WorldWideScience

Sample records for alaska science center

  1. Rural Alaska Science and Mathematics Network

    National Research Council Canada - National Science Library

    Brunk, Blanche R

    2005-01-01

    ...), are awarded to Alaska Native students. Academic preparation, lack of exposure to science careers in rural Alaska, and little connection between western science and Native traditional life have combined to impede Native students' interest...

  2. Comparative analysis of alternative co-production approaches to conservation science in Alaska

    Science.gov (United States)

    Trammell, E. J.

    2017-12-01

    Co-production has been suggested as an important tool for reducing the gap between science and management. Although co-production can require substantial investments in time and relationship building, there are a range of possible approaches that can be utilized that honor the focus and intent of co-production. I present here a comparison of three efforts that range from relatively simple, to complex and exhaustive, that illustrate diverse approaches to co-production of conservation science in Alaska. The first example highlights a workshop-based approach to identify long-term environmental monitoring needs in Alaska, while the second example describes stakeholder-driven scenarios that identified stressors to salmon in southcentral Alaska. The third example describes a 2-year cooperative agreement to develop management questions as part of a rapid ecoregional assessment in central Alaska. Results suggest that careful stakeholder selection is essential to successful co-production. Additionally, all three examples highlight the potential disconnect between management questions and specific management decisions, even when working directly with resource managers. As the focus of the Alaska Climate Science Center will be on co-production of climate science over the next 5 years, I conclude with some key pathways forward for successful co-production efforts in the future.

  3. Descriptions of marine mammal specimens in Marine Mammal Osteology Reference Collection, Alaska Fisheries Science Center, National Marine Mammal Laboratory from 1938-01-01 to 2015-12-05 (NCEI Accession 0140937)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NMFS Alaska Fisheries Science Center National Marine Mammal Laboratory (NMML) Marine Mammal Osteology Collection consists of approximately 2500 specimens (skulls...

  4. AFSC/REFM: Community Profiles for North Pacific Fisheries, Alaska 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2005, the Alaska Fisheries Science Center (AFSC) compiled baseline socioeconomic information about 136 Alaska communities most involved in commercial fisheries....

  5. Science for Alaska: Public Understanding of University Research Priorities

    Science.gov (United States)

    Campbell, D.

    2015-12-01

    Science for Alaska: Public Understanding of Science D. L. Campbell11University of Alaska Fairbanks, USA Around 200 people brave 40-below-zero temperatures to listen to university researchers and scientists give lectures about their work at an event called the Science for Alaska Lecture Series, hosted by the University of Alaska Fairbanks Geophysical Institute. It is held once a week, for six weeks during the coldest part of a Fairbanks, Alaska, winter. The topics range from space physics to remote sensing. The lectures last for 45 minutes with 15 minutes for audience questions and answers. It has been popular for about 20 years and is one of many public outreach efforts of the institute. The scientists are careful in their preparations for presentations and GI's Public Relations staff chooses the speakers based on topic, diversity and public interest. The staff also considers the speaker's ability to speak to a general audience, based on style, clarity and experience. I conducted a qualitative research project to find out about the people who attended the event, why they attend and what they do with the information they hear about. The participants were volunteers who attended the event and either stayed after the lectures for an interview or signed up to be contacted later. I used used an interview technique with open-ended questions, recorded and transcribed the interview. I identified themes in the interviews, using narrative analysis. Preliminary data show that the lecture series is a form of entertainment for people who are highly educated and work in demanding and stressful jobs. They come with family and friends. Sometimes it's a date with a significant other. Others want to expose their children to science. The findings are in keeping with the current literature that suggests that public events meant to increase public understanding of science instead draws like-minded people. The findings are different from Campbell's hypothesis that attendance was based

  6. Climate science informs participatory scenario development and applications to decision making in Alaska

    Science.gov (United States)

    Welling, L. A.; Winfree, R.; Mow, J.

    2012-12-01

    Climate change presents unprecedented challenges for managing natural and cultural resources into the future. Impacts are expected to be highly consequential but specific effects are difficult to predict, requiring a flexible process for adaptation planning that is tightly coupled to climate science delivery systems. Scenario planning offers a tool for making science-based decisions under uncertainty. The National Park Service (NPS) is working with the Department of the Interior Climate Science Centers (CSCs), the NOAA Regional Integrated Science and Assessment teams (RISAs), and other academic, government, non-profit, and private partners to develop and apply scenarios to long-range planning and decision frameworks. In April 2012, Alaska became the first region of the NPS to complete climate change scenario planning for every national park, preserve, and monument. These areas, which collectively make up two-thirds of the total area of the NPS, are experiencing visible and measurable effects attributable to climate change. For example, thawing sea ice, glaciers and permafrost have resulted in coastal erosion, loss of irreplaceable cultural sites, slope failures, flooding of visitor access routes, and infrastructure damage. With higher temperatures and changed weather patterns, woody vegetation has expanded into northern tundra, spruce and cedar diebacks have occurred in southern Alaska, and wildland fire severity has increased. Working with partners at the Alaska Climate Science Center and the Scenario Network for Alaska Planning the NPS integrates quantitative, model-driven data with qualitative, participatory techniques to scenario creation. The approach enables managers to access and understand current climate change science in a form that is relevant for their decision making. Collaborative workshops conducted over the past two years grouped parks from Alaska's southwest, northwest, southeast, interior and central areas. The emphasis was to identify and connect

  7. A qualitative study of motivation in Alaska Native Science and Engineering Program (ANSEP) precollege students

    Science.gov (United States)

    Yatchmeneff, Michele

    The dramatic underrepresentation of Alaska Natives in science, technology, engineering and mathematics (STEM) degrees and professions calls for rigorous research in how students access these fields. Research has shown that students who complete advanced mathematics and science courses while in high school are more academically prepared to pursue and succeed in STEM degree programs and professions. There is limited research on what motivates precollege students to become more academically prepared before they graduate from high school. In Alaska, Alaska Native precollege students regularly underperform on required State of Alaska mathematics and science exams when compared to non-Alaska Native students. Research also suggests that different things may motivate Alaska Native students than racial majority students. Therefore there is a need to better understand what motivates Alaska Native students to take and successfully complete advanced mathematics and science courses while in high school so that they are academically prepared to pursue and succeed in STEM degrees and professions. The Alaska Native Science & Engineering Program (ANSEP) is a longitudinal STEM educational enrichment program that works with Alaska Native students starting in middle school through doctoral degrees and further professional endeavors. Research suggests that Alaska Native students participating in ANSEP are completing STEM degrees at higher rates than before the program was available. ANSEP appears to be unique due to its longitudinal approach and the large numbers of Alaska Native precollege, university, and graduate students it supports. ANSEP provides precollege students with opportunities to take advanced high school and college-level mathematics and science courses and complete STEM related projects. Students work and live together on campus during the program components. Student outcome data suggests that ANSEP has been successful at motivating precollege participants to

  8. Alaska Steller Sea Lion and Northern Fur Seal Argos Telemetry Data Archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Alaska Ecosystems Program of the NOAA Alaska Fisheries Science Center National Marine Mammal Laboratory conducts research and monitoring on Steller sea lions and...

  9. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2017

    Science.gov (United States)

    Varela Minder, Elda

    2018-04-19

    IntroductionThe year 2017 was a year of review and renewal for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). The Southeast, Northwest, Alaska, Southwest, and North Central CSCs’ 5-year summary review reports were released in 2017 and contain the findings of the external review teams led by the Cornell University Human Dimensions Research Unit in conjunction with the American Fisheries Society. The reports for the Pacific Islands, South Central, and Northeast CSCs are planned for release in 2018. The reviews provide an opportunity to evaluate aspects of the cooperative agreement, such as the effectiveness of the CSC in meeting project goals and assessment of the level of scientific contribution and achievement. These reviews serve as a way for the CSCs and NCCWSC to look for ways to recognize and enhance our network’s strengths and identify areas for improvement. The reviews were followed by the CSC recompetition, which led to new hosting agreements at the Northwest, Alaska, and Southeast CSCs. Learn more about the excellent science and activities conducted by the network centers in the 2017 annual report.

  10. State of Alaska

    Science.gov (United States)

    Assistance Center Occupations Requiring Licenses Corporations Employer Information Alaska's Job Bank/Alaska Assistance Center Alaska's Job Bank Occupations Requiring Licenses Corporations Unemployment Insurance Tax Child Care Child Protection Denali KidCare Food Stamps Poison Control Seasonal Flu Immunization

  11. Building Capacity for Actionable Science and Decision Making in Alaska

    Science.gov (United States)

    Timm, K.; Kettle, N.; Buxbaum, T. M.; Trainor, S.; Walsh, J. E.; York, A.

    2017-12-01

    Investigations of the processes for developing actionable science and supporting partnerships between researchers and practitioners has received increasing attention over the past decade. These studies highlight the importance of leveraging existing relationships and trust, supporting iterative interactions, and dedicating sufficient financial and human capital to the development of usable climate science. However, significant gaps remain in our understanding of how to build capacity for more effective partnerships. To meet these ends, the Alaska Center for Climate Assessment and Policy (ACCAP) is developing a series of trainings for scientists and practitioners to build capacity for producing actionable science. This process includes three phases: scoping and development, training, and evaluation. This presentation reports on the scoping and development phase of the project, which draws on an extensive web-based search of past and present capacity building and training activities, document analysis, and surveys of trainers. A synthesis of successful formats (e.g., training, placements, etc.), curriculum topics (e.g., climate science, interpersonal communication), and approaches to recruitment and curriculum development will be outlined. We then outline our approach for co-developing trainings in three different sectors, which engages other boundary organizations to leverage trust and exiting network connections to tailor the training activities. Through this effort we ultimately seek to understand how the processes and outcomes for co-developing trainings in actionable science vary across sectors and their implications for building capacity.

  12. REMOTE OPERATION OF THE WEST COAST AND ALASKA TSUNAMI WARNING CENTER

    Directory of Open Access Journals (Sweden)

    Alec H. Medbery

    2002-01-01

    Full Text Available The remote control of real time derivation of earthquake location and magnitude and the issuance of tsunami and earthquake bulletins was done using off-the-shelf remote control software and hardware. Such remote operation of the West Coast/Alaska Tsunami Warning Center can decrease the time needed to respond to an earthquake by eliminating travel from the duty standers’ home to the tsunami warning center.

  13. AFSC/REFM: Alaska groundfish AGEDATA database,1982 to present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AFSC AGEDATA database is a collection of historic and ongoing fish ageing efforts by the Alaska Fisheries Science Center's Age and Growth Program from 1982 to...

  14. 2015 Pollock Acoustic/Trawl Survey Gulf of Alaska EK60 Raw Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists from the Midwater Assessment and Conservation Engineering (MACE) Program of the Alaska Fisheries Science Center's (AFSC) Resource Assessment and...

  15. Gulf of Alaska Acoustic-Trawl Surveys of Walleye Pollock (DY1201, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  16. Gulf of Alaska Acoustic-Trawl Survey of Walleye Pollock (DY1506, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  17. Gulf of Alaska Acoustic-Trawl Survey of Walleye Pollock (DY1506, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  18. Gulf of Alaska Acoustic-Trawl Surveys of Walleye Pollock (DY1001, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  19. Gulf of Alaska Acoustic-Trawl Survey of Walleye Pollock (DY1403, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  20. Gulf of Alaska Acoustic-Trawl Survey of Walleye Pollock (DY1401, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  1. Gulf of Alaska Acoustic-Trawl Surveys of Walleye Pollock (DY1203, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  2. Gulf of Alaska Acoustic-Trawl Survey of Walleye Pollock (DY1303, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  3. Gulf of Alaska Acoustic-Trawl Survey of Walleye Pollock (DY1307, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  4. Gulf of Alaska Acoustic-Trawl Surveys of Walleye Pollock (DY1002, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  5. Gulf of Alaska Acoustic-Trawl Survey of Walleye Pollock (DY1302, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  6. Gulf of Alaska Acoustic-Trawl Survey of Walleye Pollock (DY1602, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  7. Gulf of Alaska Acoustic-Trawl Surveys of Walleye Pollock (DY0901, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  8. Gulf of Alaska Acoustic-Trawl Survey of Walleye Pollock (DY1307, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA's National Marine Fisheries Service, Alaska Fisheries Science Center (AFSC) conducted an...

  9. AFSC/RACE/MACE: Results of 2013 acoustic trawl survey Gulf of Alaska DY1307

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists from the Midwater Assessment and Conservation Engineering (MACE) Program of the Alaska Fisheries Science Center (AFSC) Resource Assessment and...

  10. AFSC/RACE/MACE: Results of 2011 acoustic trawl survey Gulf of Alaska DY1103

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists from the Midwater Assessment and Conservation Engineering (MACE) Program of the Alaska Fisheries Science Center (AFSC) Resource Assessment and...

  11. Alaska Plant Materials Center | Division of Agriculture

    Science.gov (United States)

    Management Plan for Alaska, 2005 2017 AK Potato Seed Certification Handbook Tobacco Rattle Virus in Peonies Virus and Thrips Vectors Resources Pacific Northwest Plant Disease Management Handbook Pacific Northwest Potato Production Disease Risk Monitoring Publications and Reports Late Blight Management Plan for Alaska

  12. State of Alaska Department of Environmental Conservation oil spill research and development program

    International Nuclear Information System (INIS)

    Pearson, L.A.

    1992-01-01

    In 1990, the Sixteenth Alaska Legislature reviewed issues related to response action and planning involved in the release or threatened release of oil or hazardous substance. One of the outcomes of that review was the passage of House Bill 566, which established the Alaska State Emergency Response Commission (SERC) and within the SERC the Hazardous Substance Spill Technology Review Council. The Council was organized in the spring of 1991 and meets quarterly. The Council is responsible to assist in the identification of containment and clean up products and procedures for arctic and sub-arctic hazardous substance releases and to make recommendations to state agencies regarding their use and deployment. Appendix I explains additional duties of the Council. Members of the Council include the deputy commissioner of the Alaska Department of Environmental Conservation, representatives of the Department of Military and Veterans Affairs, the governor's senior science advisor, the U.S. Coast Guard, the Environmental Protection Agency, the University of Alaska, Prince William Sound Science Center and representatives from Alaska judicial districts

  13. Acoustic-Trawl Survey of Walleye Pollock in the Gulf of Alaska (DY1503, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  14. Acoustic-Trawl Survey of Walleye Pollock in the Gulf of Alaska (DY1604, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  15. Acoustic-Trawl Survey of Walleye Pollock in the Gulf of Alaska (OD0501, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  16. Acoustic-Trawl Survey of Walleye Pollock in the Gulf of Alaska (MF0309, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  17. Preparing culturally responsive teachers of science, technology, engineering, and math using the Geophysical Institute Framework for Professional Development in Alaska

    Science.gov (United States)

    Berry Bertram, Kathryn

    2011-12-01

    The Geophysical Institute (GI) Framework for Professional Development was designed to prepare culturally responsive teachers of science, technology, engineering, and math (STEM). Professional development programs based on the framework are created for rural Alaskan teachers who instruct diverse classrooms that include indigenous students. This dissertation was written in response to the question, "Under what circumstances is the GI Framework for Professional Development effective in preparing culturally responsive teachers of science, technology, engineering, and math?" Research was conducted on two professional development programs based on the GI Framework: the Arctic Climate Modeling Program (ACMP) and the Science Teacher Education Program (STEP). Both programs were created by backward design to student learning goals aligned with Alaska standards and rooted in principles of indigenous ideology. Both were created with input from Alaska Native cultural knowledge bearers, Arctic scientists, education researchers, school administrators, and master teachers with extensive instructional experience. Both provide integrated instruction reflective of authentic Arctic research practices, and training in diverse methods shown to increase indigenous student STEM engagement. While based on the same framework, these programs were chosen for research because they offer distinctly different training venues for K-12 teachers. STEP offered two-week summer institutes on the UAF campus for more than 175 teachers from 33 Alaska school districts. By contrast, ACMP served 165 teachers from one rural Alaska school district along the Bering Strait. Due to challenges in making professional development opportunities accessible to all teachers in this geographically isolated district, ACMP offered a year-round mix of in-person, long-distance, online, and local training. Discussion centers on a comparison of the strategies used by each program to address GI Framework cornerstones, on

  18. Genetic Science Learning Center

    Science.gov (United States)

    Genetic Science Learning Center Making science and health easy for everyone to understand Home News Our Team What We Do ... Collaboration Conferences Current Projects Publications Contact The Genetic Science Learning Center at The University of Utah is a ...

  19. Acoustic-Trawl Surveys of Walleye Pollock in the Central Gulf of Alaska (DY0904, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  20. Assessment of Rockfish Species in Untrawlable Habitat in the Gulf of Alaska (DY0912, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  1. Acoustic-Trawl Surveys of Walleye Pollock in the Central Gulf of Alaska (DY0904, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  2. Acoustic-trawl (AT) survey of Walleye Pollock in the Gulf of Alaska (DY1502, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  3. AFSC/REFM: Beaufort Sea Marine Fish Survey, Beaufort Sea, Alaska, August 2008, Fisheries Interaction Team

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Alaska Fisheries Science Center's Status of Stocks and Multispecies Assessment (SSMA) Programs Fishery Interaction Team (FIT) conducted a fish survey in the...

  4. Science for Alaska: A place for curious people

    Science.gov (United States)

    Campbell, D.

    2017-12-01

    For over 25 years, Alaskans have been attending Science for Alaska Lecture Series, held during the coldest part of an Alaskan winter. The hour-long evening lectures would see from around 100 to almost 300 people attend each event. The scientific literature is quiet as to why people attend an public science event, and focuses more on the delivery of science communication. This qualitative study looked at the audience of a science lecture series: who are they, why do they come and what do they do with the information. In taped audio interviews, the research participants described themselves as smart, curious lifelong learners who felt a sense of place to the Arctic for its practical and esoteric values. Attending the events constructed their social identity that they felt important to share with children. The findings suggest that addressing the audience's sense of place and mirroring their view as smart, curious people would be an effective avenue to communicate science. Furthermore, I will have more to say about the Arctic as a sense of place, after a fall trip on a research ship with a group studying the tropics in the Beaufort Sea.

  5. Fort Collins Science Center-Fiscal year 2009 science accomplishments

    Science.gov (United States)

    Wilson, Juliette T.

    2010-01-01

    Public land and natural resource managers in the United States are confronted with increasingly complex decisions that have important ramifications for both ecological and human systems. The scientists and technical professionals at the U.S. Geological Survey Fort Collins Science Center?many of whom are at the forefront of their fields?possess a unique blend of ecological, socioeconomic, and technological expertise. Because of this diverse talent, Fort Collins Science Center staff are able to apply a systems approach to investigating complicated ecological problems in a way that helps answer critical management questions. In addition, the Fort Collins Science Center has a long record of working closely with the academic community through cooperative agreements and other collaborations. The Fort Collins Science Center is deeply engaged with other U.S. Geological Survey science centers and partners throughout the Department of the Interior. As a regular practice, we incorporate the expertise of these partners in providing a full complement of ?the right people? to effectively tackle the multifaceted research problems of today's resource-management world. In Fiscal Year 2009, the Fort Collins Science Center's scientific and technical professionals continued research vital to Department of the Interior's science and management needs. Fort Collins Science Center work also supported the science needs of other Federal and State agencies as well as non-government organizations. Specifically, Fort Collins Science Center research and technical assistance focused on client and partner needs and goals in the areas of biological information management and delivery, enterprise information, fisheries and aquatic systems, invasive species, status and trends of biological resources (including human dimensions), terrestrial ecosystems, and wildlife resources. In the process, Fort Collins Science Center science addressed natural-science information needs identified in the U

  6. Fiscal Year 1988 program report: Alaska Water Research Center

    International Nuclear Information System (INIS)

    Kane, D.L.

    1990-01-01

    The contents of this study includes: water problems and issues of Alaska; program goals and priorities; research project synopses are: radium levels in, and removal from, ground waters of interior alaska; assessment of stream-flow sediment transport for engineering projects; productivity within deep glacial gravels under subarctic Alaska rivers; nitrogen-cycle dynamics in a subarctic lake; and the use of peat mounds for treatment of household waste water

  7. 1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska

    Science.gov (United States)

    Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.

    2014-01-01

    On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents

  8. In a Time of Change: Integrating the Arts and Humanities with Climate Change Science in Alaska

    Science.gov (United States)

    Leigh, M.; Golux, S.; Franzen, K.

    2011-12-01

    The arts and humanities have a powerful capacity to create lines of communication between the public, policy and scientific spheres. A growing network of visual and performing artists, writers and scientists has been actively working together since 2007 to integrate scientific and artistic perspectives on climate change in interior Alaska. These efforts have involved field workshops and collaborative creative processes culminating in public performances and a visual art exhibit. The most recent multimedia event was entitled In a Time of Change: Envisioning the Future, and challenged artists and scientists to consider future scenarios of climate change. This event included a public performance featuring original theatre, modern dance, Alaska Native Dance, poetry and music that was presented concurrently with an art exhibit featuring original works by 24 Alaskan visual artists. A related effort targeted K12 students, through an early college course entitled Climate Change and Creative Expression, which was offered to high school students at a predominantly Alaska Native charter school and integrated climate change science, creative writing, theatre and dance. Our program at Bonanza Creek Long Term Ecological Research (LTER) site is just one of many successful efforts to integrate arts and humanities with science within and beyond the NSF LTER Program. The efforts of various LTER sites to engage the arts and humanities with science, the public and policymakers have successfully generated excitement, facilitated mutual understanding, and promoted meaningful dialogue on issues facing science and society. The future outlook for integration of arts and humanities with science appears promising, with increasing interest from artists, scientists and scientific funding agencies.

  9. AFSC/RACE/MACE: Results of 2009 ACOUSTIC-TRAWL SURVEYS OF THE SHUMAGINS, SANAK TROUGH & WESTERN GULF OF ALASKA SHELFBREAK DY0901

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists from the Midwater Assessment and Conservation Engineering (MACE) Program of the Alaska Fisheries Science Center's (AFSC) Resource Assessment and...

  10. Alaska Center for Unmanned Aircraft Systems Integration (ACUASI): Operational Support and Geoscience Research

    Science.gov (United States)

    Webley, P. W.; Cahill, C. F.; Rogers, M.; Hatfield, M. C.

    2016-12-01

    Unmanned Aircraft Systems (UAS) have enormous potential for use in geoscience research and supporting operational needs from natural hazard assessment to the mitigation of critical infrastructure failure. They provide a new tool for universities, local, state, federal, and military organizations to collect new measurements not readily available from other sensors. We will present on the UAS capabilities and research of the Alaska Center for Unmanned Aircraft Systems Integration (ACUASI, http://acuasi.alaska.edu/). Our UAS range from the Responder with its dual visible/infrared payload that can provide simultaneous data to our new SeaHunter UAS with 90 lb. payload and multiple hour flight time. ACUASI, as a designated US Federal Aviation Administration (FAA) test center, works closely with the FAA on integrating UAS into the national airspace. ACUASI covers all aspects of working with UAS from pilot training, airspace navigation, flight operations, and remote sensing analysis to payload design and integration engineers and policy experts. ACUASI's recent missions range from supporting the mapping of sea ice cover for safe passage of Alaskans across the hazardous winter ice to demonstrating how UAS can be used to provide support during oil spill response. Additionally, we will present on how ACUASI has worked with local authorities in Alaska to integrate UAS into search and rescue operations and with NASA and the FAA on their UAS Transport Management (UTM) project to fly UAS within the manned airspace. ACUASI is also working on developing new capabilities to sample volcanic plumes and clouds, map forest fire impacts and burn areas, and develop a new citizen network for monitoring snow extent and depth during Northern Hemisphere winters. We will demonstrate how UAS can be integrated in operational support systems and at the same time be used in geoscience research projects to provide high precision, accurate, and reliable observations.

  11. Alaska Native Languages: Past, Present, and Future. Alaska Native Language Center Research Papers No. 4.

    Science.gov (United States)

    Krauss, Michael E.

    Three papers (1978-80) written for the non-linguistic public about Alaska Native languages are combined here. The first is an introduction to the prehistory, history, present status, and future prospects of all Alaska Native languages, both Eskimo-Aleut and Athabaskan Indian. The second and third, presented as appendixes to the first, deal in…

  12. Alaska Synthetic Aperture Radar (SAR) Facility science data processing architecture

    Science.gov (United States)

    Hilland, Jeffrey E.; Bicknell, Thomas; Miller, Carol L.

    1991-01-01

    The paper describes the architecture of the Alaska SAR Facility (ASF) at Fairbanks, being developed to generate science data products for supporting research in sea ice motion, ice classification, sea-ice-ocean interaction, glacier behavior, ocean waves, and hydrological and geological study areas. Special attention is given to the individual substructures of the ASF: the Receiving Ground Station (RGS), the SAR Processor System, and the Interactive Image Analysis System. The SAR data will be linked to the RGS by the ESA ERS-1 and ERS-2, the Japanese ERS-1, and the Canadian Radarsat.

  13. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT,J.

    2004-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

  14. COMPUTATIONAL SCIENCE CENTER

    International Nuclear Information System (INIS)

    DAVENPORT, J.

    2006-01-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together

  15. Science, policy, and stakeholders: developing a consensus science plan for Amchitka Island, Aleutians, Alaska.

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael; Kosson, David S; Powers, Charles W; Friedlander, Barry; Eichelberger, John; Barnes, David; Duffy, Lawrence K; Jewett, Stephen C; Volz, Conrad D

    2005-05-01

    With the ending of the Cold War, the US Department of Energy is responsible for the remediation of radioactive waste and disposal of land no longer needed for nuclear material production or related national security missions. The task of characterizing the hazards and risks from radionuclides is necessary for assuring the protection of health of humans and the environment. This is a particularly daunting task for those sites that had underground testing of nuclear weapons, where the radioactive contamination is currently inaccessible. Herein we report on the development of a Science Plan to characterize the physical and biological marine environment around Amchitka Island in the Aleutian chain of Alaska, where three underground nuclear tests were conducted (1965-1971). Information on the ecology, geology, and current radionuclide levels in biota, water, and sediment is necessary for evaluating possible current contamination and to serve as a baseline for developing a plan to ensure human and ecosystem health in perpetuity. Other information required includes identifying the location of the salt water/fresh water interface where migration to the ocean might occur in the future and determining groundwater recharge balances, as well as assessing other physical/geological features of Amchitka near the test sites. The Science Plan is needed to address the confusing and conflicting information available to the public about radionuclide risks from underground nuclear blasts in the late 1960s and early 1970s, as well as the potential for volcanic or seismic activity to disrupt shot cavities or accelerate migration of radionuclides into the sea. Developing a Science Plan involved agreement among regulators and other stakeholders, assignment of the task to the Consortium for Risk Evaluation with Stakeholder Participation, and development of a consensus Science Plan that dealt with contentious scientific issues. Involvement of the regulators (State of Alaska), resource

  16. Building Learning Communities for Research Collaboration and Cross-Cultural Enrichment in Science Education

    Science.gov (United States)

    Sparrow, E. B.

    2003-12-01

    The GLOBE program has provided opportunities for environmental science research and education collaborations among scientists, teachers and K-12 students, and for cross-cultural enrichment nationally and abroad. In Alaska, GLOBE has also provided funding leverage in some cases, and a base for several other science education programs that share a common goal of increasing student interest, understanding, process skills and achievement in science, through involvement in ongoing research investigations. These programs that use GLOBE methodologies (standardized scientific measurements and learning activities developed by scientists and educators) are: Global Change Education Using Western Science and Native Knowledge also known as "Observing Locally, Connecting Globally" (OLCG); Alaska Earth System Science Education Alliance: Improving Understanding of Climate Variability and Its Relevance to Rural Alaska; Schoolyard Long Term Ecological Research; Alaska Rural Research Partnership; Alaska Partnership for Teacher Enhancement; Alaska Lake Ice and Snow Observatory Network; Alaska Boreal Forest Council Education Outreach; Calypso Farm and Ecology Center; Environmental Education Outreach; and also GLOBE Arctic POPs (persistent organic pollutants) a program that involves countries in the circumpolar North. The University of Alaska GLOBE Partnership has collaborated with the BLM Campbell Creek Science Center Globe Partnership in facilitating GLOBE Training Workshops and providing teacher support. GLOBE's extensive website including data entry, archive, analysis and visualization capabilities; GLOBE Teacher Guide, videos and other materials provided; excellent GLOBE science research and education staff, training support office, GLOBE help desk, alignment of GLOBE curriculum with national science education standards and GLOBE certification of teachers trained on even just one GLOBE investigation, have made it easier to implement GLOBE in the classroom. Using GLOBE, whole

  17. Seismology Outreach in Alaska

    Science.gov (United States)

    Gardine, L.; Tape, C.; West, M. E.

    2014-12-01

    Despite residing in a state with 75% of North American earthquakes and three of the top 15 ever recorded, most Alaskans have limited knowledge about the science of earthquakes. To many, earthquakes are just part of everyday life, and to others, they are barely noticed until a large event happens, and often ignored even then. Alaskans are rugged, resilient people with both strong independence and tight community bonds. Rural villages in Alaska, most of which are inaccessible by road, are underrepresented in outreach efforts. Their remote locations and difficulty of access make outreach fiscally challenging. Teacher retention and small student bodies limit exposure to science and hinder student success in college. The arrival of EarthScope's Transportable Array, the 50th anniversary of the Great Alaska Earthquake, targeted projects with large outreach components, and increased community interest in earthquake knowledge have provided opportunities to spread information across Alaska. We have found that performing hands-on demonstrations, identifying seismological relevance toward career opportunities in Alaska (such as natural resource exploration), and engaging residents through place-based experience have increased the public's interest and awareness of our active home.

  18. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to

  19. 77 FR 42629 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Science.gov (United States)

    2012-07-20

    ... salmon resource. The RIR included a qualitative discussion of the benefits of a PSC limit to users of... effects of a rule (and alternatives to the rule), or more general descriptive statements, if... Office of NMFS and the Alaska Fisheries Science Center research, draft, and support the management...

  20. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  1. Rural Alaska Mentoring Project (RAMP)

    Science.gov (United States)

    Cash, Terry

    2011-01-01

    For over two years the National Dropout Prevention Center (NDPC) at Clemson University has been supporting the Lower Kuskokwim School District (LKSD) in NW Alaska with their efforts to reduce high school dropout in 23 remote Yup'ik Eskimo villages. The Rural Alaska Mentoring Project (RAMP) provides school-based E-mentoring services to 164…

  2. Alaska volcanoes guidebook for teachers

    Science.gov (United States)

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  3. 2014 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Cameron, Cheryl E.; Dixon, James P.; Neal, Christina A.; Waythomas, Christopher F.; Schaefer, Janet R.; McGimsey, Robert G.

    2017-09-07

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2014. The most notable volcanic activity consisted of intermittent ash eruptions from long-active Cleveland and Shishaldin Volcanoes in the Aleutian Islands, and two eruptive episodes at Pavlof Volcano on the Alaska Peninsula. Semisopochnoi and Akutan volcanoes had seismic swarms, both likely the result of magmatic intrusion. The AVO also installed seismometers and infrasound instruments at Mount Cleveland during 2014.

  4. NOAA/West coast and Alaska Tsunami warning center Atlantic Ocean response criteria

    Science.gov (United States)

    Whitmore, P.; Refidaff, C.; Caropolo, M.; Huerfano-Moreno, V.; Knight, W.; Sammler, W.; Sandrik, A.

    2009-01-01

    West Coast/Alaska Tsunami Warning Center (WCATWC) response criteria for earthquakesoccurring in the Atlantic and Caribbean basins are presented. Initial warning center decisions are based on an earthquake's location, magnitude, depth, distance from coastal locations, and precomputed threat estimates based on tsunami models computed from similar events. The new criteria will help limit the geographical extent of warnings and advisories to threatened regions, and complement the new operational tsunami product suite. Criteria are set for tsunamis generated by earthquakes, which are by far the main cause of tsunami generation (either directly through sea floor displacement or indirectly by triggering of sub-sea landslides).The new criteria require development of a threat data base which sets warning or advisory zones based on location, magnitude, and pre-computed tsunami models. The models determine coastal tsunami amplitudes based on likely tsunami source parameters for a given event. Based on the computed amplitude, warning and advisory zones are pre-set.

  5. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Wender, Steve [Los Alamos National Laboratory

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  6. Improving Sanitation and Health in Rural Alaska

    Science.gov (United States)

    Bubenheim, David L.

    2013-01-01

    In rural Alaskan communities personal health is threatened by energy costs and limited access to clean water, wastewater management, and adequate nutrition. Fuel-­-based energy systems are significant factors in determining local accessibility to clean water, sanitation and food. Increasing fuel costs induce a scarcity of access and impact residents' health. The University of Alaska Fairbanks (UAF) School of Natural Resources and Agricultural Sciences (SNRAS), NASA's Ames Research Center, and USDA Agricultural Research Service (ARS) have joined forces to develop high-efficiency, low­-energy consuming techniques for water treatment and food production in rural circumpolar communities. Methods intended for exploration of space and establishment of settlements on the Moon or Mars will ultimately benefit Earth's communities in the circumpolar north. The initial phase of collaboration is completed. Researchers from NASA Ames Research Center and SNRAS, funded by the USDA­-ARS, tested a simple, reliable, low-energy sewage treatment system to recycle wastewater for use in food production and other reuse options in communities. The system extracted up to 70% of the water from sewage and rejected up to 92% of ions in the sewage with no carryover of toxic effects. Biological testing showed that plant growth using recovered water in the nutrient solution was equivalent to that using high-purity distilled water. With successful demonstration that the low energy consuming wastewater treatment system can provide safe water for communities and food production, the team is ready to move forward to a full-scale production testbed. The SNRAS/NASA team (including Alaska students) will design a prototype to match water processing rates and food production to meet rural community sanitation needs and nutritional preferences. This system would be operated in Fairbanks at the University of Alaska through SNRAS. Long­-term performance will be validated and operational needs of the

  7. University/Science Center Collaborations (A Science Center Perspective): Developing an Infrastructure of Partnerships with Science Centers to Support the Engagement of Scientists and Engineers in Education and Outreach for Broad Impact

    Science.gov (United States)

    Marshall, Eric

    2009-03-01

    Science centers, professional associations, corporations and university research centers share the same mission of education and outreach, yet come from ``different worlds.'' This gap may be bridged by working together to leverage unique strengths in partnership. Front-end evaluation results for the development of new resources to support these (mostly volunteer-based) partnerships elucidate the factors which lead to a successful relationship. Maintaining a science museum-scientific community partnership requires that all partners devote adequate resources (time, money, etc.). In general, scientists/engineers and science museum professionals often approach relationships with different assumptions and expectations. The culture of science centers is distinctly different from the culture of science. Scientists/engineers prefer to select how they will ultimately share their expertise from an array of choices. Successful partnerships stem from clearly defined roles and responsibilities. Scientists/engineers are somewhat resistant to the idea of traditional, formal training. Instead of developing new expertise, many prefer to offer their existing strengths and expertise. Maintaining a healthy relationship requires the routine recognition of the contributions of scientists/engineers. As professional societies, university research centers and corporations increasingly engage in education and outreach, a need for a supportive infrastructure becomes evident. Work of TryScience.org/VolTS (Volunteers TryScience), the MRS NISE Net (Nanoscale Informal Science Education Network) subcommittee, NRCEN (NSF Research Center Education Network), the IBM On Demand Community, and IEEE Educational Activities exemplify some of the pieces of this evolving infrastructure.

  8. Real-Time Data Processing Systems and Products at the Alaska Earthquake Information Center

    Science.gov (United States)

    Ruppert, N. A.; Hansen, R. A.

    2007-05-01

    The Alaska Earthquake Information Center (AEIC) receives data from over 400 seismic sites located within the state boundaries and the surrounding regions and serves as a regional data center. In 2007, the AEIC reported ~20,000 seismic events, with the largest event of M6.6 in Andreanof Islands. The real-time earthquake detection and data processing systems at AEIC are based on the Antelope system from BRTT, Inc. This modular and extensible processing platform allows an integrated system complete from data acquisition to catalog production. Multiple additional modules constructed with the Antelope toolbox have been developed to fit particular needs of the AEIC. The real-time earthquake locations and magnitudes are determined within 2-5 minutes of the event occurrence. AEIC maintains a 24/7 seismologist-on-duty schedule. Earthquake alarms are based on the real- time earthquake detections. Significant events are reviewed by the seismologist on duty within 30 minutes of the occurrence with information releases issued for significant events. This information is disseminated immediately via the AEIC website, ANSS website via QDDS submissions, through e-mail, cell phone and pager notifications, via fax broadcasts and recorded voice-mail messages. In addition, automatic regional moment tensors are determined for events with M>=4.0. This information is posted on the public website. ShakeMaps are being calculated in real-time with the information currently accessible via a password-protected website. AEIC is designing an alarm system targeted for the critical lifeline operations in Alaska. AEIC maintains an extensive computer network to provide adequate support for data processing and archival. For real-time processing, AEIC operates two identical, interoperable computer systems in parallel.

  9. Great Lakes Science Center

    Data.gov (United States)

    Federal Laboratory Consortium — Since 1927, Great Lakes Science Center (GLSC) research has provided critical information for the sound management of Great Lakes fish populations and other important...

  10. "The first step is admitting you have a problem…": the process of advancing science communication in Landscape Conservation Cooperatives in Alaska

    Science.gov (United States)

    Buxbaum, T. M.; Trainor, S.; Warner, N.; Timm, K.

    2015-12-01

    Climate change is impacting ecological systems, coastal processes, and environmental disturbance regimes in Alaska, leading to a pressing need to communicate reliable scientific information about climate change, its impacts, and future projections for land and resource management and decision-making. However, little research has been done to dissect and analyze the process of making the results of scientific inquiry directly relevant and usable in resource management. Based within the Science Application division of the US Fish and Wildlife Service, Landscape Conservation Cooperatives (LCCs) are regional conservation science partnerships that provide scientific and technical expertise needed to support conservation planning at landscape scales and promote collaboration in defining shared conservation goals. The five LCCs with jurisdiction in Alaska recently held a training workshop with the goals of advancing staff understanding and skills related to science communication and translation. We report here preliminary results from analysis of workshop discussions and pre- and post- workshop interviews and surveys revealing expectations, assumptions, and mental models regarding science communication and the process of conducting use-inspired science. Generalizable conclusions can assist scientists and boundary organizations bridge knowledge gaps between science and resource management.

  11. Automated system for smoke dispersion prediction due to wild fires in Alaska

    Science.gov (United States)

    Kulchitsky, A.; Stuefer, M.; Higbie, L.; Newby, G.

    2007-12-01

    Community climate models have enabled development of specific environmental forecast systems. The University of Alaska (UAF) smoke group was created to adapt a smoke forecast system to the Alaska region. The US Forest Service (USFS) Missoula Fire Science Lab had developed a smoke forecast system based on the Weather Research and Forecasting (WRF) Model including chemistry (WRF/Chem). Following the successful experience of USFS, which runs their model operationally for the contiguous U.S., we develop a similar system for Alaska in collaboration with scientists from the USFS Missoula Fire Science Lab. Wildfires are a significant source of air pollution in Alaska because the climate and vegetation favor annual summer fires that burn huge areas. Extreme cases occurred in 2004, when an area larger than Maryland (more than 25000~km2) burned. Small smoke particles with a diameter less than 10~μm can penetrate deep into lungs causing health problems. Smoke also creates a severe restriction to air transport and has tremendous economical effect. The smoke dispersion and forecast system for Alaska was developed at the Geophysical Institute (GI) and the Arctic Region Supercomputing Center (ARSC), both at University of Alaska Fairbanks (UAF). They will help the public and plan activities a few days in advance to avoid dangerous smoke exposure. The availability of modern high performance supercomputers at ARSC allows us to create and run high-resolution, WRF-based smoke dispersion forecast for the entire State of Alaska. The core of the system is a Python program that manages the independent pieces. Our adapted Alaska system performs the following steps \\begin{itemize} Calculate the medium-resolution weather forecast using WRF/Met. Adapt the near real-time satellite-derived wildfire location and extent data that are received via direct broadcast from UAF's "Geographic Information Network of Alaska" (GINA) Calculate fuel moisture using WRF forecasts and National Fire Danger

  12. Leon M. Lederman Science Education Center: General Information

    Science.gov (United States)

    . Designed for middle school field trips, the hands-on exhibits at the Lederman Science Center are available Maintainer: ed-webmaster@fnal.gov Lederman Science Education Center Fermilab MS 777 Box 500 Batavia, IL 60510 Programs | Science Adventures | Calendar | Registration | About | Contact | FAQ | Fermilab Friends

  13. Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: Mendenhall Glacier Visitor Center, Juneau, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Salasovich, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); LoVullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kandt, Alicen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-21

    This report summarizes results from the energy efficiency, water efficiency, and renewable energy site assessment of the Mendenhall Glacier Visitor Center and site in Juneau, Alaska. The assessment is an American Society of Heating, Refrigerating, and Air-Conditioning Engineers Level 2 audit and meets Energy Independence and Security Act requirements. A team led by the U.S. Department of Energy's National Renewable Energy Laboratory conducted the assessment with U.S. Forest Service personnel August 19-20, 2015, as part of ongoing efforts by USFS to reduce energy and water use.

  14. A "CASE" Study on Developing Science Communication and Outreach Skills of University Graduate Student Researchers in Alaska

    Science.gov (United States)

    Tedesche, M. E.; Conner, L.

    2015-12-01

    Well rounded scientific researchers are not only experts in their field, but can also communicate their work to a multitude of various audiences, including the general public and undergraduate university students. Training in these areas should ideally start during graduate school, but many programs are not preparing students to effectively communicate their work. Here, we present results from the NSF-funded CASE (Changing Alaska Science Education) program, which was funded by NSF under the auspices of the GK-12 program. CASE placed science graduate students (fellows) in K-12 classrooms to teach alongside of K-12 teachers with the goal of enhancing communication and teaching skills among graduate students. CASE trained fellows in inquiry-based and experiential techniques and emphasized the integration of art, writing, and traditional Alaska Native knowledge in the classroom. Such techniques are especially effective in engaging students from underrepresented groups. As a result of participation, many CASE fellows have reported increased skills in communication and teaching, as well as in time management. These skills may prove directly applicable to higher education when teaching undergraduate students.

  15. National Space Science Data Center Master Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Space Science Data Center serves as the permanent archive for NASA space science mission data. 'Space science' means astronomy and astrophysics, solar...

  16. Studies by the U.S. Geological Survey in Alaska, 2011

    Science.gov (United States)

    Dumoulin, Julie A.; Dusel-Bacon, Cynthia

    2012-01-01

    The collection of papers that follow continues the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. This series represents new and sometimes-preliminary findings that are of interest to Earth scientists in academia, government, and industry; to land and resource managers; and to the general public. The reports presented in Studies by the U.S. Geological Survey in Alaska cover a broad spectrum of topics from various parts of the State, serving to emphasize the diversity of USGS efforts to meet the Nation's needs for Earth-science information in Alaska. This professional paper is one of a series of "online only" versions of Studies by the U.S. Geological Survey in Alaska, reflecting the current trend toward disseminating research results on the World Wide Web with rapid posting of completed reports.

  17. Studies by the U.S. Geological Survey in Alaska, 2007

    Science.gov (United States)

    Haeussler, Peter J.; Galloway, John P.

    2009-01-01

    The collection of papers that follow continues the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. This series represents new and sometimes-preliminary findings that are of interest to Earth scientists in academia, government, and industry; to land and resource managers; and to the general public. The reports presented in Studies by the U.S. Geological Survey in Alaska cover a broad spectrum of topics from various parts of the State, serving to emphasize the diversity of USGS efforts to meet the Nation's needs for Earth-science information in Alaska. This professional paper is one of a series of 'online only' versions of Studies by the U.S. Geological Survey in Alaska, reflecting the current trend toward disseminating research results on the World Wide Web with rapid posting of completed reports.

  18. Geological studies in Alaska by the U.S. Geological Survey, 1999

    Science.gov (United States)

    Gough, Larry P.; Wilson, Frederic H.

    2001-01-01

    The collection of nine papers that follow continue the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. The series presents new and sometimes preliminary findings that are of interest to earth scientists in academia, government, and industry; to land and resource managers; and to the general public. Reports presented in Geologic Studies in Alaska cover a broad spectrum of topics from various parts of the State (fig. 1), serving to emphasize the diversity of USGS efforts to meet the Nation's needs for earth-science information in Alaska.

  19. National Center for Mathematics and Science

    Science.gov (United States)

    NCISLA logo National Center for Improving Student Learning and Achievement in Mathematics and Wisconsin-Madison Powerful Practices in Mathematics & Sciences A multimedia product for educators . Scaling Up Innovative Practices in Mathematics and Science (Research Report). Thomas P. Carpenter, Maria

  20. Fort Collins Science Center fiscal year 2010 science accomplishments

    Science.gov (United States)

    Wilson, Juliette T.

    2011-01-01

    The scientists and technical professionals at the U.S. Geological Survey (USGS), Fort Collins Science Center (FORT), apply their diverse ecological, socioeconomic, and technological expertise to investigate complicated ecological problems confronting managers of the Nation's biological resources. FORT works closely with U.S. Department of the Interior (DOI) agency scientists, the academic community, other USGS science centers, and many other partners to provide critical information needed to help answer complex natural-resource management questions. In Fiscal Year 2010 (FY10), FORT's scientific and technical professionals conducted ongoing, expanded, and new research vital to the science needs and management goals of DOI, other Federal and State agencies, and nongovernmental organizations in the areas of aquatic systems and fisheries, climate change, data and information integration and management, invasive species, science support, security and technology, status and trends of biological resources (including the socioeconomic aspects), terrestrial and freshwater ecosystems, and wildlife resources, including threatened and endangered species. This report presents selected FORT science accomplishments for FY10 by the specific USGS mission area or science program with which each task is most closely associated, though there is considerable overlap. The report also includes all FORT publications and other products published in FY10, as well as staff accomplishments, appointments, committee assignments, and invited presentations.

  1. Visitor empowerment and the authority of science: Exploring institutionalized tensions in a science center

    Science.gov (United States)

    Loomis, Molly

    This research explored the relationships among societal, organizational, and visitor assumptions about learning in a science center. The study combined a sociocultural theory of learning with a constructivist theory of organizations to examine empirical links among the history of the Exploratorium (founded in 1969 and located in San Francisco, California), its organizational practices, and family activity at its exhibits. The study focused on three perspectives on science learning in a science center: (1) the societal perspective, which traced assumptions about science learning to the history of science centers; (2) the organizational perspective, which documented the ways that assumptions about science learning were manifested in historic museum exhibits; and (3) the family perspective, which documented the assumptions about science learning that characterized family activity at historic exhibits. All three perspectives uncovered a tension between the goals of supporting public empowerment on the one hand and preserving scientific authority on the other. Findings revealed this tension to be grounded in the social context of the organization's development, where ideas about promoting democracy and preserving the authority of science intersected. The tension was manifested in museum exhibits, which had as their task addressing the dual purposes of supporting all visitors, while also supporting committed visitors. The tension was also evident in the activity of families, who echoed sentiments about potential for their own empowerment but deferred to scientific authority. The study draws on critiques of a hidden curriculum in schools in order to explore the relationship between empowerment and authority in science centers, specifically as they are conveyed in the explicit and underlying missions of the Exploratorium. Findings suggest the need for science centers to engage in ongoing critical reflection and also lend empirical justification to the need for science

  2. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    International Nuclear Information System (INIS)

    Allen, Todd R.

    2011-01-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center's investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center's research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  3. Center for Rehabilitation Sciences Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Rehabilitation Sciences Research (CRSR) was established as a research organization to promote successful return to duty and community reintegration of...

  4. Center for Environmental Health Sciences

    Data.gov (United States)

    Federal Laboratory Consortium — The primary research objective of the Center for Environmental Health Sciences (CEHS) at the University of Montana is to advance knowledge of environmental impacts...

  5. The GLAST LAT Instrument Science Operations Center

    International Nuclear Information System (INIS)

    Cameron, Robert A.; SLAC

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in late 2007. Operations support and science data processing for the Large Area Telescope (LAT) instrument on GLAST will be provided by the LAT Instrument Science Operations Center (ISOC) at the Stanford Linear Accelerator Center (SLAC). The ISOC supports GLAST mission operations in conjunction with other GLAST mission ground system elements and supports the research activities of the LAT scientific collaboration. The ISOC will be responsible for monitoring the health and safety of the LAT, preparing command loads for the LAT, maintaining embedded flight software which controls the LAT detector and data acquisition flight hardware, maintaining the operating configuration of the LAT and its calibration, and applying event reconstruction processing to down-linked LAT data to recover information about detected gamma-ray photons. The SLAC computer farm will be used to process LAT event data and generate science products, to be made available to the LAT collaboration through the ISOC and to the broader scientific community through the GLAST Science Support Center at NASA/GSFC. ISOC science operations will optimize the performance of the LAT and oversee automated science processing of LAT data to detect and monitor transient gamma-ray sources

  6. Nearshore fish survey in northern Bristol Bay, Alaska conducted from 2009-07 to 2009-08 by Alaska Fisheries Science Center, Resource Ecology and Fisheries Management division (NCEI Accession 0144625)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The project consisted of a nearshore fish, invertebrate, and habitat survey in northern Bristol Bay, Alaska. A 32-ft. gillnet vessel, the F/V Willow was chartered...

  7. Studies by the U.S. Geological Survey in Alaska, 2008-2009

    Science.gov (United States)

    Dumoulin, Julie A.; Galloway, John

    2010-01-01

    The collection of papers that follow continues the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. This series represents new and sometimes-preliminary findings that are of interest to Earth scientists in academia, government, and industry; to land and resource managers; and to the general public. The reports presented in Studies by the U.S. Geological Survey in Alaska cover a broad spectrum of topics from various parts of the State, serving to emphasize the diversity of USGS efforts to meet the Nation's needs for Earth-science information in Alaska. This professional paper is one of a series of 'online only' versions of Studies by the U.S. Geological Survey in Alaska, reflecting the current trend toward disseminating research results on the World Wide Web with rapid posting of completed reports.

  8. The role of informal science centers in science education: attitudes, skills, and self-efficacy

    OpenAIRE

    Sasson, Irit

    2014-01-01

    Informal learning relates to activities that occur outside the school environment. These learning environments, such as visits to science centers provide valuable motivational opportunities for students to learn science. The purpose of this study was to investigate the role of the pre-academic center in science education and particularly to explore its effects on 750 middle-school students' attitudes toward science, their scientific thinking skills and self-efficacy. Pre and post-case based q...

  9. A cross-case analysis of three Native Science Field Centers

    Science.gov (United States)

    Augare, Helen J.; Davíd-Chavez, Dominique M.; Groenke, Frederick I.; Little Plume-Weatherwax, Melissa; Lone Fight, Lisa; Meier, Gene; Quiver-Gaddie, Helene; Returns From Scout, Elvin; Sachatello-Sawyer, Bonnie; St. Pierre, Nate; Valdez, Shelly; Wippert, Rachel

    2017-06-01

    Native Science Field Centers (NSFCs) were created to engage youth and adults in environmental science activities through the integration of traditional Native ways of knowing (understanding about the natural world based on centuries of observation including philosophy, worldview, cosmology, and belief systems of Indigenous peoples), Native languages, and Western science concepts. This paper focuses on the Blackfeet Native Science Field Center, the Lakota Native Science Field Center, and the Wind River Native Science Field Center. One of the long-term, overarching goals of these NSFCs was to stimulate the interest of Native American students in ways that encouraged them to pursue academic and career paths in science, technology, engineering, and mathematics (STEM) fields. A great deal can be learned from the experiences of the NSFCs in terms of effective educational strategies, as well as advantages and challenges in blending Native ways of knowing and Western scientific knowledge in an informal science education setting. Hopa Mountain—a Bozeman, Montana-based nonprofit—partnered with the Blackfeet Community College on the Blackfeet Reservation, Fremont County School District #21 on the Wind River Reservation, and Oglala Lakota College on the Pine Ridge Reservation to cooperatively establish the Native Science Field Centers. This paper presents a profile of each NSFC and highlights their program components and accomplishments.

  10. NASA SPoRT JPSS PG Activities in Alaska

    Science.gov (United States)

    Berndt, Emily; Molthan, Andrew; Fuell, Kevin; McGrath, Kevin; Smith, Matt; LaFontaine, Frank; Leroy, Anita; White, Kris

    2018-01-01

    SPoRT (NASA's Short-term Prediction Research and Transition Center) has collaboratively worked with Alaska WFOs (Weather Forecast Offices) to introduce RGB (Red/Green/Blue false color image) imagery to prepare for NOAA-20 (National Oceanic and Atmospheric Administration, JPSS (Joint Polar Satellite System) series-20 satellite) VIIRS (Visible Infrared Imaging Radiometer Suite) and improve forecasting aviation-related hazards. Last R2O/O2R (Research-to-Operations/Operations-to-Research) steps include incorporating NOAA-20 VIIRS in RGB suite and fully transitioning client-side RGB processing to GINA (Geographic Information Network of Alaska) and Alaska Region. Alaska Region WFOs have been part of the successful R2O/O2R story to assess the use of NESDIS (National Environmental Satellite, Data, and Information Service) Snowfall Rate product in operations. SPoRT introduced passive microwave rain rate and IMERG (Integrated Multi-satellitE Retrievals for GPM (Global Precipitation Measurement)) (IMERG) to Alaska WFOs for use in radar-void areas and assessing flooding potential. SPoRT has been part of the multi-organization collaborative effort to introduce Gridded NUCAPS (NOAA Unique CrIS/ATMS (Crosstrack Infrared Sounder/Advanced Technology Microwave Sounder) Processing System) to the Anchorage CWSU (Center Weather Service Unit) to assess Cold Air Aloft events, [and as part of NOAA's PG (Product Generation) effort].

  11. Recruiting first generation college students into the Geosciences: Alaska's EDGE project

    Science.gov (United States)

    Prakash, A.; Connor, C.

    2008-12-01

    Funded in 2005-2008, by the National Science Foundation's Geoscience Education Division, the Experiential Discoveries in Geoscience Education (EDGE) project was designed to use glacier and watershed field experiences as venues for geospatial data collected by Alaska's grade 6-12 middle and high school teachers and their students. EDGE participants were trained in GIS and learned to analyze geospatial data to answer questions about the warming Alaska environment and to determine rates of ongoing glacier recession. Important emphasis of the program was the recruitment of Alaska Native students of Inupiat, Yup'ik, Athabascan, and Tlingit populations, living in both rural and urban areas around the state. Twelve of Alaska's 55 school districts have participated in the EDGE program. To engage EDGE students in the practice of scientific inquiry, each was required to carry out a semester scale research project using georeferenced data, guided by their EDGE teacher and mentor. Across Alaska students investigated several Earth systems processes including freezing conditions of lake ice; the changes in water quality in storm drains after rainfall events; movements of moose, bears, and bison across Alaskan landscapes; changes in permafrost depth in western Alaska; and the response of migrating waterfowl to these permafrost changes. Students correlated the substrate beneath their schools with known earthquake intensities; measured cutbank and coastal erosion on northern rivers and southeastern shorelines; tracked salmon infiltration of flooded logging roads; noted the changing behavior of eagles during late winter salmon runs; located good areas for the use of tidal power for energy production; tracked the extent and range of invasive plant species with warming; and the change of forests following deglaciation. Each cohort of EDGE students and teachers finished the program by attended a 3-day EDGE symposium at which students presented their research projects first in a

  12. Better Broader Impacts through National Science Foundation Centers

    Science.gov (United States)

    Campbell, K. M.

    2010-12-01

    National Science Foundation Science and Technology Centers (STCs) play a leading role in developing and evaluating “Better Broader Impacts”; best practices for recruiting a broad spectrum of American students into STEM fields and for educating these future professionals, as well as their families, teachers and the general public. With staff devoted full time to Broader Impacts activities, over the ten year life of a Center, STCs are able to address both a broad range of audiences and a broad range of topics. Along with other NSF funded centers, such as Centers for Ocean Sciences Education Excellence, Engineering Research Centers and Materials Research Science and Engineering Centers, STCs develop both models and materials that individual researchers can adopt, as well as, in some cases, direct opportunities for individual researchers to offer their disciplinary research expertise to existing center Broader Impacts Programs. The National Center for Earth-surface Dynamics is an STC headquartered at the University of Minnesota. NCED’s disciplinary research spans the physical, biological and engineering issues associated with developing an integrative, quantitative and predictive understanding of rivers and river basins. Funded in 2002, we have had the opportunity to partner with individuals and institutions ranging from formal to informal education and from science museums to Tribal and women’s colleges. We have developed simple table top physical models, complete museum exhibitions, 3D paper maps and interactive computer based visualizations, all of which have helped us communicate with this wide variety of learners. Many of these materials themselves or plans to construct them are available online; in many cases they have also been formally evaluated. We have also listened to the formal and informal educators with whom we partner, from whom we have learned a great deal about how to design Broader Impacts activities and programs. Using NCED as a case study

  13. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  14. Offshore Wind Energy Resource Assessment for Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Doubrawa Moreira, Paula [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George N. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walter D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kilcher, Levi F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, Eric J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-02

    This report quantifies Alaska's offshore wind resource capacity while focusing on its unique nature. It is a supplement to the existing U.S. Offshore Wind Resource Assessment, which evaluated the offshore wind resource for all other U.S. states. Together, these reports provide the foundation for the nation's offshore wind value proposition. Both studies were developed by the National Renewable Energy Laboratory. The analysis presented herein represents the first quantitative evidence of the offshore wind energy potential of Alaska. The technical offshore wind resource area in Alaska is larger than the technical offshore resource area of all other coastal U.S. states combined. Despite the abundant wind resource available, significant challenges inhibit large-scale offshore wind deployment in Alaska, such as the remoteness of the resource, its distance from load centers, and the wealth of land available for onshore wind development. Throughout this report, the energy landscape of Alaska is reviewed and a resource assessment analysis is performed in terms of gross and technical offshore capacity and energy potential.

  15. Deep-sea coral research and technology program: Alaska deep-sea coral and sponge initiative final report

    Science.gov (United States)

    Rooper, Chris; Stone, Robert P.; Etnoyer, Peter; Conrath, Christina; Reynolds, Jennifer; Greene, H. Gary; Williams, Branwen; Salgado, Enrique; Morrison, Cheryl L.; Waller, Rhian G.; Demopoulos, Amanda W.J.

    2017-01-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska’s marine waters. In some places, such as the central and western Aleutian Islands, deep-sea coral and sponge resources can be extremely diverse and may rank among the most abundant deep-sea coral and sponge communities in the world. Many different species of fishes and invertebrates are associated with deep-sea coral and sponge communities in Alaska. Because of their biology, these benthic invertebrates are potentially impacted by climate change and ocean acidification. Deepsea coral and sponge ecosystems are also vulnerable to the effects of commercial fishing activities. Because of the size and scope of Alaska’s continental shelf and slope, the vast majority of the area has not been visually surveyed for deep-sea corals and sponges. NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP) sponsored a field research program in the Alaska region between 2012–2015, referred to hereafter as the Alaska Initiative. The priorities for Alaska were derived from ongoing data needs and objectives identified by the DSCRTP, the North Pacific Fishery Management Council (NPFMC), and Essential Fish Habitat-Environmental Impact Statement (EFH-EIS) process.This report presents the results of 15 projects conducted using DSCRTP funds from 2012-2015. Three of the projects conducted as part of the Alaska deep-sea coral and sponge initiative included dedicated at-sea cruises and fieldwork spread across multiple years. These projects were the eastern Gulf of Alaska Primnoa pacifica study, the Aleutian Islands mapping study, and the Gulf of Alaska fish productivity study. In all, there were nine separate research cruises carried out with a total of 109 at-sea days conducting research. The remaining projects either used data and samples collected by the three major fieldwork projects or were piggy-backed onto existing research programs at the Alaska Fisheries Science Center (AFSC).

  16. Geology of the Ugashik-Mount Peulik Volcanic Center, Alaska

    Science.gov (United States)

    Miller, Thomas P.

    2004-01-01

    The Ugashik-Mount Peulik volcanic center, 550 km southwest of Anchorage on the Alaska Peninsula, consists of the late Quaternary 5-km-wide Ugashik caldera and the stratovolcano Mount Peulik built on the north flank of Ugashik. The center has been the site of explosive volcanism including a caldera-forming eruption and post-caldera dome-destructive activity. Mount Peulik has been formed entirely in Holocene time and erupted in 1814 and 1845. A large lava dome occupies the summit crater, which is breached to the west. A smaller dome is perched high on the southeast flank of the cone. Pyroclastic-flow deposits form aprons below both domes. One or more sector-collapse events occurred early in the formation of Mount Peulik volcano resulting in a large area of debris-avalanche deposits on the volcano's northwest flank. The Ugashik-Mount Peulik center is a calcalkaline suite of basalt, andesite, dacite, and rhyolite, ranging in SiO2 content from 51 to 72 percent. The Ugashik-Mount Peulik magmas appear to be co-genetic in a broad sense and their compositional variation has probably resulted from a combination of fractional crystallization and magma-mixing. The most likely scenario for a future eruption is that one or more of the summit domes on Mount Peulik are destroyed as new magma rises to the surface. Debris avalanches and pyroclastic flows may then move down the west and, less likely, east flanks of the volcano for distances of 10 km or more. A new lava dome or series of domes would be expected to form either during or within some few years after the explosive disruption of the previous dome. This cycle of dome disruption, pyroclastic flow generation, and new dome formation could be repeated several times in a single eruption. The volcano poses little direct threat to human population as the area is sparsely populated. The most serious hazard is the effect of airborne volcanic ash on aircraft since Mount Peulik sits astride heavily traveled air routes connecting the U

  17. National Climate Change and Wildlife Science Center, Version 2.0

    Science.gov (United States)

    O'Malley, R.; Fort, E.; Hartke-O'Berg, N.; Varela-Acevedo, E.; Padgett, Holly A.

    2013-01-01

    The mission of the USGS's National Climate Change and Wildlife Science Center (NCCWSC) is to serve the scientific needs of managers of fish, wildlife, habitats, and ecosystems as they plan for a changing climate. DOI Climate Science Centers (CSCs) are management by NCCWSC and include this mission as a core responsibility, in line with the CSC mission to provide scientific support for climate-adaptation across a full range of natural and cultural resources. NCCWSC is a Science Center application designed in Drupal with the OMEGA theme. As a content management system, Drupal allows the science center to keep their website up-to-date with current publications, news, meetings and projects. OMEGA allows the site to be adaptive at different screen sizes and is developed on the 960 grid.

  18. USGS US topo maps for Alaska

    Science.gov (United States)

    Anderson, Becci; Fuller, Tracy

    2014-01-01

    In July 2013, the USGS National Geospatial Program began producing new topographic maps for Alaska, providing a new map series for the state known as US Topo. Prior to the start of US Topo map production in Alaska, the most detailed statewide USGS topographic maps were 15-minute 1:63,360-scale maps, with their original production often dating back nearly fifty years. The new 7.5-minute digital maps are created at 1:25,000 map scale, and show greatly increased topographic detail when compared to the older maps. The map scale and data specifications were selected based on significant outreach to various map user groups in Alaska. This multi-year mapping initiative will vastly enhance the base topographic maps for Alaska and is possible because of improvements to key digital map datasets in the state. The new maps and data are beneficial in high priority applications such as safety, planning, research and resource management. New mapping will support science applications throughout the state and provide updated maps for parks, recreation lands and villages.

  19. Strategic plan for science-U.S. Geological Survey, Ohio Water Science Center, 2010-15

    Science.gov (United States)

    ,

    2010-01-01

    This Science Plan identifies specific scientific and technical programmatic issues of current importance to Ohio and the Nation. An examination of those issues yielded a set of five major focus areas with associated science goals and strategies that the Ohio Water Science Center will emphasize in its program during 2010-15. A primary goal of the Science Plan is to establish a relevant multidisciplinary scientific and technical program that generates high-quality products that meet or exceed the expectations of our partners while supporting the goals and initiatives of the U.S. Geological Survey. The Science Plan will be used to set the direction of new and existing programs and will influence future training and hiring decisions by the Ohio Water Science Center.

  20. The TESS Science Processing Operations Center

    Science.gov (United States)

    Jenkins, Jon M.; Twicken, Joseph D.; McCauliff, Sean; Campbell, Jennifer; Sanderfer, Dwight; Lung, David; Mansouri-Samani, Masoud; Girouard, Forrest; Tenenbaum, Peter; Klaus, Todd; hide

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will conduct a search for Earth's closest cousins starting in early 2018 and is expected to discover approximately 1,000 small planets with R(sub p) less than 4 (solar radius) and measure the masses of at least 50 of these small worlds. The Science Processing Operations Center (SPOC) is being developed at NASA Ames Research Center based on the Kepler science pipeline and will generate calibrated pixels and light curves on the NASA Advanced Supercomputing Division's Pleiades supercomputer. The SPOC will also search for periodic transit events and generate validation products for the transit-like features in the light curves. All TESS SPOC data products will be archived to the Mikulski Archive for Space Telescopes (MAST).

  1. Wildlife, Snow, Coffee, and Video: The IPY Activities of the University of Alaska Young Researchers' Network

    Science.gov (United States)

    Pringle, D.; Alvarez-Aviles, L.; Carlson, D.; Harbeck, J.; Druckenmiller, M.; Newman, K.; Mueller, D.; Petrich, C.; Roberts, A.; Wang, Y.

    2007-12-01

    The University of Alaska International Polar Year (IPY) Young Researchers' Network is a group of graduate students and postdoctoral fellows. Our interdisciplinary group operates as a volunteer network to promote the International Polar Year through education and outreach aimed at the general public and Alaskan students of all ages. The Young Researchers' Network sponsors and organizes science talks or Science Cafés by guest speakers in public venues such as coffee shops and bookstores. We actively engage high school students in IPY research concerning the ionic concentrations and isotopic ratios of precipitation through Project Snowball. Our network provides hands-on science activities to encourage environmental awareness and initiate community wildlife monitoring programs such as Wildlife Day by Day. We mentor individual high school students pursuing their own research projects related to IPY through the Alaska High School Science Symposium. Our group also interacts with the general public at community events and festivals to share the excitement of IPY for example at the World Ice Art Championship and Alaska State Fair. The UA IPY Young Researchers' Network continues to explore new partnerships with educators and students in an effort to enhance science and education related to Alaska and the polar regions in general. For more information please visit: http://ipy-youth.uaf.edu or e-mail: ipy-youth@alaska.edu

  2. Science Centers in the Electronic Age: Are We Doomed?

    Science.gov (United States)

    Russell, Robert L., Ed.; West, Robert M., Ed.

    1996-01-01

    This issue is a debate-discussion concerning science centers in the electronic age. The articles are based on presentations made at the Science Center World Congress (1st, Heureka, Finland, June 13-17, 1996). The four articles are: (1) "Lessons from Laboratorio dell'Immaginario Scientifico" (Andrea Bandelli); (2) "The Doom-Shaped Thing in the…

  3. NASA Center for Computational Sciences: History and Resources

    Science.gov (United States)

    2000-01-01

    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  4. DOE - BES Nanoscale Science Research Centers (NSRCs)

    Energy Technology Data Exchange (ETDEWEB)

    Beecher, Cathy Jo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a powerpoint shown to guests during tours of Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory. It shows the five DOE-BES nanoscale science research centers (NSRCs), which are located at different national laboratories throughout the country. Then it goes into detail specifically about the Center for Integrated Nanotechnologies at LANL, including statistics on its user community and CINT's New Mexico industrial users.

  5. USGS science in Menlo Park -- a science strategy for the U.S. Geological Survey Menlo Park Science Center, 2005-2015

    Science.gov (United States)

    Brocher, Thomas M.; Carr, Michael D.; Halsing, David L.; John, David A.; Langenheim, V.E.; Mangan, Margaret T.; Marvin-DiPasquale, Mark C.; Takekawa, John Y.; Tiedeman, Claire

    2006-01-01

    In the spring of 2004, the U.S. Geological Survey (USGS) Menlo Park Center Council commissioned an interdisciplinary working group to develop a forward-looking science strategy for the USGS Menlo Park Science Center in California (hereafter also referred to as "the Center"). The Center has been the flagship research center for the USGS in the western United States for more than 50 years, and the Council recognizes that science priorities must be the primary consideration guiding critical decisions made about the future evolution of the Center. In developing this strategy, the working group consulted widely within the USGS and with external clients and collaborators, so that most stakeholders had an opportunity to influence the science goals and operational objectives.The Science Goals are to: Natural Hazards: Conduct natural-hazard research and assessments critical to effective mitigation planning, short-term forecasting, and event response. Ecosystem Change: Develop a predictive understanding of ecosystem change that advances ecosystem restoration and adaptive management. Natural Resources: Advance the understanding of natural resources in a geologic, hydrologic, economic, environmental, and global context. Modeling Earth System Processes: Increase and improve capabilities for quantitative simulation, prediction, and assessment of Earth system processes.The strategy presents seven key Operational Objectives with specific actions to achieve the scientific goals. These Operational Objectives are to:Provide a hub for technology, laboratories, and library services to support science in the Western Region. Increase advanced computing capabilities and promote sharing of these resources. Enhance the intellectual diversity, vibrancy, and capacity of the work force through improved recruitment and retention. Strengthen client and collaborative relationships in the community at an institutional level.Expand monitoring capability by increasing density, sensitivity, and

  6. Guidance for Science Data Centers through Understanding Metrics

    Science.gov (United States)

    Moses, J. F.

    2006-12-01

    NASA has built a multi-year set of transaction and user satisfaction information about the evolving, broad collection of earth science products from a diverse set of users of the Earth Observing System Data and Information System (EOSDIS). The transaction and satisfaction trends provide corroborative information to support perception and intuition, and can often be the basis for understanding the results of cross-cutting initiatives and for management decisions about future strategies. The information is available through two fundamental complementary methods, product and user transaction data collected regularly from the major science data centers, and user satisfaction information collected through the American Customer Satisfaction Index survey. The combination provides the fundamental data needed to understand utilization trends in the research community. This paper will update trends based on 2006 metrics from the NASA earth science data centers and results from the 2006 EOSDIS ACSI survey. Principle concepts are explored that lead to sound guidance for data center managers and strategists over the next year.

  7. The efficacy of student-centered instruction in supporting science learning.

    Science.gov (United States)

    Granger, E M; Bevis, T H; Saka, Y; Southerland, S A; Sampson, V; Tate, R L

    2012-10-05

    Transforming science learning through student-centered instruction that engages students in a variety of scientific practices is central to national science-teaching reform efforts. Our study employed a large-scale, randomized-cluster experimental design to compare the effects of student-centered and teacher-centered approaches on elementary school students' understanding of space-science concepts. Data included measures of student characteristics and learning and teacher characteristics and fidelity to the instructional approach. Results reveal that learning outcomes were higher for students enrolled in classrooms engaging in scientific practices through a student-centered approach; two moderators were identified. A statistical search for potential causal mechanisms for the observed outcomes uncovered two potential mediators: students' understanding of models and evidence and the self-efficacy of teachers.

  8. Project of international science-education center and integration problems of nano science education in far eastern region of Asia

    International Nuclear Information System (INIS)

    Plusnin, N I; Lazarev, G I

    2008-01-01

    Some conception of international science-education center on nano science in Vladivostok is presented. The conception is based on internal and external prerequisites. Internal one is high intellectual potential of institutes of Russian Academy of Sciences and universities of Vladivostok and external one is need of countries of Far Eastern region of Asia in high level manpower. The conception takes into account a specific distribution of science and education potential between Russian Academy of Sciences and Russian universities and a specific their dislocation in Vladivostok. First specific dictates some similarity of organization structure and function of international science-education center to typical science-education center in Russia. But as for dislocation of the international science-education center in Vladivostok, it should be near dislocation of institutes of Far Eastern Brunch of Russian Academy of Sciences in Vladivostok, which are dislocated very compactly in suburb zone of Vladivostok

  9. Tribal engagement strategy of the South Central Climate Science Center, 2014

    Science.gov (United States)

    Andrews, William J.; Taylor, April; Winton, Kimberly T.

    2014-01-01

    The South Central Climate Science Center was established by the U.S. Department of the Interior in 2012 to increase understanding of climate change and coordinate an effective response to climate-change effects on Native American tribes and natural and cultural resources that the Department manages. The eight regional Climate Science Centers of the U.S. Department of the Interior work closely with natural-resource management agencies, university researchers, and others such as tribes and private landowners on climate-change issues. The relatively large number of Native Americans in the south central United States and their special knowledge of changing ecosystems make working with tribes and tribal members on climate-change issues particularly important in this part of the Nation. This circular describes priorities of the South Central Climate Science Center and provides information about resources available from Climate Science Centers and partner agencies regarding climate change. The circular also describes how this Climate Science Center, tribes and tribal members, and others can collaborate to minimize potential harmful effects of climate change on human society and our surrounding ecosystems.

  10. Blood politics, ethnic identity, and racial misclassification among American Indians and Alaska Natives.

    Science.gov (United States)

    Haozous, Emily A; Strickland, Carolyn J; Palacios, Janelle F; Solomon, Teshia G Arambula

    2014-01-01

    Misclassification of race in medical and mortality records has long been documented as an issue in American Indian/Alaska Native data. Yet, little has been shared in a cohesive narrative which outlines why misclassification of American Indian/Alaska Native identity occurs. The purpose of this paper is to provide a summary of the current state of the science in racial misclassification among American Indians and Alaska Natives. We also provide a historical context on the importance of this problem and describe the ongoing political processes that both affect racial misclassification and contribute to the context of American Indian and Alaska Native identity.

  11. Communications among data and science centers

    Science.gov (United States)

    Green, James L.

    1990-01-01

    The ability to electronically access and query the contents of remote computer archives is of singular importance in space and earth sciences; the present evaluation of such on-line information networks' development status foresees swift expansion of their data capabilities and complexity, in view of the volumes of data that will continue to be generated by NASA missions. The U.S.'s National Space Science Data Center (NSSDC) manages NASA's largest science computer network, the Space Physics Analysis Network; a comprehensive account is given of the structure of NSSDC international access through BITNET, and of connections to the NSSDC available in the Americas via the International X.25 network.

  12. WFIRST: User and mission support at ISOC - IPAC Science Operations Center

    Science.gov (United States)

    Akeson, Rachel; Armus, Lee; Bennett, Lee; Colbert, James; Helou, George; Kirkpatrick, J. Davy; Laine, Seppo; Meshkat, Tiffany; Paladini, Roberta; Ramirez, Solange; Wang, Yun; Xie, Joan; Yan, Lin

    2018-01-01

    The science center for WFIRST is distributed between the Goddard Space Flight Center, the Infrared Processing and Analysis Center (IPAC) and the Space Telescope Science Institute (STScI). The main functions of the IPAC Science Operations Center (ISOC) are:* Conduct the GO, archival and theory proposal submission and evaluation process* Support the coronagraph instrument, including observation planning, calibration and data processing pipeline, generation of data products, and user support* Microlensing survey data processing pipeline, generation of data products, and user support* Community engagement including conferences, workshops and general support of the WFIRST exoplanet communityWe will describe the components planned to support these functions and the community of WFIRST users.

  13. Network Science Center Research Team’s Visit to Kampala, Uganda

    Science.gov (United States)

    2013-04-15

    TERMS Network Analysis, Economic Networks, Entrepreneurial Ecosystems , Economic Development, Data Collection 16. SECURITY CLASSIFICATION OF: 17...the Project Synopsis, Developing Network Models of Entrepreneurial Ecosystems in Developing Economies, on the Network Science Center web site.) A...Thomas visited Kampala, Uganda in support of an ongoing Network Science Center project to develop models of entrepreneurial networks. Our Center has

  14. Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-08

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, and provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.

  15. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  16. Reaching Across the Hemispheres with Science, Language, Arts and Technology

    Science.gov (United States)

    Sparrow, E. B.; Zicus, S.; Miller, A.; Baird, A.; Page, G.

    2009-12-01

    Twelve Alaskan elementary and middle school classes (grades 3-8) partnered with twelve Australian middle school classes, with each pair using web-based strategies to develop a collaborative ice-mystery fictional book incorporating authentic polar science. Three professional development workshops were held, bringing together educators and polar scientists in two IPY education outreach projects. The Alaska workshop provided an opportunity to bring together the North American teachers for lessons on arctic and antarctic science and an earth system science program Seasons and Biomes measurement protocols, as well as methods in collaborative e-writing and art in Ice e-Mysteries: Global Student Polar e-books project. Teachers worked with University of Alaska Fairbanks (UAF) and Australian scientists to become familiar with Arctic science research, science artifacts and resources available at UAF and the University of Alaska Museum of the North. In Australia, teachers received a similar project training through the Tasmania Museum and Art Gallery (TMAG) Center for Learning and Discovery on Antarctic science and the University of Tasmania. The long-distance collaboration was accomplished through Skype, emails and a TMAG supported website. A year later, Northern Hemisphere and Southern Hemisphere teacher partners met in a joint workshop in Tasmania, to share their experiences, do project assessments and propose activities for future collaborations. The Australian teachers received training on Seasons and Biomes scientific measurements and the Alaskan teachers, on Tasmanian vegetation, fauna and indigenous culture, Antarctic and Southern ocean studies. This innovative project produced twelve e-polar books written and illustrated by students; heightened scientific literacy about the polar regions and the earth system; increased awareness of the environment and indigenous cultures; stronger connections to the scientific community; and lasting friendships. It also resulted in

  17. Alaska earthquake source for the SAFRR tsunami scenario: Chapter B in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    Science.gov (United States)

    Kirby, Stephen; Scholl, David; von Huene, Roland E.; Wells, Ray

    2013-01-01

    Tsunami modeling has shown that tsunami sources located along the Alaska Peninsula segment of the Aleutian-Alaska subduction zone have the greatest impacts on southern California shorelines by raising the highest tsunami waves for a given source seismic moment. The most probable sector for a Mw ~ 9 source within this subduction segment is between Kodiak Island and the Shumagin Islands in what we call the Semidi subduction sector; these bounds represent the southwestern limit of the 1964 Mw 9.2 Alaska earthquake rupture and the northeastern edge of the Shumagin sector that recent Global Positioning System (GPS) observations indicate is currently creeping. Geological and geophysical features in the Semidi sector that are thought to be relevant to the potential for large magnitude, long-rupture-runout interplate thrust earthquakes are remarkably similar to those in northeastern Japan, where the destructive Mw 9.1 tsunamigenic earthquake of 11 March 2011 occurred. In this report we propose and justify the selection of a tsunami source seaward of the Alaska Peninsula for use in the Tsunami Scenario that is part of the U.S. Geological Survey (USGS) Science Application for Risk Reduction (SAFRR) Project. This tsunami source should have the potential to raise damaging tsunami waves on the California coast, especially at the ports of Los Angeles and Long Beach. Accordingly, we have summarized and abstracted slip distribution from the source literature on the 2011 event, the best characterized for any subduction earthquake, and applied this synoptic slip distribution to the similar megathrust geometry of the Semidi sector. The resulting slip model has an average slip of 18.6 m and a moment magnitude of Mw = 9.1. The 2011 Tohoku earthquake was not anticipated, despite Japan having the best seismic and geodetic networks in the world and the best historical record in the world over the past 1,500 years. What was lacking was adequate paleogeologic data on prehistoric earthquakes

  18. NOAA/WEST COAST AND ALASKA TSUNAMI WARNING CENTER PACIFIC OCEAN RESPONSE CRITERIA

    Directory of Open Access Journals (Sweden)

    Garry Rogers

    2008-01-01

    Full Text Available New West Coast/Alaska Tsunami Warning Center (WCATWC response criteria for earthquakes occurring in the Pacific basin are presented. Initial warning decisions are based on earthquake location, magnitude, depth, and - dependent on magnitude - either distance from source or pre- computed threat estimates generated from tsunami models. The new criteria will help limit the geographical extent of warnings and advisories to threatened regions, and complement the new operational tsunami product suite.Changes to the previous criteria include: adding hypocentral depth dependence, reducing geographical warning extent for the lower magnitude ranges, setting special criteria for areas not well-connected to the open ocean, basing warning extent on pre-computed threat levels versus tsunami travel time for very large events, including the new advisory product, using the advisory product for far-offshore events in the lower magnitude ranges, and specifying distances from the coast for on-shore events which may be tsunamigenic.This report sets a baseline for response criteria used by the WCATWC considering its processing and observational data capabilities as well as its organizational requirements. Criteria are set for tsunamis generated by earthquakes, which are by far the main cause of tsunami generation (either directly through sea floor displacement or indirectly by triggering of slumps. As further research and development provides better tsunami source definition, observational data streams, and improved analysis tools, the criteria will continue to adjust. Future lines of research and development capable of providing operational tsunami warning centers with better tools are discussed.

  19. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  20. The Centers for Ocean Science Education Excellence (COSEE) initiative

    Science.gov (United States)

    Cook, S.; Rom, E.

    2003-04-01

    Seven regional Centers for Ocean Science Education Excellence have recently been established to promote the integration of ocean science research into high-quality education programs aimed at both formal and informal audiences throughout the United States. The regional Centers include two complementary partnerships in California, a New England regional effort, a Mid-Atlantic partnership, a Southeastern collaborative, a Florida initiative and a central Gulf of Mexico alliance. A Central Coordinating Office in Washington DC will help the group develop into a cohesive and focused national network. Initial funding has been provided by the National Science Foundation with complementary support from the Office of Naval Research and multiple units within the National Oceanographic and Atmospheric Administration (specifically the National Ocean Service, the Office of Ocean Exploration and the National SeaGrant Office). Under an umbrella of common goals and objectives, the first cohort of Centers in the COSEE network is remarkably diverse in terms of geography, organizational structure and programmatic focus. NSF’s presentation will describe these partnerships, the different approaches that are being taken by the individual Centers and the expectations that NSF has for the network as a whole.

  1. Sandia National Laboratories: Microsystems Science & Technology Center

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  2. National Center for Mathematics and Science - links to related sites

    Science.gov (United States)

    Mathematics and Science (NCISLA) HOME | WHAT WE DO | K-12 EDUCATION RESEARCH | PUBLICATIONS | TEACHER Modeling Middle School Mathematics National Association of Biology Teachers National Association for Mathematics National Science Teachers Assocation Show-Me Center Summit on Science TERC - Weaving Gender Equity

  3. A Decade of Shear-Wave Splitting Observations in Alaska

    Science.gov (United States)

    Bellesiles, A. K.; Christensen, D. H.; Abers, G. A.; Hansen, R. A.; Pavlis, G. L.; Song, X.

    2010-12-01

    Over the last decade four PASSCAL experiments have been conducted in different regions of Alaska. ARCTIC, BEAAR and MOOS form a north-south transect across the state, from the Arctic Ocean to Price Williams Sound, while the STEEP experiment is currently deployed to the east of that line in the St Elias Mountains of Southeastern Alaska. Shear-wave splitting observations from these networks in addition to several permanent stations of the Alaska Earthquake Information Center were determined in an attempt to understand mantle flow under Alaska in a variety of different geologic settings. Results show two dominant splitting patterns in Alaska, separated by the subducted Pacific Plate. North of the subducted Pacific Plate fast directions are parallel to the trench (along strike of the subducted Pacific Plate) indicating large scale mantle flow in the northeast-southwest direction with higher anisotropy (splitting times) within the mantle wedge. Within or below the Pacific Plate fast directions are normal to the trench in the direction of Pacific Plate convergence. In addition to these two prominent splitting patterns there are several regions that do not match either of these trends. These more complex regions which include the results from STEEP could be due to several factors including effects from the edge of the Pacific Plate. The increase of station coverage that Earthscope will bring to Alaska will aid in developing a more complete model for anisotropy and mantle flow in Alaska.

  4. Alaska Community Transit

    Science.gov (United States)

    Grant Information Human Services Funding 5310 5316 (Repealed) 5317 (Repealed) Alaska Mental Health Trust Department of Transportation & Public Facilities/ Alaska Community Transit Search DOT&PF State of Alaska Photo banner DOT&PF> Program Development > Alaska Community Transit Home About Us

  5. WFIRST: STScI Science Operations Center (SSOC) Activities and Plans

    Science.gov (United States)

    Gilbert, Karoline M.; STScI WFIRST Team

    2018-01-01

    The science operations for the WFIRST Mission will be distributed between Goddard Space Flight Center, the Space Telescope Science Institute (STScI), and the Infrared Processing and Analysis Center (IPAC). The STScI Science Operations Center (SSOC) will schedule and archive all WFIRST observations, will calibrate and produce pipeline-reduced data products for the Wide Field Instrument, and will support the astronomical community in planning WFI observations and analyzing WFI data. During the formulation phase, WFIRST team members at STScI have developed operations concepts for scheduling, data management, and the archive; have performed technical studies investigating the impact of WFIRST design choices on data quality and analysis; and have built simulation tools to aid the community in exploring WFIRST’s capabilities. We will highlight examples of each of these efforts.

  6. New Center Links Earth, Space, and Information Sciences

    Science.gov (United States)

    Aswathanarayana, U.

    2004-05-01

    Broad-based geoscience instruction melding the Earth, space, and information technology sciences has been identified as an effective way to take advantage of the new jobs created by technological innovations in natural resources management. Based on this paradigm, the University of Hyderabad in India is developing a Centre of Earth and Space Sciences that will be linked to the university's super-computing facility. The proposed center will provide the basic science underpinnings for the Earth, space, and information technology sciences; develop new methodologies for the utilization of natural resources such as water, soils, sediments, minerals, and biota; mitigate the adverse consequences of natural hazards; and design innovative ways of incorporating scientific information into the legislative and administrative processes. For these reasons, the ethos and the innovatively designed management structure of the center would be of particular relevance to the developing countries. India holds 17% of the world's human population, and 30% of its farm animals, but only about 2% of the planet's water resources. Water will hence constitute the core concern of the center, because ecologically sustainable, socially equitable, and economically viable management of water resources of the country holds the key to the quality of life (drinking water, sanitation, and health), food security, and industrial development of the country. The center will be focused on interdisciplinary basic and pure applied research that is relevant to the practical needs of India as a developing country. These include, for example, climate prediction, since India is heavily dependent on the monsoon system, and satellite remote sensing of soil moisture, since agriculture is still a principal source of livelihood in India. The center will perform research and development in areas such as data assimilation and validation, and identification of new sensors to be mounted on the Indian meteorological

  7. Basic and Applied Science Research at the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Lisowski, Paul W.

    2005-01-01

    The Los Alamos Neutron Science Center, or LANSCE, is an accelerator-based national user facility for research in basic and applied science using four experimental areas. LANSCE has two areas that provide neutrons generated by the 800-MeV proton beam striking tungsten target systems. A third area uses the proton beam for radiography. The fourth area uses 100 MeV protons to produce medical radioisotopes. This paper describes the four LANSCE experimental areas, gives nuclear science highlights of the past operating period, and discusses plans for the future

  8. The Role of Informal Science Centers in Science Education: Attitudes, Skills, and Self-efficacy

    Directory of Open Access Journals (Sweden)

    Irit Sasson

    2014-09-01

    Full Text Available Informal learning relates to activities that occur outside the school environment. These learning environments, such as visits to science centers provide valuable motivational opportunities for students to learn science. The purpose of this study was to investigate the role of the pre-academic center in science education and particularly to explore its effects on 750 middle-school students' attitudes toward science, their scientific thinking skills and self-efficacy. Pre and post-case based questionnaires were designed to assess the students’ higher order thinking skills – inquiry, graphing, and argumentation. In addition, a five-point Likert scale questionnaire was used to assess students' attitudes and self-efficacy. The research results indicated a positive effect of the pre-academic science center activities on scientific thinking skills. A significant improvement in the students' inquiry and graphing skills was found, yet non significant differences were found in argumentation skill. The students significantly improved their ability to ask research questions based on reading a scientific text, and to describe and analyze research results that were presented graphically. While no significant differences were found between girls and boys in the pre-questionnaire, in the post-questionnaire the girls' scores in inquiry skill were significantly higher than boys' scores. Increases in students' positive attitudes toward science and self-efficacy were found but the results were not statistically significant. However, the program length was found to be an important variable that affects achievement of educational goals. A three-dimension-based framework is suggested to characterize learning environments: organizational, psychological, and pedagogical.

  9. Interdisciplinary research center devoted to molecular environmental science opens

    Science.gov (United States)

    Vaughan, David J.

    In October, a new research center opened at the University of Manchester in the United Kingdom. The center is the product of over a decade of ground-breaking interdisciplinary research in the Earth and related biological and chemical sciences at the university The center also responds to the British governments policy of investing in research infrastructure at key universities.The Williamson Research Centre, the first of its kind in Britain and among the first worldwide, is devoted to the emerging field of molecular environmental science. This field also aims to bring about a revolution in understanding of our environment. Though it may be a less violent revolution than some, perhaps, its potential is high for developments that could affect us all.

  10. Status of the TESS Science Processing Operations Center

    Science.gov (United States)

    Jenkins, Jon M.; Twicken, Joseph D.; Campbell, Jennifer; Tenebaum, Peter; Sanderfer, Dwight; Davies, Misty D.; Smith, Jeffrey C.; Morris, Rob; Mansouri-Samani, Masoud; Girouardi, Forrest; hide

    2017-01-01

    The Transiting Exoplanet Survey Satellite (TESS) science pipeline is being developed by the Science Processing Operations Center (SPOC) at NASA Ames Research Center based on the highly successful Kepler Mission science pipeline. Like the Kepler pipeline, the TESS science pipeline will provide calibrated pixels, simple and systematic error-corrected aperture photometry, and centroid locations for all 200,000+ target stars, observed over the 2-year mission, along with associated uncertainties. The pixel and light curve products are modeled on the Kepler archive products and will be archived to the Mikulski Archive for Space Telescopes (MAST). In addition to the nominal science data, the 30-minute Full Frame Images (FFIs) simultaneously collected by TESS will also be calibrated by the SPOC and archived at MAST. The TESS pipeline will search through all light curves for evidence of transits that occur when a planet crosses the disk of its host star. The Data Validation pipeline will generate a suite of diagnostic metrics for each transit-like signature discovered, and extract planetary parameters by fitting a limb-darkened transit model to each potential planetary signature. The results of the transit search will be modeled on the Kepler transit search products (tabulated numerical results, time series products, and pdf reports) all of which will be archived to MAST.

  11. Facilitating the Development and Evaluation of a Citizen Science Web Site: A Case Study of Repeat Photography and Climate Change in Southwest Alaska's National Parks

    Science.gov (United States)

    Mullen, Karina C.; Newman, Gregory; Thompson, Jessica L.

    2013-01-01

    Interviews with national park visitors across the country revealed that climate change education through place-based, hands-on learning using repeat photographs and technology is appealing to park visitors. This manuscript provides a summary of the development of a repeat photography citizen science Web site for national parks in Southwest Alaska.…

  12. Molecular Science Research Center 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1994-01-01

    The Molecular Science Research Center is a designated national user facility, available to scientists from universities, industry, and other national laboratories. After an opening section, which includes conferences hosted, appointments, and projects, this document presents progress in the following fields: chemical structure and dynamics; environmental dynamics and simulation; macromolecular structure and dynamics; materials and interfaces; theory, modeling, and simulation; and computing and information sciences. Appendices are included: MSRC staff and associates, 1992 publications and presentations, activities, and acronyms and abbreviations.

  13. "Atmospheric Radiation Measurement (ARM) Research Facility at Oliktok Point Alaska"

    Science.gov (United States)

    Helsel, F.; Ivey, M.; Hardesty, J.; Roesler, E. L.; Dexheimer, D.

    2017-12-01

    Scientific Infrastructure To Support Atmospheric Science, Aerosol Science and UAS's for The Department Of Energy's Atmospheric Radiation Measurement Programs At The Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site designed to collect data and help determine the impact that clouds and aerosols have on solar radiation. AMF3 provides a scientific infrastructure to support instruments and collect arctic data for the international arctic research community. The infrastructure at AMF3/Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF3's present base line instruments include: scanning precipitation Radars, cloud Radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL) Along with all the standard metrological measurements. In addition AMF3 provides aerosol measurements with a Mobile Aerosol Observing System (MAOS). Ground support for Unmanned Aerial Systems (UAS) and tethered balloon flights. Data from these instruments and systems are placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments and systems are at the ARM Research Facility at Oliktok Point Alaska.

  14. EarthScope Transportable Array Siting Outreach Activities in Alaska and Western Canada

    Science.gov (United States)

    Dorr, P. M.; Gardine, L.; Tape, C.; McQuillan, P.; Cubley, J. F.; Samolczyk, M. A.; Taber, J.; West, M. E.; Busby, R.

    2015-12-01

    The EarthScope Transportable Array is deploying about 260 stations in Alaska and western Canada. IRIS and EarthScope are partnering with the Alaska Earthquake Center, part of the University of Alaska's Geophysical Institute, and Yukon College to spread awareness of earthquakes in Alaska and western Canada and the benefits of the Transportable Array for people living in these regions. We provide an update of ongoing education and outreach activities in Alaska and Canada as well as continued efforts to publicize the Transportable Array in the Lower 48. Nearly all parts of Alaska and portions of western Canada are tectonically active. The tectonic and seismic variability of Alaska, in particular, requires focused attention at the regional level, and the remoteness and inaccessibility of most Alaskan and western Canadian villages and towns often makes frequent visits difficult. When a community is accessible, every opportunity to engage the residents is made. Booths at state fairs and large cultural gatherings, such as the annual convention of the Alaska Federation of Natives, are excellent venues to distribute earthquake information and to demonstrate a wide variety of educational products and web-based applications related to seismology and the Transportable Array that residents can use in their own communities. Meetings and interviews with Alaska Native Elders and tribal councils discussing past earthquakes has led to a better understanding of how Alaskans view and understand earthquakes. Region-specific publications have been developed to tie in a sense of place for residents of Alaska and the Yukon. The Alaska content for IRIS's Active Earth Monitor emphasizes the widespread tectonic and seismic features and offers not just Alaska residents, but anyone interested in Alaska, a glimpse into what is going on beneath their feet. The concerted efforts of the outreach team will have lasting effects on Alaskan and Canadian understanding of the seismic hazard and

  15. National Center for Mathematics and Science - publications

    Science.gov (United States)

    : Designing Statistics Instruction for Middle School Students Summer 2003: Algebraic Skills and Strategies for newsletter cover The National Center for Research in Mathematical Sciences Education (NCRMSE) (1987-1995 -Level Reform Fall 1993: Assessment Models Winter 1994: Reforming Geometry Spring 1994: Statistics and

  16. The Emirates Mars Mission Science Data Center

    Science.gov (United States)

    Craft, J.; Al Hammadi, O.; DeWolfe, A. W.; Staley, B.; Schafer, C.; Pankratz, C. K.

    2017-12-01

    The Emirates Mars Mission (EMM), led by the Mohammed Bin Rashid Space Center (MBRSC) in Dubai, United Arab Emirates, is expected to arrive at Mars in January 2021. The EMM Science Data Center (SDC) is to be developed as a joint effort between MBRSC and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The EMM SDC is responsible for the production, management, distribution, and archiving of science data collected from the three instruments on board the Hope spacecraft.With the respective SDC teams on opposite sides of the world evolutionary techniques and cloud-based technologies are being utilized in the development of the EMM SDC. This presentation will provide a top down view of the EMM SDC, summarizing the cloud-based technologies being implemented in the design, as well as the tools, best practices, and lessons learned for software development and management in a geographically distributed team.

  17. GeoFORCE Alaska: Four-Year Field Program Brings Rural Alaskan High School Students into the STEM Pipeline

    Science.gov (United States)

    Fowell, S. J.; Rittgers, A.; Stephens, L.; Hutchinson, S.; Peters, H.; Snow, E.; Wartes, D.

    2016-12-01

    GeoFORCE Alaska is a four-year, field-based, summer geoscience program designed to raise graduation rates in rural Alaskan high schools, encourage participants to pursue college degrees, and increase the diversity of Alaska's technical workforce. Residents of predominantly Alaska Native villages holding degrees in science, technology, engineering, or math (STEM) bring valuable perspectives to decisions regarding management of cultural and natural resources. However, between 2010 and 2015 the average dropout rate for students in grades 7-12 was 8.5% per year in the North Slope School District and 7% per year in the Northwest Arctic School District. 2015 graduation rates were 70% and 75%, respectively. Statewide statistics highlight the challenge for Alaska Native students. During the 2014-2015 school year alone 37.6% of Alaska Native students dropped out of Alaskan public schools. At the college level, Alaska Native students are underrepresented in University of Alaska Fairbanks (UAF) science departments. Launched in 2012 by UAF in partnership with the longstanding University of Texas at Austin program, GeoFORCE applies the cohort model, leading the same group of high school students on geological field academies during four consecutive summers. Through a combination of active learning, teamwork, and hands-on projects at spectacular geological locations, students gain academic skills and confidence that facilitate high school and college success. To date, GeoFORCE Alaska has recruited two cohorts. 78% of these students identify as Alaska Native, reflecting community demographics. The inaugural cohort of 18 students from the North Slope Borough completed the Fourth-Year Academy in summer 2015. 94% of these students graduated from high school, at least 72% plan to attend college, and 33% will major in geoscience. A second cohort of 34 rising 9th and 10th graders entered the program in 2016. At the request of corporate sponsors, this cohort was recruited from both the

  18. 76 FR 56789 - Call for Nominations: North Slope Science Initiative, Science Technical Advisory Panel, Alaska

    Science.gov (United States)

    2011-09-14

    ..., subsistence users, Alaska Native entities, conservation organizations, and academia, as determined by the..., cultural anthropology, economics, ornithology, oceanography, fisheries biology, and climatology. The duties... Initiative (NSSI) member organizations on the North Slope at the request of the member organizations to...

  19. Mendenhall Glacier Visitor Center vehicular and pedestrian traffic congestion study

    Science.gov (United States)

    2007-05-01

    The Mendenhall Glacier Visitor Center of Tongass National Forest in Juneau, Alaska is experiencing vehicular and pedestrian congestion. This study was initiated by the United States Forest Service, Alaska Region, in cooperation with Western Federal L...

  20. NASA's astrophysics archives at the National Space Science Data Center

    Science.gov (United States)

    Vansteenberg, M. E.

    1992-01-01

    NASA maintains an archive facility for Astronomical Science data collected from NASA's missions at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. This archive was created to insure the science data collected by NASA would be preserved and useable in the future by the science community. Through 25 years of operation there are many lessons learned, from data collection procedures, archive preservation methods, and distribution to the community. This document presents some of these more important lessons, for example: KISS (Keep It Simple, Stupid) in system development. Also addressed are some of the myths of archiving, such as 'scientists always know everything about everything', or 'it cannot possibly be that hard, after all simple data tech's do it'. There are indeed good reasons that a proper archive capability is needed by the astronomical community, the important question is how to use the existing expertise as well as the new innovative ideas to do the best job archiving this valuable science data.

  1. Catalogue of polar bear (Ursus maritimus) maternal den locations in the Beaufort Sea and neighboring regions, Alaska, 1910-2010

    Science.gov (United States)

    Durner, George M.; Fischbach, Anthony S.; Amstrup, Steven C.; Douglas, David C.

    2010-01-01

    This report presents data on the approximate locations and methods of discovery of 392 polar bear (Ursus maritimus) maternal dens found in the Beaufort Sea and neighboring regions between 1910 and 2010 that are archived by the U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska. A description of data collection methods, biases associated with collection method, primary time periods, and spatial resolution are provided. Polar bears in the Beaufort Sea and nearby regions den on both the sea ice and on land. Standardized VHF surveys and satellite radio telemetry data provide a general understanding of where polar bears have denned in this region over the past 3 decades. Den observations made during other research activities and anecdotal reports from other government agencies, coastal residents, and industry personnel also are reported. Data on past polar bear maternal den locations are provided to inform the public and to provide information for natural resource agencies in planning activities to avoid or minimize interference with polar bear maternity dens.

  2. The Brazilian Science Data Center (BSDC)

    Science.gov (United States)

    de Almeida, Ulisses Barres; Bodmann, Benno; Giommi, Paolo; Brandt, Carlos H.

    Astrophysics and Space Science are becoming increasingly characterised by what is now known as “big data”, the bottlenecks for progress partly shifting from data acquisition to “data mining”. Truth is that the amount and rate of data accumulation in many fields already surpasses the local capabilities for its processing and exploitation, and the efficient conversion of scientific data into knowledge is everywhere a challenge. The result is that, to a large extent, isolated data archives risk being progressively likened to “data graveyards”, where the information stored is not reused for scientific work. Responsible and efficient use of these large data-sets means democratising access and extracting the most science possible from it, which in turn signifies improving data accessibility and integration. Improving data processing capabilities is another important issue specific to researchers and computer scientists of each field. The project presented here wishes to exploit the enormous potential opened up by information technology at our age to advance a model for a science data center in astronomy which aims to expand data accessibility and integration to the largest possible extent and with the greatest efficiency for scientific and educational use. Greater access to data means more people producing and benefiting from information, whereas larger integration of related data from different origins means a greater research potential and increased scientific impact. The project of the BSDC is preoccupied, primarily, with providing tools and solutions for the Brazilian astronomical community. It nevertheless capitalizes on extensive international experience, and is developed in full cooperation with the ASI Science Data Center (ASDC), from the Italian Space Agency, granting it an essential ingredient of internationalisation. The BSDC is Virtual Observatory-complient and part of the “Open Universe”, a global initiative built under the auspices of the

  3. A global change policy for Alaska

    International Nuclear Information System (INIS)

    Cole, H.

    1993-01-01

    The Alaska Science and Engineering Advisory Committee attempted to formulate a suitable state policy for global climate change. The main elements and rationale for this policy are described, along with lessons learned from the Montreal protocol on global ozone and the policy itself. A discussion of issues relating to public presentation and reaction to a climate change policy indicates that elements necessary for a strategy presenting a case for global change needs to be credible, simple, and unambiguous, with risks clearly defined. Society and business must see themselves as stakeholders in the issue, and policies must be formulated accordingly. The Montreal protocol provides an example of success in advanced planning on a major global issue. The six main components of the Alaskan policy relate to fossil fuel production and marketing, the economic mix of energy production for in-state use, the efficiency and effectiveness of energy end-use services, the impact of climatic change on Alaska as a geographic unit, Alaska as a high-latitude site for climate change monitoring and analysis, and Alaskan participation with other countries in research and policy development. 7 refs

  4. Abstracts of the International Congress of Research Center in Sports Sciences, Health Sciences & Human Development (2016

    Directory of Open Access Journals (Sweden)

    Vitor Reis

    2017-06-01

    Full Text Available The papers published in this book of abstracts / proceedings were submitted to the Scientific Commission of the International Congress of Research Center in Sports Sciences, Health Sciences & Human Development, held on 11 and 12 November 2016, at the University of Évora, Évora, Portugal, under the topic of Exercise and Health, Sports and Human Development. The content of the abstracts is solely and exclusively of its authors responsibility. The editors and the Scientific Committee of the International Congress of Research Center in Sports Sciences, Health Sciences & Human Development do not assume any responsibility for the opinions and statements expressed by the authors. Partial reproduction of the texts and their use without commercial purposes is allowed, provided the source / reference is duly mentioned.

  5. U.S. Geological Survey (USGS) Western Region: Coastal and Ocean Science

    Science.gov (United States)

    Kinsinger, Anne E.

    2009-01-01

    USGS Western Region Coastal and Ocean Science is interdisciplinary, collaborative, and integrates expertise from all USGS Disciplines, and ten of its major Science Centers, in Alaska, Hawai'i, California, Washington, and Oregon. The scientific talent, laboratories, and research vessels in the Western Region and across the Nation, strategically position the USGS to address broad geographic and oceanographic research topics. USGS information products inform resource managers and policy makers who must balance conservation mandates with increasing demands for resources that sustain the Nation's economy. This fact sheet describes but a few examples of the breadth of USGS science conducted in coastal, nearshore, and ocean environments along our Nation's West Coast and Pacific Islands.

  6. Student-Centered Learning in an Earth Science, Preservice, Teacher-Education Course

    Science.gov (United States)

    Avard, Margaret

    2009-01-01

    In an effort to get elementary teachers to teach more science in the classroom, a required preservice science education course was designed to promote the use of hands-on teaching techniques. This paper describes course content and activities for an innovative, student-centered, Earth science class. However, any science-content course could be…

  7. The planned Alaska SAR Facility - An overview

    Science.gov (United States)

    Carsey, Frank; Weeks, Wilford

    1987-01-01

    The Alaska SAR Facility (ASF) is described in an overview fashion. The facility consists of three major components, a Receiving Ground System, a SAR Processing System and an Analysis and Archiving System; the ASF Program also has a Science Working Team and the requisite management and operations systems. The ASF is now an approved and fully funded activity; detailed requirements and science background are presented for the facility to be implemented for data from the European ERS-1, the Japanese ERS-1 and Radarsat.

  8. Teachers' professional development needs and current practices at the Alexander Science Center School

    Science.gov (United States)

    Gargus, Gerald Vincent

    This investigation represents an in-depth understanding of teacher professional development at the Alexander Science Center School, a dependent charter museum school established through a partnership between the California Science Center and Los Angeles Unified School District. Three methods of data collection were used. A survey was distributed and collected from the school's teachers, resulting in a prioritized list of teacher professional development needs, as well as a summary of teachers' opinions about the school's existing professional development program. In addition, six key stakeholders in the school's professional development program were interviewed for the study. Finally, documents related to the school's professional development program were analyzed. Data collected from the interviews and documents were used to develop an understand various components of the Alexander Science Center School's professional development program. Teachers identified seven areas that had a high-priority for future professional development including developing skills far working with below-grade-level students, improving the analytical skills of student in mathematics, working with English Language Learners, improving students' overall reading ability levels, developing teachers' content-area knowledge for science, integrating science across the curriculum, and incorporating hands-on activity-based learning strategies to teach science. Professional development needs identified by Alexander Science Center School teachers were categorized based on their focus on content knowledge, pedagogical content knowledge, or curricular knowledge. Analysis of data collected through interviews and documents revealed that the Alexander Science Center School's professional development program consisted of six venues for providing professional development for teachers including weekly "banked time" sessions taking place within the standard school day, grade-level meetings, teacher support

  9. Fernbank Science Center Forest Teacher's Guide-1967.

    Science.gov (United States)

    Cherry, Jim; And Others

    This guide is designed primarily to familiarize teachers with the types of programs available through the Fernback Science Center. Instructional programs involving the use of the Fernbank Forest are outlined. Programs for secondary students include Plant Taxonomy, Field Ecology, Winter Taxonomy of Plants, and Climax Forest Succession. Elementary…

  10. 25 CFR 163.40 - Indian and Alaska Native forestry education assistance.

    Science.gov (United States)

    2010-04-01

    ... professional educator, a personnel specialist, an Indian or Alaska Native who is not employed by the Bureau of...-secondary mathematics and science courses; (ii) Promote forestry career awareness that could include modern...

  11. Alaska Child Support Services Division

    Science.gov (United States)

    Payments Online! The CSSD Business Services Portal offers employers the convenience of paying child support ://my.Alaska.gov. Reporting online will save you time and money! If your business already has a myAlaska account Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska

  12. 77 FR 31329 - Northeast Fisheries Science Center, Woods, Hole, MA; Public Meeting/Workshop

    Science.gov (United States)

    2012-05-25

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Northeast Fisheries Science Center, Woods, Hole, MA; Public Meeting/Workshop AGENCY: National Marine Fisheries Service (NMFS.../workshop. SUMMARY: NOAA's Northeast Fisheries Science Center will sponsor a workshop to address the stock...

  13. NPRB 1319 Assessment of the benthic impacts of raised groundgear for the Eastern Bering Sea pollock fishery.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Alaska pollock fishing industry, in collaboration with scientists at Alaska Pacific University, the Alaska Fisheries Science Center, and members of the fishing...

  14. Program Analysis and Design Requirements for tne National Science Center

    Science.gov (United States)

    1991-02-01

    shell of an old exposition building with secondhand furniture to display exhibit items, to the Ontario Science Center, which is a more modem building...Storage Area Pigeonhole storage cabinets for children’s school books , coats, and boots are provided at the Indianapolis Center. The Ontario center...used shopping carts for school groups to store their coats and books . They do not work well according to center staff and are cumbersome and unsightly

  15. Bowhead whale aerial abundance survey conducted by Alaska Fisheries Science Center, National Marine Mammal Laboratory from 2011-04-19 to 2011-06-11 (NCEI Accession 0133937)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerial photographic surveys for bowhead whales were conducted near Point Barrow, Alaska, from 19 April to 6 June in 2011. Approximately 4,594 photographs containing...

  16. 2015 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Dixon, James P.; Cameron, Cheryl E.; Iezzi, Alexandra M.; Wallace, Kristi

    2017-09-28

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 14 volcanic centers in Alaska during 2015. The most notable volcanic activity consisted of continuing intermittent ash eruptions from Cleveland and Shishaldin volcanoes in the Aleutian Islands. Two eruptive episodes, at Veniaminof and Pavlof, on the Alaska Peninsula ended in 2015. During 2015, AVO re-established the seismograph network at Aniakchak, installed six new broadband seismometers throughout the Aleutian Islands, and added a Multiple component Gas Analyzer System (MultiGAS) station on Augustine.

  17. Alaska exceptionality hypothesis: Is Alaska wilderness really different?

    Science.gov (United States)

    Gregory Brown

    2002-01-01

    The common idiom of Alaska as “The Last Frontier” suggests that the relative remoteness and unsettled character of Alaska create a unique Alaskan identity, one that is both a “frontier” and the “last” of its kind. The frontier idiom portrays the place and people of Alaska as exceptional or different from the places and people who reside in the Lower Forty- Eight States...

  18. Business, State of Alaska

    Science.gov (United States)

    Investment Advisors Business Law Charitable Gaming Division of Banking & Securities Laws Relating to Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting

  19. COSEE-AK Ocean Science Fairs: A Science Fair Model That Grounds Student Projects in Both Western Science and Traditional Native Knowledge

    Science.gov (United States)

    Dublin, Robin; Sigman, Marilyn; Anderson, Andrea; Barnhardt, Ray; Topkok, Sean Asiqluq

    2014-01-01

    We have developed the traditional science fair format into an ocean science fair model that promoted the integration of Western science and Alaska Native traditional knowledge in student projects focused on the ocean, aquatic environments, and climate change. The typical science fair judging criteria for the validity and presentation of the…

  20. Students build glovebox at Space Science Center

    Science.gov (United States)

    2001-01-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  1. The Lederman Science Center: Past, Present, Future

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, Marjorie G.; /Fermilab

    2011-11-01

    For 30 years, Fermilab has offered K-12 education programs, building bridges between the Lab and the community. The Lederman Science Center is our home. We host field trips and tours, visit schools, offer classes and professional development workshops, host special events, support internships and have a strong web presence. We develop programs based on identified needs, offer programs with peer-leaders and improve programs from participant feedback. For some we create interest; for others we build understanding and develop relationships, engaging participants in scientific exploration. We explain how we created the Center, its programs, and what the future holds.

  2. Alaska State Trails Program

    Science.gov (United States)

    Recreation Search DNR State of Alaska Home Menu Parks Home Alaska State Trails Boating Safety Design and Home / Alaska State Trails Alaska State Trails Program Trails in the Spotlight Glacier Lake and Saddle Trails in Kachemak State Park Glacier Lake A Popular route joins the Saddle and Glacier Lake Trails. The

  3. Killer whale surveys conducted in the Aleutian Islands, Bering Sea, and western and central Gulf of Alaska by Alaska Fisheries Science Center, National Marine Mammal Laboratory from 2001-07-01 to 2010-07-12 (NCEI Accession 0137766)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a compilation of line-transect data collected on surveys in the Aleutian Islands, Bering Sea, and western and central Gulf of Alaska, 2001 - 2010....

  4. Research Centers & Consortia | College of Engineering & Applied Science

    Science.gov (United States)

    Academics Admission Student Life Research Schools & Colleges Libraries Athletics Centers & ; Applied Science Powerful Ideas. Proven Results. Search for: Go This site All UWM Search Site Menu Skip to content Academics Undergraduate Programs Majors Minors Integrated Bachelor/Master Degree Applied Computing

  5. Shear-wave splitting observations of mantle anisotropy beneath Alaska

    Science.gov (United States)

    Bellesiles, A. K.; Christensen, D. H.; Entwistle, E.; Litherland, M.; Abers, G. A.; Song, X.

    2009-12-01

    Observations of seismic anisotropy were obtained from three different PASSCAL broadband experiments throughout Alaska, using shear-wave splitting from teleseismic SKS phases. The MOOS (Multidisciplinary Observations Of Subduction), BEAAR (Broadband Experiment Across the Alaska Range), and ARCTIC (Alaska Receiving Cross-Transects for the Inner Core) networks were used along with selected permanent broadband stations operated by AEIC (Alaska Earthquake Information Center) to produce seismic anisotropy results for the state of Alaska along a north south transect from the active subduction zone in the south, through continental Alaska, to the passive margin in the north. The BEAAR network is in-between the ARCTIC and MOOS networks above the subducting Pacific Plate and mantle wedge and shows a tight ~90 degree rotation of anisotropy above the 70km contour of the subducting plate. The southern stations in BEAAR yield anisotropy results that are subparallel to the Pacific Plate motion as it subducts under North America. These stations have an average fast direction of -45 degrees and 1.03 seconds of delay on average. The MOOS network in south central Alaska yielded similar results with an average fast direction of -30 degrees and delay times of .9 seconds. In the north portion of the BEAAR network the anisotropy is along strike of the subduction zone and has an average fast direction of 27 degrees with an average delay time of 1.4 seconds, although the delay times above the mantle wedge range from 1 to 2.5 seconds and are directly correlated to the length of ray path in the mantle wedge. This general trend NE/SW is seen in the ARCTIC stations to the north although the furthest north stations are oriented more NNE compared to those in BEAAR. The average fast direction for the ARCTIC network is 40 degrees with an average delay time of 1.05 seconds. These results show two distinct orientations of anisotropy in Alaska separated by the subducting Pacific Plate.

  6. Visitor, State of Alaska

    Science.gov (United States)

    /Fishing License Get a Birth Certificate, Marriage License, etc. Alaska Permanent Fund Dividend Statewide Library Alaska Historical Society Alaska State Museum Sheldon Jackson Museum Industry Facts Agriculture

  7. Investigation of Soil and Vegetation Characteristics in Discontinuous Permafrost Landscapes Near Fairbanks, Alaska

    Science.gov (United States)

    2015-08-01

    ER D C TR -1 5- 7 ERDC Center-Directed Research Investigation of Soil and Vegetation Characteristics in Discontinuous Permafrost ...Characteristics in Discontinuous Permafrost Landscapes Near Fairbanks, Alaska Jacob F. Berkowitz U.S. Army Engineer Research and Development Center (ERDC...Washington, DC 20314-1000 Under ERDC Center-Directed Research project “Integrated Technologies for Delineat- ing Permafrost and Ground-State

  8. Russian center of nuclear science and education is the way of nuclear engineering skilled personnel training

    International Nuclear Information System (INIS)

    Murogov, V.M.; Sal'nikov, N.L.

    2006-01-01

    Nuclear power engineering as the key of nuclear technologies is not only the element of the power market but also the basis of the country's social-economic progress. Obninsk as the first science town in Russia is the ideal place for the creation of integrated Science-Research Center of Nuclear Science and Technologies - The Russian Center of Nuclear Science and Education (Center for conservation and development of nuclear knowledge) [ru

  9. Annualized TASAR Benefit Estimate for Alaska Airlines Operations

    Science.gov (United States)

    Henderson, Jeffrey

    2015-01-01

    The Traffic Aware Strategic Aircrew Request (TASAR) concept offers onboard automation for the purpose of advising the pilot of traffic compatible trajectory changes that would be beneficial to the flight. A fast-time simulation study was conducted to assess the benefits of TASAR to Alaska Airlines. The simulation compares historical trajectories without TASAR to trajectories developed with TASAR and evaluated by controllers against their objectives. It was estimated that between 8,000 and 12,000 gallons of fuel and 900 to 1,300 minutes could be saved annually per aircraft. These savings were applied fleet-wide to produce an estimated annual cost savings to Alaska Airlines in excess of $5 million due to fuel, maintenance, and depreciation cost savings. Switching to a more wind-optimal trajectory was found to be the use case that generated the highest benefits out of the three TASAR use cases analyzed. Alaska TASAR requests peaked at four to eight requests per hour in high-altitude Seattle center sectors south of Seattle-Tacoma airport.

  10. GLOBE Observer and the Association of Science & Technology Centers: Leveraging Citizen Science and Partnerships for an International Science Experiment to Build Climate Literacy

    Science.gov (United States)

    Riebeek Kohl, H.; Chambers, L. H.; Murphy, T.

    2016-12-01

    For more that 20 years, the Global Learning and Observations to Benefit the Environment (GLOBE) Program has sought to increase environment literacy in students by involving them in the process of data collection and scientific research. In 2016, the program expanded to accept observations from citizen scientists of all ages through a relatively simple app. Called GLOBE Observer, the new program aims to help participants feel connected to a global community focused on advancing the scientific understanding of Earth system science while building climate literacy among participants and increasing valuable environmental data points to expand both student and scientific research. In October 2016, GLOBE Observer partnered with the Association of Science & Technology Centers (ASTC) in an international science experiment in which museums and patrons around the world collected cloud observations through GLOBE Observer to create a global cloud map in support of NASA satellite science. The experiment was an element of the International Science Center and Science Museum Day, an event planned in partnership with UNESCO and ASTC. Museums and science centers provided the climate context for the observations, while GLOBE Observer offered a uniform experience and a digital platform to build a connected global community. This talk will introduce GLOBE Observer and will present the results of the experiment, including evaluation feedback on gains in climate literacy through the event.

  11. Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle

    Science.gov (United States)

    2015-08-03

    AND SUBTITLE Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle...Center program to be able to expose Science Technology, Engineering and Mathematics (STEM) space-inspired science centers for DC Metro beltway schools

  12. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    Science.gov (United States)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts

  13. Digital Learning Compass: Distance Education State Almanac 2017. Alaska

    Science.gov (United States)

    Seaman, Julia E.; Seaman, Jeff

    2017-01-01

    This brief report uses data collected under the U.S. Department of Education's National Center for Educational Statistics (NCES) Integrated Postsecondary Education Data System (IPEDS) Fall Enrollment survey to highlight distance education data in the state of Alaska. The sample for this analysis is comprised of all active, degree-granting…

  14. The National Climate Change and Wildlife Science Center annual report for 2013

    Science.gov (United States)

    Varela-Acevedo, Elda

    2014-01-01

    In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to respond to the demands of natural resource managers for rigorous scientific information and effective tools for assessing and responding to climate change. Located at the USGS National Headquarters in Reston, Va., the NCCWSC has invested more than $93 million (through FY13) in cutting-edge climate change research and, in response to Secretarial Order No. 3289, established and is managing eight regional Department of Interior (DOI) Climate Science Centers (CSCs). In 2013:

  15. 77 FR 51564 - Notice of Inventory Completion: Herrett Center for Arts and Science, College of Southern Idaho...

    Science.gov (United States)

    2012-08-24

    ... Inventory Completion: Herrett Center for Arts and Science, College of Southern Idaho, Twin Falls, ID AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Herrett Center for Arts and Science, College... associated funerary object may contact the Herrett Center for Arts and Science, College of Southern Idaho...

  16. Using science centers to expose the general public to the microworld

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, E. [Fermi National Accelerator Lab., Batavia, IL (United States)]|[Science and Technology Interactive Center, Aurora, IL (United States)

    1994-08-01

    Despite the remarkable progress in the past decades in understanding our Universe, we particle physicists have failed to communicate the wonder, excitement, and beauty of these discoveries to the general public. I am sure all agree there is a need, if our support from public funds is to continue at anywhere approximating the present level, for us collectively to educate and inform the general public of what we are doing and why. Informal science education and especially science and technology centers can play an important role in efforts to raise public awareness of particle physics in particular and of basic research in general. Science Centers are a natural avenue for particle physicists to use to communicate with and gain support from the general public.

  17. Using science centers to expose the general public to the microworld

    International Nuclear Information System (INIS)

    Malamud, E.

    1994-08-01

    Despite the remarkable progress in the past decades in understanding our Universe, we particle physicists have failed to communicate the wonder, excitement, and beauty of these discoveries to the general public. I am sure all agree there is a need, if our support from public funds is to continue at anywhere approximating the present level, for us collectively to educate and inform the general public of what we are doing and why. Informal science education and especially science and technology centers can play an important role in efforts to raise public awareness of particle physics in particular and of basic research in general. Science Centers are a natural avenue for particle physicists to use to communicate with and gain support from the general public

  18. An Exploration of Hispanic Mothers' Culturally Sustaining Experiences at an Informal Science Center

    Science.gov (United States)

    Weiland, Ingrid

    2015-01-01

    Science education reform focuses on learner-centered instruction within contexts that support learners' sociocultural experiences. The purpose of this study was to explore Hispanic mothers' experiences as accompanying adults at an informal science center within the context of culturally sustaining experiences, which include the fluidity…

  19. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Hules, J. [ed.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  20. SNU-KAERI Degree and Research Center for Radiation Convergence Sciences

    International Nuclear Information System (INIS)

    Jo, Sungkee; Kim, S. U.; Roh, C. H

    2011-12-01

    In this study, we tried to establish and perform the demonstrative operation of the 'Degree and Research Center for Radiation Convergence Sciences' to raise the Korea's technology competitiveness. As results of this project we got the successful accomplishment as below: 1. Operation of Degree and Research Center for Radiation Convergence Sciences and establishment of expert researcher training system Ο Presentation of an efficient model for expert researcher training program through the operation of university-institute collaboration courses by combining of Graduate course and DRC system. Ο Radiation Convergence Sciences major is scheduled to be established in 2013 at SNU Graduate School of Convergence Science and Technology Ο A big project for research, education, and training of radiation convergence science is under planning 2. Establishment and conduction of joint research by organization of radiation convergence research consortium · Joint research was conducted in close connection with the research projects of researchers participating in this DRC project (44 articles published in journals, 6 patents applied, 88 papers presented in conferences) · The resources of the two organization (SNU and KAERI), such as research infrastructure (hightech equipment and etc), manpower (professor/researcher), and original technology and know how were utilized to conduct the joint research and to establish the collaboration system of the two organizations

  1. The Alaska North Slope spill analysis

    International Nuclear Information System (INIS)

    Pearson, Leslie; Robertson, Tim L.; DeCola, Elise; Rosen, Ira

    2011-01-01

    This paper reports Alaska North Slope crude oil spills, provides information to help operators identify risks and presents recommendations for future risk reduction and mitigation measures that may reduce the frequency and severity of future spills from piping infrastructure integrity loss. The North Slope spills analysis project was conducted during 2010 by compiling available spill data, and analyzing the cause of past spills in wells and associated piping, flowlines, process centers with their associated piping and above ground storage tanks, and crude oil transmission pipelines. An expert panel, established to provide independent review of this analysis and the presented data, identified seven recommendations on measures, programs, and practices to monitor and address common causes of failures while considering information provided from regulators and operators. These recommendations must be evaluated by the State of Alaska which will consider implementation options to move forward. Based on the study observations, future analyses may show changes to some of the observed trends.

  2. Narrative as a learning tool in science centers : potentials, possibilities and merits

    NARCIS (Netherlands)

    Murmann, Mai; Avraamidou, Lucy

    2014-01-01

    In this theoretical paper we explore the use of narrative as a learning tool in informal science settings. Specifically, the purpose of this paper is to ex-plore how narrative can be applied to exhibits in the context of science centers to scaffold visitors science learning. In exploring this idea,

  3. Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is the home (archive) of Precipitation, Atmospheric Chemistry and Dynamics, and...

  4. Increasing insect reactions in Alaska: is this related to changing climate?

    Science.gov (United States)

    Demain, Jeffrey G; Gessner, Bradford D; McLaughlin, Joseph B; Sikes, Derek S; Foote, J Timothy

    2009-01-01

    In 2006, Fairbanks, AK, reported its first cases of fatal anaphylaxis as a result of Hymenoptera stings concurrent with an increase in insect reactions observed throughout the state. This study was designed to determine whether Alaska medical visits for insect reactions have increased. We conducted a retrospective review of three independent patient databases in Alaska to identify trends of patients seeking medical care for adverse reactions after insect-related events. For each database, an insect reaction was defined as a claim for the International Classification of Diseases, Ninth Edition (ICD-9), codes E9053, E906.4, and 989.5. Increases in insect reactions in each region were compared with temperature changes in the same region. Each database revealed a statistically significant trend in patients seeking care for insect reactions. Fairbanks Memorial Hospital Emergency Department reported a fourfold increase in patients in 2006 compared with previous years (1992-2005). The Allergy, Asthma, and Immunology Center of Alaska reported a threefold increase in patients from 1999 to 2002 to 2003 to 2007. A retrospective review of the Alaska Medicaid database from 1999 to 2006 showed increases in medical claims for insect reactions among all regions, with the largest percentage of increases occurring in the most northern areas. Increases in insect reactions in Alaska have occurred after increases in annual and winter temperatures, and these findings may be causally related.

  5. Small cetacean aerial survey conducted in Alaskan waters by Alaska Fisheries Science Center, National Marine Mammal Laboratory from 1997-05-08 to 1999-07-04 (NCEI Accession 0131991)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerial surveys were conducted to produce abundance estimates for the three Alaska stocks of harbor porpoise. Surveys occurred from May to July 1997 for the Southeast...

  6. Climate change and health effects in Northwest Alaska

    Directory of Open Access Journals (Sweden)

    Michael Brubaker

    2011-10-01

    Full Text Available This article provides examples of adverse health effects, including weather-related injury, food insecurity, mental health issues, and water infrastructure damage, and the responses to these effects that are currently being applied in two Northwest Alaska communities.In Northwest Alaska, warming is resulting in a broad range of unusual weather and environmental conditions, including delayed freeze-up, earlier breakup, storm surge, coastal erosion, and thawing permafrost. These are just some of the climate impacts that are driving concerns about weather-related injury, the spread of disease, mental health issues, infrastructure damage, and food and water security. Local leaders are challenged to identify appropriate adaptation strategies to address climate impacts and related health effects.The tribal health system is combining local observations, traditional knowledge, and western science to perform community-specific climate change health impact assessments. Local leaders are applying this information to develop adaptation responses.The Alaska Native Tribal Health Consortium will describe relationships between climate impacts and health effects and provide examples of community-scaled adaptation actions currently being applied in Northwest Alaska.Climate change is increasing vulnerability to injury, disease, mental stress, food insecurity, and water insecurity. Northwest communities are applying adaptation approaches that are both specific and appropriate.The health impact assessment process is effective in raising awareness, encouraging discussion, engaging partners, and implementing adaptation planning. With community-specific information, local leaders are applying health protective adaptation measures.

  7. The Kepler Science Operations Center Pipeline Framework Extensions

    Science.gov (United States)

    Klaus, Todd C.; Cote, Miles T.; McCauliff, Sean; Girouard, Forrest R.; Wohler, Bill; Allen, Christopher; Chandrasekaran, Hema; Bryson, Stephen T.; Middour, Christopher; Caldwell, Douglas A.; hide

    2010-01-01

    The Kepler Science Operations Center (SOC) is responsible for several aspects of the Kepler Mission, including managing targets, generating on-board data compression tables, monitoring photometer health and status, processing the science data, and exporting the pipeline products to the mission archive. We describe how the generic pipeline framework software developed for Kepler is extended to achieve these goals, including pipeline configurations for processing science data and other support roles, and custom unit of work generators that control how the Kepler data are partitioned and distributed across the computing cluster. We describe the interface between the Java software that manages the retrieval and storage of the data for a given unit of work and the MATLAB algorithms that process these data. The data for each unit of work are packaged into a single file that contains everything needed by the science algorithms, allowing these files to be used to debug and evolve the algorithms offline.

  8. DOE/NREL supported wind energy activities in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Drouilhet, S.

    1997-12-01

    This paper describes three wind energy projects implemented in Alaska. The first, a sustainable technology energy partnerships (STEP) wind energy deployment project in Kotzebue will install 6 AOC 15/50 wind turbines and connect to the existing village diesel grid, consisting of approximately 1 MW average load. It seeks to develop solutions to the problems of arctic wind energy installations (transport, foundations, erection, operation, and maintenance), to establish a wind turbine test site, and to establish the Kotzebue Electric Association as a training and deployment center for wind/diesel technology in rural Alaska. The second project, a large village medium-penetration wind/diesel system, also in Kotzebue, will install a 1-2 MW windfarm, which will supplement the AOC turbines of the STEP project. The program will investigate the impact of medium penetration wind energy on power quality and system stability. The third project, the Alaska high-penetration wind/diesel village power pilot project in Wales will install a high penetration (80-100%) wind/diesel system in a remote Alaskan village. The system will include about 180 kW installed wind capacity, meeting an average village load of about 60 kW. This program will provide a model for high penetration wind retrofits to village diesel power systems and build the capability in Alaska to operate, maintain, and replicate wind/diesel technology. The program will also address problems of: effective use of excess wind energy; reliable diesel-off operation; and the role of energy storage.

  9. Alaska Seismic Network Upgrade and Expansion

    Science.gov (United States)

    Sandru, J. M.; Hansen, R. A.; Estes, S. A.; Fowler, M.

    2009-12-01

    AEIC (Alaska Earthquake Information Center) has begun the task of upgrading the older regional seismic monitoring sites that have been in place for a number of years. Many of the original sites (some dating to the 1960's) are still single component analog technology. This was a very reasonable and ultra low power reliable system for its day. However with the advanced needs of today's research community, AEIC has begun upgrading to Broadband and Strong Motion Seismometers, 24 bit digitizers and high-speed two-way communications, while still trying to maintain the utmost reliability and maintaining low power consumption. Many sites have been upgraded or will be upgraded from single component to triaxial broad bands and triaxial accerometers. This provided much greater dynamic range over the older antiquated technology. The challenge is compounded by rapidly changing digital technology. Digitizersand data communications based on analog phone lines utilizing 9600 baud modems and RS232 are becoming increasingly difficult to maintain and increasingly expensive compared to current methods that use Ethernet, TCP/IP and UDP connections. Gaining a reliable Internet connection can be as easy as calling up an ISP and having a DSL connection installed or may require installing our own satellite uplink, where other options don't exist. LANs are accomplished with a variety of communications devices such as spread spectrum 900 MHz radios or VHF radios for long troublesome shots. WANs are accomplished with a much wider variety of equipment. Traditional analog phone lines are being used in some instances, however 56K lines are much more desirable. Cellular data links have become a convenient option in semiurban environments where digital cellular coverage is available. Alaska is slightly behind the curve on cellular technology due to its low population density and vast unpopulated areas but has emerged into this new technology in the last few years. Partnerships with organizations

  10. Review of the Lujan neutron scattering center: basic energy sciences prereport February 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

    2009-01-01

    The Lujan Neutron Scattering Center (Lujan Center) at LANSCE is a designated National User Facility for neutron scattering and nuclear physics studies with pulsed beams of moderated neutrons (cold, thermal, and epithermal). As one of five experimental areas at the Los Alamos Neutron Science Center (LANSCE), the Lujan Center hosts engineers, scientists, and students from around the world. The Lujan Center consists of Experimental Room (ER) 1 (ERl) built by the Laboratory in 1977, ER2 built by the Office of Basic Energy Sciences (BES) in 1989, and the Office Building (622) also built by BES in 1989, along with a chem-bio lab, a shop, and other out-buildings. According to a 1996 Memorandum of Agreement (MOA) between the Defense Programs (DP) Office of the National Nuclear Security Agency (NNSA) and the Office of Science (SC, then the Office of Energy Research), the Lujan Center flight paths were transferred from DP to SC, including those in ERI. That MOA was updated in 2001. Under the MOA, NNSA-DP delivers neutron beam to the windows of the target crypt, outside of which BES becomes the 'landlord.' The leveraging nature of the Lujan Center on the LANSCE accelerator is a substantial annual leverage to the $11 M BES operating fund worth approximately $56 M operating cost of the linear accelerator (LINAC)-in beam delivery.

  11. U.S. Department of the Interior South Central Climate Science Center strategic science plan, 2013--18

    Science.gov (United States)

    Winton, Kim T.; Dalton, Melinda S.; Shipp, Allison A.

    2013-01-01

    The Department of the Interior (DOI) recognizes and embraces the unprecedented challenges of maintaining our Nation’s rich natural and cultural resources in the 21st century. The magnitude of these challenges demands that the conservation community work together to develop integrated adaptation and mitigation strategies that collectively address the impacts of climate change and other landscape-scale stressors. On September 14, 2009, DOI Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010) entitled, “Addressing the Impacts of Climate Change on America’s Water, Land, and Other Natural and Cultural Resources.” The Order establishes the foundation for two partner-based conservation science entities to address these unprecedented challenges: Climate Science Centers (CSCs and Landscape Conservation Cooperatives (LCCs). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase understanding of climate change and to coordinate an effective response to its impacts on tribes and the land, water, ocean, fish and wildlife, and cultural-heritage resources that DOI manages. Eight CSCs have been established and are managed through the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC); each CSC works in close collaboration with their neighboring CSCs, as well as those across the Nation, to ensure the best and most efficient science is produced. The South Central CSC was established in 2012 through a cooperative agreement with the University of Oklahoma, Texas Tech University, Louisiana State University, the Chickasaw Nation, the Choctaw Nation of Oklahoma, Oklahoma State University, and NOAA’s Geophysical Fluid Dynamics Lab; hereafter termed the ”Consortium” of the South Central CSC. The Consortium has a broad expertise in the physical, biological, natural, and social sciences to address impacts of climate change on land, water, fish and wildlife, ocean, coastal, and

  12. Remote-site power generation opportunities for Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M.L.

    1997-03-01

    The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power, reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  13. A phenomenological investigation of science center exhibition developers' expertise development

    Science.gov (United States)

    Young, Denise L.

    The purpose of this study was to examine the exhibition developer role in the context of United States (U.S.) science centers, and more specifically, to investigate the way science center exhibition developers build their professional expertise. This research investigated how successfully practicing exhibition developers described their current practices, how they learned to be exhibition developers, and what factors were the most important to the developers in building their professional expertise. Qualitative data was gathered from 10 currently practicing exhibition developers from three science centers: the Exploratorium, San Francisco, California; the Field Museum, Chicago, Illinois; and the Science Museum of Minnesota, St. Paul, Minnesota. In-depth, semistructured interviews were used to collect the data. The study embraced aspects of the phenomenological tradition and sought to derive a holistic understanding of the position and how expertise was built for it. The data were methodically coded and organized into themes prior to analysis. The data analysis found that the position consisted of numerous and varied activities, but the developers' primary roles were advocating for the visitor, storytelling, and mediating information and ideas. They conducted these activities in the context of a team and relied on an established exhibition planning process to guide their work. Developers described a process of learning exhibition development that was experiential in nature. Learning through daily practice was key, though they also consulted with mentors and relied on visitor studies to gauge the effectiveness of their work. They were adept at integrating prior knowledge gained from many aspects of their lives into their practice. The developers described several internal factors that contributed to their expertise development including the desire to help others, a natural curiosity about the world, a commitment to learning, and the ability to accept critique. They

  14. Science teacher learning for MBL-supported student-centered science education in the context of secondary education in Tanzania

    NARCIS (Netherlands)

    Voogt, Joke; Tilya, F.; van den Akker, Jan

    2009-01-01

    Science teachers from secondary schools in Tanzania were offered an in-service arrangement to prepare them for the integration of technology in a student-centered approach to science teaching. The in-service arrangement consisted of workshops in which educative curriculum materials were used to

  15. “Not Designed for Us”: How Science Museums and Science Centers Socially Exclude Low-Income, Minority Ethnic Groups

    Science.gov (United States)

    Dawson, Emily

    2014-01-01

    This paper explores how people from low-income, minority ethnic groups perceive and experience exclusion from informal science education (ISE) institutions, such as museums and science centers. Drawing on qualitative data from four focus groups, 32 interviews, four accompanied visits to ISE institutions, and field notes, this paper presents an analysis of exclusion from science learning opportunities during visits alongside participants’ attitudes, expectations, and conclusions about participation in ISE. Participants came from four community groups in central London: a Sierra Leonean group (n = 21), a Latin American group (n = 18), a Somali group (n = 6), and an Asian group (n = 13). Using a theoretical framework based on the work of Bourdieu, the analysis suggests ISE practices were grounded in expectations about visitors’ scientific knowledge, language skills, and finances in ways that were problematic for participants and excluded them from science learning opportunities. It is argued that ISE practices reinforced participants preexisting sense that museums and science centers were “not for us.” The paper concludes with a discussion of the findings in relation to previous research on participation in ISE and the potential for developing more inclusive informal science learning opportunities. PMID:25574059

  16. A Framework for Culturally Relevant Online Learning: Lessons from Alaska's Tribal Health Workers.

    Science.gov (United States)

    Cueva, Katie; Cueva, Melany; Revels, Laura; Lanier, Anne P; Dignan, Mark; Viswanath, K; Fung, Teresa T; Geller, Alan C

    2018-03-22

    Culturally relevant health promotion is an opportunity to reduce health inequities in diseases with modifiable risks, such as cancer. Alaska Native people bear a disproportionate cancer burden, and Alaska's rural tribal health workers consequently requested cancer education accessible online. In response, the Alaska Native Tribal Health Consortium cancer education team sought to create a framework for culturally relevant online learning to inform the creation of distance-delivered cancer education. Guided by the principles of community-based participatory action research and grounded in empowerment theory, the project team conducted a focus group with 10 Alaska Native education experts, 12 culturally diverse key informant interviews, a key stakeholder survey of 62 Alaska Native tribal health workers and their instructors/supervisors, and a literature review on distance-delivered education with Alaska Native or American Indian people. Qualitative findings were analyzed in Atlas.ti, with common themes presented in this article as a framework for culturally relevant online education. This proposed framework includes four principles: collaborative development, interactive content delivery, contextualizing learning, and creating connection. As an Alaskan tribal health worker shared "we're all in this together. All about conversations, relationships. Always learn from you/with you, together what we know and understand from the center of our experience, our ways of knowing, being, caring." The proposed framework has been applied to support cancer education and promote cancer control with Alaska Native people and has motivated health behavior change to reduce cancer risk. This framework may be adaptable to other populations to guide effective and culturally relevant online interventions.

  17. Molecular Science Research Center, 1991 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1992-03-01

    During 1991, the Molecular Science Research Center (MSRC) experienced solid growth and accomplishment and the Environmental, and Molecular Sciences Laboratory (EMSL) construction project moved forward. We began with strong programs in chemical structure and dynamics and theory, modeling, and simulation, and both these programs continued to thrive. We also made significant advances in the development of programs in materials and interfaces and macromolecular structure and dynamics, largely as a result of the key staff recruited to lead these efforts. If there was one pervasive activity for the past year, however, it was to strengthen the role of the EMSL in the overall environmental restoration and waste management (ER/WM) mission at Hanford. These extended activities involved not only MSRC and EMSL staff but all PNL scientific and technical staff engaged in ER/WM programs.

  18. Alaska Satellite Facility: The Quest to Stay Ahead of the Big Data Wave

    Science.gov (United States)

    Labelle-Hamer, A. L.; Nicoll, J.; Munk, S.

    2014-12-01

    Big Data is getting bigger. Fast enough is getting faster. The number and type of products produced is growing. The ideas on how to handle the day-to-day management of data and data systems need to scale with the data and the demand. We have seen the effects of rapid growth spurts at the Alaska Satellite Facility (ASF) and anticipate we are not done yet. Looking back, ASF was conceived in 1982 to be a single-purpose imaging radar receiving station supporting a science team focused on geophysical processes. The primary construction at the University of Alaska Fairbanks (UAF) was completed in 1988 and full operational status achieved in 1991. The expected supports were estimated at 10 minutes per day and quickly grew to 70 minutes per day. In 1994, a Memorandum of Agreement (MOA) between NASA and UAF formed the ASF Distributed Active Archive Center (DAAC) complementing, the existing agreement for ASF. The demand for the use of ASF as a receiving station and as a data center grew as fast as, and at times faster, than the capabilities. Looking forward, as demand drives the system larger just adding on more of the same often complicates rather than simplifies the system. A growing percentage of efforts and resources spent on dealing with problems that originate from a legacy system can creep up on an organization. This in turn limits the ability to keep the overall sustaining costs under control and leads to a crisis. Such growth means more-of-the-same philosophy has to shift into change-or-die philosophy in order to boot strap up to the next level. In this talk, we review how ASF has faced this several times in the past as the volume and demand of data grew along with the technology to acquire and disseminate it. We will look at what is coming for ASF as a data center and what we think are the next steps to stay ahead of the Big Data wave.

  19. [Science and society. Guidelines for the Leopoldina Study Center].

    Science.gov (United States)

    Hacker, Jörg

    2014-01-01

    In order to adequately perform its many diverse tasks as a scholars' society and as the German National Academy of Sciences, the Deutsche Akademie der Naturforscher Leopoldina needs to view itself in a historical context. This can only happen as part of a culture of remembrance which fosters the memory of the Leopoldina's past and subjects this to a critical analysis in the context of the history of science and academies. The newly founded Leopoldina Study Center for the History of Science and Science Academies is to be a forum that pursues established forms of historical research at the Leopoldina, organizes new scientific projects, and presents its findings to the public. The aim is to involve as many Leopoldina members as possible from all of its disciplines, as well as to collaborate with national and international partners.

  20. Jackson State University (JSU)’s Center of Excellence in Science, Technology, Engineering, and Mathematics Education (CESTEME)

    Science.gov (United States)

    2016-01-08

    Actuarial Science Taylor, Triniti Lanier Alcorn State University Animal Science Tchounwou, Hervey Madison Central Jackson State University Computer...for Public Release; Distribution Unlimited Final Report: Jackson State University (JSU)’s Center of Excellence in Science , Technology, Engineering...Final Report: Jackson State University (JSU)’s Center of Excellence in Science , Technology, Engineering, and Mathematics Education (CESTEME) Report

  1. SWFSC/MMTD: Collaborative Large Whale Survey (CLaWS) 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Collaborative Large Whale Survey is a joint field effort by Southwest Fisheries Science Center (SWFSC) and Alaska Fisheries Science Center (AFSC). The 4-month...

  2. Status of the TESS Science Processing Operations Center

    Science.gov (United States)

    Jenkins, Jon Michael; Caldwell, Douglas A.; Davies, Misty; Li, Jie; Morris, Robert L.; Rose, Mark; Smith, Jeffrey C.; Tenenbaum, Peter; Ting, Eric; Twicken, Joseph D.; Wohler, Bill

    2018-06-01

    The Transiting Exoplanet Survey Satellite (TESS) was selected by NASA’s Explorer Program to conduct a search for Earth’s closest cousins starting in 2018. TESS will conduct an all-sky transit survey of F, G and K dwarf stars between 4 and 12 magnitudes and M dwarf stars within 200 light years. TESS is expected to discover 1,000 small planets less than twice the size of Earth, and to measure the masses of at least 50 of these small worlds. The TESS science pipeline is being developed by the Science Processing Operations Center (SPOC) at NASA Ames Research Center based on the highly successful Kepler science pipeline. Like the Kepler pipeline, the TESS pipeline provides calibrated pixels, simple and systematic error-corrected aperture photometry, and centroid locations for all 200,000+ target stars observed over the 2-year mission, along with associated uncertainties. The pixel and light curve products are modeled on the Kepler archive products and will be archived to the Mikulski Archive for Space Telescopes (MAST). In addition to the nominal science data, the 30-minute Full Frame Images (FFIs) simultaneously collected by TESS will also be calibrated by the SPOC and archived at MAST. The TESS pipeline searches through all light curves for evidence of transits that occur when a planet crosses the disk of its host star. The Data Validation pipeline generates a suite of diagnostic metrics for each transit-like signature, and then extracts planetary parameters by fitting a limb-darkened transit model to each potential planetary signature. The results of the transit search are modeled on the Kepler transit search products (tabulated numerical results, time series products, and pdf reports) all of which will be archived to MAST. Synthetic sample data products are available at https://archive.stsci.edu/tess/ete-6.html.Funding for the TESS Mission has been provided by the NASA Science Mission Directorate.

  3. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    Science.gov (United States)

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  4. Next generation neutron scattering at Neutron Science Center project in JAERI

    International Nuclear Information System (INIS)

    Yamada, Yasusada; Watanabe, Noboru; Niimura, Nobuo; Morii, Yukio; Katano, Susumu; Aizawa, Kazuya; Suzuki, Jun-ichi; Koizumi, Satoshi; Osakabe, Toyotaka.

    1997-01-01

    Japan Atomic Energy Research Institute (JAERI) has promoted neutron scattering researches by means of research reactors in Tokai Research Establishment, and proposes 'Neutron Science Research Center' to develop the future prospect of the Tokai Research Establishment. The scientific fields which will be expected to progress by the neutron scattering experiments carried out at the proposed facility in the Center are surveyed. (author)

  5. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Environmental Science Information Center (ESIC). 950.6 Section 950.6 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE...

  6. Science Center Public Forums: Engaging Lay-Publics in Resilience Deliberations Through Informal Science Education

    Science.gov (United States)

    Sittenfeld, D.; Choi, F.; Farooque, M.; Helmuth, B.

    2017-12-01

    Because climate hazards present a range of potential impacts and considerations for different kinds of stakeholders, community responses to increase resilience are best considered through the inclusion of diverse, informed perspectives. The Science Center Public Forums project has created multifaceted modules to engage diverse publics in substantive deliberations around four hazards: heat waves, drought, extreme precipitation, and sea level rise. Using a suite of background materials including visualization and narrative components, each of these daylong dialogues engage varied groups of lay-participants at eight US science centers in learning about hazard vulnerabilities and tradeoffs of proposed strategies for building resilience. Participants listen to and consider the priorities and perspectives of fellow residents and stakeholders, and work together to formulate detailed resilience plans reflecting both current science and informed public values. Deliverables for the project include visualizations of hazard vulnerabilities and strategies through immersive planetarium graphics and Google Earth, stakeholder perspective narratives, and detailed background materials for each project hazard. This session will: communicate the process for developing the hazard modules with input from subject matter experts, outline the process for iterative revisions based upon findings from formative focus groups, share results generated by participants of the project's first two pilot forums, and describe plans for broader implementation. These activities and outcomes could help to increase the capacity of informal science education institutions as trusted conveners for informed community dialogue by educating residents about vulnerabilities and engaging them in critical thinking about potential policy responses to critical climate hazards while sharing usable public values and priorities with civic planners.

  7. From Texas to Alaska: Leading Hearing Impaired Elementary Students in Texas to Engage in Science of the Northern Lights Performed in Alaska.

    Science.gov (United States)

    Jahn, J. M.; Ibarra, S.; Pfeifer, M. D.; Samara, M.; Michell, R.

    2014-12-01

    Interacting with hearing impaired students who communicate using auditory/oral methods provides challenges and opportunities to education/outreach activities. Despite many advances in assistive technologies, these hearing impaired students will learn much less incidentally than their peers with typical hearing. In other words, they will often require repeated auditory and perhaps visual reinforcement in order to learn a new word or a new concept. This need leads to a much more deliberate and conscious interaction between educators or scientists and the students. We are reporting from a unique joint project between the Sunshine Cottage School for Deaf Children and the Southwest Research Institute (SwRI), to bring actual space research to life for hearing impaired elementary school students. During this project, we combined the unique capabilities of Deaf Education educators with the excitement and wonder of researching the northern lights. For three consecutive winters, we conducted a series of informal yet structured activities each year with fourth and fifth grade students. Our interactions went beyond typical classroom activities and readily available educational materials. Our goal was to engage and excite the students. To do so, we set up a series of interactions and mini-projects that introduced the students to actual research and actual researchers. From "meet the scientists" visits to school over a field trip to the SwRI space research facilities to observing and predicting the aurora using real-time space weather data, we engaged students in the "who" and "how" of doing research and field work in Alaska's winter. Over the course of this project, students connected with a remote school in the interior of Alaska, participated in the excitement of a NASA sounding rocket campaign in in Poker Flat, AK, skyped with researchers and students in Alaska, and made aurora predictions using NOAA real time space weather data. The highlight of the program each year was

  8. Alaska Administrative Manual

    Science.gov (United States)

    Search the Division of Finance site DOF State of Alaska Finance Home Content Area Accounting Charge Cards Division of Finance is to provide accounting, payroll, and travel services for State government Top Department of Administration logo Alaska Department of Administration Division of Finance Search

  9. Alaska communities and forest environments: a problem analysis and research agenda.

    Science.gov (United States)

    Linda E. Kruger; Rhonda L. Mazza

    2006-01-01

    This problem analysis describes a variety of human-resource interaction issues and identifies related social science research and development needs that serve as the foundation for the Alaska Communities and Forest Environments Team within the Pacific Northwest Research Station. The document lays out a research agenda that focuses on understanding relations between...

  10. A Computer Learning Center for Environmental Sciences

    Science.gov (United States)

    Mustard, John F.

    2000-01-01

    In the fall of 1998, MacMillan Hall opened at Brown University to students. In MacMillan Hall was the new Computer Learning Center, since named the EarthLab which was outfitted with high-end workstations and peripherals primarily focused on the use of remotely sensed and other spatial data in the environmental sciences. The NASA grant we received as part of the "Centers of Excellence in Applications of Remote Sensing to Regional and Global Integrated Environmental Assessments" was the primary source of funds to outfit this learning and research center. Since opening, we have expanded the range of learning and research opportunities and integrated a cross-campus network of disciplines who have come together to learn and use spatial data of all kinds. The EarthLab also forms a core of undergraduate, graduate, and faculty research on environmental problems that draw upon the unique perspective of remotely sensed data. Over the last two years, the Earthlab has been a center for research on the environmental impact of water resource use in and regions, impact of the green revolution on forest cover in India, the design of forest preserves in Vietnam, and detailed assessments of the utility of thermal and hyperspectral data for water quality analysis. It has also been used extensively for local environmental activities, in particular studies on the impact of lead on the health of urban children in Rhode Island. Finally, the EarthLab has also served as a key educational and analysis center for activities related to the Brown University Affiliated Research Center that is devoted to transferring university research to the private sector.

  11. Geologic framework of the Alaska Peninsula, southwest Alaska, and the Alaska Peninsula terrane

    Science.gov (United States)

    Wilson, Frederic H.; Detterman, Robert L.; DuBois, Gregory D.

    2015-01-01

    The Alaska Peninsula is composed of the late Paleozoic to Quaternary sedimentary, igneous, and minor metamorphic rocks that record the history of a number of magmatic arcs. These magmatic arcs include an unnamed Late Triassic(?) and Early Jurassic island arc, the early Cenozoic Meshik arc, and the late Cenozoic Aleutian arc. Also found on the Alaska Peninsula is one of the most complete nonmetamorphosed, fossiliferous, marine Jurassic sedimentary sections known. As much as 8,500 m of section of Mesozoic sedimentary rocks record the growth and erosion of the Early Jurassic island arc.

  12. LearnAlaska Portal

    Science.gov (United States)

    Search the Division of Finance site DOF State of Alaska Finance Home Content Area Accounting Charge Cards Mission Statement The mission of the Division of Finance is to provide accounting, payroll, and travel Top Department of Administration logo Alaska Department of Administration Division of Finance Search

  13. NASA Langley Atmospheric Science Data Centers Near Real-Time Data Products

    Science.gov (United States)

    Davenport, T.; Parker, L.; Rinsland, P. L.

    2014-12-01

    Over the past decade the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center has archived and distributed a variety of satellite mission data sets. NASA's goal in Earth science is to observe, understand, and model the Earth system to discover how it is changing, to better predict change, and to understand the consequences for life on Earth. The ASDC has collaborated with Science Teams to accommodate emerging science users in the climate and modeling communities. The ASDC has expanded its original role to support operational usage by related Earth Science satellites, support land and ocean assimilations, support of field campaigns, outreach programs, and application projects for agriculture and energy industries to bridge the gap between Earth science research results and the adoption of data and prediction capabilities for reliable and sustained use in Decision Support Systems (DSS). For example; these products are being used by the community performing data assimilations to regulate aerosol mass in global transport models to improve model response and forecast accuracy, to assess the performance of components of a global coupled atmospheric-ocean climate model, improve atmospheric motion vector (winds) impact on numerical weather prediction models, and to provide internet-based access to parameters specifically tailored to assist in the design of solar and wind powered renewable energy systems. These more focused applications often require Near Real-Time (NRT) products. Generating NRT products pose their own unique set challenges for the ASDC and the Science Teams. Examples of ASDC NRT products and challenges will be discussed.

  14. AFSC/REFM: Acoustic trawl cooperative survey near Shumagin Islands 2007-2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In May of 2006, scientists from the Alaska Fisheries Science Center participated in a pilot outreach program in Sand Point, Alaska. At the meetings, fishermen raised...

  15. Through the Lens of TEK - Building GeoScience Pathways for American Indian/Alaska Native Students

    Science.gov (United States)

    Thomas, W. J.; van Cooten, S.; Wrege, B.; Wildcat, D.

    2017-12-01

    Native American or American Indian/Alaska Native (AI/AN) students come from diverse communities with indigenous knowledges, perspectives and worldviews. These communities and the students they send into our nation's education systems have cultural connectivity to oral histories, documents, and artwork that details climate cycles and weather events prior to colonization through eras of forced relocation and assimilation. Today, these students are the trailblazers as tribal governments exercise their ownership rights to natural resources and the welfare of their citizens as sovereign nations. In universities, especially tribal colleges, our nation's indigenous students are bridge builders. Through the lens of Traditional Ecological Knowledge (TEK), these students have a unique yet overlooked perspective to merge mainstream research with indigenous knowledge systems to develop practical sustainable solutions for local, regional and international resource management issues. The panel will discuss barriers, such as underdeveloped geophysical science curricula at tribal colleges, that limit the pool of indigenous geoscience graduates and examine possible strategies such as entry point opportunities and partnerships, mentoring, and community relevant research experiences, to eliminate barriers that limit the influx of TEK in resiliency planning.

  16. Gifted and Talented Students' Views about Biology Activities in a Science and Art Center

    Science.gov (United States)

    Özarslan, Murat; Çetin, Gülcan

    2018-01-01

    The aim of the study was to determine gifted and talented students' views about biology activities in a science and art center. The study was conducted with 26 gifted and talented students who studied at a science and art center in southwestern Turkey. Students studied animal and plant genus and species in biology activities. Data were collected…

  17. Energy Science and Technology Software Center

    Energy Technology Data Exchange (ETDEWEB)

    Kidd, E.M.

    1995-03-01

    The Energy Science and Technology Software Center (ESTSC), is the U.S. Department of Energy`s (DOE) centralized software management facility. It is operated under contract for the DOE Office of Scientific and Technical Information (OSTI) and is located in Oak Ridge, Tennessee. The ESTSC is authorized by DOE and the U.S. Nuclear Regulatory Commission (NRC) to license and distribute DOE-and NRC-sponsored software developed by national laboratories and other facilities and by contractors of DOE and NRC. ESTSC also has selected software from the Nuclear Energy Agency (NEA) of the Organisation for Economic Cooperation and Development (OECD) through a software exchange agreement that DOE has with the agency.

  18. Photometric Analysis in the Kepler Science Operations Center Pipeline

    Science.gov (United States)

    Twicken, Joseph D.; Clarke, Bruce D.; Bryson, Stephen T.; Tenenbaum, Peter; Wu, Hayley; Jenkins, Jon M.; Girouard, Forrest; Klaus, Todd C.

    2010-01-01

    We describe the Photometric Analysis (PA) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this module are to compute the photometric flux and photocenters (centroids) for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) stellar targets from the calibrated pixels in their respective apertures. We discuss the science algorithms for long and short cadence PA: cosmic ray cleaning; background estimation and removal; aperture photometry; and flux-weighted centroiding. We discuss the end-to-end propagation of uncertainties for the science algorithms. Finally, we present examples of photometric apertures, raw flux light curves, and centroid time series from Kepler flight data. PA light curves, centroid time series, and barycentric timestamp corrections are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy.

  19. Alaska Public Offices Commission, Department of Administration, State of

    Science.gov (United States)

    Visiting Alaska State Employees State of Alaska Department of Administration Alaska Public Offices Commission Alaska Department of Administration, Alaska Public Offices Commission APOC Home Commission Filer ; AO's Contact Us Administration > Alaska Public Offices Commission Alaska Public Offices Commission

  20. Challenges for Data Archival Centers in Evolving Environmental Sciences

    Science.gov (United States)

    Wei, Y.; Cook, R. B.; Gu, L.; Santhana Vannan, S. K.; Beaty, T.

    2015-12-01

    Environmental science has entered into a big data era as enormous data about the Earth environment are continuously collected through field and airborne missions, remote sensing observations, model simulations, sensor networks, etc. An open-access and open-management data infrastructure for data-intensive science is a major grand challenge in global environmental research (BERAC, 2010). Such an infrastructure, as exemplified in EOSDIS, GEOSS, and NSF EarthCube, will provide a complete lifecycle of environmental data and ensures that data will smoothly flow among different phases of collection, preservation, integration, and analysis. Data archival centers, as the data integration units closest to data providers, serve as the source power to compile and integrate heterogeneous environmental data into this global infrastructure. This presentation discusses the interoperability challenges and practices of geosciences from the aspect of data archival centers, based on the operational experiences of the NASA-sponsored Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) and related environmental data management activities. Specifically, we will discuss the challenges to 1) encourage and help scientists to more actively share data with the broader scientific community, so that valuable environmental data, especially those dark data collected by individual scientists in small independent projects, can be shared and integrated into the infrastructure to tackle big science questions; 2) curate heterogeneous multi-disciplinary data, focusing on the key aspects of identification, format, metadata, data quality, and semantics to make them ready to be plugged into a global data infrastructure. We will highlight data curation practices at the ORNL DAAC for global campaigns such as BOREAS, LBA, SAFARI 2000; and 3) enhance the capabilities to more effectively and efficiently expose and deliver "big" environmental data to broad range of users and systems

  1. 78 FR 50108 - Notice of Intent To Repatriate Cultural Item: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2013-08-16

    ....R50000] Notice of Intent To Repatriate Cultural Item: Rochester Museum & Science Center, Rochester, NY AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Rochester Museum & Science Center... that the cultural item listed in this notice meets the definition of a sacred object and an object of...

  2. 75 FR 57967 - Science Advisory Board to the National Center for Toxicological Research Notice of Meeting

    Science.gov (United States)

    2010-09-23

    ...] Science Advisory Board to the National Center for Toxicological Research Notice of Meeting AGENCY: Food... closed to the public. Name of Committee: Science Advisory Board (SAB) to the National Center for Toxicological Research (NCTR). General Function of the Committee: To provide advice and recommendations to the...

  3. 77 FR 57569 - Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting

    Science.gov (United States)

    2012-09-18

    ...] Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting AGENCY: Food... closed to the public. Name of Committee: Science Advisory Board (SAB) to the National Center for Toxicological Research (NCTR). General Function of the Committee: To provide advice and recommendations to the...

  4. Suborbital Science Program: Dryden Flight Research Center

    Science.gov (United States)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  5. 2004 research briefs :Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  6. Collections management plan for the U.S. Geological Survey Woods Hole Coastal and Marine Science Center Data Library

    Science.gov (United States)

    List, Kelleen M.; Buczkowski, Brian J.; McCarthy, Linda P.; Orton, Alice M.

    2015-08-17

    The U.S. Geological Survey Woods Hole Coastal and Marine Science Center has created a Data Library to organize, preserve, and make available the field, laboratory, and modeling data collected and processed by Woods Hole Coastal and Marine Science Center staff. This Data Library supports current research efforts by providing unique, historic datasets with accompanying metadata. The Woods Hole Coastal and Marine Science Center’s Data Library has custody of historic data and records that are still useful for research, and assists with preservation and distribution of marine science records and data in the course of scientific investigation and experimentation by researchers and staff at the science center.

  7. Academic achievement of American Indian and Alaska native students: Does social-emotional competence reduce the impact of poverty?

    OpenAIRE

    Chain, J; Shapiro, VB; LeBuffe, PA; Bryson, AMK

    2017-01-01

    © Centers for American Indian and Alaska Native Health. Social-emotional competence may be a protective factor for academic achievement among American Indian and Alaska Native (AI/AN) students. This study used Fisher's r to Z transformations to test for group differences in the magnitude of relationships between socialemotional competence and achievement. Hierarchical linear modeling was used to det ermine the variance in academic achievement explained by student race, poverty, and social-emo...

  8. Asthma and American Indians/Alaska Natives

    Science.gov (United States)

    ... Minority Population Profiles > American Indian/Alaska Native > Asthma Asthma and American Indians/Alaska Natives In 2015, 240, ... Native American adults reported that they currently have asthma. American Indian/Alaska Native children are 60% more ...

  9. Deep-seated gravitational slope deformations near the Trans-Alaska Pipeline, east-central Alaska Range, Alaska, USA

    Science.gov (United States)

    Newman, S. D.; Clague, J. J.; Rabus, B.; Stead, D.

    2013-12-01

    Multiple, active, deep-seated gravitational slope deformations (DSGSD) are present near the Trans-Alaska Pipeline and Richardson Highway in the east-central Alaska Range, Alaska, USA. We documented spatial and temporal variations in rates of surface movement of the DSGSDs between 2003 and 2011 using RADARSAT-1 and RADARSAT-2 D-InSAR images. Deformation rates exceed 10 cm/month over very large areas (>1 km2) of many rock slopes. Recent climatic change and strong seismic shaking, especially during the 2002 M 7.9 Denali Fault earthquake, appear to have exacerbated slope deformation. We also mapped DSGSD geological and morphological characteristics using field- and GIS-based methods, and constructed a conceptual 2D distinct-element numerical model of one of the DSGSDs. Preliminary results indicate that large-scale buckling or kink-band slumping may be occurring. The DSGSDs are capable of generating long-runout landslides that might impact the Trans-Alaska Pipeline and Richardson Highway. They could also block tributary valleys, thereby impounding lakes that might drain suddenly. Wrapped 24-day RADARSAT-2 descending spotlight interferogram showing deformation north of Fels Glacier. The interferogram is partially transparent and is overlaid on a 2009 WorldView-1 panchromatic image. Acquisition interval: August 2 - August 26, 2011. UTM Zone 6N.

  10. The lab and the land: overcoming the Arctic in Cold War Alaska.

    Science.gov (United States)

    Farish, Matthew

    2013-03-01

    The militarization of Alaska during and after World War II created an extraordinary set of new facilities. But it also reshaped the imaginative role of Alaska as a hostile environment, where an antagonistic form of nature could be defeated with the appropriate combination of technology and training. One of the crucial sites for this reformulation was the Arctic Aeromedical Laboratory, based at Ladd Air Force Base in Fairbanks. In the first two decades of the Cold War, its employees conducted numerous experiments on acclimatization and survival. The laboratory is now best known for an infamous set of tests involving the application of radioactive tracers to indigenous Alaskans--experiments publicized by post-Cold War panels established to evaluate the tragic history of atomic-era human subject research. But little else has been written about the laboratory's relationship with the populations and landscapes that it targeted for study. This essay presents the laboratory as critical to Alaska's history and the history of the Cold War sciences. A consideration of the laboratory's various projects also reveals a consistent fascination with race. Alaskan Natives were enrolled in experiments because their bodies were understood to hold clues to the mysteries of northern nature. A scientific solution would aid American military campaigns not only in Alaska, but in cold climates everywhere.

  11. Rural Alaska Science and Mathematics Network

    National Research Council Canada - National Science Library

    Brunk, Blanche R

    2005-01-01

    ... and progress in math and science education. The goal of this project was to develop and deliver, both on-site and through distance learning, a comprehensive program of developmental and college preparatory math and science courses at minority...

  12. The Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Lisowski, Paul W.; Schoenberg, Kurt F.

    2006-01-01

    The Los Alamos Neutron Science Center, or LANSCE, uses the first truly high-current medium-energy proton linear accelerator, which operated originally at a beam power of 1 MW for medium-energy nuclear physics. Today LANSCE continues operation as one of the most versatile accelerator-based user facilities in the world. During eight months of annual operation, scientists from around the world work at LANSCE to execute an extraordinarily broad program of defense and civilian research. Several areas operate simultaneously. The Lujan Neutron Scattering Center (Lujan Center) is a moderated spallation source (meV to keV), the Weapons Neutron Research Facility (WNR) is a bare spallation neutron source (keV to 800 MeV), and a new ultra-cold neutron source will be operational in 2005. These sources give LANSCE the ability to produce and use neutrons with energies that range over 14 orders of magnitude. LANSCE also supplies beam to WNR and two other areas for applications requiring protons. In a proton radiography (pRad) area, a sequence of narrow proton pulses is transmitted through shocked materials and imaged to study dynamic properties. In 2005, LANSCE began operating a facility that uses 100-MeV protons to produce medical radioisotopes. To sustain a vigorous program beyond this decade, LANSCE has embarked on a project to refurbish key elements of the facility and to plan capabilities beyond those that presently exist

  13. The Value of Metrics for Science Data Center Management

    Science.gov (United States)

    Moses, J.; Behnke, J.; Watts, T. H.; Lu, Y.

    2005-12-01

    The Earth Observing System Data and Information System (EOSDIS) has been collecting and analyzing records of science data archive, processing and product distribution for more than 10 years. The types of information collected and the analysis performed has matured and progressed to become an integral and necessary part of the system management and planning functions. Science data center managers are realizing the importance that metrics can play in influencing and validating their business model. New efforts focus on better understanding of users and their methods. Examples include tracking user web site interactions and conducting user surveys such as the government authorized American Customer Satisfaction Index survey. This paper discusses the metrics methodology, processes and applications that are growing in EOSDIS, the driving requirements and compelling events, and the future envisioned for metrics as an integral part of earth science data systems.

  14. Alaska Department of Health and Social Services

    Science.gov (United States)

    marijuana means for Alaska and you. Careline: 1-877-266-HELP (4357) Alaska's Tobacco Quitline Learn the Twitter Find us on Facebook Quicklinks Alaska Opioid Policy Task Force "Spice" Synthetic Marijuana Health Information Alaska State Plan for Senior Services, FY 2016-FY 2019 Get health insurance at

  15. The MMS Science Data Center: Operations, Capabilities, and Resource.

    Science.gov (United States)

    Larsen, K. W.; Pankratz, C. K.; Giles, B. L.; Kokkonen, K.; Putnam, B.; Schafer, C.; Baker, D. N.

    2015-12-01

    The Magnetospheric MultiScale (MMS) constellation of satellites completed their six month commissioning period in August, 2015 and began science operations. Science operations for the Solving Magnetospheric Acceleration, Reconnection, and Turbulence (SMART) instrument package occur at the Laboratory for Atmospheric and Space Physics (LASP). The Science Data Center (SDC) at LASP is responsible for the data production, management, distribution, and archiving of the data received. The mission will collect several gigabytes per day of particles and field data. Management of these data requires effective selection, transmission, analysis, and storage of data in the ground segment of the mission, including efficient distribution paths to enable the science community to answer the key questions regarding magnetic reconnection. Due to the constraints on download volume, this includes the Scientist-in-the-Loop program that identifies high-value science data needed to answer the outstanding questions of magnetic reconnection. Of particular interest to the community is the tools and associated website we have developed to provide convenient access to the data, first by the mission science team and, beginning March 1, 2016, by the entire community. This presentation will demonstrate the data and tools available to the community via the SDC and discuss the technologies we chose and lessons learned.

  16. The 1964 Great Alaska Earthquake and tsunamis: a modern perspective and enduring legacies

    Science.gov (United States)

    Brocher, Thomas M.; Filson, John R.; Fuis, Gary S.; Haeussler, Peter J.; Holzer, Thomas L.; Plafker, George; Blair, J. Luke

    2014-01-01

    The magnitude 9.2 Great Alaska Earthquake that struck south-central Alaska at 5:36 p.m. on Friday, March 27, 1964, is the largest recorded earthquake in U.S. history and the second-largest earthquake recorded with modern instruments. The earthquake was felt throughout most of mainland Alaska, as far west as Dutch Harbor in the Aleutian Islands some 480 miles away, and at Seattle, Washington, more than 1,200 miles to the southeast of the fault rupture, where the Space Needle swayed perceptibly. The earthquake caused rivers, lakes, and other waterways to slosh as far away as the coasts of Texas and Louisiana. Water-level recorders in 47 states—the entire Nation except for Connecticut, Delaware, and Rhode Island— registered the earthquake. It was so large that it caused the entire Earth to ring like a bell: vibrations that were among the first of their kind ever recorded by modern instruments. The Great Alaska Earthquake spawned thousands of lesser aftershocks and hundreds of damaging landslides, submarine slumps, and other ground failures. Alaska’s largest city, Anchorage, located west of the fault rupture, sustained heavy property damage. Tsunamis produced by the earthquake resulted in deaths and damage as far away as Oregon and California. Altogether the earthquake and subsequent tsunamis caused 129 fatalities and an estimated $2.3 billion in property losses (in 2013 dollars). Most of the population of Alaska and its major transportation routes, ports, and infrastructure lie near the eastern segment of the Aleutian Trench that ruptured in the 1964 earthquake. Although the Great Alaska Earthquake was tragic because of the loss of life and property, it provided a wealth of data about subductionzone earthquakes and the hazards they pose. The leap in scientific understanding that followed the 1964 earthquake has led to major breakthroughs in earth science research worldwide over the past half century. This fact sheet commemorates Great Alaska Earthquake and

  17. The National Space Science Data Center guide to international rocket data

    Science.gov (United States)

    Dubach, L. L.

    1972-01-01

    Background information is given which briefly describes the mission of the National Space Science Data Center (NSSDC), including its functions and systems, along with its policies and purposes for collecting rocket data. The operation of a machine-sensible rocket information system, which allows the Data Center to have convenient access to information and data concerning all rocket flights carrying scientific experiments, is also described. The central feature of this system, an index of rocket flights maintained on magnetic tape, is described. Standard outputs for NSSDC and for the World Data Center A (WDC-A) for Rockets and Satellites are described.

  18. Basic and Applied Research at the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Lisowski, P.W.

    2003-01-01

    The Los Alamos Neutron Science Center, or LANSCE, is an accelerator-based national user facility for research in basic and applied science. At present LANSCE has two experimental areas primarily using neutrons generated by 800-MeV protons striking tungsten target systems. A third area uses the proton beam for radiography. This paper describes the three LANSCE experimental areas, gives highlights of the past operating period, and discusses plans for the future

  19. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    International Nuclear Information System (INIS)

    Schoenberg, Kurt F.

    2010-01-01

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  20. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberg, Kurt F [Los Alamos National Laboratory

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  1. AMS data production facilities at science operations center at CERN

    Science.gov (United States)

    Choutko, V.; Egorov, A.; Eline, A.; Shan, B.

    2017-10-01

    The Alpha Magnetic Spectrometer (AMS) is a high energy physics experiment on the board of the International Space Station (ISS). This paper presents the hardware and software facilities of Science Operation Center (SOC) at CERN. Data Production is built around production server - a scalable distributed service which links together a set of different programming modules for science data transformation and reconstruction. The server has the capacity to manage 1000 paralleled job producers, i.e. up to 32K logical processors. Monitoring and management tool with Production GUI is also described.

  2. Bedrock geologic map of the northern Alaska Peninsula area, southwestern Alaska

    Science.gov (United States)

    Wilson, Frederic H.; Blodgett, Robert B.; Blome, Charles D.; Mohadjer, Solmaz; Preller, Cindi C.; Klimasauskas, Edward P.; Gamble, Bruce M.; Coonrad, Warren L.

    2017-03-03

    The northern Alaska Peninsula is a region of transition from the classic magmatic arc geology of the Alaska Peninsula to a Proterozoic and early Paleozoic carbonate platform and then to the poorly understood, tectonically complex sedimentary basins of southwestern Alaska. Physiographically, the region ranges from the high glaciated mountains of the Alaska-Aleutian Range to the coastal lowlands of Cook Inlet on the east and Bristol Bay on the southwest. The lower Ahklun Mountains and finger lakes on the west side of the map area show strong effects from glaciation. Structurally, a number of major faults cut the map area. Most important of these are the Bruin Bay Fault that parallels the coast of Cook Inlet, the Lake Clark Fault that cuts diagonally northeast to southwest across the eastern part of the map area, and the presently active Holitna Fault to the northwest that cuts surficial deposits.Distinctive rock packages assigned to three provinces are overlain by younger sedimentary rocks and intruded by widely dispersed latest Cretaceous and (or) early Tertiary granitic rocks. Much of the east half of the map area lies in the Alaska-Aleutian Range province; the Jurassic to Tertiary Alaska-Aleutian Range batholith and derivative Jurassic sedimentary rocks form the core of this province, which is intruded and overlain by the Aleutian magmatic arc. The Lime Hills province, the carbonate platform, occurs in the north-central part of the map area. The Paleozoic and Mesozoic Ahklun Mountains province in the western part of the map area includes abundant chert, argillite, and graywacke and lesser limestone, basalt, and tectonic mélange. The Kuskokwim Group, an Upper Cretaceous turbidite sequence, is extensively exposed and bounds all three provinces in the west-central part of the map area.

  3. Life Sciences at the Cyclotron Center of the Slovak Republic

    International Nuclear Information System (INIS)

    Podhorsky, D.; Kovac, P.; Macasek, F.

    2004-01-01

    In this presentation the history and present status of the Cyclotron Center of the Slovak (CC SR) are presented. A state run scientific center and production facility ensuring: - the basic and applied research in nuclear physics, chemistry, biology and medicine; - production of radionuclides and radiopharmaceuticals; - and applications of heavy ions and electron accelerator technologies in medicine and material science. Current financial status of the CC SR is following: Deblocation of the Russian; Federation debt to the Slovak Republic (94 %); State budget of the Slovak Republic (3 %); IAEA (3 %)

  4. Goddard Earth Science Data and Information Center (GES DISC)

    Science.gov (United States)

    Kempler, Steve

    2016-01-01

    The GES DIS is one of 12 NASA Earth science data centers. The GES DISC vision is to enable researchers and educators maximize knowledge of the Earth by engaging in understanding their goals, and by leading the advancement of remote sensing information services in response to satisfying their goals. This presentation will describe the GES DISC approach, successes, challenges, and best practices.

  5. Investigation of Alaska's uranium potential

    International Nuclear Information System (INIS)

    Eakins, G.R.

    1975-01-01

    Of the various geographical regions in Alaska that were examined in an exhaustive literary search for the possibility of uranium--either vein type or sedimentary--six offer encouragement: the Copper River Basin, the alkaline intrusive belt of west-central Alaska and Selawik Basin area, the Seward Peninsula, the Susitna Lowland, the coal-bearing basins of the north flank of the Alaska Range, the Precambrian gneisses of the USGS 1:250,000 Goodnews quadrangle, and Southeastern Alaska, which has the sole operating uranium mine in the state. Other areas that may be favorable for the presence of uranium include the Yukon Flats area, the Cook Inlet Basin, and the Galena Basin

  6. Alaska Kids' Corner, State of Alaska

    Science.gov (United States)

    /Fishing License Get a Birth Certificate, Marriage License, etc. Alaska Permanent Fund Dividend Statewide shocks of wheat represent Alaskan agriculture. The fish and the seals signify the importance of fishing

  7. Energy Frontier Research Center Materials Science of Actinides (A 'Life at the Frontiers of Energy Research' contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    International Nuclear Information System (INIS)

    Burns, Peter

    2011-01-01

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  8. Proposed IMS infrastructure improvement project, Seward, Alaska. Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This Environmental Impact Statement (EIS) examines a proposal for improvements at the existing University of Alaska, Fairbanks, Institute of Marine Science (IMS), Seward Marine Center. The Exxon Valdez Oil Spill (EVOS) Trustee Council is proposing to improve the existing research infrastructure to enhance the EVOS Trustee Council`s capabilities to study and rehabilitate marine mammals, marine birds, and the ecosystem injured by the Exxon Valdez oil spill. The analysis in this document focuses on the effects associated with construction and operation of the proposed project and its proposed alternatives. The EIS gives a detailed description of all major elements of the proposed project and its alternatives; identifies resources of major concern that were raised during the scoping process; describes the environmental background conditions of those resources; defines and analyzes the potential effects of the proposed project and its alternatives on these conditions; and identifies mitigating measures that are part of the project design as well as those proposed to minimize or reduce the adverse effects. Included in the EIS are written and oral comments received during the public comment period.

  9. Proposed IMS infrastructure improvement project, Seward, Alaska. Final environmental impact statement

    International Nuclear Information System (INIS)

    1994-09-01

    This Environmental Impact Statement (EIS) examines a proposal for improvements at the existing University of Alaska, Fairbanks, Institute of Marine Science (IMS), Seward Marine Center. The Exxon Valdez Oil Spill (EVOS) Trustee Council is proposing to improve the existing research infrastructure to enhance the EVOS Trustee Council's capabilities to study and rehabilitate marine mammals, marine birds, and the ecosystem injured by the Exxon Valdez oil spill. The analysis in this document focuses on the effects associated with construction and operation of the proposed project and its proposed alternatives. The EIS gives a detailed description of all major elements of the proposed project and its alternatives; identifies resources of major concern that were raised during the scoping process; describes the environmental background conditions of those resources; defines and analyzes the potential effects of the proposed project and its alternatives on these conditions; and identifies mitigating measures that are part of the project design as well as those proposed to minimize or reduce the adverse effects. Included in the EIS are written and oral comments received during the public comment period

  10. The Wetland and Aquatic Research Center strategic science plan

    Science.gov (United States)

    ,

    2017-02-02

    IntroductionThe U.S. Geological Survey (USGS) Wetland and Aquatic Research Center (WARC) has two primary locations (Gainesville, Florida, and Lafayette, Louisiana) and field stations throughout the southeastern United States and Caribbean. WARC’s roots are in U.S. Fish and Wildlife Service (USFWS) and National Park Service research units that were brought into the USGS as the Biological Research Division in 1996. Founded in 2015, WARC was created from the merger of two long-standing USGS biology science Centers—the Southeast Ecological Science Center and the National Wetlands Research Center—to bring together expertise in biology, ecology, landscape science, geospatial applications, and decision support in order to address issues nationally and internationally. WARC scientists apply their expertise to a variety of wetland and aquatic research and monitoring issues that require coordinated, integrated efforts to better understand natural environments. By increasing basic understanding of the biology of important species and broader ecological and physiological processes, this research provides information to policymakers and aids managers in their stewardship of natural resources and in regulatory functions.This strategic science plan (SSP) was developed to guide WARC research during the next 5–10 years in support of Department of the Interior (DOI) partnering bureaus such as the USFWS, the National Park Service, and the Bureau of Ocean Energy Management, as well as other Federal, State, and local natural resource management agencies. The SSP demonstrates the alignment of the WARC goals with the USGS mission areas, associated programs, and other DOI initiatives. The SSP is necessary for workforce planning and, as such, will be used as a guide for future needs for personnel. The SSP also will be instrumental in developing internal funding priorities and in promoting WARC’s capabilities to both external cooperators and other groups within the USGS.

  11. History of the Fort Collins Science Center, U.S. Geological Survey

    Science.gov (United States)

    O'Shea, Thomas J. (compiler)

    2006-01-01

    The U.S. Geological Survey’s Fort Collins Science Center ("the Center") has been a nucleus of research, technology development, and associated scientific activities within the Department of the Interior for more than 30 years. The Center’s historical activities are deeply rooted in federal biological resources research and its supporting disciplines, particularly as they relate to the needs of the U.S. Department of the Interior and its resource management agencies. The organizational framework and activities of the Center have changed and adapted over the years in response to shifts in the scientific issues and challenges facing the U.S. Department of the Interior and with the development of new strategies to meet these challenges. Thus, the history of the Center has been dynamic.

  12. Renewable Energy in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    2013-03-01

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  13. The evolving Alaska mapping program.

    Science.gov (United States)

    Brooks, P.D.; O'Brien, T. J.

    1986-01-01

    This paper describes the development of mapping in Alaska, the current status of the National Mapping Program, and future plans for expanding and improving the mapping coverage. Research projects with Landsat Multispectral Scanner and Return Vidicon imagery and real- and synthetic-aperture radar; image mapping programs; digital mapping; remote sensing projects; the Alaska National Interest Lands Conservation Act; and the Alaska High-Altitude Aerial Photography Program are also discussed.-from Authors

  14. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

  15. 78 FR 4435 - BLM Director's Response to the Alaska Governor's Appeal of the BLM Alaska State Director's...

    Science.gov (United States)

    2013-01-22

    ... Bureau of Land Management (BLM) is publishing this notice to explain why the BLM Director is rejecting... Director's Response to the Alaska Governor's Appeal of the BLM Alaska State Director's Governor's... the BLM Alaska State Director. The State Director determined the Governor's Finding was outside the...

  16. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content Engineering Geology Additional information Engineering Geology Posters and Presentations Alaska Alaska MAPTEACH Tsunami Inundation Mapping Engineering Geology Staff Projects The Engineering Geology

  17. Facility Design Program Requirements for National Science Center

    Science.gov (United States)

    1991-09-01

    a turn of the century structure and secondhand furniture to display exhibit items, to the Ontario Science Center in Canada which is a 10-year-old...mothers should be considered. 1.3 Visitors Coat Storage Areas 550 sq ft Pigeon hole or other storage cabinets for children’s school books , coats, and...1.4.4 Work Area (200 sq ft) 1.4.5 Office for Assistant Museum Shop Manager (75 sq ft) Function: Area for sale of books , posters, cards, slides, games

  18. Operational status and future plans for the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Jones, Kevin W.; Schoenberg, Kurt F.

    2008-01-01

    The Los Alamos Neutron Science Center (LANSCE) continues to be a signature experimental science facility at Los Alamos National Laboratory (LANL). The 800 MeV linear proton accelerator provides multiplexed beams to five unique target stations to produce medical radioisotopes, ultra-cold neutrons, thermal and high energy neutrons for material and nuclear science, and to conduct proton radiography of dynamic events. Recent operating experience will be reviewed and the role of an enhanced LANSCE facility in LANL's new signature facility initiative, Matter and Radiation in Extremes (MaRIE) will be discussed.

  19. Tourism in rural Alaska

    Science.gov (United States)

    Katrina Church-Chmielowski

    2007-01-01

    Tourism in rural Alaska is an education curriculum with worldwide relevance. Students have started small businesses, obtained employment in the tourism industry and gotten in touch with their people. The Developing Alaska Rural Tourism collaborative project has resulted in student scholarships, workshops on website development, marketing, small...

  20. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-01-04

    ...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...

  1. Tutorial: Magnetic resonance with nitrogen-vacancy centers in diamond—microwave engineering, materials science, and magnetometry

    Science.gov (United States)

    Abe, Eisuke; Sasaki, Kento

    2018-04-01

    This tutorial article provides a concise and pedagogical overview on negatively charged nitrogen-vacancy (NV) centers in diamond. The research on the NV centers has attracted enormous attention for its application to quantum sensing, encompassing the areas of not only physics and applied physics but also chemistry, biology, and life sciences. Nonetheless, its key technical aspects can be understood from the viewpoint of magnetic resonance. We focus on three facets of this ever-expanding research field, to which our viewpoint is especially relevant: microwave engineering, materials science, and magnetometry. In explaining these aspects, we provide a technical basis and up-to-date technologies for research on the NV centers.

  2. Infant Mortality and American Indians/Alaska Natives

    Science.gov (United States)

    ... American Indian/Alaska Native > Infant Health & Mortality Infant Mortality and American Indians/Alaska Natives American Indian/Alaska ... as compared to non-Hispanic white mothers. Infant Mortality Rate: Infant mortality rate per 1,000 live ...

  3. Unique life sciences research facilities at NASA Ames Research Center

    Science.gov (United States)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  4. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-01-04

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 239 and 258 [EPA-EPA-R10-RCRA-2010-0953; FRL-9247-5] Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental... modification of its approved Municipal Solid Waste Landfill (MSWLF) permit program. On March 22, 2004, EPA...

  5. Traditional Ecological Knowledge of Stem Concepts in Informal and Place-Based Western Educational Systems: Lessons from the North Slope, Alaska

    Science.gov (United States)

    Nicholas-Figueroa, Linda

    Upon regaining the right to direct education at the local level, the North Slope Borough (NSB) of Alaska incorporated Inupiat educational philosophies into the educational system. The NSB in partnership with the University of Alaska Fairbanks established Ilisagvik College, the only tribal college in Alaska. Ilisagvik College seeks to broaden science, technology, engineering, and mathematical education on the North Slope. Incorporation of place-based and informal lessons with traditional ecological knowledge engages students in education. Ilisagvik hosted a 2-week climate change program from 2012 - 2015 for high school and middle school students that examined climate science and the effects of a warming climate on the local environment from a multitude of perspectives from scientists, Inupiat Elders, and instructor-led field trips. Pre-assessments and post-assessments using the Student Assessment of Learning Gains tool measured students' interests and conceptual understanding. Students developed and enhanced their understanding of science concepts and, at the end of the program, could articulate the impact of climatic changes on their local environment. Similarly, methods to incorporate Indigenous knowledge into research practices have been achieved, such as incorporating field trips and discussion with Elders on the importance of animal migration, whale feeding patterns, and the significance of sea-ice conditions, which are important community concerns.

  6. Using the Alaska Ocean Observing System to Inform Decision Making for Coastal Resiliency Relating to Inundation, Ocean Acidification, Harmful Algal Blooms, Navigation Safety and Impacts of Vessel Traffic

    Science.gov (United States)

    McCammon, M.

    2017-12-01

    State and federal agencies, coastal communities and Alaska Native residents, and non-governmental organizations are increasingly turning to the Alaska Ocean Observing System (AOOS) as a major source of ocean and coastal data and information products to inform decision making relating to a changing Arctic. AOOS implements its mission to provide ocean observing data and information to meet stakeholder needs by ensuring that all programs are "science based, stakeholder driven and policy neutral." Priority goals are to increase access to existing coastal and ocean data; package information and data in useful ways to meet stakeholder needs; and increase observing and forecasting capacity in all regions of the state. Recently certified by NOAA, the AOOS Data Assembly Center houses the largest collection of real-time ocean and coastal data, environmental models, and biological data in Alaska, and develops tools and applications to make it more publicly accessible and useful. Given the paucity of observations in the Alaska Arctic, the challenge is how to make decisions with little data compared to other areas of the U.S. coastline. AOOS addresses this issue by: integrating and visualizing existing data; developing data and information products and tools to make data more useful; serving as a convener role in areas such as coastal inundation and flooding, impacts of warming temperatures on food security, ocean acidification, observing technologies and capacity; and facilitating planning efforts to increase observations. In this presentation, I will give examples of each of these efforts, lessons learned, and suggestions for future actions.

  7. Successful aging through the eyes of Alaska Natives: exploring generational differences among Alaska Natives.

    Science.gov (United States)

    Lewis, Jordan P

    2010-12-01

    There is very little research on Alaska Native (AN) elders and how they subjectively define a successful older age. The lack of a culturally-specific definition often results in the use of a generic definition that portrays Alaska Native elders as aging less successfully than their White counterparts. However, there is a very limited understanding of a diverse array of successful aging experiences across generations. This research explores the concept of successful aging from an Alaska Native perspective, or what it means to age well in Alaska Native communities. An adapted Explanatory Model (EM) approach was used to gain a sense of the beliefs about aging from Alaska Natives. Research findings indicate that aging successfully is based on local understandings about personal responsibility and making the conscious decision to live a clean and healthy life, abstaining from drugs and alcohol. The findings also indicate that poor aging is often characterized by a lack of personal responsibility, or not being active, not being able to handle alcohol, and giving up on oneself. Most participants stated that elder status is not determined by reaching a certain age (e.g., 65), but instead is designated when an individual has demonstrated wisdom because of the experiences he or she has gained throughout life. This research seeks to inform future studies on rural aging that prioritizes the perspectives of elders to impact positively on the delivery of health care services and programs in rural Alaska.

  8. Needs assessment of science teachers in secondary schools in Kumasi, Ghana: A basis for in-service education training programs at the Science Resource Centers

    Science.gov (United States)

    Gyamfi, Alexander

    The purpose of this study was twofold. First, it identified the priority needs common to all science teachers in secondary schools in Kumasi, Ghana. Second, it investigated the relationship existing between the identified priority needs and the teacher demographic variables (type of school, teacher qualification, teaching experience, subject discipline, and sex of teacher) to be used as a basis for implementing in-service education training programs at the Science Resource Centers in Kumasi Ghana. An adapted version of the Moore Assessment Profile (MAP) survey instrument and a set of open-ended questions were used to collect data from the science teachers. The researcher handed out one hundred and fifty questionnaire packets, and all one hundred and fifty (100%) were collected within a period of six weeks. The data were analyzed using descriptive statistics, content analysis, and inferential statistics. The descriptive statistics reported the frequency of responses, and it was used to calculate the Need Index (N) of the identified needs of teachers. Sixteen top-priority needs were identified, and the needs were arranged in a hierarchical order according to the magnitude of the Need Index (0.000 ≤ N ≤ 1.000). Content analysis was used to analyze the responses to the open-ended questions. One-way analysis of variance (ANOVA) was used to test the null hypotheses of the study on each of the sixteen identified top-priority needs and the teacher demographic variables. The findings of this study were as follows: (1) The science teachers identified needs related to "more effective use of instructional materials" as a crucial area for in-service training. (2) Host and Satellite schools exhibited significant difference on procuring supplementary science books for students. Subject discipline of teachers exhibited significant differences on utilizing the library and its facilities by students, obtaining information on where to get help on effective science teaching

  9. Harvesting morels after wildfire in Alaska.

    Science.gov (United States)

    Tricia L. Wurtz; Amy L. Wiita; Nancy S. Weber; David Pilz

    2005-01-01

    Morels are edible, choice wild mushrooms that sometimes fruit prolifically in the years immediately after an area has been burned by wildfire. Wildfires are common in interior Alaska; an average of 708,700 acres burned each year in interior Alaska between 1961 and 2000, and in major fire years, over 2 million acres burned. We discuss Alaska's boreal forest...

  10. Alaska's renewable energy potential.

    Energy Technology Data Exchange (ETDEWEB)

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  11. Planning, implementation, and history of the first 5 years of operation of the Craig, Alaska, pool and school biomass heating system—a case study

    Science.gov (United States)

    Allen M. Brackley; K. Petersen

    2016-01-01

    A wood-based energy project in Craig, Alaska, to heat the community's aquatic center and two of its schools was the first such installation in Alaska to convert from fossil fuels to a renewable energy source. Initial interest in the project started in 2004. The system came online in April 2008. This report provides an overview of the new heating system's...

  12. Climate program "stone soup": Assessing climate change vulnerabilities in the Aleutian and Bering Sea Islands of Alaska

    Science.gov (United States)

    Littell, J. S.; Poe, A.; van Pelt, T.

    2015-12-01

    Cooperative (ABSI LCC), the Alaska Ocean Observing System (AOOS), and the Alaska Climate Science Center.

  13. 78 FR 55754 - Second Call for Nominations: North Slope Science Initiative, Science Technical Advisory Panel

    Science.gov (United States)

    2013-09-11

    ..., subsistence users, Alaska Native entities, conservation organizations, and academia, as determined by the... engineering, geology, sociology, cultural anthropology, economics, ornithology, oceanography, fisheries.... Review ongoing scientific programs of the North Slope Science Initiative member organizations at the...

  14. Drilling and Testing the DOI041A Coalbed Methane Well, Fort Yukon, Alaska

    Science.gov (United States)

    Clark, Arthur; Barker, Charles E.; Weeks, Edwin P.

    2009-01-01

    The need for affordable energy sources is acute in rural communities of Alaska where costly diesel fuel must be delivered by barge or plane for power generation. Additionally, the transport, transfer, and storage of fuel pose great difficulty in these regions. Although small-scale energy development in remote Arctic locations presents unique challenges, identifying and developing economic, local sources of energy remains a high priority for state and local government. Many areas in rural Alaska contain widespread coal resources that may contain significant amounts of coalbed methane (CBM) that, when extracted, could be used for power generation. However, in many of these areas, little is known concerning the properties that control CBM occurrence and production, including coal bed geometry, coalbed gas content and saturation, reservoir permeability and pressure, and water chemistry. Therefore, drilling and testing to collect these data are required to accurately assess the viability of CBM as a potential energy source in most locations. In 2004, the U.S. Geological Survey (USGS) and Bureau of Land Management (BLM), in cooperation with the U.S. Department of Energy (DOE), the Alaska Department of Geological and Geophysical Surveys (DGGS), the University of Alaska Fairbanks (UAF), the Doyon Native Corporation, and the village of Fort Yukon, organized and funded the drilling of a well at Fort Yukon, Alaska to test coal beds for CBM developmental potential. Fort Yukon is a town of about 600 people and is composed mostly of Gwich'in Athabascan Native Americans. It is located near the center of the Yukon Flats Basin, approximately 145 mi northeast of Fairbanks.

  15. The effect of playing a science center-based mobile game: Affective outcomes and gender differences

    Science.gov (United States)

    Atwood-Blaine, Dana

    Situated in a hands-on science center, The Great STEM Caper was a collaborative mobile game built on the ARIS platform that was designed to engage 5th-9th grade players in NGSS science and engineering practices while they interacted with various exhibits. Same gender partners sharing one iPad would search for QR codes placed at specific exhibits; scanning a code within the game would launch a challenge for that exhibit. The primary hypothesis was that in- game victories would be equivalent to "mastery experiences" as described by Bandura (1997) and would result in increased science self-efficacy. Gender differences in gameplay behaviors and perceptions were also studied. The study included two groups, one that played the game during their visit and one that explored the science center in the traditional way. The Motivation to Learn Science Questionnaire was administered to participants in both groups both before and after their visit to the science center. Participants wore head-mounted GoPro cameras to record their interactions within the physical and social environment. No differences in affective outcomes were found between the game and comparison groups or between boys and girls in the game group. The MLSQ was unable to measure any significant change in science self-efficacy, interest and enjoyment of science, or overall motivation to learn science in either group. However, girls outperformed boys on every measure of game achievement. Lazzaro's (2004) four types of fun were found to be a good fit for describing the gender differences in game perceptions and behaviors. Girls tended to enjoy hard fun and collaborative people fun while boys enjoyed easy fun and competitive people fun. While boys associated game achievement with enjoyment and victory, girls perceived their game achievement as difficult, rather than enjoyable or victorious.

  16. Earth Science Data and Applications for K-16 Education from the NASA Langley Atmospheric Science Data Center

    Science.gov (United States)

    Phelps, C. S.; Chambers, L. H.; Alston, E. J.; Moore, S. W.; Oots, P. C.

    2005-05-01

    NASA's Science Mission Directorate aims to stimulate public interest in Earth system science and to encourage young scholars to consider careers in science, technology, engineering and mathematics. NASA's Atmospheric Science Data Center (ASDC) at Langley Research Center houses over 700 data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry that are being produced to increase academic understanding of the natural and anthropogenic perturbations that influence global climate change. However, barriers still exist in the use of these actual satellite observations by educators in the classroom to supplement the educational process. Thus, NASA is sponsoring the "Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs" (MY NASA DATA) project to systematically support educational activities by reducing the ASDC data holdings to `microsets' that can be easily accessible and explored by the K-16 educators and students. The microsets are available via Web site (http://mynasadata.larc.nasa.gov) with associated lesson plans, computer tools, data information pages, and a science glossary. A MY NASA DATA Live Access Server (LAS) has been populated with ASDC data such that users can create custom microsets online for desired time series, parameters and geographical regions. The LAS interface is suitable for novice to advanced users, teachers or students. The microsets may be visual representations of data or text output for spreadsheet analysis. Currently, over 148 parameters from the Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging SpectroRadiometer (MISR), Surface Radiation Budget (SRB), Tropospheric Ozone Residual (TOR) and the International Satellite Cloud Climatology Project (ISCCP) are available and provide important information on clouds, fluxes and cycles in the Earth system. Additionally, a MY NASA DATA OPeNDAP server has been established to facilitate file transfer of

  17. A research plan based on high intensity proton accelerator Neutron Science Research Center

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1997-01-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  18. A research plan based on high intensity proton accelerator Neutron Science Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  19. Bringing You the Moon: Lunar Education Efforts of the Center for Lunar Science and Education

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.; Halligan, E.; LaConte, K.

    2012-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute. In addition to research and exploration activities, the CLSE team is deeply invested in education and public outreach. Overarching goals of CLSE education are to strengthen the future science workforce, attract and retain students in STEM disciplines, and develop advocates for lunar exploration. The team's efforts have resulted in a variety of programs and products, including the creation of a variety of Lunar Traveling Exhibits and the High School Lunar Research Project, featured at http://www.lpi.usra.edu/nlsi/education/.

  20. The Need and Opportunity for an Integrated Research, Development and Testing Center in the Alaskan High Arctic

    Science.gov (United States)

    Hardesty, J. O.; Ivey, M.; Helsel, F.; Dexheimer, D.; Lucero, D. A.; Cahill, C. F.; Roesler, E. L.

    2017-12-01

    This presentation will make the case for development of a permanent integrated High Arctic research and testing center at Oliktok Point, Alaska; taking advantage of existing assets and infrastructure, controlled airspace, an active UAS program and local partnerships. Arctic research stations provide critical monitoring and research on climate change for conditions and trends in the Arctic. The US Chair of the Arctic Council increased awareness of gaps in our understanding of Artic systems, scarce monitoring, lack of infrastructure and readiness for emergency response. Less sea ice brings competition for commercial shipping and resource extraction. Search and rescue, pollution mitigation and safe navigation need real-time, wide-area monitoring to respond to events. Multi-national responses for international traffic will drive a greater security presence to protect citizens and sovereign interests. To address research and technology gaps, there is a national need for a US High Arctic Center (USHARC) with an approach to partner stakeholders from science, safety and security to develop comprehensive solutions. The Station should offer year-round use, logistic support and access to varied ecological settings; phased adaptation to changing needs; and support testing of technologies such as multiple autonomous platforms, renewable energies and microgrids, and sensors in Arctic settings. We propose an Arctic Center at Oliktok Point, Alaska. Combined with the Toolik Field Station and Barrow Environmental Observatory, they form a US network of Arctic Stations. An Oliktok Point Station can provide complementary and unique assets that include: access via land, sea and air; coastal and terrestrial ecologies; controlled airspaces across land and ocean; medical and logistic support; atmospheric observations from an adjacent ARM facility; connections to Barrow and Toolik; fiber-optic communications; University of Alaska Fairbanks UAS Test Facility partnership; and an airstrip and

  1. Publications - Geospatial Data | Alaska Division of Geological &

    Science.gov (United States)

    from rocks collected in the Richardson mining district, Big Delta Quadrangle, Alaska: Alaska Division Island 2009 topography: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication , Geologic map of portions of the Livengood B-3, B-4, C-3, and C-4 quadrangles, Tolovana mining district

  2. Reducing Alaska Native paediatric oral health disparities: a systematic review of oral health interventions and a case study on multilevel strategies to reduce sugar-sweetened beverage intake.

    Science.gov (United States)

    Chi, Donald L

    2013-01-01

    Tooth decay is the most common paediatric disease and there is a serious paediatric tooth decay epidemic in Alaska Native communities. When untreated, tooth decay can lead to pain, infection, systemic health problems, hospitalisations and in rare cases death, as well as school absenteeism, poor grades and low quality-of-life. The extent to which population-based oral health interventions have been conducted in Alaska Native paediatric populations is unknown. To conduct a systematic review of oral health interventions aimed at Alaska Native children below age 18 and to present a case study and conceptual model on multilevel intervention strategies aimed at reducing sugar-sweetened beverage (SSB) intake among Alaska Native children. Based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Statement, the terms "Alaska Native", "children" and "oral health" were used to search Medline, Embase, Web of Science, GoogleScholar and health foundation websites (1970-2012) for relevant clinical trials and evaluation studies. Eighty-five studies were found in Medline, Embase and Web of Science databases and there were 663 hits in GoogleScholar. A total of 9 publications were included in the qualitative review. These publications describe 3 interventions that focused on: reducing paediatric tooth decay by educating families and communities; providing dental chemotherapeutics to pregnant women; and training mid-level dental care providers. While these approaches have the potential to improve the oral health of Alaska Native children, there are unique challenges regarding intervention acceptability, reach and sustainability. A case study and conceptual model are presented on multilevel strategies to reduce SSB intake among Alaska Native children. Few oral health interventions have been tested within Alaska Native communities. Community-centred multilevel interventions are promising approaches to improve the oral and systemic health of Alaska Native

  3. Reducing Alaska Native paediatric oral health disparities: a systematic review of oral health interventions and a case study on multilevel strategies to reduce sugar-sweetened beverage intake

    Directory of Open Access Journals (Sweden)

    Donald L. Chi

    2013-08-01

    Full Text Available Background. Tooth decay is the most common paediatric disease and there is a serious paediatric tooth decay epidemic in Alaska Native communities. When untreated, tooth decay can lead to pain, infection, systemic health problems, hospitalisations and in rare cases death, as well as school absenteeism, poor grades and low quality-of-life. The extent to which population-based oral health interventions have been conducted in Alaska Native paediatric populations is unknown. Objective. To conduct a systematic review of oral health interventions aimed at Alaska Native children below age 18 and to present a case study and conceptual model on multilevel intervention strategies aimed at reducing sugar-sweetened beverage (SSB intake among Alaska Native children. Design. Based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA Statement, the terms “Alaska Native”, “children” and “oral health” were used to search Medline, Embase, Web of Science, GoogleScholar and health foundation websites (1970–2012 for relevant clinical trials and evaluation studies. Results. Eighty-five studies were found in Medline, Embase and Web of Science databases and there were 663 hits in GoogleScholar. A total of 9 publications were included in the qualitative review. These publications describe 3 interventions that focused on: reducing paediatric tooth decay by educating families and communities; providing dental chemotherapeutics to pregnant women; and training mid-level dental care providers. While these approaches have the potential to improve the oral health of Alaska Native children, there are unique challenges regarding intervention acceptability, reach and sustainability. A case study and conceptual model are presented on multilevel strategies to reduce SSB intake among Alaska Native children. Conclusions. Few oral health interventions have been tested within Alaska Native communities. Community-centred multilevel interventions

  4. About Region 3's Laboratory and Field Services at EPA's Environmental Science Center

    Science.gov (United States)

    Mission & contact information for EPA Region 3's Laboratory and Field Services located at EPA's Environmental Science Center: the Office of Analytical Services and Quality Assurance & Field Inspection Program

  5. Difficulties of Turkish Science Gifted Teachers: Institutions of Science and Art Centers.

    Directory of Open Access Journals (Sweden)

    Mehmet Küçük

    2005-05-01

    Full Text Available The purpose of this study is to determine the fundamental problems of science gifted teachers (SG/Ts who teach Turkish gifted children (G/C and compare it with the international milieu. Turkish G/C are taught in different educational contexts named “Science and Art Centers” (SACs in which better opportunities are presented for them. In this project, field observations were done at three of the SACs in Turkey - in Bayburt, Sinop, and Trabzon - and, semi-structured interviews were conducted with each of ten SG/Ts who work in these centers by one of the researchers. Data analysis showed that SG/Ts do not perceive their duties holistically and feel they need help with measurement and assessment techniques, modern learning theories, planning and implementation of a research project, questioning techniques and using laboratory-based methods for G/C. Moving from the research data, it is suggested that in service education courses, which include the above issues, should be organized for the SG/Ts and they should be encouraged to use an action research approach in teaching G/C in SACs.

  6. Ground-Penetrating-Radar Profiles of Interior Alaska Highways: Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw Settlement over Ice-Rich Permafrost

    Science.gov (United States)

    2016-08-01

    along either massive ice surfaces or within sections of segregated ice. The uninsulated ice surface at Tok in Figure 17B is irregular. All of the...ER D C/ CR RE L TR -1 6- 14 ERDC’s Center-Directed Research Program Ground -Penetrating-Radar Profiles of Interior Alaska Highways...August 2016 Ground -Penetrating-Radar Profiles of Interior Alaska Highways Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw

  7. Scientific Infrastructure To Support Manned And Unmanned Aircraft, Tethered Balloons, And Related Aerial Activities At Doe Arm Facilities On The North Slope Of Alaska

    Science.gov (United States)

    Ivey, M.; Dexheimer, D.; Hardesty, J.; Lucero, D. A.; Helsel, F.

    2015-12-01

    The U.S. Department of Energy (DOE), through its scientific user facility, the Atmospheric Radiation Measurement (ARM) facilities, provides scientific infrastructure and data to the international Arctic research community via its research sites located on the North Slope of Alaska. DOE has recently invested in improvements to facilities and infrastructure to support operations of unmanned aerial systems for science missions in the Arctic and North Slope of Alaska. A new ground facility, the Third ARM Mobile Facility, was installed at Oliktok Point Alaska in 2013. Tethered instrumented balloons were used to make measurements of clouds in the boundary layer including mixed-phase clouds. A new Special Use Airspace was granted to DOE in 2015 to support science missions in international airspace in the Arctic. Warning Area W-220 is managed by Sandia National Laboratories for DOE Office of Science/BER. W-220 was successfully used for the first time in July 2015 in conjunction with Restricted Area R-2204 and a connecting Altitude Reservation Corridor (ALTRV) to permit unmanned aircraft to operate north of Oliktok Point. Small unmanned aircraft (DataHawks) and tethered balloons were flown at Oliktok during the summer and fall of 2015. This poster will discuss how principal investigators may apply for use of these Special Use Airspaces, acquire data from the Third ARM Mobile Facility, or bring their own instrumentation for deployment at Oliktok Point, Alaska. The printed poster will include the standard DOE funding statement.

  8. 24 CFR 598.515 - Alaska and Hawaii.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Alaska and Hawaii. 598.515 Section 598.515 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued....515 Alaska and Hawaii. A nominated area in Alaska or Hawaii is deemed to satisfy the criteria of...

  9. Mobile Gaming and Student Interactions in a Science Center: The Future of Gaming in Science Education

    Science.gov (United States)

    Atwood-Blaine, Dana; Huffman, Douglas

    2017-01-01

    This article explores the impact of an augmented reality iPad-based mobile game, called The Great STEM Caper, on students' interaction at a science center. An open-source, location-based game platform called ARIS (i.e. Augmented Reality and Interactive Storytelling) was used to create an iPad-based mobile game. The game used QR scan codes and a…

  10. Northern gas : Arctic Canada and Alaska

    International Nuclear Information System (INIS)

    Constantin, D.

    2005-01-01

    This paper discusses supply challenges in relation to Northern gas availability in Arctic Canada and Alaska. A background of BP Canada Energy Company was provided. It was suggested that gas from traditional North American basins would not meet demand, and that incremental sources of supply would be needed. A map of traditional and non-tradition supply sources was presented along with details of supply and infrastructure investment requirements from 2003-2025. The roles of producers, local distribution companies, pipelines and policy makers in infrastructure development were examined. Potential resources in Alaska and the Mackenzie Delta were discussed, along with details of the Mackenzie Valley Pipeline project and exploration activities. Alaska's North Slope gas resource was reviewed. Several large projects devolving from the Alaska Gas Pipeline represent an anticipated total investment of $20 billion. Various regulatory and economic conditions necessary for the successful completion of the project include the Alaska Fiscal Contract; Alaska gas provisions in the Federal Energy Bill; details of the Canadian regulatory process; and cost reductions and market outlooks. It was concluded that the Alaska Gas Pipeline would provide thousands of jobs and provide stability of long-term gas prices as well as meeting North America's energy needs. In addition, the pipeline would provide $16 billion in Canadian government revenues and $40 billion in US government revenues. The pipeline would provide 4.5 billion cubic feet per day of clean energy, with half the carbon dioxide emissions of coal. It would also provide hundreds of billions of dollars in consumer savings. tabs, figs

  11. The current state of the center for the creation and dissemination of new Japanese nursing science: The 21st century Center of Excellence at Chiba University School of Nursing

    OpenAIRE

    中村 伸枝; 石垣, 和子; 正木, 治恵; 宮崎, 美砂子; 山本, 則子

    2006-01-01

    Aim: The Center of Excellence for the Creation and Dissemination of a New Japanese Nursing Science at Chiba University School of Nursing is now in its third year of operation. This center aims to develop nursing science that is appropriate for Japanese culture and to internationally disseminate the importance of culturally based care. Our project seeks to systematically transform the art of nursing practise into a nursing science. Method: To date, multiple frameworks have been created through...

  12. A Review of Child Psychiatric Epidemiology With Special Reference to American Indian and Alaska Native Children.

    Science.gov (United States)

    Green, Ben Ezra; And Others

    1981-01-01

    Places the limited knowledge of the psychological problems of American Indian and Alaska Native children in context of general child psychiatric epidemiology, using the taxonomy of the American Psychiatric Association's third "Diagnostic and Statistical Manual." Available from: White Cloud Center, Gaines Hall UOHSC, 840 Southwest Gaines…

  13. Reconnaissance for radioactive deposits in Alaska, 1953

    Science.gov (United States)

    Matzko, John J.; Bates, Robert G.

    1955-01-01

    During the summer of 1953 the areas investigated for radioactive deposits in Alaska were on Nikolai Creek near Tyonek and on Likes Creek near Seward in south-central Alaska where carnotite-type minerals had been reported; in the headwaters of the Peace River in the eastern part of the Seward Peninsula and at Gold Bench on the South Fork of the Koyukuk River in east-central Alaska, where uranothorianite occurs in places associated with base metal sulfides and hematite; in the vicinity of Port Malmesbury in southeastern Alaska to check a reported occurrence of pitchblende; and, in the Miller House-Circle Hot Springs area of east-central Alaska where geochemical studies were made. No significant lode deposits of radioactive materials were found. However, the placer uranothorianite in the headwaters of the Peace River yet remains as an important lead to bedrock radioactive source materials in Alaska. Tundra cover prevents satisfactory radiometric reconnaissance of the area, and methods of geochemical prospecting such as soil and vegetation sampling may ultimately prove more fruitful in the search for the uranothorianite-sulfide lode source than geophysical methods.

  14. Quality-assurance plan for groundwater activities, U.S. Geological Survey, Washington Water Science Center

    Science.gov (United States)

    Kozar, Mark D.; Kahle, Sue C.

    2013-01-01

    This report documents the standard procedures, policies, and field methods used by the U.S. Geological Survey’s (USGS) Washington Water Science Center staff for activities related to the collection, processing, analysis, storage, and publication of groundwater data. This groundwater quality-assurance plan changes through time to accommodate new methods and requirements developed by the Washington Water Science Center and the USGS Office of Groundwater. The plan is based largely on requirements and guidelines provided by the USGS Office of Groundwater, or the USGS Water Mission Area. Regular updates to this plan represent an integral part of the quality-assurance process. Because numerous policy memoranda have been issued by the Office of Groundwater since the previous groundwater quality assurance plan was written, this report is a substantial revision of the previous report, supplants it, and contains significant additional policies not covered in the previous report. This updated plan includes information related to the organization and responsibilities of USGS Washington Water Science Center staff, training, safety, project proposal development, project review procedures, data collection activities, data processing activities, report review procedures, and archiving of field data and interpretative information pertaining to groundwater flow models, borehole aquifer tests, and aquifer tests. Important updates from the previous groundwater quality assurance plan include: (1) procedures for documenting and archiving of groundwater flow models; (2) revisions to procedures and policies for the creation of sites in the Groundwater Site Inventory database; (3) adoption of new water-level forms to be used within the USGS Washington Water Science Center; (4) procedures for future creation of borehole geophysics, surface geophysics, and aquifer-test archives; and (5) use of the USGS Multi Optional Network Key Entry System software for entry of routine water-level data

  15. 76 FR 47155 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Science.gov (United States)

    2011-08-04

    ... the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab Rationalization Program... program for the Bering Sea/Aleutian Islands crab fisheries managed under the BSAI Crab Rationalization... Center Web site at http://www.afsc.noaa.gov/ . For further information on the Crab Rationalization...

  16. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    Science.gov (United States)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  17. Assessing Effects of Climate Change on Access to Ecosystem Services in Rural Alaska: Enhancing the Science through Community Engagement

    Science.gov (United States)

    Brinkman, T. J.; Cold, H.; Brown, D. N.; Brown, C.; Hollingsworth, T. N.; Verbyla, D.

    2017-12-01

    In Arctic-Boreal regions, studies quantifying the characteristics and prevalence of environmental disruptions to access to ecosystem services are lacking. Empirical investigations are needed to assess the vulnerability of rural communities to climate change. We integrated community-based local observation (9 Interior Alaska Communities), field-based ground measurements, and remote sensing data to: 1) identify and prioritize the relative importance of different environmental changes affecting access, 2) characterize the biophysical causes and mechanisms related to access, and 3) evaluate long-term (30 year) trends in the environment that are challenging access. Dynamic winter ice and snow conditions (e.g., dangerous ice travel; n =147) were the most commonly reported cause of disturbance to access, followed by changes in summer hydrology (e.g., river navigability; n = 77) and seasonal shifts in freeze/thaw cycles (n = 31). Supporting local observations, our remote-sensing analysis indicated a trend toward environmental conditions that hinder or disrupt traditional uses of ecosystem services. For example, we found that the window of safe travel on ice has narrowed by approximately 2 weeks since the 1980s. Shifts in travel have implications on the effectiveness of subsistence activities, such as winter trapping and spring waterfowl hunting. From a methods perspective, we implemented a study design that generated novel science while also addressing locally relevant issues. Our approach and findings highlight opportunities for connecting biophysical science with societal concerns.

  18. Alaska Dental Health Aide Program.

    Science.gov (United States)

    Shoffstall-Cone, Sarah; Williard, Mary

    2013-01-01

    In 1999, An Oral Health Survey of American Indian and Alaska Native (AI/AN) Dental Patients found that 79% of 2- to 5-year-olds had a history of tooth decay. The Alaska Native Tribal Health Consortium in collaboration with Alaska's Tribal Health Organizations (THO) developed a new and diverse dental workforce model to address AI/AN oral health disparities. This paper describes the workforce model and some experience to date of the Dental Health Aide (DHA) Initiative that was introduced under the federally sanctioned Community Health Aide Program in Alaska. These new dental team members work with THO dentists and hygienists to provide education, prevention and basic restorative services in a culturally appropriate manner. The DHA Initiative introduced 4 new dental provider types to Alaska: the Primary Dental Health Aide, the Expanded Function Dental Health Aide, the Dental Health Aide Hygienist and the Dental Health Aide Therapist. The scope of practice between the 4 different DHA providers varies vastly along with the required training and education requirements. DHAs are certified, not licensed, providers. Recertification occurs every 2 years and requires the completion of 24 hours of continuing education and continual competency evaluation. Dental Health Aides provide evidence-based prevention programs and dental care that improve access to oral health care and help address well-documented oral health disparities.

  19. Reconnecting Alaska: Mexican Movements and the Last Frontier

    Directory of Open Access Journals (Sweden)

    Sara V. Komarnisky

    2012-06-01

    Full Text Available This paper discusses the initial findings of on-going research with Mexican migrants and immigrants to Alaska. The paper outlines the historical and on-going connections between Alaska and Mexico and explores how and why those connections have been obscured or ignored. Powerful imaginaries are associated with places: Alaska, and 'the north' more generally, and Latin America, and Mexico specifically. My research shows how interesting things happen when they are brought together through movement. People from Acuitzio del Canje, Michoacán began travelling to Alaska (Anchorage, and elsewhere to work in the 1950s, and movement between Mexico and Alaska has continued across generations since then. Today, many Acuitzences who live in Anchorage maintain a close relationship with friends and family members in Acuitzio, and travel back and forth regularly. However, this movement is obscured by ideological work that makes Alaska seem separate, isolated, wild, and a place where Mexicans are not imagined to be. Mexican movements into Alaska over time disrupt this vision, showing how Alaska is connected to multiple other geographies, and making the US-Mexico border a salient reference point in everyday life in Anchorage. When the South moves into the North, it can make us think about both 'Alaska' and 'Mexico' in different ways. When the US-Mexico border is relocated to Anchorage, if only for a moment, it can elicit a reaction of humour or surprise. Why is that? And what does this have to do with how people actually live in an interconnected place?

  20. On-going research projects at Ankara Nuclear research center in agriculture and animal science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text:The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  1. On-going research projects at Ankara Nuclear Research Center in Agriculture and Animal Science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text: The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  2. The effect of student-centered and teacher-centered instruction with and without conceptual advocacy on biology students' misconceptions, achievement, attitudes toward science, and cognitive retention

    Science.gov (United States)

    Gallop, Roger Graham

    The purpose of this study was to investigate the effect of student-centered and teacher-centered instructional strategies with and without conceptual advocacy (CA) on ninth-grade biology students' misconceptions (MIS), biology achievement (ACH), attitudes toward science (ATT), and cognitive retention of scientific method and measurement, spontaneous generation, and characteristics of living things. Students were purposively selected using intact classes and assigned to one of four treatment groups (i.e., student-centered instruction without CA, student-centered instruction with CA, teacher-centered instruction with CA, and teacher-centered instruction without CA). A modified quasi-experimental design was used in which students were not matched in the conventional sense but instead, groups were shown to be equivalent on the dependent measure via a pretest. A 5-day treatment implementation period addressed science conceptions under investigation. The treatment period was based on the number of class periods teachers at the target school actually spend teaching the biological concepts under investigation using traditional instruction. At the end of the treatment period, students were posttested using the Concepts in Biology instrument and Science Questionnaire. Eight weeks after the posttest, these instruments were administered again as a delayed posttest to determine cognitive retention of the correct biological conceptions and attitudes toward science. MANCOVA and follow-up univariate ANCOVA results indicated that student-centered instruction without CA (i.e., Group 1) did not have a significant effect on students' MIS, ACH, and ATT (F = .029, p = .8658; F = .002, p =.9688, F = .292, p = .5897, respectively). On the other hand, student-centered instruction with CA (i.e., Group 2) had a significant effect on students' MIS and ACH (F =10.33, p = .0016 and F = 10.17, p = .0017, respectively), but did not on ATT (F = .433, p = .5117). Teacher-centered instruction with

  3. The North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) cart site begins operation: Collaboration with SHEBA and FIRE

    Energy Technology Data Exchange (ETDEWEB)

    Zak, D. B.; Church, H.; Ivey, M.; Yellowhorse, L.; Zirzow, J.; Widener, K. B.; Rhodes, P.; Turney, C.; Koontz, A.; Stamnes, K.; Storvold, R.; Eide, H. A.; Utley, P.; Eagan, R.; Cook, D.; Hart, D.; Wesely, M.

    2000-04-04

    Since the 1997 Atmospheric Radiation Measurement (ARM) Science Team Meeting, the North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) site has come into being. Much has happened even since the 1998 Science Team Meeting at which this paper was presented. To maximize its usefulness, this paper has been updated to include developments through July 1998.

  4. Reality Investing | Alaska Division of Retirement and Benefits

    Science.gov (United States)

    Skip to main content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Comp All Other Programs Features Empower Retirement Account Info Online myRnB Member Services Seminars Benefits > Reality Investing Online Counselor Scheduler Empower Retirement Account Info Online myRnB

  5. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-07-01

    challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

  6. Network Science Center Research Teams Visit to Addis Ababa, Ethiopia

    Science.gov (United States)

    2012-08-01

    Network Science Center, West Point www.netscience.usma.edu 845.938.0804 Corporation as a gift from the Government of China, and consists of a 2,500...first glimpse into what became a common thread throughout the trip: the presence of a gap between microfinance and large corporate investments in the...cutting out other middlemen and increasing their own profits. Some even sell directly to major coffee names (such as Starbucks ). In our discussion it

  7. Earthquake Hazard and Risk in Alaska

    Science.gov (United States)

    Black Porto, N.; Nyst, M.

    2014-12-01

    Alaska is one of the most seismically active and tectonically diverse regions in the United States. To examine risk, we have updated the seismic hazard model in Alaska. The current RMS Alaska hazard model is based on the 2007 probabilistic seismic hazard maps for Alaska (Wesson et al., 2007; Boyd et al., 2007). The 2015 RMS model will update several key source parameters, including: extending the earthquake catalog, implementing a new set of crustal faults, updating the subduction zone geometry and reoccurrence rate. First, we extend the earthquake catalog to 2013; decluster the catalog, and compute new background rates. We then create a crustal fault model, based on the Alaska 2012 fault and fold database. This new model increased the number of crustal faults from ten in 2007, to 91 faults in the 2015 model. This includes the addition of: the western Denali, Cook Inlet folds near Anchorage, and thrust faults near Fairbanks. Previously the subduction zone was modeled at a uniform depth. In this update, we model the intraslab as a series of deep stepping events. We also use the best available data, such as Slab 1.0, to update the geometry of the subduction zone. The city of Anchorage represents 80% of the risk exposure in Alaska. In the 2007 model, the hazard in Alaska was dominated by the frequent rate of magnitude 7 to 8 events (Gutenberg-Richter distribution), and large magnitude 8+ events had a low reoccurrence rate (Characteristic) and therefore didn't contribute as highly to the overall risk. We will review these reoccurrence rates, and will present the results and impact to Anchorage. We will compare our hazard update to the 2007 USGS hazard map, and discuss the changes and drivers for these changes. Finally, we will examine the impact model changes have on Alaska earthquake risk. Consider risk metrics include average annual loss, an annualized expected loss level used by insurers to determine the costs of earthquake insurance (and premium levels), and the

  8. Patterns in Parent-Child Conversations about Animals at a Marine Science Center

    Science.gov (United States)

    Rigney, Jennifer C.; Callanan, Maureen A.

    2011-01-01

    Parent-child conversations are a potential source of children's developing understanding of the biological domain. We investigated patterns in parent-child conversations that may inform children about biological domain boundaries. At a marine science center exhibit, we compared parent-child talk about typical sea animals with faces (fish) with…

  9. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    International Nuclear Information System (INIS)

    Parkin, D.M.; Boring, A.M.

    1991-01-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory's defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location

  10. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, D.M.; Boring, A.M. [comps.

    1991-10-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

  11. 34 CFR 645.13 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What additional services do Upward Bound Math and... Program? § 645.13 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive instruction...

  12. National Space Science Data Center and World Data Center A for Rockets and Satellites - Ionospheric data holdings and services

    Science.gov (United States)

    Bilitza, D.; King, J. H.

    1988-01-01

    The activities and services of the National Space Science data Center (NSSDC) and the World Data Center A for Rockets and Satellites (WDC-A-R and S) are described with special emphasis on ionospheric physics. The present catalog/archive system is explained and future developments are indicated. In addition to the basic data acquisition, archiving, and dissemination functions, ongoing activities include the Central Online Data Directory (CODD), the Coordinated Data Analysis Workshopps (CDAW), the Space Physics Analysis Network (SPAN), advanced data management systems (CD/DIS, NCDS, PLDS), and publication of the NSSDC News, the SPACEWARN Bulletin, and several NSSD reports.

  13. U.S. Geological Survey Activities Related to American Indians and Alaska Natives: Fiscal Year 2005

    Science.gov (United States)

    Marcus, Susan M.

    2007-01-01

    Introduction This report describes the activities that the U.S. Geological Survey (USGS) conducted with American Indian and Alaska Native governments, educational institutions, and individuals during Federal fiscal year (FY) 2005. Most of these USGS activities were collaborations with Tribes, Tribal organizations, or professional societies. Others were conducted cooperatively with the Bureau of Indian Affairs (BIA) or other Federal entities. The USGS is the earth and natural science bureau within the U.S. Department of the Interior (DOI). The USGS does not have regulatory or land management responsibilities. As described in this report, there are many USGS activities that are directly relevant to American Indians, Alaska Natives, and to Native lands. A USGS website, dedicated to making USGS more accessible to American Indians, Alaska Natives, their governments, and institutions, is available at www.usgs.gov/indian. This website includes information on how to contact USGS American Indian/Alaska Native Liaisons, training opportunities, and links to other information resources. This report and previous editions are also available through the website. The USGS realizes that Native knowledge and cultural traditions of living in harmony with nature result in unique Native perspectives that enrich USGS studies. USGS seeks to increase the sensitivity and openness of its scientists to the breadth of Native knowledge, expanding the information on which their research is based. USGS scientific studies include data collection, mapping, natural resource modeling, and research projects. These projects typically last 2 or 3 years, although some are parts of longer-term activities. Some projects are funded cooperatively, with USGS funds matched or supplemented by individual Tribal governments, or by the BIA. These projects may also receive funding from the U.S. Environmental Protection Agency (USEPA), the Indian Health Service (part of the Department of Health and Human Services

  14. Life cycle costs for Alaska bridges.

    Science.gov (United States)

    2014-08-01

    A study was implemented to assist the Alaska Department of Transportation and Public Facilities (ADOT&PF) with life cycle costs for : the Alaska Highway Bridge Inventory. The study consisted of two parts. Part 1 involved working with regional offices...

  15. Why the 1964 Great Alaska Earthquake matters 50 years later

    Science.gov (United States)

    West, Michael E.; Haeussler, Peter J.; Ruppert, Natalia A.; Freymueller, Jeffrey T.; ,

    2014-01-01

    Spring was returning to Alaska on Friday 27 March 1964. A two‐week cold snap had just ended, and people were getting ready for the Easter weekend. At 5:36 p.m., an earthquake initiated 12 km beneath Prince William Sound, near the eastern end of what is now recognized as the Alaska‐Aleutian subduction zone. No one was expecting this earthquake that would radically alter the coastal landscape, influence the direction of science, and indelibly mark the growth of a burgeoning state.

  16. AGILE Data Center and AGILE science highlights

    International Nuclear Information System (INIS)

    Pittori, C.

    2013-01-01

    AGILE is a scientific mission of the Italian Space Agency (ASI) with INFN, INAF e CIFS participation, devoted to gamma-ray astrophysics. The satellite is in orbit since April 23rd, 2007. Gamma-ray astrophysics above 100 MeV is an exciting field of astronomical sciences that has received a strong impulse in recent years. Despite the small size and budget, AGILE produced several important scientific results, among which the unexpected discovery of strong and rapid gamma-ray flares from the Crab Nebula. This discovery won to the AGILE PI and the AGILE Team the prestigious Bruno Rossi Prize for 2012, an international recognition in the field of high energy astrophysics. We present here the AGILE data center main activities, and we give an overview of the AGILE scientific highlights after 5 years of operations

  17. Fort Collins Science Center Ecosystem Dynamics Branch

    Science.gov (United States)

    Wilson, Jim; Melcher, C.; Bowen, Z.

    2009-01-01

    Complex natural resource issues require understanding a web of interactions among ecosystem components that are (1) interdisciplinary, encompassing physical, chemical, and biological processes; (2) spatially complex, involving movements of animals, water, and airborne materials across a range of landscapes and jurisdictions; and (3) temporally complex, occurring over days, weeks, or years, sometimes involving response lags to alteration or exhibiting large natural variation. Scientists in the Ecosystem Dynamics Branch of the U.S. Geological Survey, Fort Collins Science Center, investigate a diversity of these complex natural resource questions at the landscape and systems levels. This Fact Sheet describes the work of the Ecosystems Dynamics Branch, which is focused on energy and land use, climate change and long-term integrated assessments, herbivore-ecosystem interactions, fire and post-fire restoration, and environmental flows and river restoration.

  18. Hydrological Modeling in Alaska with WRF-Hydro

    Science.gov (United States)

    Elmer, N. J.; Zavodsky, B.; Molthan, A.

    2017-12-01

    The operational National Water Model (NWM), implemented in August 2016, is an instantiation of the Weather Research and Forecasting hydrological extension package (WRF-Hydro). Currently, the NWM only covers the contiguous United States, but will be expanded to include an Alaska domain in the future. It is well known that Alaska presents several hydrological modeling challenges, including unique arctic/sub-arctic hydrological processes not observed elsewhere in the United States and a severe lack of in-situ observations for model initialization. This project sets up an experimental version of WRF-Hydro in Alaska mimicking the NWM to gauge the ability of WRF-Hydro to represent hydrological processes in Alaska and identify model calibration challenges. Recent and upcoming launches of hydrology-focused NASA satellite missions such as the Soil Moisture Active Passive (SMAP) and Surface Water Ocean Topography (SWOT) expand the spatial and temporal coverage of observations in Alaska, so this study also lays the groundwork for assimilating these NASA datasets into WRF-Hydro in the future.

  19. 75 FR 36666 - Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2010-06-28

    ... and 1941, the Works Progress Administration/Indian Arts Project paid members of the Tonawanda Seneca..., director, Rochester Museum of Arts & Science (now Rochester Museum & Science Center), with the intent of... medicine faces were also created under the auspices of the Works Progress Administration/Indian Arts...

  20. The State of Alaska Agency Directory

    Science.gov (United States)

    Administrative Services Division of Banking and Securities Division of Community & Regional Affairs Division Services Public Notices Alaska Communities Resident Working Finding Work in Alaska Private Industry Jobs Development Environmental Conservation Fish and Game Governor's Office Health and Social Services Labor and

  1. 78 FR 75321 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Science.gov (United States)

    2013-12-11

    ... the taking of migratory birds and the collection of their eggs, by the indigenous inhabitants of the... particular land ownership, but applies to the harvesting of migratory bird resources throughout Alaska. A... ensure an effective and meaningful role for Alaska's indigenous inhabitants in the conservation of...

  2. Life Sciences Division and Center for Human Genome Studies 1994

    Energy Technology Data Exchange (ETDEWEB)

    Cram, L.S.; Stafford, C. [comp.

    1995-09-01

    This report summarizes the research and development activities of the Los Alamos National Laboratory`s Life Sciences Division and the biological aspects of the Center for Human Genome Studies for the calendar year 1994. The technical portion of the report is divided into two parts, (1) selected research highlights and (2) research projects and accomplishments. The research highlights provide a more detailed description of a select set of projects. A technical description of all projects is presented in sufficient detail so that the informed reader will be able to assess the scope and significance of each project. Summaries useful to the casual reader desiring general information have been prepared by the group leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  3. Operational status of the Los Alamos neutron science center (LANSCE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin W [Los Alamos National Laboratory; Erickson, John L [Los Alamos National Laboratory; Schoenberg, Kurt F [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources; the thermal and cold source for the Manuel Lujan Jr. Neutron Scattering Center, the Weapons Neutron Research (WNR) high-energy neutron source, and a pulsed Ultra-Cold Neutron Source. These three sources are the foundation of strong and productive multi-disciplinary research programs that serve a diverse and robust user community. The facility also provides multiplexed beams for the production of medical radioisotopes and proton radiography of dynamic events. The recent operating history of these sources will be reviewed and plans for performance improvement will be discussed, together with the underlying drivers for the proposed LANSCE Refurbishment project. The details of this latter project are presented in a separate contribution.

  4. The Stocker AstroScience Center at Florida International University

    Science.gov (United States)

    Webb, James R.

    2014-01-01

    The new Stocker AstroScience Center located on the MMC campus at Florida International University in Miami Florida represents a unique facility for STEM education that arose from a combination of private, State and university funding. The building, completed in the fall of 2013, contains some unique spaces designed not only to educate, but also to inspire students interested in science and space exploration. The observatory consists of a 4-story building (3 floors) with a 24” ACE automated telescope in an Ash dome, and an observing platform above surrounding buildings. Some of the unique features of the observatory include an entrance/exhibition hall with a 6-ft glass tile floor mural linking the Florida climate to space travel, a state-of-the art telescope control that looks like a starship bridge, and displays such as “Music from the universe”. The observatory will also be the focus of our extensive public outreach program that is entering its 20 year.

  5. Kepler Science Operations Center Pipeline Framework

    Science.gov (United States)

    Klaus, Todd C.; McCauliff, Sean; Cote, Miles T.; Girouard, Forrest R.; Wohler, Bill; Allen, Christopher; Middour, Christopher; Caldwell, Douglas A.; Jenkins, Jon M.

    2010-01-01

    The Kepler mission is designed to continuously monitor up to 170,000 stars at a 30 minute cadence for 3.5 years searching for Earth-size planets. The data are processed at the Science Operations Center (SOC) at NASA Ames Research Center. Because of the large volume of data and the memory and CPU-intensive nature of the analysis, significant computing hardware is required. We have developed generic pipeline framework software that is used to distribute and synchronize the processing across a cluster of CPUs and to manage the resulting products. The framework is written in Java and is therefore platform-independent, and scales from a single, standalone workstation (for development and research on small data sets) to a full cluster of homogeneous or heterogeneous hardware with minimal configuration changes. A plug-in architecture provides customized control of the unit of work without the need to modify the framework itself. Distributed transaction services provide for atomic storage of pipeline products for a unit of work across a relational database and the custom Kepler DB. Generic parameter management and data accountability services are provided to record the parameter values, software versions, and other meta-data used for each pipeline execution. A graphical console allows for the configuration, execution, and monitoring of pipelines. An alert and metrics subsystem is used to monitor the health and performance of the pipeline. The framework was developed for the Kepler project based on Kepler requirements, but the framework itself is generic and could be used for a variety of applications where these features are needed.

  6. 75 FR 3888 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Science.gov (United States)

    2010-01-25

    ...-0082; 91200-1231-9BPP-L2] RIN 1018-AW67 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2010 Season AGENCY: Fish and Wildlife Service, Interior... Service, are reopening the public comment period on our proposed rule to establish migratory bird...

  7. 76 FR 17353 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Science.gov (United States)

    2011-03-29

    ... the collection of their eggs, by the indigenous inhabitants of the State of Alaska, shall be permitted... implications. This rule is not specific to particular land ownership, but applies to the harvesting of... the creation of management bodies to ensure an effective and meaningful role for Alaska's indigenous...

  8. Communicating Ocean Sciences to Informal Audiences (COSIA): Universities, Oceanographic Institutions, Science Centers and Aquariums Working Together to Improve Ocean Education and Public Outreach

    Science.gov (United States)

    Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.; Ingram, L.

    2007-12-01

    Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course from COSEE-California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project has leveraged these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort is one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach and promoting the broader impact of research; and provide diverse role models

  9. 75 FR 23801 - Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2010-05-04

    ... Museum & Science Center, Rochester, NY, that meet the definitions of ``sacred objects'' and ``objects of... center of the Seneca religious fire. This was agreed upon by representatives from the Seneca Nation of.... Tonawanda Seneca Nation traditional religious leaders have identified these medicine faces as being needed...

  10. Status of teaching elementary science for English learners in science, mathematics and technology centered magnet schools

    Science.gov (United States)

    Han, Alyson Kim

    According to the California Commission on Teacher Credentialing (2001), one in three students speaks a language other than English. Additionally, the Commission stated that a student is considered to be an English learner if the second language acquisition is English. In California more than 1.4 million English learners enter school speaking a variety of languages, and this number continues to rise. There is an imminent need to promote instructional strategies that support this group of diverse learners. Although this was not a California study, the results derived from the nationwide participants' responses provided a congruent assessment of the basic need to provide effective science teaching strategies to all English learners. The purpose of this study was to examine the status of elementary science teaching practices used with English learners in kindergarten through fifth grade in public mathematics, science, and technology-centered elementary magnet schools throughout the country. This descriptive research was designed to provide current information and to identify trends in the areas of curriculum and instruction for English learners in science themed magnet schools. This report described the status of elementary (grades K-5) school science instruction for English learners based on the responses of 116 elementary school teachers: 59 grade K-2, and 57 grade 3-5 teachers. Current research-based approaches support incorporating self-directed learning strategy, expository teaching strategy, active listening strategies, questioning strategies, wait time strategy, small group strategy, peer tutoring strategy, large group learning strategy, demonstrations strategy, formal debates strategy, review sessions strategy, mediated conversation strategy, cooperative learning strategy, and theme-based instruction into the curriculum to assist English learners in science education. Science Technology Society (STS) strategy, problem-based learning strategy, discovery learning

  11. Environmental Impact Statement for the Modernization and Enhancement of Ranges, Airspace, and Training Areas in the Joint Pacific Alaska Range Complex in Alaska. Volume 2 - Appendices A through L

    Science.gov (United States)

    2013-06-01

    Spenard Road, Anchorage, Alaska. Tuesday , January 18, 2011:6:30-8:30 p.m., Caribou Hotel, Mile 186.5 Grand Highway, Glenallen, Alaska. Wednesday...Highway, Healy, Alaska. Tuesday , january 25, 2011:6:30-8:30 p.m., Swiss Alaska Inn, 22056 South F Street, Talkeetna, Alaska. Wednesday, january...Board of Fisheries Mel Morris , Board Member, Alaska Board of Fisheries Mike Smith, Board Member, Alaska Board of Fisheries Cliff Judkins, Chair

  12. Digital Shaded-Relief Image of Alaska

    Science.gov (United States)

    Riehle, J.R.; Fleming, Michael D.; Molnia, B.F.; Dover, J.H.; Kelley, J.S.; Miller, M.L.; Nokleberg, W.J.; Plafker, George; Till, A.B.

    1997-01-01

    Introduction One of the most spectacular physiographic images of the conterminous United States, and the first to have been produced digitally, is that by Thelin and Pike (USGS I-2206, 1991). The image is remarkable for its crispness of detail and for the natural appearance of the artificial land surface. Our goal has been to produce a shaded-relief image of Alaska that has the same look and feel as the Thelin and Pike image. The Alaskan image could have been produced at the same scale as its lower 48 counterpart (1:3,500,000). But by insetting the Aleutian Islands into the Gulf of Alaska, we were able to print the Alaska map at a larger scale (1:2,500,000) and about the same physical size as the Thelin and Pike image. Benefits of the 1:2,500,000 scale are (1) greater resolution of topographic features and (2) ease of reference to the U.S. Geological Survey (USGS) (1987) Alaska Map E and the statewide geologic map (Beikman, 1980), which are both 1:2,500,000 scale. Manually drawn, shaded-relief images of Alaska's land surface have long been available (for example, Department of the Interior, 1909; Raisz, 1948). The topography depicted on these early maps is mainly schematic. Maps showing topographic contours were first available for the entire State in 1953 (USGS, 1:250,000) (J.H. Wittmann, USGS, written commun., 1996). The Alaska Map E was initially released in 1954 in both planimetric (revised in 1973 and 1987) and shaded-relief versions (revised in 1973, 1987, and 1996); topography depicted on the shaded-relief version is based on the 1:250,000-scale USGS topographic maps. Alaska Map E was later modified to include hypsometric tinting by Raven Maps and Images (1989, revised 1993) as copyrighted versions. Other shaded-relief images were produced for The National Geographic Magazine (LaGorce, 1956; 1:3,000,000) or drawn by Harrison (1970; 1:7,500,000) for The National Atlas of the United States. Recently, the State of Alaska digitally produced a shaded-relief image

  13. Vulnerability and adaptation to climate-related fire impacts in rural and urban interior Alaska

    Science.gov (United States)

    Trainor, Sarah F.; Calef, Monika; Natcher, David; Chapin, F. Stuart; McGuire, A. David; Huntington, Orville; Duffy, Paul A.; Rupp, T. Scott; DeWilde, La'Ona; Kwart, Mary; Fresco, Nancy; Lovecraft, Amy Lauren

    2009-01-01

    This paper explores whether fundamental differences exist between urban and rural vulnerability to climate-induced changes in the fire regime of interior Alaska. We further examine how communities and fire managers have responded to these changes and what additional adaptations could be put in place. We engage a variety of social science methods, including demographic analysis, semi-structured interviews, surveys, workshops and observations of public meetings. This work is part of an interdisciplinary study of feedback and interactions between climate, vegetation, fire and human components of the Boreal forest social–ecological system of interior Alaska. We have learned that although urban and rural communities in interior Alaska face similar increased exposure to wildfire as a result of climate change, important differences exist in their sensitivity to these biophysical, climate-induced changes. In particular, reliance on wild foods, delayed suppression response, financial resources and institutional connections vary between urban and rural communities. These differences depend largely on social, economic and institutional factors, and are not necessarily related to biophysical climate impacts per se. Fire management and suppression action motivated by political, economic or other pressures can serve as unintentional or indirect adaptation to climate change. However, this indirect response alone may not sufficiently reduce vulnerability to a changing fire regime. More deliberate and strategic responses may be required, given the magnitude of the expected climate change and the likelihood of an intensification of the fire regime in interior Alaska.

  14. Tularemia in Alaska, 1938 - 2010

    Directory of Open Access Journals (Sweden)

    Hansen Cristina M

    2011-11-01

    Full Text Available Abstract Tularemia is a serious, potentially life threatening zoonotic disease. The causative agent, Francisella tularensis, is ubiquitous in the Northern hemisphere, including Alaska, where it was first isolated from a rabbit tick (Haemophysalis leporis-palustris in 1938. Since then, F. tularensis has been isolated from wildlife and humans throughout the state. Serologic surveys have found measurable antibodies with prevalence ranging from F. tularensis isolates from Alaska were analyzed using canonical SNPs and a multi-locus variable-number tandem repeats (VNTR analysis (MLVA system. The results show that both F. t. tularensis and F. t. holarctica are present in Alaska and that subtype A.I, the most virulent type, is responsible for most recently reported human clinical cases in the state.

  15. Testing of Streckeisen STS-5A and Nanometrics Trillium 120PH Sensors for the Alaska Transportable Array

    Science.gov (United States)

    Abbasi Baghbadorani, A.; Aderhold, K.; Bloomquist, D.; Frassetto, A.; Miller, P. E.; Busby, R. W.

    2017-12-01

    Starting in 2014, the IRIS Transportable Array facility began to install and operate seismic stations in Alaska and western Canada. By the end of the project, the full deployment of the array will cover a grid of 280 stations spaced about 85 km apart covering all of mainland Alaska and parts of the Yukon, British Columbia, and the Northwest Territories. Approximately 200 stations will be operated directly by IRIS through at least 2019. A key aspect of the Alaska TA is the need for stations to operate autonomously, on account of the high cost of installation and potential subsequent visits to remote field-sites to repair equipment. The TA is using newly developed broadband seismometers Streckeisen STS-5A and Nanometrics Trillium-120PH, designed for installation in shallow posthole emplacements. These new instruments were extensively vetted beforehand, but they are still relatively new to the TA inventory. Here we will assess their performance under deployment conditions and after repeated commercial shipping and travel to the field. Our objective is to provide a thorough accounting of the identified failures of the existing inventory of posthole instruments. We will assess the practices and results of instrument testing by the PASSCAL Instrument Center/Array Operations Facility (PIC/AOF), Alaska Operations Center (AOC), and broadband seismic sensor manufacturers (Streckeisen, Nanometrics) in order to document potential factors in and stages during the process for instrument failures. This will help to quantify the overall reliability of the TA seismic sensors and quality of TA practices and data collection, and identify potential considerations in future TA operations. Our results show that the overall rate of failure of all posthole instruments is improved station performance after sensor replacement, and that these are key elements in assessing whether or not a sensor should be replaced in the field.

  16. 33 CFR 110.233 - Prince William Sound, Alaska.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude 146°40...

  17. Wilderness insights From Alaska: Past, present, and future

    Science.gov (United States)

    Deborah L. Williams

    2007-01-01

    For many reasons, a significant percentage of Alaska’s wildlands have been successfully protected. The passage of the Alaska National Interest Lands Conservation Act (ANILCA), in particular, represents one of the greatest land protection measures in human history. Numerous important factors have contributed to Alaska’s conservation successes, and many of these factors...

  18. Alaska's nest egg

    International Nuclear Information System (INIS)

    Stauffer, Thomas.

    1997-01-01

    Twenty years ago, the Alaska Permanent Fund was established to receive a substantial share of the state's oil receipts and to invest these monies each year. Four key aspects are unique to Alaska's providential fund among oil-producing states. Firstly a constitutional amendment is needed to touch the assets so the capital is safe from encroachment by the government. Secondly, each Alaskan gets a detailed breakdown of what is invested and what is earned. In the third place, and most importantly, each Alaskan receives an annual dividend from the Fund. Fourthly, the funds have been prudently invested almost entirely outside Alaska rather than in unremunerative vanity infrastructure projects. Now, however, oil production is falling and revenues per barrel from new fields with higher costs are projected to decline as well. Given the budget shortfall, there is now a debate about whether the dividends paid directly to the people, should be shifted, at least in part to the state budget. Although the Fund's capital cannot be touched by the government, the Legislature does have the right to dispose of the income. The arguments in this debate over policy and political philosophy are examined. (UK)

  19. Informing Science (IS and Science and Technology Studies (STS: The University as Decision Center (DC for Teaching Interdisciplinary Research

    Directory of Open Access Journals (Sweden)

    Teresa Castelao-Lawless

    2001-01-01

    Full Text Available Students of history and philosophy of science courses at my University are either naïve robust realists or naïve relativists in relation to science and technology. The first group absorbs from culture stereotypical conceptions, such as the value-free character of the scientific method, that science and technology are impervious to history or ideology, and that science and religion are always at odds. The second believes science and technology were selected arbitrarily by ideologues to have privileged world views of reality to the detriment of other interpretations. These deterministic outlooks must be challenged to make students aware of the social importance of their future roles, be they as scientists and engineers or as science and technology policy decision makers. The University as Decision Center (DC not only reproduces the social by teaching standard solutions to well-defined problems but also provides information regarding conflict resolution and the epistemological, individual, historical, social, and political mechanisms that help create new science and technology. Interdisciplinary research prepares students for roles that require science and technology literacy, but raises methodological issues in the context of the classroom as it increases uncertainty with respect to apparently self-evident beliefs about scientific and technological practices.

  20. Alaska Resource Data File, Nabesna quadrangle, Alaska

    Science.gov (United States)

    Hudson, Travis L.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  1. 78 FR 50102 - Notice of Inventory Completion: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2013-08-16

    .... 3003, of the completion of an inventory of associated funerary objects under the control of the....R50000] Notice of Inventory Completion: Rochester Museum & Science Center, Rochester, NY AGENCY: National... inventory of associated funerary objects, in consultation with the appropriate Indian tribes or Native...

  2. The Process of Science Communications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning- based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium. At NASA/Marshall Space Flight Center, we have developed and implemented an integrated science communications process, providing an institutional capability to help scientist accurately convey the content and meaning of new scientific knowledge to a wide variety of audiences, adding intrinsic value to the research itself through communication, while still maintaining the integrity of the peer-review process. The process utilizes initial communication through the world-wide web at the site http://science.nasa.gov to strategically leverage other communications vehicles and to reach a wide-variety of audiences. Here we present and discuss the basic design of the science communications process, now in

  3. Crustal Structure beneath Alaska from Receiver Functions

    Science.gov (United States)

    Zhang, Y.; Li, A.

    2017-12-01

    The crustal structure in Alaska has not been well resolved due to the remote nature of much of the state. The USArray Transportable Array (TA), which is operating in Alaska and northwestern Canada, significantly increases the coverage of broadband seismic stations in the region and allows for a more comprehensive study of the crust. We have analyzed P-receiver functions from earthquake data recorded by 76 stations of the TA and AK networks. Both common conversion point (CCP) and H-K methods are used to estimate the mean crustal thickness. The results from the CCP stacking method show that the Denali fault marks a sharp transition from thick crust in the south to thin crust in the north. The thickest crust up to 52 km is located in the St. Elias Range, which has been formed by oblique collision between the Yakutat microplate and North America. A thick crust of 48 km is also observed beneath the eastern Alaska Range. These observations suggest that high topography in Alaska is largely compensated by the thick crust root. The Moho depth ranges from 28 km to 35 km beneath the northern lowlands and increases to 40-45 km under the Books Range. The preliminary crustal thickness from the H-K method generally agrees with that from the CCP stacking with thicker crust beneath high mountain ranges and thinner crust beneath lowlands and basins. However, the offshore part is not well constrained due to the limited coverage of stations. The mean Vp/Vs ratio is around 1.7 in the Yukon-Tanana terrane and central-northern Alaska. The ratio is about 1.9 in central and southern Alaska with higher values at the Alaska Range, Wrangell Mountains, and St. Elias Range. Further data analyses are needed for obtaining more details of the crustal structure in Alaska to decipher the origin and development of different tectonic terranes.

  4. Defense, basic, and industrial research at the Los Alamos Neutron Science Center: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Longshore, A.; Salgado, K. [comps.

    1995-10-01

    The Workshop on Defense, Basic, and Industrial Research at the Los Alamos Neutron Science Center gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss the use of neutrons in science-based stockpile stewardship, The workshop began with presentations by government officials, senior representatives from the three weapons laboratories, and scientific opinion leaders. Workshop participants then met in breakout sessions on the following topics: materials science and engineering; polymers, complex fluids, and biomaterials; fundamental neutron physics; applied nuclear physics; condensed matter physics and chemistry; and nuclear weapons research. They concluded that neutrons can play an essential role in science-based stockpile stewardship and that there is overlap and synergy between defense and other uses of neutrons in basic, applied, and industrial research from which defense and civilian research can benefit. This proceedings is a collection of talks and papers from the plenary, technical, and breakout session presentations. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. Glaciers of North America - Glaciers of Alaska

    Science.gov (United States)

    Molnia, Bruce F.

    2008-01-01

    Glaciers cover about 75,000 km2 of Alaska, about 5 percent of the State. The glaciers are situated on 11 mountain ranges, 1 large island, an island chain, and 1 archipelago and range in elevation from more than 6,000 m to below sea level. Alaska's glaciers extend geographically from the far southeast at lat 55 deg 19'N., long 130 deg 05'W., about 100 kilometers east of Ketchikan, to the far southwest at Kiska Island at lat 52 deg 05'N., long 177 deg 35'E., in the Aleutian Islands, and as far north as lat 69 deg 20'N., long 143 deg 45'W., in the Brooks Range. During the 'Little Ice Age', Alaska's glaciers expanded significantly. The total area and volume of glaciers in Alaska continue to decrease, as they have been doing since the 18th century. Of the 153 1:250,000-scale topographic maps that cover the State of Alaska, 63 sheets show glaciers. Although the number of extant glaciers has never been systematically counted and is thus unknown, the total probably is greater than 100,000. Only about 600 glaciers (about 1 percent) have been officially named by the U.S. Board on Geographic Names (BGN). There are about 60 active and former tidewater glaciers in Alaska. Within the glacierized mountain ranges of southeastern Alaska and western Canada, 205 glaciers (75 percent in Alaska) have a history of surging. In the same region, at least 53 present and 7 former large ice-dammed lakes have produced jokulhlaups (glacier-outburst floods). Ice-capped volcanoes on mainland Alaska and in the Aleutian Islands have a potential for jokulhlaups caused by subglacier volcanic and geothermal activity. Because of the size of the area covered by glaciers and the lack of large-scale maps of the glacierized areas, satellite imagery and other satellite remote-sensing data are the only practical means of monitoring regional changes in the area and volume of Alaska's glaciers in response to short- and long-term changes in the maritime and continental climates of the State. A review of the

  6. Indigenous observations of climate change in the Lower Yukon River Basin, Alaska

    Science.gov (United States)

    Herman-Mercer, Nicole M.; Schuster, Paul F.; Maracle, Karonhiakt'tie

    2011-01-01

    Natural science climate change studies have led to an overwhelming amount of evidence that the Arctic and Subarctic are among the world's first locations to begin experiencing climate change. Indigenous knowledge of northern regions is a valuable resource to assess the effects of climate change on the people and the landscape. Most studies, however, have focused on coastal Arctic and Subarctic communities with relatively little focus on inland communities. This paper relates the findings from fieldwork conducted in the Lower Yukon River Basin of Alaska in the spring of 2009. Semi-structured interviews were conducted with hunters and elders in the villages of St. Mary's and Pitka's Point, Alaska to document observations of climate change. This study assumes that scientific findings and indigenous knowledge are complementary and seeks to overcome the false dichotomy that these two ways of knowing are in opposition. The observed changes in the climate communicated by the hunters and elders of St. Mary's and Pitka's Point, Alaska are impacting the community in ways ranging from subsistence (shifting flora and fauna patterns), concerns about safety (unpredictable weather patterns and dangerous ice conditions), and a changing resource base (increased reliance on fossil fuels). Here we attempt to address the challenges of integrating these two ways of knowing while relating indigenous observations as described by elders and hunters of the study area to those described by scientific literature.

  7. U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center-fiscal year 2010 annual report

    Science.gov (United States)

    Nelson, Janice S.

    2011-01-01

    The Earth Resources Observation and Science (EROS) Center is a U.S. Geological Survey (USGS) facility focused on providing science and imagery to better understand our Earth. The work of the Center is shaped by the earth sciences, the missions of our stakeholders, and implemented through strong program and project management, and application of state-of-the-art information technologies. Fundamentally, EROS contributes to the understanding of a changing Earth through 'research to operations' activities that include developing, implementing, and operating remote-sensing-based terrestrial monitoring capabilities needed to address interdisciplinary science and applications objectives at all levels-both nationally and internationally. The Center's programs and projects continually strive to meet, and where possible exceed, the changing needs of the USGS, the Department of the Interior, our Nation, and international constituents. The Center's multidisciplinary staff uses their unique expertise in remote sensing science and technologies to conduct basic and applied research, data acquisition, systems engineering, information access and management, and archive preservation to address the Nation's most critical needs. Of particular note is the role of EROS as the primary provider of Landsat data, the longest comprehensive global land Earth observation record ever collected. This report is intended to provide an overview of the scientific and engineering achievements and illustrate the range and scope of the activities and accomplishments at EROS throughout fiscal year (FY) 2010. Additional information concerning the scientific, engineering, and operational achievements can be obtained from the scientific papers and other documents published by EROS staff or by visiting our web site at http://eros.usgs.gov. We welcome comments and follow-up questions on any aspect of this Annual Report and invite any of our customers or partners to contact us at their convenience. To

  8. A 5-year scientometric analysis of research centers affiliated to Tehran University of Medical Sciences

    Science.gov (United States)

    Yazdani, Kamran; Rahimi-Movaghar, Afarin; Nedjat, Saharnaz; Ghalichi, Leila; Khalili, Malahat

    2015-01-01

    Background: Since Tehran University of Medical Sciences (TUMS) has the oldest and highest number of research centers among all Iranian medical universities, this study was conducted to evaluate scientific output of research centers affiliated to Tehran University of Medical Sciences (TUMS) using scientometric indices and the affecting factors. Moreover, a number of scientometric indicators were introduced. Methods: This cross-sectional study was performed to evaluate a 5-year scientific performance of research centers of TUMS. Data were collected through questionnaires, annual evaluation reports of the Ministry of Health, and also from Scopus database. We used appropriate measures of central tendency and variation for descriptive analyses. Moreover, uni-and multi-variable linear regression were used to evaluate the effect of independent factors on the scientific output of the centers. Results: The medians of the numbers of papers and books during a 5-year period were 150.5 and 2.5 respectively. The median of the "articles per researcher" was 19.1. Based on multiple linear regression, younger age centers (p=0.001), having a separate budget line (p=0.016), and number of research personnel (p<0.001) had a direct significant correlation with the number of articles while real properties had a reverse significant correlation with it (p=0.004). Conclusion: The results can help policy makers and research managers to allocate sufficient resources to improve current situation of the centers. Newly adopted and effective scientometric indices are is suggested to be used to evaluate scientific outputs and functions of these centers. PMID:26157724

  9. Semantic Web Data Discovery of Earth Science Data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Science.gov (United States)

    Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William

    2008-01-01

    Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.

  10. The Sharjah Center for Astronomy and Space Sciences (SCASS 2015): Concept and Resources

    Science.gov (United States)

    Naimiy, Hamid M. K. Al

    2015-08-01

    The Sharjah Center for Astronomy and Space Sciences (SCASS) was launched this year 2015 at the University of Sharjah in the UAE. The center will serve to enrich research in the fields of astronomy and space sciences, promote these fields at all educational levels, and encourage community involvement in these sciences. SCASS consists of:The Planetarium: Contains a semi-circle display screen (18 meters in diameter) installed at an angle of 10° which displays high-definition images using an advanced digital display system consisting of seven (7) high-performance light-display channels. The Planetarium Theatre offers a 200-seat capacity with seats placed at highly calculated angles. The Planetarium also contains an enormous star display (Star Ball - 10 million stars) located in the heart of the celestial dome theatre.The Sharjah Astronomy Observatory: A small optical observatory consisting of a reflector telescope 45 centimeters in diameter to observe the galaxies, stars and planets. Connected to it is a refractor telescope of 20 centimeters in diameter to observe the sun and moon with highly developed astronomical devices, including a digital camera (CCD) and a high-resolution Echelle Spectrograph with auto-giving and remote calibration ports.Astronomy, space and physics educational displays for various age groups include:An advanced space display that allows for viewing the universe during four (4) different time periods as seen by:1) The naked eye; 2) Galileo; 3) Spectrographic technology; and 4) The space technology of today.A space technology display that includes space discoveries since the launching of the first satellite in 1940s until now.The Design Concept for the Center (450,000 sq. meters) was originated by HH Sheikh Sultan bin Mohammed Al Qasimi, Ruler of Sharjah, and depicts the dome as representing the sun in the middle of the center surrounded by planetary bodies in orbit to form the solar system as seen in the sky.

  11. Students-exhibits interaction at a science center

    Science.gov (United States)

    Botelho, Agostinho; Morais, Ana M.

    2006-12-01

    In this study we investigate students' learning during their interaction with two exhibits at a science center. Specifically, we analyze both students' procedures when interacting with exhibits and their understanding of the scientific concepts presented therein. Bernstein's theory of pedagogic discourse (1990, 2000) provided the sociological foundation to assess the exhibit-student interaction and allowed analysis of the influence of the characteristics of students, exhibits, and interactions on students' learning. Eight students (ages 12ndash;13 years of age) with distinct sociological characteristics participated in the study. Several findings emerged from the results. First, the characteristics of the students, exhibits, and interactions appeared to influence student learning. Second, to most students, what they did interactively (procedures) seems not to have had any direct consequence on what they learned (concept understanding). Third, the data analysis suggest an important role for designers and teachers in overcoming the limitations of exhibit-student interaction.

  12. Alaska - Russian Far East connection in volcano research and monitoring

    Science.gov (United States)

    Izbekov, P. E.; Eichelberger, J. C.; Gordeev, E.; Neal, C. A.; Chebrov, V. N.; Girina, O. A.; Demyanchuk, Y. V.; Rybin, A. V.

    2012-12-01

    The Kurile-Kamchatka-Alaska portion of the Pacific Rim of Fire spans for nearly 5400 km. It includes more than 80 active volcanoes and averages 4-6 eruptions per year. Resulting ash clouds travel for hundreds to thousands of kilometers defying political borders. To mitigate volcano hazard to aviation and local communities, the Alaska Volcano Observatory (AVO) and the Institute of Volcanology and Seismology (IVS), in partnership with the Kamchatkan Branch of the Geophysical Survey of the Russian Academy of Sciences (KBGS), have established a collaborative program with three integrated components: (1) volcano monitoring with rapid information exchange, (2) cooperation in research projects at active volcanoes, and (3) volcanological field schools for students and young scientists. Cooperation in volcano monitoring includes dissemination of daily information on the state of volcanic activity in neighboring regions, satellite and visual data exchange, as well as sharing expertise and technologies between AVO and the Kamchatkan Volcanic Eruption Response Team (KVERT) and Sakhalin Volcanic Eruption Response Team (SVERT). Collaboration in scientific research is best illustrated by involvement of AVO, IVS, and KBGS faculty and graduate students in mutual international studies. One of the most recent examples is the NSF-funded Partnerships for International Research and Education (PIRE)-Kamchatka project focusing on multi-disciplinary study of Bezymianny volcano in Kamchatka. This international project is one of many that have been initiated as a direct result of a bi-annual series of meetings known as Japan-Kamchatka-Alaska Subduction Processes (JKASP) workshops that we organize together with colleagues from Hokkaido University, Japan. The most recent JKASP meeting was held in August 2011 in Petropavlovsk-Kamchatsky and brought together more than 130 scientists and students from Russia, Japan, and the United States. The key educational component of our collaborative program

  13. Population dynamics of caribou herds in southwestern Alaska

    Directory of Open Access Journals (Sweden)

    Patrick Valkenburg

    2003-04-01

    Full Text Available The five naturally occurring and one transplanted caribou (Rangifer tarandus granti herd in southwestern Alaska composed about 20% of Alaska's caribou population in 2001. All five of the naturally occurring herds fluctuated considerably in size between the late 1800s and 2001 and for some herds the data provide an indication of long-term periodic (40-50 year fluctuations. At the present time, the Unimak (UCH and Southern Alaska Peninsula (SAP are recovering from population declines, the Northern Alaska Peninsula Herd (NAP appears to be nearing the end of a protracted decline, and the Mulchatna Herd (MCH appears to now be declining after 20 years of rapid growth. The remaining naturally occurring herd (Kilbuck has virtually disappeared. Nutrition had a significant effect on the size of 4-month-old and 10-month-old calves in the NAP and the Nushagak Peninsula Herd (NPCH and probably also on population growth in at least 4 (SAP, NAP, NPCH, and MCH of the six caribou herds in southwestern Alaska. Predation does not appear to be sufficient to keep caribou herds in southwestern Alaska from expanding, probably because rabies is endemic in red foxes (Vulpes vulpes and is periodically transferred to wolves (Canis lupus and other canids. However, we found evidence that pneumonia and hoof rot may result in significant mortality of caribou in southwestern Alaska, whereas there is no evidence that disease is important in the dynamics of Interior herds. Cooperative conservation programs, such as the Kilbuck Caribou Management Plan, can be successful in restraining traditional harvest and promoting growth in caribou herds. In southwestern Alaska we also found evidence that small caribou herds can be swamped and assimilated by large herds, and fidelity to traditional calving areas can be lost.

  14. Area health education centers and health science library services.

    Science.gov (United States)

    West, R T; Howard, F H

    1977-07-01

    A study to determine the impact that the Area Health Education Center type of programs may have on health science libraries was conducted by the Extramural Programs, National Library of Medicine, in conjunction with a contract awarded by the Bureau of Health Manpower, Health Resources Administration, to develop an inventory of the AHEC type of projects in the United States. Specific study tasks included a review of these programs as they relate to library and information activities, on-site surveys on the programs to define their needs for library services and information, and a categorization of library activities. A major finding was that health science libraries and information services are generally not included in AHEC program planning and development, although information and information exchange is a fundamental part of the AHEC type of programs. This study suggests that library inadequacies are basically the result of this planning failure and of a lack of financial resources; however, many other factors may be contributory. The design and value of library activities for these programs needs explication.

  15. Nontimber forest product opportunities in Alaska.

    Science.gov (United States)

    David Pilz; Susan J. Alexander; Jerry Smith; Robert Schroeder; Jim. Freed

    2006-01-01

    Nontimber forest products from southern Alaska (also called special forest products) have been used for millennia as resources vital to the livelihoods and culture of Alaska Natives and, more recently, as subsistence resources for the welfare of all citizens. Many of these products are now being sold, and Alaskans seek additional income opportunities through...

  16. 76 FR 78642 - TransCanada Alaska Company, LLC; Notice of Public Scoping Meetings for the Planned Alaska...

    Science.gov (United States)

    2011-12-19

    ... Project (APP). The APP is a planned natural gas pipeline system that would transport gas produced on the Alaska North Slope to the Alaska-Canada border to connect with a pipeline system in Canada for onward..., 2051 Barter Avenue Kaktovik, AK. Dated: December 9, 2011. Kimberly D. Bose, Secretary. [FR Doc. 2011...

  17. Mapping Climate Science Information Needs and Networks in the Northwest, USA through Evaluating the Northwest Climate Science Center Climate Science Digest

    Science.gov (United States)

    Gergel, D. R.; Watts, L. H.; Salathe, E. P.; Mankowski, J. D.

    2017-12-01

    Climate science, already a highly interdisciplinary field, is rapidly evolving, and natural resource managers are increasingly involved in policymaking and adaptation decisions to address climate change that need to be informed by state-of-the-art climate science. Consequently, there is a strong demand for unique organizations that engender collaboration and cooperation between government, non-profit, academic and for-profit sectors that are addressing issues relating to natural resources management and climate adaptation and resilience. These organizations are often referred to as boundary organizations. The Northwest Climate Science Center (NW CSC) and the North Pacific Landscape Conservation Cooperative (NP LCC) are two such boundary organizations operating in different contexts. Together, the NW CSC and the NP LCC fulfill the need for sites of co-production between researchers and managers working on climate-related issues, and a key component of this work is a monthly climate science newsletter that includes recent climate science journal articles, reports, and climate-related events. Our study evaluates the effectiveness of the climate science digest (CSD) through a three-pronged approach: a) in-depth interviews with natural resource managers who use the CSD, b) poll questions distributed to CSD subscribers, and c) quantitative analysis of CSD effectiveness using analytics from MailChimp distribution. We aim to a) map the reach of the CSD across the Northwest and at a national level; b) understand the efficacy of the CSD at communicating climate science to diverse audiences; c) evaluate the usefulness of CSD content for diverse constituencies of subscribers; d) glean transferrable knowledge for future evaluations of boundary management tools; and e) establish a protocol for designing climate science newsletters for other agencies disseminating climate science information. We will present results from all three steps of our evaluation process and describe

  18. Pima Community College Planning Grant for Autonomous Intelligent Network of Systems (AINS) Science, Mathematics and Engineering Education Center

    National Research Council Canada - National Science Library

    2006-01-01

    .... The Center was to be funded by the Department of Defense, Office of Naval Research (ONR). The TDRI AINS Center's objectives were to advance ONR's technologies and to improve exposure and participation in science, math, and engineering (SME...

  19. Master's Level Graduate Training in Medical Physics at the University of Colorado Health Sciences Center.

    Science.gov (United States)

    Ibbott, Geoffrey S.; Hendee, William R.

    1980-01-01

    Describes the master's degree program in medical physics developed at the University of Colorado Health Sciences Center. Required courses for the program, and requirements for admission are included in the appendices. (HM)

  20. Natality and calf mortality of the Northern Alaska Peninsula and Southern Alaska Peninsula caribou herds

    Directory of Open Access Journals (Sweden)

    Richard A. Sellers

    2003-04-01

    Full Text Available We studied natality in the Northern Alaska Peninsula (NAP and Southern Alaska Peninsula (SAP caribou (Rangifer tarandus granti herds during 1996-1999, and mortality and weights of calves during 1998 and 1999- Natality was lower in the NAP than the SAP primarily because most 3-year-old females did not produce calves in the NAP Patterns of calf mortality in the NAP and SAP differed from those in Interior Alaska primarily because neonatal (i.e., during the first 2 weeks of life mortality was relatively low, but mortality continued to be significant through August in both herds, and aggregate annual mortality was extreme (86% in the NAP Predators probably killed more neonatal calves in the SAP, primarily because a wolf den (Canis lupus was located on the calving area. Despite the relatively high density of brown bears (Ursus arctos and bald eagles (Haliaeetus leucocephalus, these predators killed surprisingly few calves. Golden eagles (Aquila chrysaetos were uncommon on the Alaska Peninsula. At least 2 calves apparently died from pneu¬monia in the range of the NAP but none were suspected to have died from disease in the range of the SAP. Heavy scav¬enging by bald eagles complicated determining cause of death of calves in both the NAP and SAP.

  1. IAEA and International Science and Technology Center sign cooperative agreement

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The IAEA and the International Science and Technology Center (ISTC) today signed an agreement that calls for an increase in cooperation between the two organizations. The memorandum of understanding seeks to amplify their collaboration in the research and development of applications and technology that could contribute to the IAEA's activities in the fields of verification and nuclear security, including training and capacity building. IAEA Safeguards Director of Technical Support Nikolay Khlebnikov and ISTC Executive Director Adriaan van der Meer signed the Agreement at IAEA headquarters in Vienna on 22 October 2008. (IAEA)

  2. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-07-01

    . This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and

  3. Alaska Resource Data File, McCarthy quadrangle, Alaska

    Science.gov (United States)

    Hudson, Travis L.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  4. Interior's Climate Science Centers: Focus or Fail

    Science.gov (United States)

    Udall, B.

    2012-12-01

    After a whirlwind two years of impressive and critical infrastructure building, the Department of Interior's Climate Science Centers are now in a position to either succeed or fail. The CSCs have a number of difficult structural problems including too many constituencies relative to the available resources, an uneasy relationship among many of the constituencies including the DOI agencies themselves, a need to do science in a new, difficult and non-traditional way, and a short timeframe to produce useful products. The CSCs have built a broad and impressive network of scientists and stakeholders. These entities include science providers of the universities and the USGS, and decision makers from the states, tribes, DOI land managers and other federal agencies and NGOs. Rather than try to support all of these constituencies the CSCs would be better served by refocusing on a core mission of supporting DOI climate related decision making. The CSCs were designed to service the climate science needs of DOI agencies, many of which lost their scientific capabilities in the 1990s due to a well-intentioned but ultimately harmful re-organization at DOI involving the now defunct National Biological Survey. Many of these agencies would like to have their own scientists, have an uneasy relationship with the nominal DOI science provider, the USGS, and don't communicate effectively among themselves. The CSCs must not succumb to pursuing science in either the traditional mode of the USGS or in the traditional mode of the universities, or worse, both of them. These scientific partners will need to be flexible, learn how to collaborate and should expect to see fewer resources. Useful CSC processes and outputs should start with the recommendations of the 2009 NRC Report Informing Decisions in a Changing Climate: (1) begin with users' needs; (2) give priority to process over products; (3) link information producers and users; (4) build connections across disciplines and organizations

  5. AFSC/RACE/MACE: Results of 2013 Pollock Acoustic/Trawl Survey Shelikof 201303

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists from the Midwater Assessment and Conservation Engineering (MACE) Program of the Alaska Fisheries Science Center's (AFSC) Resource Assessment and...

  6. Acoustic-Trawl Survey of Walleye Pollock on the U.S. and Russian Bering Sea Shelf (DY1006, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  7. Acoustic-Trawl Survey of Walleye Pollock in the Southeastern Aleutian Basin near Bogoslof Island (DY0903, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  8. Acoustic-Trawl Survey of Walleye Pollock in the Eastern Bering Sea (DY1608, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  9. Southeastern Aleutian Basin (Bogoslof Island) Acoustic-Trawl Survey of Walleye Pollock (DY1202, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  10. Acoustic-Trawl Survey of Walleye Pollock on the U.S. and Russian Bering Sea Shelf (DY1207, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  11. AFSC/RACE/MACE: Results of 2014 Pollock Acoustic-Trawl Survey Shelikof- DY1403

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) Program of the Alaska Fisheries Science Center's (AFSC) Resource Assessment and Conservation Engineering...

  12. AFSC/RACE/MACE: Results of 2016 acoustic trawl survey Shumagins/Sanak DY1602

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists from the Midwater Assessment and Conservation Engineering (MACE) Program of the Alaska Fisheries Science Center's (AFSC) Resource Assessment and...

  13. Southeastern Aleutian Basin (Bogoslof Island) Acoustic-Trawl Survey of Walleye Pollock (DY1402, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  14. Southeastern Aleutian Basin (Bogoslof Island) Acoustic-Trawl Survey of Walleye Pollock (DY1603, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  15. Acoustic-Trawl Survey of Walleye Pollock on the U.S. and Russian Bering Sea Shelf (DY0909, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  16. Acoustic-Trawl Survey of Walleye Pollock on the U.S. and Russian Bering Sea Shelf (DY0909, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC)...

  17. AFSC/RACE/MACE: Results of 2008 pollock acoustic trawl survey Shelikof DY0803

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists from the Midwater Assessment and Conservation Engineering (MACE) Program of the Alaska Fisheries Science Center's (AFSC) Resource Assessment and...

  18. AFSC/RACE/MACE: Results of 2012 acoustic trawl survey Shelikof DY1203

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists from the Midwater Assessment and Conservation Engineering (MACE) Program of the Alaska Fisheries Science Center (AFSC) Resource Assessment and...

  19. Generalized bibliographic format as used by the Ecological Sciences Information Center

    International Nuclear Information System (INIS)

    Allison, L.J.; Pfuderer, H.A.; Collier, B.N.

    1979-03-01

    The purpose of this document is to provide guidance for the preparation of computer input for the information programs being developed by the Ecological Sciences Information Center (ESIC)/Information Center Complex (ICC) of the Oak Ridge National Laboratory (ORNL). Through the use of a generalized system, the data of all the centers of ICC are compatible. Literature included in an information data base has a number of identifying characteristics. Each of these characteristics or data fields can be recognized and searched by the computer. The information for each field must have an alphanumeric label or field descriptor. All of the labels presently used are sets of upper-case letters approximating the name of the field they represent. Presently, there are 69 identified fields; additional fields may be included in the future. The format defined here is designed to facilitate the input of information to the ADSEP program. This program processes data for the ORNL on-line (ORLOOK) search system and is a special case of the ADSEP text input option

  20. Generalized bibliographic format as used by the Ecological Sciences Information Center

    Energy Technology Data Exchange (ETDEWEB)

    Allison, L.J.; Pfuderer, H.A.; Collier, B.N.

    1979-03-01

    The purpose of this document is to provide guidance for the preparation of computer input for the information programs being developed by the Ecological Sciences Information Center (ESIC)/Information Center Complex (ICC) of the Oak Ridge National Laboratory (ORNL). Through the use of a generalized system, the data of all the centers of ICC are compatible. Literature included in an information data base has a number of identifying characteristics. Each of these characteristics or data fields can be recognized and searched by the computer. The information for each field must have an alphanumeric label or field descriptor. All of the labels presently used are sets of upper-case letters approximating the name of the field they represent. Presently, there are 69 identified fields; additional fields may be included in the future. The format defined here is designed to facilitate the input of information to the ADSEP program. This program processes data for the ORNL on-line (ORLOOK) search system and is a special case of the ADSEP text input option.

  1. U.S. Geological Survey Virginia and West Virginia Water Science Center

    Science.gov (United States)

    Jastram, John D.

    2017-08-22

    The U.S. Geological Survey (USGS) serves the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. In support of this mission, the USGS Virginia and West Virginia Water Science Center works in cooperation with many entities to provide reliable, impartial scientific information to resource managers, planners, and the public.

  2. Administrative Services Division - Alaska Department of Law

    Science.gov (United States)

    accounting practices and procedures. JoAnn Pelayo Finance Officer Email: joann.pelayo@alaska.gov Tel: (907 @alaska.gov Tel: (907) 465-3674 Fiscal and Accounting Provide centralized fiscal and accounting functions for , inter-departmental payments for core services, payroll accounting adjustments and oversight, and grant

  3. 77 FR 4581 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Science.gov (United States)

    2012-01-30

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-AKR-LACL; 9924-PYS] Alaska Region's... public meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource Commission (SRC... Meeting Debora R. Cooper, Associate Regional Director, Resources and Subsistence, Alaska Region. [FR Doc...

  4. Person-centered pain management - science and art.

    Science.gov (United States)

    Braš, Marijana; Đorđević, Veljko; Janjanin, Mladen

    2013-06-01

    We are witnessing an unprecedented development of the medical science, which promises to revolutionize health care and improve patients' health outcomes. However, the core of the medical profession has always been and will be the relationship between the doctor and the patient, and communication is the most widely used clinical skill in medical practice. When we talk about different forms of communication in medicine, we must never forget the importance of communication through art. Although one of the simplest, art is the most effective way to approach the patient and produce the effect that no other means of communication can achieve. Person-centered pain management takes into account psychological, physical, social, and spiritual aspects of health and disease. Art should be used as a therapeutic technique for people who suffer from pain, as well as a means of raising public awareness of this problem. Art can also be one of the best forms of educating medical professionals and others involved in treatment and decision-making on pain.

  5. Alaska Dental Health Aide Program

    Directory of Open Access Journals (Sweden)

    Sarah Shoffstall-Cone

    2013-08-01

    Full Text Available Background. In 1999, An Oral Health Survey of American Indian and Alaska Native (AI/AN Dental Patients found that 79% of 2- to 5-year-olds had a history of tooth decay. The Alaska Native Tribal Health Consortium in collaboration with Alaska’s Tribal Health Organizations (THO developed a new and diverse dental workforce model to address AI/AN oral health disparities. Objectives. This paper describes the workforce model and some experience to date of the Dental Health Aide (DHA Initiative that was introduced under the federally sanctioned Community Health Aide Program in Alaska. These new dental team members work with THO dentists and hygienists to provide education, prevention and basic restorative services in a culturally appropriate manner. Results. The DHA Initiative introduced 4 new dental provider types to Alaska: the Primary Dental Health Aide, the Expanded Function Dental Health Aide, the Dental Health Aide Hygienist and the Dental Health Aide Therapist. The scope of practice between the 4 different DHA providers varies vastly along with the required training and education requirements. DHAs are certified, not licensed, providers. Recertification occurs every 2 years and requires the completion of 24 hours of continuing education and continual competency evaluation. Conclusions. Dental Health Aides provide evidence-based prevention programs and dental care that improve access to oral health care and help address well-documented oral health disparities.

  6. 77 FR 4579 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Science.gov (United States)

    2012-01-30

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-AKR-DENA; 9924-PYS] Alaska Region's... public meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource Commission (SRC..., Associate Regional Director, Resources and Subsistence, Alaska Region. [FR Doc. 2012-1877 Filed 1-27-12; 8...

  7. CSI : Alaska

    International Nuclear Information System (INIS)

    Letwin, S.

    2005-01-01

    This presentation emphasized the need for northern gas supply at a time when conventional natural gas supplies are decreasing and demand is growing. It highlighted the unique qualifications of Enbridge Inc. in creating an infrastructure to move the supply to where it is in most demand. Enbridge has substantial northern experience and has a unique approach for the construction of the Alaskan Gas Pipeline which entails cooperation, stability and innovation (CSI). Enbridge's role in the joint venture with AltaGas and Inuvialuit Petroleum was discussed along with its role in the construction of the first Canadian pipeline in 1985. The 540 mile pipeline was buried in permafrost. A large percentage of Enbridge employees are of indigenous descent. Enbridge recognizes that the amount of capital investment and the associated risk needed for the Alaska Gas Pipeline will necessitate a partnership of producers, pipeline companies, Native organizations, the State of Alaska, market participants and other interested parties. 9 figs

  8. U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center-Fiscal Year 2009 Annual Report

    Science.gov (United States)

    Nelson, Janice S.

    2010-01-01

    The Earth Resources Observation and Science (EROS) Center is a U.S. Geological Survey (USGS) facility focused on providing science and imagery to better understand our Earth. As part of the USGS Geography Discipline, EROS contributes to the Land Remote Sensing (LRS) Program, the Geographic Analysis and Monitoring (GAM) Program, and the National Geospatial Program (NGP), as well as our Federal partners and cooperators. The work of the Center is shaped by the Earth sciences, the missions of our stakeholders, and implemented through strong program and project management and application of state-of-the-art information technologies. Fundamentally, EROS contributes to the understanding of a changing Earth through 'research to operations' activities that include developing, implementing, and operating remote sensing based terrestrial monitoring capabilities needed to address interdisciplinary science and applications objectives at all levels-both nationally and internationally. The Center's programs and projects continually strive to meet and/or exceed the changing needs of the USGS, the Department of the Interior, our Nation, and international constituents. The Center's multidisciplinary staff uses their unique expertise in remote sensing science and technologies to conduct basic and applied research, data acquisition, systems engineering, information access and management, and archive preservation to address the Nation's most critical needs. Of particular note is the role of EROS as the primary provider of Landsat data, the longest comprehensive global land Earth observation record ever collected. This report is intended to provide an overview of the scientific and engineering achievements and illustrate the range and scope of the activities and accomplishments at EROS throughout fiscal year (FY) 2009. Additional information concerning the scientific, engineering, and operational achievements can be obtained from the scientific papers and other documents published by

  9. AFSC/REFM: North Pacific Groundfish Stock Assessment Chapters, 1998-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Members of the Alaska Fisheries Science Center's (AFSC) Stock Assessment and Multispecies Assessments Program are responsible for determining the condition of...

  10. Description of Specimens in the Marine Mammal Osteology Reference Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NMFS Alaska Fisheries Science Center National Marine Mammal Laboratory (NMML) Marine Mammal Osteology Collection consists of approximately 2500 specimens (skulls...

  11. Shelikof Strait Acoustic-Trawl Survey of Walleye Pollock (DY1002, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of the Alaska Fisheries Science Center (AFSC; NOAA National Marine Fisheries Service) conducted...

  12. Shumagin Islands Acoustic-Trawl Survey of Walleye Pollock (DY1302, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA's National Marine Fisheries Service, Alaska Fisheries Science Center (AFSC), conducted an...

  13. Shumagin Islands Acoustic-Trawl Survey of Walleye Pollock (DY1001, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of the Alaska Fisheries Science Center (AFSC; NOAA National Marine Fisheries Service) conducted...

  14. Shelikof Strait Acoustic-Trawl Survey of Walleye Pollock (DY1303, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of NOAA's National Marine Fisheries Service, Alaska Fisheries Science Center (AFSC) conducted an...

  15. AFSC/RACE/MACE: Results of 2014 acoustic trawl survey Bogoslof DY1402

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists from the Midwater Assessment and Conservation Engineering (MACE) Program of the Alaska Fisheries Science Center (AFSC) regularly conduct acoustic-trawl...

  16. Eastern Bering Sea Acoustic-Trawl Survey of Walleye Pollock (DY1006, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of the Alaska Fisheries Science Center (AFSC; NOAA National Marine Fisheries Service) conducted...

  17. 2005 Alaska Division of Geological & Geophysical Surveys Lidar: Unalakleet, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This report is a summary of a LiDAR data collection over the community of Unalakleet, in the Norton Sound region of Alaska. The original data were collected on...

  18. 77 FR 4578 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Science.gov (United States)

    2012-01-30

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-AKR-ANIA; 9924-PYS] Alaska Region's... public meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource Commission (SRC..., Alaska Region. [FR Doc. 2012-1860 Filed 1-27-12; 8:45 am] BILLING CODE 4310-HE-P ...

  19. Engaging Elements of Cancer-Related Digital Stories in Alaska

    Science.gov (United States)

    Cueva, Melany; Kuhnley, Regina; Revels, Laura; Schoenberg, Nancy E.; Lanier, Anne; Dignan, Mark

    2015-01-01

    The tradition of storytelling is an integral part of Alaska Native cultures that continues to be a way of passing on knowledge. Using a story-based approach to share cancer education is grounded in Alaska Native traditions and people’s experiences and has the potential to positively impact cancer knowledge, understandings, and wellness choices. Community health workers (CHWs) in Alaska created a personal digital story as part of a 5-day, in-person cancer education course. To identify engaging elements of digital stories among Alaska Native people, one focus group was held in each of three different Alaska communities with a total of 29 adult participants. After viewing CHWs’ digital stories created during CHW cancer education courses, focus group participants commented verbally and in writing about cultural relevance, engaging elements, information learned, and intent to change health behavior. Digital stories were described by Alaska focus group participants as being culturally respectful, informational, inspiring, and motivational. Viewers shared that they liked digital stories because they were short (only 2–3 min); nondirective and not preachy; emotional, told as a personal story and not just facts and figures; and relevant, using photos that showed Alaskan places and people. PMID:25865400

  20. Spent fuel storage facility at science and technical center 'Sosny': Experience of ten years activity

    International Nuclear Information System (INIS)

    Chigrinov, S.; Goulo, V.; Lunev, A.; Belousov, N.; Salnikov, L.; Boiko, L.

    2000-01-01

    Spent fuel storage of the Academic Science and Technical Center in Minsk is in operation already more then 10 years. In the paper aspects of its design, operation practice, problems and decisions for future are discussed. (author)

  1. The National Space Science and Technology Center's Education and Public Outreach Program

    Science.gov (United States)

    Cox, G. N.; Denson, R. L.

    2004-12-01

    The objective of the National Space Science and Technology Center's (NSSTC) Education and Public Outreach program (EPO) is to support K-20 education by coalescing academic, government, and business constituents awareness, implementing best business/education practices, and providing stewardship over funds and programs that promote a symbiotic relationship among these entities, specifically in the area of K-20 Science, Technology, Engineering, and Mathematics (STEM) education. NSSTC EPO Program's long-term objective is to showcase its effective community-based integrated stakeholder model in support of STEM education and to expand its influence across the Southeast region for scaling ultimately across the United States. The Education and Public Outreach program (EPO) is coordinated by a supporting arm of the NSSTC Administrative Council called the EPO Council (EPOC). The EPOC is funded through federal, state, and private grants, donations, and in-kind contributions. It is comprised of representatives of NSSTC Research Centers, both educators and scientists from the Alabama Space Science and Technology Alliance (SSTA) member institutions, the Alabama Space Grant Consortium and the NASA Marshall Space Flight Center's (MSFC) Education Office. Through its affiliation with MSFC and the SSTA - a consortium of Alabama's research universities that comprise the NSSTC, EPO fosters the education and development of the next generation of Alabama scientists and engineers by coordinating activities at the K-20 level in cooperation with the Alabama Department of Education, the Alabama Commission on Higher Education, and Alabama's businesses and industries. The EPO program's primary objective is to be Alabama's premiere organization in uniting academia, government, and private industry by way of providing its support to the State and Federal Departments of Education involved in systemic STEM education reform, workforce development, and innovative uses of technology. The NSSTC EPO

  2. Perspectives on learning through research on critical issues-based science center exhibitions

    Science.gov (United States)

    Pedretti, Erminia G.

    2004-07-01

    Recently, science centers have created issues-based exhibitions as a way of communicating socioscientific subject matter to the public. Research in the last decade has investigated how critical issues-based installations promote more robust views of science, while creating effective learning environments for teaching and learning about science. The focus of this paper is to explore research conducted over a 10-year period that informs our understanding of the nature of learning through these experiences. Two specific exhibitions - Mine Games and A Question of Truth - provide the context for discussing this research. Findings suggest that critical issues-based installations challenge visitors in different ways - intellectually and emotionally. They provide experiences beyond usual phenomenon-based exhibitions and carry the potential to enhance learning by personalizing subject matter, evoking emotion, stimulating dialogue and debate, and promoting reflexivity. Critical issues-based exhibitions serve as excellent environments in which to explore the nature of learning in these nonschool settings.

  3. Annual report of R and D activities in Center for Promotion of Computational Science and Engineering and Center for Computational Science and e-Systems from April 1, 2005 to March 31, 2006

    International Nuclear Information System (INIS)

    2007-03-01

    This report provides an overview of research and development activities in Center for Computational Science and Engineering (CCSE), JAERI in the former half of the fiscal year 2005 (April 1, 2005 - Sep. 30, 2006) and those in Center for Computational Science and e-Systems (CCSE), JAEA, in the latter half of the fiscal year 2005(Oct 1, 2005 - March 31, 2006). In the former half term, the activities have been performed by 5 research groups, Research Group for Computational Science in Atomic Energy, Research Group for Computational Material Science in Atomic Energy, R and D Group for Computer Science, R and D Group for Numerical Experiments, and Quantum Bioinformatics Group in CCSE. At the beginning of the latter half term, these 5 groups were integrated into two offices, Simulation Technology Research and Development Office and Computer Science Research and Development Office at the moment of the unification of JNC (Japan Nuclear Cycle Development Institute) and JAERI (Japan Atomic Energy Research Institute), and the latter-half term activities were operated by the two offices. A big project, ITBL (Information Technology Based Laboratory) project and fundamental computational research for atomic energy plant were performed mainly by two groups, the R and D Group for Computer Science and the Research Group for Computational Science in Atomic Energy in the former half term and their integrated office, Computer Science Research and Development Office in the latter half one, respectively. The main result was verification by using structure analysis for real plant executable on the Grid environment, and received Honorable Mentions of Analytic Challenge in the conference 'Supercomputing (SC05)'. The materials science and bioinformatics in atomic energy research field were carried out by three groups, Research Group for Computational Material Science in Atomic Energy, R and D Group for Computer Science, R and D Group for Numerical Experiments, and Quantum Bioinformatics

  4. 14 CFR 99.45 - Alaska ADIZ.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Alaska ADIZ. 99.45 Section 99.45 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC... Zones § 99.45 Alaska ADIZ. The area is bounded by a line from 54°00′N; 136°00′W; 56°57′N; 144°00′W; 57...

  5. Network Science Center Research Team’s Visit to Addis Ababa, Ethiopia

    Science.gov (United States)

    2012-08-01

    by China State Construction Engineering 3 | P a g e Network Science Center, West Point www.netscience.usma.edu 845.938.0804 Corporation as a...between microfinance and large corporate investments in the business market. The creative environment in Ethiopia is energetic, with a large population...coffee names (such as Starbucks ). In our discussion it seemed that TechnoServe emphasized the business aspect of their organization model over

  6. Video Direct Count Data - Bycatch Reduction Engineering Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through key regional collaborations with the Pacific States Marine Fisheries Commission, Oregon Department of Fish and Wildlife, Alaska Fisheries Science Center, and...

  7. Shelikof Strait Acoustic-Trawl Survey of Walleye Pollock (DY1203, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of the Alaska Fisheries Science Center (AFSC) conducted an acoustic-trawl (AT) stock assessment...

  8. Shumagin Islands Acoustic-Trawl Survey of Walleye Pollock (DY1201, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midwater Assessment and Conservation Engineering (MACE) program of the Alaska Fisheries Science Center (AFSC) conducted an acoustic-trawl (AT) stock assessment...

  9. AFSC/RACE/SAP/Armistead: 1975 - 2016 eastern Bering Sea Crab Distribution For Web

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Resource Assessment and Conservation Engineering Division (RACE) of the Alaska Fisheries Science Center (AFSC) conducts bottom trawl surveys to monitor the...

  10. AFSC/NMML/CCEP: California Current Ecosystem Program and Cascadia Research Collective: Aerial and small boat line transect data in waters of OR/WA/BC from 1989, 1990, 1991, 1996, 1997, 2002, and 2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Mammal Laboratory (NMML) a division of NOAA's Alaska Fisheries Science Center (Seattle, WA) and Cascadia Research Collective (Olympia, WA)...

  11. The National Marine Mammal's California Current Ecosystem Program and Cascadia Research Collective: Aerial and small boat line transect surveys conducted in waters of Oregon, Washington, and British Columbia, Canada from 1989-07-13 to 2003-08-29 (NCEI Accession 0141100)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Mammal Laboratory (NMML), a division of NOAA's Alaska Fisheries Science Center (Seattle, WA) and Cascadia Research Collective (Olympia, WA),...

  12. Species Composition - Bycatch Reduction Engineering Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through key regional collaborations with the Pacific States Marine Fisheries Commission, Oregon Department of Fish and Wildlife, Alaska Fisheries Science Center, and...

  13. Oceanographic Data - Bycatch Reduction Engineering Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through key regional collaborations with the Pacific States Marine Fisheries Commission, Oregon Department of Fish and Wildlife, Alaska Fisheries Science Center, and...

  14. AFSC/RACE/MACE: Results of 2006 Pollock Acoustic-Trawl Survey Bering Sea- DY0606

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists from the Alaska Fisheries Science Center’s (AFSC) Midwater Assessment and Conservation Engineering (MACE) Program conduct biennial echo...

  15. DY1207 Bering Sea ME70

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists from the Midwater Assessment and Conservation Engineering (MACE) Program of the Alaska Fisheries Science Center (AFSC) have conducted summer surveys to...

  16. Use of new and old technologies and methods by the Alaska Volcano Observatory during the 2006 eruption of Augustine Volcano, Alaska

    Science.gov (United States)

    Murray, T. L.; Nye, C. J.; Eichelberger, J. C.

    2006-12-01

    The recent eruption of Augustine Volcano was the first significant volcanic event in Cook Inlet, Alaska since 1992. In contrast to eruptions at remote Alaskan volcanoes that mainly affect aviation, ash from previous eruptions of Augustine has affected communities surrounding Cook Inlet, home to over half of Alaska's population. The 2006 eruption validated much of AVO's advance preparation, underscored the need to quickly react when a problem or opportunity developed, and once again demonstrated that while technology provides us with wonderful tools, professional relationships, especially during times of crisis, are still important. Long-term multi-parametric instrumental monitoring and background geological and geophysical studies represent the most fundamental aspect of preparing for any eruption. Once significant unrest was detected, AVO augmented the existing real-time network with additional instrumentation including web cameras. GPS and broadband seismometers that recorded data on site were also quickly installed as their data would be crucial for post-eruption research. Prior to 2006, most of most of AVO's eruption response plans and protocols had focused on the threat to aviation rather than ground-based hazards. However, the relationships and protocols developed for the aviation threat were sufficient to be adapted to the ash fall hazard, though it is apparent that more work, both scientific and with response procedures, is needed. Similarly, protocols were quickly developed for warning of a flank- collapse induced tsunami. Information flow within the observatory was greatly facilitated by an internal web site that had been developed and refined specifically for eruption response. Because AVO is a partnership of 3 agencies (U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys) with offices in both Fairbanks and Anchorage, web and internet-facing data servers provided

  17. Consumer willingness to pay a price premium for standing-dead Alaska yellow-cedar.

    Science.gov (United States)

    Geoffrey H. Donovan

    2004-01-01

    Alaska yellow-cedar has declined in Southeast Alaska over the past 100 years, resulting in half a million acres of dead or dying trees. The natural decay resistance of Alaska yellow-cedar means that many of these trees are still merchantable. However, the topography of Southeast Alaska is such that selectively harvesting Alaska yellow-cedar may often require helicopter...

  18. Augustine Volcano, Cook Inlet, Alaska (January 12, 2006)

    Science.gov (United States)

    2006-01-01

    Since last spring, the U.S. Geological Survey's Alaska Volcano Observatory (AVO) has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. Based on all available monitoring data, AVO regards that an eruption similar to 1976 and 1986 is the most probable outcome. During January, activity has been episodic, and characterized by emission of steam and ash plumes, rising to altitudes in excess of 9,000 m (30,000 ft), and posing hazards to aircraft in the vicinity. An ASTER image was acquired at 12:42 AST on January 12, 2006, during an eruptive phase of Augustine. The perspective rendition shows the eruption plume derived from the ASTER image data. ASTER's stereo viewing capability was used to calculate the 3-dimensional topography of the eruption cloud as it was blown to the south by prevailing winds. From a maximum height of 3060 m (9950 ft), the plume cooled and its top descended to 1900 m (6175 ft). The perspective view shows the ASTER data draped over the plume top topography, combined with a base image acquired in 2000 by the Landsat satellite, that is itself draped over ground elevation data from the Shuttle Radar Topography Mission. The topographic relief has been increased 1.5 times for this illustration. Comparison of the ASTER plume topography data with ash dispersal models and weather radar data will allow the National Weather Service to validate and improve such models. These models are used to forecast volcanic ash plume trajectories and provide hazard alerts and warnings to aircraft in the Alaska region. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with

  19. 77 FR 19699 - Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2012-04-02

    ... Indian tribe, has determined that the cultural items meet the definition of both sacred objects and... Rochester Museum & Science Center that meet the definition of both sacred objects and [[Page 19700

  20. 47 CFR 80.705 - Hours of service of Alaska-public fixed stations.

    Science.gov (United States)

    2010-10-01

    ... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Alaska Fixed Stations § 80.705 Hours of service of Alaska-public fixed stations. Each Alaska-public fixed station whose hours of service are not... 47 Telecommunication 5 2010-10-01 2010-10-01 false Hours of service of Alaska-public fixed...

  1. Coordination and Convening of the 2016 Arctic Science Summit Week

    Energy Technology Data Exchange (ETDEWEB)

    Hinzman, Larry D. [Univ. of Alaska, Fairbanks, AK (United States)

    2016-11-13

    The Arctic Science Summit Week, Arctic Observing Summit, Arctic Council Senior Arctic Officials, Model Arctic Council, and International Arctic Assembly were convened on the campus of the University of Alaska Fairbanks with great productivity and satisfaction of the participants. We were pleased to welcome over 1000 participants from 30 different nations and over 130 different institutions. The organization and execution of these meetings was extensive and complex involving more than 250 coordinators, volunteers and contributors from across Alaska. The participants were enthusiastic in their praise of the content and accomplishments of the meeting, but they were equally happy about the genuine welcome offered to our guests by the people of Alaska. Hosting a complex event such as this summit required an army of supporting services and we were blessed to have volunteers from Fairbanks, North Pole, Anchorage and other communities throughout Alaska helping us meet these needs. This truly was an event hosted by the people of Alaska. The significance of these events cannot be overstated. The US and global communities are finally coming to the realization of the important role that the Arctic plays in international politics, economics, and science. The Arctic has experienced tremendous changes in recent years, offering new opportunities that may be addressed through international collaborations, and serious challenges that must be addressed through active investment, adaptation and national and international coordination. Over 10% of the meeting participants were indigenous peoples, from indigenous organizations or hailed from small remote communities. This is still lower than we had hoped, but it is greater participation than similar meetings have experienced in the past. It is through such engagement that we can attack problems related to the changing environment, stagnant economies, and social ills.

  2. Teachers' Attitude towards Implementation of Learner-Centered Methodology in Science Education in Kenya

    Science.gov (United States)

    Ndirangu, Caroline

    2017-01-01

    This study aims to evaluate teachers' attitude towards implementation of learner-centered methodology in science education in Kenya. The study used a survey design methodology, adopting the purposive, stratified random and simple random sampling procedures and hypothesised that there was no significant relationship between the head teachers'…

  3. Comprehensive report of aeropropulsion, space propulsion, space power, and space science applications of the Lewis Research Center

    Science.gov (United States)

    1988-01-01

    The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.

  4. Forest science research and scientific communities in Alaska: a history of the origins and evolution of USDA Forest Service research in Juneau, Fairbanks, and Anchorage.

    Science.gov (United States)

    Max G. Geier

    1998-01-01

    Research interest in the forests of Alaska can be traced from the 1990s back to 1741, when Georg Steller, the surgeon on Vitus Bering's Russian expedition, visited Kayak Island, collected plants, and recorded his observations. Given the scope and scale of potential research needs and relatively high expenses for travel and logistics in Alaska, support for forest...

  5. Value-added Data Services at the Goddard Earth Sciences Data and Information Services Center

    Science.gov (United States)

    Leptoukh, G. G.; Alcott, G. T.; Kempler, S. J.; Lynnes, C. S.; Vollmer, B. E.

    2004-05-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in addition to serving the Earth Science community as one of the major Distributed Active Archive Centers (DAACs), provides much more than just data. Among the value-added services available to general users are subsetting data spatially and/or by parameter, online analysis (to avoid downloading unnecessary all the data), and assistance in obtaining data from other centers. Services available to data producers and high-volume users include consulting on building new products with standard formats and metadata and construction of data management systems. A particularly useful service is data processing at the DISC (i.e., close to the input data) with the users' algorithms. This can take a number of different forms: as a configuration-managed algorithm within the main processing stream; as a stand-alone program next to the on-line data storage; as build-it-yourself code within the Near-Archive Data Mining (NADM) system; or as an on-the-fly analysis with simple algorithms embedded into the web-based tools. Partnerships between the GES DISC and scientists, both producers and users, allow the scientists concentrate on science, while the GES DISC handles the of data management, e.g., formats, integration and data processing. The existing data management infrastructure at the GES DISC supports a wide spectrum of options: from simple data support to sophisticated on-line analysis tools, producing economies of scale and rapid time-to-deploy. At the same time, such partnerships allow the GES DISC to serve the user community more efficiently and to better prioritize on-line holdings. Several examples of successful partnerships are described in the presentation.

  6. Science Outreach at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Lebo, George

    2002-07-01

    At the end of World War II Duane Deming, an internationally known economist enunciated what later came to be called "Total Quality Management" (TQM). The basic thrust of this economic theory called for companies and governments to identify their customers and to do whatever was necessary to meet their demands and to keep them satisfied. It also called for companies to compete internally. That is, they were to build products that competed with their own so that they were always improving. Unfortunately most U.S. corporations failed to heed this advice. Consequently, the Japanese who actively sought Deming's advice and instituted it in their corporate planning, built an economy that outstripped that of the U.S. for the next three to four decades. Only after U.S. corporations reorganized and fashioned joint ventures which incorporated the tenets of TQM with their Japanese competitors did they start to catch up. Other institutions such as the U.S. government and its agencies and schools face the same problem. While the power of the U.S. government is in no danger of being usurped, its agencies and schools face real problems which can be traced back to not heeding Deming's advice. For example, the public schools are facing real pressure from private schools and home school families because they are not meeting the needs of the general public, Likewise, NASA and other government agencies find themselves shortchanged in funding because they have failed to convince the general public that their missions are important. In an attempt to convince the general public that its science mission is both interesting and important, in 1998 the Science Directorate at NASA's Marshall Space Flight Center (MSFC) instituted a new outreach effort using the interact to reach the general public as well as the students. They have called it 'Science@NASA'.

  7. On the Precipitation and Precipitation Change in Alaska

    Directory of Open Access Journals (Sweden)

    Gerd Wendler

    2017-12-01

    Full Text Available Alaska observes very large differences in precipitation throughout the state; southeast Alaska experiences consistently wet conditions, while northern Arctic Alaska observes very dry conditions. The maximum mean annual precipitation of 5727 mm is observed in the southeastern panhandle at Little Port Arthur, while the minimum of 92 mm occurs on the North Slope at Kuparuk. Besides explaining these large differences due to geographic and orographic location, we discuss the changes in precipitation with time. Analyzing the 18 first-order National Weather Service stations, we found that the total average precipitation in the state increased by 17% over the last 67 years. The observed changes in precipitation are furthermore discussed as a function of the observed temperature increase of 2.1 °C, the mean temperature change of the 18 stations over the same period. This observed warming of Alaska is about three times the magnitude of the mean global warming and allows the air to hold more water vapor. Furthermore, we discuss the effect of the Pacific Decadal Oscillation (PDO, which has a strong influence on both the temperature and precipitation in Alaska.

  8. Good Morning from Barrow, Alaska! Helping K-12 students understand the importance of research

    Science.gov (United States)

    Shelton, M.

    2010-12-01

    This presentation focuses on how an educator experiences scientific research and how those experiences can help foster K-12 students’ understanding of research being conducted in Barrow, Alaska. According to Zhang and Fulford (1994), real-time electronic field trips help to provide a sense of closeness and relevance. In combination with experts in the field, the electronic experience can help students to better understand the phenomenon being studied, thus strengthening the student’s conceptual knowledge (Zhang & Fulford, 1994). During a seven day research trip to study the arctic sea ice, five rural Virginia teachers and their students participated in Skype sessions with the participating educator and other members of the Radford University research team. The students were able to view the current conditions in Barrow, listen to members of the research team describe what their contributions were to the research, and ask questions about the research and Alaska in general. Collaborations between students and scientist can have long lasting benefits for both educators and students in promoting an understanding of the research process and understanding why our world is changing. By using multimedia venues such as Skype students are able to interact with researchers both visually and verbally, forming the basis for students’ interest in science. A learner’s level of engagement is affected by the use of multimedia, especially the level of cognitive processing. Visual images alone do no promote the development of good problem solving skills. However, the students are able to develop better problem solving skills when both visual images and verbal interactions are used together. As students form higher confidence levels by improving their ability to problem solve, their interest in science also increases. It is possible that this interest could turn into a passion for science, which could result in more students wanting to become scientists or science teachers.

  9. Co-production and modeling landscape change - successes and challenges in developing useful climate science

    Science.gov (United States)

    Timm, K.; Reynolds, J.; Littell, J. S.; Murphy, K.; Euskirchen, E. S.; Breen, A. L.; Gray, S. T.; McGuire, A. D.; Rupp, S. T.

    2017-12-01

    Responding to the impacts of climate change and generating information that helps inform resource management requires exceptional communication and collaboration among researchers, managers, and other stakeholders. However, there is relatively little guidance on how to practically develop, facilitate, and evaluate this process given the highly specific and localized nature of many co-production efforts in terms of information needs, research questions, partners, and associated institutions. The Integrated Ecosystem Model (IEM) for Alaska and Northwest Canada was developed to understand how climate change influences interactions among disturbance (e.g. wildfire, thermokarst), permafrost, hydrology, and vegetation and identify how these changes affect valuable ecosystem services. The IEM was a unique co-production effort in that it was driven by broad management interests (rather than one research question), and because of the landscape-scale outputs, much broader engagement was warranted. Communication between the research team and the broader community of resource managers was facilitated by the Alaska Landscape Conservation Cooperatives and the Alaska Climate Science Center. Team members' reflections on the project confirm the importance of deliberate approaches to collaboration, where everyone has frequent opportunities to discuss goals, assumptions, and presumed outcomes of the project itself, as well as the elements of the process (i.e. meetings, reports, etc.). However, managing these activities requires significant time, resources, and perhaps more dedicated personnel. The lessons learned from the design and application of the IEM are highly relevant to researchers and land managers in other regions that are considering the development of a similar tool or an undertaking of similar magnitude, scale, and complexity.

  10. Potential for forest products in interior Alaska.

    Science.gov (United States)

    George R. Sampson; Willem W.S. van Hees; Theodore S. Setzer; Richard C. Smith

    1988-01-01

    Future opportunities for producing Alaska forest products were examined from the perspective of timber supply as reported in timber inventory reports and past studies of forest products industry potential. The best prospects for increasing industrial production of forest products in interior Alaska are for softwood lumber. Current softwood lumber production in the...

  11. Alaska's indigenous muskoxen: a history

    Directory of Open Access Journals (Sweden)

    Peter C. Lent

    1998-03-01

    Full Text Available Muskoxen (Ovibos moschatus were widespread in northern and interior Alaska in the late Pleistocene but were never a dominant component of large mammal faunas. After the end of the Pleistocene they were even less common. Most skeletal finds have come from the Arctic Coastal Plain and the foothills of the Brooks Range. Archaeological evidence, mainly from the Point Barrow area, suggests that humans sporadically hunted small numbers of muskoxen over about 1500 years from early Birnirk culture to nineteenth century Thule culture. Skeletal remains found near Kivalina represent the most southerly Holocene record for muskoxen in Alaska. Claims that muskoxen survived into the early nineteenth century farther south in the Selawik - Buckland River region are not substantiated. Remains of muskox found by Beechey's party in Eschscholtz Bay in 1826 were almost certainly of Pleistocene age, not recent. Neither the introduction of firearms nor overwintering whalers played a significant role in the extinction of Alaska's muskoxen. Inuit hunters apparently killed the last muskoxen in northwestern Alaska in the late 1850s. Several accounts suggest that remnant herds survived in the eastern Brooks Range into the 1890s. However, there is no physical evidence or independent confirmation of these reports. Oral traditions regarding muskoxen survived among the Nunamiut and the Chandalar Kutchin. With human help, muskoxen have successfully recolonized their former range from the Seward Peninsula north, across the Arctic Slope and east into the northern Yukon Territory.

  12. Fish species, Fish biomass, Fishery survey, invertebrate species, and other variables collected from midwater net tows, and bottom trawl observations using net, trawl, and other instruments from the Arctic Ocean, and Beaufort Sea from August 6, 2008 to August 21, 2008 (NODC Accession 0112823)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Alaska Fisheries Science Center's Status of Stocks and Multispecies Assessment (SSMA) Programs Fishery Interaction Team (FIT) conducted a fish survey in the...

  13. Acoustic-Trawl Survey of Walleye Pollock on the Eastern Bering Sea Shelf (DY1407, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC) conducted an acoustic-trawl (AT) stock assessment survey on the eastern Bering Sea...

  14. INFINITY at NASA Stennis Space Center

    Science.gov (United States)

    2010-01-01

    Flags are planted on the roof of the new INFINITY at NASA Stennis Space Center facility under construction just west of the Mississippi Welcome Center at exit 2 on Interstate 10. Stennis and community leaders celebrated the 'topping out' of the new science center Nov. 17, marking a construction milestone for the center. The 72,000-square-foot science and education center will feature space and Earth galleries to showcase the science that underpins the missions of the agencies at Stennis Space Center. The center is targeted to open in 2012.

  15. Home Page, Alaska Department of Labor and Workforce Development

    Science.gov (United States)

    Employment and Training Services Alaska Labor Relations Agency Labor Standards and Safety Vocational Rehabilitation Workers' Compensation Of Interest Alaska's Job Bank Job Fairs, Recruitments, and Workshops Finding

  16. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the northeastern Alaska Range, Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 670 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the northeastern Alaska Range, in the Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical

  17. 7 CFR 318.13-21 - Avocados from Hawaii to Alaska.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Avocados from Hawaii to Alaska. 318.13-21 Section 318... Articles From Hawaii and the Territories § 318.13-21 Avocados from Hawaii to Alaska. Avocados may be moved... marking requirements. The avocados may be moved interstate for distribution in Alaska only, the boxes of...

  18. Alaska High School Students Integrate Forest Ecology, Glacial Landscape Dynamics, and Human Maritime History in a Field Mapping Course at Cape Decision Lighthouse, Kuiu Island, Southeast Alaska

    Science.gov (United States)

    Connor, C. L.; Carstensen, R.; Domke, L.; Donohoe, S.; Clark, A.; Cordero, D.; Otsea, C.; Hakala, M.; Parks, R.; Lanwermeyer, S.; Discover Design Research (Ddr)

    2010-12-01

    Alaskan 10th and 11th graders earned college credit at Cape Decision Lighthouse as part of a 12-day, summer field research experience. Students and faculty flew to the southern tip of Kuiu Island located 388 km south of Juneau. Kuiu is the largest uninhabited island in southeastern Alaska. This field-based, introduction-to-research course was designed to engage students in the sciences and give them skills in technology, engineering, and mathematics. Two faculty, a forest naturalist and a geologist, introduced the students to the use of hand held GPS receivers, GIS map making, field note-taking and documentary photography, increment borer use, and soil studies techniques. Daily surveys across the region, provided onsite opportunities for the faculty to introduce the high schoolers to the many dimensions of forest ecology and plant succession. Students collected tree cores using increment borers to determine “release dates” providing clues to past wind disturbance. They discovered the influence of landscape change on the forest by digging soil pits and through guided interpretation of bedrock outcrops. The students learned about glacially influenced hydrology in forested wetlands during peat bog hikes. They developed an eye for geomorphic features along coastal traverses, which helped them to understand the influences of uplift through faulting and isostatic rebound in this tectonically active and once glaciated area. They surveyed forest patches to distinguish between regions of declining yellow-cedar from wind-disturbed spruce forests. The students encountered large volumes of primarily plastic marine debris, now stratified by density and wave energy, throughout the southern Kuiu intertidal zone. They traced pre-European Alaska Native subsistence use of the area, 19th and 20th century Alaska Territorial Maritime history, and learned about the 21st century radio tracking of over 10,000 commercial vessels by the Marine Exchange of Alaska from its many stations

  19. AFSC/RACE/GAP/Rooper: Triggered camera for determining fish height off bottom by species and size

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Assessing rockfish abundance in untrawlable habitats is a key area of study for the Alaska Fisheries Science Center. In order to accurately estimate abundance...

  20. AFSC/RACE/GAP/Rooper: Response of fish to drop camera systems

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Assessing rockfish abundance in untrawlable habitats is a key area of study for the Alaska Fisheries Science Center. In order to accurately estimate abundance...

  1. AFSC/REFM: North Pacific Groundfish Diet Data 1981-present, Aydin, K.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Groundfish diet data collected during the Alaska Fisheries Science Center (NOAA/NMFS) groundfish surveys in the eastern Bering Sea, Aleutian Islands, and Gulf of...

  2. Scheduling at the Los Alamos Neutron Science Center (LANSCE)

    International Nuclear Information System (INIS)

    Gallegos, F.R.

    1999-01-01

    The centerpieces of the Los Alamos Neutron Science Center (LANSCE) are a half-mile long 800-MeV proton linear accelerator and proton storage ring. The accelerator, storage ring, and target stations provide the protons and spallation neutrons that are used in the numerous basic research and applications experimental programs supported by the US Department of Energy. Experimental users, facility maintenance personnel, and operations personnel must work together to achieve the most program benefit within defined budget and resource constraints. In order to satisfy the experimental users programs, operations must provide reliable and high quality beam delivery. Effective and efficient scheduling is a critical component to achieve this goal. This paper will detail how operations scheduling is presently executed at the LANSCE accelerator facility

  3. National Center for Advancing Translational Sciences

    Science.gov (United States)

    ... Models Core Technologies Clinical Innovation Clinical and Translational Science Awards Program Rare Diseases Clinical Research Network Patient ... to our monthly e-newsletter. About Translation Translational Science Spectrum Explore the full spectrum of translational science, ...

  4. Faculty development to improve teaching at a health sciences center: a needs assessment.

    Science.gov (United States)

    Scarbecz, Mark; Russell, Cynthia K; Shreve, Robert G; Robinson, Melissa M; Scheid, Cheryl R

    2011-02-01

    There has been increasing interest at health science centers in improving the education of health professionals by offering faculty development activities. In 2007-08, as part of an effort to expand education-related faculty development offerings on campus, the University of Tennessee Health Science Center surveyed faculty members in an effort to identify faculty development activities that would be of interest. Factor analysis of survey data indicated that faculty interests in the areas of teaching and learning can be grouped into six dimensions: development of educational goals and objectives, the use of innovative teaching techniques, clinical teaching, improving traditional teaching skills, addressing teaching challenges, and facilitating participation. There were significant differences in the level of interest in education-related faculty development activities by academic rank and by the college of appointment. Full professors expressed somewhat less interest in faculty development activities than faculty members of lower ranks. Faculty members in the Colleges of Medicine and Dentistry expressed somewhat greater interest in faculty development to improve traditional teaching skills. The policy implications of the survey results are discussed, including the need for faculty development activities that target the needs of specific faculty groups.

  5. How do science centers perceive their role in science teaching?

    DEFF Research Database (Denmark)

    Nielsen, Jan Alexis; Stougaard, Birgitte; Andersen, Beth Wehner

    This poster presents the data of a survey of 11 science centres in the Region of Southern Denmark. The survey is the initial step in a project which aims, on the one hand, to identify the factors which conditions successful learning outcomes of visits to science centres, and, on the other hand...... and teachers. In the present survey we have approached the topic from the perspective of science centres. Needless to say, the science centres’ own perception of their role in science teaching plays a vital role with respect to the successfulness of such visits. The data of our survey suggest that, also from......, to apply this identification so as to guide the interaction of science teachers and science centres. Recent literature on this topic (Rennie et. al. 2003; Falk & Dierking 2000) suggest that stable learning outcomes of such visits require that such visits are (1) prepared in the sense that the teacher has...

  6. Cloud amount/frequency, NITRATE and other data from ALPHA HELIX in the Gulf of Alaska from 1988-09-14 to 1988-09-29 (NODC Accession 8800279)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of Alaska, Institute of Marine Science is responsible for this data collected aboard the R/V Alpha Helix on cruise number HX118 between September 14,...

  7. Social-Ecological Soundscapes: Examining Aircraft-Harvester-Caribou Conflict in Arctic Alaska

    Science.gov (United States)

    Stinchcomb, Taylor R.

    quantify interactions and provide baseline data that may foster mitigation discourses among stakeholders. In Chapter 2, I employed a soundscape-ecology approach to address concerns about aircraft activity expressed by the Alaska Native community of Nuiqsut. Nuiqsut faces the greatest volume of aircraft activity of any community in Arctic Alaska because of its proximity to intensive oil and gas activity. However, information on when and where these aircraft are flying is unavailable to residents, managers, and researchers. I worked closely with Nuiqsut residents to deploy acoustic monitoring systems along important caribou harvest corridors during the peak of caribou harvest, from early June through late August 2016. This method successfully captured aircraft sound and the community embraced my science for addressing local priorities. I found aircraft activity levels near Nuiqsut and surrounding oil developments (12 daily events) to be approximately six times greater than in areas over 30 km from the village (two daily events). Aircraft sound disturbance was 26 times lower in undeveloped areas (Noise Free Interval =13 hrs) than near human development (NFI = 0.5 hrs). My study provided baseline data on aircraft activity and noise levels. My research could be used by stakeholders and managers to develop conflict avoidance agreements and minimize interference with traditional harvest practices. Soundscape methods could be adapted to rural regions across Alaska that may be experiencing conflict with aircraft or other sources of noise that disrupt human-wildlife interactions. By quantifying aircraft activity using a soundscape approach, I demonstrated a novel application of an emerging field in ecology and provided the first scientific data on one dimension of a larger social-ecological system. Future soundscape studies should be integrated with research on both harvester and caribou behaviors to understand how the components within this system are interacting over space and

  8. Evaluation of Unmanned Aircraft System (UAS) to Monitor Forest Health Conditions in Alaska

    Science.gov (United States)

    Webley, P. W.; Hatfield, M. C.; Heutte, T. M.; Winton, L. M.

    2017-12-01

    US Forest Service Alaska Region Forest Health Protection (FHP) and University of Alaska Fairbanks (UAF), Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) are evaluating the capability of Unmanned Aerial Systems (UAS, "drone" informally) to monitor forest health conditions in Alaska's Interior Region. On July 17-20 2017, FHP and ACUASI deployed two different UAS at permanent forest inventory plots managed by the UAF programs Bonanza Creek Long Term Ecological Research (LTER) and Cooperative Alaska Forest Inventory (CAFI). The purpose of the mission was to explore capabilities of UAS for evaluating aspen tree mortality at inaccessible locations and at a scale and precision not generally achievable with currently used ground- or air-based methods. Drawing from experience gained during the initial 2016 campaign, this year emphasized the efficient use of UAS to accomplish practical field research in a variety of realistic situations. The vehicles selected for this years' effort included the DJI Matrice quadcopter with the Zenmuse-X3 camera to quickly capture initial video of the site and tree conditions; followed by the ING Responder (single rotor electric helicopter based on the Gaui X7 airframe) outfitted with a Nikon D810 camera to collect high-resolution stills suitable for construction of orthomosaic models. A total of 12 flights were conducted over the campaign, with two full days dedicated to the Delta Junction Gerstle River Intermediate (GRI) sites and the remaining day at the Bonanza Creek site. In addition to demonstrating the ability of UAS to operate safely and effectively in various canopy conditions, the effort also validated the ability of teams to deliver UAS and scientific payloads into challenging terrain using all-terrain vehicles (ATV) and foot traffic. Analysis of data from the campaign is underway. Because the permanent plots have been recently evaluated it is known that nearly all aspen mortality is caused by an aggressive canker

  9. Development of a Free-Electron Laser Center and Research in Medicine, Biology and Materials Science,

    Science.gov (United States)

    1992-05-14

    the reduced electron- larons cause localized distortions in an ionic lattice lattice coupling strength leads to molecule emission, which are... syndrome . Health Science Center at San Antonio and the University Buerger’s disease, palmar hyperhidrosis, frostbite and of Mi.imi School of Medicine, Miami

  10. Alaska Consumer Protection Unit

    Science.gov (United States)

    Drafting Manual Attorney General Opinions Executive Branch Ethics Criminal Justice Alaska Medicaid Fraud make wise purchasing decisions and avoid becoming victims of consumer fraud. The site also includes

  11. Regulatory Commission of Alaska

    Science.gov (United States)

    Map Help Regulatory Commission of Alaska Login Forgot Password Arrow Image Forgot password? View Cart login Procedures for Requesting Login For Consumers General Information Telephone Electric Natural Gas

  12. Palaeomagnetism of lower cretaceous tuffs from Yukon-Kuskokwim delta region, western Alaska

    Science.gov (United States)

    Globerman, B.R.; Coe, R.S.; Hoare, J.M.; Decker, J.

    1983-01-01

    During the past decade, the prescient arguments1-3 for the allochthoneity of large portions of southern Alaska have been corroborated by detailed geological and palaeomagnetic studies in south-central Alaska 4-9 the Alaska Peninsula10, Kodiak Island11,12 and the Prince William Sound area13 (Fig. 1). These investigations have demonstrated sizeable northward displacements for rocks of late Palaeozoic, Mesozoic, and early Tertiary age in those regions, with northward motion at times culminating in collision of the allochthonous terranes against the backstop of 'nuclear' Alaska14,15. A fundamental question is which parts of Alaska underwent significantly less latitudinal translation relative to the 'stable' North American continent, thereby serving as the 'accretionary nucleus' into which the displaced 'microplates'16 were eventually incorporated17,18? Here we present new palaeomagnetic results from tuffs and associated volcaniclastic rocks of early Cretaceous age from the Yukon-Kuskokwin delta region in western Alaska. These rocks were probably overprinted during the Cretaceous long normal polarity interval, although a remagnetization event as recent as Palaeocene cannot be ruled out. This overprint direction is not appreciably discordant from the expected late Cretaceous direction for cratonal North America. The implied absence of appreciable northward displacement for this region is consistent with the general late Mesozoic-early Tertiary tectonic pattern for Alaska, based on more definitive studies: little to no poleward displacement for central Alaska, though substantially more northward drift for the 'southern Alaska terranes' (comprising Alaska Peninsula, Kodiak Island, Prince William Sound area, and Matunuska Valley) since late Cretaceous to Palaeocene time. ?? 1983 Nature Publishing Group.

  13. Archival policies and collections database for the Woods Hole Science Center's marine sediment samples

    Science.gov (United States)

    Buczkowski, Brian J.; Kelsey, Sarah A.

    2007-01-01

    The Woods Hole Science Center of the U.S. Geological Survey (USGS) has been an active member of the Woods Hole research community, Woods Hole, Massachusetts, for over 40 years. In that time there have been many projects that involved the collection of sediment samples conducted by USGS scientists and technicians for the research and study of seabed environments and processes. These samples were collected at sea or near shore and then brought back to the Woods Hole Science Center (WHSC) for analysis. While at the center, samples are stored in ambient temperature, refrigerated and freezing conditions ranging from +2º Celsius to -18º Celsius, depending on the best mode of preparation for the study being conducted or the duration of storage planned for the samples. Recently, storage methods and available storage space have become a major concern at the WHSC. The core and sediment archive program described herein has been initiated to set standards for the management, methods, and duration of sample storage. A need has arisen to maintain organizational consistency and define storage protocol. This handbook serves as a reference and guide to all parties interested in using and accessing the WHSC's sample archive and also defines all the steps necessary to construct and maintain an organized collection of geological samples. It answers many questions as to the way in which the archive functions.

  14. Energy Frontier Research Centers: Science for Our Nation's Energy Future, September 2016

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-09-01

    As world demand for energy rapidly expands, transforming the way energy is collected, stored, and used has become a defining challenge of the 21st century. At its heart, this challenge is a scientific one, inspiring the U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) to establish the Energy Frontier Research Center (EFRC) program in 2009. The EFRCs represent a unique approach, bringing together creative, multidisciplinary scientific teams to perform energy-relevant basic research with a complexity beyond the scope of single-investigator projects. These centers take full advantage of powerful new tools for characterizing, understanding, modeling, and manipulating matter from atomic to macroscopic length scales. They also train the next-generation scientific workforce by attracting talented students and postdoctoral researchers interested in energy science. The EFRCs have collectively demonstrated the potential to substantially advance the scientific understanding underpinning transformational energy technologies. Both a BES Committee of Visitors and a Secretary of Energy Advisory Board Task Force have found the EFRC program to be highly successful in meeting its goals. The scientific output from the EFRCs is impressive, and many centers have reported that their results are already impacting both technology research and industry. This report on the EFRC program includes selected highlights from the initial 46 EFRCs and the current 36 EFRCs.

  15. 75 FR 62460 - Revocation and Establishment of Class E Airspace; Northeast Alaska, AK

    Science.gov (United States)

    2010-10-12

    ...-0445; Airspace Docket No. 10-AAL-13] Revocation and Establishment of Class E Airspace; Northeast Alaska... removes redundant Class E airspace in Northeast Alaska and establishes Class E airspace near Eagle, Alaska... proposed rulemaking in the Federal Register to remove some Class E airspace in Northeast Alaska and...

  16. Economic growth and change in southeast Alaska.

    Science.gov (United States)

    Rhonda Mazza

    2004-01-01

    This report focuses on economic trends since the 1970s in rural southeast Alaska. These trends are compared with those in the Nation and in nonmetropolitan areas of the country to determine the extent to which the economy in rural southeast Alaska is affected by regional activity and by larger market forces. Many of the economic changes occurring in rural southeast...

  17. Evolution of Information Management at the GSFC Earth Sciences (GES) Data and Information Services Center (DISC): 2006-2007

    Science.gov (United States)

    Kempler, Steven; Lynnes, Christopher; Vollmer, Bruce; Alcott, Gary; Berrick, Stephen

    2009-01-01

    Increasingly sophisticated National Aeronautics and Space Administration (NASA) Earth science missions have driven their associated data and data management systems from providing simple point-to-point archiving and retrieval to performing user-responsive distributed multisensor information extraction. To fully maximize the use of remote-sensor-generated Earth science data, NASA recognized the need for data systems that provide data access and manipulation capabilities responsive to research brought forth by advancing scientific analysis and the need to maximize the use and usability of the data. The decision by NASA to purposely evolve the Earth Observing System Data and Information System (EOSDIS) at the Goddard Space Flight Center (GSFC) Earth Sciences (GES) Data and Information Services Center (DISC) and other information management facilities was timely and appropriate. The GES DISC evolution was focused on replacing the EOSDIS Core System (ECS) by reusing the In-house developed disk-based Simple, Scalable, Script-based Science Product Archive (S4PA) data management system and migrating data to the disk archives. Transition was completed in December 2007

  18. 76 FR 32142 - Proposed Information Collection; Comment Request; Alaska Saltwater Sportfishing Economic Survey

    Science.gov (United States)

    2011-06-03

    ... marine sport species in Alaska (e.g., lingcod and rockfish). The data collected from the survey will be... a survey to collect data for conducting economic analyses of marine sport fishing in Alaska. This... management of the Pacific halibut sport fishery off Alaska, while the State of Alaska manages the salmon...

  19. 2012 Alaska Division of Geological and Geophysical Surveys (DGGS) Lidar: Whittier, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In support of geologic mapping and hazards evaluation in and near Whittier, Alaska, the Division of Geological and Geophysical Surveys (DGGS) acquired, and is making...

  20. BAROMETRIC PRESSURE and Other Data from ALPHA HELIX From Prince William Sound (Gulf of Alaska) from 1989-05-05 to 1989-05-11 (NODC Accession 8900192)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of Alaska, Institute of Marine Science is responsible for this data collected aboard the R/V Alpha Helix on cruise number HX123 between May 5, 1989 to...

  1. The Los Alamos Neutron Science Center Spallation Neutron Sources

    International Nuclear Information System (INIS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    2017-01-01

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  2. The Los Alamos Neutron Science Center Spallation Neutron Sources

    Science.gov (United States)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and

  3. Western Mineral and Environmental Resources Science Center--providing comprehensive earth science for complex societal issues

    Science.gov (United States)

    Frank, David G.; Wallace, Alan R.; Schneider, Jill L.

    2010-01-01

    Minerals in the environment and products manufactured from mineral materials are all around us and we use and come into contact with them every day. They impact our way of life and the health of all that lives. Minerals are critical to the Nation's economy and knowing where future mineral resources will come from is important for sustaining the Nation's economy and national security. The U.S. Geological Survey (USGS) Mineral Resources Program (MRP) provides scientific information for objective resource assessments and unbiased research results on mineral resource potential, production and consumption statistics, as well as environmental consequences of mining. The MRP conducts this research to provide information needed for land planners and decisionmakers about where mineral commodities are known and suspected in the earth's crust and about the environmental consequences of extracting those commodities. As part of the MRP scientists of the Western Mineral and Environmental Resources Science Center (WMERSC or 'Center' herein) coordinate the development of national, geologic, geochemical, geophysical, and mineral-resource databases and the migration of existing databases to standard models and formats that are available to both internal and external users. The unique expertise developed by Center scientists over many decades in response to mineral-resource-related issues is now in great demand to support applications such as public health research and remediation of environmental hazards that result from mining and mining-related activities. Western Mineral and Environmental Resources Science Center Results of WMERSC research provide timely and unbiased analyses of minerals and inorganic materials to (1) improve stewardship of public lands and resources; (2) support national and international economic and security policies; (3) sustain prosperity and improve our quality of life; and (4) protect and improve public health, safety, and environmental quality. The MRP

  4. Using and Distributing Spaceflight Data: The Johnson Space Center Life Sciences Data Archive

    Science.gov (United States)

    Cardenas, J. A.; Buckey, J. C.; Turner, J. N.; White, T. S.; Havelka,J. A.

    1995-01-01

    Life sciences data collected before, during and after spaceflight are valuable and often irreplaceable. The Johnson Space Center Life is hard to find, and much of the data (e.g. Sciences Data Archive has been designed to provide researchers, engineers, managers and educators interactive access to information about and data from human spaceflight experiments. The archive system consists of a Data Acquisition System, Database Management System, CD-ROM Mastering System and Catalog Information System (CIS). The catalog information system is the heart of the archive. The CIS provides detailed experiment descriptions (both written and as QuickTime movies), hardware descriptions, hardware images, documents, and data. An initial evaluation of the archive at a scientific meeting showed that 88% of those who evaluated the catalog want to use the system when completed. The majority of the evaluators found the archive flexible, satisfying and easy to use. We conclude that the data archive effectively provides key life sciences data to interested users.

  5. HEASARC - The High Energy Astrophysics Science Archive Research Center

    Science.gov (United States)

    Smale, Alan P.

    2011-01-01

    The High Energy Astrophysics Science Archive Research Center (HEASARC) is NASA's archive for high-energy astrophysics and cosmic microwave background (CMB) data, supporting the broad science goals of NASA's Physics of the Cosmos theme. It provides vital scientific infrastructure to the community by standardizing science data formats and analysis programs, providing open access to NASA resources, and implementing powerful archive interfaces. Over the next five years the HEASARC will ingest observations from up to 12 operating missions, while serving data from these and over 30 archival missions to the community. The HEASARC archive presently contains over 37 TB of data, and will contain over 60 TB by the end of 2014. The HEASARC continues to secure major cost savings for NASA missions, providing a reusable mission-independent framework for reducing, analyzing, and archiving data. This approach was recognized in the NRC Portals to the Universe report (2007) as one of the HEASARC's great strengths. This poster describes the past and current activities of the HEASARC and our anticipated developments in coming years. These include preparations to support upcoming high energy missions (NuSTAR, Astro-H, GEMS) and ground-based and sub-orbital CMB experiments, as well as continued support of missions currently operating (Chandra, Fermi, RXTE, Suzaku, Swift, XMM-Newton and INTEGRAL). In 2012 the HEASARC (which now includes LAMBDA) will support the final nine-year WMAP data release. The HEASARC is also upgrading its archive querying and retrieval software with the new Xamin system in early release - and building on opportunities afforded by the growth of the Virtual Observatory and recent developments in virtual environments and cloud computing.

  6. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    Science.gov (United States)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  7. Financing Opportunities for Renewable Energy Development in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Ardani, K.; Hillman, D.; Busche, S.

    2013-04-01

    This technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment. While privately funded options currently have limited application in Alaska, their implementation is theoretically possible based on successful execution in similar circumstances elsewhere. This report concludes that while tax status is a key consideration in determining appropriate financing structure, there are opportunities for both taxable and tax-exempt entities to participate in renewable energy project development.

  8. Studies of Bagley Icefield during surge and Black Rapids Glacier, Alaska, using spaceborne SAR interferometry

    Science.gov (United States)

    Fatland, Dennis Robert

    1998-12-01

    This thesis presents studies of two temperate valley glaciers---Bering Glacier in the Chugach-St.Elias Mountains, South Central Alaska, and Black Rapids Glacier in the Alaska Range, Interior Alaska---using differential spaceborne radar interferometry. The first study was centered on the 1993--95 surge of Bering Glacier and the resultant ice dynamics on its accumulation area, the Bagley Icefield. The second study site was chosen for purposes of comparison of the interferometry results with conventional field measurements, particularly camera survey data and airborne laser altimetry. A comprehensive suite of software was written to interferometrically process synthetic aperture radar (SAR) data in order to derive estimates of surface elevation and surface velocity on these subject glaciers. In addition to these results, the data revealed unexpected but fairly common concentric rings called 'phase bull's-eyes', image features typically 0.5 to 4 km in diameter located over the central part of various glaciers. These bull's-eyes led to a hypothetical model in which they were interpreted to indicate transitory instances of high subglacial water pressure that locally lift the glacier from its bed by several centimeters. This model is associated with previous findings about the nature of glacier bed hydrology and glacier surging. In addition to the dynamical analysis presented herein, this work is submitted as a contribution to the ongoing development of spaceborne radar interferometry as a glaciological tool.

  9. Informal science education at Science City

    Science.gov (United States)

    French, April Nicole

    The presentation of chemistry within informal learning environments, specifically science museums and science centers is very sparse. This work examines learning in Kansas City's Science City's Astronaut Training Center in order to identify specific behaviors associated with visitors' perception of learning and their attitudes toward space and science to develop an effective chemistry exhibit. Grounded in social-constructivism and the Contextual Model of Learning, this work approaches learning in informal environments as resulting from social interactions constructed over time from interaction between visitors. Visitors to the Astronaut Training Center were surveyed both during their visit and a year after the visit to establish their perceptions of behavior within the exhibit and attitudes toward space and science. Observations of visitor behavior and a survey of the Science City staff were used to corroborate visitor responses. Eighty-six percent of visitors to Science City indicated they had learned from their experiences in the Astronaut Training Center. No correlation was found between this perception of learning and visitor's interactions with exhibit stations. Visitor attitudes were generally positive toward learning in informal settings and space science as it was presented in the exhibit. Visitors also felt positively toward using video game technology as learning tools. This opens opportunities to developing chemistry exhibits using video technology to lessen the waste stream produced by a full scale chemistry exhibit.

  10. 78 FR 28601 - National Center for Advancing Translational Sciences; Request for Comment on Proposed Methods for...

    Science.gov (United States)

    2013-05-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Center for... resources that leverage basic research in support of translational science; and by developing partnerships...-newsletter, distribution of emails to NCATS stakeholder listservs, and announcements on NCATS Facebook page...

  11. Bering Sea Helicopter Surveys for Ice-Associated Seals (2007-08)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the spring of 2007 and 2008, researchers from the Alaska Fisheries Science Center conducted aerial surveys for ribbon, bearded, and spotted seals in the US sector...

  12. Aviation and Airports, Transportation & Public Facilities, State of Alaska

    Science.gov (United States)

    State Employees Alaska Department of Transportation & Public Facilities header image Alaska Department of Transportation & Public Facilities / Aviation and Airports Search DOT&PF State of pages view official DOT&PF Flickr pages Department of Transportation & Public Facilities PO Box

  13. Alaska Native Villages and Rural Communities Water Grant Program

    Science.gov (United States)

    Significant human health and water quality problems exist in Alaska Native Village and other rural communities in the state due to lack of sanitation. To address these issues, EPA created the Alaska Rural and Native Villages Grant Program.

  14. Earthquake source studies and seismic imaging in Alaska

    Science.gov (United States)

    Tape, C.; Silwal, V.

    2015-12-01

    Alaska is one of the world's most seismically and tectonically active regions. Its enhanced seismicity, including slab seismicity down to 180 km, provides opportunities (1) to characterize pervasive crustal faulting and slab deformation through the estimation of moment tensors and (2) to image subsurface structures to help understand the tectonic evolution of Alaska. Most previous studies of earthquakes and seismic imaging in Alaska have emphasized earthquake locations and body-wave travel-time tomography. In the past decade, catalogs of seismic moment tensors have been established, while seismic surface waves, active-source data, and potential field data have been used to improve models of seismic structure. We have developed moment tensor catalogs in the regions of two of the largest sedimentary basins in Alaska: Cook Inlet forearc basin, west of Anchorage, and Nenana basin, west of Fairbanks. Our moment tensor solutions near Nenana basin suggest a transtensional tectonic setting, with the basin developing in a stepover of a left-lateral strike-slip fault system. We explore the effects of seismic wave propagation from point-source and finite-source earthquake models by performing three-dimensional wavefield simulations using seismic velocity models that include major sedimentary basins. We will use our catalog of moment tensors within an adjoint-based, iterative inversion to improve the three-dimensional tomographic model of Alaska.

  15. Phytomass in southeast Alaska.

    Science.gov (United States)

    Bert R. Mead

    1998-01-01

    Phytomass tables are presented for the southeast Alaska archipelago. Average phytomass for each sampled species of tree, shrub, grass, forb, lichen, and moss in 10 forest and 4 nonforest vegetation types is shown.

  16. Centro Regional de Ciencias Nucleares (a Brazilian regional center for nuclear sciences) - activities report - 1999

    International Nuclear Information System (INIS)

    1999-12-01

    The annual activities report of 1999 of nuclear sciences regional center - Brazilian organization - introduces the next main topics: institutional relations; sectorial actions - logistic support and training, laboratory of radiation protection and dosimetry, laboratory of metrology, laboratory of chemical characterization; technical and scientific events; and financial resources and perspectives for 2000

  17. Geophysical identification and geological Implications of the Southern Alaska Magnetic Trough

    Science.gov (United States)

    Saltus, R.W.; Hudson, T.L.; Wilson, Frederic H.

    2003-01-01

    The southern Alaska magnetic trough (SAMT) is one of the fundamental, crustal-scale, magnetic features of Alaska. It is readily recognized on 10 km upward-continued aeromagnetic maps of the state. The arcuate SAMT ranges from 30 to 100 km wide and extends in two separate segments along the southern Alaska margin for about 1200 km onshore (from near the Alaska/Canada border at about 60 degrees north latitude to the Bering Sea) and may continue an additional 500 km or more offshore (in the southern Bering Sea). The SAMT is bordered to the south by the southern Alaska magnetic high (SAMH) produced by strongly magnetic crust and to the north by a magnetically quiet zone that reflects weakly magnetic interior Alaska crust. Geophysically, the SAMT is more than just the north-side dipole low associated with the SAMH. Several modes of analysis, including examination of magnetic potential (pseudogravity) and profile modeling, indicate that the source of this magnetic trough is a discrete, crustal-scale body. Geologically, the western portion of the SAMT coincides to a large degree with collapsed Mesozoic Kahiltna flysch basin. This poster presents our geophysical evidence for the extent and geometry of this magnetic feature as well as initial geological synthesis and combined geologic/geophysical modeling to examine the implications of this feature for the broad scale tectonic framework of southern Alaska.

  18. Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska

    International Nuclear Information System (INIS)

    1998-05-01

    The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact

  19. Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

  20. Legacy K/Ar and 40Ar/39Ar geochronologic data from the Alaska-Aleutian Range batholith of south-central Alaska

    Science.gov (United States)

    Koeneman, Lisa L.; Wilson, Frederic H.

    2018-04-06

    Sample descriptions and analytical data for more than 200 K/Ar and 40Ar/39Ar analyses from rocks of the Alaska-Aleutian Range batholith of south-central Alaska are reported here. Samples were collected over a period of 20 years by Bruce R. Reed and Marvin A. Lanphere (both U.S. Geological Survey) as part of their studies of the batholith.

  1. Ichthyophonus in sport-caught groundfishes from southcentral Alaska.

    Science.gov (United States)

    Harris, Bradley P; Webster, Sarah R; Wolf, Nathan; Gregg, Jacob L; Hershberger, Paul K

    2018-05-07

    This report of Ichthyophonus in common sport-caught fishes throughout the marine waters of southcentral Alaska represents the first documentation of natural Ichthyophonus infections in lingcod Ophiodon elongates and yelloweye rockfish Sebastes ruberrimus. In addition, the known geographic range of Ichthyophonus in black rockfish S. melanops has been expanded northward to include southcentral Alaska. Among all species surveyed, the infection prevalence was highest (35%, n = 334) in Pacific halibut Hippoglossus stenolepis. There were no gross indications of high-level infections or clinically diseased individuals. These results support the hypothesis that under typical conditions Ichthyophonus can occur at high infection prevalence accompanied with low-level infection among a variety of fishes throughout the eastern North Pacific Ocean, including southcentral Alaska.

  2. Geothermal energy in Alaska: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Markle, D.

    1979-04-01

    The following are presented: the history of geothermal energy in Alaska; a history of Alaska land ownership; legal and institutional barriers; and economics. Development, the socio-economic and physical data concerning geothermal energy are documented by regions. The six regions presented are those of the present Alaska State Planning Activities and those of the Federal Land Use Commission. Site data summaries of the one hundred and four separate geothermal spring locations are presented by these regions. (MHR)

  3. Downed woody material in southeast Alaska forest stands.

    Science.gov (United States)

    Frederic R. Larson

    1992-01-01

    Data collected in conjunction with the multiresource inventory of southeast Alaska in 1985-86 included downed wood along 234 transects at 60 locations. Transects occurred in 11 forest types and 19 plant associations within the entire southeastern Alaska archipelago. Downed wood weights in forest types ranged from 1232 kilograms per hectare (0.6 ton per acre) in muskeg...

  4. Lunar and Meteorite Sample Education Disk Program — Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    Science.gov (United States)

    Allen, J.; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-03-01

    NASA’s Lunar and Meteorite Sample Education Disk Program has Lucite disks containing Apollo lunar samples and meteorite samples that are available for trained educators to borrow for use in classrooms, museums, science center, and libraries.

  5. Involving Practicing Scientists in K-12 Science Teacher Professional Development

    Science.gov (United States)

    Bertram, K. B.

    2011-12-01

    The Science Teacher Education Program (STEP) offered a unique framework for creating professional development courses focused on Arctic research from 2006-2009. Under the STEP framework, science, technology, engineering, and math (STEM) training was delivered by teams of practicing Arctic researchers in partnership with master teachers with 20+ years experience teaching STEM content in K-12 classrooms. Courses based on the framework were offered to educators across Alaska. STEP offered in-person summer-intensive institutes and follow-on audio-conferenced field-test courses during the academic year, supplemented by online scientist mentorship for teachers. During STEP courses, teams of scientists offered in-depth STEM content instruction at the graduate level for teachers of all grade levels. STEP graduate-level training culminated in the translation of information and data learned from Arctic scientists into standard-aligned lessons designed for immediate use in K-12 classrooms. This presentation will focus on research that explored the question: To what degree was scientist involvement beneficial to teacher training and to what degree was STEP scientist involvement beneficial to scientist instructors? Data sources reveal consistently high levels of ongoing (4 year) scientist and teacher participation; high STEM content learning outcomes for teachers; high STEM content learning outcomes for students; high ratings of STEP courses by scientists and teachers; and a discussion of the reasons scientists indicate they benefited from STEP involvement. Analyses of open-ended comments by teachers and scientists support and clarify these findings. A grounded theory approach was used to analyze teacher and scientist qualitative feedback. Comments were coded and patterns analyzed in three databases. The vast majority of teacher open-ended comments indicate that STEP involvement improved K-12 STEM classroom instruction, and the vast majority of scientist open-ended comments

  6. 75 FR 25290 - Notice of Intent To Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2010-05-07

    ... Museum & Science Center, Rochester, NY, that meet the definitions of ``sacred objects'' and ``objects of.... Tonawanda Seneca Nation traditional religious leaders have identified these medicine faces as being needed...-Haudenosaunee consultants, the museum has determined that the medicine faces are both sacred objects and objects...

  7. 75 FR 25289 - Notice of Intent To Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2010-05-07

    ... Museum & Science Center, Rochester, NY, that meet the definitions of ``sacred object'' and object of...- 9). They are of Onondaga origin and were made circa 1970. Onondaga Nation traditional religious... that these medicine faces are culturally affiliated with the Onondaga Nation, and are both sacred...

  8. Frontier Scientists' project probes audience science interests with website, social media, TV broadcast, game, and pop-up book

    Science.gov (United States)

    O'Connell, E. A.

    2017-12-01

    The Frontier Scientists National Science Foundation project titled Science in Alaska: Using Multimedia to Support Science Education produced research products in several formats: videos short and long, blogs, social media, a computer game, and a pop-up book. These formats reached distinctly different audiences. Internet users, public TV viewers, gamers, schools, and parents & young children were drawn to Frontier Scientists' research in direct and indirect ways. The analytics (our big data) derived from this media broadcast has given us insight into what works, what doesn't, next steps. We have evidence for what is needed to present science as an interesting, vital, and a necessary component for the general public's daily information diet and as an important tool for scientists to publicize research and to thrive in their careers. Collaborations with scientists at several Universities, USGS, Native organizations, tourism organizations, and Alaska Museums promoted accuracy of videos and increased viewing. For example, Erin Marbarger, at Anchorage Museum, edited, and provided Spark!Lab to test parents & child's interest in the pop-up book titled: The Adventures of Apun the Arctic Fox. Without a marketing budget Frontier Scientist's minimum publicity, during the three year project, still drew an audience. Frontier Scientists was awarded Best Website 2016 by the Alaska Press Club, and won a number of awards for short videos and TV programs.

  9. Beyond the center: Sciences in Central and Eastern Europe and their histories. An interview with professor Michael Jordan conducted by Jan Surman

    Directory of Open Access Journals (Sweden)

    Michael Gordin

    2016-11-01

    Full Text Available What is special about sciences in Central and Eastern Europe? What are the obstacles for writing histories of science done beyond metropoles? Is this science different than the science in the centers and what makes it so? How imperial are sciences made by representatives of dominant nations compared to non-dominant nations? These are some of the questions touched upon in the interview with Michael Gordin, a leading historian of science from Princeton University.

  10. Geothermal Technologies Program: Alaska

    Energy Technology Data Exchange (ETDEWEB)

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

  11. The geophysical character of southern Alaska - Implications for crustal evolution

    Science.gov (United States)

    Saltus, R.W.; Hudson, T.L.; Wilson, Frederic H.

    2007-01-01

    The southern Alaska continental margin has undergone a long and complicated history of plate convergence, subduction, accretion, and margin-parallel displacements. The crustal character of this continental margin is discernible through combined analysis of aeromagnetic and gravity data with key constraints from previous seismic interpretation. Regional magnetic data are particularly useful in defining broad geophysical domains. One of these domains, the south Alaska magnetic high, is the focus of this study. It is an intense and continuous magnetic high up to 200 km wide and ∼1500 km long extending from the Canadian border in the Wrangell Mountains west and southwest through Cook Inlet to the Bering Sea shelf. Crustal thickness beneath the south Alaska magnetic high is commonly 40–50 km. Gravity analysis indicates that the south Alaska magnetic high crust is dense. The south Alaska magnetic high spatially coincides with the Peninsular and Wrangellia terranes. The thick, dense, and magnetic character of this domain requires significant amounts of mafic rocks at intermediate to deep crustal levels. In Wrangellia these mafic rocks are likely to have been emplaced during Middle and (or) Late Triassic Nikolai Greenstone volcanism. In the Peninsular terrane, the most extensive period of mafic magmatism now known was associated with the Early Jurassic Talkeetna Formation volcanic arc. Thus the thick, dense, and magnetic character of the south Alaska magnetic high crust apparently developed as the response to mafic magmatism in both extensional (Wrangellia) and subduction-related arc (Peninsular terrane) settings. The south Alaska magnetic high is therefore a composite crustal feature. At least in Wrangellia, the crust was probably of average thickness (30 km) or greater prior to Triassic mafic magmatism. Up to 20 km (40%) of its present thickness may be due to the addition of Triassic mafic magmas. Throughout the south Alaska magnetic high, significant crustal growth

  12. Center of Microbial Oceanography Research and Education (C-MORE) Initiatives Toward Promoting Diversity in the Ocean Sciences

    Science.gov (United States)

    Bruno, B. C.

    2007-05-01

    The ocean sciences suffer from a lack of diversity, particularly among indigenous peoples, despite the fact that indigenous peoples often have deep, cultural knowledge about the marine environment. Nowhere is this inequity more glaring than in Hawaii. Traditional knowledge in marine science enabled Native Hawaiians and Pacific Islanders (NHPI) to become world leaders in transpacific canoe voyaging, aquaculture, and fisheries. Yet today, NHPI are severely underrepresented in the ocean sciences (and in STEM fields in general) at all levels of education and employment. When compared to other ethnic and racial groups in Hawaii, NHPI students as a group have among the poorest educational performance, indicated in part by underrepresentation in college enrolment and pre-college gifted and talented programs, as well as overrepresentation in eligibility for special education and free and reduced lunch programs. The Center of Microbial Oceanography Research and Education (C-MORE), a NSF-funded, multi-institutional Science and Technology Center based at the University of Hawai (UH), is determined to address this inequity. C- MORE is committed to increasing diversity in the ocean sciences, particularly among NHPI, at all levels of education and research. Our approach is to work with existing programs with a track record of increasing diversity among NHPI. We are currently developing culturally relevant materials including educational games for K-12 students, mentorships for high school and community college students, and laboratory and shipboard experiences for teachers and undergraduates in partnership with minority-serving organizations. Some of our main partners are EPSCoR (Experimental Program to Stimulate Competitive Research), Ka `Imi `Ike (an NSF- funded program to recruit and retain NHPI undergraduates in geosciences), Upward Bound (an enrichment program for economically disadvantaged high school students which includes intensive summer courses), the UH Center on

  13. The Department of the Interior Southeast Climate Science Center synthesis report 2011–15—Projects, products, and science priorities

    Science.gov (United States)

    Varela Minder, Elda; Lascurain, Aranzazu R.; McMahon, Gerard

    2016-09-28

    IntroductionIn 2009, the U.S. Department of the Interior (DOI) Secretary Ken Salazar established a network of eight regional Climate Science Centers (CSCs) that, along with the Landscape Conservation Cooperatives (LCCs), would help define and implement the Department's climate adaptation response. The Southeast Climate Science Center (SE CSC) was established at North Carolina State University (NCSU) in Raleigh, North Carolina, in 2010, under a 5-year cooperative agreement with the U.S. Geological Survey (USGS), to identify and address the regional challenges presented by climate change and variability in the Southeastern United States. All eight regional CSC hosts, including NCSU, were selected through a competitive process.Since its opening, the focus of the SE CSC has been on working with partners in the identification and development of research-based information that can assist managers, including cultural and natural resource managers, in adapting to global change processes, such as climate and land use change, that operate at local to global scales and affect resources important to the DOI mission. The SE CSC was organized to accomplish three goals:Provide co-produced, researched based, actionable science that supports transparent global change adaptation decisions.Convene conversations among decision makers, scientists, and managers to identify key ecosystem adaptation decisions driven by climate and land use change, the values and objectives that will be used to make decisions, and the research-based information needed to assess adaptation options.Build the capacity of natural resource professionals, university faculty, and students to understand and frame natural resource adaptation decisions and develop and use research-based information to make adaptation decisions.This report provides an overview of the SE CSC and the projects developed by the SE CSC since its inception. An important goal of this report is to provide a framework for understanding the

  14. Center of Excellence for Geospatial Information Science research plan 2013-18

    Science.gov (United States)

    Usery, E. Lynn

    2013-01-01

    The U.S. Geological Survey Center of Excellence for Geospatial Information Science (CEGIS) was created in 2006 and since that time has provided research primarily in support of The National Map. The presentations and publications of the CEGIS researchers document the research accomplishments that include advances in electronic topographic map design, generalization, data integration, map projections, sea level rise modeling, geospatial semantics, ontology, user-centered design, volunteer geographic information, and parallel and grid computing for geospatial data from The National Map. A research plan spanning 2013–18 has been developed extending the accomplishments of the CEGIS researchers and documenting new research areas that are anticipated to support The National Map of the future. In addition to extending the 2006–12 research areas, the CEGIS research plan for 2013–18 includes new research areas in data models, geospatial semantics, high-performance computing, volunteered geographic information, crowdsourcing, social media, data integration, and multiscale representations to support the Three-Dimensional Elevation Program (3DEP) and The National Map of the future of the U.S. Geological Survey.

  15. Alaska State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Alaska State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste generators in Alaska. The profile is the result of a survey of NRC licensees in Alaska. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Alaska

  16. Fostering Social Determinants of Health Transdisciplinary Research: The Collaborative Research Center for American Indian Health

    Directory of Open Access Journals (Sweden)

    Amy J. Elliott

    2015-12-01

    Full Text Available The Collaborative Research Center for American Indian Health (CRCAIH was established in September 2012 as a unifying structure to bring together tribal communities and health researchers across South Dakota, North Dakota and Minnesota to address American Indian/Alaska Native (AI/AN health disparities. CRCAIH is based on the core values of transdisciplinary research, sustainability and tribal sovereignty. All CRCAIH resources and activities revolve around the central aim of assisting tribes with establishing and advancing their own research infrastructures and agendas, as well as increasing AI/AN health research. CRCAIH is comprised of three divisions (administrative; community engagement and innovation; research projects, three technical cores (culture, science and bioethics; regulatory knowledge; and methodology, six tribal partners and supports numerous multi-year and one-year pilot research projects. Under the ultimate goal of improving health for AI/AN, this paper describes the overarching vision and structure of CRCAIH, highlighting lessons learned in the first three years.

  17. Employee, State of Alaska

    Science.gov (United States)

    Business Resources Division of Corporations, Business & Professional Licensing Dept. of Commerce Benefits Resources State Employee Directory State Calendar State Training: LearnAlaska State Travel Manager) Web Mail (Outlook) Login Who to Call Health Insurance Insurance Benefits Health and Optional

  18. - Oklahoma Water Resources Center

    Science.gov (United States)

    Development Ag Business Community & Rural Development Crops Family & Consumer Sciences Gardening Family & Consumer Sciences Food & Ag Products Center Horticulture & Landscape Architecture & Landscape Architecture Natural Resource Ecology & Management Plant & Soil Sciences

  19. The Three-Pronged Approach to Community Education: An Ongoing Hydrologic Science Outreach Campaign Directed from a University Research Center

    Science.gov (United States)

    Gallagher, L.; Morse, M.; Maxwell, R. M.

    2017-12-01

    The Integrated GroundWater Modeling Center (IGWMC) at Colorado School of Mines has, over the past three years, developed a community outreach program focusing on hydrologic science education, targeting K-12 teachers and students, and providing experiential learning for undergraduate and graduate students. During this time, the programs led by the IGWMC reached approximately 7500 students, teachers, and community members along the Colorado Front Range. An educational campaign of this magnitude for a small (2 full-time employees, 4 PIs) research center required restructuring and modularizing of the outreach strategy. We refined our approach to include three main "modules" of delivery. First: grassroots education delivery in the form of K-12 classroom visits, science fairs, and teacher workshops. Second: content development in the form of lesson plans for K-12 classrooms and STEM camps, hands-on physical and computer model activities, and long-term citizen science partnerships. Lastly: providing education/outreach experiences for undergraduate and graduate student volunteers, training them via a 3-credit honors course, and instilling the importance of effective science communication skills. Here we present specific case studies and examples of the successes and failures of our three-pronged system, future developments, and suggestions for entities newly embarking on an earth science education outreach campaign.

  20. 77 FR 19698 - Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2012-04-02

    ... Indian tribe, has determined that the cultural items meet the definition of both sacred objects and... Rochester Museum & Science Center that meet the definition of both sacred objects and objects of cultural.... Traditional religious leaders of the Seneca Nation of New York have identified these medicine faces as being...