States)

    Forbes, B. C.; Macias Fauria, M.; Zetterberg, P.

    2009-12-01

    Growth in arctic vegetation is generally expected to increase under a warming climate, particularly among deciduous shrubs. We analyzed annual ring growth for an abundant and nearly circumpolar erect willow (Salix lanata L.) from the coastal zone of the northwest Russian Arctic (Nenets Autonomous Okrug). The resulting chronology is strongly related to summer temperature for the period 1942-2005. Remarkably high correlations occur at long distances (>1600 km) across the tundra and taiga zones of West Siberia and Eastern Europe. We also found a clear relationship with photosynthetic activity for upland vegetation at a regional scale for the period 1981-2005, confirming a parallel ‘greening’ trend reported for similarly warming North American portions of the tundra biome. The standardized growth curve suggests a significant increase in shrub willow growth over the last six decades. These findings are in line with field and remote sensing studies that have assigned a strong shrub component to the reported greening signal since the early 1980s. Furthermore, the growth trend agrees with qualitative observations by nomadic Nenets reindeer herders of recent increases in willow size in the region. The quality of the chronology as a climate proxy is exceptional. Given its wide geographic distribution and the ready preservation of wood in permafrost, S. lanata L. has great potential for extended temperature reconstructions in remote areas across the Arctic.

  15. Modelling the spatial pattern of ground thaw in a small basin in the arctic tundra

    Directory of Open Access Journals (Sweden)

    S. Endrizzi

    2011-01-01

    Full Text Available In the arctic tundra the ground is normally composed by a relatively thin organic soil layer, overlying mineral sediment. Subsurface water drainage generally occurs in the organic layer for its high hydraulic conductivity. However, the organic layer shows significant decrease of hydraulic conductivity with depth. The position and the topography of the frost table, which here acts as a relatively impermeable surface, are therefore crucial in determining the hillslope drainage rate. This work aims at understanding how the topography of the ground surface affects the spatial variability of the depth of thaw in a 1 km2 low-elevation arctic tundra basin with a fine resolution model that fully couples energy and water flow processes. The simulations indicate that the spatial patterns of ground thaw are not dominated by slope and aspect, but are instead entirely controlled by the spatial distribution of soil moisture, which is determined by subsurface flow patterns. Measured thaw depths have a similar range of variability to the simulated values for each stage of active layer development, although the model slightly overestimated the depth of thaw.

  16. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra

    Directory of Open Access Journals (Sweden)

    Congcong eShen

    2015-06-01

    Full Text Available The elevational diversity pattern for microorganisms has received great attention recently but is still understudied, and phylogenetic relatedness is rarely studied for microbial elevational distributions. Using a bar-coded pyrosequencing technique, we examined the biodiversity patterns for soil bacterial communities of tundra ecosystem along 2000–2500 m elevations on Changbai Mountain in China. Bacterial taxonomic richness displayed a linear decreasing trend with increasing elevation. Phylogenetic diversity and mean nearest taxon distance (MNTD exhibited a unimodal pattern with elevation. Bacterial communities were more phylogenetically clustered than expected by chance at all elevations based on the standardized effect size of MNTD metric. The bacterial communities differed dramatically among elevations, and the community composition was significantly correlated with soil total carbon, total nitrogen, C:N ratio, and dissolved organic carbon. Multiple ordinary least squares regression analysis showed that the observed biodiversity patterns strongly correlated with soil total carbon and C:N ratio. Taken together, this is the first time that a significant bacterial diversity pattern has been observed across a small-scale elevational gradient. Our results indicated that soil carbon and nitrogen contents were the critical environmental factors affecting bacterial elevational distribution in Changbai Mountain tundra. This suggested that ecological niche-based environmental filtering processes related to soil carbon and nitrogen contents could play a dominant role in structuring bacterial communities along the elevational gradient.

  17. Mobile Phone Revolution in the Tundra? Technological Change among Russian Reindeer Nomads

    Directory of Open Access Journals (Sweden)

    Florian M. Stammler

    2009-04-01

    Full Text Available This contribution looks at the influence of technological change thatnomads in the Russian North have undergone, using as examples two crucial innovations: the snowmobile and the mobile phone. I argue that the snowmobile did not have the same revolutionary impact on the Russian tundra as it did in Fennoscandia, for reasons connected to long distances, infrastructure, spare parts, availability of fuel, priorities of Soviet transport policy as well as the convenience of previously used practices of herd control using ‘sitting transport’. Different from that, I argue that mobile phones have the potential for a greater penetration into nomadic societies. Because they encourage equality rather than stratification, they are low maintenance; they are small enough to be embedded into existing social contexts. Connecting not only neighbours but the whole world, in principle, mobile phones may entail a significant socio-cultural change. The article presents first fieldwork evidence of such change among tundra nomads and relates this to existing theoretical studies on how mobile communication changes societies. Attention is paid to the particularities of a mobile type of communication introduced in mobile communities, that is, among nomads. In doing so, I explore similarities and differences in how technological change influences sedentary and nomadic societies.

  18. Prevalence, transmission, and genetic diversity of blood parasites infecting tundra-nesting geese in Alaska

    Science.gov (United States)

    Ramey, Andy M.; Reed, John A.; Schmutz, Joel A.; Fondell, Tom F.; Meixell, Brandt W.; Hupp, Jerry W.; Ward, David H.; Terenzi, John; Ely, Craig R.

    2014-01-01

    A total of 842 blood samples collected from five species of tundra-nesting geese in Alaska was screened for haemosporidian parasites using molecular techniques. Parasites of the generaLeucocytozoon Danilewsky, 1890, Haemoproteus Kruse, 1890, and Plasmodium Marchiafava and Celli, 1885 were detected in 169 (20%), 3 (parasites and assess variation relative to species, age, sex, geographic area, year, and decade. Species, age, and decade were identified as important in explaining differences in prevalence of Leucocytozoonparasites. Leucocytozoon parasites were detected in goslings sampled along the Arctic Coastal Plain using both historic and contemporary samples, which provided support for transmission in the North American Arctic. In contrast, lack of detection of Haemoproteus and Plasmodiumparasites in goslings (n = 238) provided evidence to suggest that the transmission of parasites of these genera may not occur among waterfowl using tundra habitats in Alaska, or alternatively, may only occur at low levels. Five haemosporidian genetic lineages shared among different species of geese sampled from two geographic areas were indicative of interspecies parasite transmission and supported broad parasite or vector distributions. However, identicalLeucocytozoon and Haemoproteus lineages on public databases were limited to waterfowl hosts suggesting constraints in the range of parasite hosts.

  19. Regional-Scale Vegetation Dynamics in Patterned-Ground Ecosystems of Arctic Tundra

    Science.gov (United States)

    Epstein, H. E.; Kelley, A. M.; Walker, D. A.; Jia, G. J.; Raynolds, M. K.

    2006-12-01

    Regional-scale patterns of vegetation have been analyzed along a number of climate gradients throughout the world; these spatial dynamics provide important insights into the controlling factors of vegetation and the potential plant responses to environmental change. Only a few studies to date have collectively examined the vegetation biomass and production of arctic tundra ecosystems and their relationships to broadly ranging climate variables. No prior study has taken a systematic and consistent approach to examining vegetation biomass patterns along the full temperature gradient of the arctic biome. An additional complicating factor for studying vegetation of arctic tundra is the high spatial variability associated with small patterned-ground features (e.g. non-sorted circles and small non-sorted polygons), resulting from intense freeze-thaw processes. In this study, we sampled and analyzed the aboveground plant biomass components of patterned-ground ecosystems in the Arctic of northern Alaska and Canada along an 1800-km north-south gradient that spans approximately 11 degrees C of mean July temperatures. At each of ten locations along the regional temperature gradient, we ran several 50-m transects and harvested the aboveground biomass of three 20 x 50 cm plots for each transect. Vegetation biomass was dried, sorted by plant functional groups and tissue types, weighed, and analyzed as functions of the summer warmth index (SWI sum of mean monthly temperatures > 0). The absolute biomass (g/m2) of shrubs and graminoids increased exponentially with SWI, whereas forb and lichen biomass showed no change along the gradient. Moss biomass increased linearly with SWI, but with greater variabiliy than the other types. Relative aboveground biomass (% of total) of shrubs and graminoids increased with SWI, whereas percent lichen biomass decreased, and forbs again exhibited no significant change. Percentage of moss biomass was a parabolic function of SWI, with high relative

  20. THE HYDRAULIC CHARACTERISTICS AND GEOCHEMISTRY OF HYPORHEIC AND PARAFLUVIAL ZONES IN ARCTIC TUNDRA STREAMS, NORTH SLOPE, ALASKA

    Science.gov (United States)

    Sodium bromide and Rhodamine WT were used as conservative tracers to examine the hydrologic characteristics of seven tundra streams in Arctic Alaska, during the summers of 1994-1996. Continuous tracer additions were conducted in seven rivers ranging from 1st to 5th order with sam...

  1. An application of plot-scale NDVI in predicting carbon dioxide exchange and leaf area index in heterogeneous subarctic tundra

    International Nuclear Information System (INIS)

    This paper reported on a study that examined the flow of carbon into and out of tundra ecosystems. It is necessary to accurately predict carbon dioxide (CO2) exchange in the Tundra because of the impacts of climate change on carbon stored in permafrost. Understanding the relationships between the normalized difference vegetation index (NDVI) and vegetation and CO2 exchange may explain how small-scale variation in vegetation community extends to remotely sensed estimates of landscape characteristics. In this study, CO2 fluxes were measured with a portable chamber in a range of Tundra vegetation communities. Biomass and leaf area were measured with destructive harvest, and NDVI was obtained using a hand-held infrared camera. There was a weak correlation between NDVI and leaf area index in some vegetation communities, but a significant correlation between NDVI and biomass, including mosses. NDVI was found to be strongly related to photosynthetic activity and net CO2 uptake in all vegetation groups. However, NDVI related to ecosystem respiration only in wet sedge. It was concluded that at plot scale, the ability of NDVI to predict ecosystem properties and CO2 exchange in heterogeneous Tundra vegetation is variable.

  2. Above and below ground carbon stocks in northeast Siberia tundra ecosystems: a comparison between disturbed and undisturbed areas

    Science.gov (United States)

    Weber, L. R.; Pena, H., III; Curasi, S. R.; Ramos, E.; Loranty, M. M.; Alexander, H. D.; Natali, S.

    2014-12-01

    Changes in arctic tundra vegetation have the potential to alter the regional carbon (C) budget, with feedback implications for global climate. A number of studies have documented both widespread increases in productivity as well as shifts in the dominant vegetation. In particular, shrubs have been replacing other vegetation, such as graminoids, in response to changes in their environment. Shrub expansion is thought to be facilitated by exposure of mineral soil and increased nutrient availability, which are often associated with disturbance. Such disturbances can be naturally occurring, typically associated with permafrost degradation or with direct anthropogenic causes such as infrastructure development. Mechanical disturbance associated with human development is not uncommon in tundra and will likely become more frequent as warming makes the Arctic more hospitable for resource extraction and other human activities. As such, this type of disturbance will become an increasingly important component of tundra C balance. Both increased productivity and shrub expansion have clear impacts on ecosystem C cycling through increased C uptake and aboveground (AG) storage. What is less clear, however, are the concurrent changes in belowground (BG) C storage. Here we inventoried AG and BG C stocks in disturbed and undisturbed tundra ecosystems to determine the effects of disturbance on tundra C balance. We measured differences in plant functional type, AG and BG biomass, soil C, and specific leaf area (SLA) for the dominant shrub (Salix) in 2 tundra ecosystems in northern Siberia—an undisturbed moist acidic tundra and an adjacent ecosystem that was used as a road ~50 years ago. Deciduous shrubs and grasses dominated both ecosystems, but biomass for both functional types was higher in the disturbed area. SLA was also higher inside the disturbance. Conversely, nonvascular plants and evergreen shrubs were less abundant in the disturbed area. BG plant biomass was substantially

  3. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    Directory of Open Access Journals (Sweden)

    John-André Henden

    Full Text Available The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation

  4. Migration of Tundra Swans (Cygnus columbianus) Wintering in Japan Using Satellite Tracking: Identification of the Eastern Palearctic Flyway.

    Science.gov (United States)

    Chen, Wenbo; Doko, Tomoko; Fujita, Go; Hijikata, Naoya; Tokita, Ken-Ichi; Uchida, Kiyoshi; Konishi, Kan; Hiraoka, Emiko; Higuchi, Hiroyoshi

    2016-02-01

    Migration through the Eastern Palearctic (EP) flyway by tundra swans (Cygnus columbianus) has not been thoroughly documented. We satellite-tracked the migration of 16 tundra swans that winter in Japan. The objectives of this study were 1) to show the migration pattern of the EP flyway of tundra swans; 2) to compare this pattern with the migration pattern of whooper swans; and 3) to identify stopover sites that are important for these swans' conservation. Tundra swans were captured at Kutcharo Lake, Hokkaido, in 2009-2012 and satellite-tracked. A new method called the "MATCHED (Migratory Analytical Time Change Easy Detection) method" was developed. Based on median, the spring migration began on 18 April and ended on 27 May. Autumn migration began on 9 September and ended on 2 November. The median duration of the spring and autumn migrations were 48 and 50 days, respectively. The mean duration at one stopover site was 5.5 days and 6.8 days for the spring and autumn migrations, respectively. The number of stopover sites was 3.0 and 2.5 for the spring and autumn migrations, respectively. The mean travel distances for the spring and autumn migrations were 6471 and 6331 km, respectively. Seven migration routes passing Sakhalin, the Amur River, and/or Kamchatka were identified. There were 15, 32, and eight wintering, stopover, and breeding sites, respectively. The migration routes and staging areas of tundra swans partially overlap with those of whooper swans, whose migration patterns have been previously documented. The migration patterns of these two swan species that winter in Japan confirm the importance of the Amur River, Udyl' Lake, Shchastya Bay, Aniva Bay, zaliv Chayvo Lake, zal Piltun Lake, zaliv Baykal Lake, Kolyma River, Buyunda River, Sen-kyuyel' Lake, and northern coastal areas of the Sea of Okhotsk.

  5. What are the main climate drivers for shrub growth in Northeastern Siberian tundra?

    Directory of Open Access Journals (Sweden)

    D. Blok

    2011-01-01

    Full Text Available Deciduous shrubs are expected to rapidly expand in the Arctic during the coming decades due to climate warming. A transition towards more shrub-dominated tundra may have large implications for the regional surface energy balance, permafrost stability and carbon storage capacity, with consequences for the global climate system. However, little information is available on the natural long-term shrub growth response to climatic variability. Our aim was to determine the climate factor and time period that are most important to annual shrub growth in our research site in NE-Siberia. Therefore, we determined annual radial growth rates in Salix pulchra and Betula nana shrubs by measuring ring widths. We constructed shrub ring width chronologies and compared growth rates to regional climate and remotely sensed greenness data. Early summer temperature was the most important factor influencing ring width of S. pulchra (Pearson's r=0.73, p<0.001 and B. nana (Pearson's r=0.46, p<0.001. No effect of winter precipitation on shrub growth was observed. In contrast, summer precipitation of the previous year correlated positively with B. nana ring width (r=0.42, p<0.01, suggesting that wet summers facilitate shrub growth in the following growing season. S. pulchra ring width correlated positively with peak summer NDVI, despite the small coverage of S. pulchra shrubs (<5% surface cover in our research area. We provide the first climate-growth study on shrubs for Northeast Siberia, the largest tundra region in the world. We show that two deciduous shrub species with markedly different growth forms have a similar growth response to changes in climate. The obtained shrub growth response to climate variability in the past increases our understanding of the mechanisms underlying current shrub expansion, which is required to predict future climate-driven tundra vegetation shifts.

  6. What are the main climate drivers for shrub growth in Northeastern Siberian tundra?

    Directory of Open Access Journals (Sweden)

    D. Blok

    2011-05-01

    Full Text Available Deciduous shrubs are expected to rapidly expand in the Arctic during the coming decades due to climate warming. A transition towards more shrub-dominated tundra may have large implications for the regional surface energy balance, permafrost stability and carbon storage capacity, with consequences for the global climate system. However, little information is available on the natural long-term shrub growth response to climatic variability. Our aim was to determine the climate factor and time period that are most important to annual shrub growth in our research site in NE-Siberia. Therefore, we determined annual radial growth rates in Salix pulchra and Betula nana shrubs by measuring ring widths. We constructed shrub ring width chronologies and compared growth rates to regional climate and remotely sensed greenness data. Early summer temperature was the most important factor influencing ring width of S. pulchra (Pearson's r = 0.73, p < 0.001 and B. nana (Pearson's r = 0.46, p < 0.001. No effect of winter precipitation on shrub growth was observed. In contrast, summer precipitation of the previous year correlated positively with B. nana ring width (Pearson's r = 0.42, p < 0.01, suggesting that wet summers facilitate shrub growth in the following growing season. S. pulchra ring width correlated positively with peak summer NDVI, despite the small coverage of S. pulchra shrubs (< 5 % surface cover in our research area. We provide the first climate-growth study on shrubs for Northeast Siberia, the largest tundra region in the world. We show that two deciduous shrub species with markedly different growth forms have a similar growth response to changes in climate. The obtained shrub growth response to climate variability in the past increases our understanding of the mechanisms underlying current shrub expansion, which is required to predict future climate

  7. To the soil genesis in tundra-forest ecotone belt in the Northeastern European Russia

    Science.gov (United States)

    Shakhtarova, Olga; Rusanova, Galina; Lapteva, Elena

    2013-04-01

    Ecotone belt representing the gradual transition between different bioclimatic zones (taiga and tundra) is of specific research interest. This transition zone is characterized by variety of landscapes and soil cover affected by climate changes which were accompanied with shifts of natural zones during Holocene. Paleoclimate changes had complicated the specifity of pedogenesis in the ecotone. The aim of the study was to reveal soil geneses in forest-tundra ecotone zone. The study area is characterized by drained topography and soil forming deposits represented by silty loams covering watersheds, permafrost is massive island and up to 50 m thick, permafrost table located at depths of 0,5-8 m. Vegetation cover is birch-spruce light forests where lichen-moss ground cover dominates, tree height is up to 4-6 m. Fe-illuvial svetlozoms (according to Russian classification 2004) were chosen as the study objects. According to WRB (2007) these soils are classified as Cambisols. In this soil study the complex approach was used, it includes (i) analysis of both structural organization and differentiation of functioning products on undisturbed monolith structure using mezo-micromorthologic methods; (ii) reveal of main soil-forming processes based on physical-chemical soil analysis. Quantitative chemical analysis has been conducted at an accredited laboratory "Ecoanalit" affiliated at Institute of Biology Komi SC UB RAS (Syktyvkar). Studied Cambisols are developed in upland forest sites located in the forest-tundra subzone. These soils are recognized by combination of podzolic, Fe-illuvial and cryomethamorphic horizons in the soil profile. Using of present-day methods and approaches for soil profile studies allowed to reveal the polygenesis of Cambisols which structure represents two pedogenic stages. The basis to determine these stages are the morphological features (structural organization, differentiation of cutan complex) as well as recent and inherited features of pedogenic

  8. Understanding Pan-Arctic Tundra Vegetation Change Through Long-term Remotely Sensed Data

    Science.gov (United States)

    Bhatt, U.; Walker, D. A.; Bieniek, P.; Raynolds, M. K.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2012-12-01

    The goal of this paper is to present an analysis of the seasonality of tundra vegetation variability and change using long-term remotely sensed data as well as ground based measurements and reanalyses. An increase of Pan-Arctic tundra vegetation greenness has been documented using the remotely sensed Normalized Difference Vegetation Index (NDVI). Coherent variability between NDVI, springtime coastal sea ice (passive microwave) and land surface temperatures (AVHRR) has also been established. Satellite based snow and cloud cover data sets are being incorporated into this analysis. The Arctic tundra is divided into domains based on Treshnikov divisions that are modified based on floristic provinces. There is notable heterogeneity in Pan-Arctic vegetation and climate trends, which necessitates a regional analysis. This study uses remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2010. The GIMMS NDVI3g data has been corrected for biases during the spring and fall, with special focus on the Arctic. Trends of Maximum NDVI (MaxNDVI), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), and open water area are calculated for the Pan Arctic. Remotely sensed snow data trends suggest varying patterns throughout the Arctic and may in part explain the heterogeneous MaxNDVI trends. Standard climate data (station, reanalysis, and model data) and ground observations are used in the analysis to provide additional support for hypothesized mechanisms. Overall, we find that trends over the 30-year record are changing as evidenced by the following examples from recent years. The sea ice decline has increased in Eurasia and slowed in North America. The weekly AVHRR landsurface temperatures reveal that there has been summer cooling over Eurasia and that the warming over North America has slowed. The MaxNDVI rates of change have diverged between N. America and Eurasia

  9. Energy fluxes in a high Arctic tundra heath subjected to strong climate warming

    Science.gov (United States)

    Lund, M.; Hansen, B. U.; Pedersen, S. H.; Stiegler, C.; Tamstorf, M. P.

    2012-12-01

    During recent decades the observed warming in the Arctic has been almost twice as large as the global average. The implications of such strong warming on surface energy balance, regulating permafrost thaw, hydrology, soil stability and carbon mineralization, need to be assessed. In Zackenberg, northeast Greenland, measurements of energy balance components in various environments have been performed since late 90's, coordinated by Zackenberg Ecological Research Operations. During 1996-2009, mean annual temperature in the area has increased by ca. 0.15 °C yr-1; while maximum thaw depth has increased by 1.4-1.8 cm yr-1. Eddy covariance measurements of energy fluxes have been performed in a Cassiope heath plant community, a commonly occurring tundra ecosystem type in circumpolar middle and high Arctic areas, in Zackenberg allowing for detailed investigations of relationships between energy fluxes and meteorological and soil physical characteristics. As the available data set spans more than a decade, possible trends in energy flux components resulting from warming related changes such as earlier snow melt, increased active layer depth and higher temperatures can be investigated. This presentation will focus on the mid-summer period from which eddy covariance measurements are available. The summer-time energy partitioning at the Zackenberg tundra heath site will be characterized using ratios of sensible, latent and ground heat flux to net radiation and Bowen ratio, whereas the surface characteristics will be described using surface resistance, McNaughton and Jarvis Ω value and Priestley-Taylor α coefficient. Furthermore, we aim to estimate the full year, all energy balance components for the tundra heath site using Snow Model (Liston and Elder 2006) for the dark winter period during which no eddy covariance measurements are available. The snow cover duration in the area is a major regulator of the energy partitioning. Early results point towards high summer

  10. Drought effects on large fire activity in Canadian and Alaskan forests

    International Nuclear Information System (INIS)

    Fire is the dominant disturbance in forest ecosystems across Canada and Alaska, and has important implications for forest ecosystems, terrestrial carbon dioxide emissions and the forestry industry. Large fire activity had increased in Canadian and Alaskan forests during the last four decades of the 20th century. Here we combined the Palmer Drought Severity Index and historical large fire databases to demonstrate that Canada and Alaska forest regions experienced summer drying over this time period, and drought during the fire season significantly affected forest fire activity in these regions. Climatic warming, positive geopotential height anomalies and ocean circulation patterns were spatially and temporally convolved in causing drought conditions, which in turn enhanced fuel flammability and thereby indirectly affected fire activity. Future fire regimes will likely depend on drought patterns under global climate change scenarios

  11. Identification of a haptoglobin-hemoglobin complex in the Alaskan Least Cisco (Coregonus sardinella).

    Science.gov (United States)

    Wahl, S M; Boger, J K; Michael, V; Duffy, L K

    1992-01-01

    The hemoglobin and a hemoglobin binding protein have been characterized in the Arctic fish (Coregonus sardinella). The evolutionary significance of the hemoglobin and plasma protein differences between fish and mammals is still unresolved. Blood samples from the Alaskan Least Cisco were separated into plasma and hemoglobin fractions and the proteins in these fractions were analyzed both by alkaline agarose gel electrophoresis, by isolelectric focusing, and by capillary electrophoresis. Staining the plasma proteins gels with o-dianisidine revealed hemoglobin containing protein complexes. A hemoglobin-containing band was observed in hemolyzed plasma which did not migrate with free hemoglobin, and is believed to be hemoglobin-haptoglobin complex. Size exclusion chromatography further characterized the hemoglobin as disassociating freely into dimers, and hemoglobin-haptoglobin complex having a molecular weight greater then 200,000 daltons.

  12. Bowhead whale behavior in relation to seismic exploration, Alaskan Beaufort Sea, Autumn 1981. Study report (Final)

    Energy Technology Data Exchange (ETDEWEB)

    Fraker, M.A.; Ljungblad, D.K.; Richardson, W.J.; Van Schoik, D.R.

    1985-10-01

    Behavior of bowhead whales (Balsena mysticetus) in the eastern part of the Alaskan Beaufort Sea or near the Alaska/Yukon border was observed from a circling turbine-powered Goose aircraft on 10 dates from 12 September to 5 October 1981. On three of these dates, the whales were exposed t, noise impulses from seismic vessels 13 km or more away. Some behavioral data were acquired. In both the presence and the absence of seismic impulses, most bowheads appeared to be feeding in the water column, although slow travel and active socializing were sometimes detected. Sonobuoys detected bowhead calls both in the presence and the absence of seismic impulses. There was no clear evidence of unusual behavior in the presence of seismic impulses.

  13. All-weather ice information system for Alaskan arctic coastal shipping

    Science.gov (United States)

    Gedney, R. T.; Jirberg, R. J.; Schertler, R. J.; Mueller, R. A.; Chase, T. L.; Kramarchuk, I.; Nagy, L. A.; Hanlon, R. A.; Mark, H.

    1977-01-01

    A near real-time ice information system designed to aid arctic coast shipping along the Alaskan North Slope is described. The system utilizes a X-band Side Looking Airborne Radar (SLAR) mounted aboard a U.S. Coast Guard HC-130B aircraft. Radar mapping procedures showing the type, areal distribution and concentration of ice cover were developed. In order to guide vessel operational movements, near real-time SLAR image data were transmitted directly from the SLAR aircraft to Barrow, Alaska and the U.S. Coast Guard icebreaker Glacier. In addition, SLAR image data were transmitted in real time to Cleveland, Ohio via the NOAA-GOES Satellite. Radar images developed in Cleveland were subsequently facsimile transmitted to the U.S. Navy's Fleet Weather Facility in Suitland, Maryland for use in ice forecasting and also as a demonstration back to Barrow via the Communications Technology Satellite.

  14. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming

    DEFF Research Database (Denmark)

    Faubert, Patrick; Tiiva, Paivi; Rinnan, Åsmund;

    2010-01-01

    • Biogenic volatile organic compound (BVOC) emissions from arctic ecosystems are important in view of their role in global atmospheric chemistry and unknown feedbacks to global warming. These cold ecosystems are hotspots of climate warming, which will be more severe here than averaged over...... the globe. We assess the effects of climatic warming on non-methane BVOC emissions from a subarctic heath. • We performed ecosystem-based chamber measurements and gas chromatography-mass spectrometry (GC-MS) analyses of the BVOCs collected on adsorbent over two growing seasons at a wet subarctic tundra...... of a focus on BVOC emissions during climate change. The observed changes have implications for ecological interactions and feedback effects on climate change via impacts on aerosol formation and indirect greenhouse effects....

  15. Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems

    DEFF Research Database (Denmark)

    Clemmensen, Karina Engelbrecht; Michelsen, Anders; Jonasson, Sven Evert;

    2006-01-01

    the response in EM fungal abundance to long-term warming and fertilization in two arctic ecosystems with contrasting responses of the EM shrub Betula nana. •  Ergosterol was used as a biomarker for living fungal biomass in roots and organic soil and ingrowth bags were used to estimate EM mycelial production......•  Shrub abundance is expected to increase with enhanced temperature and nutrient availability in the Arctic, and associated changes in abundance of ectomycorrhizal (EM) fungi could be a key link between plant responses and longer-term changes in soil organic matter storage. This study quantifies....... We measured 15N and 13C natural abundance to identify the EM-saprotrophic divide in fungal sporocarps and to validate the EM origin of mycelia in the ingrowth bags. •  Fungal biomass in soil and EM mycelial production increased with fertilization at both tundra sites, and with warming at one site...

  16. Microbial iron oxidation in the Arctic tundra and its implications for biogeochemical cycling.

    Science.gov (United States)

    Emerson, David; Scott, Jarrod J; Benes, Joshua; Bowden, William B

    2015-12-01

    The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long -149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides. PMID:26386054

  17. Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra.

    Science.gov (United States)

    Vaughn, Lydia J S; Conrad, Mark E; Bill, Markus; Torn, Margaret S

    2016-10-01

    Arctic wetlands are currently net sources of atmospheric CH4 . Due to their complex biogeochemical controls and high spatial and temporal variability, current net CH4 emissions and gross CH4 processes have been difficult to quantify, and their predicted responses to climate change remain uncertain. We investigated CH4 production, oxidation, and surface emissions in Arctic polygon tundra, across a wet-to-dry permafrost degradation gradient from low-centered (intact) to flat- and high-centered (degraded) polygons. From 3 microtopographic positions (polygon centers, rims, and troughs) along the permafrost degradation gradient, we measured surface CH4 and CO2 fluxes, concentrations and stable isotope compositions of CH4 and DIC at three depths in the soil, and soil moisture and temperature. More degraded sites had lower CH4 emissions, a different primary methanogenic pathway, and greater CH4 oxidation than did intact permafrost sites, to a greater degree than soil moisture or temperature could explain. Surface CH4 flux decreased from 64 nmol m(-2)  s(-1) in intact polygons to 7 nmol m(-2)  s(-1) in degraded polygons, and stable isotope signatures of CH4 and DIC showed that acetate cleavage dominated CH4 production in low-centered polygons, while CO2 reduction was the primary pathway in degraded polygons. We see evidence that differences in water flow and vegetation between intact and degraded polygons contributed to these observations. In contrast to many previous studies, these findings document a mechanism whereby permafrost degradation can lead to local decreases in tundra CH4 emissions.

  18. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw.

    Science.gov (United States)

    Salmon, Verity G; Soucy, Patrick; Mauritz, Marguerite; Celis, Gerardo; Natali, Susan M; Mack, Michelle C; Schuur, Edward A G

    2016-05-01

    Perennially frozen soil in high latitude ecosystems (permafrost) currently stores 1330-1580 Pg of carbon (C). As these ecosystems warm, the thaw and decomposition of permafrost is expected to release large amounts of C to the atmosphere. Fortunately, losses from the permafrost C pool will be partially offset by increased plant productivity. The degree to which plants are able to sequester C, however, will be determined by changing nitrogen (N) availability in these thawing soil profiles. N availability currently limits plant productivity in tundra ecosystems but plant access to N is expected improve as decomposition increases in speed and extends to deeper soil horizons. To evaluate the relationship between permafrost thaw and N availability, we monitored N cycling during 5 years of experimentally induced permafrost thaw at the Carbon in Permafrost Experimental Heating Research (CiPEHR) project. Inorganic N availability increased significantly in response to deeper thaw and greater soil moisture induced by Soil warming. This treatment also prompted a 23% increase in aboveground biomass and a 49% increase in foliar N pools. The sedge Eriophorum vaginatum responded most strongly to warming: this species explained 91% of the change in aboveground biomass during the 5 year period. Air warming had little impact when applied alone, but when applied in combination with Soil warming, growing season soil inorganic N availability was significantly reduced. These results demonstrate that there is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures, and higher levels of soil moisture. Within 5 years of permafrost thaw, plants actively incorporate newly available N into biomass but C storage in live vascular plant biomass is unlikely to be greater than losses from deep soil C pools. PMID:26718892

  19. Carbon dioxide balance of subarctic tundra from plot to regional scales

    Directory of Open Access Journals (Sweden)

    M. E. Marushchak

    2012-08-01

    Full Text Available We report here the carbon dioxide (CO2 budget of a 98.6-km2 subarctic tundra area in Northeast European Russia based on measurements at two different scales and two independent up-scaling approaches. Plot scale measurements (chambers on terrestrial surfaces, gas gradient method and bubble collectors on lakes were carried out from July 2007 to October 2008. The landscape scale eddy covariance (EC measurements covered the snow-free period 2008. The annual net ecosystem exchange (NEE of different land cover types ranged from −251 to 84 g C m−2. Leaf area index (LAI was an excellent predictor of the spatial variability in gross photosynthesis (GP, NEE and ecosystem respiration (ER. The plot scale CO2 fluxes were first scaled up to the EC source area and then to the whole study area using two data sets: a land cover classification and a LAI map, both based on field data and 2.4 m pixel-sized Quickbird satellite image. The good agreement of the CO2 balances for the EC footprint based on the different methods (−105 to −81 g C m−2 vs. −79 g C m−2; growing season 2008 justified the integration of the plot scale measurements over the larger area. The annual CO2 balance for the study region was −67 to −41 g C m−2. Due to the heterogeneity of tundra, the effect of climate change on CO2 uptake will vary strongly according to the land cover type and, moreover, likely changes in their relative coverage in future will have great impact on the regional CO2 balance.

  20. Longer thaw seasons increase nitrogen availability for leaching during fall in tundra soils

    Science.gov (United States)

    Treat, Claire C.; Wollheim, Wilfred M.; Varner, Ruth K.; Bowden, William B.

    2016-06-01

    Climate change has resulted in warmer soil temperatures, earlier spring thaw and later fall freeze-up, resulting in warmer soil temperatures and thawing of permafrost in tundra regions. While these changes in temperature metrics tend to lengthen the growing season for plants, light levels, especially in the fall, will continue to limit plant growth and nutrient uptake. We conducted a laboratory experiment using intact soil cores with and without vegetation from a tundra peatland to measure the effects of late freeze and early spring thaw on carbon dioxide (CO2) exchange, methane (CH4) emissions, dissolved organic carbon (DOC) and nitrogen (N) leaching from soils. We compared soil C exchange and N production with a 30 day longer seasonal thaw during a simulated annual cycle from spring thaw through freeze-up and thaw. Across all cores, fall N leaching accounted for ˜33% of total annual N loss despite significant increases in microbial biomass during this period. Nitrate ({{{{NO}}}3}-) leaching was highest during the fall (5.33 ± 1.45 mg N m-2 d-1) following plant senescence and lowest during the summer (0.43 ± 0.22 mg N m-2 d-1). In the late freeze and early thaw treatment, we found 25% higher total annual ecosystem respiration but no significant change in CH4 emissions or DOC loss due to high variability among samples. The late freeze period magnified N leaching and likely was derived from root turnover and microbial mineralization of soil organic matter coupled with little demand from plants or microbes. Large N leaching during the fall will affect N cycling in low-lying areas and streams and may alter terrestrial and aquatic ecosystem nitrogen budgets in the arctic.

  1. Age-specific survival of tundra swans on the lower Alaska Peninsula

    Science.gov (United States)

    Meixell, Brandt W.; Lindberg, Mark S.; Conn, Paul B.; Dau, Christian P.; Sarvis, John E.; Sowl, Kristine M.

    2013-01-01

    The population of Tundra Swans (Cygnus columbianus columbianus) breeding on the lower Alaska Peninsula represents the southern extremity of the species' range and is uniquely nonmigratory. We used data on recaptures, resightings, and recoveries of neck-collared Tundra Swans on the lower Alaska Peninsula to estimate collar loss, annual apparent survival, and other demographic parameters for the years 1978–1989. Annual collar loss was greater for adult males fitted with either the thinner collar type (0.34) or the thicker collar type (0.15) than for other age/sex classes (thinner: 0.10, thicker: 0.04). The apparent mean probability of survival of adults (0.61) was higher than that of immatures (0.41) and for both age classes varied considerably by year (adult range: 0.44–0.95, immature range: 0.25–0.90). To assess effects of permanent emigration by age and breeding class, we analyzed post hoc the encounter histories of swans known to breed in our study area. The apparent mean survival of known breeders (0.65) was generally higher than that of the entire marked sample but still varied considerably by year (range 0.26–1.00) and indicated that permanent emigration of breeding swans was likely. We suggest that reductions in apparent survival probability were influenced primarily by high and variable rates of permanent emigration and that immigration by swans from elsewhere may be important in sustaining a breeding population at and near Izembek National Wildlife Refuge.

  2. Variability of Water Chemistry in Tundra Lakes, Petuniabukta Coast, Central Spitsbergen, Svalbard

    Directory of Open Access Journals (Sweden)

    Małgorzata Mazurek

    2012-01-01

    Full Text Available Samples of water from small tundra lakes located on raised marine terraces on the eastern coast of Petuniabukta (Ebbadalen, Central Spitsbergen were examined to assess the changes in water chemistry that had occurred during the summer seasons of 2001–2003 and 2006. The unique environmental conditions of the study region include the predominance of sedimentary carbonate and sulphate rocks, low precipitation values, and an active permafrost layer with a maximum thickness of 1.2 m. The average specific electric conductivity (EC values for the three summer seasons in the four lakes ranged from 242 to 398 μS cm−1. The highest EC values were observed when the air temperature decreased and an ice cover formed (cryochemical effects. The ion composition was dominated by calcium (50.7 to 86.6%, bicarbonates (39.5 to 86.4%, and sulphate anions. The high concentrations of HCO3−, SO42−, and Ca2+ ions were attributed to the composition of the bedrock, which mainly consists of gypsum and anhydrite. The average proportion of marine components in the total load found in the Ebbadalen tundra lake waters was estimated to be 8.1%. Precipitation supplies sulphates (as much as 69–81% and chlorides (14–36% of nonsea origin. The chief source of these compounds may be contamination from the town of Longyearbyen. Most ions originate in the crust, the active layer of permafrost, but some are atmospheric in origin and are either transported or generated in biochemical processes. The concentrations of most components tend to increase during the summer months, reaching a maximum during freezing and partially precipitating onto the bottom sediments.

  3. Arctic biodiversity: Increasing richness accompanies shrinking refugia for a cold-associated tundra fauna

    Science.gov (United States)

    Hope, Andrew; Waltari, Eric; Malaney, Jason L.; Payer, David C.; Cook, J.A.; Talbot, Sandra

    2015-01-01

    As ancestral biodiversity responded dynamically to late-Quaternary climate changes, so are extant organisms responding to the warming trajectory of the Anthropocene. Ecological predictive modeling, statistical hypothesis tests, and genetic signatures of demographic change can provide a powerful integrated toolset for investigating these biodiversity responses to climate change, and relative resiliency across different communities. Within the biotic province of Beringia, we analyzed specimen localities and DNA sequences from 28 mammal species associated with boreal forest and Arctic tundra biomes to assess both historical distributional and evolutionary responses and then forecasted future changes based on statistical assessments of past and present trajectories, and quantified distributional and demographic changes in relation to major management regions within the study area. We addressed three sets of hypotheses associated with aspects of methodological, biological, and socio-political importance by asking (1) what is the consistency among implications of predicted changes based on the results of both ecological and evolutionary analyses; (2) what are the ecological and evolutionary implications of climate change considering either total regional diversity or distinct communities associated with major biomes; and (3) are there differences in management implications across regions? Our results indicate increasing Arctic richness through time that highlights a potential state shift across the Arctic landscape. However, within distinct ecological communities, we found a predicted decline in the range and effective population size of tundra species into several discrete refugial areas. Consistency in results based on a combination of both ecological and evolutionary approaches demonstrates increased statistical confidence by applying cross-discipline comparative analyses to conservation of biodiversity, particularly considering variable management regimes that seek

  4. Could 4 degrees warming change Arctic tundra from carbon sink to carbon source?

    Science.gov (United States)

    Torn, M. S.; Abramoff, R. Z.; Chafe, O.; Curtis, J. B.; Smith, L. J.; Wullschleger, S. D.

    2015-12-01

    We have set up a controlled, active warming experiment in permafrost tundra on the North Slope of Alaska. The aim of this micro-warming experiment is to investigate the direct effect of soil warming on microbial decomposition of soil organic matter. We are testing the feasibility of small, short-term, in situ warming that can be run off batteries for distributed deployment and that preserves plant-soil relations and natural variability in wind, temperature, and precipitation. Based on preliminary results, the approach looks promising. One resistance heater cable per plot (25 cm diameter plots) was inserted vertically to 50 cm, spanning the full active layer (maximum thaw depth was 40 cm in 2014). Heaters were turned on August 1, 2015, and heated plots reached the 4ºC warming target within 1-3 days. We are measuring soil microclimate, thaw depth, CO2 and CH4 fluxes, and 14CO2, and microbial composition, as part of the DOE Next Generation Ecosystem Experiments (NGEE-Arctic). Ecosystem respiration increased immediately in the heated plots, and net ecosystem exchange under clear chambers changed from net uptake to net CO2 source in two of the four plots. CH4 flux shifted toward reduced net emissions or greater net uptake in all plots. These rapid responses demonstrate direct changes in decomposition without complications from microbial acclimation, altered community structure or changes in substrate availability. However, future Arctic tundra carbon balance will depend on both short term and long term microbial responses, as well as the links between warming, decomposition, nitrogen mineralization, and plant growth. Thus, we envision that distributed micro-warming plots could be combined with new approaches to aboveground passive warming being developed in NGEE, gradient studies, and modeling.

  5. Longer thaw seasons increase nitrogen availability for leaching during fall in tundra soils

    Science.gov (United States)

    Treat, Claire C.; Wollheim, Wilfred M.; Varner, Ruth K.; Bowden, William B.

    2016-06-01

    Climate change has resulted in warmer soil temperatures, earlier spring thaw and later fall freeze-up, resulting in warmer soil temperatures and thawing of permafrost in tundra regions. While these changes in temperature metrics tend to lengthen the growing season for plants, light levels, especially in the fall, will continue to limit plant growth and nutrient uptake. We conducted a laboratory experiment using intact soil cores with and without vegetation from a tundra peatland to measure the effects of late freeze and early spring thaw on carbon dioxide (CO2) exchange, methane (CH4) emissions, dissolved organic carbon (DOC) and nitrogen (N) leaching from soils. We compared soil C exchange and N production with a 30 day longer seasonal thaw during a simulated annual cycle from spring thaw through freeze-up and thaw. Across all cores, fall N leaching accounted for ∼33% of total annual N loss despite significant increases in microbial biomass during this period. Nitrate ({{{{NO}}}3}-) leaching was highest during the fall (5.33 ± 1.45 mg N m‑2 d‑1) following plant senescence and lowest during the summer (0.43 ± 0.22 mg N m‑2 d‑1). In the late freeze and early thaw treatment, we found 25% higher total annual ecosystem respiration but no significant change in CH4 emissions or DOC loss due to high variability among samples. The late freeze period magnified N leaching and likely was derived from root turnover and microbial mineralization of soil organic matter coupled with little demand from plants or microbes. Large N leaching during the fall will affect N cycling in low-lying areas and streams and may alter terrestrial and aquatic ecosystem nitrogen budgets in the arctic.

  6. Vegetation biomass, leaf area index, and NDVI patterns and relationships along two latitudinal transects in arctic tundra

    Science.gov (United States)

    Epstein, H. E.; Walker, D. A.; Raynolds, M. K.; Kelley, A. M.; Jia, G.; Ping, C.; Michaelson, G.; Leibman, M. O.; Kaarlejärvi, E.; Khomutov, A.; Kuss, P.; Moskalenko, N.; Orekhov, P.; Matyshak, G.; Forbes, B. C.; Yu, Q.

    2009-12-01

    Analyses of vegetation properties along climatic gradients provide first order approximations as to how vegetation might respond to a temporally dynamic climate. Until recently, no systematic study of tundra vegetation had been conducted along bioclimatic transects that represent the full latitudinal extent of the arctic tundra biome. Since 1999, we have been collecting data on arctic tundra vegetation and soil properties along two such transects, the North American Arctic Transect (NAAT) and the Yamal Arctic Transect (YAT). The NAAT spans the arctic tundra from the Low Arctic of the North Slope of Alaska to the polar desert of Cape Isachsen on Ellef Ringnes Island in the Canadian Archipelago. The Yamal Arctic Transect located in northwest Siberia, Russia, presently ranges from the forest-tundra transition at Nadym to the High Arctic tundra on Belyy Ostrov off the north coast of the Yamal Peninsula. The summer warmth indices (SWI - sum of mean monthly temperatures greater than 0°C) range from approximately 40 °C months to 3 °C months from south to north. For largely zonal sites along these transects, we systematically collected leaf area index (LAI-2000 Plant Canopy Analyzer), normalized difference vegetation index (NDVI - PSII hand-held spectro-radiometer), and vegetation biomass (clip harvests). Site-averaged LAI ranges from 1.08 to 0 along the transects, yet can be highly variable at the landscape scale. Site-averaged NDVI ranges from 0.67 to 0.26 along the transects, and is less variable than LAI at the landscape scale. Total aboveground live biomass ranges from approximately 700 g m-2 to < 50 g m-2 along the NAAT, and from approximately 1100 g m-2 to < 400 g m-2 along the YAT (not including tree biomass at Nadym). LAI and NDVI are highly correlated logarithmically (r = 0.80) for the entire dataset. LAI is significantly related to total aboveground (live plus dead) vascular plant biomass, although there is some variability in the data (r = 0.63). NDVI is

  7. Microbes residing in young organic rich Alaskan soils contain older carbon than those residing in old mineral high Arctic soils

    Science.gov (United States)

    Ziolkowski, L. A.; Slater, G. F.; Onstott, T. C.; Whyte, L.; Townsend-Small, A.

    2013-12-01

    Arctic soils range from very organic rich to low carbon and mineral-dominated soils. At present, we do not yet fully understand if all carbon in the Arctic is equally vulnerable to mineralization in a warmer climate. Many studies have demonstrated that ancient carbon is respired when permafrost has thawed, yet our understanding of the active layer and permafrost carbon dynamics is still emerging. In an effort to remedy this disconnect between our knowledge of surface fluxes and below ground processes, we used radiocarbon to examine the microbial carbon dynamics in soil cores from organic rich soils near Barrow, Alaska and mineral soils from the Canadian high Arctic. Specifically, we compared the microbial community using lipid biomarkers, the inputs of carbon using n-alkanes and measured the 14C of both the bulk organic carbon and of the microbial lipids. In theory, the microbial lipids (phospholipid fatty acids, PLFA) represent the viable microbial community, as these lipids are hydrolyzed quickly after cell death. Variations in the PLFA distributions suggested that different microbial communities inhabit organic rich Alaskan soils and those of the Canadian high Arctic. When the PLFA concentrations were converted to cellular concentration, they were within the same order of magnitude (1 to 5 x 108 cells/g dry soil) with slightly higher cell concentrations in the organic rich Alaskan soils. When these cellular concentrations were normalized to the organic carbon content, the Canadian high Arctic soils contained a greater proportion of microbes. Although bulk organic carbon 14C of Alaskan soils indicated more recent carbon inputs into the soil than the Canadian high Arctic soils, the 14C of the PLFA revealed the opposite. For corresponding depth horizons, microbes in Alaskan soils were consuming carbon 1000 to 1500 years older than those in the Canadian high Arctic. Differences between the 14C content of bulk organic carbon and the microbial lipids were much smaller

  8. Flux Of Carbon from an Airborne Laboratory (FOCAL): Synergy of airborne and surface measures of carbon emission and isotopologue content from tundra landscape in Alaska

    Science.gov (United States)

    Dobosy, R.; Dumas, E.; Sayres, D. S.; Kochendorfer, J.

    2013-12-01

    Arctic tundra, recognized as a potential major source of new atmospheric carbon, is characterized by low topographic relief and small-scale heterogeneity consisting of small lakes and intervening tundra vegetation. This fits well the flux-fragment method (FFM) of analysis of data from low-flying aircraft. The FFM draws on 1)airborne eddy-covariance flux measurements, 2)a classified surface-characteristics map (e.g. open water vs tundra), 3)a footprint model, and 4)companion surface-based eddy-covariance flux measurements. The FOCAL, a collaboration among Harvard University's Anderson Group, NOAA's Atmospheric Turbulence and Diffusion Division (ATDD), and Aurora Flight Sciences, Inc., made coordinated flights in 2013 August with a collaborating surface site. The FOCAL gathers not only flux data for CH4 and CO2 but also the corresponding carbon-isotopologue content of these gases. The surface site provides a continuous sample of carbon flux from interstitial tundra over time throughout the period of the campaign. The FFM draws samples from the aircraft data over many instances of tundra and also open water. From this we will determine how representative the surface site is of the larger area (100 km linear scale), and how much the open water differs from the tundra as a source of carbon.

  9. Epidemiology of fetal alcohol syndrome in American Indians, Alaskan Natives, and Canadian Aboriginal peoples: a review of the literature.

    OpenAIRE

    Burd, L; Moffatt, M E

    1994-01-01

    A critical review of available reports on the epidemiology of fetal alcohol syndrome among American Indians, Alaskan Natives, and Aboriginal peoples of Canada was completed. A search of Medline, the National Institute on Alcohol Abuse and Alcoholism Database, and other relevant data bases was conducted. The reference lists of several publications on fetal alcohol syndrome were reviewed, and four prominent researchers and four government agencies were contacted to identify unpublished articles...

  10. Isolation of a complete circular virus genome sequence from an Alaskan black-capped chickadee (Poecile atricapillus) gastrointestinal tract sample.

    Science.gov (United States)

    Hanna, Zachary R.; Runckel, Charles; Fuchs, Jerome; DeRisi, Joseph L.; Mindell, David P.; Van Hemert, Caroline R.; Handel, Colleen M.; Dumbacher, John P.

    2015-01-01

    We report here the genome sequence of a circular virus isolated from samples of an Alaskan black-capped chickadee (Poecile atricapillus) gastrointestinal tract. The genome is 2,152 bp in length and is most similar (30 to 44.5% amino acid identity) to the genome sequences of other single-stranded DNA (ssDNA) circular viruses belonging to the gemycircularvirus group.

  11. A boreal invasion in response to climate change? Range shifts and community effects in the borderland between forest and tundra.

    Science.gov (United States)

    Elmhagen, Bodil; Kindberg, Jonas; Hellström, Peter; Angerbjörn, Anders

    2015-01-01

    It has been hypothesized that climate warming will allow southern species to advance north and invade northern ecosystems. We review the changes in the Swedish mammal and bird community in boreal forest and alpine tundra since the nineteenth century, as well as suggested drivers of change. Observed changes include (1) range expansion and increased abundance in southern birds, ungulates, and carnivores; (2) range contraction and decline in northern birds and carnivores; and (3) abundance decline or periodically disrupted dynamics in cyclic populations of small and medium-sized mammals and birds. The first warm spell, 1930-1960, stands out as a period of substantial faunal change. However, in addition to climate warming, suggested drivers of change include land use and other anthropogenic factors. We hypothesize all these drivers interacted, primarily favoring southern generalists. Future research should aim to distinguish between effects of climate and land-use change in boreal and tundra ecosystems. PMID:25576279

  12. A boreal invasion in response to climate change? Range shifts and community effects in the borderland between forest and tundra

    OpenAIRE

    Elmhagen, Bodil; Kindberg, Jonas; Hellström, Peter; Angerbjörn, Anders

    2015-01-01

    It has been hypothesized that climate warming will allow southern species to advance north and invade northern ecosystems. We review the changes in the Swedish mammal and bird community in boreal forest and alpine tundra since the nineteenth century, as well as suggested drivers of change. Observed changes include (1) range expansion and increased abundance in southern birds, ungulates, and carnivores; (2) range contraction and decline in northern birds and carnivores; and (3) abundance decli...

  13. Complete genome sequence of Granulicella tundricola type strain MP5ACTX9T, an Acidobacteria from tundra soil

    OpenAIRE

    Rawat, Suman R.; Männistö, Minna K.; Starovoytov, Valentin; Goodwin, Lynne; Nolan, Matt; Hauser, Loren; Land, Miriam; Davenport, Karen Walston; Woyke, Tanja; Häggblom, Max M.

    2013-01-01

    Granulicella tundricola strain MP5ACTX9T is a novel species of the genus Granulicella in subdivision 1 Acidobacteria . G. tundricola is a predominant member of soil bacterial communities, active at low temperatures and nutrient limiting conditions in Arctic alpine tundra. The organism is a cold-adapted acidophile and a versatile heterotroph that hydrolyzes a suite of sugars and complex polysaccharides. Genome analysis revealed metabolic versatility with genes involved in metabolism and transp...

  14. Complete genome sequence of Granulicella mallensis type strain MP5ACTX8T, an acidobacterium from tundra soil

    OpenAIRE

    Rawat, Suman R.; Männistö, Minna K.; Starovoytov, Valentin; Goodwin, Lynne; Nolan, Matt; Loren J Hauser; Land, Miriam; Davenport, Karen Walston; Woyke, Tanja; Häggblom, Max M.

    2013-01-01

    Granulicella mallensis MP5ACTX8T is a novel species of the genus Granulicella in subdivision 1of Acidobacteria . G. mallensis is of ecological interest being a member of the dominant soil bacterial community active at low temperatures and nutrient limiting conditions in Arctic alpine tundra. G. mallensis is a cold-adapted acidophile and a versatile heterotroph that hydrolyzes a suite of sugars and complex polysaccharides. Genome analysis revealed metabolic versatility with genes involved in m...

  15. Quantification of DOC concentrations in relation with soil properties of soils in tundra and taiga of Northern European Russia

    Directory of Open Access Journals (Sweden)

    M. R. Oosterwoud

    2010-05-01

    Full Text Available Potential mobilization and transport of Dissolved Organic Carbon (DOC in subarctic river basins towards the oceans is enormous, because 23–48% of the worlds Soil Organic Carbon (SOC is stored in northern regions. As climate changes, the amount and composition of DOC exported from these basins are expected to change. The transfer of organic carbon between soils and rivers results in fractionation of organic carbon compounds. The aim of this research is to determine the DOC concentrations, its fractions, i.e. humic (HA, fulvic (FA, and hydrophilic (HY acids, and soil characteristics that influence the DOC sorptive properties of different soil types within a tundra and taiga catchment of Northern European Russia. DOC in taiga and tundra soil profiles (soil solution consisted only of HY and FA, where HY became more abundant with increasing depth. Adsorption of DOC on mineral phases is the key geochemical process for release and removal of DOC from potentially soluble carbon pool. We found that adsorbed organic carbon may desorb easily and can release DOC quickly, without being dependent on mineralization and degradation. Although Extractable Organic Carbon (EOC comprise only a small part of SOC, it is a significant buffering pool for DOC. We found that about 80–90% of released EOC was previously adsorbed. Fractionation of EOC is also influenced by the fact that predominantly HA and FA adsorbed to soil and therefore also are the main compounds released when desorbed. Flowpaths vary between taiga and tundra and through seasons, which likely affects DOC concentration found in streams. As climate changes, also flowpaths of water through soils may change, especially in tundra caused by thawing soils. Therefore, adsorptive properties of thawing soils exert a major control on DOC leaching to rivers. To better understand the process of DOC ad- and de-sorption in soils, process based soil chemical modelling, which could bring more insight in solution

  16. The role of endophytic methane-oxidizing bacteria in submerged Sphagnum in determining methane emissions of Northeastern Siberian tundra

    Directory of Open Access Journals (Sweden)

    T. C. Maximov

    2011-05-01

    Full Text Available The role of the microbial processes governing methane emissions from tundra ecosystems is receiving increasing attention. Recently, cooperation between methanotrophic bacteria and submerged Sphagnum was shown to reduce methane emissions but also to supply CO2 for photosynthesis for the plant. Although this process was shown to be important in the laboratory, the differences that exist in methane emissions from inundated vegetation types with or without Sphagnum in the field have not been linked to these bacteria before. In this study, chamber flux measurements, an incubation study and a process model were used to investigate the drivers and controls on the relative difference in methane emissions between a submerged Sphagnum/sedge vegetation type and an inundated sedge vegetation type without Sphagnum. It was found that methane emissions in the Sphagnum-dominated vegetation type were 50 % lower than in the vegetation type without Sphagnum. A model sensitivity analysis showed that these differences could not sufficiently be explained by differences in methane production and plant transport. The model, combined with an incubation study, indicated that methane oxidation by endophytic bacteria, living in cooperation with submerged Sphagnum, plays a significant role in methane cycling at this site. This result is important for spatial upscaling as oxidation by these bacteria is likely involved in 15 % of the net methane emissions at this tundra site. Our findings support the notion that methane-oxidizing bacteria are an important factor in understanding the processes behind methane emissions in tundra.

  17. Acidobacteria dominate the active bacterial communities of Arctic tundra with widely divergent winter-time snow accumulation and soil temperatures.

    Science.gov (United States)

    Männistö, Minna K; Kurhela, Emilia; Tiirola, Marja; Häggblom, Max M

    2013-04-01

    The timing and extent of snow cover is a major controller of soil temperature and hence winter-time microbial activity and plant diversity in Arctic tundra ecosystems. To understand how snow dynamics shape the bacterial communities, we analyzed the bacterial community composition of windswept and snow-accumulating shrub-dominated tundra heaths of northern Finland using DNA- and RNA-based 16S rRNA gene community fingerprinting (terminal restriction fragment polymorphism) and clone library analysis. Members of the Acidobacteria and Proteobacteria dominated the bacterial communities of both windswept and snow-accumulating habitats with the most abundant phylotypes corresponding to subdivision (SD) 1 and 2 Acidobacteria in both the DNA- and RNA-derived community profiles. However, different phylotypes within Acidobacteria were found to dominate at different sampling dates and in the DNA- vs. RNA-based community profiles. The results suggest that different species within SD1 and SD2 Acidobacteria respond to environmental conditions differently and highlight the wide functional diversity of these organisms even within the SD level. The acidic tundra soils dominated by ericoid shrubs appear to select for diverse stress-tolerant Acidobacteria that are able to compete in the nutrient poor, phenolic-rich soils. Overall, these communities seem stable and relatively insensitive to the predicted changes in the winter-time snow cover.

  18. Sulfur dioxide emissions from Alaskan volcanoes quantified using an ultraviolet SO_{2} camera

    Science.gov (United States)

    Kern, Christoph; Werner, Cynthia; Kelly, Peter; Brewer, Ian; Ketner, Dane; Paskievitch, John; Power, John

    2016-04-01

    Alaskan volcanoes are difficult targets for direct gas measurements as they are extremely remote and their peaks are mostly covered in ice and snow throughout the year. This makes access extremely difficult. In 2015, we were able to make use of an ultraviolet SO2 camera to quantify the SO2 emissions from Augustine Volcano, Redoubt Volcano, Mount Cleveland and Shishaldin Volcano in the Aleutian Arc. An airborne gas survey performed at Augustine Volcano in April 2015 found that the SO2 emission rate from the summit area was below 10 tonnes per day (t/d). SO2 camera measurements were performed two months later (June 2015) from a snow-free area just 100 meters from the fumarole on the south side of Augustine's summit dome to maximize camera sensitivity. Though the visible appearance of the plume emanating from the fumarole was opaque, the SO2 emissions were only slightly above the 40 ppmṡm detection limit of the SO2 camera. Still, SO2 could be detected and compared to coincident MultiGAS measurements of SO2, CO2 and H2S. At Redoubt Volcano, SO2 camera measurements were conducted on 13 June 2015 from a location 2 km to the north of the final 72x106 m3 dome extruded during the 2009 eruption. Imagery was collected of the plume visibly emanating from the top of the dome. Preliminary evaluation of the imagery and comparison with a coincident, helicopter-based DOAS survey showed that SO2 emission rates had dropped below 100 t/d (down from 180 t/d measured in April 2014). Mount Cleveland and Shishaldin Volcano were visited in August 2015 as part of an NSF-funded ship-based research expedition in the Central Aleutian Arc. At Mount Cleveland, inclement weather prohibited the collection of a lengthy time-series of SO2 camera imagery, but the limited data that was collected shows an emission rate of several hundred t/d. At Shishaldin, several hours of continuous imagery was acquired from a location 5 km east of the summit vent. The time series shows an SO2 emission rate of

  19. STUDY OF TRANSPORTATION OF GTL PRODUCTS FROM ALASKAN NORTH SLOPE (ANS) TO MARKETS

    Energy Technology Data Exchange (ETDEWEB)

    Godwin A. Chukwu, Ph.D., P.E.

    2002-09-01

    The Alaskan North Slope is one of the largest hydrocarbon reserves in the US where Gas-to-Liquids (GTL) technology can be successfully implemented. The proven and recoverable reserves of conventional natural gas in the developed and undeveloped fields in the Alaskan North Slope (ANS) are estimated to be 38 trillion standard cubic feet (TCF) and estimates of additional undiscovered gas reserves in the Arctic field range from 64 TCF to 142 TCF. Transportation of the natural gas from the remote ANS is the key issue in effective utilization of this valuable and abundance resource. The throughput of oil through the Trans Alaska Pipeline System (TAPS) has been on decline and is expected to continue to decline in future. It is projected that by the year 2015, ANS crude oil production will decline to such a level that there will be a critical need for pumping additional liquid from GTL process to provide an adequate volume for economic operation of TAPS. The pumping of GTL products through TAPS will significantly increase its economic life. Transporting GTL products from the North Slope of Alaska down to the Marine terminal at Valdez is no doubt the great challenge facing the Gas to Liquids options of utilizing the abundant natural gas resource of the North Slope. The primary purpose of this study was to evaluate and assess the economic feasibility of transporting GTL products through the TAPS. Material testing program for GTL and GTL/Crude oil blends was designed and implemented for measurement of physical properties of GTL products. The measurement and evaluation of the properties of these materials were necessary so as to access the feasibility of transporting such materials through TAPS under cold arctic conditions. Results of the tests indicated a trend of increasing yield strength with increasing wax content. GTL samples exhibited high gel strengths at temperatures as high as 20 F, which makes it difficult for cold restart following winter shutdowns. Simplified

  20. Increasing shrub abundance and N addition in Arctic tundra affect leaf and root litter decomposition differently

    Science.gov (United States)

    McLaren, J.; van de Weg, M. J.; Shaver, G. R.; Gough, L.

    2013-12-01

    Changes in global climate have resulted in a ';greening' of the Arctic as the abundance of deciduous shrub species increases. Consequently, not only the living plant community, but also the litter composition changes, which in turn can affect carbon turnover patterns in the Arctic. We examined effects of changing litter composition (both root and leaf litter) on decomposition rates with a litter bag study, and specifically focused on the impact of deciduous shrub Betula nana litter on litter decomposition from two evergreen shrubs (Ledum palustre, and Vaccinium vitis-idaea) and one graminoid (Eriophorum vaginatum) species. Additionally, we investigated how decomposition was affected by nutrient availability by placing the litterbags in an ambient and a fertilized moist acidic tundra environment. Measurements were carried out seasonally over 2 years (after snow melt, mid-growing season, end growing season). We measured litter mass loss over time, as well as the respiration rates (standardized for temperature and moisture) and temperature sensitivity of litter respiration at the time of harvesting the litter bags. For leaves, Betula litter decomposed faster than the other three species, with Eriophorum leaves decomposing the slowest. This pattern was observed for both mass loss and litter respiration rates, although the differences in respiration became smaller over time. Surprisingly, combining Betula with any other species resulted in slower overall weight loss rates than would be predicted based on monoculture weight loss rates. This contrasted with litter respiration at the time of sampling, which showed a positive mixing effect of adding Betula leaf liter to the other species. Apparently, during the first winter months (September - May) Betula litter decomposition is negatively affected by mixing the species and this legacy can still be observed in the total mass loss results later in the year. For root litter there were fewer effects of species identity on root

  1. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra

    Science.gov (United States)

    Juszak, Inge; Eugster, Werner; Heijmans, Monique M. P. D.; Schaepman-Strub, Gabriela

    2016-07-01

    Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and

  2. Long-term Nutrient Fertilization Increases CO2 Loss in Arctic Tundra

    Science.gov (United States)

    Graham, L. M.; Natali, S.; Rastetter, E. B.; Shaver, G. R.; Risk, D. A.; Loranty, M. M.; Jastrow, J. D.

    2015-12-01

    As anthropogenic climate change warms the Arctic, organic carbon (C) trapped in permafrost is at an increased risk of being released to the atmosphere as carbon dioxide (CO2). At the same time, higher rates of decomposition may increase nutrient availability and enhance plant growth, leading to an uptake of C that may offset respiratory losses. Arctic tundra ecosystems are highly nitrogen (N) limited, and the indirect effects of warming on nutrient availability will be the most likely outcome of increased temperature on plant productivity. This study aims to understand the effects of nutrient addition on arctic CO2 and H2O exchange in a tundra ecosystem at Toolik Lake Field Station, Alaska. The nutrient addition experiment, which began in 2006, is comprised of 7 fertilization treatments: 0.5, 1, 2, 5, and 10 g m-2 of N as NO3- and NH4+ (1:1) with 0.25, 0.5, 1, 2.5, and 5 g m-2 of phosphorus as PO43-; 5 g m-2 of N as NO3-; 5 g m-2 of N as NH4+, and one control plot. Plot-level CO2 and H2O exchange was measured at 5 light levels 7 times over a four-week period in June and July 2015. We measured ecosystem CO2 and H2O exchange using a rectangular plexiglass chamber (0.49 m2) that was connected to an infrared gas analyzer (LI-840). Other ecosystem variables measured include thaw depth, soil moisture and temperature, and normalized difference vegetation index. After 10 years of nutrient addition, fertilization significantly altered ecosystem C cycling. Soil respiration was greatest in the highest fertilization treatment (2.97 μmol m-2 s-1), increasing linearly with nutrient level at a rate of 0.133 μmol m-2 s-1 per g m-2 of N added (R2=0.914). Net CO2 uptake was greatest under highest fertilization (-2.06 μmol m-2 s-1), decreasing linearly with nutrient addition at a rate of -0.068 μmol m-2 s-1 per g m-2 of N added (R2=0.687). These results suggest that as nutrients become more available under a warmer climate, plant productivity increases may not offset respiratory

  3. Consequences of artic ground squirrels on soil carbon loss from Siberian tundra

    Science.gov (United States)

    Golden, N. A.; Natali, S.; Zimov, N.

    2014-12-01

    A large pool of organic carbon (C) has been accumulating in the Arctic for thousands of years. Much of this C has been frozen in permafrost and unavailable for microbial decomposition. As the climate warms and permafrost thaws, the fate of this large C pool will be driven not only by climatic conditions, but also by ecosystem changes brought about by arctic animal populations. In this project we studied arctic ground squirrels (Spermophilus parryii), which are widely-distributed throughout the Arctic. These social mammals create subterranean burrows that mix soil layers, increase aeration, alter soil moisture and temperature, and redistribute soil nutrients, all of which may impact microbial decomposition. We examined the effects of arctic ground squirrel activity on soil C mineralization in dry heath tundra underlain by continuous permafrost in the Kolyma River watershed in northeast Siberia, Russia. Vegetation cover was greatly reduced on the ground squirrel burrows (80% of ground un-vegetated), compared to undisturbed sites (35% of ground un-vegetated). Soils from ground squirrel burrows were also significantly dryer and warmer. To examine effects of ground squirrel activity on microbial respiration, we conducted an 8-day incubation of soil fromburrows and from adjacent undisturbed tundra. In addition, we assessed the impact of nutrient addition by including treatments with low and high levels of nitrogen addition. Microbial respiration (per gram soil) was three-fold higher in incubated soils from the undisturbed sites compared to soils collected from the burrows. The lower rates of respiration from the disturbed soils may have been a result of lower carbon quality or low soil moisture. High nitrogen addition significantly increased respiration in the undisturbed soils, but not in the disturbed burrow soils, which suggests that microbial respiration in the burrow soils was not primarily limited by nitrogen. These results demonstrate the importance of wildlife

  4. Sea Ice, Hydrocarbon Extraction, Rain-on-Snow and Tundra Reindeer Nomadism in Arctic Russia

    Science.gov (United States)

    Forbes, B. C.; Kumpula, T.; Meschtyb, N.; Laptander, R.; Macias-Fauria, M.; Zetterberg, P.; Verdonen, M.

    2015-12-01

    It is assumed that retreating sea ice in the Eurasian Arctic will accelerate hydrocarbon development and associated tanker traffic along Russia's Northern Sea Route. However, oil and gas extraction along the Kara and Barents Sea coasts will likely keep developing rapidly regardless of whether the Northwest Eurasian climate continues to warm. Less certain are the real and potential linkages to regional biota and social-ecological systems. Reindeer nomadism continues to be a vitally important livelihood for indigenous tundra Nenets and their large herds of semi-domestic reindeer. Warming summer air temperatures over the NW Russian Arctic have been linked to increases in tundra productivity, longer growing seasons, and accelerated growth of tall deciduous shrubs. These temperature increases have, in turn, been linked to more frequent and sustained summer high-pressure systems over West Siberia, but not to sea ice retreat. At the same time, winters have been warming and rain-on-snow (ROS) events have become more frequent and intense, leading to record-breaking winter and spring mortality of reindeer. What is driving this increase in ROS frequency and intensity is not clear. Recent modelling and simulation have found statistically significant near-surface atmospheric warming and precipitation increases during autumn and winter over Arctic coastal lands in proximity to regions of sea-ice loss. During the winter of 2013-14 an extensive and lasting ROS event led to the starvation of 61,000 reindeer out of a population of ca. 300,000 animals on Yamal Peninsula, West Siberia. Historically, this is the region's largest recorded mortality episode. More than a year later, participatory fieldwork with nomadic herders during spring-summer 2015 revealed that the ecological and socio-economic impacts from this extreme event will unfold for years to come. There is an urgent need to understand whether and how ongoing Barents and Kara Sea ice retreat may affect the region's ancient

  5. Impact of the Alaskan Stream flow on surface water dynamics, temperature, ice extent, plankton biomass, and walleye pollock stocks in the eastern Okhotsk Sea

    Science.gov (United States)

    Prants, S. V.; Andreev, A. G.; Budyansky, M. V.; Uleysky, M. Yu.

    2015-11-01

    Year-to-year changes of the Alaskan Stream surface flow, forming the northern boundary of the western subarctic cyclonic gyre in the Pacific, impact the dynamics of water in the eastern Okhotsk Sea. It is shown by Lagrangian simulation of transport of the Alaskan Stream waters in 20 year-long AVISO velocity field and direct computation of the corresponding fluxes that an intensification/weakening of the Alaskan Stream current leads to increased/decreased northward fluxes in the areas of the Krusenstern and Fourth Kuril straits connected the Okhotsk Sea with the Pacific Ocean. Enhancement of the Alaskan Stream flux is accompanied by an increase in water temperature and decreasing ice area in the Okhotsk Sea in winter. The Alaskan Stream surface flux is shown to be negatively correlated with satellite-derived chlorophyll-a concentration in May from r = - 0.68 to - 0.73 in 1998-2013 and with winter-spring biomass of large-sized zooplankton with r = - 0.70 in 1995-2012. It is positively correlated with winter-spring biomass of small- and medium-sized zooplankton in the eastern Okhotsk Sea with r = 0.74 in 1995-2012.

  6. Re-analysis of Alaskan benchmark glacier mass-balance data using the index method

    Science.gov (United States)

    Van Beusekom, Ashely E.; O'Nell, Shad R.; March, Rod S.; Sass, Louis C.; Cox, Leif H.

    2010-01-01

    At Gulkana and Wolverine Glaciers, designated the Alaskan benchmark glaciers, we re-analyzed and re-computed the mass balance time series from 1966 to 2009 to accomplish our goal of making more robust time series. Each glacier's data record was analyzed with the same methods. For surface processes, we estimated missing information with an improved degree-day model. Degree-day models predict ablation from the sum of daily mean temperatures and an empirical degree-day factor. We modernized the traditional degree-day model and derived new degree-day factors in an effort to match the balance time series more closely. We estimated missing yearly-site data with a new balance gradient method. These efforts showed that an additional step needed to be taken at Wolverine Glacier to adjust for non-representative index sites. As with the previously calculated mass balances, the re-analyzed balances showed a continuing trend of mass loss. We noted that the time series, and thus our estimate of the cumulative mass loss over the period of record, was very sensitive to the data input, and suggest the need to add data-collection sites and modernize our weather stations.

  7. Hepatitis C Virus in American Indian/Alaskan Native and Aboriginal Peoples of North America

    Directory of Open Access Journals (Sweden)

    Julia Uhanova

    2012-12-01

    Full Text Available Liver diseases, such as hepatitis C virus (HCV, are “broken spirit” diseases. The prevalence of HCV infection for American Indian/Alaskan Native (AI/AN in the United States and Canadian Aboriginals varies; nonetheless, incidence rates of newly diagnosed HCV infection are typically higher relative to non-indigenous people. For AI/AN and Aboriginal peoples risk factors for the diagnosis of HCV can reflect that of the general population: predominately male, a history of injection drug use, in midlife years, with a connection with urban centers. However, the face of the indigenous HCV infected individual is becoming increasingly female and younger compared to non-indigenous counterparts. Epidemiology studies indicate that more effective clearance of acute HCV infection can occur for select Aboriginal populations, a phenomenon which may be linked to unique immune characteristics. For individuals progressing to chronic HCV infection treatment outcomes are comparable to other racial cohorts. Disease progression, however, is propelled by elevated rates of co-morbidities including type 2 diabetes and alcohol use, along with human immunodeficiency virus (HIV co-infection relative to non-indigenous patients. Historical and personal trauma has a major role in the participation of high risk behaviors and associated diseases. Although emerging treatments provide hope, combating HCV related morbidity and mortality will require interventions that address the etiology of broken spirit diseases.

  8. Effects of simultaneous climate change and geomorphic evolution on thermal characteristics of a shallow Alaskan lake

    Science.gov (United States)

    Griffiths, J.R.; Schindler, D.E.; Balistrieri, L.S.; Ruggerone, G.T.

    2011-01-01

    We used a hydrodynamics model to assess the consequences of climate warming and contemporary geomorphic evolution for thermal conditions in a large, shallow Alaskan lake. We evaluated the effects of both known climate and landscape change, including rapid outlet erosion and migration of the principal inlet stream, over the past 50 yr as well as future scenarios of geomorphic restoration. Compared to effects of air temperature during the past 50 yr, lake thermal properties showed little sensitivity to substantial (, 60%) loss of lake volume, as the lake maximum depth declined from 6 m to 4 m driven by outlet erosion. The direction and magnitude of future lake thermal responses will be driven largely by the extent of inlet stream migration when it occurs simultaneously with outlet erosion. Maintaining connectivity with inlet streams had substantial effects on buffering lake thermal responses to warming climate. Failing to account for changing rates and types of geomorphic processes under continuing climate change may misidentify the primary drivers of lake thermal responses and reduce our ability to understand the consequences for aquatic organisms. ?? 2011, by the American Society of Limnology and Oceanography, Inc.

  9. Increases in body weight and nutritional status of transplanted Alaskan caribou

    Directory of Open Access Journals (Sweden)

    Patrick Valkenburg

    2000-04-01

    Full Text Available Body weight and natality rate in ungulates can be useful indices to nutririon, bur they may also be influenced by genetic and climatic factors. Because caribou {Rangifer tarandus granti are distributed as discrete populations of metapopulations (i.e., herds that are usually reproductively isolated from each other for unknown periods, it is difficult to separate the influence of genetics and nutrition on body weight, especially where historical data are lacking. To help elucidate the influence of nutrition on potential variation in body weight and natality of caribou in Alaska, we reviewed data for body weight and natality in 5 populations which resulted from Transplants to previously ungrazed ranges, or to areas where reindeer and caribou had been absent for many decades. In 2 of 5 populations body weight increased significantly, and likely increased in the other 3 populations, but data were insufficient. Natality rate increased in all 5 populations, proportion of fecund yearlings was high and 3 of the 5 newly established herds increased at about the maximum biological potential for the species (lambda=1.35. In the Adak transplant, a lactating yearling was documented. These 5 transplanted populations provide additional evidence that body weight and natality rate in Alaskan caribou are sensitive to changes in population density and relatively short-term (i.e., 10 years increases in grazing pressure independenr of climate and genetics.

  10. InSAR detects possible thaw settlement in the Alaskan Arctic Coastal Plain

    Science.gov (United States)

    Rykhus, R.P.; Lu, Zhiming

    2008-01-01

    Satellite interferometric synthetic aperture radar (InSAR) has proven to be an effective tool for monitoring surface deformation from volcanoes, earthquakes, landslides, and groundwater withdrawal. This paper seeks to expand the list of applications of InSAR data to include monitoring subsidence possibly associated with thaw settlement over the Alaskan Arctic Coastal Plain. To test our hypothesis that InSAR data are sufficiently sensitive to detect subsidence associated with thaw settlement, we acquired all Japanese Earth Resources Satellite-1 (JERS-1) L-band data available for the summers of 1996, 1997, and 1998 over two sites on the Alaska North Slope. The least amount of subsidence for both study sites was detected in the interferograms covering the summer of 1996 (2-3 cm), interferograms from 1997 and 1998 revealed that about 3 cm of subsidence occurred at the northern Cache One Lake site, and about 5 cm of subsidence was detected at the southern Kaparuk River site. These preliminary results illustrate the capacity of the L-band (24 cm) wavelength JERS-1 radar data to penetrate the short Arctic vegetation to monitor subsidence possibly associated with thaw settlement of the active layer and (or) other hydrologic changes over relatively large areas. ?? 2008 CASI.

  11. Cost-Optimal Pathways to 75% Fuel Reduction in Remote Alaskan Villages: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, Travis; Cutler, Dylan; Hirsch, Brian; Olis, Dan; Anderson, Kate

    2015-10-28

    There are thousands of isolated, diesel-powered microgrids that deliver energy to remote communities around the world at very high energy costs. The Remote Communities Renewable Energy program aims to help these communities reduce their fuel consumption and lower their energy costs through the use of high penetration renewable energy. As part of this program, the REopt modeling platform for energy system integration and optimization was used to analyze cost-optimal pathways toward achieving a combined 75% reduction in diesel fuel and fuel oil consumption in a select Alaskan village. In addition to the existing diesel generator and fuel oil heating technologies, the model was able to select from among wind, battery storage, and dispatchable electric heaters to meet the electrical and thermal loads. The model results indicate that while 75% fuel reduction appears to be technically feasible it may not be economically viable at this time. When the fuel reduction target was relaxed, the results indicate that by installing high-penetration renewable energy, the community could lower their energy costs by 21% while still reducing their fuel consumption by 54%.

  12. Seabirds as a subsistence and cultural resource in two remote Alaskan communities

    Directory of Open Access Journals (Sweden)

    Rebecca C. Young

    2014-12-01

    Full Text Available Small rural Alaskan communities face many challenges surrounding rapid social and ecological change. The role of local subsistence resources may change over time because of changes in social perception, economic need, and cultural patterns of use. We look at the Bering Sea's Pribilof Islands, comprising two very small communities, and investigate the relationship between the local residents and seabirds as a natural resource. Seabirds may strengthen ties to older ways of life and have potential for future economic opportunities, or modernization may direct interest away from seabirds as a cultural and economic resource. We conducted a survey and interviews of residents of the two Pribilof Island communities, St. Paul and St. George, to assess opinions toward seabirds and harvest levels. Seabirds were generally regarded as important both to individuals and the wider community. However, current levels of subsistence harvest are low, and few people continue to actively harvest or visit seabird colonies. Respondents expressed desire for greater knowledge about seabirds and also concerns about the current economy of the islands and a lack of future development prospects. Despite the challenging economic conditions, the villages retain a strong sense of community and place value on their environment and on seabirds. Surveys indicated an interest in developing eco-tourism based around local resources, including seabirds, as a way to improve the economy.

  13. Will greater shrub abundance greatly impact tundra surface-atmosphere exchanges of energy and carbon?

    Science.gov (United States)

    Humphreys, E.; Lafleur, P.

    2015-12-01

    Increasing deciduous shrub abundance, productivity, and range in the Arctic comes with the potential for both negative and positive feedbacks to the climate system. This study presents six seasons of eddy covariance measurements of carbon dioxide (CO2) and latent and sensible heat fluxes along a shrub gradient in Canada's Low Arctic. Three flux tower sites with 17, 45, and 64% dwarf birch cover were established within a few kilometers of each other to investigate differences in microclimate, energy and carbon exchanges. As expected, there was greater winter snow depth but less summer soil thaw with greater shrub cover. However, snowmelt timing and speed were usually similar among sites. Despite a reduction in albedo in spring and greater leaf area through summer, latent heat fluxes were consistently lower with greater shrub cover. Offset by small differences in sensible heat fluxes, total seasonal atmospheric heating (combined sensible and latent heat fluxes) was similar among sites. We anticipated greater net uptake of CO2 through the growing season with greater shrub cover. However, that was only the case in some years. There was much more week-to-week and year-to-year variability in CO2 fluxes at the shrubbiest site suggesting photosynthesis and respiration processes were more sensitive to weather variations. Shrub abundance does impact tundra surface-atmosphere exchanges of energy and carbon but these observations also highlight the complexity involved in predicting the net climate feedback effect of current and future Arctic vegetation change.

  14. Annual survival rates of adult and immature eastern population tundra swans

    Science.gov (United States)

    Nichols, J.D.; Bart, J.; Limpert, R.J.; Sladen, William J. L.; Hines, J.E.

    1992-01-01

    Tundra swans (Cygnus columbianus ) of the eastern population were neckbanded in Maryland, North Carolina, and Alaska from 1966 through 1990. These swans were resighted and recaptured during autumn, winter, and spring, 1966-1990. Although the original motivation for this study involved swan movements, we wanted to use the resulting data to test hypotheses about sources of variation in swan survival rates. Recaptures of legbanded and neckbanded swans permitted us to estimate neckband loss rates, which were found to vary with age and sex of swans, and number of years since initial application. Estimates of annual neckband retention rate ranged from about 0.50 for adult male swans greater than or equal to 2 years after initial neckbanding to > 0.96 for immature swans and adult females the first year following neckbanding. This variation in neckband loss rates prevented the simple correction of survival estimates to account for such loss. Consequently, we developed a series of multinomial models parameterized with survival, sighting, and neckband retention probabilities for use with the recapture and resighting data.

  15. The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages.

    Directory of Open Access Journals (Sweden)

    Niraj Kumar

    Full Text Available The impact of silver nanoparticles (NPs and microparticles (MPs on bacterial and fungal assemblages was studied in soils collected from a low arctic site. Two different concentrations (0.066% and 6.6% of Ag NPs and Ag MPs were tested in microcosms that were exposed to temperatures mimicking a winter to summer transition. Toxicity was monitored by differential respiration, phospholipid fatty acid analysis, polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequencing. Notwithstanding the effect of Ag MPs, nanosilver had an obvious, additional impact on the microbial community, underscoring the importance of particle size in toxicity. This impact was evidenced by levels of differential respiration in 0.066% Ag NP-treated soil that were only half that of control soils, a decrease in signature bacterial fatty acids, and changes in both richness and evenness in bacterial and fungal DNA sequence assemblages. Prominent after Ag NP-treatment were Hypocreales fungi, which increased to 70%, from only 1% of fungal sequences under control conditions. Genera within this Order known for their antioxidant properties (Cordyceps/Isaria dominated the fungal assemblage after NP addition. In contrast, sequences attributed to the nitrogen-fixing Rhizobiales bacteria appeared vulnerable to Ag NP-mediated toxicity. This combination of physiological, biochemical and molecular studies clearly demonstrate that Ag NPs can severely disrupt the natural seasonal progression of tundra assemblages.

  16. The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages.

    Science.gov (United States)

    Kumar, Niraj; Palmer, Gerald R; Shah, Vishal; Walker, Virginia K

    2014-01-01

    The impact of silver nanoparticles (NPs) and microparticles (MPs) on bacterial and fungal assemblages was studied in soils collected from a low arctic site. Two different concentrations (0.066% and 6.6%) of Ag NPs and Ag MPs were tested in microcosms that were exposed to temperatures mimicking a winter to summer transition. Toxicity was monitored by differential respiration, phospholipid fatty acid analysis, polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequencing. Notwithstanding the effect of Ag MPs, nanosilver had an obvious, additional impact on the microbial community, underscoring the importance of particle size in toxicity. This impact was evidenced by levels of differential respiration in 0.066% Ag NP-treated soil that were only half that of control soils, a decrease in signature bacterial fatty acids, and changes in both richness and evenness in bacterial and fungal DNA sequence assemblages. Prominent after Ag NP-treatment were Hypocreales fungi, which increased to 70%, from only 1% of fungal sequences under control conditions. Genera within this Order known for their antioxidant properties (Cordyceps/Isaria) dominated the fungal assemblage after NP addition. In contrast, sequences attributed to the nitrogen-fixing Rhizobiales bacteria appeared vulnerable to Ag NP-mediated toxicity. This combination of physiological, biochemical and molecular studies clearly demonstrate that Ag NPs can severely disrupt the natural seasonal progression of tundra assemblages. PMID:24926877

  17. Pollen Morphology of Tundra Shrubs and Submarginal Plants from Barrow, Alaska

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Investigation of plant morphological features, pollen, and habitat have been made for two shrub species from Barrow, Alaska, namely Dryas integrifolia M. Vahl and Salix rotundifolia Trautv., both of which are endemic to the Arctic floristic area. The former species has small lanceolate or plate leaves, whereas the latter has rounded leaves with distinct veins, rich in vitamin C. Both have dwarf and sprawling habits. Pollen studies showed that the pollen grains of the two species are spheroidal to sub-spheroidal or prolate. The type of aperture was tricolporate; pollen size 26.3-31.3 μm; ornamentation finely reticulate under a light microscope (LM) and striate-reticulate under a scanning electron microscope (SEM) for D. integrafolia and finely reticulate under the LM and SEM for S. rotundlfolia. Comparisons were made between the pollen from the same species from Arctic collections with those from China and Japan. Investigation of pollen morphology of tundra plants can provide significant data for comparative studies of fossil pollen and for the reconstruction of paleovegetation and paleoclimate in the Barrow area.

  18. Calibration and Validation of Landsat Tree Cover in the Taiga−Tundra Ecotone

    Directory of Open Access Journals (Sweden)

    Paul Mannix Montesano

    2016-06-01

    Full Text Available Monitoring current forest characteristics in the taiga−tundra ecotone (TTE at multiple scales is critical for understanding its vulnerability to structural changes. A 30 m spatial resolution Landsat-based tree canopy cover map has been calibrated and validated in the TTE with reference tree cover data from airborne LiDAR and high resolution spaceborne images across the full range of boreal forest tree cover. This domain-specific calibration model used estimates of forest height to determine reference forest cover that best matched Landsat estimates. The model removed the systematic under-estimation of tree canopy cover >80% and indicated that Landsat estimates of tree canopy cover more closely matched canopies at least 2 m in height rather than 5 m. The validation improved estimates of uncertainty in tree canopy cover in discontinuous TTE forests for three temporal epochs (2000, 2005, and 2010 by reducing systematic errors, leading to increases in tree canopy cover uncertainty. Average pixel-level uncertainties in tree canopy cover were 29.0%, 27.1% and 31.1% for the 2000, 2005 and 2010 epochs, respectively. Maps from these calibrated data improve the uncertainty associated with Landsat tree canopy cover estimates in the discontinuous forests of the circumpolar TTE.

  19. Pentecostals and Charismatic Protestants in the Republic of Komi and Nenets Tundra

    Directory of Open Access Journals (Sweden)

    Art Leete

    2015-09-01

    Full Text Available Between 2010 and 2012, an extended team of scholars studied contemporary Protestant groups in Russia. The project was labelled Center for the Study of Pentecostal and Charismatic Movements in Russia1 (CSPCMR and was led by Aleksandr Panchenko from the European University in Saint Petersburg and Patrick Plattet from the University of Alaska Fairbanks. Besides Russia and the USA, scholars from Ireland, the United Kingdom, France, and Estonia were involved in this collaborative research effort. The host institution of the project was the European University in St. Petersburg. The aim of the project was to analyse the Protestant-charismatic (P/c Christianity in various regions of post-Soviet Russia. The project proceeded from the notions concerned with global effects of the rapid extension of P/c Christianity in the contemporary world. In the anthropology of Pentecostalism, problems of continuity and change, globalisation and indigenisation, preservation of pre-Pentecostal ontologies, creating the new morality and approaches to economy and politics have been discussed (Coleman 2000; Robbins 2004a, 2004b. The Estonian team’s specific task was to analyse contemporary Protestant missions and churches in the north-eastern corner of European Russia, in the Republic of Komi and the European Nenets tundra.

  20. Estimated change in tundra ecosystem function near Barrow, Alaska between 1972 and 2010

    International Nuclear Information System (INIS)

    How the greening of Arctic landscapes manifests as a change in ecosystem structure and function remains largely unknown. This study investigates the likely implications of plant community change on ecosystem function in tundra near Barrow, Alaska. We use structural data from marked plots, established in 1972 and resampled in 1999, 2008 and 2010 to assess plant community change. Ecosystem functional studies were made close to peak growing season in 2008 and 2010 on destructive plots adjacent to marked plots and included measurement of land–atmosphere CH4 and CO2 exchange, hyperspectral reflectance, albedo, water table height, soil moisture, and plant species cover and abundance. Species cover and abundance data from marked and destructive plots were analyzed together using non-metric multi-dimensional scaling (NMS) ordination. NMS axis scores from destructive plots were used to krig ecosystem function variables in ordination space and produce surface plots from which time series of functional attributes for resampled plots were derived. Generally, the greatest functional change was found in aquatic and wet plant communities, where productivity varied and soil moisture increased, increasing methane efflux. Functional change was minimal in moist and dry communities, which experienced a general decrease in soil moisture availability and appeared overall to be functionally more stable through time. Findings suggest that the Barrow landscape could have become less productive and less responsive to change and disturbance over the past few decades. This study is a contribution to the International Polar Year-Back to the Future Project (512). (letter)

  1. Automatic Detection of Small Single Trees in the Forest-Tundra Ecotone Using Airborne Laser Scanning

    Directory of Open Access Journals (Sweden)

    Nadja Stumberg

    2014-10-01

    Full Text Available A large proportion of Norway’s land area is occupied by the forest-tundra ecotone. The vegetation of this temperature-sensitive ecosystem between mountain forest and the alpine zone is expected to be highly affected by climate change and effective monitoring techniques are required. For the detection of such small pioneer trees, airborne laser scanning (ALS has been proposed as a useful tool employing laser height data. The objective of this study was to assess the capability of an unsupervised classification for automated monitoring programs of small individual trees using high-density ALS data. Field and ALS data were collected along a 1500 km long transect stretching from northern to southern Norway. Different laser and tree height thresholds were tested in various combinations within an unsupervised classification of tree and nontree raster cells employing different cell sizes. Suitable initial cell sizes for the exclusion of large treeless areas as well as an optimal cell size for tree cell detection were determined. High rates of successful tree cell detection involved high levels of commission error at lower laser height thresholds, however, exceeding the 20 cm laser height threshold, the rates of commission error decreased substantially with a still satisfying rate of successful tree cell detection.

  2. Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra

    Science.gov (United States)

    Hicks Pries, Caitlin E.; Schuur, Edward A. G.; Natali, Susan M.; Crummer, K. Grace

    2016-02-01

    Old soil carbon (C) respired to the atmosphere as a result of permafrost thaw has the potential to become a large positive feedback to climate change. As permafrost thaws, quantifying old soil contributions to ecosystem respiration (Reco) and understanding how these contributions change with warming is necessary to estimate the size of this positive feedback. We used naturally occurring C isotopes (δ13C and Δ14C) to partition Reco into plant, young soil and old soil sources in a subarctic air and soil warming experiment over three years. We found that old soil contributions to Reco increased with soil temperature and Reco flux. However, the increase in the soil warming treatment was smaller than expected because experimentally warming the soils increased plant contributions to Reco by 30%. On the basis of these data, an increase in mean annual temperature from -5 to 0 °C will increase old soil C losses from moist acidic tundra by 35-55 g C m-2 during the growing season. The largest losses will probably occur where the plant response to warming is minimal.

  3. The Contribution of Moss to Plot-Based Spectral Signals in Moist Acidic Low Arctic Tundra

    Science.gov (United States)

    May, J. L.; Beamish, A. L.

    2015-12-01

    To determine the contribution of moss to peak season normalized difference index (NDVI) field measurement of intact vegetation communities were compared to communities with individual species and litter successively removed until only the moss layer remained. Spectral measurements (n=3) were collected using a field radiometer in five upland and five lowland plots in a moist acidic tundra ecosystem at the Imnaviat Creek Watershed, North Slope Alaska. After spectral measurements were taken individual species were removed in the same order in each plot by clipping them at the moss layer. As individual species were removed NDVI values decreased. Decreases were greatest when dwarf shrub species Salix richardsonii sb. pulchra and Betula nana were removed. Notable increases in NDVI were observed once standing litter was removed. The NDVI values of the moss layer were comparable to intact vegetation communities depending on the bryophyte species composition. This suggests that the NDVI signal of moss is largely masked by vascular species but represents a significant factor missing from overall, large-scale NDVI signals. The results of this study corroborate recent data that points to the mismatch between ground based NDVI and aerial and satellite derived NDVI. This preliminary case study provides a strong basis for better characterization of the contribution of moss to NDVI for improved correction of air and space borne imagery.

  4. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, David A.; Raab, Theodore K.; Parker , Melanie; Kelley , Scott T.; Brislawn, Colin J.; Jansson, Janet K.

    2015-07-21

    This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska, and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography, but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes, dominated by fermenters (Bacteroidetes and Firmicutes).

  5. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, David A.; Raab, Theodore K.; Parker , Melanie; Kelley , Scott T.; Brislawn, Colin J.; Jansson, Janet K.

    2015-08-01

    Summary This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes,

  6. Heterogeneity of carbon loss and its temperature sensitivity in East-European subarctic tundra soils.

    Science.gov (United States)

    Diáková, Kateřina; Čapek, Petr; Kohoutová, Iva; Mpamah, Promise A; Bárta, Jiří; Biasi, Christina; Martikainen, Pertti J; Šantrůčková, Hana

    2016-09-01

    Arctic peatlands store large stocks of organic carbon which are vulnerable to the climate change but their fate is uncertain. There is increasing evidence that a part of it will be lost as a result of faster microbial mineralization. We studied the vulnerability of 3500-5900 years old bare peat uplifted from permafrost layers by cryogenic processes to the surface of an arctic peat plateau. We aimed to find biotic and abiotic drivers of CLOSS from old peat and compare them with those of adjacent, young vegetated soils of the peat plateau and mineral tundra. The soils were incubated in laboratory at three temperatures (4°C, 12°C and 20°C) and two oxygen levels (aerobic, anaerobic). CLOSS was monitored and soil parameters (organic carbon quality, nutrient availability, microbial activity, biomass and stoichiometry, and extracellular oxidative and hydrolytic enzyme pools) were determined. We found that CLOSS from the old peat was constrained by low microbial biomass representing only 0.22% of organic carbon. CLOSS was only slightly reduced by the absence of oxygen and exponentially increased with temperature, showing the same temperature sensitivity under both aerobic and anaerobic conditions. We conclude that carbon in the old bare peat is stabilized by a combination of physical, chemical and biological controls including soil compaction, organic carbon quality, low microbial biomass and the absence of plants. PMID:27316560

  7. Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane.

    Science.gov (United States)

    Mardina, Primata; Li, Jinglin; Patel, Sanjay K S; Kim, In-Won; Lee, Jung-Kul; Selvaraj, Chandrabose

    2016-07-28

    Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30°C, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions. PMID:27012239

  8. Experimental Evidence that Fungi are Dominant Microbes in Carbon Content and Growth Response to Added Soluble Organic Carbon in Moss-rich Tundra Soil.

    Science.gov (United States)

    Anderson, O Roger; Lee, Jee Min; McGuire, Krista

    2016-05-01

    Global warming significantly affects Arctic tundra, including permafrost thaw and soluble C release that may differentially affect tundra microbial growth. Using laboratory experiments, we report some of the first evidence for the effects of soluble glucose-C enrichment on tundra soil prokaryotes (bacteria and archaea) and fungi, with comparisons to microbial eukaryotes. Fungal increase in C-biomass was equivalent to 10% (w/w) of the added glucose-C, and for prokaryote biomass 2% (w/w), the latter comparable to prior published results. The C-gain after 14 d was 1.3 mg/g soil for fungi, and ~200 μg/g for prokaryotes.

  9. Geographic and seasonal variation of dissolved methane and aerobic methane oxidation in Alaskan lakes

    Science.gov (United States)

    Martinez-Cruz, K.; Sepulveda-Jauregui, A.; Anthony, K. Walter; Thalasso, F.

    2015-08-01

    Methanotrophic bacteria play an important role oxidizing a significant fraction of methane (CH4) produced in lakes. Aerobic CH4 oxidation depends mainly on lake CH4 and oxygen (O2) concentrations, in such a manner that higher MO rates are usually found at the oxic/anoxic interface, where both molecules are present. MO also depends on temperature, and via methanogenesis, on organic carbon input to lakes, including from thawing permafrost in thermokarst (thaw)-affected lakes. Given the large variability in these environmental factors, CH4 oxidation is expected to be subject to large seasonal and geographic variations, which have been scarcely reported in the literature. In the present study, we measured CH4 oxidation rates in 30 Alaskan lakes along a north-south latitudinal transect during winter and summer with a new field laser spectroscopy method. Additionally, we measured dissolved CH4 and O2 concentrations. We found that in the winter, aerobic CH4 oxidation was mainly controlled by the dissolved O2 concentration, while in the summer it was controlled primarily by the CH4 concentration, which was scarce compared to dissolved O2. The permafrost environment of the lakes was identified as another key factor. Thermokarst (thaw) lakes formed in yedoma-type permafrost had significantly higher CH4 oxidation rates compared to other thermokarst and non-thermokarst lakes formed in non-yedoma permafrost environments. As thermokarst lakes formed in yedoma-type permafrost have been identified to receive large quantities of terrestrial organic carbon from thaw and subsidence of the surrounding landscape into the lake, confirming the strong coupling between terrestrial and aquatic habitats and its influence on CH4 cycling.

  10. Influence of fire frequency on carbon consumption in Alaskan blackspruce forests

    Science.gov (United States)

    Hoy, E.; Kasischke, E. S.

    2014-12-01

    Increasing temperatures and drier conditions within the boreal forests of Alaska have resulted in increases in burned area and fire frequency, which alter carbon storage and emissions. In particular, analyses of satellite remote sensing data showed that >20% of the area impacted by fires in interior Alaska occurred in areas that had previously burned since 1950 (e.g., short to intermediate interval fires). Field studies showed that in immature black spruce forests ~ 35 to 55 years old organic layers experienced deep burning regardless of topographic position or seasonality of burning, factors that control depth of burning in mature black spruce forests. Here, refinements were made to a carbon consumption model to account for variations in fuel loads and fraction of carbon consumed associated with fire frequency based on quantifying burned area in recently burned sites using satellite imagery. An immature black spruce (Picea mariana) fuel type (including stands of ~0-50 years) was developed which contains new ground-layer carbon consumption values in order to more accurately account for differences between various age classes of black spruce forest. Both versions of the model were used to assess carbon consumption during 100 fire events (over 4.4 x 10^6 ha of burned area) from two recent ultra-large fire years (2004 and 2005). Using the improved model to better attribute fuel type and consumption resulted in higher ground-layer carbon consumption (4.9% in 2004 and 6.8% in 2005) than previously estimated. These adjustments in ground-layer burning resulted in total carbon consumption within 2004 and 2005 of 63.5 and 42.0 Tg of carbon, respectively. Results from this research could be incorporated into larger scale modeling efforts to better assess changes in the climate-fire-vegetation dynamics in interior Alaskan boreal forests, and to understand the impacts of these changes on carbon consumption and emissions.

  11. An estimate of carbon emissions from 2004 wildfires across Alaskan Yukon River Basin

    Directory of Open Access Journals (Sweden)

    Liu Shuguang

    2007-12-01

    Full Text Available Abstract Background Wildfires are an increasingly important component of the forces that drive the global carbon (C cycle and climate change as progressive warming is expected in boreal areas. This study estimated C emissions from the wildfires across the Alaskan Yukon River Basin in 2004. We spatially related the firescars to land cover types and defined the C fractions of aboveground biomass and the ground layer (referring to the top 15 cm organic soil layer only in this paper consumed in association with land cover types, soil drainage classes, and the C stocks in the ground layer. Results The fires led to a burned area of 26,500 km2 and resulted in the total C emission of 81.1 ± 13.6 Tg (Tg, Teragram; 1 Tg = 1012 g or 3.1 ± 0.7 kg C m-2 burned. Of the total C emission, about 73% and 27% could be attributed to the consumption of the ground layer and aboveground biomass, respectively. Conclusion The predominant contribution of the ground layer to the total C emission implies the importance of ground fuel management to the control of wildfires and mitigation of C emissions. The magnitude of the total C emission depends on fire extent, while the C loss in kg C m-2 burned is affected strongly by the ground layer and soil drainage condition. The significant reduction in the ground layer by large fires may result in profound impacts on boreal ecosystem services with an increase in feedbacks between wildfires and climate change.

  12. Temperature calibration and phylogenetically distinct distributions for freshwater alkenones: Evidence from northern Alaskan lakes

    Science.gov (United States)

    Longo, William M.; Theroux, Susanna; Giblin, Anne E.; Zheng, Yinsui; Dillon, James T.; Huang, Yongsong

    2016-05-01

    Alkenones are a class of unsaturated long-chain ketone biomarkers that have been used to reconstruct sea surface temperature and, more recently, continental temperature, by way of alkenone unsaturation indices (e.g. U37K and U37K‧). Alkenones are frequently found in brackish and saline lakes, however species effects confound temperature reconstructions when multiple alkenone-producing species with different temperature responses are present. Interestingly, available genetic data indicate that numerous freshwater lakes host a distinct phylotype of alkenone-producing haptophyte algae (the Group I or Greenland phylotype), providing evidence that species effects may be diminished in freshwater lakes. These findings encourage further investigation of alkenone paleotemperature proxies in freshwater systems. Here, we investigated lakes from northern Alaska (n = 35) and show that alkenones commonly occurred in freshwater lakes, where they featured distinct distributions, characterized by dominant C37:4 alkenones and a series of tri-unsaturated alkenone isomers. The distributions were characteristic of Group I-type alkenone distributions previously identified in Greenland and North America. Our analysis of suspended particulate matter from Toolik Lake (68° 38‧N, 149° 36‧W) yielded the first in situ freshwater U37K calibration (U37K = 0.021 * T - 0.68; r2 = 0.85; n = 52; RMSE = ±1.37 °C). We explored the environmental significance of the tri-unsaturated isomers using our northern Alaskan lakes dataset in conjunction with new data from haptophyte cultures and Canadian surface sediments. Our results show that these temperature-sensitive isomers are biomarkers for the Group I phylotype and indicators of multiple-species effects. Together, these findings highlight freshwater lakes as valuable targets for continental alkenone-based paleotemperature reconstructions and demonstrate the significance of the recently discovered tri-unsaturated isomers.

  13. Assessing the spatial variability in peak season CO2 exchange characteristics across the Arctic tundra using a light response curve parameterization

    Directory of Open Access Journals (Sweden)

    H. N. Mbufong

    2014-05-01

    Full Text Available This paper aims to assess the functional and spatial variability in the response of CO2 exchange to irradiance across the Arctic tundra during peak season using light response curve (LRC parameters. This investigation allows us to better understand the future response of Arctic tundra under climatic change. Data was collected using the micrometeorological eddy covariance technique from 12 circumpolar Arctic tundra sites, in the range of 64–74° N. The LRCs were generated for 14 days with peak net ecosystem exchange (NEE using an NEE -irradiance model. Parameters from LRCs represent site specific traits and characteristics describing: (a NEE at light saturation (Fcsat, (b dark respiration (Rd, (c light use efficiency (α, (d NEE when light is at 1000 μmol m−2 s−1 (Fc1000, (e potential photosynthesis at light saturation (Psat and (f the light compensation point (LCP. Parameterization of LRCs was successful in predicting CO2 flux dynamics across the Arctic tundra. Yet we did not find any trends in LRC parameters across the whole Arctic tundra but there were indications for temperature and latitudinal differences within sub-regions like Russia and Greenland. Together, LAI and July temperature had a high explanatory power of the variance in assimilation parameters (Fcsat, Fc1000 and Psat, thus illustrating the potential for upscaling CO2 exchange for the whole Arctic tundra. Dark respiration was more variable and less correlated to environmental drivers than was assimilation parameters. Thus, indicating the inherent need to include other parameters such as nutrient availability, substrate quantity and quality in flux monitoring activities.

  14. Evaluating CO2 and CH4 dynamics of Alaskan ecosystems during the Holocene Thermal Maximum

    Science.gov (United States)

    He, Yujie; Jones, Miriam C.; Zhuang, Qianlai; Bochicchio, Christopher; Felzer, B. S.; Mason, Erik; Yu, Zicheng

    2014-01-01

    The Arctic has experienced much greater warming than the global average in recent decades due to polar amplification. Warming has induced ecological changes that have impacted climate carbon-cycle feedbacks, making it important to understand the climate and vegetation controls on carbon (C) dynamics. Here we used the Holocene Thermal Maximum (HTM, 11–9 ka BP, 1 ka BP = 1000 cal yr before present) in Alaska as a case study to examine how ecosystem Cdynamics responded to the past warming climate using an integrated approach of combining paleoecological reconstructions and ecosystem modeling. Our paleoecological synthesis showed expansion of deciduous broadleaf forest (dominated by Populus) into tundra and the establishment of boreal evergreen needleleaf and mixed forest during the second half of the HTM under a warmer- and wetter-than-before climate, coincident with the occurrence of the highest net primary productivity, cumulative net ecosystem productivity, soil C accumulation and CH4 emissions. These series of ecological and biogeochemical shifts mirrored the solar insolation and subsequent temperature and precipitation patterns during HTM, indicating the importance of climate controls on C dynamics. Our simulated regional estimate of CH4 emission rates from Alaska during the HTM ranged from 3.5 to 6.4 Tg CH4 yr−1 and highest annual NPP of 470 Tg C yr−1, significantly higher than previously reported modern estimates. Our results show that the differences in static vegetation distribution maps used in simulations of different time slices have greater influence on modeled C dynamics than climatic fields within each time slice, highlighting the importance of incorporating vegetation community dynamics and their responses to climatic conditions in long-term biogeochemical modeling.

  15. The transcriptional response of microbial communities in thawing Alaskan permafrost soils

    Directory of Open Access Journals (Sweden)

    M J L Coolen

    2015-03-01

    Full Text Available Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gases, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after eleven days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw.

  16. Geomorphological and geochemistry changes in permafrost after the 2002 tundra wildfire in Kougarok, Seward Peninsula, Alaska

    Science.gov (United States)

    Iwahana, Go; Harada, Koichiro; Uchida, Masao; Tsuyuzaki, Shiro; Saito, Kazuyuki; Narita, Kenji; Kushida, Keiji; Hinzman, Larry D.

    2016-09-01

    Geomorphological and thermohydrological changes to tundra, caused by a wildfire in 2002 on the central Seward Peninsula of Alaska, were investigated as a case study for understanding the response from ice-rich permafrost terrain to surface disturbance. Frozen and unfrozen soil samples were collected at burned and unburned areas, and then water isotope geochemistry and cryostratigraphy of the active layer and near-surface permafrost were analyzed to investigate past hydrological and freeze/thaw conditions and how this information could be recorded within the permafrost. The development of thermokarst subsidence due to ice wedge melting after the fire was clear from analyses of historical submeter-resolution remote sensing imagery, long-term monitoring of thermohydrological conditions within the active layer, in situ surveys of microrelief, and geochemical signals recorded in the near-surface permafrost. The resulting polygonal relief coincided with depression lines along an underground ice wedge network, and cumulative subsidence to 2013 was estimated as at least 10.1 to 12.1 cm (0.9-1.1 cm/year 11 year average). Profiles of water geochemistry in the ground indicated mixing or replenishment of older permafrost water with newer meteoric water, as a consequence of the increase in active layer thickness due to wildfire or past thaw event. Our geocryological analysis of cores suggests that permafrost could be used to reconstruct the permafrost degradation history for the study site. Distinct hydrogen and oxygen isotopic compositions above the Global Meteoric Water Line were found for water from these sites where permafrost degradation with geomorphological change and prolonged surface inundation were suggested.

  17. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia.

    Science.gov (United States)

    Berner, Logan T; Beck, Pieter S A; Bunn, Andrew G; Goetz, Scott J

    2013-11-01

    Russia's boreal (taiga) biome will likely contract sharply and shift northward in response to 21st century climatic change, yet few studies have examined plant response to climatic variability along the northern margin. We quantified climate dynamics, trends in plant growth, and growth-climate relationships across the tundra shrublands and Cajander larch (Larix cajanderi Mayr.) woodlands of the Kolyma river basin (657 000 km(2) ) in northeastern Siberia using satellite-derived normalized difference vegetation indices (NDVI), tree ring-width measurements, and climate data. Mean summer temperatures (Ts ) increased 1.0 °C from 1938 to 2009, though there was no trend (P > 0.05) in growing year precipitation or climate moisture index (CMIgy ). Mean summer NDVI (NDVIs ) increased significantly from 1982 to 2010 across 20% of the watershed, primarily in cold, shrub-dominated areas. NDVIs positively correlated (P watershed (r = 0.52 ± 0.09, mean ± SD), principally in cold areas, and with CMIgy across 9% of the watershed (r = 0.45 ± 0.06), largely in warm areas. Larch ring-width measurements from nine sites revealed that year-to-year (i.e., high-frequency) variation in growth positively correlated (P  0.05), which significantly correlated with NDVIs (r = 0.44, P < 0.05, 1982-2007). Both satellite and tree-ring analyses indicated that plant growth was constrained by both low temperatures and limited moisture availability and, furthermore, that warming enhanced growth. Impacts of future climatic change on forests near treeline in Arctic Russia will likely be influenced by shifts in both temperature and moisture, which implies that projections of future forest distribution and productivity in this area should take into account the interactions of energy and moisture limitations. PMID:23813896

  18. Permafrost collapse alters soil carbon stocks, respiration, CH4 , and N2O in upland tundra.

    Science.gov (United States)

    Abbott, Benjamin W; Jones, Jeremy B

    2015-12-01

    Release of greenhouse gases from thawing permafrost is potentially the largest terrestrial feedback to climate change and one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Some of this uncertainty stems from abrupt thaw processes known as thermokarst (permafrost collapse due to ground ice melt), which alter controls on carbon and nitrogen cycling and expose organic matter from meters below the surface. Thermokarst may affect 20-50% of tundra uplands by the end of the century; however, little is known about the effect of different thermokarst morphologies on carbon and nitrogen release. We measured soil organic matter displacement, ecosystem respiration, and soil gas concentrations at 26 upland thermokarst features on the North Slope of Alaska. Features included the three most common upland thermokarst morphologies: active-layer detachment slides, thermo-erosion gullies, and retrogressive thaw slumps. We found that thermokarst morphology interacted with landscape parameters to determine both the initial displacement of organic matter and subsequent carbon and nitrogen cycling. The large proportion of ecosystem carbon exported off-site by slumps and slides resulted in decreased ecosystem respiration postfailure, while gullies removed a smaller portion of ecosystem carbon but strongly increased respiration and N2 O concentration. Elevated N2 O in gully soils persisted through most of the growing season, indicating sustained nitrification and denitrification in disturbed soils, representing a potential noncarbon permafrost climate feedback. While upland thermokarst formation did not substantially alter redox conditions within features, it redistributed organic matter into both oxic and anoxic environments. Across morphologies, residual organic matter cover, and predisturbance respiration explained 83% of the variation in respiration response. Consistent differences between upland thermokarst types may contribute to the

  19. Inter-annual Variability in Tundra Phenology Captured with Digital Photography

    Science.gov (United States)

    Melendez, M.; Vargas, S. A.; Tweedie, C. E.

    2012-12-01

    The need to improve multi-scale phenological monitoring of arctic terrestrial ecosystems has been a persistent research challenge. Although there has been a range of advances in remote sensing capacities over the past decade, these present costly, and sometimes logistically challenging and technically demanding solutions for arctic terrestrial ecosystems. In this poster and undergraduate research project, we demonstrate how seasonal and inter-annual variability in landscape phenology can be derived for multiple tundra ecosystems using a low-cost and low-tech kite aerial photography (KAP) system that has been developed as a contribution to the US Arctic Observing Network. Seasonal landscape phenology was observed over the Networked Info-Mechanical Systems (NIMS) grids (2 x 50 meters) located in Barrow and Atqasuk, Alaska using imagery acquired with KAP and analyzed for a range of greenness indices. Preliminary results showed that the 2G-RB greenness index correlated the best with NDVI values calculated from ground based hyperspectral reflectance measurements. 2012 had the highest 2G-RB greenness index values for both Barrow and Atqasuk sites, which correlated well with NDVI values acquired from ground-based hyperspectral reflectance measurements. Wet vegetation types showed the most interannual variability at the Atqasuk site based on the 2G-RB greenness index while in Barrow the moist vegetation types showed the most interannual variability. These results show that vegetation indices similar to those acquired from hyperspectral remote sensing platforms can be derived using low-cost and low-tech techniques. Further analysis using these same techniques is required in order to link relatively small scale vegetation dynamics measured with KAP with those documented at large scales using satellite imagery.

  20. Organic matter composition and stabilization in a polygonal tundra soil of the Lena-Delta

    Directory of Open Access Journals (Sweden)

    S. Höfle

    2012-09-01

    Full Text Available This study investigated soil organic matter (OM composition of differently stabilized soil OM fractions in the active layer of a polygonal tundra soil in the Lena-Delta, Russia by applying density and particle-size fractionation combined with qualitative OM analysis using solid state 13C nuclear magnetic resonance spectroscopy, and lipid analysis combined with 14C analysis. Bulk soil OM was mainly composed of plant-derived, little decomposed material with surprisingly low and strongly increasing apparent 14C ages with active layer depth suggesting slow microbial OM transformation in cold climate. Most soil organic carbon was stored in clay and fine silt fractions (< 6.3 μm, which were composed of little decomposed plant material indicated by the dominance of long n-alkane and n-fatty acid compounds and low alkyl/O-alkyl C ratios. Organo-mineral associations, which are suggested to be a key mechanism of OM stabilization in temperate soils, seem to be less important in the active layer as the mainly plant-derived clay and fine silt sized OM was surprisingly "young" with 14C contents similar to the bulk soil values. Furthermore these fractions contained less organic carbon compared to density fractionated OM occluded in soil aggregates – a further important OM stabilization mechanism in temperate soils restricting accessibility of microorganisms. This process seems to be important at greater active layer depth where particulate OM, occluded in soil aggregates, was "older" than free particulate OM.

  1. Spaceborne potential for examining taiga-tundra ecotone form and vulnerability

    Science.gov (United States)

    Montesano, Paul M.; Sun, Guoqing; Dubayah, Ralph O.; Ranson, K. Jon

    2016-07-01

    In the taiga-tundra ecotone (TTE), site-dependent forest structure characteristics can influence the subtle and heterogeneous structural changes that occur across the broad circumpolar extent. Such changes may be related to ecotone form, described by the horizontal and vertical patterns of forest structure (e.g., tree cover, density, and height) within TTE forest patches, driven by local site conditions, and linked to ecotone dynamics. The unique circumstance of subtle, variable, and widespread vegetation change warrants the application of spaceborne data including high-resolution (vertical and horizontal components of ecotone form. We demonstrate the potential of spaceborne data for integrating forest height and density to assess TTE form at the scale of forest patches across the circumpolar biome by (1) mapping forest patches in study sites along the TTE in northern Siberia with a multi-resolution suite of spaceborne data and (2) examining the uncertainty of forest patch height from this suite of data across sites of primarily diffuse TTE forms. Results demonstrate the opportunities for improving patch-scale spaceborne estimates of forest height, the vertical component of TTE form, with HRSI. The distribution of relative maximum height uncertainty based on prediction intervals is centered at ˜ 40 %, constraining the use of height for discerning differences in forest patches. We discuss this uncertainty in light of a conceptual model of general ecotone forms and highlight how the uncertainty of spaceborne estimates of height can contribute to the uncertainty in identifying TTE forms. A focus on reducing the uncertainty of height estimates in forest patches may improve depiction of TTE form, which may help explain variable forest responses in the TTE to climate change and the vulnerability of portions of the TTE to forest structure change.

  2. Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra

    Directory of Open Access Journals (Sweden)

    Igor V. Polyakov

    2013-08-01

    Full Text Available Vegetation productivity trends for the Arctic tundra are updated for the 1982–2011 period and examined in the context of land surface temperatures and coastal sea ice. Understanding mechanistic links between vegetation and climate parameters contributes to model advancements that are necessary for improving climate projections. This study employs remote sensing data: Global Inventory Modeling and Mapping Studies (GIMMS Maximum Normalized Difference Vegetation Index (MaxNDVI, Special Sensor Microwave Imager (SSM/I sea-ice concentrations, and Advanced Very High Resolution Radiometer (AVHRR radiometric surface temperatures. Spring sea ice is declining everywhere except in the Bering Sea, while summer open water area is increasing throughout the Arctic. Summer Warmth Index (SWI—sum of degree months above freezing trends from 1982 to 2011 are positive around Beringia but are negative over Eurasia from the Barents to the Laptev Seas and in parts of northern Canada. Eastern North America continues to show increased summer warmth and a corresponding steady increase in MaxNDVI. Positive MaxNDVI trends from 1982 to 2011 are generally weaker compared to trends from 1982–2008. So to better understand the changing trends, break points in the time series were quantified using the Breakfit algorithm. The most notable break points identify declines in SWI since 2003 in Eurasia and 1998 in Western North America. The Time Integrated NDVI (TI-NDVI, sum of the biweekly growing season values of MaxNDVI has declined since 2005 in Eurasia, consistent with SWI declines. Summer (June–August sea level pressure (slp averages from 1999–2011 were compared to those from 1982–1998 to reveal higher slp over Greenland and the western Arctic and generally lower pressure over the continental Arctic in the recent period. This suggests that the large-scale circulation is likely a key contributor to the cooler temperatures over Eurasia through increased summer cloud

  3. Distribution of global fallouts cesium-137 in taiga and tundra catenae at the Ob River basin

    Science.gov (United States)

    Semenkov, I. N.; Usacheva, A. A.; Miroshnikov, A. Yu.

    2015-03-01

    The classification of soil catenae at the Ob River basin is developed and applied. This classification reflects the diverse geochemical conditions that led to the formation of certain soil bodies, their combinations and the migration fields of chemical elements. The soil and geochemical diversity of the Ob River basin catenae was analyzed. The vertical and lateral distribution of global fallouts cesium-137 was studied using the example of the four most common catenae types in Western Siberia tundra and taiga. In landscapes of dwarf birches and dark coniferous forests on gleysols, cryosols, podzols, and cryic-stagnosols, the highest 137Cs activity density and specific activity are characteristic of the upper soil layer of over 30% ash, while the moss-grass-shrub cover is characterized by low 137Cs activity density and specific activity. In landscapes of dwarf birches and pine woods on podzols, the maximum specific activity of cesium-137 is typical for moss-grass-shrub cover, while the maximum reserves are concentrated in the upper soil layer of over 30% ash. Bog landscapes and moss-grass-shrub cover are characterized by a minimum activity of 137Cs, and its reserves in soil generally decrease exponentially with depth. The cesium-137 penetration depth increases in oligotrophic histosols from northern to middle taiga landscapes from 10-15 to 40 cm. 137Cs is accumulated in oligotrophic histosols for increases in pH from 3.3 to 4.0 and in concretionary interlayers of pisoplinthic-cryic-histic-stagnosols. Cryogenic movement, on the one hand, leads to burying organic layers enriched in 137Cs and, on the other hand, to deducing specific activity when mixed with low-active material from lower soil layers.

  4. Permafrost collapse alters soil carbon stocks, respiration, CH4 , and N2O in upland tundra.

    Science.gov (United States)

    Abbott, Benjamin W; Jones, Jeremy B

    2015-12-01

    Release of greenhouse gases from thawing permafrost is potentially the largest terrestrial feedback to climate change and one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Some of this uncertainty stems from abrupt thaw processes known as thermokarst (permafrost collapse due to ground ice melt), which alter controls on carbon and nitrogen cycling and expose organic matter from meters below the surface. Thermokarst may affect 20-50% of tundra uplands by the end of the century; however, little is known about the effect of different thermokarst morphologies on carbon and nitrogen release. We measured soil organic matter displacement, ecosystem respiration, and soil gas concentrations at 26 upland thermokarst features on the North Slope of Alaska. Features included the three most common upland thermokarst morphologies: active-layer detachment slides, thermo-erosion gullies, and retrogressive thaw slumps. We found that thermokarst morphology interacted with landscape parameters to determine both the initial displacement of organic matter and subsequent carbon and nitrogen cycling. The large proportion of ecosystem carbon exported off-site by slumps and slides resulted in decreased ecosystem respiration postfailure, while gullies removed a smaller portion of ecosystem carbon but strongly increased respiration and N2 O concentration. Elevated N2 O in gully soils persisted through most of the growing season, indicating sustained nitrification and denitrification in disturbed soils, representing a potential noncarbon permafrost climate feedback. While upland thermokarst formation did not substantially alter redox conditions within features, it redistributed organic matter into both oxic and anoxic environments. Across morphologies, residual organic matter cover, and predisturbance respiration explained 83% of the variation in respiration response. Consistent differences between upland thermokarst types may contribute to the

  5. Correlations between different acidity forms in amorphous loamy soils of the tundra and taiga zones

    Science.gov (United States)

    Shamrikova, E. V.; Sokolova, T. A.

    2013-05-01

    Pair correlation coefficients ( r) between the acidity parameters for the main genetic horizons of soddy-podzolic soils (SPSs), typical podzolic soils (TPSs), gley-podzolic soils (GPSs), and tundra surfacegley soils (TSGSs) have been calculated on the basis of a previously developed database. A significant direct linear correlation has been revealed between the pHwater and pHKCl values in the organic and eluvial horizons of each soil, but the degree of correlation decreased when going from the less acidic SPSs to the more acidic soils of other taxons. This could be related to the fact that, under strongly acid conditions, extra Al3+ was dissolved in the KCl solutions from complex compounds in the organic horizons and from Al hydroxide interlayers in the soil chlorites. No significant linear correlation has been found between the exchangeable acidity ( H exch) and the activity of the [H]+ ions in the KCl extract ( a(H+)KCl) calculated per unit of mass in the organic horizons of the SPSs, but it has been revealed in the organic horizons of the other soils because of the presence of the strongest organic acids in their KCl extracts. The high r values between the H exch and a(H+)KCl in all the soils of the taiga zones have been related to the common source and composition of the acidic components. The correlation between the exchangeable and total ( H tot) acidities in the organic horizons of the podzolic soils has been characterized by high r values because of the common source of the acidity: H+ and probably Al3+ ions located on the functional groups of organic acids. High r values between the H exch and a(H+)KCl have been observed in the mineral horizons of all the soils, because the Al3+ hydroxo complexes occurring on the surface and in the interlayer spaces of the clay minerals were sources of both acidity forms.

  6. Invasion of terrestrial enchytraeids into two postglacial tundras: North-eastern Greenland and the Arctic Archipelago of Canada (Enchytraeidae, Oligochaeta)

    DEFF Research Database (Denmark)

    Christensen, Bent; Dózsa-Farkas, Klára

    2006-01-01

    that of potential source regions indicating either strong selection or varied dispersal ability. It appears that the Archipelago is influenced mainly from North America and North-eastern Greenland from Europe while the specialized fauna of the ancient Beringian tundra is of minor importance. The two alternative...... scenarios: (a) survival of a prepleistocene fauna in protected refugia within the area or (b) a postglacial re-invasion from outside are discussed, but the available data do not discriminate between these two possibilities. A total of 24 terrestrial enchytraeid taxa are recorded of which 22 are identified...

  7. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra

    OpenAIRE

    Palmer, Katharina; Biasi, Christina; Horn, Marcus A.

    2011-01-01

    Cryoturbated peat circles (that is, bare surface soil mixed by frost action; pH 3–4) in the Russian discontinuous permafrost tundra are nitrate-rich ‘hotspots' of nitrous oxide (N2O) emissions in arctic ecosystems, whereas adjacent unturbated peat areas are not. N2O was produced and subsequently consumed at pH 4 in unsupplemented anoxic microcosms with cryoturbated but not in those with unturbated peat soil. Nitrate, nitrite and acetylene stimulated net N2O production of both soils in anoxic ...

  8. Tissue Distribution of Polychlorinated Biphenyls and Organochlorine Pesticides and Potential Toxicity to Alaskan Northern Fur Seals Assessed Using PCBs Congener Specific Mode of Action Schemes

    Science.gov (United States)

    The concentrations of 145 polychlorinated biphenyl (PCB) congeners were measured using gas chromatography-ion trap mass spectrometry in 8 different tissues (blubber, brain, heart, kidney, liver, lung, muscle, and reproductive tissues) of 10 Alaskan northern fur seals. The mean concentrations of bot...

  9. Alaskan Superintendent Turnover: Is There a Correlation between Anticipated Turnover and the Organizational Culture of School Boards in the State of Alaska

    Science.gov (United States)

    Herbert, David M. Q.

    2012-01-01

    The purpose of this study is to determine if a particular type of school board culture is predictive of Alaskan public school superintendents' intention to leave their positions. Cameron and Quinn's four types of organizational culture--hierarchy, market, clan, and adhocracy--serve as the model for the study, which surveyed Alaska's…

  10. The role of endophytic methane oxidizing bacteria in submerged Sphagnum in determining methane emissions of Northeastern Siberian tundra

    Directory of Open Access Journals (Sweden)

    A. J. Dolman

    2010-11-01

    Full Text Available The behavior of tundra ecosystems is critical in the global carbon cycle due to their wet soils and large stores of carbon. Recently, cooperation was observed between methanotrophic bacteria and submerged Sphagnum, which reduces methane emissions in this type of vegetation and supplies CO2 for photosynthesis to the plant. Although proven in the lab, the differences that exist in methane emissions from inundated vegetation types with or without Sphagnum have not been linked to these bacteria before. To further investigate the importance of these bacteria, chamber flux measurements, microbial analysis and flux modeling were used to show that methane emissions in a submerged Sphagnum/sedge vegetation type were 50% lower compared to an inundated sedge vegetation without Sphagnum. From examining the results of the measurements, incubation experiments and flux modeling, it was found that it is likely that this difference is due to, for a large part, oxidation of methane below the water table by these endophytic bacteria. This result is important when upscaled spatially since oxidation by these bacteria plays a large role in 15% of the net methane emissions, while at the same time they promote photosynthesis of Sphagnum, and thus carbon storage. Future changes in the spread of submerged Sphagnum, in combination with the response of these bacteria to a warmer climate, could be an important factor in predicting future greenhouse gas exchange from tundra.

  11. Spatially explicit fire-climate history of the boreal forest-tundra (Eastern Canada) over the last 2000 years.

    Science.gov (United States)

    Payette, Serge; Filion, Louise; Delwaide, Ann

    2008-07-12

    Across the boreal forest, fire is the main disturbance factor and driver of ecosystem changes. In this study, we reconstructed a long-term, spatially explicit fire history of a forest-tundra region in northeastern Canada. We hypothesized that current occupation of similar topographic and edaphic sites by tundra and forest was the consequence of cumulative regression with time of forest cover due to compounding fire and climate disturbances. All fires were mapped and dated per 100 year intervals over the last 2,000 years using several fire dating techniques. Past fire occurrences and post-fire regeneration at the northern forest limit indicate 70% reduction of forest cover since 1800 yr BP and nearly complete cessation of forest regeneration since 900 yr BP. Regression of forest cover was particularly important between 1500s-1700s and possibly since 900 yr BP. Although fire frequency was very low over the last 100 years, each fire event was followed by drastic removal of spruce cover. Contrary to widespread belief of northward boreal forest expansion due to recent warming, lack of post-fire recovery during the last centuries, in comparison with active tree regeneration more than 1,000 years ago, indicates that the current climate does not favour such expansion.

  12. Chamber and Diffusive Based Carbon Flux Measurements in an Alaskan Arctic Ecosystem

    Science.gov (United States)

    Wilkman, E.; Oechel, W. C.; Zona, D.

    2013-12-01

    Eric Wilkman, Walter Oechel, Donatella Zona Comprising an area of more than 7 x 106 km2 and containing over 11% of the world's organic matter pool, Arctic terrestrial ecosystems are vitally important components of the global carbon cycle, yet their structure and functioning are sensitive to subtle changes in climate and many of these functional changes can have large effects on the atmosphere and future climate regimes (Callaghan & Maxwell 1995, Chapin et al. 2002). Historically these northern ecosystems have acted as strong C sinks, sequestering large stores of atmospheric C due to photosynthetic dominance in the short summer season and low rates of decomposition throughout the rest of the year as a consequence of cold, nutrient poor, and generally water-logged conditions. Currently, much of this previously stored carbon is at risk of loss to the atmosphere due to accelerated soil organic matter decomposition in warmer future climates (Grogan & Chapin 2000). Although there have been numerous studies on Arctic carbon dynamics, much of the previous soil flux work has been done at limited time intervals, due to both the harshness of the environment and labor and time constraints. Therefore, in June of 2013 an Ultraportable Greenhouse Gas Analyzer (UGGA - Los Gatos Research Inc.) was deployed in concert with the LI-8100A Automated Soil Flux System (LI-COR Biosciences) in Barrow, AK to gather high temporal frequency soil CO2 and CH4 fluxes from a wet sedge tundra ecosystem. An additional UGGA in combination with diffusive probes, installed in the same location, provides year-round soil and snow CO2 and CH4 concentrations. When used in combination with the recently purchased AlphaGUARD portable radon monitor (Saphymo GmbH), continuous soil and snow diffusivities and fluxes of CO2 and CH4 can be calculated (Lehmann & Lehmann 2000). Of particular note, measuring soil gas concentration over a diffusive gradient in this way allows one to separate both net production and

  13. Detection and Segmentation of Small Trees in the Forest-Tundra Ecotone Using Airborne Laser Scanning

    Directory of Open Access Journals (Sweden)

    Marius Hauglin

    2016-05-01

    Full Text Available Due to expected climate change and increased focus on forests as a potential carbon sink, it is of interest to map and monitor even marginal forests where trees exist close to their tolerance limits, such as small pioneer trees in the forest-tundra ecotone. Such small trees might indicate tree line migrations and expansion of the forests into treeless areas. Airborne laser scanning (ALS has been suggested and tested as a tool for this purpose and in the present study a novel procedure for identification and segmentation of small trees is proposed. The study was carried out in the Rollag municipality in southeastern Norway, where ALS data and field measurements of individual trees were acquired. The point density of the ALS data was eight points per m2, and the field tree heights ranged from 0.04 to 6.3 m, with a mean of 1.4 m. The proposed method is based on an allometric model relating field-measured tree height to crown diameter, and another model relating field-measured tree height to ALS-derived height. These models are calibrated with local field data. Using these simple models, every positive above-ground height derived from the ALS data can be related to a crown diameter, and by assuming a circular crown shape, this crown diameter can be extended to a crown segment. Applying this model to all ALS echoes with a positive above-ground height value yields an initial map of possible circular crown segments. The final crown segments were then derived by applying a set of simple rules to this initial “map” of segments. The resulting segments were validated by comparison with field-measured crown segments. Overall, 46% of the field-measured trees were successfully detected. The detection rate increased with tree size. For trees with height >3 m the detection rate was 80%. The relatively large detection errors were partly due to the inherent limitations in the ALS data; a substantial fraction of the smaller trees was hit by no or just a few

  14. Impacts of introduced Rangifer on ecosystem processes of maritime tundra on subarctic islands

    Science.gov (United States)

    Ricca, Mark; Miles, A. Keith; Van Vuren, Dirk H.; Eviner, Valerie T.

    2016-01-01

    Introductions of mammalian herbivores to remote islands without predators provide a natural experiment to ask how temporal and spatial variation in herbivory intensity alter feedbacks between plant and soil processes. We investigated ecosystem effects resulting from introductions of Rangifer tarandus (hereafter “Rangifer”) to native mammalian predator- and herbivore-free islands in the Aleutian archipelago of Alaska. We hypothesized that the maritime tundra of these islands would experience either: (1) accelerated ecosystem processes mediated by positive feedbacks between increased graminoid production and rapid nitrogen cycling; or (2) decelerated processes mediated by herbivory that stimulated shrub domination and lowered soil fertility. We measured summer plant and soil properties across three islands representing a chronosequence of elapsed time post-Rangifer introduction (Atka: ~100 yr; Adak: ~50; Kagalaska: ~0), with distinct stages of irruptive population dynamics of Rangifer nested within each island (Atka: irruption, K-overshoot, decline, K-re-equilibration; Adak: irruption, K-overshoot; Kagalaska: initial introduction). We also measured Rangifer spatial use within islands (indexed by pellet group counts) to determine how ecosystem processes responded to spatial variation in herbivory. Vegetation community response to herbivory varied with temporal and spatial scale. When comparing temporal effects using the island chronosequence, increased time since herbivore introduction led to more graminoids and fewer dwarf-shrubs, lichens, and mosses. Slow-growingCladonia lichens that are highly preferred winter forage were decimated on both long-termRangifer-occupied islands. In addition, linear relations between more concentrated Rangifer spatial use and reductions in graminoid and forb biomass within islands added spatial heterogeneity to long-term patterns identified by the chronosequence. These results support, in part, the hypothesis that

  15. Is pollen morphology of Salix polaris affected by enhanced UV-B irradiation? Results from a field experiment in High Arctic tundra

    NARCIS (Netherlands)

    D. Yeloff; P. Blokker; P. Boelen; J. Rozema

    2008-01-01

    This study tested the hypothesis that the thickness of the pollen wall will increase in response to enhanced UV-B irradiation, by examining the effect of enhanced UV-B irradiance on the pollen morphology of Salix polaris Wahlem. grown in a field experiment on the Arctic tundra of Svalbard. Measureme

  16. Research on dynamics of tundra ecosystems and their potential response to energy research development. Part II. Progress report, 1 April 1982-31 March 1983

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.

    1983-02-15

    Processes were studied by which phosphorus is replenished in the tundra soil solution following nutrient uptake, and how phosphorus solution concentration decreases following fertilizer addition. The fellfield and meadow soil represent the extremes of substrate conditions likely to be encountered in interior Alaska in terms of organic matter content.

  17. Plant and microbial uptake and allocation of organic and inorganic nitrogen related to plant growth forms and soil conditions at two subarctic tundra sites in Sweden

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Clemmensen, Karina Engelbrecht; Michelsen, Anders;

    2008-01-01

    In order to follow the uptake and allocation of N in different plant functional types and microbes in two tundra ecosystems differing in nutrient availability, we performed a 15Nlabeling experiment with three N forms and followed the partitioning of 15N label among plants, microorganisms and soil...

  18. Methane dynamics in the subarctic tundra: combining stable isotope analyses, plot- and ecosystem-scale flux measurements

    Science.gov (United States)

    Marushchak, M. E.; Friborg, T.; Biasi, C.; Herbst, M.; Johansson, T.; Kiepe, I.; Liimatainen, M.; Lind, S. E.; Martikainen, P. J.; Virtanen, T.; Soegaard, H.; Shurpali, N. J.

    2016-02-01

    Methane (CH4) fluxes were investigated in a subarctic Russian tundra site in a multi-approach study combining plot-scale data, ecosystem-scale eddy covariance (EC) measurements, and a fine-resolution land cover classification scheme for regional upscaling. The flux data as measured by the two independent techniques resulted in a seasonal (May-October 2008) cumulative CH4 emission of 2.4 (EC) and 3.7 g CH4 m-2 (manual chambers) for the source area representative of the footprint of the EC instruments. Upon upscaling for the entire study region of 98.6 km2, the chamber measured flux data yielded a regional flux estimate of 6.7 g CH4 m-2 yr-1. Our upscaling efforts accounted for the large spatial variability in the distribution of the various land cover types (LCTs) predominant at our study site. Wetlands with emissions ranging from 34 to 53 g CH4 m-2 yr-1 were the most dominant CH4-emitting surfaces. Emissions from thermokarst lakes were an order of magnitude lower, while the rest of the landscape (mineral tundra) was a weak sink for atmospheric methane. Vascular plant cover was a key factor in explaining the spatial variability of CH4 emissions among wetland types, as indicated by the positive correlation of emissions with the leaf area index (LAI). As elucidated through a stable isotope analysis, the dominant CH4 release pathway from wetlands to the atmosphere was plant-mediated diffusion through aerenchyma, a process that discriminates against 13C-CH4. The CH4 released to the atmosphere was lighter than that in the surface porewater, and δ13C in the emitted CH4 correlated negatively with the vascular plant cover (LAI). The mean value of δ13C obtained here for the emitted CH4, -68.2 ± 2.0 ‰, is within the range of values from other wetlands, thus reinforcing the use of inverse modelling tools to better constrain the CH4 budget. Based on the IPCC A1B emission scenario, a temperature increase of 6.1 °C relative to the present day has been predicted for the

  19. The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia

    Directory of Open Access Journals (Sweden)

    L. Kutzbach

    2007-06-01

    Full Text Available The exchange fluxes of carbon dioxide between wet arctic polygonal tundra and the atmosphere were investigated by the micrometeorological eddy covariance method. The investigation site was situated in the centre of the Lena River Delta in Northern Siberia (72°22' N, 126°30' E. The study region is characterized by a polar and distinctly continental climate, very cold and ice-rich permafrost and its position at the interface between the Eurasian continent and the Arctic Ocean. The soils at the site are characterized by high organic matter content, low nutrient availability and pronounced water logging. The vegetation is dominated by sedges and mosses. The micrometeorological campaigns were performed during the periods July–October 2003 and May–July 2004 which included the period of snow and soil thaw as well as the beginning of soil refreeze. The main CO2 exchange processes, the gross photosynthesis and the ecosystem respiration, were found to be of a generally low intensity. The gross photosynthesis accumulated to –432 g m−2 over the photosynthetically active period (June–September. The contribution of mosses to the gross photosynthesis was estimated to be about 40%. The diurnal trend of the gross photosynthesis was mainly controlled by the incoming photosynthetically active radiation. During midday the photosynthetic apparatus of the canopy was frequently near saturation and represented the limiting factor on gross photosynthesis. The synoptic weather conditions strongly affected the exchange fluxes of CO2 by changes in cloudiness, precipitation and pronounced changes of air temperature. The ecosystem respiration accumulated to +327 g m−2 over the photosynthetically active period, which corresponds to 76% of the CO2 uptake by photosynthesis. However, the ecosystem respiration continued at substantial rates during autumn when photosynthesis had ceased and the soils

  20. The southernmost Andean Mountain soils: a toposequence from Nothofagus Forest to Sub Antarctic Tundra at Ushuaia, Tierra del Fuego

    Science.gov (United States)

    Firme Sá, Mariana M.; Schaefer, Carlos E.; Loureiro, Diego C.; Simas, Felipe N.; Francelino, Marcio R.; Senra, Eduardo O.

    2015-04-01

    Located at the southern tip of the Fuegian Andes Cordilhera, the Martial glacier witnessed a rapid process of retreat in the last century. Up to now little is known about the development and genesis of soils of this region. A toposequence of six soils, ranging from 430-925 m a.s.l, was investigated, with emphasis on genesis, chemical and mineralogical properties. The highest, youngest soil is located just below the Martial Glacier Martial Sur sector, and the lowest soils occur on sloping moraines under Nothofagus pumilio forests. Based on chemical, physical and mineralogical characteristics, the soils were classified according to the Soil taxonomy, being keyed out as Inceptisols and Entisols. Soil parent material of the soil is basically moraines, in which the predominant lithic components dominated by metamorphic rocks, with allochthonous contributions of wind-blown materials (very small fragments of volcanic glass) observed by hand lens in all horizons, except the highest profile under Tundra. In Nothofagus Deciduous Forests at the lowest part of the toposequence, poorly developed Inceptisols occur with Folistic horizons, with mixed "andic" and "spodic" characters, but with a predominance of andosolization (Andic Drystrocryepts). Under Tundra vegetation, Inceptisols are formed under hydromorphism and andosolization processes (Oxiaquic Dystrocrepts and Typic Dystrocrepts). On highland periglacial environments, soils without B horizon with strong evidence of cryoturbation and cryogenesis occur, without present-day permafrost down to 2 meters (Typic Cryorthents and Lithic Haploturbels). The mountain soils of Martial glacier generalize young, stony and rich in organic matter, with the exception of barely vegetated Tundra soils at higher altitudes. The forest soils are more acidic and have higher Al3+activity. All soils are dystrophic, except for the highest profile of the local periglacial environment. The organic carbon amounts are higher in forest soils and

  1. The contribution of Alaskan, Siberian, and Canadian coastal polynas to the cold halocline layer of the Arctic Ocean

    Science.gov (United States)

    Cavalieri, Donald J.; Martin, Seelye

    1994-01-01

    Numerous Arctic Ocean circulation and geochemical studies suggest that ice growth in polynyas over the Alaskan, Siberian, and Canadian continental shelves is a source of cold, saline water which contributes to the maintenance of the Arctic Ocean halocline. The purpose of this study is to estimate for the 1978-1987 winters the contributions of Arctic coastal polynyas to the cold halocline layer of the Arctic Ocean. The study uses a combination of satellite, oceanographic, and weather data to calculate the brine fluxes from the polynyas; then an oceanic box model is used to calculate their contributions to the cold halocline layer of the Arctic Ocean. This study complements and corrects a previous study of dense water production by coastal polynyas in the Barents, Kara, and Laptev Seas.

  2. Petrology of a Neoproterozoic Alaskan-type complex from the Eastern Desert of Egypt: Implications for mantle heterogeneity

    Science.gov (United States)

    Khedr, Mohamed Zaki; Arai, Shoji

    2016-10-01

    This paper details petrological and geochemical studies of an ultramafic-mafic intrusion in the Southern Eastern Desert of Egypt. The Dahanib complex shows a concentric zonation, from dunites at the core, through chromitites, clinopyroxene-rich dunites, wehrlites, harzburgites, gabbronorites and layered gabbros, to hornblende gabbros/diorites at the rim, similar to other Alaskan-type complexes. These lithologies typically feature cumulate textures and layering. Their pyroxenes (Mg#s, 0.54-0.94) evidence Fe, Mn and Na enrichment, but Al, Cr, Mg and Ti are depleted with differentiation. Their chromian spinels have a wide range of Cr# (0.31-0.61), along with high Ti and Fe, as a result of their origin through crystal accumulation and reaction with interstitial liquids. The clinopyroxenes (Cpxs) in peridotites and gabbroic rocks, which are high in REE concentration (2-100 times chondrite), are depleted in LREE relative to HREE and are similar to Cpx crystallized from asthenospheric melts. The mineral inclusions in spinel, the chemistry of Cpx in peridotites (rich in Al, Cr, Na, Ti and ΣREE = 13.7), and the melts in equilibrium with Cpx suggest that the Neoproterozoic lithosphere were partially refertilized by trace asthenospheric melts. The early magmas were possibly enriched by Mg, Cr, Ni, Ti, V and Sr, while the evolved types were rich in Fe, Mn, Na, Li, Zr, Co and REE via crystal accumulation and the interaction with interstitial liquids. The Neoproterozoic sub-arc mantle in Egypt is chemically heterogeneous and generally low in Nb, Ta, Zr and K, due to the low solubility of HFSE in slab-derived fluids and no other external addition of these elements. The large variations in lithology and chemistry, as well as the occurrence of scattered chromitite clots in the Dahanib peridotites, are related to a continuous supply of primitive magmas and/or the reaction between interstitial liquids and early cumulus crystals during multistage fractional crystallization. The

  3. Spatial and Temporal Variation in Feather Moss Associated Nitrogen Fixation in Coniferous and Deciduous Dominated Alaskan Boreal Forests

    Science.gov (United States)

    Jean, M.; Mack, M. C.; Johnstone, J. F.

    2015-12-01

    Dominant canopy tree species have strong effects on the composition and function of understory species. In boreal forests, forest floor bryophytes and their associated microbes are a primary source of ecosystem nitrogen (N) inputs, and thus an important process regulating ecosystem productivity. Bryophyte composition and abundance varies with forest composition, yet how such changes can affect ecosystem processes such as N fixation is still poorly understood. Our goal is to investigate how cyanobacteria-based N fixation occurring in the two most common feather mosses in the Alaskan boreal forest (Pleurozium schreberi and Hylocomium splendens) varies among coniferous and deciduous forest types, over the growing season, and across a nutrient availability gradient. Twelve patches of H. splendens and P. schreberi were identified in three pairs (blocks) of adjacent stands of paper birch (Betula neoalaskana) and black spruce (Picea mariana) near Fairbanks, interior Alaska. Sampling occurred in one block in June, July, August, and September 2014, and in the three blocks once in August 2014. Moss leaf area, moisture and weight, as well as environmental variables such as air temperature and canopy cover were recorded. Fixation rates were consistently higher for P. schreberi than for H. splendens. Overall, N fixation rates were lower in birch than in spruce stands and peaked in August, or July for P. schreberi in birch stands. Moreover, fixation rates varied along the nutrient availability gradient, with fixation rates higher where nutrient availability was lower. This difference was especially clear in spruce stands. Our preliminary results suggest that moss species, canopy type, and environmental factors all influence N fixation rates in Alaskan boreal forests. Our results will enhance the knowledge of the processes that drive N fixation in boreal forests, which is important for predicting ecosystem consequences of changing forest composition.

  4. Communicating Risk and Cultivating Resilience in Rural Alaskan Communities: A Multi-Disciplinary Approach to Flood Mitigation

    Science.gov (United States)

    Kontar, Y. Y.

    2014-12-01

    The increasing extent and vulnerability of technologically advanced society together with aspects of global climate change intensifies the frequency and severity of natural disasters. Every year, communities around the world face the devastating consequences of hazardous events, including loss of life, property and infrastructure damage, and environmental decline. Environmentally sound strategies have to be developed to minimize these consequences. However, hazard-prone areas differ geographically, climatically, and culturally. There is no a one-size-fits-all solution. Thus, it is crucial that future decision-makers not only know the conditions that make some natural Earth processes hazardous to people, but also understand how people perceive and adjust to potential natural hazards in their regions. In May 2013, an ice jam caused major flooding in Galena, a remote village in interior Alaska. Within two days, flooding destroyed nearly the entire region's infrastructure, and displaced over 400 residents. Almost a year later, a significant part of Galena's population was still evacuated in Fairbanks and other neighboring towns. The rebuilding holdup reflected the federal government's reluctance to spend millions of dollars an the area that may be destroyed again by the next flood. Massive floods inundated towns along the Yukon River before (e.g., Eagle in 2009 and Holycross in 1975), but people return to refurbish and again inhabit the same territories. Rivers have a significant importance to Alaskan rural communities. Not only do rivers provide food, drink, transportation, and in some cases arable land and irrigation, but they also carry cultural significance for the Native Alaskan people. The Galena case study provides a revealing example of challenges of communicating with and educating the public and policy makers about natural hazards.

  5. Haemosporidian parasite infections in grouse and ptarmigan: Prevalence and genetic diversity of blood parasites in resident Alaskan birds.

    Science.gov (United States)

    Smith, Matthew M; Van Hemert, Caroline; Merizon, Richard

    2016-12-01

    Projections related to future climate warming indicate the potential for an increase in the distribution and prevalence of blood parasites in northern regions. However, baseline data are lacking for resident avian host species in Alaska. Grouse and ptarmigan occupy a diverse range of habitat types throughout the northern hemisphere and are among the most well-known and important native game birds in North America. Information regarding the prevalence and diversity of haemosporidian parasites in tetraonid species is limited, with few recent studies and an almost complete lack of genetic data. To better understand the genetic diversity of haemosporidian parasites in Alaskan tetraonids and to determine current patterns of geographic range and host specificity, we used molecular methods to screen 459 tissue samples collected from grouse and ptarmigan species across multiple regions of Alaska for infection by Leucocytozoon, Haemoproteus, and Plasmodium blood parasites. Infections were detected in 342 individuals, with overall apparent prevalence of 53% for Leucocytozoon, 21% for Haemoproteus, and 9% for Plasmodium. Parasite prevalence varied by region, with different patterns observed between species groups (grouse versus ptarmigan). Leucocytozoon was more common in ptarmigan, whereas Haemoproteus was more common in grouse. We detected Plasmodium infections in grouse only. Analysis of haemosporidian mitochondrial DNA cytochrome b sequences revealed 23 unique parasite haplotypes, several of which were identical to lineages previously detected in other avian hosts. Phylogenetic analysis showed close relationships between haplotypes from our study and those identified in Alaskan waterfowl for Haemoproteus and Plasmodium parasites. In contrast, Leucocytozoon lineages were structured strongly by host family. Our results provide some of the first genetic data for haemosporidians in grouse and ptarmigan species, and provide an initial baseline on the prevalence and diversity

  6. Microbial community response to permafrost thaw after wildfire in an Alaskan upland boreal forest

    Science.gov (United States)

    Tas, N.; Jorgenson, M. T.; Wang, S.; Berhe, A. A.; Wickland, K. P.; Waldrop, M. P.; Jansson, J. K.

    2012-12-01

    Fire is a major factor controlling the long-term dynamics of soil carbon in Alaskan boreal forests. Wildfire not only contributes to a significant global emission of greenhouse gasses but also can indirectly result in the deepening of the active layer and thawing of near-surface permafrost due to reductions in organic layer depth and increases in heat flux through soil. Although boreal ecosystems are fire-adapted, increased fire frequency and rising global temperatures may result in warmer soils and therefore increase the metabolic rates of decomposer microbes and result in accelerated permafrost decomposition and greenhouse gas fluxes. In addition to fire-mediated changes in soil and vegetation structure, changes in the soil microbial community structure are likely to have consequences for rates of soil carbon cycling. In this study we aimed to define the impact of fire on soil microbial communities in an upland black spruce forest and to assess microbial metabolic potential for soil respiration, methanogenesis, and nitrous oxide (N2O) flux. Soil samples from two fire impacted and three control (unburned) locations were collected near Nome Creek, AK, an upland moderately drained black spruce forest. This location was within the Boundary fire that burned between mid-June and the end of August 2004. Soil temperature measurements from before and after the fire showed that soils were warmer after the fire event and the permafrost thawed below 1m. At each sampling location, soil and permafrost samples were collected every 10 cm to a depth of 1 m. Besides biochemical characterization, CO2, CH4, N2O fluxes and potential activities of enzymes involved in extracellular decomposition of complex organic molecules (hemicellulose, chitin and lignin) were measured. The microbial community composition in the samples was determined by sequencing of 16S rRNA genes and microbial metabolic potential was assessed via sequencing of total genomic DNA (metagenomics) in selected active

  7. A Gly98Val mutation in the N-Myc downstream regulated gene 1 (NDRG1) in Alaskan Malamutes with polyneuropathy.

    Science.gov (United States)

    Bruun, Camilla S; Jäderlund, Karin H; Berendt, Mette; Jensen, Kristine B; Spodsberg, Eva H; Gredal, Hanne; Shelton, G Diane; Mickelson, James R; Minor, Katie M; Lohi, Hannes; Bjerkås, Inge; Stigen, Oyvind; Espenes, Arild; Rohdin, Cecilia; Edlund, Rebecca; Ohlsson, Jennie; Cizinauskas, Sigitas; Leifsson, Páll S; Drögemüller, Cord; Moe, Lars; Cirera, Susanna; Fredholm, Merete

    2013-01-01

    The first cases of early-onset progressive polyneuropathy appeared in the Alaskan Malamute population in Norway in the late 1970s. Affected dogs were of both sexes and were ambulatory paraparetic, progressing to non-ambulatory tetraparesis. On neurologic examination, affected dogs displayed predominantly laryngeal paresis, decreased postural reactions, decreased spinal reflexes and muscle atrophy. The disease was considered eradicated through breeding programmes but recently new cases have occurred in the Nordic countries and the USA. The N-myc downstream-regulated gene (NDRG1) is implicated in neuropathies with comparable symptoms or clinical signs both in humans and in Greyhound dogs. This gene was therefore considered a candidate gene for the polyneuropathy in Alaskan Malamutes. The coding sequence of the NDRG1 gene derived from one healthy and one affected Alaskan Malamute revealed a non-synonymous G>T mutation in exon 4 in the affected dog that causes a Gly98Val amino acid substitution. This substitution was categorized to be "probably damaging" to the protein function by PolyPhen2 (score: 1.000). Subsequently, 102 Alaskan Malamutes from the Nordic countries and the USA known to be either affected (n = 22), obligate carriers (n = 7) or healthy (n = 73) were genotyped for the SNP using TaqMan. All affected dogs had the T/T genotype, the obligate carriers had the G/T genotype and the healthy dogs had the G/G genotype except for 13 who had the G/T genotype. A protein alignment showed that residue 98 is conserved in mammals and also that the entire NDRG1 protein is highly conserved (94.7%) in mammals. We conclude that the G>T substitution is most likely the mutation that causes polyneuropathy in Alaskan Malamutes. Our characterization of a novel candidate causative mutation for polyneuropathy offers a new canine model that can provide further insight into pathobiology and therapy of human polyneuropathy. Furthermore, selection against this mutation can

  8. A Gly98Val mutation in the N-Myc downstream regulated gene 1 (NDRG1 in Alaskan Malamutes with polyneuropathy.

    Directory of Open Access Journals (Sweden)

    Camilla S Bruun

    Full Text Available The first cases of early-onset progressive polyneuropathy appeared in the Alaskan Malamute population in Norway in the late 1970s. Affected dogs were of both sexes and were ambulatory paraparetic, progressing to non-ambulatory tetraparesis. On neurologic examination, affected dogs displayed predominantly laryngeal paresis, decreased postural reactions, decreased spinal reflexes and muscle atrophy. The disease was considered eradicated through breeding programmes but recently new cases have occurred in the Nordic countries and the USA. The N-myc downstream-regulated gene (NDRG1 is implicated in neuropathies with comparable symptoms or clinical signs both in humans and in Greyhound dogs. This gene was therefore considered a candidate gene for the polyneuropathy in Alaskan Malamutes. The coding sequence of the NDRG1 gene derived from one healthy and one affected Alaskan Malamute revealed a non-synonymous G>T mutation in exon 4 in the affected dog that causes a Gly98Val amino acid substitution. This substitution was categorized to be "probably damaging" to the protein function by PolyPhen2 (score: 1.000. Subsequently, 102 Alaskan Malamutes from the Nordic countries and the USA known to be either affected (n = 22, obligate carriers (n = 7 or healthy (n = 73 were genotyped for the SNP using TaqMan. All affected dogs had the T/T genotype, the obligate carriers had the G/T genotype and the healthy dogs had the G/G genotype except for 13 who had the G/T genotype. A protein alignment showed that residue 98 is conserved in mammals and also that the entire NDRG1 protein is highly conserved (94.7% in mammals. We conclude that the G>T substitution is most likely the mutation that causes polyneuropathy in Alaskan Malamutes. Our characterization of a novel candidate causative mutation for polyneuropathy offers a new canine model that can provide further insight into pathobiology and therapy of human polyneuropathy. Furthermore, selection against

  9. Complete genome sequence of Granulicella mallensis type strain MP5ACTX8(T), an acidobacterium from tundra soil

    Energy Technology Data Exchange (ETDEWEB)

    Rawat, Suman R. [Rutgers University; Mannisto, Minna [Finnish Forest Research Institute, Parkano, Finland; Starovoytov, Valentin [Rutgers University; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Davenport, Karen W. [Los Alamos National Laboratory (LANL); Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Haggblom, Max [Rutgers University

    2013-01-01

    Granulicella mallensis MP5ACTX8(T) is a novel species of the genus Granulicella in subdivision 1 of Acidobacteria. G. mallensis is of ecological interest being a member of the dominant soil bacterial community active at low temperatures and nutrient limiting conditions in Arctic alpine tundra. G. mallensis is a cold-adapted acidophile and a versatile heterotroph that hydrolyzes a suite of sugars and complex polysaccharides. Genome analysis revealed metabolic versatility with genes involved in metabolism and transport of carbohydrates. These include gene modules encoding the carbohydrate-active enzyme (CAZyme) family involved in breakdown, utilization and biosynthesis of diverse structural and storage polysaccharides including plant based carbon polymers. The genome of Granulicella mallensis MP5ACTX8(T) consists of a single replicon of 6,237,577 base pairs (bp) with 4,907 protein-coding genes and 53 RNA

  10. Greenhouse gas balance of a subarctic tundra - importance of carbon dioxide, methane and nitrous oxide from different land cover types

    Science.gov (United States)

    Marushchak, M. E.; Biasi, C.; Elsakov, V.; Jokinen, S.; Lind, S. E.; Pitkämäki, A.; Virtanen, T.; Martikainen, P. J.

    2012-04-01

    The strong warming predicted for the Arctic has increased the need to understand how carbon (C) balance in tundra will respond to climate change. The large C reservoir of northern permafrost soils (50% of global belowground soil C pool; Tarnocai et al. 2009) may be threatened by warming and associated thawing of permafrost, which might lead to increased release of carbon dioxide (CO2) and methane (CH4) to the atmosphere. Moreover, the recent findings of high nitrous oxide (N2O) emissions from permafrost soils (Repo et al. 2009, Elberling et al. 2010) show that the large nitrogen pool in permafrost soils cannot be neglected anymore when predicting the atmospheric impact of Arctic tundra in a changing climate. Here we report the annual landscape scale (GHG) balance of subarctic tundra including all the three most important GHGs: CO2, CH4 and N2O. The study was conducted in Northeast European Russia in a heterogeneous landscape consisting of upland tundra, fens, willow wetlands and massive peat plateau complexes spotted by thermokarst lakes. Fluxes of CO2, CH4 and N2O were measured during two growing seasons and the cold season between using different chamber techniques at terrestrial ecosystems, and combination of gas gradient method and bubble collectors in thermokarst lakes. The plot scale results were up scaled to the landscape level using a land cover map based on a high-resolution QuickBird satellite image (Hugelius et al. 2011). The land cover types studied represent 97% of the whole area study area of 98.6 km2. On an annual basis the study area acted as a sink of C, but CH4 and N2O emissions caused it to be a net source of GHGs when considering the global warming potential (GWP; 100-year time horizon) of all three gases. Willow wetlands, fens and thermokarst lakes (16% of the landscape) were significant sources of CH4, while CH4 emissions from the rest of the landscape were negligible. Bare peat surfaces on peat plateaus, peat circles, acted as strong hotspots

  11. A sampling method for tundra swans summering in the Bristol Bay lowlands, northern Alaska Peninsula: A summary of a presentation given at the second Alaska Bird Conference, Juneau, Alaska 3-4 April 1987

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A "census" of tundra swans occurring in the northern Alaska Peninsula was collected over 1984-1985, with supplemental information provided from preliminary surveys...

  12. InSAR Detection and Field Evidence for Thermokarst after a Tundra Wildfire, Using ALOS-PALSAR

    Directory of Open Access Journals (Sweden)

    Go Iwahana

    2016-03-01

    Full Text Available Thermokarst is the process of ground subsidence caused by either the thawing of ice-rich permafrost or the melting of massive ground ice. The consequences of permafrost degradation associated with thermokarst for surface ecology, landscape evolution, and hydrological processes have been of great scientific interest and social concern. Part of a tundra patch affected by wildfire in northern Alaska (27.5 km2 was investigated here, using remote sensing and in situ surveys to quantify and understand permafrost thaw dynamics after surface disturbances. A two-pass differential InSAR technique using L-band ALOS-PALSAR has been shown capable of capturing thermokarst subsidence triggered by a tundra fire at a spatial resolution of tens of meters, with supporting evidence from field data and optical satellite images. We have introduced a calibration procedure, comparing burned and unburned areas for InSAR subsidence signals, to remove the noise due to seasonal surface movement. In the first year after the fire, an average subsidence rate of 6.2 cm/year (vertical was measured. Subsidence in the burned area continued over the following two years, with decreased rates. The mean rate of subsidence observed in our interferograms (from 24 July 2008 to 14 September 2010 was 3.3 cm/year, a value comparable to that estimated from field surveys at two plots on average (2.2 cm/year for the six years after the fire. These results suggest that this InSAR-measured ground subsidence is caused by the development of thermokarst, a thawing process supported by surface change observations from high-resolution optical images and in situ ground level surveys.

  13. Spatial and temporal variation of bulk snow properties in northern boreal and tundra environments based on extensive field measurements

    Science.gov (United States)

    Hannula, Henna-Reetta; Lemmetyinen, Juha; Kontu, Anna; Derksen, Chris; Pulliainen, Jouni

    2016-08-01

    An extensive in situ data set of snow depth, snow water equivalent (SWE), and snow density collected in support of the European Space Agency (ESA) SnowSAR-2 airborne campaigns in northern Finland during the winter of 2011-2012 is presented (ESA Earth Observation Campaigns data 2000-2016). The suitability of the in situ measurement protocol to provide an accurate reference for the simultaneous airborne SAR (synthetic aperture radar) data products over different land cover types was analysed in the context of spatial scale, sample spacing, and uncertainty. The analysis was executed by applying autocorrelation analysis and root mean square difference (RMSD) error estimations. The results showed overall higher variability for all the three bulk snow parameters over tundra, open bogs and lakes (due to wind processes); however, snow depth tended to vary over shorter distances in forests (due to snow-vegetation interactions). Sample spacing/sample size had a statistically significant effect on the mean snow depth over all land cover types. Analysis executed for 50, 100, and 200 m transects revealed that in most cases less than five samples were adequate to describe the snow depth mean with RMSD land cover with high overall variability an indication of increased sample size of 1.5-3 times larger was gained depending on the scale and the desired maximum RMSD. Errors for most of the land cover types reached ˜ 10 % if only three measurements were considered. The collected measurements, which are available via the ESA website upon registration, compose an exceptionally large manually collected snow data set in Scandinavian taiga and tundra environments. This information represents a valuable contribution to the snow research community and can be applied to various snow studies.

  14. Evaluating CO2 and CH4 fluxes in Arctic peatland and tundra using a satellite remote sensing driven biophysical model

    Science.gov (United States)

    Watts, J.; Kimball, J. S.; Parmentier, F. W.; Sachs, T.; Rinne, J.; Zona, D.; Oechel, W. C.; Tagesson, T.

    2013-12-01

    The Arctic terrestrial carbon sink is contingent on the balance between vegetation gross primary productivity (GPP) and emissions of carbon dioxide (CO2) and methane (CH4). With climate change, warming temperatures could increase GPP within high latitude systems but may also accelerate soil decomposition and CO2 loss. Regional wetting may also shift carbon emissions towards greater CH4 release, a greenhouse gas at least 25 times more potent than CO2. However, an effective framework for monitoring changes in the Arctic net ecosystem carbon balance (NECB) is lacking. Here we introduce an integrated terrestrial carbon flux (TCF) model approach to estimate CO2 and CH4 fluxes from northern peatland and tundra ecosystems at a daily time step. The TCF model framework uses a light-use efficiency (LUE) algorithm to estimate GPP according to satellite NDVI inputs and estimated moisture and temperature constraints. Ecosystem respiration is derived using a three-pool soil organic carbon decomposition model regulated by surface (moisture inputs. A TCF-CH4 component simulates gas production according to near-surface temperature, anaerobic soil fractions and labile soil carbon inputs derived during model spin-up. Plant transport, soil diffusion and ebullition pathways are used to regulate CH4 emissions into the atmosphere. The combined TCF CO2 and CH4 model was evaluated against tower eddy covariance (EC) flux datasets from six peatland and tundra sites in North America, Eurasia and Greenland. TCF model simulations driven with site information explained on average > 70% (r^2; p moisture and thermal products to be produced in upcoming satellite remote sensing missions.

  15. Pulsed resources at tundra breeding sites affect winter irruptions at temperate latitudes of a top predator, the snowy owl.

    Science.gov (United States)

    Robillard, A; Therrien, J F; Gauthier, G; Clark, K M; Bêty, J

    2016-06-01

    Irruptive migration is mostly observed in species specialized on pulsed resources and is thought to be a response to unpredictable changes in food supply. We assessed two alternative hypotheses to explain the periodic winter irruptions of snowy owls Bubo scandiacus every 3-5 years in temperate North America: (a) the lack-of-food hypothesis, which states that a crash in small mammal abundance on the Arctic breeding grounds forces owls to move out of the tundra massively to search for food in winter; (b) the breeding-success hypothesis, which states that high abundance of tundra small mammals during the summer allows for high production of young, thus increasing the pool of migrants moving south the following winter. We modeled winter irruptions of snowy owls in relation to summer food resources and geographic location. Winter abundance of owls was obtained from citizen-based surveys from 1994 to 2011 and summer abundance of small mammals was collected in summer at two distant sites in Canada: Bylot Island, NU (eastern High Arctic) and Daring Lake, NWT (central Low Arctic). Winter owl abundance was positively related to prey abundance during the previous summer at both sites and tended to decrease from western to eastern temperate North America. Irruptive migration of snowy owls was therefore best explained by the breeding success hypothesis and was apparently caused by large-scale summer variations in food. Our results, combined with previous findings, suggest that the main determinants of irruptive migration may be species specific even in a guild of apparently similar species. PMID:26920901

  16. Cultural Resilience of Nenets Social-Ecological Systems in Arctic Russia: A Focus on Reindeer Nomads of the Tundra

    Science.gov (United States)

    Forbes, B. C.

    2013-12-01

    Empirical data on resilience in social-ecological systems (SESs) are reviewed from local and regional scale case studies among full-time nomads in the neighbouring Nenets and Yamal-Nenets Autonomous Okrugs, Russia. The focus is on critical cultural factors contributing to SES resilience. In particular, this work presents an integrated view of people situated in specific tundra landscapes that face significantly different prospects for adaptation depending on existing or planned infrastructure associated with oil and gas development. Factors contributing to general resilience are compared to those that are adapted to certain spatial and temporal contexts. Environmental factors include ample space and an abundance of resources, such as fish and game (e.g. geese), to augment the diet of not only the migratory herders, but also residents from coastal settlements. In contrast to other regions, such as the Nenets Okrug, Yamal Nenets households consist of intact nuclear families with high retention among youth in the nomadic tundra population. Accepting attitudes toward exogenous drivers such as climate change and industrial development appear to play a significant role in how people react to both extreme weather events and piecemeal confiscation or degradation of territory. Consciousness of their role as responsible stewards of the territories they occupy has likely been a factor in maintaining viable wildlife populations over centuries. Institutions administering reindeer herding have remained flexible, especially on Yamal, and so accommodate decision-making that is sensitive to herders' needs and timetables. This affects factors such as herd demography, mobility and energetics. Resilience is further facilitated within the existing governance regimes by herders' own agency, most recently in the post-Soviet shift to smaller, privately managed herds that can better utilize available pastures in a highly dynamic environment experiencing rapid socio-economic, climate and

  17. Conifer seedling recruitment across a gradient from forest to alpine tundra: effects of species, provenance, and site

    Science.gov (United States)

    Castanha, C.; Torn, M.S.; Germino, M.J.; Weibel, B.; Kueppers, L.M.

    2013-01-01

    Background: Seedling germination and survival is a critical control on forest ecosystem boundaries, such as at the alpine–treeline ecotone. In addition, while it is known that species respond individualistically to the same suite of environmental drivers, the potential additional effect of local adaptation on seedling success has not been evaluated. Aims: To determine whether local adaptation may influence the position and movement of forest ecosystem boundaries, we quantified conifer seedling recruitment in common gardens across a subalpine forest to alpine tundra gradient at Niwot Ridge, Colorado, USA. Methods: We studied Pinus flexilis and Picea engelmannii grown from seed collected locally at High (3400 m a.s.l.) and Low (3060 m a.s.l.) elevations. We monitored emergence and survival of seeds sown directly into plots and survival of seedlings germinated indoors and transplanted after snowmelt. Results: Emergence and survival through the first growing season was greater for P. flexilis than P. engelmannii and for Low compared with High provenances. Yet survival through the second growing season was similar for both species and provenances. Seedling emergence and survival tended to be greatest in the subalpine forest and lowest in the alpine tundra. Survival was greater for transplants than for field-germinated seedlings. Conclusions: These results suggest that survival through the first few weeks is critical to the establishment of natural germinants. In addition, even small distances between seed sources can have a significant effect on early demographic performance – a factor that has rarely been considered in previous studies of tree recruitment and species range shifts.

  18. Hydrological Controls on Ecosystem CO2 and CH4 Exchange in a MIXED Tundra and a FEN within an Arctic Landscape UNDER Current and Future Climates

    Science.gov (United States)

    Grant, R. F.; Humphreys, E.; Lafleur, P.

    2014-12-01

    Variation in CO2 and CH4 exchange in years with contrasting weather is strongly affected by hydrology in landscapes underlain by permafrost. Hypotheses for this variation were incorporated into the ecosystem model ecosys which simulated CO2 and CH4 fluxes along a topographic gradient within an arctic landscape at Daring Lake, NWT, Canada. Fluxes modelled at mixed tundra and fen sites within the gradient were compared with CO2 fluxes measured at eddy covariance towers from 2006 to 2009, and with CH4 fluxes measured with surface chambers in 2008. Slopes and correlation coefficients from regressions of modelled vs. measured CO2 fluxes were 1.0 ± 0.1 and 0.7 - 0.8 for both sites in all years. At the mixed tundra site, rises in net CO2 uptake in warmer years with earlier snowmelt were constrained by midafternoon declines in CO2 influxes when vapor pressure deficits (D) exceeded 1.5 kPa, and by rises in CO2 effluxes with greater active layer depth (ALD). Consequently annual net CO2 uptake at this site rose little with warming. At the fen site, CO2 influxes declined less with D and CO2 effluxes rose less with warming, so that rises in net CO2 uptake in warmer years were greater than those at the mixed tundra site. The greater declines in CO2 influxes with warming at the mixed tundra site were modelled from greater soil-plant-atmosphere water potential gradients that developed in drier soil, and the smaller rises in CO2 effluxes with warming at the fen site were modelled from O2 constraints to heterotrophic and below-ground autotrophic respiration that limited their responses to greater ALD. Modelled and measured CH4 exchange during July and August indicated very small influxes at the mixed tundra site, and larger emissions at the fen site. Emissions of CH4 modelled during soil freezing in October - November contributed about one-third of the annual total, and so should be included in estimates of annual emissions. These contrasting responses to warming under current

  19. Spatial and Temporal Variability of Methane Mole Fractions and Exchanges in and Between Soil, Snow, and the Atmosphere in a Tundra System in Northern Alaska

    Science.gov (United States)

    Agnan, Y.; Obrist, D.; Edwards, G. C.; Moore, C.; Hedge, C.; Helmig, D.; Paxton, D.; Jacques, H.

    2015-12-01

    An important global source of atmospheric methane (CH4) is production in tundra soils (an important global source). To place constraints on the potential role that tundra soils play in global CH4 cycling, we have been continuously measuring mole the air space in soils, snow, and the atmosphere as gradient-based surface-atmosphere fluxes for arctic tundra at Toolik Field Station (68° 38' N) starting in October 2014. We have found that atmospheric CH4 mole fractions were, on average, relatively constant during the first 9 months of sampling (averaging 1.93 µmol mol-1), with pronounced diel patterns starting in May and nighttime exceeding daytime mole fractions. However, gradients measured within the soil profile showed high variability in air withdrawn from different locations of these tundra soils (Typic Aquiturbels), with one soil profile indicating a CH4 sink during fall until January; mole fractions were similar to the atmospheric measurements during winter indicating no source or sink (average 1.89 µmol mol-1). A second soil profile 5 m away showed production of CH4 (average 2.48 µmol mol-1, two-times higher than atmospheric levels), even during mid-winter when soil temperatures were below -10 °C. Measurements of CH4 in interstitial snowpack air also exhibited a similar combination of sources and sinks. We used micrometeorological gradient surface flux measurements to confirm that the area was a net source of CH4 in fall, winter, and spring, with emissions averaging 26.6, 25.2, and 16.8 mg m-2 d-1, respectively. In the summer months, we saw strong diel flux patterns with deposition during day and emission at night, corresponding with observed diel variability in CH4 snowpack mole fractions. Our results indicated a high variability of tundra landscape CH4 fluxes, which locally shift from sources to sinks with high temporal variability. CH4 oxidation by methanotrophic bacteria probably occurs in tundra soils, confirming observations in one soil, snowpack, and

  20. Non-electric applications of geothermal energy in six Alaskan towns. Final report, October 1976--November 1977. [Barrow, Huslia, Kiana, Nikolski, Nome, and Wrangell

    Energy Technology Data Exchange (ETDEWEB)

    Farquhar, J.; Grijalva, R.; Kirkwood, P.

    1977-11-01

    The potential for direct (non-electric) utilization of local-gradient geothermal energy in six Alaskan towns is summarized. A major objective of this study was to stimulate development and use of the geothermal resource provided by the earth's average thermal gradient, as opposed to the few anomalies that are typically chosen for geothermal development. Hence, six towns for study were selected as being representative of remote Alaskan conditions, rather than for their proximity to known geothermal resources. The moderate-temperature heat available almost everywhere at depths of two to four kilometers into the earth's mantle could satisfy a major portion of the nation's heating requirements--but the cost must be reduced. It is concluded that a geothermal demonstration in Nome would probably be successful and would promote this objective.

  1. Development, Implementation, and Evaluation of a Computerized Self-Administered Diet History Questionnaire for Use in Studies of American Indian and Alaskan Native People

    OpenAIRE

    Slattery, Martha L; Murtaugh, Maureen A.; Schumacher, Mary Catherine; Johnson, Jennifer; Edwards, Sandra; Edwards, Roger; Benson, Joan; Tom-Orme, Lillian; Lanier, Anne P.

    2008-01-01

    Collection of dietary intake in epidemiologic studies involves using methods that are comprehensive yet appropriate for the population being studied. Here we describe a diet history questionnaire (DHQ) that was developed using an audio self-administered computer-assisted interview technique. The DHQ was developed for use in a cohort of American Indians and Alaskan Natives with tribal input and area-specific modules to incorporate local food availability. The DHQ includes 54 main food group qu...

  2. Treating hepatitis C in American Indians/Alaskan Natives: A survey of Project ECHO® (Extension for Community Healthcare Outcomes) utilization by Indian Health Service providers

    OpenAIRE

    Pindyck, Talia; Kalishman, Summers; Flatow-Trujillo, Lainey; Thornton, Karla

    2015-01-01

    Background: American Indians/Alaskan Natives have a high mortality associated with hepatitis C virus, yet treatment rates are low. The ECHO (Extension for Community Healthcare Outcomes) model™, a videoconferencing technology for primary care providers, is underutilized at Indian Health Service facilities. Purpose: To ascertain Indian Health Service providers’ benefit of and barriers to utilizing hepatitis C virus TeleECHO clinics. Methods: We electronically sent an Active Participant Survey t...

  3. A Gly98Val Mutation in the N-Myc Downstream Regulated Gene 1 (NDRG1) in Alaskan Malamutes with Polyneuropathy

    OpenAIRE

    Bruun, Camilla S.; Jäderlund, Karin H.; Mette Berendt; Jensen, Kristine B; Spodsberg, Eva H.; Hanne Gredal; G Diane Shelton; Mickelson, James R.; Minor, Katie M; Hannes Lohi; Inge Bjerkås; Oyvind Stigen; Arild Espenes; Cecilia Rohdin; Rebecca Edlund

    2013-01-01

    The first cases of early-onset progressive polyneuropathy appeared in the Alaskan Malamute population in Norway in the late 1970s. Affected dogs were of both sexes and were ambulatory paraparetic, progressing to non-ambulatory tetraparesis. On neurologic examination, affected dogs displayed predominantly laryngeal paresis, decreased postural reactions, decreased spinal reflexes and muscle atrophy. The disease was considered eradicated through breeding programmes but recently new cases have oc...

  4. American Indians/Native Alaskans with Traumatic Brain Injury: Examining the Impairments of Traumatic Brain Injury, Disparities in Service Provision, and Employment Outcomes

    Science.gov (United States)

    Whitfield, Harold Wayne; Lloyd, Rosalind

    2008-01-01

    The researchers analyzed data from fiscal year 2006 and found that American Indians/Native Alaskans (AI/NA) with traumatic brain injury experienced similar functional limitations at application as did non-AI/NA. Fewer funds were expended on purchased services for AI/NA than for non-AI/NA. The wages of AI/NA were equitable to those of non-AI/NA at…

  5. A RAB3GAP1 SINE Insertion in Alaskan Huskies with Polyneuropathy, Ocular Abnormalities, and Neuronal Vacuolation (POANV Resembling Human Warburg Micro Syndrome 1 (WARBM1

    Directory of Open Access Journals (Sweden)

    Michaela Wiedmer

    2016-02-01

    Full Text Available We observed a hereditary phenotype in Alaskan Huskies that was characterized by polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV. The affected dogs developed a progressive severe ataxia, which led to euthanasia between 8 and 16 months of age. The pedigrees were consistent with a monogenic autosomal recessive inheritance. We localized the causative genetic defect to a 4 Mb interval on chromosome 19 by a combined linkage and homozygosity mapping approach. Whole genome sequencing of one affected dog, an obligate carrier, and an unrelated control revealed a 218-bp SINE insertion into exon 7 of the RAB3GAP1 gene. The SINE insertion was perfectly associated with the disease phenotype in a cohort of 43 Alaskan Huskies, and it was absent from 541 control dogs of diverse other breeds. The SINE insertion induced aberrant splicing and led to a transcript with a greatly altered exon 7. RAB3GAP1 loss-of-function variants in humans cause Warburg Micro Syndrome 1 (WARBM1, which is characterized by additional developmental defects compared to canine POANV, whereas Rab3gap1-deficient mice have a much milder phenotype than either humans or dogs. Thus, the RAB3GAP1 mutant Alaskan Huskies provide an interesting intermediate phenotype that may help to better understand the function of RAB3GAP1 in development. Furthermore, the identification of the presumed causative genetic variant will enable genetic testing to avoid the nonintentional breeding of affected dogs.

  6. Cultural Resilience of Social-ecological Systems in the Nenets and Yamal-Nenets Autonomous Okrugs, Russia: A Focus on Reindeer Nomads of the Tundra

    OpenAIRE

    Forbes, Bruce C.

    2013-01-01

    Empirical data on resilience in social-ecological systems (SESs) are reviewed from local and regional scale case studies among full-time nomads in the neighboring Nenets and Yamal-Nenets Autonomous Okrugs, Russia. The focus is on critical cultural factors contributing to SES resilience. In particular, this work presents an integrated view of people situated in specific tundra landscapes that face significantly different prospects for adaptation depending on existing or planned infrastructure ...

  7. Ecosystem CO2 and CH4 exchange in a mixed tundra and a fen within a hydrologically diverse Arctic landscape: 1. Modeling versus measurements

    Science.gov (United States)

    Grant, R. F.; Humphreys, E. R.; Lafleur, P. M.

    2015-07-01

    CO2 and CH4 exchange are strongly affected by hydrology in landscapes underlain by permafrost. Hypotheses for these effects in the model ecosys were tested by comparing modeled CO2 and CH4 exchange with CO2 fluxes measured by eddy covariance from 2006 to 2009, and with CH4 fluxes measured with surface chambers in 2008, along a topographic gradient at Daring Lake, NWT. In an upland tundra, rises in net CO2 uptake in warmer years were constrained by declines in CO2 influxes when vapor pressure deficits (D) exceeded 1.5 kPa and by rises in CO2 effluxes with greater active layer depth. Consequently, net CO2 uptake rose little with warming. In a lowland fen, CO2 influxes declined less with D and CO2 effluxes rose less with warming, so that rises in net CO2 uptake were greater than those in the tundra. Greater declines in CO2 influxes with warming in the tundra were modeled from greater soil-plant-atmosphere water potential gradients that developed under higher D in drained upland soil, and smaller rises in CO2 effluxes with warming in the fen were modeled from O2 constraints to heterotrophic and belowground autotrophic respiration from a shallow water table in poorly drained lowland soil. CH4 exchange modeled during July and August indicated very small influxes in the tundra and larger effluxes characterized by afternoon emission events caused by degassing of warming soil in the fen. Emissions of CH4 modeled from degassing during soil freezing in October-November contributed about one third of the annual total.

  8. The Tundra is a Net Source of CO2 Measured by Autochambers and Eddy Covariance Techniques During Five Years in a Site With Permafrost Thawing.

    Science.gov (United States)

    Celis, G.; Mauritz, M.; Bracho, R. G.; Salmon, V. G.; Webb, E.; Hutchings, J. A.; Natali, S.; Crummer, K. G.; Schuur, E.; Schaedel, C.

    2015-12-01

    Current and future warming of high latitude tundra ecosystems will play an important role in climate change through feedbacks to the global carbon (C) cycle. Long-term observational and experimental studies are pivotal for detecting and understanding changes in the coming decades. Yet studies of the C feedbacks from observational studies and manipulative experiments made on tundra plant communities often have significantly different conclusions with regards to impacts of warming on the ecosystem. Comparing results from these two study types, however, often involves integrating CO2 flux measurements that were collected on different spatial scales using a variety of methods. The process of data assimilation for landscape level analysis is often complicated by the fact that many projects only utilize one method for measuring CO2 fluxes at a given site. This study compares five years of C dynamics in a moist acidic tundra from control plots in a manipulative warming experiment (CiPEHR - plot-scale) and landscape-level natural permafrost thaw gradient (Gradient - Eddy covariance) observations all within a 1km distance from each other. We found net ecosystem exchange (NEE) to be an annual net source of carbon using both methods (Gradient 12.3 - 125.6 g CO2-C m-2 and CiPEHR warming manipulation 80.2 - 175.8 g CO2-C m-2). The differences between sites were biggest in the first three years of observation, and can be explained by lower growing season gross primary production (GPP - first three years) from the manipulation (CiPEHR), and lower ecosystem respiration (Reco) from CiPEHR in the first year only. Suppressed GPP and Reco could be from the impact of experimental setup (chamber soil collars - root damage), which lowered the plant community's capacity to fix C, but recovered within three years. This warrants caution of making generalization of short-term experiments in the tundra and more research is needed evaluating coupling of belowground and aboveground C dynamics.

  9. The exchange of energy, water and carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Kutzbach, L.

    2006-07-01

    The ecosystem-scale exchange fluxes of energy, water and carbon dioxide between wet arctic tundra and the atmosphere were investigated by the micrometeorological eddy covariance method. The investigation site was the centre of the Lena River Delta in Northern Siberia characterised by a polar and distinctly continental climate, very cold and ice-rich permafrost and its position at the interface between the Eurasian continent and the Arctic Ocean. The measurements were performed on the surface of a Holocene river terrace characterised by wet polygonal tundra. The soils at the site are characterised by high organic matter content, low nutrient availability and pronounced water logging. The vegetation is dominated by sedges and mosses. The fluctuations of the H{sub 2}O and CO{sub 2} concentrations were measured with a closed-path infrared gas analyser. The fast-response eddy covariance measurements were supplemented by a set of slow-response meteorological and soil-meteorological measurements. The combined datasets of the two campaigns 2003 and 2004 were used to characterise the seasonal course of the energy, water and CO{sub 2} fluxes and the underlying processes for the synthetic measurement period May 28..October 21 2004/2003 including the period of snow and soil thawing as well as the beginning of refreezing. The synthetic measurement period 2004/2003 was characterised by a long snow ablation period and a late start of the growing season. On the other hand, the growing season ended also late due to high temperatures and snow-free conditions in September. The cumulative summer energy partitioning was characterised by low net radiation, large ground heat flux, low latent heat flux and very low sensible heat flux compared to other tundra sites. These findings point out the major importance of the very cold permafrost for the summer energy budget of the tundra in Northern Siberia. (orig./SR)

  10. Modeling Fire Severity in Black Spruce Stands in the Alaskan Boreal Forest Using Spectral and Non-Spectral Geospatial Data

    Science.gov (United States)

    Barrett, K.; Kasischke, E. S.; McGuire, A. D.; Turetsky, M. R.; Kane, E. S.

    2010-01-01

    Biomass burning in the Alaskan interior is already a major disturbance and source of carbon emissions, and is likely to increase in response to the warming and drying predicted for the future climate. In addition to quantifying changes to the spatial and temporal patterns of burned areas, observing variations in severity is the key to studying the impact of changes to the fire regime on carbon cycling, energy budgets, and post-fire succession. Remote sensing indices of fire severity have not consistently been well-correlated with in situ observations of important severity characteristics in Alaskan black spruce stands, including depth of burning of the surface organic layer. The incorporation of ancillary data such as in situ observations and GIS layers with spectral data from Landsat TM/ETM+ greatly improved efforts to map the reduction of the organic layer in burned black spruce stands. Using a regression tree approach, the R2 of the organic layer depth reduction models was 0.60 and 0.55 (pb0.01) for relative and absolute depth reduction, respectively. All of the independent variables used by the regression tree to estimate burn depth can be obtained independently of field observations. Implementation of a gradient boosting algorithm improved the R2 to 0.80 and 0.79 (pb0.01) for absolute and relative organic layer depth reduction, respectively. Independent variables used in the regression tree model of burn depth included topographic position, remote sensing indices related to soil and vegetation characteristics, timing of the fire event, and meteorological data. Post-fire organic layer depth characteristics are determined for a large (N200,000 ha) fire to identify areas that are potentially vulnerable to a shift in post-fire succession. This application showed that 12% of this fire event experienced fire severe enough to support a change in post-fire succession. We conclude that non-parametric models and ancillary data are useful in the modeling of the surface

  11. Greening Trends in North American Boreal Forest and Tundra during 2000-2009 from MODIS and in situ Measurements

    Science.gov (United States)

    Wang, D.; Morton, D. C.; Masek, J. G.; McManus, K. M.; Sexton, J. O.

    2010-12-01

    High northern latitudes have experienced the strongest warming trends during the satellite era (1970-present). The response of boreal forest and tundra vegetation to recent and projected warming plays a pivotal role for carbon cycling in these ecosystems and related feedbacks within the Earth system. Long time series of normalized differenced vegetation index (NDVI), calculated from historical Advanced Very High Resolution Radiometer (AVHRR) data, provided the first opportunity to evaluate vegetation dynamics over decadal temporal scales and continental to global spatial scales. However, due to coarse spatial resolution (1-8 km), previous studies of greening in North America with aggregated AVHRR NDVI data were unable to separate the contributions from changes in growing season length and vegetation cover to the greening signal in forest and tundra ecosystems. In this study, we isolated trends in peak growing season vegetation cover using NDVI data from the MODerate resolution Imaging Spectroradiometer (MODIS) during 2000-2009. Our time series analysis compared 500 m NDVI data from the same 16-day composite period during peak growing season months to characterize changes in vegetation abundance during 2000-2009. This approach minimized impacts of phenology, changes in growing season length, and clouds or other data artifacts. For comparison with satellite-based observations, we used measurements of upwelling and downwelling spectral radiances over FLUXNET tower sites to derive broadband NDVI values. Trends in vegetation cover from MODIS NDVI during 2000-2009 differ from previous studies with AVHRR data. Approximately 26% of all vegetated area exhibited significant linear trends in NDVI during 2000-2009 (ptrendfire, insect damage, or harvest, and these trends were captured in both MODIS and broadband NDVI from FLUXNET tower sites. However, greening trends were not observed over mature forests due to saturation of NDVI at MODIS resolution. Therefore, satellite

  12. Soil bacterial community and functional shifts in response to altered snowpack in moist acidic tundra of northern Alaska

    Science.gov (United States)

    Ricketts, Michael P.; Poretsky, Rachel S.; Welker, Jeffrey M.; Gonzalez-Meler, Miquel A.

    2016-09-01

    Soil microbial communities play a central role in the cycling of carbon (C) in Arctic tundra ecosystems, which contain a large portion of the global C pool. Climate change predictions for Arctic regions include increased temperature and precipitation (i.e. more snow), resulting in increased winter soil insulation, increased soil temperature and moisture, and shifting plant community composition. We utilized an 18-year snow fence study site designed to examine the effects of increased winter precipitation on Arctic tundra soil bacterial communities within the context of expected ecosystem response to climate change. Soil was collected from three pre-established treatment zones representing varying degrees of snow accumulation, where deep snow ˜ 100 % and intermediate snow ˜ 50 % increased snowpack relative to the control, and low snow ˜ 25 % decreased snowpack relative to the control. Soil physical properties (temperature, moisture, active layer thaw depth) were measured, and samples were analysed for C concentration, nitrogen (N) concentration, and pH. Soil microbial community DNA was extracted and the 16S rRNA gene was sequenced to reveal phylogenetic community differences between samples and determine how soil bacterial communities might respond (structurally and functionally) to changes in winter precipitation and soil chemistry. We analysed relative abundance changes of the six most abundant phyla (ranging from 82 to 96 % of total detected phyla per sample) and found four (Acidobacteria, Actinobacteria, Verrucomicrobia, and Chloroflexi) responded to deepened snow. All six phyla correlated with at least one of the soil chemical properties (% C, % N, C : N, pH); however, a single predictor was not identified, suggesting that each bacterial phylum responds differently to soil characteristics. Overall, bacterial community structure (beta diversity) was found to be associated with snow accumulation treatment and all soil chemical properties. Bacterial

  13. Sorting out non-sorted circles: Effects of winter climate change on the Collembola community of cryoturbated subarctic tundra

    Science.gov (United States)

    Krab, Eveline; Monteux, Sylvain; Becher, Marina; Blume-Werry, Gesche; Keuper, Frida; Klaminder, Jonatan; Kobayashi, Makoto; Lundin, Erik J.; Milbau, Ann; Roennefarth, Jonas; Teuber, Laurenz Michael; Weedon, James; Dorrepaal, Ellen

    2015-04-01

    Non-sorted circles (NSC) are a common type of cryoturbated (frost-disturbed) soil in the arctic and store large amounts of soil organic carbon (SOC) by the burial of organic matter. They appear as sparsely vegetated areas surrounded by denser tundra vegetation, creating patterned ground. Snowfall in the arctic is expected to increase, which will modify freezing intensity and freeze-thaw cycles in soils, thereby impacting on SOC dynamics. Vegetation, soil fauna and microorganisms, important drivers of carbon turnover, may benefit directly from the altered winter conditions and the resulting reduction in cryoturbation, but may also impact each other through trophic cascading. We investigated how Collembola, important decomposer soil fauna in high latitude ecosystems, are affected by increased winter insulation and vegetation cover. We subjected NSC in North-Swedish subarctic alpine tundra to two years of increased thermal insulation (snow fences or fiber cloth) in winter and spring, increasing soil temperatures and strongly reducing freeze-thaw frequency. From these NSC we sampled the Collembola community in: (i) the non-vegetated center, (ii) sparsely vegetated parts in the center and (iii) the vegetated domain surrounding NSC. To link changes in Collembola density and community composition to SOC dynamics, we included measurements of decomposer activity, dissolved organic carbon (DOC) and total extractable nitrogen (TN). We observed differences in Collembola density, community composition and soil fauna activity between the sampling points in the NSC. Specifically Collembola diversity increased with the presence of vegetation and density was higher in the vegetated outer domains. Increased winter insulation did not affect diversity but seemed to negatively affect density and decomposer activity in the vegetated outer domains. Interestingly, SOM distribution over NSC changed with snow addition (also to a lesser extent with fleece insulation) towards less SOM in the

  14. Modern and fossilized biological communities from sediments of Bolshoy Harbei lake (Bolshezemelskaya tundra, Russia) and their response to climate change

    Science.gov (United States)

    Tumanov, Oleg; Nazarova, Larisa; Fefilova, Elena; Baturina, Maria; Loskutova, Olga; Frolova, Larisa; Palagushkina, Olga

    2013-04-01

    High-altitude regions are subjected to the threats of global warming. During the last decade the depth of seasonal melting of permafrost in Northern Russia, significantly increased. Investigation of lake sediments from polar regions has an extreme importance for understanding of the modern environmental processes and their influence on northern ecosystems and biological diversity of these regions. Invertebrate communities are used for diagnostic of lake ecosystems because they have a great sensitivity to climatic changes (Andronnikova, 1996; Lazareva, 2008; O'Brien et al., 2005). The data can be used as well as a basis for inference models for reconstruction of the paleoclimatic conditions. Chironomid-based, Cladocera-based and diatom models have successfully been developed (Nazarova et al., 2008, 2011; Self et al., 2011) and can be used for precise paleotemperature reconstructions (Kienast et al., 2011). In summer 2012, we investigated complex of Kharbei lakes, located in the interfluve of Korotaiha and Bolshaya Rogovaya rivers in the east side of Bolshezemelskaya tundra, Russia (67°33'22″ N, 62°53'23″ E). Six different lakes were investigated using modern hydrobiological and palaeoecological methods. In total 9 cores were obtained, cut, dated and further investigated using sedimenthological, geochemical, and paleobiological methods. The standard hydrobiological methods have shown that the modern zooplankton communities did not change significantly during the last 40 years. Taxonomic composition and structure of planktonic communities didn't change, except for appearance of crustaceans Polyarthra euryptera and Daphnia cucullata. In planktonic communities of Bolshoy Harbei lake we revealed 39 species and forms of Rotifera, 19 - Cladocera and 11 - Copepoda. In zoobenthic communities we registered 24 taxonomical groups characteristic for large tundra lakes of the North East of Russia. Chironomids and Oligochaeta are dominant groups of invertebrates. 103 taxa of

  15. Topographic control of the depth of ground thaw in a peat covered continuous permafrost site in the Canadian arctic tundra

    Science.gov (United States)

    Endrizzi, Stefano; Marsh, Philip; Quinton, William; Dall'Amico, Matteo

    2010-05-01

    Recent research has suggested an energy-based framework for delineating runoff contributing areas for permafrost dominated, tundra environments, where end of winter snow cover, and turbulent and radiant fluxes of energy and water are affected by topography, and control both snowmelt and the depth of ground thaw. The resulting spatially variable thaw depth, when combined with spatially variable water supply, spatially variable organic soil thickness, and depth variable hydraulic conductivity in organic soils, has a significant impact on the flow of water from uplands to the stream channel. In order to consider the effects of a spatially variable depth of thaw on runoff in a tundra basin, the hydrologic model GEOtop was applied to the Siksik Creek drainage basin located approximately 50 km north of Inuvik, NWT, Canada, characterized by a relatively gentle topography, with elevation ranging from 0 and 80 m a.s.l.. The small surface area of the basin (approximately 1 km2) allows the model to be run at a relatively high resolution. GEOtop is a grid based model with a complete surface energy balance scheme that accounts for variations in both the turbulent fluxes of sensible and latent heat, as well as for variations in radiant fluxes. The model also has a complete subsurface heat and water flux scheme that is able to route water and energy both vertically between a large number of soil layers, and horizontally between grids. Field data for model validation include meteorological data, depth of thaw, and runoff data for a 3 year period between 1992 and 1994, and high resolution DEM and vegetation height data obtained from airborne LiDAR in 2004. The purpose of this work is studying how topography controls the depth of thaw, and, therefore, the effects of a spatially variable snow cover are intentionally neglected. GEOtop was then run in a simple configuration, assuming an initial condition of uniform frost table at the ground surface at the end of snow melt, with snow

  16. Seasonality of Air-sea-ice-land Variables for Arctic Tundra in Northern Eurasia and North America

    Science.gov (United States)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Steele, M.; Epstein, H.; Jia, G.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2009-12-01

    The strength of tundra productivity trends as measured by the annual maximum Normalized Difference Vegetation Index (MaxNDVI) and time integrated NDVI (TI-NDVI) vary around the Arctic over the 1982-2008 period. Our analysis suggests that the timing of terrestrial vegetation growth is connected to seasonal patterns of sea-ice concentrations, ocean temperatures and land surface temperatures. This study used SSMI estimates of sea ice concentration, based on a bootstrap algorithm and AVHRR radiometric surface temperature. Summer Warmth Index (SWI) was calculated as the sum from May to August of the degree months above freezing of surface temperature at each pixel and is an accepted measure of plant growth potential. The Normalized Difference Vegetation Index (NDVI) represents vegetation greenness and has been used extensively to monitor changes in the Arctic. The albedo of green plants varies with solar radiation wavelength, which is the basis for the NDVI index. The analysis was conducted within 50 km of the Arctic coastline to focus on the region of maximum maritime influence. Time series of regional sea-ice concentration, SWI and NDVI were constructed for the 50-km width domains for the Pan-Arctic, North America, Eurasia and Arctic subregions. Standard climate analysis techniques were applied to the regional time series to investigate the seasonality of sea ice, NDVI and SWI. MaxNDVI has increased in the 50-km land domain contiguous to the Beaufort Sea by 17% since 1982, whereas it has only increased by 3% in the coastal Kara Sea region. Analysis of semimonthly MaxNDVI indicates that the vegetation greens up more rapidly in the spring in the Beaufort than the W. Kara and the Kara has slightly higher NDVI in the fall. The climatological weekly sea ice concentrations in 50-km coastal domain displays an earlier breakup in the Beaufort and a later freeze-up in the Kara Sea area. Regional differences in the seasonal cycle can in part explain the spatially varied trends

  17. Land-atmosphere fluxes of methane and carbon dioxide at Siberian polygonal tundra - new data from 2009 in comparison to data from 2003/04 and 2006.

    Science.gov (United States)

    Schreiber, Peter; Wille, Christian; Sachs, Torsten; Pfeiffer, Eva-Maria; Kutzbach, Lars

    2010-05-01

    The fluxes of carbon dioxide (CO2) and methane (CH4) between wet arctic polygonal tundra and the atmosphere were investigated by the eddy covariance method and empirical modeling. The study site is situated in the Lena River Delta in Northern Siberia (72° 22' N, 126° 30' E) and is characterized by a polar and distinctly continental climate, very cold and ice-rich permafrost, and its position at the interface between the Eurasian continent and the Arctic Ocean. The soils at the site are characterized by high organic matter content, low nutrient availability and pronounced water logging. The vegetation is dominated by sedges and mosses. Flux measurements were performed during one 'synthetic' growing season consisting of the periods July - October 2003 and May - July 2004, one full growing season in 2006 (June - September), and during July - August in 2009. The main carbon exchange processes - gross photosynthesis, ecosystem respiration, and CH4 emissions - were generally found to be of low intensity. Over the 2004/2003 growing season (June - September), these gas fluxes accumulated to -0.43 kg m-2, +0.33 kg m-2, and +2 g m-2, respectively. CH4 emissions from June - September 2006 were 1.96 g m-2 with highest emissions in July (+0.57 g m-2) and August (+0.64 g m-2). Day-to-day variations of photosynthesis were mainly controlled by radiation and hence by the synoptic weather conditions. Variations of ecosystem respiration were best explained by an exponential function of surface temperature, which indicates that plant respiration plays a major role within the tundra carbon balance. The factors controlling CH4 emissions were found to be soil temperature and near-surface atmospheric turbulence. The influence of atmospheric turbulence was attributed to the high coverage of open water surfaces in the tundra. For the 2003- 2004 period, winter fluxes were modeled based on functional relationships found in the measured data. On an annual basis, CH4 emissions accounted for

  18. Mechanosensory Neuron Aging: Differential Trajectories with Lifespan-Extending Alaskan Berry and Fungal Treatments in Caenorhabditis elegans.

    Science.gov (United States)

    Scerbak, Courtney; Vayndorf, Elena M; Hernandez, Alicia; McGill, Colin; Taylor, Barbara E

    2016-01-01

    Many nutritional interventions that increase lifespan are also proposed to postpone age-related declines in motor and cognitive function. Potential sources of anti-aging compounds are the plants and fungi that have adapted to extreme environments. We studied the effects of four commonly consumed and culturally relevant Interior Alaska berry and fungus species (bog blueberry, lowbush cranberry, crowberry, and chaga) on the decline in overall health and neuron function and changes in touch receptor neuron morphology associated with aging. We observed increased wild-type Caenorhabditis elegans lifespan and improved markers of healthspan upon treatment with Alaskan blueberry, lowbush cranberry, and chaga extracts. Interestingly, although all three treatments increased lifespan, they differentially affected the development of aberrant morphologies in touch receptor neurons. Blueberry treatments decreased anterior mechanosensory neuron (ALM) aberrations (i.e., extended outgrowths and abnormal cell bodies) while lowbush cranberry treatment increased posterior mechanosensory neuron (PLM) aberrations, namely process branching. Chaga treatment both decreased ALM aberrations (i.e., extended outgrowths) and increased PLM aberrations (i.e., process branching and loops). These results support the large body of knowledge positing that there are multiple cellular strategies and mechanisms for promoting health with age. Importantly, these results also demonstrate that although an accumulation of abnormal neuron morphologies is associated with aging and decreased health, not all of these morphologies are detrimental to neuronal and organismal health. PMID:27486399

  19. Mechanosensory Neuron Aging: Differential Trajectories with Lifespan-Extending Alaskan Berry and Fungal Treatments in Caenorhabditis elegans

    Science.gov (United States)

    Scerbak, Courtney; Vayndorf, Elena M.; Hernandez, Alicia; McGill, Colin; Taylor, Barbara E.

    2016-01-01

    Many nutritional interventions that increase lifespan are also proposed to postpone age-related declines in motor and cognitive function. Potential sources of anti-aging compounds are the plants and fungi that have adapted to extreme environments. We studied the effects of four commonly consumed and culturally relevant Interior Alaska berry and fungus species (bog blueberry, lowbush cranberry, crowberry, and chaga) on the decline in overall health and neuron function and changes in touch receptor neuron morphology associated with aging. We observed increased wild-type Caenorhabditis elegans lifespan and improved markers of healthspan upon treatment with Alaskan blueberry, lowbush cranberry, and chaga extracts. Interestingly, although all three treatments increased lifespan, they differentially affected the development of aberrant morphologies in touch receptor neurons. Blueberry treatments decreased anterior mechanosensory neuron (ALM) aberrations (i.e., extended outgrowths and abnormal cell bodies) while lowbush cranberry treatment increased posterior mechanosensory neuron (PLM) aberrations, namely process branching. Chaga treatment both decreased ALM aberrations (i.e., extended outgrowths) and increased PLM aberrations (i.e., process branching and loops). These results support the large body of knowledge positing that there are multiple cellular strategies and mechanisms for promoting health with age. Importantly, these results also demonstrate that although an accumulation of abnormal neuron morphologies is associated with aging and decreased health, not all of these morphologies are detrimental to neuronal and organismal health. PMID:27486399

  20. STARCH/PULP-FIBER BASED PACKAGING FOAMS AND CAST FILMS CONTAINING ALASKAN FISH BY-PRODUCTS (WASTE

    Directory of Open Access Journals (Sweden)

    Syed H. Imam

    2008-08-01

    Full Text Available Baked starch/pulp foams were prepared from formulations containing zero to 25 weight percent of processed Alaskan fish by-products that consisted mostly of salmon heads, pollock heads, and pollock frames (bones and associated remains produced in the filleting operation. Fish by-products thermoformed well along with starch and pulp fiber, and the foam product (panels exhibited useful mechanical properties. Foams with all three fish by-products, ranging between 10 and 15 wt%, showed the highest flexural modulus (500-770 Mpa. Above 20% fiber content, the modulus dropped considerably in all foam samples. Foam panels with pollock frames had the highest flexural modulus, at about 15% fiber content (770 Mpa. Foams with salmon heads registered the lowest modulus, at 25% concentration. Attempts were also made to cast starch-glycerol-poly (vinyl alcohol films containing 25% fish by-product (salmon heads. These films showed a tensile strength of 15 Mpa and elongation at break of 78.2%. All foams containing fish by-product degraded well in compost at ambient temperature (24oC, loosing roughly between 75-80% of their weight within 7 weeks. The films degraded at a much higher rate initially. When left in water, foams prepared without fish by-product absorbed water much more quickly and deteriorated faster, whereas, water absorption in foams with fish by-product was initially delayed and/or slowed for about 24 h. After this period, water absorption was rapid.

  1. Aerial surveys of endangered whales in the Alaskan Chukchi and western Beaufort Seas, 1990. Final report, Oct-Nov 90

    International Nuclear Information System (INIS)

    In keeping with the National Environmental Policy Act (1969), the Marine Mammal Protection Act (1972) and the Endangered Species Act (1973), the OCS Lands Act Amendments (1978) established a management policy that included studies in OCS lease sale areas to ascertain potential environmental impacts of oil and gas development on OCS marine coastal environments. The Minerals Management Service (MMS) is the agency responsible for these studies and for the leasing of submerged Federal lands. The report summarizes the 1990 investigations of the distribution, abundance, migration, behavior and habitat relationships of endangered whales in the Alaskan Chukchi and western Beaufort Seas (hereafter, study area); 1990 was the second of a three year (1989-91) study. The Bering Sea stock of bowhead whales (Balaena mysticetus) was the principal species studied, with incidental sightings of all other marine mammals routinely recorded. The 1990 season was compromised by circumstances that restricted the availability of the survey aircraft (Grumman Goose, model G21G) to the period 26 October - 7 November; opportunistic surveys were flown in the study area from 3-25 October. In 1990, there were 14 sightings of 19 bowheads from 9-29 October; 5 whales, including 2 calves, were seen north of the study area. One gray whale, 110 belukhas and 53 polar bears were also seen. Over nine survey seasons (1982-90), there were 240 sightings of 520 bowhead whales and 148 sightings of 398 gray whales

  2. MODIS-informed greenness responsesto daytime land surface temperaturefluctuations and wildfire disturbancesin the Alaskan Yukon River Basin

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shu-Guang; Jenkerson, Calli; Oeding, Jennifer; Wylie, Bruce K.; Rover, Jennifer R.; Young, Claudia J.

    2012-01-01

    Pronounced climate warming and increased wildfire disturbances are known to modify forest composition and control the evolution of the boreal ecosystem over the Yukon River Basin (YRB) in interior Alaska. In this study, we evaluate the post-fire green-up rate using the normalized difference vegetation index (NDVI) derived from 250 m 7 day eMODIS (an alternative and application-ready type of Moderate Resolution Imaging Spectroradiometer (MODIS) data) acquired between 2000 and 2009. Our analyses indicate measureable effects on NDVI values from vegetation type, burn severity, post-fire time, and climatic variables. The NDVI observations from both fire scars and unburned areas across the Alaskan YRB showed a tendency of an earlier start to the growing season (GS); the annual variations in NDVI were significantly correlated to daytime land surface temperature (LST) fluctuations; and the rate of post-fire green-up depended mainly on burn severity and the time of post-fire succession. The higher average NDVI values for the study period in the fire scars than in the unburned areas between 1950 and 2000 suggest that wildfires enhance post-fire greenness due to an increase in post-fire evergreen and deciduous species components

  3. Response of plant community structure and primary productivity to experimental drought and flooding in an Alaskan fen

    Science.gov (United States)

    Churchill, A.C.; Turetsky, Merritt R.; McGuire, Anthony; Hollingsworth, Teresa N.

    2014-01-01

    Northern peatlands represent a long-term net sink for atmospheric CO2, but these ecosystems can shift from net carbon (C) sinks to sources based on changing climate and environmental conditions. In particular, changes in water availability associated with climate control peatland vegetation and carbon uptake processes. We examined the influence of changing hydrology on plant species abundance and ecosystem primary production in an Alaskan fen by manipulating the water table in field treatments to mimic either sustained flooding (raised water table) or drought (lowered water table) conditions for 6 years. We found that water table treatments altered plant species abundance by increasing sedge and grass cover in the raised water table treatment and reducing moss cover while increasing vascular green area in the lowered water table treatment. Gross primary productivity was lower in the lowered treatment than in the other plots, although there were no differences in total biomass or vascular net primary productivity among the treatments. Overall, our results indicate that vegetation abundance was more sensitive to variation in water table than total biomass and vascular biomass accrual. Finally, in our experimental peatland, drought had stronger consequences for change in vegetation abundance and ecosystem function than sustained flooding.

  4. Using Tree Rings, CO2 Fluxes, and Long-Term Measurements to Understand Carbon Dynamics in an Alaskan Boreal Forest

    Science.gov (United States)

    Bond-Lamberty, B. P.; Anderson, C.; Crump, A.; Stegen, J.

    2015-12-01

    Decadal and centennial processes are usually poorly constrained by data, but many opportunities exist to combine disparate data sources such as tree rings, greenhouse gas fluxes from the soil to atmosphere, and long-term tree inventories. At high northern latitudes, permafrost (and its current degradation across large scales) is presumed to exert a strong control on long-term ecosystem carbon uptake and storage. We integrate a variety of data from both Canada and Alaska, focusing on two years of observations across a permafrost gradient in a black spruce Alaskan watershed (the Caribou/Poker Creek Research Watershed ~50 km northeast of Fairbanks, AK, USA). Permafrost depth changes were strongly associated with changes in vegetation and leaf morphology, as well as soil greenhouse fluxes (0.1-2.0 μmol/m2/s, with strong spatial dependencies) and aboveground net primary production (60-550 gC/m2/yr). We use tree-ring data covering the last century to examine how tree response to climate variability changes with elevation and permafrost depth, both along small-scale transects and across the entire 104 km2 watershed. A weakness is that these results are from a single site and point in successional time; we quantify potential variability in this area using 16 years of observations from a Canadian boreal chronosequence. We emphasize that both short and long term observations and experiments, using multiple approaches, are necessary to constrain ecosystem carbon uptake and storage.

  5. Fate of carbon in Alaskan Landscapes Project: database for soils from eddy covariance tower sites, Delta Junction, AK

    Science.gov (United States)

    King, Stagg; Harden, Jennifer; Manies, Kristen L.; Munster, Jennie; White, L. Douglas

    2002-01-01

    Soils in Alaska, and in high latitude terrestrial ecosystems in general, contain significant amounts of organic carbon, most of which is believed to have accumulated since the start of the Holocene about 10 ky before present. High latitude soils are estimated to contain 30-40% of terrestrial soil carbon (Melillo et al., 1995; McGuire and Hobbie, 1997), or ~ 300-400 Gt C (Gt = 1015 g), which equals about half of the current atmospheric burden of carbon. Boreal forests in particular are estimated to have more soil carbon than any other terrestrial biome (Post et al., 1982; Chapin and Matthews, 1993). The relations among net primary production, soil carbon storage, recurrent fire disturbance, nutrients, the hydrologic cycle, permafrost and geomorphology are poorly understood in boreal forest. Fire disturbance has been suggested to play a key role in the interactions among the complex biogeochemical processes influencing carbon storage in boreal forest soils (Harden et al., 2000; Zhuang et al., 2002). There has been an observed increase in fire disturbance in North American boreal black spruce (Picea mariana) forests in recent decades (Murphy et al., 1999; Kasichke et al., 2000), concurrent with increases in Alaskan boreal and arctic surface temperatures and warming of permafrost (Osterkamp and Romanofsky, 1999). Understanding the role of fire in long term carbon storage and how recent changes in fire frequency and severity may influence future high latitude soil carbon pools is necessary for those working to understand or mitigate the effects of global climate change.

  6. Purification of Alaskan Walleye Pollock (Gadus chalcogrammus and New Zealand Hoki (Macruronus novaezelandiae Liver Oil Using Short Path Distillation

    Directory of Open Access Journals (Sweden)

    Alex C. M. Oliveira

    2014-05-01

    Full Text Available The beneficial health effects of a diet rich in n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA have been extensively researched in recent years. Marine oils are an important dietary source of n-3 LC-PUFA, being especially rich in two of the most important fatty acids of this class, EPA (eicosapentaenoic acid; 20:5n-3 and DHA (docosahexaenoic acid; 22:6n-3. Oils rich in n-3 LC-PUFA are prone to oxidation that leads to loss of product quality. Alaskan pollock (Gadus chalcogrammus Pallas, 1814 and New Zealand’s hoki (Macruronus novaezelandiae Hector, 1871 are the highest volume fisheries of their respective countries. Both produce large quantities of fishery byproducts, in particular crude or unrefined n-3 LC-PUFA containing oils. Presently these oils are used as ingredients for animal feed, and only limited quantities are used as human nutritional products. The aim of this research was to investigate the applicability of short path distillation for the purification of pollock and hoki oil to produce purified human-grade fish oil to meet quality specifications. Pollock and hoki oils were subjected to short path distillation and a significant decrease in free fatty acids and lipid oxidation (peroxide and para-anisidine values products was observed. Purified oils met the Global Organization for EPA and DHA Omega-3 (GOED standard for edible fish oils.

  7. Morphology and properties of the soils of permafrost peatlands in the southeast of the Bol'shezemel'skaya tundra

    Science.gov (United States)

    Kaverin, D. A.; Pastukhov, A. V.; Lapteva, E. M.; Biasi, C.; Marushchak, M.; Martikainen, P.

    2016-05-01

    The morphology and properties of the soils of permafrost peatlands in the southeast of the Bol'shezemel'skaya tundra are characterized. The soils developing in the areas of barren peat circles differ from oligotrophic permafrost-affected peat soils (Cryic Histosols) of vegetated peat mounds in a number of morphological and physicochemical parameters. The soils of barren circles are characterized by the wellstructured surface horizons, relatively low exchangeable acidity, and higher rates of decomposition and humification of organic matter. It is shown that the development of barren peat circles on tops of peat mounds is favored by the activation of erosional and cryogenic processes in the topsoil. The role of winter wind erosion in the destruction of the upper peat and litter horizons is demonstrated. A comparative analysis of the temperature regime of soils of vegetated peat mounds and barren peat circles is presented. The soil-geocryological complex of peat mounds is a system consisting of three major layers: seasonally thawing layer-upper permafrost-underlying permafrost. The upper permafrost horizons of peat mounds at the depth of 50-90 cm are morphologically similar to the underlying permafrost. However, these layers differ in their physicochemical properties, especially in the composition and properties of their organic matter.

  8. Complete genome sequence of Terriglobus saanensis type strain SP1PR4T, an Acidobacteria from tundra soil

    Energy Technology Data Exchange (ETDEWEB)

    Rawat, Suman R. [Rutgers University; Mannisto, Minna [Finnish Forest Research Institute, Parkano, Finland; Starovoytov, Valentin [Rutgers University; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Davenport, Karen W. [Los Alamos National Laboratory (LANL); Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Haggblom, Max [Rutgers University

    2012-01-01

    Terriglobus saanensis SP1PR4T is a novel species of the genus Terriglobus. T. saanensis is of ecological interest because it is a representative of the phylum Acidobacteria, which are dominant members of bacterial soil microbiota in Arctic ecosystems. T. saanensis is a cold-adapted acidophile and a versatile heterotroph utilizing a suite of simple sugars and complex polysaccharides. The genome contained an abundance of genes assigned to metabolism and transport of carbohydrates including gene modules encoding for carbohydrate-active enzyme (CAZyme) family involved in breakdown, utilization and biosynthesis of diverse structural and storage polysaccharides. T. saanensis SP1PR4T represents the first member of genus Terriglobus with a completed genome sequence, consisting of a single replicon of 5,095,226 base pairs (bp), 54 RNA genes and 4,279 protein-coding genes. We infer that the physiology and metabolic potential of T. saanensis is adapted to allow for resilience to the nutrient-deficient conditions and fluctuating temperatures of Arctic tundra soils.

  9. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes

    Directory of Open Access Journals (Sweden)

    A. Ekici

    2014-09-01

    Full Text Available Modelling soil thermal dynamics at high latitudes and altitudes requires representations of specific physical processes such as snow insulation, soil freezing/thawing, as well as subsurface conditions like soil water/ice content and soil texture type. We have compared six different land models (JSBACH, ORCHIDEE, JULES, COUP, HYBRID8, LPJ-GUESS at four different sites with distinct cold region landscape types (i.e. Schilthorn-Alpine, Bayelva-high Arctic, Samoylov-wet polygonal tundra, Nuuk-non permafrost Arctic to quantify the importance of physical processes in capturing observed temperature dynamics in soils. This work shows how a range of models can represent distinct soil temperature regimes in permafrost and non-permafrost soils. Snow insulation is of major importance for estimating topsoil conditions and must be combined with accurate subsoil temperature dynamics to correctly estimate active layer thicknesses. Analyses show that land models need more realistic surface processes (such as detailed snow dynamics and moss cover with changing thickness/wetness as well as better representations of subsoil thermal dynamics (i.e. soil heat transfer mechanism and correct parameterization of heat conductivity/capacities.

  10. Complete genome sequence of Granulicella tundricola type strain MP5ACTX9T, an Acidobacteria from tundra soil

    Energy Technology Data Exchange (ETDEWEB)

    Rawat, Suman R. [Rutgers University; Mannisto, Minna [Finnish Forest Research Institute, Parkano, Finland; Starovoytov, Valentin [Rutgers University; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Davenport, Karen W. [Los Alamos National Laboratory (LANL); Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Haggblom, Max [Rutgers University

    2013-01-01

    Granulicella tundricola strain MP5ACTX9T is a novel species of the genus Granulicella in subdivision 1 Acidobacteria. G. tundricola is a predominant member of soil bacterial communities, active at low temperatures and nutrient limiting conditions in Arctic alpine tundra. The organism is a cold-adapted acidophile and a versatile heterotroph that hydro-lyzes a suite of sugars and complex polysaccharides. Genome analysis revealed metabolic versatility with genes involved in metabolism and transport of carbohydrates, including gene modules encoding for the carbohydrate-active enzyme (CAZy) families for the break-down, utilization and biosynthesis of diverse structural and storage polysaccharides such as plant based carbon polymers. The genome of G. tundricola strain MP5ACTX9T consists of 4,309,151 bp of a circular chromosome and five mega plasmids with a total genome con-tent of 5,503,984 bp. The genome comprises 4,705 protein-coding genes and 52 RNA genes.

  11. Spatial and temporal variation of bulk snow properties in northern boreal and tundra environments based on extensive field measurements

    Science.gov (United States)

    Hannula, Henna-Reetta; Lemmetyinen, Juha; Kontu, Anna; Derksen, Chris; Pulliainen, Jouni

    2016-08-01

    An extensive in situ data set of snow depth, snow water equivalent (SWE), and snow density collected in support of the European Space Agency (ESA) SnowSAR-2 airborne campaigns in northern Finland during the winter of 2011-2012 is presented (ESA Earth Observation Campaigns data 2000-2016). The suitability of the in situ measurement protocol to provide an accurate reference for the simultaneous airborne SAR (synthetic aperture radar) data products over different land cover types was analysed in the context of spatial scale, sample spacing, and uncertainty. The analysis was executed by applying autocorrelation analysis and root mean square difference (RMSD) error estimations. The results showed overall higher variability for all the three bulk snow parameters over tundra, open bogs and lakes (due to wind processes); however, snow depth tended to vary over shorter distances in forests (due to snow-vegetation interactions). Sample spacing/sample size had a statistically significant effect on the mean snow depth over all land cover types. Analysis executed for 50, 100, and 200 m transects revealed that in most cases less than five samples were adequate to describe the snow depth mean with RMSD community and can be applied to various snow studies.

  12. Inclusion of Additional Plant Species and Trait Information in Dynamic Vegetation Modeling of Arctic Tundra and Boreal Forest Ecosystem

    Science.gov (United States)

    Euskirchen, E. S.; Patil, V.; Roach, J.; Griffith, B.; McGuire, A. D.

    2015-12-01

    Dynamic vegetation models (DVMs) have been developed to model the ecophysiological characteristics of plant functional types in terrestrial ecosystems. They have frequently been used to answer questions pertaining to processes such as disturbance, plant succession, and community composition under historical and future climate scenarios. While DVMs have proved useful in these types of applications, it has often been questioned if additional detail, such as including plant dynamics at the species-level and/or including species-specific traits would make these models more accurate and/or broadly applicable. A sub-question associated with this issue is, 'How many species, or what degree of functional diversity, should we incorporate to sustain ecosystem function in modeled ecosystems?' Here, we focus on how the inclusion of additional plant species and trait information may strengthen dynamic vegetation modeling in applications pertaining to: (1) forage for caribou in northern Alaska, (2) above- and belowground carbon storage in the boreal forest and lake margin wetlands of interior Alaska, and (3) arctic tundra and boreal forest leaf phenology. While the inclusion of additional information generally proved valuable in these three applications, this additional detail depends on field data that may not always be available and may also result in increased computational complexity. Therefore, it is important to assess these possible limitations against the perceived need for additional plant species and trait information in the development and application of dynamic vegetation models.

  13. Resilience strategies in the face of short- and long-term change: out-migration and fisheries regulation in Alaskan fishing communities

    Directory of Open Access Journals (Sweden)

    Amber Himes-Cornell

    2015-06-01

    Full Text Available Historically, communities persisted in remote, isolated areas of Alaska in large part because of the abundance of marine and terrestrial resources, as well as the ability of local people to opportunistically access those resources as they became available. Species switching and the ability to shift effort away from fisheries during poor years allowed local residents to diversify their livelihoods in the face of uncertainties and ecological change. The advent of modern fisheries management, which views Alaskan fisheries as the property of all citizens of the United States, has fundamentally altered the relationship of place-based communities to fishery resources. Local access to fisheries has been particularly affected by the development of transferable fishing privileges, making it possible for fishing rights to leave place-based communities through the choices of individual community members to sell or to move away. When fishing communities in Alaska lose active fishing businesses, over time the loss of various types of community capital will follow, including human, social, cultural, technical, and financial capital. In some cases, communities are able to adapt or transform through diversification of their local economies. In other cases, no alternatives to a fishery-based economy are accessible. We have used resilience theory to explore drivers of change affecting Alaskan fishing communities. Emphasis was placed on two primary change drivers, the regulatory environment and rural out-migration, as well as their interconnections and their impacts on individuals, communities, and the larger social-ecological system. We summarized several government programs that have been implemented to support the continued participation of communities in Alaskan fisheries. In addition, we reviewed informal and private-sector efforts to generate resilience strategies that can facilitate new entry into fisheries or retain fishing businesses and fishing rights

  14. Petrogenesis of the Alaskan-type mafic-ultramafic complex in the Makkah quadrangle, western Arabian Shield, Saudi Arabia

    Science.gov (United States)

    Habtoor, Abdelmonem; Ahmed, Ahmed Hassan; Harbi, Hesham

    2016-10-01

    -rich and Fe-rich varieties. All spinel varieties in the mafic-ultramafic rocks have high Fe3 + and TiO2 contents. The estimated melt composition in equilibrium with Gabal Taftafan complex is mostly similar to that of the SSZ boninitic magmas. The Taftafan mafic-ultramafic rocks show many similarities with the Alaskan-type mafic-ultramafic complexes, including the internal zonal lithology, bulk rock geochemistry, and mineral chemistry. Thus, it is neither related to a fragment of ophiolite sequence nor to the stratiform mafic-ultramafic intrusion. The location of the Taftafan complex along a major fracture zone parallel to the suture between Jeddah and Asir terranes in addition to the aforementioned striking similarities to the Alaskan-type complexes, suggests a formation in subduction-related setting from a common hydrous mafic magma.

  15. Alaskan wave and river hydrokinetic energy resource assessment, river energy converter testing and surface debris mitigation performance

    Science.gov (United States)

    Johnson, J.; Kasper, J.; Schmid, J.; Duvoy, P.; Ravens, T. M.; Hansen, N.; Montlaur, A.

    2014-12-01

    The Alaska Hydrokinetic Energy Research Center (AHERC) is conducting a wave energy assessment study at Yakutat, Alaska, and conducting ongoing river technology studies at the Tanana River Tests Site (TRTS) at Nenana, Alaska. In Aug. 2013 an acoustic Doppler current profiler (ADCP) was deployed in 40 m of water off Cannon Beach in Yakutat, AK as part of the Yakutat area wave energy resource assessment. Over the course of the 1.5 year deployment, the ADCP will record area wave and current data in order to verify the area wave energy resource. Preliminary data analysis shows a vigorous wave field with maximum wave heights up to 16 m in Nov. 2013. In addition to the in-situ directional wave data recorded by the ADCP, a SWAN wave climatology spanning the past 20 years is being developed along with a simulation of the wave field for the near shore (5 mhydrokinetic turbine from river debris flows and to determine the effect of RDDP generated river current turbulence on turbine efficiency. Previous tests have shown that the RDDP effectively sheds debris, however, large debris objects can cause RDDP rotation about its mooring point requiring that a stable attachment between the RDDP and protected floating structure be in place to ensure that debris is diverted away from the protected structure. Performance tests of an Oceana hydrokinetic power turbine will be conducted in late August or early September, 2014 at the TRTS in realistic Alaskan river conditions of current turbulence, high sediment flow and debris. Measurements of river sediment concentration, current velocity and river stage will be made, and current turbulence will be derived. CFD simulations of the RDDP interaction with the river flow will be completed to compare current velocity and turbulence results, depending on the opening angle of the device. Study activities and results will be presented.

  16. Copper in the sea: a physical--chemical study of reservoirs, fluxes, and pathways in an Alaskan fjord

    Energy Technology Data Exchange (ETDEWEB)

    Heggie, D.T.

    1978-05-01

    Copper in the sea is derived principally from continental weathered products added to the oceans at continental boundaries; hence processes, fluxes, and pathways in estuaries control the supply of copper to the marine biosphere. From mass balances, the fluxes, sources, and sinks of copper in an Alaskan fjord were examined by utilizing fjord deep waters as an approximation to a closed chemical system. Copper was measured in the water columns and interstitial waters electroanalytically. Concentrations of soluble copper ranged between 0.14 ..mu..g l/sup -1/ and 3.13 ..mu..g l/sup -1/. Approximately 40% of total copper was associated with particulate matter in the water column. Concentrations of copper in interstitial waters varied between 1.02 and 9.98 ..mu..g l/sup -1/; maximum concentrations were always found in surface segments. Concentrations of copper on sediments were about 20 mg kg /sup -1/. Copper was removed from the water column and transported to the sediments by particulate matter; net annual removal was estimated to be between 9.6 and 14.2 ..mu..g Cu cm/sup -2/. Copper was remobilized from the solid phase(s) in surface sediments and subsequently returned to the overlying water; net annual transport across the sediment-seawater interface was estimated to be 1.9 ..mu..g Cu cm/sup -/2. Therefore, between 13 and 20% of copper removed from the water column to the sediments was returned to the water column. Remobilized copper not returned to the water column was removed from interstitial waters in the anoxic zone of sediments. Remobilization and removal processes in sediments take place in thin approx. 10 cm zone and effective rates of reactions in sediments may be one of three orders of magnitude greater than reaction rates in the water column. A hypothesis is presented for transport of copper to the sediments predominately on biogenic particles.

  17. COMPARING SEA LEVEL RESPONSE AT MONTEREY, CALIFORNIA FROM THE 1989 LOMA PRIETA EARTHQUAKE AND THE 1964 GREAT ALASKAN EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    L. C. Breaker

    2009-01-01

    Full Text Available Two of the largest earthquakes to affect water levels in Monterey Bay in recent years were the Loma Prieta Earthquake (LPE of 1989 with a moment magnitude of 6.9, and the Great Alaskan Earthquake (GAE of 1964 with a moment magnitude of 9.2. In this study, we compare the sea level response of these events with a primary focus on their frequency content and how the bay affected it, itself. Singular Spectrum Analysis (SSA was employed to extract the primary frequencies associated with each event. It is not clear how or exactly where the tsunami associated with the LPE was generated, but it occurred inside the bay and most likely began to take on the characteristics of a seiche by the time it reached the tide gauge in Monterey Harbor. Results of the SSA decomposition revealed two primary periods of oscillation, 9-10 minutes, and 31-32 minutes. The first oscillation is in agreement with the range of periods for the expected natural oscillations of Monterey Harbor, and the second oscillation is consistent with a bay-wide oscillation or seiche mode. SSA decomposition of the GAE revealed several sequences of oscillations all with a period of approximately 37 minutes, which corresponds to the predicted, and previously observed, transverse mode of oscillation for Monterey Bay. In this case, it appears that this tsunami produced quarter-wave resonance within the bay consistent with its seiche-like response. Overall, the sea level responses to the LPE and GAE differed greatly, not only because of the large difference in their magnitudes but also because the driving force in one case occurred inside the bay (LPE, and in the second, outside the bay (GAE. As a result, different modes of oscillation were excited.

  18. Regulation of methane production, oxidation, and emission by vascular plants and bryophytes in ponds of the northeast Siberian polygonal tundra

    Science.gov (United States)

    Knoblauch, Christian; Spott, Oliver; Evgrafova, Svetlana; Kutzbach, Lars; Pfeiffer, Eva-Maria

    2015-12-01

    Methane (CH4) production, oxidation, and emission were studied in ponds of the permafrost-affected polygonal tundra in northeast Siberia. Microbial degradation of organic matter in water-saturated soils is the most important source for the climate-relevant trace gas CH4. Although ponds and lakes cover a substantial fraction of the land surface of northern Siberia, data on CH4 fluxes from these water bodies are scarce. Summer CH4 fluxes were measured with closed chambers at the margins of ponds vegetated by vascular plants and in their centers without vascular plants. Furthermore, CH4 and oxygen concentration gradients, stable carbon isotope signatures of dissolved and emitted CH4, and microbial CH4 production and CH4 oxidation were determined. Mean summer fluxes were significantly higher at the margins of the ponds (46.1 ± 15.4 mg CH4 m-2 d-1) than at the centers (5.9 ± 8.2 mg CH4 m-2 d-1). CH4 transport was dominated by diffusion in most open water sites, but substantial ebullitive fluxes (12.0 ± 8.1 mg CH4 m-2 d-1) were detected in one pond. Plant-mediated transport accounted for 70 to 90% of total CH4 fluxes above emerged vegetation. In the absence of vascular plants, 61 to 99% of the CH4 produced in the anoxic bottom soil was consumed in a layer of the submerged moss Scorpidium scorpioides, which covered the bottoms of the ponds. The fraction of CH4 oxidized was lower at sites with vascular plants since CH4 was predominantly transported through their aerenchyma, thereby bypassing the CH4 oxidation zone in the moss layer. These results emphasize the importance of moss-associated CH4 oxidation causing low CH4 fluxes from the studied Siberian ponds.

  19. Modeling different freeze/thaw processes in heterogeneous landscapes of the Arctic polygonal tundra using an ecosystem model

    Directory of Open Access Journals (Sweden)

    S. Yi

    2013-09-01

    Full Text Available Freeze/thaw (F/T processes can be quite different under the various land surface types found in the heterogeneous polygonal tundra of the Arctic. Proper simulation of these different processes is essential for accurate prediction of the release of greenhouse gases under a warming climate scenario. In this study we have modified the dynamic organic soil version of the Terrestrial Ecosystem Model (DOS-TEM to simulate F/T processes beneath the polygon rims, polygon centers (with and without water, and lakes that are common features in Arctic lowland regions. We first verified the F/T algorithm in the DOS-TEM against analytical solutions, and then compared the results with in situ measurements from Samoylov Island, Siberia. In the final stage, we examined the different responses of the F/T processes for different water levels at the various land surface types. The simulations revealed that (1 the DOS-TEM was very efficient and its results compared very well with analytical solutions for idealized cases, (2 the simulations compared reasonably well with in situ measurements although there were a number of model limitations and uncertainties, (3 the DOS-TEM was able to successfully simulate the differences in F/T dynamics under different land surface types, and (4 permafrost beneath water bodies was found to respond highly sensitive to changes in water depths between 1 and 2 m. Our results indicate that water is very important in the thermal processes simulated by the DOS-TEM; the heterogeneous nature of the landscape and different water depths therefore need to be taken into account when simulating methane emission responses to a warming climate.

  20. A satellite data driven biophysical modeling approach for estimating northern peatland and tundra CO2 and CH4 fluxes

    Science.gov (United States)

    Watts, J. D.; Kimball, J. S.; Parmentier, F. J. W.; Sachs, T.; Rinne, J.; Zona, D.; Oechel, W.; Tagesson, T.; Jackowicz-Korczyński, M.; Aurela, M.

    2014-04-01

    The northern terrestrial net ecosystem carbon balance (NECB) is contingent on inputs from vegetation gross primary productivity (GPP) to offset the ecosystem respiration (Reco) of carbon dioxide (CO2) and methane (CH4) emissions, but an effective framework to monitor the regional Arctic NECB is lacking. We modified a terrestrial carbon flux (TCF) model developed for satellite remote sensing applications to evaluate wetland CO2 and CH4 fluxes over pan-Arctic eddy covariance (EC) flux tower sites. The TCF model estimates GPP, CO2 and CH4 emissions using in situ or remote sensing and reanalysis-based climate data as inputs. The TCF model simulations using in situ data explained > 70% of the r2 variability in the 8 day cumulative EC measured fluxes. Model simulations using coarser satellite (MODIS) and reanalysis (MERRA) records accounted for approximately 69% and 75% of the respective r2 variability in the tower CO2 and CH4 records, with corresponding RMSE uncertainties of ≤ 1.3 g C m-2 d-1 (CO2) and 18.2 mg C m-2 d-1 (CH4). Although the estimated annual CH4 emissions were small (Reco (> 180 g C m-2 yr-1), they reduced the across-site NECB by 23% and contributed to a global warming potential of approximately 165 ± 128 g CO2eq m-2 yr-1 when considered over a 100 year time span. This model evaluation indicates a strong potential for using the TCF model approach to document landscape-scale variability in CO2 and CH4 fluxes, and to estimate the NECB for northern peatland and tundra ecosystems.

  1. Effects of increased snow cover on the rates and sources of ecosystem respiration from high arctic tundra

    Science.gov (United States)

    Lupascu, M.; Welker, J. M.; Cooper, E.; Xu, X.; Czimczik, C. I.

    2013-12-01

    A key driver of carbon (C) cycling in arctic ecosystems is the amount, onset and duration of snow cover. Arctic tundra is covered in snow for 8-10 months of the year, although spatial and internannual variability of snow cover is high. Anticipated changes in the amount and timing of snow cover as a consequence of climate warming and their implications for regional C budget and biogeochemistry are highly uncertain. Here, we investigated the effects of increased winter snow depth on the rates and sources of ecosystem respiration (Reco) of a polar semi-desert and mesic meadow at two long-term snowpack manipulation experiments in NW Greenland and Svalbard, Norway. We monitored Reco, the concentrations of CO2 in the soil pore space and their radiocarbon (14C) contents (as an age proxy) over the course of three summers in Greenland and one winter in Svalbard. Preliminary results show that wintertime Reco fluxes were 45% higher in areas of deep as compared to ambient snow. Summertime Reco fluxes were positively correlated to total water-year precipitation (summer rain plus winter snow). However, due to the shorter, snow-free vegetation period, cumulative summertime Reco fluxes under increased snow cover were reduced by up to -34.1×5.4% compared to the control. The mean age of soil CO2 was always older during both the winter- and summertime under increased snow cover. Similarly, the mean age of Reco was older under increased snowpack during the wintertime. However, summertime Reco was dominated by decomposition of younger C and plant respiration, and we found no effect of snow cover. Our results demonstrate the vulnerability of permafrost C to increasing snow cover and the strong potential to serve as a positive feedback to global climate change.

  2. The role of seasonality and large-scale climate drivers in recent Pan-Arctic tundra vegetation variability and change

    Science.gov (United States)

    Bhatt, U. S.; Walker, D. A.; Bieniek, P. A.; Raynolds, M. K.; Comiso, J. C.; Pinzon, J.; Tucker, C. J.

    2011-12-01

    An increase of Pan-Arctic tundra vegetation greenness has been documented using the remotely sensed Normalized Difference Vegetation Index (NDVI) and a coherent variability between NDVI, springtime coastal sea ice and land surface temperatures has been shown. The goal of this paper is to understand the forcing factors of this change and variability better through an analysis of the seasonality of these remotely sensed variables as well as long-term climate data sets. This study uses remotely sensed submonthly 25-km sea ice concentration, surface temperature, and NDVI from 1982 to 2010. The NDVI3g data has been corrected for biases in the spring and fall. Standard climate data (station, reanalysis, and model data) and ground observations are also examined. For overall trends, we find that summer time open water area has increased most in the Beaufort, and Siberian Seas. The seasonality of SWI trends display distinct heterogeneity across the Arctic, with maximum warming in August for most regions (Figure 1). The monthly time integrated NDVI trends display the largest positive values for most of the Arctic in July, with the exception of the E. Bering and Kara regions, which show declines during most months (Figure 2). The largest magnitude increases in Max-NDVI tend to be in subzones that are inland, particularly in the Beaufort and Chukchi regions. NDVI has increased more during spring in Eurasia and more during peak vegetation activity (July) over North America. The analysis suggests that local atmospheric circulation as well as other local factors likely plays an important role in vegetation productivity.

  3. Effects of 45 Years of Heavy Road Traffic and Infrastructure on Permafrost and Tundra at Prudhoe Bay, Alaska

    Science.gov (United States)

    Walker, D. A.; Buchhorn, M.; Raynolds, M. K.; Kanevskiy, M. Z.; Matyshak, G. V.; Shur, Y.; Peirce, J.

    2015-12-01

    The upper permafrost of the Prudhoe Bay Oilfield, the largest oil field in both the United States and in North America, contains significant amounts of excess ground ice, mainly in ice wedges. An increase in infrastructure development and road traffic since the initial development of the Prudhoe Bay Oilfield in 1968 has resulted in extensive flooding, accumulation of road dust, and roadside snowbanks, all of which affect the vegetation and alter the thermal properties of the ground surface. As part of the NSF's Arctic Science, Engineering, and Education for Sustainability (ArcSEES) project, we established four transects in 2014 and 2015 to document the effects of infrastructure and heavy road traffic on adjacent tundra. Two transects were established perpendicular to the Prudhoe Bay Spine Road north of Lake Colleen and two perpendicular to the Dalton Highway next to the Deadhorse airstrip. Prior to infrastructure development in 1949, rather homogeneous networks of low-centered polygons with less than 30 cm of trough-rim elevation contrast covered both locations. We present the detailed results of vegetation analysis, ice-core drilling, and extensive topographic surveys along the transects. A time series of aerial photographs from 1949 to 2014 (yearly since 1969) documents the changing landscapes in relationship to the record of air-temperature, active layer depths, and permafrost temperatures at Deadhorse. Flooding, road dust, and snow drifts have all contributed to creating warmer soil temperatures and deeper active layers near the road. These factors have all contributed in different ways to alteration of the plant canopy. The altered plant canopies in turn further altered the surface albedo and the ground temperatures. Historical photos indicate that between 1989 and 2012 a regional thawing of the ice-wedges occurred, increasing the extent of thermokarst. Our analysis demonstrates the cumulative effects of infrastructure-related and climate-related factors to

  4. Frozen ponds: production and storage of methane during the Arctic winter in a lowland tundra landscape in northern Siberia, Lena River Delta

    Directory of Open Access Journals (Sweden)

    M. Langer

    2014-07-01

    Full Text Available Lakes and ponds play a key role in the carbon cycle of permafrost ecosystems, where they are considered to be hotspots of carbon dioxide CO2 and methane CH4 emission. The strength of these emissions is, however, controlled by a variety of physical and biogeochemical processes whose responses to a warming climate are complex and only poorly understood. Small waterbodies have been attracting an increasing amount of attention since recent studies demonstrated that ponds can make a significant contribution to the CO2 and CH4 emissions of tundra ecosystems. Waterbodies also have a marked effect on the thermal state of the surrounding permafrost; during the freezing period they prolong the period of time during which thawed soil material is available for microbial decomposition. This study presents net CH4 production rates during the freezing period from ponds within a typical lowland tundra landscape in northern Siberia. Rate estimations were based on CH4 concentrations measured in surface lake ice from a variety of waterbody types. Vertical profiles along ice blocks showed an exponential increase in CH4 concentration with depth. These CH4 profiles were reproduced by a 1-D mass balance model and the net CH4 production rates then inferred through inverse modeling. Results revealed marked differences in early winter net CH4 production among various ponds. Initial state ponds underlain by stable permafrost with little or no signs of degradation yielded low net production rates, of the order of 10–11 to 10–10 mol m−2 s−1 (0.01 to 0.14 mgCH4 m−2 d−1. In contrast, advanced state ponds exhibiting clear signs of thermal erosion yielded net CH4 production rates of the order of 10–7 mol m−2 s−1 (140 mgCH4 m−2 d−1. The net production rate per square meter of advanced state ponds exceeded the maximum summer CH4 emission rates per square meter which was measured for the average tundra landscape at the study site. Our results therefore

  5. Two years with extreme and little snowfall: effects on energy partitioning and surface energy exchange in a high-Arctic tundra ecosystem

    Science.gov (United States)

    Stiegler, Christian; Lund, Magnus; Røjle Christensen, Torben; Mastepanov, Mikhail; Lindroth, Anders

    2016-07-01

    Snow cover is one of the key factors controlling Arctic ecosystem functioning and productivity. In this study we assess the impact of strong variability in snow accumulation during 2 subsequent years (2013-2014) on the land-atmosphere interactions and surface energy exchange in two high-Arctic tundra ecosystems (wet fen and dry heath) in Zackenberg, Northeast Greenland. We observed that record-low snow cover during the winter 2012/2013 resulted in a strong response of the heath ecosystem towards low evaporative capacity and substantial surface heat loss by sensible heat fluxes (H) during the subsequent snowmelt period and growing season. Above-average snow accumulation during the winter 2013/2014 promoted summertime ground heat fluxes (G) and latent heat fluxes (LE) at the cost of H. At the fen ecosystem a more muted response of LE, H and G was observed in response to the variability in snow accumulation. Overall, the differences in flux partitioning and in the length of the snowmelt periods and growing seasons during the 2 years had a strong impact on the total accumulation of the surface energy balance components. We suggest that in a changing climate with higher temperature and more precipitation the surface energy balance of this high-Arctic tundra ecosystem may experience a further increase in the variability of energy accumulation, partitioning and redistribution.

  6. Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka populations

    Directory of Open Access Journals (Sweden)

    Habicht Christopher

    2011-02-01

    Full Text Available Abstract Background Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance and ecology (spawning habitat and timing driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s may maintain the genetic variation of outlier loci. Results For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. Conclusions First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second

  7. Plant nutrient acquisition strategies in tundra species: at which soil depth do species take up their nitrogen?

    Science.gov (United States)

    Limpens, Juul; Heijmans, Monique; Nauta, Ake; van Huissteden, Corine; van Rijssel, Sophie

    2016-04-01

    The Arctic is warming at unprecedented rates. Increased thawing of permafrost releases nutrients locked up in the previously frozen soils layers, which may initiate shifts in vegetation composition. The direction in which the vegetation shifts will co-determine whether Arctic warming is mitigated or accelerated, making understanding successional trajectories urgent. One of the key factors influencing the competitive relationships between plant species is their access to nutrients, in particularly nitrogen (N). We assessed the depth at which plant species took up N by performing a 15N tracer study, injecting 15(NH4)2SO4 at three depths (5, 15, 20 cm) into the soil in arctic tundra in north-eastern Siberia in July. In addition we explored plant nutrient acquisition strategy by analyzing natural abundances of 15N in leaves. We found that vascular plants took up 15N at all injection depths, irrespective of species, but also that species showed a clear preference for specific soil layers that coincided with their functional group (graminoids, dwarf shrubs, cryptogams). Graminoids took up most 15N at 20 cm depth nearest to the thaw front, with grasses showing a more pronounced preference than sedges. Dwarf shrubs took up most 15N at 5 cm depth, with deciduous shrubs displaying more preference than evergreens. Cryptogams did not take up any of the supplied 15N . The natural 15N abundances confirmed the pattern of nutrient acquisition from deeper soil layers in graminoids and from shallow soil layers in both deciduous and evergreen dwarf shrubs. Our results prove that graminoids and shrubs differ in their N uptake strategies, with graminoids profiting from nutrients released at the thaw front, whereas shrubs forage in the upper soil layers. The above implies that graminoids, grasses in particular, will have a competitive advantage over shrubs as the thaw front proceeds and/or superficial soil layers dry out. Our results suggest that the vertical distribution of nutrients

  8. Stratospheric ozone depletion : High arctic tundra plant growth on Svalbard is not affected by enhanced UV-B after 7 years of UV-B supplementation in the field

    NARCIS (Netherlands)

    Rozema, Jelte; Boelen, P.; Solheim, B.; Zielke, M.; Buskens, A; Doorenbosch, M.; Fijn, R.; Herder, J.; Callaghan, T.; Bjoern, L.O.; Jones, D.G.; Broekman, R.; Blokker, P.; van de Poll, W.H.

    2006-01-01

    The response of tundra plants to enhanced UV-B radiation simulating 15 and 30% ozone depletion was studied at two high arctic sites (Isdammen and Adventdalen, 78 degrees N, Svalbard).The set-up of the UV-B supplementation systems is described, consisting of large and small UV lamp arrays, installed

  9. Measurement-based upscaling of Pan Arctic Net Ecosystem Exchange: the PANEEx project

    Science.gov (United States)

    Njuabe Mbufong, Herbert; Kusbach, Antonin; Lund, Magnus; Persson, Andreas; Christensen, Torben R.; Tamstorf, Mikkel P.; Connolly, John

    2016-04-01

    The high variability in Arctic tundra net ecosystem exchange (NEE) of carbon (C) can be attributed to the high spatial heterogeneity of Arctic tundra due to the complex topography. Current models of C exchange handle the Arctic as either a single or few ecosystems, responding to environmental change in the same manner. In this study, we developed and tested a simple pan Arctic NEE (PANEEx) model using the Misterlich light response curve (LRC) function with photosynthetic photon flux density (PPFD) as the main driving variable. Model calibration was carried out with eddy covariance carbon dioxide (CO2) data from 12 Arctic tundra sites. The model input parameters (Fcsat, Rd and α) were estimated as a function of air temperature (AirT) and leaf area index (LAI) and represent specific characteristics of the NEE-PPFD relationship, including the saturation flux, dark respiration and initial light use efficiency, respectively. LAI and air temperature were respectively estimated from empirical relationships with remotely sensed normalized difference vegetation index (NDVI) and land surface temperature (LST). These are available as MODIS Terra product MOD13Q1 and MOD11A1 respectively. Therefore, no specific knowledge of the vegetation type is required. The PANEEx model captures the spatial heterogeneity of the Arctic tundra and was effective in simulating 77% of the measured fluxes (r2 = 0.72, p < 0.001) at the 12 sites used in the calibration of the model. Further, the model effectively estimates NEE in three disparate Alaskan ecosystems (heath, tussock and fen) with an estimation ranging between 10 - 36% of the measured fluxes. We suggest that the poor agreement between the measured and modeled NEE may result from the disparity between ground-based measured LAI (used in model calibration) and remotely sensed LAI (estimated from NDVI and used in NEE estimation). Moreover, our results suggests that using simple linear regressions may be inadequate as parameters estimated

  10. Using Coarse Resolution Land Surface Temperature Time Series Data for Vegetation Analysis in the Taiga Tundra Transition Zone. a Case Study for Yamal, Krasnoyarsk Kray and Yakutia

    Science.gov (United States)

    Urban, M.; Schmullius, C. C.; Hese, S.; Herold, M.

    2011-12-01

    Predictions from Global Climate Models have shown increasing trends of global temperature for the 21th century. Since the arctic regions are highly vulnerable to global climate changes, rising temperatures will lead to an intensification of vegetation activity which benefits the extension of the boreal forest into tundra areas. Especially the recruitment of trees into the northern regions, which were controlled by summer temperature and the length of the growing season, is of high importance for the Global Climate System. The tree line movement will lead to a positive feedback in climate conditions since dark forest areas will reduce the albedo which leads to higher warming rates. A multi scale concept for the monitoring of the arctic tree line and changes in vegetation structure in the taiga tundra transition zone of Siberia using Earth Observation data and products on coarse, medium and high spatial resolution is presented. On coarse scale, global land surface temperature data from TERRA, AQUA, ERS and ENVISAT as well as land cover, biomass and phenological information will be integrated to analyze the vegetation composition within the taiga tundra transition zone. On medium spatial resolution, optical and SAR remote sensing data with a pixel size of approx. 30 m will be used to analyze the vegetation structure at the tree line. On very high spatial scale recent Rapideye and Corona imagery from the 1960s will be used to identify vegetation changes and the movement of trees within this 40-50 year time period. As this is a multi-scale approach, the findings on all spatial scales can be connected to each other to verify the results. The first results at coarse scale level have shown the relation between the mean summer temperature and the location of the arctic tree line, which was extracted from the Circumpolar Arctic Vegetation Map (CAVM) by Walker et al. (2005). The assumption is that trees have their optimal growing conditions at a mean summer temperature of 10

  11. Genome-wide association analysis identifies a mutation in the thiamine transporter 2 (SLC19A3 gene associated with Alaskan Husky encephalopathy.

    Directory of Open Access Journals (Sweden)

    Karen M Vernau

    Full Text Available Alaskan Husky Encephalopathy (AHE has been previously proposed as a mitochondrial encephalopathy based on neuropathological similarities with human Leigh Syndrome (LS. We studied 11 Alaskan Husky dogs with AHE, but found no abnormalities in respiratory chain enzyme activities in muscle and liver, or mutations in mitochondrial or nuclear genes that cause LS in people. A genome wide association study was performed using eight of the affected dogs and 20 related but unaffected control AHs using the Illumina canine HD array. SLC19A3 was identified as a positional candidate gene. This gene controls the uptake of thiamine in the CNS via expression of the thiamine transporter protein THTR2. Dogs have two copies of this gene located within the candidate interval (SLC19A3.2 - 43.36-43.38 Mb and SLC19A3.1 - 43.411-43.419 Mb on chromosome 25. Expression analysis in a normal dog revealed that one of the paralogs, SLC19A3.1, was expressed in the brain and spinal cord while the other was not. Subsequent exon sequencing of SLC19A3.1 revealed a 4bp insertion and SNP in the second exon that is predicted to result in a functional protein truncation of 279 amino acids (c.624 insTTGC, c.625 C>A. All dogs with AHE were homozygous for this mutation, 15/41 healthy AH control dogs were heterozygous carriers while 26/41 normal healthy AH dogs were wild type. Furthermore, this mutation was not detected in another 187 dogs of different breeds. These results suggest that this mutation in SLC19A3.1, encoding a thiamine transporter protein, plays a critical role in the pathogenesis of AHE.

  12. Alaskan sport fishing waters

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — As a guide to newcomers and visitors, fishery biologists have compiled a list of some of the well-known fishing waters in Alaska. The list is merely a starting...

  13. A sampling method for tundra swans in the Bristol Bay lowlands of the northern Alaska Peninsula: A summary of a presentation given at the Refuges and Wildlife Project Leaders' meeting, U.S. Fish and Wildlife Service, December 8-11, 1986

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A "census" of tundra swans occurring in the northern Alaska Peninsula was collected over 1984-1985, with supplemental information provided from preliminary surveys...

  14. Recent Tree-growth Responses to Warming Vary by Geographic Region and Ecosystem Type within the Boreal Forest-tundra Transition Zone in Alaska

    Science.gov (United States)

    Sherriff, R.; Miller, A. E.

    2015-12-01

    A critical concern for boreal ecosystems centers on broad-scale responses to warming; i.e., where warming will lead to declining growth and mortality, or enhanced growth and greater productivity. However, few studies have synthesized tree growth along biogeographic gradients in an attempt to address this issue. We sought to develop a broader understanding of how trees have responded to recent warming for a dominant conifer species from the southern boreal to the western forest margin, an area expected to show signs of an early-stage boreal biome shift. A new 30-site network of ring-width chronologies (1216 trees >4cm dbh) were evaluated for growth differences in Picea glauca across low-elevation, closed forests, open woodlands, and altitudinal treeline from southern interior boreal forest to the western forest-tundra margin. Regional temperature records were used to evaluate 1) whether tree growth near western treeline, which experiences cooler summers but warmer winters than in the interior, showed greater sensitivity to temperature than interior sites, 2) if the temperature-growth response varied through time, across ecosystem types, and by tree age, and 3) if there was a temperature-growth threshold. Positive growth trends since the 1980s in many open stands were consistent with the predicted expansion of western and altitudinal treeline. However, years with temperatures >13oC corresponded with a growth plateau or decline at all but the altitudinal treeline sites regardless of geographic location. Closed-canopy stands showed growth declines, high spruce beetle activity, and less resiliency to further warming. Warming leads to markedly different responses according to ecosystem type and biogeographical setting at the boreal forest-tundra margin. Low-elevation forests are less resilient to further warming where temperatures have already reached threshold levels and further spruce beetle outbreaks occur, even at the western margin of boreal forest.

  15. Master function for the solid:solution equilibrium of DOC in taiga and tundra soils of N. Russia: experimental and modeling results

    Science.gov (United States)

    Oosterwoud, M. R.; van der Zee, S. E. A. T. M.; Meeussen, J. C. L.; Temminghoff, E. J. M.

    2012-04-01

    The formation and degradation of Dissolved Organic Carbon (DOC) in arctic environments is intensively investigated, in the context of DOC loading of arctic rivers and seas as well as climate change. However, chemical interaction studies are more scarce, in particular those involving modeling. We investigated DOC interactions in N. Russian taiga and tundra soils, and found that water extractable organic carbon (WEOC) comprises only a small fraction of total organic carbon, whereas DOC is again a small fraction of WEOC. The chemical composition of DOC in terms of humic, fulvic, and hydrophilic acids, the concentrations of dominant cations such as Ca and Al, and the solid iron oxide contents appear to differ profoundly for different soil horizons, as well as between taiga and tundra soils. To reconcile these differences, we processed the data with a simple Freundlich model and with advanced LCD (Ligand and Charge Distribution) modeling of DOC interactions. In the LCD modeling, a combination is made of advances such as CD-MUSIC, and Nica-Donnan approaches, that are implemented in the software ORCHESTRA (though adjusted for computational stability by us). To avoid fitting without good foundation, use is made of the generic parameterization of LCD in combination with measured, site-specific chemical data such as concentrations. We observe that the soil samples from both regions, soil types and horizons can be described with a single DOC sorption Freundlich isotherm. More interestingly, for the same set of samples, the LCD modeling enables us to cast DOC sorption into a single Master Function, that takes iron oxide content and Al and Ca concentrations of soil samples into account in a purely predictive way. Based on this Master Function, it is feasible to assess how DOC is sorbed onto the solid surface. In combination with DOC production and degradation models, our results provide a more balanced instrument to address changes in DOC loading to surface waters due to

  16. Cultural Resilience of Social-ecological Systems in the Nenets and Yamal-Nenets Autonomous Okrugs, Russia: A Focus on Reindeer Nomads of the Tundra

    Directory of Open Access Journals (Sweden)

    Bruce C. Forbes

    2013-12-01

    Full Text Available Empirical data on resilience in social-ecological systems (SESs are reviewed from local and regional scale case studies among full-time nomads in the neighboring Nenets and Yamal-Nenets Autonomous Okrugs, Russia. The focus is on critical cultural factors contributing to SES resilience. In particular, this work presents an integrated view of people situated in specific tundra landscapes that face significantly different prospects for adaptation depending on existing or planned infrastructure associated with oil and gas development. Factors contributing to general resilience are compared to those that are adapted to certain spatial and temporal contexts. Environmental factors include ample space and an abundance of resources, such as fish and game (e.g., geese, to augment the diet of not only the migratory herders, but also residents from coastal settlements. In contrast to other regions, such as the Nenets Okrug, Yamal Nenets households consist of intact nuclear families with high retention among youth in the nomadic tundra population. Accepting attitudes toward exogenous drivers such as climate change and industrial development appear to play a significant role in how people react to both extreme weather events and piecemeal confiscation or degradation of territory. Consciousness of their role as responsible stewards of the territories they occupy has likely been a factor in maintaining viable wildlife populations over centuries. Institutions administering reindeer herding have remained flexible, especially on Yamal, and so accommodate decision-making that is sensitive to herders' needs and timetables. This affects factors such as herd demography, mobility and energetics. Resilience is further facilitated within the existing governance regimes by herders' own agency, most recently in the post-Soviet shift to smaller, privately managed herds that can better utilize available pastures in a highly dynamic environment experiencing rapid socio

  17. Substrate Geochemistry and Soil Development in Boreal Forest and Tundra Ecosystems in the Yukon-Tanana Upland and Seward Peninsula, Alaska

    Science.gov (United States)

    Gough, L.P.; Crock, J.G.; Wang, B.; Day, W.C.; Eberl, D.D.; Sanzolone, R.F.; Lamothe, P.J.

    2008-01-01

    We report on soil development as a function of bedrock type and the presence of loess in two high latitude ecosystems (boreal forest and tundra) and from two regions in Alaska?the Yukon-Tanana Upland (YTU, east-central Alaska) and the Seward Peninsula (SP, far-west coastal Alaska). This approach to the study of 'cold soils' is fundamental to the quantification of regional geochemical landscape patterns. Of the five state factors in this study, bedrock and biota (ecosystem; vegetation zone) vary whereas climate (within each area) and topography are controlled. The influence of time is assumed to be controlled, as these soils are thousands of years old (late Quaternary to Holocene). The primary minerals in soils from YTU, developed over loess and crystalline bedrock (metamorphic and intrusive), are quartz, plagioclase, and 2:1 clays; whereas in the SP, where loess and metasedimentary bedrock (schist and quartzite) predominate, they are quartz and muscovite. The A horizon of both regions is rich in peat. Examination of the ratio of mobile (K2O, CaO, and Fe2O3) to immobile (TiO2) major oxides, within each region, shows that very little difference exists in the chemical weathering of soils developed between the two ecosystems examined. Differences were observed between tundra soils developed in the two regions. These differences are most probably due to the dissimilarity in the geochemical importance of both loess and bedrock. A minimal loss of cadmium with soil depth is seen for soils developed over YTU crystalline bedrock in the boreal forest environments. This trend is related to the mobility of cadmium in these soils as well as to its biogenic cycling. Major differences were observed in the proportion of cadmium and zinc among the A, B, and C horizon material sequestered in various soil fractions as measured by sequential soil extractions. These trends followed such variables as the decrease with depth in organic matter, the change in clay minerals, and the change

  18. Multiscale Observational Platforms and Bayesian Data Integration to Estimate Snow Depth and Snow-water-equivalent over the Ice-wedge Polygonal Tundra

    Science.gov (United States)

    Wainwright, H. M.; Liljedahl, A. K.; Peterson, J.; Dafflon, B.; Ulrich, C.; Gusmeroli, A.; Hubbard, S. S.

    2015-12-01

    Snow has a profound impact on permafrost and ecosystem functioning in the Arctic tundra. Characterizing snow depths and snow-water-equivalent (SWE) is difficult over a large area, since they are quite heterogeneous, particularly in ice-wedge polygonal ground. In this study, we explore various strategies to characterize snow depths and SWE, using multiscale observational platforms, including a snow probe, ground penetrating radar (GPR), unmanned aerial system (UAS) and ground/airborne LiDAR. In addition, our statistical analysis and data locations are designed such that we can characterize the snow heterogeneity in multiple spatial scales. We demonstrate our approach using the datasets collected in the ice-wedge polygonal tundra near Barrow, AK. We first document the characteristics of each platform. GPR can cover ~100s meters, and also provide depth-averaged snow density. The UAS-based snow-surface elevation is used to estimate the snow depth over a larger area with much less labor than GPR. Snow density analysis, using both cores and GPR, suggests that the depth-averaged snow density is quite uniform over the site. The spatial variability of snow depths is then quantified, and correlated with various topographic measures (e.g., curvature) from the LiDAR digital elevation map as well as the wind direction. We explore different scales of moving average to separate micro and macro-topography. Results show that the wind factor is not significant in our case, except for at the edge of a drained thaw-lake basin. The wind distribution fills microtopographic lows (i.e., troughs and centers of low-centered polygons) and creates a smooth snow surface following the macro-topography, which depends on polygon sizes. Finally, we develop a Bayesian geostatistical method to integrate these multiscale datasets for estimating snow depths and SWE over the study site (~1km by 1km). We compare two strategies: interpolating (1) the residual of the topographic correlations or (2) the

  19. Provenance of Holocene sediment on the Chukchi-Alaskan margin based on combined diffuse spectral reflectance and quantitative X-Ray Diffraction analysis

    Science.gov (United States)

    Ortiz, J.D.; Polyak, L.; Grebmeier, J.M.; Darby, D.; Eberl, D.D.; Naidu, S.; Nof, D.

    2009-01-01

    Sediment clay and silt mineral assemblages provide an excellent means of assessing the provenance of fine-grained Arctic sediment especially when a unique mineral assemblage can be tied to specific source areas. The diffuse spectral reflectance (DSR) first derivative measurements and quantitative X-Ray Diffraction (qXRD) on a high-resolution sediment core from the continental slope north of Alaska constrain the sediment mineralogy. DSR results are augmented by measurements on several adjacent cores and compared to surface sediment samples from the northern Alaskan shelf and slope. Using Principal Component Analysis (PCA), we infer that the three leading DSR modes relate to mixtures of smectite + dolomite, illite + goethite, and chlorite + muscovite. This interpretation is consistent with the down core qXRD results. While the smectite + dolomite, and illite + goethite factors show increased variability down core, the chlorite + muscovite factor had highest positive loadings in the middle Holocene, between ca. 6.0 and 3.6??ka. Because the most likely source of the chlorite + muscovite suite in this vicinity lies in the North Pacific, we argue that the oscillations in chlorite + muscovite values likely reflect an increase in the inflow of Pacific water to the Arctic through the Bering Strait. The time interval of this event is associated in other parts of the globe with a non-linear response of the climate system to the decrease in insolation, which may be related to changes in water exchange between the Pacific and Arctic Ocean. ?? 2009 Elsevier B.V.

  20. Development, implementation, and evaluation of a computerized self-administered diet history questionnaire for use in studies of American Indian and Alaskan native people.

    Science.gov (United States)

    Slattery, Martha L; Murtaugh, Maureen A; Schumacher, Mary Catherine; Johnson, Jennifer; Edwards, Sandra; Edwards, Roger; Benson, Joan; Tom-Orme, Lillian; Lanier, Anne P

    2008-01-01

    Collection of dietary intake in epidemiologic studies involves using methods that are comprehensive yet appropriate for the population being studied. Here we describe a diet history questionnaire (DHQ) that was developed using an audio self-administered computer-assisted interview technique. The DHQ was developed for use in a cohort of American Indians and Alaskan Natives with tribal input and area-specific modules to incorporate local food availability. The DHQ includes 54 main food group questions, specific food items within the main food group, and food preparation and general eating practice questions. The questionnaire was programmed to be self-administered using a computer with a touch screen. The average time for the first 6,604 participants to complete the questionnaire was 36 minutes. Almost 100% of participants had complete DHQ data and the average number of food items selected was 70. The methods developed for collection of dietary data appear to be appropriate for the targeted population and may have usefulness for other populations where collecting dietary data in a self-administered format is desirable. PMID:18155994

  1. Treating hepatitis C in American Indians/Alaskan Natives: A survey of Project ECHO® (Extension for Community Healthcare Outcomes) utilization by Indian Health Service providers

    Science.gov (United States)

    Pindyck, Talia; Kalishman, Summers; Flatow-Trujillo, Lainey; Thornton, Karla

    2015-01-01

    Background: American Indians/Alaskan Natives have a high mortality associated with hepatitis C virus, yet treatment rates are low. The ECHO (Extension for Community Healthcare Outcomes) model™, a videoconferencing technology for primary care providers, is underutilized at Indian Health Service facilities. Purpose: To ascertain Indian Health Service providers’ benefit of and barriers to utilizing hepatitis C virus TeleECHO clinics. Methods: We electronically sent an Active Participant Survey to Indian Health Service providers utilizing hepatitis C virus TeleECHO clinic and a Non-Participant Survey to other Indian Health Service providers interested in this clinic. Results: In total, 100% of Active Participant Survey respondents perceive moderate to major benefit of hepatitis C virus TeleECHO clinic in managing hepatitis C virus, and 67% of Non-Participant Survey respondents reported lack of administrative time as the major barrier to utilizing this resource. Conclusion: Indian Health Service providers participating in hepatitis C virus TeleECHO clinic perceive this resource as highly beneficial, but widespread utilization may be impractical without allocating time for participation. PMID:26770809

  2. 氮沉降对长白山苔原植被影响的试验研究%Experimental Study on the Effects of Nitrogen Deposition on the Tundra Vegetation of the Changbai Mountains

    Institute of Scientific and Technical Information of China (English)

    靳英华; 许嘉巍; 宗盛伟; 王鹏

    2014-01-01

    为了探讨氮沉降增加对苔原植被的影响,特别是对草本植物侵入苔原的作用,在长白山高山苔原带进行了连续4 a的人工氮沉降模拟实验,测定3种设定的氮沉降水平下牛皮杜鹃(Rhododendron chrysanthum)、笃斯越橘(Vaccinium uliginosum)和小叶章(Deyeuxia angustifolia)的生长状况和群落结构变化。研究结果表明:①与牛皮杜鹃、笃斯越橘等苔原本地种相比,氮沉降量增加更有利于侵入的小叶章生长;牛皮杜鹃生长对氮沉降量变化响应微弱,氮沉降量增加能明显抑制笃斯越橘的生长。②无小叶章侵入的牛皮杜鹃和笃斯越橘斑块在不同氮沉降量条件下,群落结构变化不明显,氮沉降增加不是小叶章侵入苔原带的直接原因。③在小叶章侵入牛皮杜鹃和笃斯越橘斑块后,氮沉降量增加强化了小叶章的竞争能力,逐渐取代牛皮杜鹃或笃斯越橘,成为优势种,推动高山苔原向高山草甸转化。因此,随着氮沉降量的不断增加,长白山苔原带将面临退化与草甸化。%In order to explore the effects of increased nitrogen deposition on alpine tundra vegetation change, es-pecially the herb invasion, in Changbai Mountains, the experiments of simulated increased nitrogen deposition were conducted over four years in the alpine tundra zone of the Changbai Mountains. The experiment included three nitrogen deposition treatments. The changes of growth and community structure were measured for Rho⁃dodendron chrysanthum, Vaccinium uliginosum and Deyeuxia angustifolia. The main results were as follows:1) Compared to the Rhododendron chrysanthum, Vaccinium uliginosum and other tundra native species, the in-crease of nitrogen deposition is more conducive to the growth of Deyeuxia angustifolia, it was no significant re-sponse to increase of nitrogen deposition for growth of Rhododendron chrysanthum, it was significantly sup-pressed by increase

  3. Spatial and temporal predictions of soil moisture patterns and evaporative losses using TOPMODEL and the GASFLUX model for an Alaskan catchment

    Directory of Open Access Journals (Sweden)

    P. F. Quinn

    1998-01-01

    Full Text Available By using topographic indices as derived from a Digital Terrain Models (DTM, it is possible to represent the heterogeneity within a landscape. This heterogeneity can reflect both long term evolutionary patterns seen in a landscape and the short term forcing of flow dynamics during storm events. By spatial analysis, the linkage between the geomorphological- hydrological-plant physiological phenomena can be examined. In this study, a direct link will be established between the topographically-driven hydrological phenomena and the eco-physiological response. The topographic distribution function of TOPMODEL is used to control the spatial and temporal flux of the channel flow and water table. The plant physiological model GAS-FLUX is used to give a spatially and temporally dissaggregated species-sensitive estimate of evapotranspiration flux. Evapotranspiration is sensitive to the vegetation phonology, to tundra community physiology and to the temperature regime. A simple linking of TOPMODEL and the GAS-FLUX model is applied to a summer snow-free period to the Imnavait catchment, Alaska (2.2 km2. A species-sensitive evapotranspiration model proved to give the highest quality results when validated against flow observations. Predicted dynamics of variable source area and the component hydrological processes are illustrated.

  4. Exclusion of brown lemmings reduces vascular plant cover and biomass in Arctic coastal tundra: resampling of a 50 + year herbivore exclosure experiment near Barrow, Alaska

    International Nuclear Information System (INIS)

    To determine the role lemmings play in structuring plant communities and their contribution to the 'greening of the Arctic', we measured plant cover and biomass in 50 + year old lemming exclosures and control plots in the coastal tundra near Barrow, Alaska. The response of plant functional types to herbivore exclusion varied among land cover types. In general, the abundance of lichens and bryophytes increased with the exclusion of lemmings, whereas graminoids decreased, although the magnitude of these responses varied among land cover types. These results suggest that sustained lemming activity promotes a higher biomass of vascular plant functional types than would be expected without their presence and highlights the importance of considering herbivory when interpreting patterns of greening in the Arctic. In light of the rapid environmental change ongoing in the Arctic and the potential regional to global implications of this change, further exploration regarding the long-term influence of arvicoline rodents on ecosystem function (e.g. carbon and energy balance) should be considered a research priority.

  5. Integrating subsistence practice and species distribution modeling: assessing invasive elodea's potential impact on Native Alaskan subsistence of Chinook salmon and whitefish

    Science.gov (United States)

    Luizza, Matthew W.; Evangelista, Paul H.; Jarnevich, Catherine S.; West, Amanda; Stewart, Heather

    2016-07-01

    Alaska has one of the most rapidly changing climates on earth and is experiencing an accelerated rate of human disturbance, including resource extraction and transportation infrastructure development. Combined, these factors increase the state's vulnerability to biological invasion, which can have acute negative impacts on ecological integrity and subsistence practices. Of growing concern is the spread of Alaska's first documented freshwater aquatic invasive plant Elodea spp. (elodea). In this study, we modeled the suitable habitat of elodea using global and state-specific species occurrence records and environmental variables, in concert with an ensemble of model algorithms. Furthermore, we sought to incorporate local subsistence concerns by using Native Alaskan knowledge and available statewide subsistence harvest data to assess the potential threat posed by elodea to Chinook salmon ( Oncorhynchus tshawytscha) and whitefish ( Coregonus nelsonii) subsistence. State models were applied to future climate (2040-2059) using five general circulation models best suited for Alaska. Model evaluations indicated that our results had moderate to strong predictability, with area under the receiver-operating characteristic curve values above 0.80 and classification accuracies ranging from 66 to 89 %. State models provided a more robust assessment of elodea habitat suitability. These ensembles revealed different levels of management concern statewide, based on the interaction of fish subsistence patterns, known spawning and rearing sites, and elodea habitat suitability, thus highlighting regions with additional need for targeted monitoring. Our results suggest that this approach can hold great utility for invasion risk assessments and better facilitate the inclusion of local stakeholder concerns in conservation planning and management.

  6. Integrating subsistence practice and species distribution modeling: assessing invasive elodea’s potential impact on Native Alaskan subsistence of Chinook salmon and whitefish

    Science.gov (United States)

    Luizza, Matthew; Evangelista, Paul; Jarnevich, Catherine S.; West, Amanda; Stewart, Heather

    2016-01-01

    Alaska has one of the most rapidly changing climates on earth and is experiencing an accelerated rate of human disturbance, including resource extraction and transportation infrastructure development. Combined, these factors increase the state’s vulnerability to biological invasion, which can have acute negative impacts on ecological integrity and subsistence practices. Of growing concern is the spread of Alaska’s first documented freshwater aquatic invasive plant Elodea spp. (elodea). In this study, we modeled the suitable habitat of elodea using global and state-specific species occurrence records and environmental variables, in concert with an ensemble of model algorithms. Furthermore, we sought to incorporate local subsistence concerns by using Native Alaskan knowledge and available statewide subsistence harvest data to assess the potential threat posed by elodea to Chinook salmon (Oncorhynchus tshawytscha) and whitefish (Coregonus nelsonii) subsistence. State models were applied to future climate (2040–2059) using five general circulation models best suited for Alaska. Model evaluations indicated that our results had moderate to strong predictability, with area under the receiver-operating characteristic curve values above 0.80 and classification accuracies ranging from 66 to 89 %. State models provided a more robust assessment of elodea habitat suitability. These ensembles revealed different levels of management concern statewide, based on the interaction of fish subsistence patterns, known spawning and rearing sites, and elodea habitat suitability, thus highlighting regions with additional need for targeted monitoring. Our results suggest that this approach can hold great utility for invasion risk assessments and better facilitate the inclusion of local stakeholder concerns in conservation planning and management.

  7. Impacts of Soil Temperature and Moisture Change on Soil Carbon Dynamics in the Alaskan Yukon River Basin - From the Perspective of Vertical Distribution

    Science.gov (United States)

    Tao, B.; Liu, S.; Tan, Z.; Tieszen, L.; Hansen, M.

    2008-12-01

    Boreal ecosystems are experiencing rapid climate change and land surface disturbances (e.g., fires and insect outbreaks), which have triggered substantial changes in ecosystem structure and functions, biogeochemical cycle, and land surface processes. These changes in turn have major implications to the changes of regional and climate systems. There is an urgent need to develop robust process-based land surface modeling systems that can simulate the responses of many poorly understood but fast-changing soil processes in the region. In this study, we improved the soil physics module in the Erosion-Deposition-Carbon Model (EDCM), mainly following the algorithms in the Integrated BIosphere Simulator (IBIS), to simulate historical and future changes of soil temperature, moisture, active layer thickness, permafrost depth, and their impacts on organic layer and soil carbon dynamics from two boreal forest sites in the Alaskan Yukon River Basin. We used a multi-snow-soil-layer model structure to represent the vertical profiles of soil properties and processes. Our results showed more soil carbon emission than the single-soil-layer models predicted under future climate change scenarios. A multi-soil-layer model has to be used in the northern high latitudes to predict the fate of deep soil organic matter, organic layer thickness, and degradation of permafrost. At the site scale, major uncertainties for model development and characterization of the responses of vegetation and soils to future climate change include vegetation succession, transitional vegetation rooting depth change, root mortality, and fire intensity and frequency. Additional intensive site studies and remote sensing research have to be conducted to address some of the uncertainties in order to apply the model at the regional scale.

  8. Seasonal variation of ecosystem respiration delta 13C in response to experimental permafrost thaw and vegetation removal in moist acidic tundra

    Science.gov (United States)

    Mauritz, M.; Pegoraro, E.; Salmon, V. G.; Natali, S.; Schuur, E.

    2015-12-01

    Permafrost soils store twice as much carbon (C) as is contained in the atmosphere and about one-third of global soil C. Under a warmer future climate, permafrost is expected to thaw and decompose, releasing C to the atmosphere, further amplifying global warming. However, studies show that warmer arctic temperatures promote plant growth, in addition to stimulating losses from the soil C pool. Using delta 13C of ecosystem respiration (Reco) during the seasonal cycle of active layer thaw, we seek to understand the effect of permafrost thaw on the relative contributions from microbial decomposition of soil C and more recently fixed, plant-dominated C. We measured weekly CO2 flux rates and delta 13C of Reco from experimentally warmed plots with rapid permafrost thaw and control thaw. Vegetation removal plots, in un-warmed tundra, were monitored to isolate the seasonal contributions from soil alone. We expected delta 13C to be dominated by plant activity in vegetated plots, particularly in areas with greater permafrost thaw because they have highest plant biomass. In vegetation removal plots we expected to see greater contribution from deep soil as seasonal thaw progressed. From May to July delta 13C was extremely variable early in the growing season, but became more uniform as vegetation greened and thaw deepened. In vegetated plots CO2 fluxes doubled, but remained constant in vegetation removal plots. This indicates that, with thaw, microbes had access to a more spatially uniform C substrate, but this had little effect on the magnitude of CO2 flux. Overall delta 13C in rapidly thawed plots was least enriched (-29.4 ‰), control plots intermediate (-28.9 ‰), and vegetation removal plots were most enriched (-28.5 ‰). This suggests that in vegetation removal plots microbes used more decomposed soil C as substrate, and much of the increase in CO2 flux in vegetated plots was the result of C recently fixed and contributed by plants.

  9. The Uncertainty of Plot-Scale Forest Height Estimates from Complementary Spaceborne Observations in the Taiga-Tundra Ecotone

    Directory of Open Access Journals (Sweden)

    Paul M. Montesano

    2014-10-01

    Full Text Available Satellite-based estimates of vegetation structure capture broad-scale vegetation characteristics as well as differences in vegetation structure at plot-scales. Active remote sensing from laser altimetry and radar systems is regularly used to measure vegetation height and infer vegetation structural attributes, however, the current uncertainty of their spaceborne measurements is likely to mask actual plot-scale differences in vertical structures in sparse forests. In the taiga (boreal forest—tundra ecotone (TTE the accumulated effect of subtle plot-scale differences in vegetation height across broad-scales may be significant. This paper examines the uncertainty of plot-scale forest canopy height measurements in northern Siberia Larix stands by combining complementary canopy surface elevations derived from satellite photogrammetry and ground elevations derived from the Geosciences Laser Altimeter System (GLAS from the ICESat-1 satellite. With a linear model, spaceborne-derived canopy height measurements at the plot-scale predicted TTE stand height ~5 m–~10 m tall (R2 = 0.55, bootstrapped 95% confidence interval of R2 = 0.36–0.74 with an uncertainty ranging from ±0.86 m–1.37 m. A larger sample may mitigate the broad uncertainty of the model fit, however, the methodology provides a means for capturing plot-scale canopy height and its uncertainty from spaceborne data at GLAS footprints in sparse TTE forests and may serve as a basis for scaling up plot-level TTE vegetation height measurements to forest patches.

  10. Measurements of Vertical Profiles of Turbulence, Temperature, Ozone, Aerosols, and BrO over Sea Ice and Tundra Snowpack during BROMEX

    Science.gov (United States)

    Shepson, P.; Caulton, D.; Cambaliza, M. L.; Dhaniyala, S.; Fuentes, J. D.; General, S.; Halfacre, J. W.; Nghiem, S. V.; Perez Perez, L.; Peterson, P. K.; Platt, U.; Pohler, D.; Pratt, K. A.; Simpson, W. R.; Stirm, B.; Walsh, S. J.; Zielcke, J.

    2012-12-01

    During the BROMEX field campaign of March 2012, we conducted measurements of boundary layer structure, ozone, BrO and aerosol, from a light, twin-engine aircraft during eleven flights originating from Barrow, AK. Flights were conducted over the sea ice in the Beaufort and Chukchi Seas, and over the tundra from Barrow to the Brooks Range, with vertical profiles covering altitudes from the surface to 3.5km in the free troposphere. Flights over the course of one month allowed a variety of sea ice conditions, including open water, nilas, first year sea ice, and frost flowers, to be examined over the Chukchi Sea. Atmospheric turbulence was measured using a calibrated turbulence probe, which will enable characterization of both the structure and turbulence of the Arctic boundary layer. Ozone was measured using a 2B UV absorption instrument. A GRIMM optical particle counter was used to measure 0.25-4 μm sized aerosol particles. The MAX-DOAS instrument enabled measurements of BrO vertical profiles. The aircraft measurements can be used to connect the surface measurements of ozone and BrO from the "Icelander" buoys, and the surface sites at Barrow, with those measured on the aircraft. Here we will discuss the spatial variability/coherence in these data. A major question that will be addressed using these data is the extent to which bromine is activated through reactions at the snowpack/ice surface versus the surface of aerosols. Here we will present a preliminary analysis of the relationships between snow/ice surface types, aerosol size-resolved number concentrations, and the vertical profiles of ozone and BrO.

  11. Anthropogenic and natural radionuclides in caribou and muskoxen in the Western Alaskan Arctic and marine fish in the Aleutian Islands in the first half of 2000s

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gi Hoon [Korea Ocean Research and Development Institute, 1270 Sa 2 dong, Ansan 426-744 (Korea, Republic of); Baskaran, Mark, E-mail: Baskaran@wayne.edu [Department of Geology, Wayne State University, Detroit, MI 48202 (United States); Molaroni, Shannon Marie [Department of Geology, Wayne State University, Detroit, MI 48202 (United States); Lee, Hyun-Mi [Korea Ocean Research and Development Institute, 1270 Sa 2 dong, Ansan 426-744 (Korea, Republic of); Burger, Joanna [Division of Life Sciences, 604 Allison Road, Rutgers University, Piscataway, NJ 08854-8082 (United States)

    2011-09-01

    A number of caribou and muskoxen samples from the western Alaskan Arctic and fish samples from the Aleutian Islands were collected between 1998 and 2006 and analyzed for anthropogenic ({sup 90}Sr and {sup 137}Cs) and natural radionculides ({sup 40} K, {sup 210}Pb and {sup 226}Ra), as part of the radiological assessment for the regional subsistence hunting communities in the first half of 2000s. We examined the relationship between the activities of these nuclides with the size of the fish. In caribou samples, concentration of {sup 90}Sr in muscle was below the detection limit of 0.14 Bq kg{sup -1} and {sup 137}Cs concentration in bones was below the detection limit of 0.15 Bq kg{sup -1}.{sup 137}Cs activity varied over an order of magnitude in caribou muscle samples with an average value of 2.5 Bq/kg wet wt. Average {sup 137}Cs activity in muskoxen muscle was found to be 9.7 Bq/kg wet wt. However, there were a little variation (less than 60%) in {sup 210}Pb, {sup 40} K, and {sup 226}Ra in both muscle and bone of both caribou and muskoxen. The activities of total {sup 210}Pb in caribou and muskox bones were found to be 1-2 orders of magnitude higher than that of parent-supported {sup 210}Pb indicating the potential for dating of bones of terrestrial mammals (time elapsed since the death of the animal) based on the excess {sup 210}Pb method exists. In fish muscle samples, {sup 137}Cs activity varied from below detection limit to 154 mBq/kg wet wt. and its content increased with the size of the fish due to its transfer through the food chain. Among the seven fish species investigated, {sup 210}Pb activities varied almost an order of magnitude; however, {sup 40}K and {sup 226}Ra activities varied less than a factor of two. Total annual effective dose due to {sup 90}Sr and {sup 137}Cs from the ingestion of those terrestrial and marine meats was estimated to be negligible (ca. 9 {mu}SV/a) compared to the natural radionuclides present thus posing negligible radiological

  12. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    International Nuclear Information System (INIS)

    Deeper winter snow is hypothesized to favor shrub growth and may partly explain the shrub expansion observed in many parts of the arctic during the last decades, potentially triggering biophysical feedbacks including regional warming and permafrost thawing. We experimentally tested the effects of winter snow depth on shrub growth and ecophysiology by measuring stem length and stem hydrogen (δ2H), carbon (δ13C), nitrogen (δ15N) and oxygen (δ18O) isotopic composition of the circumarctic evergreen dwarf shrub Cassiope tetragona growing in high-arctic Svalbard, Norway. Measurements were carried out on C. tetragona individuals sampled from three tundra sites, each representing a distinct moisture regime (dry heath, meadow, moist meadow). Individuals were sampled along gradients of experimentally manipulated winter snow depths in a six-year old snow fence experiment: in ambient (c. 20 cm), medium (c. 100 cm), and deep snow (c. 150 cm) plots. The deep-snow treatment consistently and significantly increased C. tetragona growth during the 2008–2011 manipulation period compared to growth in ambient-snow plots. Stem δ15N and stem N concentration values were significantly higher in deep-snow individuals compared to individuals growing in ambient-snow plots during the course of the experiment, suggesting that soil N-availability was increased in deep-snow plots as a result of increased soil winter N mineralization. Although inter-annual growing season-precipitation δ2H and stem δ2H records closely matched, snow depth did not change stem δ2H or δ18O, suggesting that water source usage by C. tetragona was unaltered. Instead, the deep insulating snowpack may have protected C. tetragona shrubs against frost damage, potentially compensating the detrimental effects of a shortened growing season and associated phenological delay on growth. Our findings suggest that an increase in winter precipitation in the High Arctic, as predicted by climate models, has the potential to

  13. Integrating Research and Education in a Study of Biocomplexity in Arctic Tundra Ecosystems: Costs, Results, and Benefits to the Research Agenda

    Science.gov (United States)

    Gould, W. A.; González, G.; Walker, D. A.

    2006-12-01

    The integration of research and education is one of the fundamental goals of our national science policy. There is strong interest to improve this integration at the graduate and undergraduate levels, with the general public, and with local and indigenous people. Efforts expended in integrating research and education can occur at the expense of research productivity and represent a cost. Results may include number of personnel involved, activities accomplished, research or other products produced. Benefits are difficult to quantify and may be short term and tangible, e.g. education-research projects enhancing research productivity with publications, or long-term and include intangibles such as personal interactions and experiences influencing career choices, the perception of research activities, enhanced communication, and direct or indirect influence on related research and educational projects. We have integrated the University field course Arctic Field Ecology with an interdisciplinary research project investigating the interactions of climate, vegetation, and permafrost in the study Biocomplexity of Arctic Tundra Ecosystems. The integration is designed to give students background in regional ecology; introduce students to the project objectives, methods, and personnel; provide for interaction with participating scientists; conduct research initiated by the class and instructors; and provide the opportunity to interact with indigenous people with interests in traditional ecological knowledge and land management. Our costs included increased logistical complexity and time-demands on the researchers and staff managing the integration. The educational component increased the size of the research group with the addition of 55 participants over the 4 field seasons of the study. Participants came from 7 countries and included 20 enrolled university students, 18 Inuit non student participants, 9 Inuit students, 3 visiting scientists, 3 staff, and 2 scientist

  14. Winter forage selection by barren-ground caribou: Effects of fire and snow

    Directory of Open Access Journals (Sweden)

    Lisa Saperstein

    1996-01-01

    Full Text Available Both long- and short-term consequences should be considered when examining the effects of fire on the foraging behavior of caribou. Post-fire increases in protein content, digestibility, and availability of E. vaginatum make burned tussock tundra an attractive feeding area for caribou in late winter. These benefits are likely short-lived, however. Lowered availability of lichens and increased relative frequency of bryophytes will persist for a much longer period.

  15. Observations afield on Alaskan wolves

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Widespread observations of wolves and their habits in Alaska during the period 1948-1954 generally confirm published reports of these phenomena elsewhere....

  16. Cetaceans and pinnipeds, Alaskan waters

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A tentative checklist of those species known or likely to occur in the inside waters of Southeastern Alaska or Prince William Sound and adjacent Gulf of Alaska.

  17. ALASKAN OIL SPILL BIOMEDIATION PROJECT

    Science.gov (United States)

    The U.S. Environmental Protection Agency's Office of Research and Development entered into a cooperative agreement with the Exxon Company to initiate a bioremediation study as part of an effort to clean up oil on the shorelines of Prince William Sound, Alaska. The presence of oil...

  18. Interactions of polychlorinated biphenyls and organochlorine pesticides with sedimentary organic matter of retrogressive thaw slump-affected lakes in the tundra uplands adjacent to the Mackenzie Delta, NT, Canada

    Science.gov (United States)

    Eickmeyer, David C.; Kimpe, Linda E.; Kokelj, Steve V.; Pisaric, Michael F. J.; Smol, John P.; Sanei, Hamed; Thienpont, Joshua R.; Blais, Jules M.

    2016-02-01

    Using a comparative spatial analysis of sediment cores from eight lakes in tundra uplands adjacent to the Mackenzie Delta, NT, we examined how the presence of retrogressive thaw slumps on lake shores affected persistent organic pollutant (POPs, including polychlorinated biphenyls and organochlorine pesticides) accumulation in lake sediments. Sediments of slump-affected lakes contained higher total organic carbon (TOC)-normalized POP concentrations than nearby reference lakes that were unaffected by thaw slumps. Mean focus-corrected inorganic sedimentation rates were positively related to TOC-normalized contaminant concentrations, explaining 58-94% of the variation in POP concentrations in sediment, suggesting that reduced organic carbon in slump-affected lake water results in higher concentrations of POPs on sedimentary organic matter. This explanation was corroborated by an inverse relationship between sedimentary POP concentrations and TOC content of the lake water. Inferred chlorophyll a, S2, and S3 carbon fluxes to sediment were not significantly correlated to POP fluxes. Higher POP concentrations observed in sediment of slump-affected lakes are best explained by simple solvent switching processes of hydrophobic organic contaminants onto a smaller pool of available organic carbon when compared to neighboring lakes unaffected by thaw slump development.

  19. Beware of the caterpillar: Anaphylaxis to the spotted tussock moth caterpillar, Lophocampa maculata

    OpenAIRE

    DuGar, Brandon; Sterbank, Julie; Tcheurekdjian, Haig; Hostoffer, Robert

    2014-01-01

    We present a case report of a 5-year-old boy with presumed anaphylaxis to the caterpillar, Lophocampa maculata, manifesting as the acute development of diffuse urticaria and progressive dyspnea. This reaction required prompt treatment with antihistamines and a bronchodilator. Allergen scratch testing with a homogenized caterpillar extract suggests that immunoglobulin E–mediated type I hypersensitivity as the pathophysiological mechanism responsible for the boy's anaphylaxis. This case report ...

  20. A comparison of ringed and bearded seal diet, condition and productivity between historical (1975-1984) and recent (2003-2012) periods in the Alaskan Bering and Chukchi seas

    Science.gov (United States)

    Crawford, Justin A.; Quakenbush, Lori T.; Citta, John J.

    2015-08-01

    Reductions in summer sea ice in the Chukchi and Beaufort seas are expected to affect what has been an ice-adapted marine food web in the Pacific Arctic. To determine whether recent decreases in sea ice have affected ice-associated marine predators (i.e., ringed, Pusa hispida, and bearded seals, Erignathus barbatus) in the Bering and Chukchi seas we compared diet, body condition, growth, productivity, and the proportion of pups harvested (an index of weaning success) for seals of each species harvested by 11 Alaskan villages during two periods; a historical (1975-1984) and a recent period (2003-2012). We also examined how changes in indices of seal health may be correlated with the reduction of sea ice characteristic of the recent period. For ringed seals ⩾1 year of age, the % frequency of occurrence (%FO) of Arctic cod (Boreogadus saida), walleye pollock (Gadus chalcogramma), rainbow smelt (Osmerus mordax), and Pacific herring (Clupea pallasi) increased from the historic to the recent period, while the %FO of invertebrates decreased for both pups and seals ⩾1 year of age. For bearded seals ⩾1 year of age, the %FO of Arctic cod, pricklebacks, and flatfish increased during the recent period, while the %FO of saffron cod (Eleginus gracilis) decreased for pups. Although invertebrates did not change overall for either age class, decreases occurred in 10 of 24 specific prey categories, for bearded seals ⩾1 year of age; only echiurids increased. The %FO of gastropods and bivalves increased for pups while isopods and one species of shrimp and crab decreased in occurrence. During the recent period ringed seals grew faster, had thicker blubber, had no change in pregnancy rate, matured 2 years earlier, and a larger proportion of pups was harvested than during the historical period. Correlations with spring ice concentration showed that the growth and blubber thickness of seals ⩾1 year of age, blubber thickness of pups, and the proportion of pups in the harvest all

  1. Risk factors for obesity at age 3 in Alaskan children, including the role of beverage consumption: results from Alaska PRAMS 2005-2006 and its three-year follow-up survey, CUBS, 2008-2009.

    Directory of Open Access Journals (Sweden)

    Janet M Wojcicki

    Full Text Available Prenatal and early life risk factors are associated with childhood obesity. Alaska Native children have one of the highest prevalences of childhood obesity of all US racial/ethnic groups.Using the Pregnancy Risk Assessment Monitoring System (PRAMS and the follow-up survey at 3 years of age (CUBS, we evaluated health, behavioral, lifestyle and nutritional variables in relation to obesity (95th percentile for body mass index (BMI at 3 years of age. Multivariate logistic regression modeling was conducted using Stata 12.0 to evaluate independent risk factors for obesity in non-Native and Alaska Native children.We found an obesity prevalence of 24.9% in all Alaskan and 42.2% in Alaska Native 3 year olds. Among Alaska Native children, obesity prevalence was highest in the Northern/Southwest part of the state (51.6%, 95%CI (42.6-60.5. Independent predictive factors for obesity at age 3 years in Alaska non-Native children were low income (<$10,000 in the year before the child was born (OR 3.94, 95%CI 1.22--17.03 and maternal pre-pregnancy obesity (OR 2.01, 95%CI 1.01-4.01 and longer duration of breastfeeding was protective (OR 0.95, 95%CI 0.91-0.995. Among Alaska Native children, predictive factors were witnessing domestic violence/abuse as a 3 year-old (OR 2.28, 95%CI 1.17-7.60. Among obese Alaska Native children, there was an increased daily consumption of energy dense beverages in the Northern/Southwest region of the state, which may explain higher rates of obesity in this part of the state.The high prevalence of obesity in Alaska Native children may be explained by differences in lifestyle patterns and food consumption in certain parts of the state, specifically the Northern/Southwest region, which have higher consumption of energy dense beverages.

  2. Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)

    Energy Technology Data Exchange (ETDEWEB)

    Abhijit Dandekar; Shirish Patil; Santanu Khataniar

    2008-12-31

    , cyclic water injection tests using high as well as low salinity were also conducted on several representative ANS core samples. These results indicate that less pore volume of water is required to recover the same amount of oil as compared with continuous water injection. Additionally, in cyclic water injection, oil is produced even during the idle time of water injection. It is understood that the injected brine front spreads/smears through the pores and displaces oil out uniformly rather than viscous fingering. The overall benefits of this project include increased oil production from existing Alaskan reservoirs. This conclusion is based on the performed experiments and results obtained on low-salinity water injection (including ANS lake water), vis-a-vis slightly altering the wetting conditions. Similarly, encouraging cyclic water-injection test results indicate that this method can help achieve residual oil saturation earlier than continuous water injection. If proved in field, this would be of great use, as more oil can be recovered through cyclic water injection for the same amount of water injected.

  3. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2004-11-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports. Documenting the results of this effort are key to extracting lessons learned and maximizing the industry's benefits for future hydrate exploitation. In addition to the Final Report, several companion Topical Reports are being published.

  4. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports. Documenting the results of this effort are key to extracting lessons learned and maximizing the industry's benefits for future hydrate exploitation.

  5. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new Arctic Drilling Platform in search of gas hydrate and free gas accumulations at depths of approximately 1200 to 2500 ft MD. A secondary objective was the gas-charged sands of the uppermost Campanian interval at approximately 3000 ft. Summary results of geophysical analysis of the well are presented in this report.

  6. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom part of the Ugnu and throughout the West Sak. No hydrate-bearing zones were identified either in recovered core or on well logs. The base of the permafrost was found at about 1260 ft. With the exception of the deepest sands in the West Sak and some anomalous thin, tight zones, all sands recovered (after thawing) are unconsolidated with high porosity and high permeability. At 800 psi, Ugnu sands have an average porosity of 39.3% and geometrical mean permeability of 3.7 Darcys. Average grain density is 2.64 g/cc. West Sak sands have an average porosity of 35.5%, geometrical mean permeability of 0.3 Darcys, and average grain density of 2.70 g/cc. There were several 1-2 ft intervals of carbonate-cemented sandstone recovered from the West Sak. These intervals have porosities of only a few percent and very low permeability. On a well log they appear as resistive with a high sonic velocity. In shallow sections of other wells these usually are the only logs available. Given the presence of gas in Hot Ice No. 1, if only resistivity and sonic logs and a mud log had been available, tight sand zones may have been interpreted as containing hydrates. Although this finding does not imply that all previously mapped hydrate zones are merely tight sands, it does add a note of caution to the practice of interpreting the presence of hydrates from old well information. The methane hydrate stability zone below the Hot Ice No. 1 location includes thick sections of sandstone and conglomerate which would make excellent reservoir rocks for hydrates and below the permafrost zone shallow gas. The Ugnu formation comprises a more sand-rich section than does the West Sak formation, and the Ugnu sands when cleaned and dried are slightly more porous and significantly more permeable than the West Sak.

  7. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

  8. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-07-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  9. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-06-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  10. Acetaldehyde in the Alaskan subarctic snow pack

    Directory of Open Access Journals (Sweden)

    F. Domine

    2009-09-01

    Full Text Available Acetaldehyde is a reactive intermediate in hydrocarbon oxidation. It is both emitted and taken up by snowpacks and photochemical and physical processes are probably involved. Understanding the reactivity of acetaldehyde in snow and its processes of physical and chemical exchanges requires the knowledge of its incorporation mechanism in snow crystals. We have performed a season-long study of the evolution of acetaldehyde concentrations in the subarctic snowpack near Fairbanks (65° N, central Alaska, which is subjected to a vigorous metamorphism due to persistent elevated temperature gradients in the snowpack, between 20 and 200°C m−1. The snowpack therefore almost entirely transforms into depth hoar. We have also analyzed acetaldehyde in a manipulated snowpack where temperature gradients were suppressed. Snow crystals there transformed much more slowly and their original shapes remained recognizable for months. The specific surface area of snow layers in both types of snowpacks was also measured. We deduce that acetaldehyde is not adsorbed onto the surface of snow crystals and that most of the acetaldehyde is probably not dissolved in the ice lattice of the snow crystals. We propose that most of the acetaldehyde measured is either trapped or dissolved within organic aerosol particles trapped in snow, or that acetaldehyde is formed by the hydrolysis of organic precursors contained in organic aerosols trapped in the snow, when the snow is melted for analysis. These precursors are probably aldehyde polymers formed within the aerosol particles by acid catalysis, but might also be biological molecules. In a laboratory experiment, acetaldehyde-di-n-hexyl acetal, representing a potential acetaldehyde precursor, was subjected to our analytical procedure and reacted to form acetaldehyde. This confirms our suggestion that acetaldehyde in snow could be produced during the melting of snow for analysis.

  11. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports.

  12. Airborne Surface Profiling of Alaskan Glaciers

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of glacier outline, laser altimetry profile, and surface elevation change data for 46 glaciers in Alaska and British Columbia, Canada,...

  13. IMPACT OF CRITICAL ANION SOIL SOLUTION CONCENTRATION ON ALUMINUM ACTIVITY IN ALPINE TUNDRA SOIL Andrew Evans, Jr.1 , Michael B. Jacobs2, and Jason R. Janke1, (1) Metropolitan State University of Denver, Dept. of Earth and Atmospheric Sciences, (2) Dept. of Chemistry, Denver, CO, United States.

    Science.gov (United States)

    Evans, A.

    2015-12-01

    Soil solution anionic composition can impact both plant and microbial activity in alpine tundra soils by altering biochemical cycling within the soil, either through base cation leaching, or shifts in aluminum controlling solid phases. Although anions play a critical role in the aqueous speciation of metals, relatively few high altitude field studies have examined their impact on aluminum controlling solid phases and aluminum speciation in soil water. For this study, thirty sampling sites were selected on Trail Ridge Road in Rocky Mountain National Park, Estes Park, CO, and sampled during July, the middle of the growing season. Sampling elevations ranged from approximately 3560 - 3710 m. Soil samples were collected to a depth of 15.24 cm, and the anions were extracted using a 2:1 D.I. water to soil ratio. Filtered extracts were analyzed using IC and ICP-MS. Soil solution NO3- concentrations were significantly higher for sampling locations east of Iceberg Pass (EIBP) (mean = 86.94 ± 119.8 mg/L) compared to locations west of Iceberg Pass (WIBP) (mean 1.481 ± 2.444 mg/L). Both F- and PO43- soil solution concentrations, 0.533 and 0.440 mg/L, respectively, were substantially lower, for sampling sites located EIBP, while locations WIBP averaged 0.773 and 0.829 mg/L respectively, for F- and PO43-. Sulfate concentration averaged 3.869 ± 3.059 mg/L for locations EIBP, and 3.891 ± 3.1970 for locations WIBP. Geochemical modeling of Al3+ in the soil solution indicated that a suite of aluminum hydroxyl sulfate minerals controlled Al3+ activity in the alpine tundra soil, with shifts between controlling solid phases occurring in the presence of elevated F- concentrations.

  14. Plant effects on soil carbon storage and turnover in montane beech (Nothofagus) forest and adjacent tussock grassland in New Zealand

    International Nuclear Information System (INIS)

    Land cover is a critical factor that influences, and is influenced by, atmospheric chemistry and potential climate changes. As considerable uncertainty exists about the effects of differences in land cover on below-ground carbon (C) storage, we have compared soil C contents and turnover at adjacent, unmanaged, indigenous forest (Nothofagus solandri var. cliffortiodes) and grassland (Chionochloa pallens) sites near the timberline in the same climo-edaphic environment in Craigieburn Forest Park, Canterbury, New Zealand. Total soil profile C was 13% higher in the grassland than in the forest ( 19.9 v. 16.7 kg/m2), and based on bomb 14C measurements, the differences mainly resulted from more recalcitrant soil C in the grassland (5.3 v. 3.0 kg/m2). Estimated annual net primary production was about 0.4 kg C/m2 for the forest and 0.5 kg C/m2 for the grassland; estimated annual root production was about 0.2 and 0.4 kg C/m2, respectively. In situ soil surface CO2-C production was similar in the grassland and the forest. The accumulation of recalcitrant soil C was unrelated to differences in mineral weathering or soil texture, but was apparently enhanced by greater soil water retention in the grassland ecosystem. Thus, contrary to model (ROTHC) predictions, this soil C fraction could be expected to respond to the effects of climate change on precipitation patterns. Overall, our results suggest that the different patterns of soil C accumulation in these ecosystems have resulted from differences in plant C inputs, soil aluminium, and soil physical characteristics, rather than from differences in soil mineral weathering or texture. Copyright (2000) CSIRO Australia

  15. Quantification of upland thermokarst features with high resolution remote sensing

    International Nuclear Information System (INIS)

    Climate-induced changes to permafrost are altering high latitude landscapes in ways that could increase the vulnerability of the vast soil carbon pools of the region. Permafrost thaw is temporally dynamic and spatially heterogeneous because, in addition to the thickening of the active layer, localized thermokarst features form when ice-rich permafrost thaws and the ground subsides. Thermokarst produces a diversity of landforms and alters the physical environment in dynamic ways. To estimate potential changes to the carbon cycle it is imperative to quantify the size and distribution of thermokarst landforms. By performing a supervised classification on a high resolution IKONOS image, we detected and mapped small, irregular thermokarst features occurring within an upland watershed in discontinuous permafrost of Interior Alaska. We found that 12% of the Eight Mile Lake (EML) watershed has undergone thermokarst, predominantly in valleys where tussock tundra resides. About 35% of the 3.7 km2 tussock tundra class has likely transitioned to thermokarst. These landscape level changes created by permafrost thaw at EML have important implications for ecosystem carbon cycling because thermokarst features are forming in carbon-rich areas and are altering the hydrology in ways that increase seasonal thawing of the soil. (letter)

  16. Soil nitrogen dynamics and productivity of snowpack Sanguisorba sitchensis community in alpine tundra of Changbai Mountain, China%长白山高山苔原雪斑大白花地榆群落土壤氮素动态与生产力的关系

    Institute of Scientific and Technical Information of China (English)

    徐倩倩; 刘琪璟; 张国春

    2011-01-01

    Aims Snowpack plant communities in alpine tundra are active in comparison with surrounding vegetation, despite the short growing season due to thick snow cover. Our objective was to understand the growth mechanism of snowpack communities.Methods The nutrient dynamics and primary productivity of snowpack Sanguisorba sitchensis community in alpine tundra of Changbai Mountain was investigated in different seasons.Important findings Soil temperature under snowpack during winter was warmer than snow-free areas, and the minimum temperature was significantly higher. Litter decomposition and nitrogen mineralization under snowpack were active even in winter, and nitrogen content was high with rapid mineralization. Annual net primary productivity was 4 046 kg·hm-2·a-1. The unique hydro-thermo conditions, nutrient cycling features and high leaf area index were key factors maintaining community structure and primary productivity.%在高山苔原冬季积雪覆盖的群落生长季短,但明显比周围群落生长茂盛.为了说明雪斑地段群落生长机理,对长白山苔原雪斑土壤氮素动态以及大白花地榆(Sanguisorba sitchensis)群落生产力进行了连续测定.雪斑群落土壤冬季相对温暖,最低日平均温度-1.4℃,裸露地段-16.9℃,全年水分条件充足;积雪期凋落物分解和氮矿化均在进行,土壤具有很高的氮素含量及矿化速率.大白花地榆地上部分净初级生产力为4 046 kg·hm·a.正是独特的水热条件和养分条件,以及具有很大的叶面积同化器官,高山苔原雪斑地段的大白花地榆群落才得以维持生存并表现出很高的生产力水平.

  17. The Toolik Lake project: Terrestrial and freshwater research on change in the arctic

    International Nuclear Information System (INIS)

    The Toolik Lake research project in the foothills of the North Slope, Alaska, has collected data since 1975 with funding from the NSF's Division of Polar Programs and from the Long Term Ecological Research Program and Ecosystems Research Program of the Division of Biotic Systems and Resources. The broad goal is to understand and predict how ecosystems of tundra, lakes, and streams function and respond to change. One specific goal is to understand the extent of control by resources or by grazing and predation. The processes and relationships are analyzed in both natural ecosystems and in ecosystems that have undergone long-term experimental manipulations to simulate effects of climate and human-caused change. These manipulations include the fertilization of lakes and streams, the addition and removal of lake trout from lakes, the changing of the abundance of arctic grayling in sections of rivers, the exclusion of grazers from tundra, and the shading, fertilizing, and heating of the tussock tundra. A second specific goal is to monitor year-to-year variability and to measure how rapidly long-term change occurs. The measurements include: for lakes, measurements of temperature, chlorophyll, primary productivity; for streams, nutrients, chlorophyll on riffle rocks, insect and fish abundance, and water flow; and for the tundra, amount of flowering, air temperature, solar radiation, and biomass. A third specific goal is to understand the exchange of nutrients between land and water. Measurements include the flow of water in rivers, the concentration of nitrogen and phosphorus in streams, lakes, and soil porewater, and the effect of vegetation on nutrient movement through the tundra soils. A dynamic model of nutrient fluxes in the entire upper Kuparuk River watershed is being constructed that will interact with geographically referenced databases

  18. Intermediate-scale vegetation mapping of Innoko National Wildlife Refuge, Alaska using Landsat MSS digital data

    Science.gov (United States)

    Talbot, Stephen S.; Markon, Carl J.

    1988-01-01

    A Landsat-derived vegetation map was prepared for lnnoko National Wildlife Refuge. The refuge lies within the northern boreal subzone of northwestern central Alaska. Six major vegetation classes and 21 subclasses were recognized: forest (closed needleleaf, open needleleaf, needleleaf woodland, mixed, and broadleaf); broadleaf scrub (lowland, upland burn regeneration, subalpine); dwarf scrub (prostrate dwarf shrub tundra, erect dwarf shrub heath, dwarf shrub-graminoid peatland, dwarf shrub-graminoid tussock peatland, dwarf shrub raised bog with scattered trees, dwarf shrub-graminoid marsh); herbaceous (graminoid bog, graminoid marsh, graminoid tussock-dwarf shrub peatland); scarcely vegetated areas (scarcely vegetated scree and floodplain); and water (clear, sedimented). The methodology employed a cluster-block technique. Sample areas were described based on a combination of helicopter-ground survey, aerial photo-interpretation, and digital Landsat data. Major steps in the Landsat analysis involved preprocessing (geometric correction), derivation of statistical parameters for spectral classes, spectral class labeling of sample areas, preliminary classification of the entire study area using a maximum-likelihood algorithm, and final classification utilizing ancillary information such as digital elevation data. The final product is 1:250,000-scale vegetation map representative of distinctive regional patterns and suitable for use in comprehensive conservation planning.

  19. Stable Isotope Mapping of Alaskan Grasses and Marijuana

    Science.gov (United States)

    Booth, A. L.; Wooller, M. J.

    2008-12-01

    The spatial variation of isotope signatures in organic material is a useful forensic tool, particularly when applied to the task of tracking the production and distribution of plant-derived illicit drugs. In order to identify the likely grow-locations of drugs such as marijuana from unknown locations (i.e., confiscated during trafficking), base isotope maps are needed that include measurements of plants from known grow-locations. This task is logistically challenging in remote, large regions such as Alaska. We are therefore investigating the potential of supplementing our base (marijuana) isotope maps with data derived from other plants from known locations and with greater spatial coverage in Alaska. These currently include >150 samples of modern C3 grasses (Poaceae) as well as marijuana samples (n = 18) from known grow-locations across the state. We conducted oxygen, carbon and nitrogen stable isotope analyses of marijuana and grasses (Poaceae). Poaceae samples were obtained from the University of Alaska Fairbanks (UAF) Museum of the North herbarium collection, originally collected by field botanists from around Alaska. Results indicate that the oxygen isotopic composition of these grasses range from 10‰ to 30‰, and broadly mirror the spatial pattern of water isotopes in Alaska. Our marijuana samples were confiscated around the state of Alaska and supplied to us by the UAF Police Department. δ13C, δ15N and δ18O values exhibit geographic patterns similar to the modern grasses, but carbon and nitrogen isotopes of some marijuana plants appear to be influenced by additional factors related to indoor growing conditions (supplementary CO2 sources and the application of organic fertilizer). As well as providing a potential forensic resource, our Poaceae isotope maps could serve additional value by providing resources for studying ecosystem nutrient cycling, for tracing natural ecological processes (i.e., animal migration and food web dynamics) and providing modern data for comparison with isotope analyses conducted on fossil leaf material in paleoecological studies.

  20. Summary of Reported Whale-Vessel Collisions in Alaskan Waters

    Directory of Open Access Journals (Sweden)

    Janet L. Neilson

    2012-01-01

    Full Text Available Here we summarize 108 reported whale-vessel collisions in Alaska from 1978–2011, of which 25 are known to have resulted in the whale's death. We found 89 definite and 19 possible/probable strikes based on standard criteria we created for this study. Most strikes involved humpback whales (86% with six other species documented. Small vessel strikes were most common (<15 m, 60%, but medium (15–79 m, 27% and large (≥80 m, 13% vessels also struck whales. Among the 25 mortalities, vessel length was known in seven cases (190–294 m and vessel speed was known in three cases (12–19 kn. In 36 cases, human injury or property damage resulted from the collision, and at least 15 people were thrown into the water. In 15 cases humpback whales struck anchored or drifting vessels, suggesting the whales did not detect the vessels. Documenting collisions in Alaska will remain challenging due to remoteness and resource limitations. For a better understanding of the factors contributing to lethal collisions, we recommend (1 systematic documentation of collisions, including vessel size and speed; (2 greater efforts to necropsy stranded whales; (3 using experienced teams focused on determining cause of death; (4 using standard criteria for validating collision reports, such as those presented in this paper.

  1. Relationship between Trophic Status and Methanogenic Pathways in Alaskan Peatlands

    Science.gov (United States)

    Zhang, L.; Liu, X.; Sidelinger, W.; Wang, Y.; Hines, M. E.; Langford, L.; Chanton, J.

    2015-12-01

    To improve predictions of naturally emitted CH4 from northern wetlands, it is necessary to further examine the methanogenic pathways in these wetlands. Stable isotope C ratios (δ13C) have been used as a robust tool to distinguish different pathways, but different sources of parent compounds (acetate and CO2) with unique δ13C may add complexity to previously established criteria. Large portions of peatlands accommodate a mixture of different sphagna and sedges. Plant species may look very similar and belong to the same genus but are different morphologically and physiologically. To better understand the relationships between surface vegetation patterns and methanogenic pathways, 26 peatland sites were studied in Fairbanks and Anchorage, Alaska in summers of 2014 and 2015. These sites were ordinated using multiple factor analysis into 3 clusters based on pH, temp, CH4 and volatile fatty acids production rates, δ13C values, and surface vegetation species/pattern. In the low-pH trophic cluster (pH~3.5), non-vascular/vascular plant ratios (NV/V) were ~ 0.87 and dominated by diverse Sphagnum species and specific sedges (Eriophorum vaginatum), and fermentation was the dominant end-point in decomposition with no CH4 detected. Although NV/V is about the same in the intermediate cluster (0.74) (pH~4.5), and Sphagnum squarrosum was largely present, both hydrogenotrophic (HM) and acetoclastic methanogenesis (AM) were very active. Syntrophy was present at certain sites, which may provide CO2 with unique δ13C for CH4 production. At the highest pH trophic cluster examined in this study (pH~5), non-vascular plants were almost not existent and Carex aquatilis dominated. CH4 production rates (mainly HM) were slower than those in the intermediate cluster and the apparent fractionation factor a was lower than in the sites with syntrophy, which warrants further investigation of the position and compound specific δ13C analysis of volatile fatty acids.

  2. Dietary biomagnification of organochlorine contaminants in Alaskan polar bears

    Science.gov (United States)

    Bentzen, T.W.; Follmann, E.H.; Amstrup, Steven C.; York, G.S.; Wooller, M.J.; Muir, D.C.G.; O'Hara, T. M.

    2008-01-01

    Concentrations of organochlorine contaminants in the adipose tissue of polar bears (Ursus maritimus Phipps, 1774) vary throughout the Arctic. The range in concentrations has not been explained fully by bear age, sex, condition, location, or reproductive status. Dietary pathways expose polar bears to a variety of contaminant profiles and concentrations. Prey range from lower trophic level bowhead whales (Balaena mysticetus L., 1758), one of the least contaminated marine mammals, to highly contaminated upper trophic level ringed seals (Phoca hispida (Schreber, 1775)). We used ??15N and ??13C signatures to estimate the trophic status of 42 polar bears sampled along Alaska's Beaufort Sea coast to determine the relationship between organochlorine concentration and trophic level. The ?? 15N values in the cellular portions of blood ranged from 18.2% to 20.7%. We found strong positive relationships between concentrations of the most recalcitrant polychlorinated biphenyls (PCBs) and ??15N values in models incorporating age, lipid content, and ??13C value. Specifically these models accounted for 67% and 76% of the variation in PCB153 and oxychlordane concentration in male polar bears and 85% and 93% in females, respectively. These results are strong indicators of variation in diet and biomagnification of organochlorines among polar bears related to their sex, age, and trophic position. ?? 2008 NRC.

  3. 78 FR 66916 - Alaskan Seafood Processing Effluent Limitations Guidelines

    Science.gov (United States)

    2013-11-07

    ... treatment and waste solids disposal and maximize the utilization of valuable natural resources. Furthermore... cost of waste disposal. See 46 FR 2545-2546 (January 9, 1981) for additional details on the contents of... fish wastes and by- product recovery, and that the costs associated with screening and solids...

  4. Translocation techniques used to establish pen farmed Alaskan reindeer

    Directory of Open Access Journals (Sweden)

    R. A. Dieterich

    1990-09-01

    Full Text Available Small herds of reindeer (Rangifer tarandus frequently have been needed to be established in fenced holding pens for research or commercial reasons in Alaska and other areas. Native ranges of reindeer in Alaska were not on road systems, and the diet of the native reindeer had to be changed when they were translocated to small pens. Economics of transportation and feeding played an important role in the feasibility of translocation. Gathering and holding of reindeer for shipment, transport methods, adjustment of free-ranging reindeer to confinement, and a new diet were primary considerations to insure survival. Minimal psychologic stress of short duration, thermoregulation, and physical comfort were extremely important in carrying out a successful translocation. Receiving facilities, feed, and personnel were equally important. A minimum of one month was required to adjust reindeer to confinement and diet change.

  5. Variability, Predictability, and Risk in the Alaskan Arctic Waters

    Science.gov (United States)

    Arbetter, T. E.; Goldstein, M. A.; Lynch, A. H.

    2015-12-01

    Summer sea ice extent in the Arctic has been in decline since 1996, but after successive record September minimums in 2005, 2007, and 2012, the possibility of developing the high Arctic has rapidly changed from something decades away to an imminent opportunity. The Obama administration permitted Royal Dutch Shell to conduct exploratory oil drilling in the Chukchi Sea in summer 2015. If successful, further development will follow. The Bering Strait, as the exit of the Northern Sea Route, has already seen increased ship traffic, and this will likely continue if the sea ice remains reliably low. While not the only factor, predictability of sea ice extent, particularly on seasonal scales (3-12 months), is essential; a wrong decision will be costly if not catastrophic (e.g, Kulluk 2012). Using a reduced form model, we investigate geophysical processes which govern the advance and retreat of the sea ice edge at key points (e.g., Nome, Kotzebue, Barrow, Prudhoe Bay). Using the Black-Scholes Option Pricing formula, we estimate costs and risks associated with the ice edge variability.

  6. Export market potential for Alaskan and Western US coals

    International Nuclear Information System (INIS)

    Major utilization trends may create opportunity for dramatic expansion of Alaska's coal exports from a huge ultra-low sulfur coal resource base. Markets are expected to open up in the Pacific Basin for sub-bituminous and bituminous steam coals from Alaska to include not only run-of-mine coals but also product streams from beneficiation technologies. Market considerations aside, deficiencies in physical infrastructure and an unresolved resource ownership issue are the principal impediments at this time to property development

  7. Ice gouge processes in the Alaskan Beaufort Sea

    Science.gov (United States)

    Rearic, Douglas M.; Ticken, Edward J.

    1988-01-01

    A generalized picture of ice gouge characteristics from shallow inshore depths to the outer shelf at about 60 m of water is presented. Data from recent studies show that the size and quantity of gouging increases in an offshore direction to depths of about 45 m where this trend then reverses and the features decrease in size and quantity as the shelf break is approached. Ice gouges are oriented east-west and this suggests that most gouging is caused by ice approaching from the east, possibly driven by the Beaufort Sea gyre. The most intense gouging occurs in the stamukhi zone, between 20 and 40 m of water, and is caused by a high rate of ice keel production owing to shearing forces between mobile and stable sea ice. Inshore of the stamukhi zone, ice gouging still presents a significant hazard but their greatly decreased size and number make it possible to design against this hazard.

  8. MUTAGENICITY OF ALASKAN OIL SPILL ORGANICS DURING EPA BIOREMEDIATION EFFORTS

    Science.gov (United States)

    On 24 March 1989 approximately 11 million gallons of Prudhoe Bay crude oil spilled into the waters of Prince William Sound, Alaska ultimately contaminating nearly 1000 miles of shoreline. pproximately 300 miles of contaminated beach were considered amenable to cleanup by bioremed...

  9. Controls on CH4 flux from an Alaskan boreal wetland

    Science.gov (United States)

    Moosavi, Sadredin C.; Crill, Patrick M.; Pullman, Erik R.; Funk, Dale W.; Peterson, Kim M.

    1996-06-01

    Factors controlling the flux of the radiatively important trace gas methane (CH4) from boreal wetlands were examined at three sites along a moisture gradient from a treed low-shrub bog to an open floating graminoid bog in Fairbanks, Alaska. In the summer of 1992 average static chamber flux measurements were -0.02, 71.5, and 289 mg CH4/m2/d in dry, wet, and floating mat communities, respectively. In contrast, the warmer, drier 1993 field season flux measurements were -0.02, 42.9 and 407 mg CH4/m2/d. The data indicate that despite net oxidation of CH4 in the dry regions of the bog, the wetland is a net source of CH4, with fluxes ranging across three orders of magnitude between different plant communities. Comparison with water levels suggests that CH4 flux is turned on and off by changes in site hydrology. In sites where sufficient moisture is present for methanogenesis to occur, CH4 flux appears to be temperature limited, responding exponentially to soil temperature changes. The combined effects of hydrology and temperature create hot spots of CH4 flux within boreal wetlands. The plant communities within Lemeta Bog respond differently to changes in temperature and moisture availability, creating both positive and negative feedbacks to potential global climate change.

  10. AFSC/REFM: Alaskan flatfish chronology Black et al

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Annual growth increment patterns observed in the hard parts of many marine organisms are often related to factors in the physical environment, and investigators are...

  11. Novel Picornavirus Associated with Avian Keratin Disorder in Alaskan Birds

    Directory of Open Access Journals (Sweden)

    Maxine Zylberberg

    2016-07-01

    Full Text Available Avian keratin disorder (AKD, characterized by debilitating overgrowth of the avian beak, was first documented in black-capped chickadees (Poecile atricapillus in Alaska. Subsequently, similar deformities have appeared in numerous species across continents. Despite the widespread distribution of this emerging pathology, the cause of AKD remains elusive. As a result, it is unknown whether suspected cases of AKD in the afflicted species are causally linked, and the impacts of this pathology at the population and community levels are difficult to evaluate. We applied unbiased, metagenomic next-generation sequencing to search for candidate pathogens in birds affected with AKD. We identified and sequenced the complete coding region of a novel picornavirus, which we are calling poecivirus. Subsequent screening of 19 AKD-affected black-capped chickadees and 9 control individuals for the presence of poecivirus revealed that 19/19 (100% AKD-affected individuals were positive, while only 2/9 (22% control individuals were infected with poecivirus. Two northwestern crows (Corvus caurinus and two red-breasted nuthatches (Sitta canadensis with AKD-consistent pathology also tested positive for poecivirus. We suggest that poecivirus is a candidate etiological agent of AKD.

  12. Strong microsite control of seedling recruitment in tundra

    DEFF Research Database (Denmark)

    Graae, Bente J; Ejrnæs, Rasmus; Lang, Simone I;

    2011-01-01

    The inclusion of environmental variation in studies of recruitment is a prerequisite for realistic predictions of the responses of vegetation to a changing environment. We investigated how seedling recruitment is affected by seed availability and microsite quality along a steep environmental...... experimental seed addition showed that the microsite environment was even more important. For all species, seedling emergence peaked at the productive end of the gradient, irrespective of the adult niches realized. Disturbance promoted recruitment at all positions along the environmental gradient, not just at...... high productivity. Early seedling emergence constituted the main temporal bottleneck in recruitment for all species. Surprisingly, winter mortality was highest at what appeared to be the most benign end of the gradient. The results highlight that seedling recruitment patterns are largely determined by...

  13. Revisiting factors controlling methane emissions from high-Arctic tundra

    Directory of Open Access Journals (Sweden)

    M. Mastepanov

    2013-07-01

    Full Text Available The northern latitudes are experiencing disproportionate warming relative to the mid-latitudes, and there is growing concern about feedbacks between this warming and methane production and release from high-latitude soils. Studies of methane emissions carried out in the Arctic, particularly those with measurements made outside the growing season, are underrepresented in the literature. Here we present results of 5 yr (2006–2010 of automatic chamber measurements at a high-Arctic location in Zackenberg, NE Greenland, covering both the growing seasons and two months of the following freeze-in periods. The measurements show clear seasonal dynamics in methane emission. The start of the growing season and the increase in CH4 fluxes were strongly related to the date of snowmelt. Within each particular growing season, CH4 fluxes were highly correlated with the soil temperature (R2 > 0.75, which is probably explained by high seasonality of both variables, and weakly correlated with the water table. The greatest variability in fluxes between the study years was observed during the first part of the growing season. Somewhat surprisingly, this variability could not be explained by commonly known factors controlling methane emission, i.e. temperature and water table position. Late in the growing season CH4 emissions were found to be very similar between the study years (except the extremely dry 2010 despite large differences in climatic factors (temperature and water table. Late-season bursts of CH4 coinciding with soil freezing in the autumn were observed during at least three years. The cumulative emission during the freeze-in CH4 bursts was comparable in size with the growing season emission for the year 2007, and about one third of the growing season emissions for the years 2009 and 2010. In all three cases the CH4 burst was accompanied by a corresponding episodic increase in CO2 emission, which can compose a significant contribution to the annual CO2 flux budget. The most probable mechanism of the late-season CH4 and CO2 bursts is physical release of gases accumulated in the soil during the growing season. In this study we discuss possible links between growing season and autumn fluxes. Multiannual dynamics of the subsurface CH4 storage pool are hypothesized to be such a link and an important driver of intearannual variations in the fluxes, capable of overruling the conventionally known short-term control factors (temperature and water table. Our findings suggest the importance of multiyear studies with a continued focus on shoulder seasons in Arctic ecosystems.

  14. Shrub expansion may reduce summer permafrost thaw in Siberian tundra

    NARCIS (Netherlands)

    Blok, D.; Heijmans, M.M.P.D.; Schaepman-Strub, G.; Kononov, A.V.; Maximov, T.C.; Berendse, F.

    2010-01-01

    Climate change is expected to cause extensive vegetation changes in the Arctic: deciduous shrubs are already expanding, in response to climate warming. The results from transect studies suggest that increasing shrub cover will impact significantly on the surface energy balance. However, little is kn

  15. Large tundra methane burst during onset of freezing

    DEFF Research Database (Denmark)

    Mastepanov, Mikhail; Sigsgaard, Charlotte; Dlugokencky, Edward J.;

    2008-01-01

    Terrestrial wetland emissions are the largest single source of the greenhouse gas methane1. Northern high-latitude wetlands contribute significantly to the overall methane emissions from wetlands, but the relative source distribution between tropical and high-latitude wetlands remains uncertain2...... after the growing season but then increase significantly during the freeze-in period. The integral of emissions during the freeze-in period is approximately equal to the amount of methane emitted during the entire summer season. Three-dimensional atmospheric chemistry and transport model simulations...

  16. Tundra vegetation change near Barrow, Alaska (1972–2010)

    International Nuclear Information System (INIS)

    Knowledge of how arctic plant communities will respond to change has been largely derived from plot level experimental manipulation, not from trends of decade time scale environmental observations. This study documents plant community change in 330 marked plots at 33 sites established during the International Biological Program near Barrow, Alaska in 1972. Plots were resampled in 1999, 2008 and 2010 for species cover and presence. Cluster analysis identified nine plant communities in 1972. Non-metric multidimensional scaling (NMS) indicates that plant communities have changed in different ways over time, and that wet communities have changed more than dry communities. The relative cover of lichens increased over time, while the response of other plant functional groups varied. Species richness and diversity also increased over time. The most dramatic changes in the cover of bryophytes, graminoids and bare ground coincided with a lemming high in 2008. (letter)

  17. Revisiting factors controlling methane emissions from high-Arctic tundra

    DEFF Research Database (Denmark)

    Mastepanov, M.; Sigsgaard, Charlotte; Tagesson, Håkan Torbern;

    2013-01-01

    controlling methane emission, i.e. temperature and water table position. Late in the growing season CH4 emissions were found to be very similar between the study years (except the extremely dry 2010) despite large differences in climatic factors (temperature and water table). Late-season bursts of CH4...... short-term control factors (temperature and water table). Our findings suggest the importance of multiyear studies with a continued focus on shoulder seasons in Arctic ecosystems....

  18. The Full-Glacial Environment of the Northern Seward Peninsula, Alaska, Reconstructed from the 21,500-Year-Old Kitluk Paleosol

    Science.gov (United States)

    Höfle, Claudia; Edwards, Mary E.; Hopkins, David M.; Mann, Daniel H.; Ping, Chien-Lu

    2000-03-01

    Paleoenvironmental conditions are reconstructed from soils buried under volcanic ash ca. 21,500 years ago on the Seward Peninsula. Soil development was minimal, reflecting the continuous regional deposition of loess, which originated from river floodplains and the exposed Chukchi shelf. Cryoturbated soil horizons, ice wedges, and ice-lens formation indicate a permafrost environment and mean annual temperatures below -6° to -8°C. Shallow active layers (average 45 cm), minimal evidence for chemical leaching of soils, and the presence of earthen hummocks indicate a cold and seasonally dry climate. Neither steppe nor polar desert soils are appropriate analogues for these zonal soils of loess-covered central Beringia. No exact analogues are known; however, soils underlying dry tundra near the arctic coast of northern Yakutia, Russia, and under moist, nonacidic tundra of the Alaskan North Slope have properties in common with the buried soils.

  19. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems.

    Science.gov (United States)

    Hicks Pries, Caitlin E; van Logtestijn, Richard S P; Schuur, Edward A G; Natali, Susan M; Cornelissen, Johannes H C; Aerts, Rien; Dorrepaal, Ellen

    2015-12-01

    Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte-dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year-round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock-dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (permafrost ecosystems. PMID:26150277

  20. Vegetation mapping of Nowitna National Wildlife Reguge, Alaska using Landsat MSS digital data

    Science.gov (United States)

    Talbot, S. S.; Markon, Carl J.

    1986-01-01

    A Landsat-derived vegetation map was prepared for Nowitna National Wildlife Refuge. The refuge lies within the middle boreal subzone of north central Alaska. Seven major vegetation classes and sixteen subclasses were recognized: forest (closed needleleaf, open needleleaf, needleleaf woodland, mixed, and broadleaf); broadleaf scrub (lowland, alluvial, subalpine); dwarf scrub (prostrate dwarf shrub tundra, dwarf shrub-graminoid tussock peatland); herbaceous (graminoid bog, marsh and meadow); scarcely vegetated areas (scarcely vegetated scree and floodplain); water (clear, turbid); and other areas (mountain shadow). The methodology employed a cluster-block technique. Sample areas were described based on a combination of helicopter-ground survey, aerial photointerpretation, and digital Landsat data. Major steps in the Landsat analysis involved preprocessing (geometric correction), derivation of statistical parameters for spectral classes, spectral class labeling of sample areas, preliminary classification of the entire study area using a maximum-likelihood algorithm, and final classification utilizing ancillary information such as digital elevation data. The final product is a 1:250,000-scale vegetation map representative of distinctive regional patterns and suitable for use in comprehensive conservation planning.

  1. Exuberant Complexity: The Interplay of Morphology, Syntax, and Prosody in Central Alaskan Yup'ik

    Directory of Open Access Journals (Sweden)

    Marianne Mithun

    2012-01-01

    Full Text Available Written varieties of many languages show greater syntactic complexity than their spoken counterparts. The difference is not surprising: writers have more time to create elaborate structures than speakers, who must produce speech in a steady stream. As documentation grows of the effects of language contact in the Americas, it is becoming ever clearer that exposure to languages with strong literary traditions has often had a significant impact on syntactic structure. Complexity is, however, not always due to literacy or contact with literacy. Here it is shown that though contact can indeed result in copied markers or replicated categories, it is not a precondition for the development of complexity.

  2. Developing New Strategies for Coping with Weather: Work in Alaskan and Canadian Coastal Communities

    Science.gov (United States)

    Atkinson, D. E.

    2014-12-01

    A changing climate is manifested at ground level through the day to day weather. For all Northern residents - community, industrial, operational and response - the need to think about the weather is ever present. Northern residents, and in particular, indigenous community residents, fully understand implications of the weather, however, a comment that has been heard more often is that old ways of knowing are not as reliable as they once were. Weather patterns seem less consistent and subject to more rapid fluctuations. Compromised traditional ways of knowing puts those who need to travel or hunt at greater risk. One response to adapt to this emerging reality is to make greater use of western sources of information, such as weather data and charts provided by NOAA's National Weather Service or Environment Canada. The federal weather agencies have very large and complex forecasting regions to cover, and so one problem is that it can be difficult to provide perfectly tailored forecasts, that cover all possible problems, right down to the very local scale in the communities. Only those affected have a complete feel for their own concerns. Thus, key to a strategy to improve the utility of available weather information is a linking of local-scale manifestations of problematic weather to the larger-scale weather patterns. This is done in two ways: by direct consultation with Northern residents, and by installation of equipment to measure parameters of interest to residents, which are not already being measured. This talk will overview projects in coastal Alaska and Canada targeting this objective. The challenge of designing and conducting interviews, and then of harvesting relevant information, will be visited using examples from the three major contexts: coastal community, industrial, and operational. Examples of how local comments can be married to weather products will be presented.

  3. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland

    Science.gov (United States)

    Lara, M.; Genet, Helene; McGuire, Anthony; Euskirchen, Eugénie S.; Zhang, Yujin; Brown, Dana R. N.; Jorgenson, M.T.; Romanovsky, V.; Breen, Amy L.; Bolton, W.R.

    2016-01-01

    Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of lowland ice-rich permafrost ecosystems to climate changes depend on forest type.

  4. Alaskan soil carbon stocks: spatial variability and dependence on environmental factors

    Directory of Open Access Journals (Sweden)

    U. Mishra

    2012-09-01

    Full Text Available The direction and magnitude of soil organic carbon (SOC changes in response to climate change depend on the spatial and vertical distributions of SOC. We estimated spatially resolved SOC stocks from surface to C horizon, distinguishing active-layer and permafrost-layer stocks, based on geospatial analysis of 472 soil profiles and spatially referenced environmental variables for Alaska. Total Alaska state-wide SOC stock was estimated to be 77 Pg, with 61% in the active-layer, 27% in permafrost, and 12% in non-permafrost soils. Prediction accuracy was highest for the active-layer as demonstrated by highest ratio of performance to deviation (1.5. Large spatial variability was predicted, with whole-profile, active-layer, and permafrost-layer stocks ranging from 1–296 kg C m−2, 2–166 kg m−2, and 0–232 kg m−2, respectively. Temperature and soil wetness were found to be primary controllers of whole-profile, active-layer, and permafrost-layer SOC stocks. Secondary controllers, in order of importance, were found to be land cover type, topographic attributes, and bedrock geology. The observed importance of soil wetness rather than precipitation on SOC stocks implies that the poor representation of high-latitude soil wetness in Earth system models may lead to large uncertainty in predicted SOC stocks under future climate change scenarios. Under strict caveats described in the text and assuming temperature changes from the A1B Intergovernmental Panel on Climate Change emissions scenario, our geospatial model indicates that the equilibrium average 2100 Alaska active-layer depth could deepen by 11 cm, resulting in a thawing of 13 Pg C currently in permafrost. The equilibrium SOC loss associated with this warming would be highest under continuous permafrost (31%, followed by discontinuous (28%, isolated (24.3%, and sporadic (23.6% permafrost areas. Our high-resolution mapping of soil carbon stock reveals the potential vulnerability of high-latitude soil carbon and can be used as a basis for future studies of anthropogenic and climatic perturbations.

  5. First evidence and predictions of Plasmodium transmission in Alaskan bird populations.

    Directory of Open Access Journals (Sweden)

    Claire Loiseau

    Full Text Available The unprecedented rate of change in the Arctic climate is expected to have major impacts on the emergence of infectious diseases and host susceptibility to these diseases. It is predicted that malaria parasites will spread to both higher altitudes and latitudes with global warming. Here we show for the first time that avian Plasmodium transmission occurs in the North American Arctic. Over a latitudinal gradient in Alaska, from 61°N to 67°N, we collected blood samples of resident and migratory bird species. We found both residents and hatch year birds infected with Plasmodium as far north as 64°N, providing clear evidence that malaria transmission occurs in these climates. Based on our empirical data, we make the first projections of the habitat suitability for Plasmodium under a future-warming scenario in Alaska. These findings raise new concerns about the spread of malaria to naïve host populations.

  6. First Evidence and Predictions of Plasmodium Transmission in Alaskan Bird Populations

    OpenAIRE

    Claire Loiseau; Harrigan, Ryan J; Anthony J. Cornel; Sue L Guers; Molly Dodge; Timothy Marzec; Carlson, Jenny S.; Bruce Seppi; Ravinder N M Sehgal

    2012-01-01

    The unprecedented rate of change in the Arctic climate is expected to have major impacts on the emergence of infectious diseases and host susceptibility to these diseases. It is predicted that malaria parasites will spread to both higher altitudes and latitudes with global warming. Here we show for the first time that avian Plasmodium transmission occurs in the North American Arctic. Over a latitudinal gradient in Alaska, from 61°N to 67°N, we collected blood samples of resident and migratory...

  7. Contaminants in Steller's Eider (Polysticta stelleri) on Alaskan Breeding Grounds Near Barrow, Alaska, 1999-2004

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Steller's eiders (Polysticta stelleri), the smallest of the four eider species, spend their entire life cycle in sub-arctic and arctic areas. The Pacific population...

  8. Digital storytelling: a tool for health promotion and cancer awareness in rural Alaskan communities

    Directory of Open Access Journals (Sweden)

    Melany Cueva

    2015-09-01

    Full Text Available Background: The purpose of this study was to learn community members’ perspectives about digital storytelling after viewing a digital story created by a Community Health Aide/Practitioner (CHA/P. Methods: Using a qualitative research design, we explored digital storytelling likeability as a health-messaging tool, health information viewers reported learning and, if viewing, cancer-related digital stories facilitated increased comfort in talking about cancer. In addition, we enquired if the digital stories affected how viewers felt about cancer, as well as if viewing the digital stories resulted in health behaviour change or intent to change health behaviour. Findings: A total of 15 adult community members participated in a 30–45 minute interview, 1–5 months post-viewing of a CHA/P digital story. The majority (13 of viewers interviewed were female, all were Alaska Native and they ranged in age from 25 to 54 years with the average age being 40 years. Due to the small size of communities, which ranged in population from 160 to 2,639 people, all viewers knew the story creator or knew of the story creator. Viewers reported digital stories as an acceptable, emotionally engaging way to increase their cancer awareness and begin conversations. These conversations often served as a springboard for reflection, insight, and cancer-prevention and risk-reduction activities.

  9. Energy drink use, problem drinking and drinking motives in a diverse sample of Alaskan college students

    OpenAIRE

    Monica C. Skewes; Christopher R. Decou; Gonzalez, Vivian M.

    2013-01-01

    Background. Recent research has identified the use of caffeinated energy drinks as a common, potentially risky behaviour among college students that is linked to alcohol misuse and consequences. Research also suggests that energy drink consumption is related to other risky behaviours such as tobacco use, marijuana use and risky sexual activity.Objective. This research sought to examine the associations between frequency of energy drink consumption and problematic alcohol use, alcohol-related ...

  10. Development of Alaskan gas hydrate resources: Annual report, October 1986--September 1987

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.D.; Kamath, V.A.; Godbole, S.P.; Patil, S.L.; Paranjpe, S.G.; Mutalik, P.N.; Nadem, N.

    1987-10-01

    Solid ice-like mixtures of natural gas and water in the form of natural gas hydrated have been found immobilized in the rocks beneath the permafrost in Arctic basins and in muds under the deep water along the American continental margins, in the North Sea and several other locations around the world. It is estimated that the arctic areas of the United States may contain as much as 500 trillion SCF of natural gas in the form of gas hydrates (Lewin and Associates, 1983). While the US Arctic gas hydrate resources may have enormous potential and represent long term future source of natural gas, the recovery of this resource from reservoir frozen with gas hydrates has not been commercialized yet. Continuing study and research is essential to develop technologies which will enable a detailed characterization and assessment of this alternative natural gas resource, so that development of cost effective extraction technology.

  11. AFSC/ABL: Lipid Dataset of Alaskan fish, marine mammals, and invertebrates

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nutritional Ecology Laboratory maintains a database containing all of the biochemical data we collect. The database includes seasonal information regarding...

  12. Late quaternary paleo-climatic records from Alaskan Loess: Identifying causes of natural climate variability

    International Nuclear Information System (INIS)

    Magnetic susceptibility profiling and magnetic remanence studies, x-ray sedigraph analysis, scanning electron microscope image studies, tephrochronology, and fission-track dating of thick loess deposits in Alaska reveal a continuous record of the chronology and pattern of past climate changes at high latitudes. Long-term climate changes in Alaska appear to have closely followed global patterns over at least the last 200,000 years. Radiocarbon and fission-track dating demonstrate agreement between the timing of climate changes recorded in terrestrial loess deposits and records from marine and ice cores. Spectral analyses of loess proxy climate time-series reveal power at orbital frequencies, providing evidence for the Milankovitch model of climate change. Many short-term climate events, lasting only 102 - 103 years, are also recorded in loess sections. Some of these short-term events appear to reflect transient changes in global atmospheric CO2 contents of 25-50% documented by studies of ice cores, and provide evidence for changes in the global Greenhouse effect due to natural variations of atmospheric CO2 content

  13. The role of coherent flow structures in the sensible heat fluxes of an Alaskan boreal forest

    Science.gov (United States)

    Starkenburg, Derek; Fochesatto, Gilberto J.; Prakash, Anupma; Cristóbal, Jordi; Gens, Rudiger; Kane, Douglas L.

    2013-08-01

    Accelerations in the flow over forests generate coherent structures which locally enhance updrafts and downdrafts, forcing rapid exchanges of energy and matter. Here, observations of the turbulent flow are made in a highly heterogeneous black spruce boreal forest in Fairbanks, Alaska at ~2.6 h (12 m) and ~0.6 h (3 m), where h is the mean canopy height of 4.7 m. Wavelet analysis is used to detect coherent structures. The sonic temperature and wind data cover 864 half-hour periods spanning winter, spring, and summer. When mean global statistics of structures are analyzed at the two levels independently, results are similar to other studies. Specifically, an average of eight structures occurs per period, their mean duration is 85 s, and their mean heat flux contribution is 48%. However, this analysis suggests that 31% of the structures detected at 2.6 h, and 13% at 0.6 h, may be influenced by wave-like flow organization. Remarkably, less than 25% of the structures detected occur synchronously in the subcanopy and above canopy levels, which speaks robustly to the lack of flow interaction within only nine vertical meters of the forest.

  14. Distribution and landscape controls of organic layer thickness and carbon within the Alaskan Yukon River Basin

    Science.gov (United States)

    Pastick, Neal J.; Rigge, Matthew B.; Wylie, Bruce K.; Jorgenson, M. Torre; Rose, Joshua R.; Johnson, Kristofer D.; Ji, Lei

    2014-01-01

    Understanding of the organic layer thickness (OLT) and organic layer carbon (OLC) stocks in subarctic ecosystems is critical due to their importance in the global carbon cycle. Moreover, post-fire OLT provides an indicator of long-term successional trajectories and permafrost susceptibility to thaw. To these ends, we 1) mapped OLT and associated uncertainty at 30 m resolution in the Yukon River Basin (YRB), Alaska, employing decision tree models linking remotely sensed imagery with field and ancillary data, 2) converted OLT to OLC using a non-linear regression, 3) evaluate landscape controls on OLT and OLC, and 4) quantified the post-fire recovery of OLT and OLC. Areas of shallow (2 = 0.68; OLC: R2 = 0.66), where an average of 16 cm OLT and 5.3 kg/m2 OLC were consumed by fires. Strong predictors of OLT included climate, topography, near-surface permafrost distributions, soil wetness, and spectral information. Our modeling approach enabled us to produce regional maps of OLT and OLC, which will be useful in understanding risks and feedbacks associated with fires and climate feedbacks.

  15. Dissolved organic carbon in Alaskan boreal forest: Sources, chemical characteristics, and biodegradability

    Science.gov (United States)

    Wickland, K.P.; Neff, J.C.; Aiken, G.R.

    2007-01-01

    The fate of terrestrially-derived dissolved organic carbon (DOC) is important to carbon (C) cycling in both terrestrial and aquatic environments, and recent evidence suggests that climate warming is influencing DOC dynamics in northern ecosystems. To understand what determines the fate of terrestrial DOC, it is essential to quantify the chemical nature and potential biodegradability of this DOC. We examined DOC chemical characteristics and biodegradability collected from soil pore waters and dominant vegetation species in four boreal black spruce forest sites in Alaska spanning a range of hydrologic regimes and permafrost extents (Well Drained, Moderately Well Drained, Poorly Drained, and Thermokarst Wetlands). DOC chemistry was characterized using fractionation, UV-Vis absorbance, and fluorescence measurements. Potential biodegradability was assessed by incubating the samples and measuring CO2 production over 1 month. Soil pore water DOC from all sites was dominated by hydrophobic acids and was highly aromatic, whereas the chemical composition of vegetation leachate DOC varied significantly with species. There was no seasonal variability in soil pore water DOC chemical characteristics or biodegradability; however, DOC collected from the Poorly Drained site was significantly less biodegradable than DOC from the other three sites (6% loss vs. 13-15% loss). The biodegradability of vegetation-derived DOC ranged from 10 to 90% loss, and was strongly correlated with hydrophilic DOC content. Vegetation such as Sphagnum moss and feathermosses yielded DOC that was quickly metabolized and respired. In contrast, the DOC leached from vegetation such as black spruce was moderately recalcitrant. Changes in DOC chemical characteristics that occurred during microbial metabolism of DOC were quantified using fractionation and fluorescence. The chemical characteristics and biodegradability of DOC in soil pore waters were most similar to the moderately recalcitrant vegetation leachates, and to the microbially altered DOC from all vegetation leachates. ?? 2007 Springer Science+Business Media, LLC.

  16. Alaskan Salmon and Gen R: hunting, fishing to cultivate ecological mindfulness

    Science.gov (United States)

    Mueller, Michael P.

    2015-03-01

    Can mining and fisheries co-exist in Bristol Bay, Alaska? To delve into this interesting tension, I expand on Clay Pierce's (this special issue) thoughtful analysis of genetically modified salmon and AquaBounty Technologies, where he explores actor-network theory in relation to scientific literacy and schooling. Further, my essay explores the idea of embodied knowledge as paramount to the next generation of youth engaged with scientific literacy. I demonstrate the problems associated with using hegemonic science to normalize biocapitalism and the subjugated knowledges in relation. Ultimately, I provide justifications for strengthening an ecologically mindful scientific literacy, working towards what might be called "Neptunian democracy" in science education, including salmon and other nonhuman actors as integral for youth wrestling with ecojustice issues. To do this, I highlight the significance of renewing fishing, hunting, and salmon eating. These things ought to become an intimate characteristic of the imagined literacy of the next generation of youth (what I've been calling Generation R for responsibility).

  17. Microbial decomposer communities in Alaskan permafrost soils and their response to thaw

    Science.gov (United States)

    Waldrop, M. P.; Wickland, K.; Harden, J.; Striegl, R.; Aiken, G.

    2007-12-01

    Permafrost protected soil carbon in boreal forest ecosystems represents a significant portion of the approximately 500 Gt C in the soil organic matter of boreal regions. The magnitude of this thermally-protected carbon pool makes it a particularly important to the global C cycle within the context of global climatic change. Permafrost has acted as a C sink for thousands of years yet currently has been warming at a rate of 1°C per decade, making the C contained within it potentially available for decomposition. Thawing permafrost opens a latch into a globally important C reservoir that could be released to the atmosphere (as CO2) and rivers (as dissolved organic carbon, DOC), affecting greenhouse warming and aquatic chemistry. A gap in our current knowledge is the extent to which permafrost-protected C is available for microbial metabolism once soils thaw. Current indications are that organic matter contained within permafrost is relatively labile since it is not protected from decomposition by physical protection or humification mechanisms. However, we have little understanding of the microbiology of permafrost soils, which could significantly affect the rate of decomposition of permafrost C after thaw. Our aim was to use quantitative molecular techniques to examine the abundance of microbial decomposer functional groups in permafrost soils, the enzymes they encode, and their rates of respiration under both aerobic and anaerobic conditions in a simulated summer thaw at 5°C. We compared microbial and chemical characteristics of active layer and permafrost soils from black spruce stands in three distinct geographic regions: Coldfoot, Hess Creek, and Smith Lake, AK. We chose these regions because they span a range of permafrost conditions from shallow active layers and mineral-associated permafrost layers to thick active layers and deep organic permafrost soils. Soil carbon and nitrogen concentrations did not differ between active layer and permafrost soils within sites, and neither did the relative abundance of total bacteria and methanogens. In contrast, total fungal abundance and basidiomycete abundance was strongly reduced in permafrost soils. We tested whether the reduction in fungal abundance in permafrost soils could affect the turnover of soil carbon in thawed permafrost. We incubated soils under aerobic and anaerobic conditions at 5°C for 3 months. We are currently examining the changes in microbial respiration and enzyme activities that result from the incubation, as well as microbial population shifts. We are testing the hypothesis that low fungal biomass in permafrost soils will reduce the rate of decomposition of organic matter during summer thaw.

  18. Molecular investigations into a globally important carbon pool: Permafrost-protected carbon in Alaskan soils

    Science.gov (United States)

    Waldrop, M.P.; Wickland, K.P.; White, Rickie; Berhe, A.A.; Harden, J.W.; Romanovsky, V.E.

    2010-01-01

    The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial abundances and activities in permafrost soils limit decomposition rates compared with active layer soils. We examined active layer and permafrost soils near Fairbanks, AK, the Yukon River, and the Arctic Circle. Soils were incubated in the lab under aerobic and anaerobic conditions. Gas fluxes at -5 and 5 ??C were measured to calculate temperature response quotients (Q10). The Q10 was lower in permafrost soils (average 2.7) compared with active layer soils (average 7.5). Soil nutrients, leachable dissolved organic C (DOC) quality and quantity, and nuclear magnetic resonance spectroscopy of the soils revealed that the organic matter within permafrost soils is as labile, or even more so, than surface soils. Microbial abundances (fungi, bacteria, and subgroups: methanogens and Basidiomycetes) and exoenzyme activities involved in decomposition were lower in permafrost soils compared with active layer soils, which, together with the chemical data, supports the reduced Q10 values. CH4 fluxes were correlated with methanogen abundance and the highest CH4 production came from active layer soils. These results suggest that permafrost soils have high inherent decomposability, but low microbial abundances and activities reduce the temperature sensitivity of C fluxes. Despite these inherent limitations, however, respiration per unit soil C was higher in permafrost soils compared with active layer soils, suggesting that decomposition and heterotrophic respiration may contribute to a positive feedback to warming of this eco region. Published 2010. This article is a US Government work and is in the public domain in the USA.

  19. Chemical indicators of cryoturbation and microbial processing throughout an alaskan permafrost soil depth profile

    Science.gov (United States)

    Although permafrost soils contain vast stores of carbon, we know relatively little about the chemical composition of their constituent organic matter. Soil organic matter chemistry is an important predictor of decomposition rates, especially in the initial stages of decomposition. Permafrost, organi...

  20. The transcriptional response of microbial communities in thawing Alaskan permafrost soils

    OpenAIRE

    Coolen, Marco J. L.; Orsi, William D.

    2015-01-01

    Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh thro...

  1. Alaskan Arctic Soils: Relationship between Microbial Carbon Usage and Soil Composition

    Science.gov (United States)

    Li, H.; Ziolkowski, L. A.

    2015-12-01

    Carbon stored in Arctic permafrost carbon is sensitive to climate change. Microbes are known to degrade Arctic soil organic carbon (OC) and potentially release vast quantitates of CO2 and CH4. Previously, it has been shown that warming of Arctic soils leads to microbes respiring older carbon. To examine this process, we studied the microbial carbon usage and its relationship to the soil OC composition in active layer soils at five locations along a latitudinal transect on the North Slope of Alaska using the compound specific radiocarbon signatures of the viable microbial community using phospholipid fatty acids (PLFA). Additional geochemical parameters (C/N, 13C, 15N and 14C) of bulk soils were measured. Overall there was a greater change with depth than location. Organic rich surface soils are rich in vegetation and have high PLFA based cell densities, while deeper in the active layer geochemical parameters indicated soil OC was degraded and cell densities decreased. As expected, PLFA indicative of Fungi and Protozoa species dominated in surface soils, methyl-branched PLFAs, indicative of bacterial origin, increased in deeper in the active layer. A group of previously unreported PLFAs, believed to correlate to anaerobic microbes, increased at the transition between the surface and deep microbial communities. Cluster analysis based on individual PLFAs of samples confirmed compositional differences as a function of depth dominated with no site to site differences. Radiocarbon data of soil OC and PLFA show the preferential consumption of younger soil OC by microbes at all sites and older OC being eaten in deep soils. However, in deeper soil, where the C/N ratio suggests lower bioavailability, less soil OC was incorporated into the microbes as indicating by greater differences between bulk and PLFA radiocarbon ages.

  2. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    Science.gov (United States)

    Kane, E.S.; Chivers, M.R.; Turetsky, M.R.; Treat, C.C.; Petersen, D.G.; Waldrop, M.; Harden, J.W.; McGuire, A.D.

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2 production potential at 10 cm depth (14.1 ± 0.9 μmol C g−1 d−1) was as high as aerobic CO2 production potential (10.6 ± 1.5 μmol C g−1 d−1), while CH4 production was low (mean of 7.8 ± 1.5 nmol C g−1 d−1). Denitrification enzyme activity indicated a very high denitrification potential (197 ± 23 μg N g−1 d−1), but net NO-3 reduction suggested this was a relatively minor pathway for anaerobic CO2 production. Abundances of denitrifier genes (nirK and nosZ) did not change across water table treatments. SO2-4 reduction also did not appear to be an important pathway for anaerobic CO2 production. The net accumulation of acetate and formate as decomposition end products in the raised water table treatment suggested that fermentation was a significant pathway for carbon mineralization, even in the presence of NO-3. Dissolved organic carbon (DOC) concentrations were the strongest predictors of potential anaerobic and aerobic CO2 production. Across all water table treatments, the CO2:CH4 ratio increased with initial DOC leachate concentrations. While the field water table treatment did not have a significant effect on mean CO2 or CH4 production potential, the CO2:CH4 ratio was highest in shallow peat incubations from the drained treatment. These data suggest that with continued drying or with a more variable water table, anaerobic CO2 production may be favored over CH4 production in this rich fen. Future research examining the potential for dissolved organic substances to facilitate anaerobic respiration, or alternative redox processes that limit the effectiveness of organic acids as substrates in anaerobic metabolism, would help explain additional uncertainty concerning carbon mineralization in this system.

  3. Species List of Alaskan Birds, Mammals, Fish, Amphibians, Reptiles, and Invertebrates. Alaska Region Report Number 82.

    <