WorldWideScience

Sample records for alaska river

  1. Geology of the Johnson River Area Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The vegetation, topography, and geology of the Johnson River area are representative of the entire eastern interior region of Alaska. This area has a vegetational...

  2. Upper Yukon River, Alaska, a wild and scenic river analysis: Preliminary draft: Chapters IV and V

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Upper Yukon River, Alaska, possesses values which qualify it for inclusion in the National Wild and Scenic Rivers System. The Upper Yukon River and its...

  3. Hydrokinetic Resource Characterization on the Tanana River Near Nenana, Alaska

    Science.gov (United States)

    Toniolo, H.; Duvoy, P.; Schmid, J.; Johnson, J.

    2012-12-01

    The field of hydrokinetics, in general, is developing rapidly due to high fossil fuel costs and the desire to use renewable energy sources to reduce greenhouse gases. Alaska, in particular, has tidal and in-stream hydrokinetic resources. This presentation focuses on resource characterization in rivers; specifically, the Tanana River near Nenana, Alaska. We present a comprehensive approach to characterize the existing resource and the conditions for installing hydrokinetic devices. The methodology includes: a) extensive field measurements, b) numerical modeling, and c) turbulence analysis. Field work efforts involve bathymetric surveys, velocity measurements, and sediment sampling. Modeling encompasses an existing 2D-dimensional hydrodynamic model, and the calculation of power density along the river reach. Turbulence analysis provides insights on channel stability and energy partition. As results of this combined research approach, preliminary sediment-rating curves were developed, distribution of available power density was calculated and possible sites for turbine deployment were defined.

  4. Inversion of Airborne Electromagnetic Survey Data, Styx River Area, Alaska

    Science.gov (United States)

    Kass, A.; Minsley, B. J.; Smith, B. D.; Burns, L.; Emond, A.

    2014-12-01

    A joint effort by the US Geological Survey (USGS) and the Alaska Division of Geological & Geophysical Surveys (DGGS) aims to add value to public domain airborne electromagnetic (AEM) data, collected in Alaska, through the application of newly developed advanced inversion methods to produce resistivity depth sections along flight lines. Derivative products are new geophysical data maps, interpretative profiles and displays. An important task of the new processing is to facilitate calibration or leveling between adjacent surveys flown with different systems in different years. The new approach will facilitate integration of the geophysical data in the interpretation and construction of geologic framework, resource evaluations and to geotechnical studies. Four helicopter airborne electromagnetic (AEM) surveys have been flown in the Styx River area by the DGGS; Styx River, Middle Styx, East Styx, and Farewell. The Styx River flown in 2008 and Middle Styx in flown 2013, cover an area of 2300 square kilometers. These data consist of frequency-domain DIGHEM V surveys which have been numerically processed and interpreted to yield a three-dimensional model of electrical resistivity. We describe the numerical interpretation methodology (inversion) in detail, from quality assessment to interpretation. We show two methods of inversion used in these datasets, deterministic and stochastic, and describe how we use these results to define calibration parameters and assess the quality of the datasets. We also describe the difficulties and procedures for combining datasets acquired at different times.

  5. Spatial distribution of chemical constituents in the Kuskokwim River, Alaska

    Science.gov (United States)

    Wang, Bronwen

    1999-01-01

    The effects of lithologic changes on the water quality of the Kuskokwim River, Alaska, were evaluated by the U.S. Geological Survey in June 1997. Water, suspended sediments, and bed sediments were sampled from the Kusko-kwim River and from three tributaries, the Holitna River, Red Devil Creek, and Crooked Creek. Dissolved boron, chromium, copper, manganese, zinc, aluminum, lithium, barium, iron, antimony, arsenic, mercury, and strontium were detected. Dissolved manganese and iron concentrations were three and four times higher in the Holitna River than in the Kusko-kwim River. Finely divided ferruginous materials found in the graywacke and shale units of the Kuskokwim Group are the probable source of the iron. The highest concentrations of dissolved strontium and barium were found at McGrath, and the limestone present in the upper basin was the most probable source of strontium. The total mercury concentrations on the Kuskokwim River decreased downstream from McGrath. Dissolved mercury was 24 to 32 percent of the total concentration. The highest concentrations of total mercury, and of dissolved antimony and arsenic were found in Red Devil Creek. The higher concentrations from Red Devil Creek did not affect the main stem mercury transport because the tributary was small relative to the Kuskokwim River. In Red Devil Creek, total mercury exceeded the concentration at which the U.S. Environmental Protection Agency (USEPA) indicates that aquatic life is affected and dissolved arsenic exceeded the USEPA's drinking-water standard. Background mercury and antimony concentrations in bed sediments ranged from 0.09 to 0.15 micrograms per gram for mercury and from 1.6 to 2.1 micrograms per gram for antimony. Background arsenic concentrations were greater than 27 micrograms per gram. Sites near the Red Devil mercury mine had mercury and antimony concentrations greater than background concentrations. These concentrations probably reflect the proximity to the ore body and past

  6. A survey for nesting birds of prey along the Copper River, Alaska, 1987/88

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the findings of a survey for nesting birds of prey along the Cooper River in Alaska. The primary objectives of the study were as follows:...

  7. Yellow-billed loon populations on the Colville River Delta, arctic Alaska: Supplemental project report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report covers the yellow-billed loon populations on the Colville river delta in the Arctic Alaska. The estimates sizes of the 1982 and 1984 yellow-billed look...

  8. The Climatology and Impacts of Atmospheric Rivers near the Coast of Southern Alaska

    Science.gov (United States)

    Nardi, K.; Barnes, E. A.; Mundhenk, B. D.

    2015-12-01

    Atmospheric rivers, narrow plumes of anomalously high tropospheric water vapor transport, frequently appear over the Pacific Ocean. Popularized by colloquialisms such as the "Pineapple Express," atmospheric rivers often interact with synoptic-scale disturbances to produce significant precipitation events over land masses. Previous research has focused extensively on the impacts of this phenomenon with respect to high-precipitation storms, namely during boreal winter, on the western coast of the contiguous United States. These events generate great scientific, political, and economic concerns for nearby cities, farms, and tourist destinations. Recently, researchers have investigated similar high-precipitation events along the southern coast of Alaska. Specifically, previous work has discussed several major events occurring during the September-November timeframe. One particular event, in October 2006, produced an all-time record for water levels at several river observation sites. This study examines the climatology of atmospheric rivers in the vicinity of southern Alaska. Data (1979-2014) from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) is used to detect atmospheric rivers approaching, and making landfall on, the southern Alaskan coast from the Kenai Peninsula to the Gulf of Alaska region. A seasonal cycle in the strength and frequency of atmospheric rivers over Alaska is shown. Furthermore, the study assesses the synoptic conditions coincident with atmospheric rivers and examines several instances of particularly strong precipitation events. For example, wintertime atmospheric river events tend to occur when a blocking high exists over southeastern Alaska. These results have the potential to help forecasters and emergency managers predict high-precipitation events and lessen potential negative impacts.

  9. Hydrogeochemical and stream sediment reconnaissance basic data for Meade River quadrangle, Alaska

    International Nuclear Information System (INIS)

    Field and laboratory data are presented for 515 water samples from the Meade River Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  10. Behavior and reproductive success of Rock Sandpipers breeding on the Yukon-Kuskokwim River Delta, Alaska

    NARCIS (Netherlands)

    Johnson, Matthew; Conklin, J.R.; Johnson, Branden; McCaffery, Brian J.; Haig, Susan M.; Walters, Jeffrey R.

    2009-01-01

    We studied Rock Sandpiper (Calidris ptilocnemis) breeding behavior and monitored reproductive success from 1998 to 2005 on the Yukon-Kuskokwim River Delta, Alaska, USA. We banded 24 adults and monitored 45 nests. Annual return rate of adults ranged between 67 and 100%. Six pairs of Rock Sandpipers b

  11. Genetics, recruitment, and migration patterns of Arctic Cisco (Coregonus autumnalis) in the Colville River, Alaska and Mackenzie River, Canada

    Science.gov (United States)

    Zimmerman, Christian E.; Ramey, Andy M.; Turner, S.; Mueter, Franz J.; Murphy, S.; Nielsen, Jennifer L.

    2013-01-01

    Arctic cisco Coregonus autumnalis have a complex anadromous life history, many aspects of which remain poorly understood. Some life history traits of Arctic cisco from the Colville River, Alaska, and Mackenzie River basin, Canada, were investigated using molecular genetics, harvest data, and otolith microchemistry. The Mackenzie hypothesis, which suggests that Arctic cisco found in Alaskan waters originate from the Mackenzie River system, was tested using 11 microsatellite loci and a single mitochondrial DNA gene. No genetic differentiation was found among sample collections from the Colville River and the Mackenzie River system using molecular markers (P > 0.19 in all comparisons). Model-based clustering methods also supported genetic admixture between sample collections from the Colville River and Mackenzie River basin. A reanalysis of recruitment patterns to Alaska, which included data from recent warm periods and suspected changes in atmospheric circulation patterns, still finds that recruitment is correlated to wind conditions. Otolith microchemistry (Sr/Ca ratios) confirmed repeated, annual movements of Arctic cisco between low-salinity habitats in winter and marine waters in summer.

  12. Asbestos investigations in fish and wildlife in the upper Yukon River region, Alaska 1977-1982: Summary

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — High Concentrations of asbestos were first discovered in the upper Yukon River near Eagle, Alaska in the summer of 1977 by Fish and Wildlife Service Biologists....

  13. Bird populations and habitat use in the Okpilak River Delta area, Arctic National Wildlife Range, Alaska, 1978

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Bird census plots totaling 1.75 square-km in area on the Okpilak River delta, Arctic National Wildlife Range, Alaska, were sampled to determine nesting bird density...

  14. Atmospheric Rivers in Southeast Alaska and British Columbia: The Bella Coola Event of 2010 and Alaska Events of 2012

    Science.gov (United States)

    Lavers, D. A.; Ralph, F. M.; Neiman, P. J.; Wick, G. A.; Scott, C. A.; McCollor, D.; White, T.

    2014-12-01

    Floods are a recurring natural hazard responsible for large socioeconomic losses globally. In mid-latitude locations, such as Western North America and Europe, heavy precipitation and floods, are connected to intense water vapor transport in extra-tropical cyclones called atmospheric rivers (ARs). This AR region is narrow (on the order of 300-500 km wide) and transports the majority of the poleward moisture flux. Given the strong link between ARs and floods on the west coast of North America, it is the aim of this research to determine if ARs are responsible for hydrohazards in British Columbia and Alaska.Using satellite measurements, atmospheric reanalyses, and in-situ observations we undertake a hydrometeorological analysis on two major flood events, namely the Bella Coola flood in British Columbia in September 2010 in which 10 inches (250mm) of rain fell in 36 hours, and an Alaskan event that produced over 50 inches (1250 mm) of precipitation in the month of September 2012 (mostly in two landfalling ARs), and led to record river stage heights. Furthermore, the Alaskan event resulted in one fatality and $35M in damages to buildings, homes, and infrastructure.Preliminary results suggest that AR conditions were present during these events, and are therefore likely to be important for hydrohazards more generally in British Columbia and Alaska. As the enhanced water vapor transport in the ARs encountered the steep terrain in these regions orographic enhancement of rainfall occurred resulting in record rainfall totals and floods. The occurrence of these events in September (earlier than noteworthy AR events in the U.S. West Coast farther south) may also relate to the earlier nascence of the winter circulation pattern in northern latitudes.

  15. Cliff nesting raptors of the Kisaralik River, western Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — For three consecutive years (1977 - 79), about 79 km (49 mi) of Alaskan river canyons were surveyed for raptors by helicopter. Occupation of eight breeding...

  16. Radiometric traverse along the Yukon River from Fort Yukon to Ruby, Alaska, 1949

    Science.gov (United States)

    White, Max G.; Stevens, John M.; Matzko, John J.

    1956-01-01

    In 1949, a radiometric traverse was made of rocks exposed along the banks of and near the Yukon River about Fort Yukon to Ruby, Alaska. Granitic rocks of Tertiary age and of Devonian or Carboniferous age and sandstone beds of Cretaceous age gave the highest readings obtained in the field. Other rock types examined were greenstone of Devonian or Carboniferous age and metamorphic rocks of Devonian and pre-Devonian age, sedimentary rocks, and liginite of Tertiary age, and alluvial deposits of Quaternary age. The most radioactive sample, from Melozitna River canyon, contained only 0.017 percent equivalent uranium.

  17. Electronic tags and genetics explore variation in migrating steelhead kelts (oncorhynchus mykiss), Ninilchik river, Alaska

    Science.gov (United States)

    Nielsen, J.L.; Turner, S.M.; Zimmerman, C.E.

    2011-01-01

    Acoustic and archival tags examined freshwater and marine migrations of postspawn steelhead kelts (Oncorhynchus mykiss) in the Ninilchik River, Alaska, USA. Postspawn steelhead were captured at a weir in 2002-2005. Scale analysis indicated multiple migratory life histories and spawning behaviors. Acoustic tags were implanted in 99 kelts (2002-2003), and an array of acoustic receivers calculated the average speed of outmigration, timing of saltwater entry, and duration of residency in the vicinity of the river mouth. Ocean migration data were recovered from two archival tags implanted in kelts in 2004 (one male and one female). Archival tags documented seasonal differences in maximum depth and behavior with both fish spending 97% of time at sea genetics demonstrated no significant differences in genetic population structure across years or among spawning life history types, suggesting a genetically panmictic population with highly diverse life history characteristics in the Ninilchik River.

  18. Mapping traditional place names along the Koyukuk River: Koyukuk, Huslia, and Hughes, Western Interior Alaska

    Science.gov (United States)

    McCloskey, Sarah E.; Jones, Benjamin M.

    2014-01-01

    Koyukon Athabascan peoples have settled along the Koyukuk River in Western Interior Alaska for thousands of years using the surrounding landscape for subsistence and cultural resources. However, recent changes in climate, technology, resource availability, and way of life have affected land-use patterns in the region, as well as use of the Denaakk'e (Koyukon) language. The current Koyukon population is about 2,300, and about 150 still speak the language (the youngest of whom are in their fifties). In addition, Elders, important keepers of both language and traditional subsistence-use areas, are aging, and opportunities to record their knowledge are diminishing.

  19. Airborne gamma-ray spectrometer and magnetometer survey, Meade River Quadrangle, Alaska. Final report

    International Nuclear Information System (INIS)

    The results obtained from an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over the Meade River map area of Alaska are presented. Based on the criteria outlined in the general section on interpretation, a total of eight uranium anomalies have been outlined on the interpretation map. Most of these are only weakly to moderately anomalous. Zones 3 and 7 are relatively better than the others though none of the anomalies are thought to be of any economic significance. No follow-up work is recommended

  20. Unalakleet Wild River, Alaska, a wild and scenic river analysis: Preliminary draft

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Unalakleet River and its immediate surroundings possess the qualities necessary for inclusion in the National Wild and Scenic Rivers System. Provisions be made...

  1. Hydrology and modeling of flow conditions at Bridge 339 and Mile 38-43, Copper River Highway, Alaska

    Science.gov (United States)

    Brabets, Timothy P.

    2012-01-01

    The Copper River basin, the sixth largest watershed in Alaska, drains an area of 24,200 square miles in south-central Alaska. This large, glacier-fed river flows across a wide alluvial fan before it enters the Gulf of Alaska. The Copper River Highway, which traverses the alluvial fan, has been affected by channel planform reconfiguration. Currently (2012), two areas of the Copper River Highway are at risk: at Mile 38-43, the road grade is too low and the highway could be flooded by high flows of the Copper River, and at Mile 36, the main channel of the Copper River has migrated directly toward Bridge 339. Because Bridge 339 was not designed and built to convey the main flow of the Copper River, as much as 50 feet of scour occurred at the piers in 2011. The piers can no longer absorb the lateral or vertical loads, resulting in closure of the bridge and the Copper River Highway. The U.S. Geological Survey Flow and Sediment Transport with Morphologic Evolution of Channels (FaSTMECH) model was used to simulate the flow of the Copper River and produce simulations of depth, water-surface elevation, and velocity. At the Mile 38-43 area, FaSTMECH was used to analyze the effects of raising the road grade 5 feet, and at Mile 36, FaSTMECH was used to analyze the effects of constructing a channel to divert flow away from Bridge 339. Results from FaSTMECH indicate that if raising the road grade 5 feet in the Mile 38-43 area, a flood with an annual exceedance probability of 2 percent (400,000 cubic feet per second) would not overtop the highway. In the Bridge 339 area, results from FaSTMECH indicate that a design channel could divert flows as much as 100,000 cubic feet per second away from Bridge 339.

  2. Remote identification of maternal polar bear (Ursus maritimus) denning habitat on the Colville River Delta, Alaska

    Science.gov (United States)

    Blank, Justin J.

    High resolution digital aerial photographs (1 foot pixel size) of the Colville River Delta, Alaska were examined in 3D, with the use of a digital photogrammetric workstation. Topographic features meeting the criteria required for adequate snow accumulation, and subsequent construction of terrestrial polar bear maternal dens, were identified and digitized into an ArcGIS line shapefile. Effectiveness, efficiency, and accuracy were improved when compared to previous polar bear denning habitat efforts which utilized contact photo prints and a pocket stereoscope in other geographic areas of northern Alaska. Accuracy of photograph interpretation was systematically evaluated visually from the air with the use of a helicopter and physically on the ground. Results show that the mapping efforts were successful in identifying den habitat 91.3% of the time. Knowledge denning habitat can improve and inform decision making by managers and regulators when considering travel and development in the study area. An understanding of polar bear denning habitat extent and location will be a crucial tool for planning activities within the study area in a way that minimizes conflicts with maternal dens.

  3. Estimating aboveground biomass in the boreal forests of the Yukon River Basin, Alaska

    Science.gov (United States)

    Ji, L.; Wylie, B. K.; Nossov, D.; Peterson, B.; Waldrop, M. P.; McFarland, J.; Alexander, H. D.; Mack, M. C.; Rover, J. A.; Chen, X.

    2011-12-01

    Quantification of aboveground biomass (AGB) in Alaska's boreal forests is essential to accurately evaluate terrestrial carbon stocks and dynamics in northern high-latitude ecosystems. However, regional AGB datasets with spatially detailed information (1 m tall), which were converted to plot-level AGB using allometric equations. We acquired Landsat Enhanced Thematic Mapper Plus (ETM+) images from the Web Enabled Landsat Data (WELD) that provides multi-date composites of top-of-atmosphere reflectance and brightness temperature for Alaska. From the WELD images, we generated a three-year (2008 - 2010) image composite for the Yukon River Basin using a series of compositing criteria including non-saturation, non-cloudiness, maximal normalize difference vegetation index (NDVI), and maximal brightness temperature. Airborne lidar datasets were acquired for two sub-regions in the central basin in 2009, which were converted to vegetation height datasets using the bare-earth digital surface model (DSM) and the first-return DSM. We created a multiple regression model in which the response variable was the field-observed AGB and the predictor variables were Landsat-derived reflectance, brightness temperature, and spectral vegetation indices including NDVI, soil adjusted vegetation index (SAVI), enhanced vegetation index (EVI), normalized difference infrared index (NDII), and normalized difference water index (NDWI). Principal component analysis was incorporated in the regression model to remedy the multicollinearity problems caused by high correlations between predictor variables. The model fitted the observed data well with an R-square of 0.62, mean absolute error of 29.1 Mg/ha, and mean bias error of 3.9 Mg/ha. By applying this model to the Landsat mosaic, we generated a 30-m AGB map for the boreal forests in the Yukon River Basin. Validation of the Landsat-derived AGB using the lidar dataset indicated a significant correlation between the AGB estimates and the lidar

  4. Geochemistry of the Johnson River, Lake Clark National Park and Preserve, Alaska

    Science.gov (United States)

    Brabets, Timothy P.; Riehle, James R.

    2003-01-01

    The Johnson River Basin, located in Lake Clark National Park and Preserve, drains an area of 96 square miles. A private inholding in the upper part of the basin contains a gold deposit that may be developed in the future. To establish a natural baseline to compare potential effects on water quality if development were to occur, the upper part of the Johnson River Basin was studied from 1999 to 2001 as part of a cooperative study with the National Park Service. Two basic rock types occur within the drainage basin of the study: the Jurassic Talkeetna Formation of interbedded volcanic and volcaniclastic rocks, and the slightly younger plutonic rocks of the Aleutian-Alaska Ranges batholith. The Johnson River gold prospect reflects widespread, secondary mineralization and alteration of the Talkeetna Formation. Metals found at the prospect proper are: arsenic, cadmium, copper, gold, iron, lead, mercury, molybdenum, selenium, silver, and zinc. The Johnson River prospect is located in the East Fork Ore Creek Basin, a 0.5 square mile watershed that is a tributary to the Johnson River. Water quality data from this stream reflect the mineralization of the basin and the highest concentrations of several trace elements and major ions of the water column were found in this stream. Presently, pH in this stream is normal, indicating that there is sufficient buffering capacity. At the Johnson River streamgage, which drains approximately 25 mi2 including the East Fork Ore Creek, concentrations of these constituents are significantly lower, reflecting the runoff from Johnson Glacier and Double Glacier, which account for approximately 75 percent of the total discharge. Streambed concentrations of cadmium, lead, and zinc from East Fork Ore Creek and its receiving stream, Ore Creek, typically exceed concentrations where sediment dwelling organisms would be affected. Similar to the water column chemistry, concentrations of these elements are lower at the Johnson River streamgage

  5. Measuring and modeling the hydraulic effect of hydrokinetic energy extraction in the Tanana River, Alaska

    Science.gov (United States)

    Edgerly, Elan

    During September of 2014 and July of 2015, a 1.93 m diameter, open-center style, hydrokinetic device was deployed in the Tanana River (Alaska). River velocity was roughly 1.7 m/s and 2 m/s at the deployment site during September 2014 and July 2015 respectively. Using acoustic instruments, velocity and turbulence were measured in the vicinity of the turbine deployment location -- with and without a turbine deployed -- in order to characterize the impact of the turbine on river hydraulics and turbulence (including turbulent kinetic energy, turbulence intensity, and spectra). In addition, river hydraulics -- with and without a turbine deployed -- were modeled using a version of the Environmental Fluid Dynamics Code modified by Sandia National Labs to represent hydrokinetic devices. Measured and modeled velocity in the device's wake (5.2 meters downstream of the device) indicated a 0.38 m/s and a 0.18 m/s reduction in velocity, respectively. The Acoustic Doppler Current Profiler (ADCP) field measurements indicate that velocity is 97.5% recovered at 15.5 turbine diameters, while the model shows 97.5% recovery at 20.2 turbine diameters downstream. Likewise, field Acoustic Doppler Velocimeter (ADV) measurements from a separate testing day showed velocities being 97.5% recovered within 15.5 turbine diameters and fully recovered within 20.7 turbine diameters. ADV measurements indicate a 520% increase in turbulence intensity (TI), which appears to resolve within 20.7 turbine diameters. The effects on the sedimentary environment of a running turbine appear to be minimal. However there is a slight reduction in turbidity in the near field wake of the turbine.

  6. Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001-2005

    Science.gov (United States)

    Striegl, R.G.; Dornblaser, M.M.; Aiken, G.R.; Wickland, K.P.; Raymond, P.A.

    2007-01-01

    Loads and yields of dissolved and particulate organic and inorganic carbon (DOC, POC, DIC, PIC) were measured and modeled at three locations on the Yukon River (YR) and on the Tanana and Porcupine rivers (TR, PR) in Alaska during 2001-2005. Total YR carbon export averaged 7.8 Tg C yr-1, 30% as OC and 70% as IC. Total C yields (0.39-1.03 mol C m-2 yr-1) were proportional to water yields (139-356 mm yr-1; r2 = 0.84) at all locations. Summer DOC had an aged component (fraction modern (FM) = 0.94-0.97), except in the permafrost wetland-dominated PR, where DOC was modern. POC had FM = 0.63-0.70. DOC had high concentration, high aromaticity, and high hydrophobic content in spring and low concentration, low aromaticity, and high hydrophilic content in winter. About half of annual DOC export occurred during spring. DIC concentration and isotopic composition were strongly affected by dissolution of suspended carbonates in glacial meltwater during summer.

  7. Chemical complexity and source of the White River Ash, Alaska and Yukon

    Science.gov (United States)

    Preece, S.J.; McGimsey, Robert G.; Westgate, J.A.; Pearce, N.J.G.; Hartmann, W.K.; Perkins, W.T.

    2014-01-01

    The White River Ash, a prominent stratigraphic marker bed in Alaska (USA) and Yukon (Canada), consists of multiple compositional units belonging to two geochemical groups. The compositional units are characterized using multiple criteria, with combined glass and ilmenite compositions being the best discriminators. Two compositional units compose the northern group (WRA-Na and WRA-Nb), and two units are present in the eastern group (WRA-Ea and the younger, WRA-Eb). In the proximal area, the ca. 1900 yr B.P. (Lerbekmo et al., 1975) WRA-Na displays reverse zoning in the glass phase and systematic changes in ilmenite composition and estimated oxygen fugacity from the base to the top of the unit. The eruption probably tapped different magma batches or bodies within the magma reservoir with limited mixing or mingling between them. The 1147 cal yr B.P. (calibrated years, approximately equivalent to calendric years) (Clague et al., 1995) WRA-Ea eruption is only weakly zoned, but pumices with different glass compositions are present, along with gray and white intermingled glass in individual pumice clasts, indicating the presence of multiple magmatic bodies or layers. All White River Ash products are high-silica adakites and are sourced from the Mount Churchill magmatic system.

  8. Demography and Behavior of Western Sandpipers (Calidris mauri) Breeding on the Yukon-Kuskokwim River Delta, Alaska

    OpenAIRE

    Johnson, James Matthew

    2006-01-01

    I conducted demographic and behavioral studies of Western Sandpipers (Calidris mauri) breeding on the Yukon-Kuskokwim River Delta, Alaska (1998-2005). In chapter one, I estimated apparent annual survival (product of true survival and site fidelity) while correcting for the probability of encounter for 237 males and 296 females. Overall return rates (individual returned to the site in a subsequent season) were lower for females (40%) than males (65%), as was apparent annual survival (± ...

  9. Watershed processes, fish habitat, and salmonid distribution in the Tonsina River (Copper River watershed), Alaska

    Science.gov (United States)

    Booth, D. B.; Ligon, F. K.; Sloat, M. R.; Amerson, B.; Ralph, S. C.

    2007-12-01

    The Copper River watershed is a critical resource for northeastern Pacific salmon, with annual escapements in the millions. The Tonsina River basin, a diverse 2100-km2 tributary to the Copper River that supports important salmonid populations, offers an opportunity to integrate watershed-scale channel network data with field reconnaissance of physical processes and observed distribution of salmonid species. Our long-term goals are to characterize habitats critical to different salmonid life stages, describe the geologic context and current geologic processes that support those habitats in key channel reaches, and predict their watershed-wide distribution. The overarching motivation for these goals is resource conservation, particularly in the face of increased human activity and long-term climate change. Channel geomorphology within the Tonsina River basin reflects inherited glacial topography. Combinations of drainage areas, slopes, channel confinement, and sediment-delivery processes are unique to this environment, giving rise to channel "types" that are recognizable but that do not occur in the same positions in the channel network as in nonglaciated landscapes. We also recognize certain channel forms providing fish habitat without analog in a nonglacial landscape, notably relict floodplain potholes from once-stranded and long-melted ice blocks. Salmonid species dominated different channel types within the watershed network. Sockeye salmon juveniles were abundant in the low-gradient, turbid mainstem; Chinook juveniles were also captured in the lower mainstem, with abundant evidence of spawning farther downstream. Coho juveniles were abundant in upper, relatively large tributaries, even those channels with cobble-boulder substrates and minimal woody debris that provide habitats more commonly utilized by Chinook in low-latitude systems. More detailed field sampling also revealed that patterns of species composition and abundance appeared related to small

  10. Bathymetric and Hydraulic Survey of the Matanuska River near Circle View Estates, Alaska

    Science.gov (United States)

    Conaway, Jeffrey S.

    2008-01-01

    An acoustic Doppler current profiler interfaced with a differentially corrected global positioning system was used to map bathymetry and multi-dimensional velocities on the Matanuska River near Circle View Estates, Alaska. Data were collected along four spur dikes and a bend in the river during a period of active bank erosion. These data were collected as part of a larger investigation into channel processes being conducted to aid land managers with development of a long-term management plan for land near the river. The banks and streambed are composed of readily erodible material and the braided channels frequently scour and migrate. Lateral channel migration has resulted in the periodic loss of properties and structures along the river for decades. For most of the survey, discharge of the Matanuska River was less than the 25th percentile of long-term streamflow. Despite this relatively low flow, measured water velocities were as high as 15 feet per second. The survey required a unique deployment of the acoustic Doppler current profiler in a tethered boat that was towed by a small inflatable raft. Data were collected along cross sections and longitudinal profiles. The bathymetric and velocity data document river conditions before the installation of an additional spur dike in 2006 and during a period of bank erosion. Data were collected along 1,700 feet of river in front of the spur dikes and along 1,500 feet of an eroding bank. Data collected at the nose of spur dikes 2, 3, and 4 were selected to quantify the flow hydraulics at the locations subject to the highest velocities. The measured velocities and flow depths were greatest at the nose of the downstream-most spur dike. The maximum point velocity at the spur dike nose was 13.3 feet per second and the maximum depth-averaged velocity was 11.6 feet per second. The maximum measured depth was 12.0 feet at the nose of spur dike 4 and velocities greater than 10 feet per second were measured to a depth of 10 feet

  11. Seasonal variability in the composition of dissolved organic matter in the Yukon River, Alaska

    Science.gov (United States)

    Aiken, G.; Cao, X.; Mao, J.; Stubbins, A.; Schmidt-Rohr, K.; Spencer, R. G.

    2015-12-01

    Modern analytical approaches allow for detailed characterization of the composition of dissolved organic matter (DOM) in aquatic systems. The utility of advanced FTICR-MS and 13C-NMR approaches is presented for assessing the seasonal variability in DOM composition for samples collected across the hydrograph (2008 and 2009) from the Yukon River at Pilot Station, Alaska. FTICR-MS analyses were obtained on whole water samples while one- and two-dimensional solid-state NMR analyses were performed on the hydrophobic organic acid (HPOA) and transphilic organic acid (TPIA) fractions obtained using XAD resins (accounting for 64-74% of the DOM). Both approaches indicated that lignin-derived and carboxyl-rich alicyclic molecules (CRAM) were major fractions of all samples collected throughout the year, and that contributions from black carbon were minor. Each approach also provided unique information. FTICR-MS indicated the presence in spring of compounds containing sulfur that previously were identified to be atmospherically deposited combustion products in glacial meltwaters. These likely were deposited with snowfall. NMR analyses indicated that HPOA isolates from the spring period were characterized by greater contributions from lignin residues and carbohydrate-like materials than those from summer-autumn and winter. In addition, the spring TPIA samples had a predominance of carbohydrate, which was much less evident in the structures of summer-autumn and winter TPIA isolates. Spring DOM, therefore, was representative of inputs from freshly leached plant materials. These relatively fresh organic materials were depleted in summer-fall and winter samples, indicating that summer-fall and especially winter DOM was associated with more extensively degraded DOM and older DOM pools. These results provide chemical evidence supporting observations that spring freshet DOM in Arctic rivers is more biolabile than DOM exported at other times of the year.

  12. Behavior and reproductive success of rock sandpipers breeding on the Yukon-Kuskokwim river delta, Alaska

    Science.gov (United States)

    Johnson, M.; Conklin, J.R.; Johnson, B.L.; McCaffery, B.J.; Haig, S.M.; Walters, J.R.

    2009-01-01

    We studied Rock Sandpiper (Calidris ptilocnemis) breeding behavior and monitored reproductive success from 1998 to 2005 on the Yukon-Kuskokwim River Delta, Alaska, USA. We banded 24 adults and monitored 45 nests. Annual return rate of adults ranged between 67 and 100%. Six pairs of Rock Sandpipers bred at our study site for ???2 years, and among these we did not observe mate change (i.e., when both members of a pair returned and each mated with a new individual). Nests were typically initiated by mid-May and 53% of females laid second clutches if first clutches were lost through mid-June. Males regularly incubated clutches during the morning (0800-1259 hrs AKDT) and afternoon (1300-1759 hrs) and rarely during the evening (1800-2300 hrs), whereas female incubation was relatively consistent throughout the day. Apparent nest success (percent of known nests successfully hatching > 1 chick) among first and second nests was 19 and 44%, respectively (n = 45). A minimum of 44% of hatching nests fledged at least one young. Males cared for young but half of females deserted mate and brood 1-7 days post-hatch. This first description of North American Rock Sandpiper breeding behavior from a color-marked population complements previous work on this species on the Chukotsky Peninsula, Russia.

  13. Water quality and ground-water/surface-water interactions along the John River near Anaktuvuk Pass, Alaska, 2002-2003

    Science.gov (United States)

    Moran, Edward H.; Brabets, Timothy P.

    2005-01-01

    The headwaters of the John River are located near the village ofAnaktuvuk Pass in the central Brooks Range of interior Alaska. With the recent construction of a water-supply system and a wastewater-treatment plant, most homes in Anaktuvuk Pass now have modern water and wastewater systems. The effluent from the treatment plant discharges into a settling pond near a tributary of the John River. The headwaters of the John River are adjacent to Gates of the Arctic National Park and Preserve, and the John River is a designated Wild River. Due to the concern about possible water-quality effects from the wastewater effluent, the hydrology of the John River near Anaktuvuk Pass was studied from 2002 through 2003. Three streams form the John River atAnaktuvuk Pass: Contact Creek, Giant Creek, and the John RiverTributary. These streams drain areas of 90.3 km (super 2) , 120 km (super 2) , and 4.6 km (super 2) , respectively. Water-qualitydata collected from these streams from 2002-03 indicate that the waters are a calcium-bicarbonate type and that Giant Creek adds a sulfate component to the John River. The highest concentrations of bicarbonate, calcium, sodium, sulfate, and nitrate were found at the John River Tributary below the wastewater-treatment lagoon. These concentrations have little effect on the water quality of the John River because the flow of the John River Tributary is only about 2 percent of the John River flow. To better understand the ground-water/surface-water interactions of the upper John River, a numerical groundwater-flow model of the headwater area of the John River was constructed. Processes that occur during spring break-up, such as thawing of the active layer and the frost table and the resulting changes of storage capacity of the aquifer, were difficult to measure and simulate. Application and accuracy of the model is limited by the lack of specific hydrogeologic data both spatially and temporally. However

  14. Biomarkers of contaminant exposure in northern pike (Esox lucius) from the Yukon River Basin, Alaska

    Science.gov (United States)

    Hinck, J.E.; Blazer, V.S.; Denslow, N.D.; Myers, M.S.; Gross, T.S.; Tillitt, D.E.

    2007-01-01

    As part of a larger investigation, northern pike (n = 158; Esox lucius) were collected from ten sites in the Yukon River Basin (YRB), Alaska, to document biomarkers and their correlations with organochlorine pesticide (total p,p'-DDT, total chlordane, dieldrin, and toxaphene), total polychlorinated biphenyls (PCBs), and elemental contaminant (arsenic, cadmium, copper, lead, total mercury, selenium, and zinc) concentrations. A suite of biomarkers including somatic indices, hepatic 7-ethoxyresorufin O-deethylase (EROD) activity, vitellogenin concentrations, steroid hormone (17B- ustradiol and 16-kebtestosteront) concentrations, splenic macrophage aggregates (MAs), oocyte atresia, and other microscopic anomalies in various tissues were documented in YRB pike. Mean condition factor (0.50 to 0.68), hepatosomatic index (1.00% to 3.56%), and splenosomatic index (0.09% to 0.18%) were not anomalous at any site nor correlated with any contaminant concentration. Mean EROD activity (0.71 to 17.51 pmol/min/mg protein) was similar to basal activity levels previously measured in pike and was positively correlated with selenium concentrations (r = 0.88, P 63 ng/g), and MA-% values in female pike (0.24% to 0.54%) were lower than in male pike (0.32% to 0.75%) at similar PCB concentrations. Greater numbers of MAs were found as zinc concentrations increased in YRB female pike, but it is unlikely that this is a causative relationship. Histological abnormalities observed in gill, liver, spleen, and kidney tissues were not likely a result of contaminant exposure but provide information on the general health of YRB pike. The most common histologic anomalies were parasitic infestations in various organs and developing nephrons and nephrocalcinosis in posterior kidney tissues. Overall, few biomarker responses in YRB pike were correlated with chemical contaminant concentrations, and YRB pike generally appeared to be healthy with no site having multiple anomalous biomarker responses. ?? 2007

  15. Carbon Fluxes Between the Atmosphere, Terrestrial, and River Systems Across a Glacier-Dominated Landscape in Southcentral Alaska

    Science.gov (United States)

    Zulueta, R. C.; Welker, J. M.; Tomco, P. L.

    2011-12-01

    The coastal Gulf of Alaska region is experiencing rapid and accelerating changes due to local and regional warming. Predicted high latitude warming may result in rapid recession of glaciers with subsequent changes in river discharge, nutrient fluxes into the rivers, shifts in landscape vegetation cover, and altered CO2 fluxes affecting the regional carbon balance. As glaciers recede an increase in glacier-dominated river discharge and a change in seasonality of the river discharge are expected. Recently deglaciated landscapes will, over time, be occupied by a succession of vegetation cover that are likely to alter the fluxes of carbon both between the atmosphere and terrestrial ecosystems, and between terrestrial ecosystems and stream and river systems. As the landscape evolves from deglaciated forelands it is expected that there is low to no CO2 fluxes between the atmosphere and the recently deglaciated landscape, as well as dissolved organic and inorganic carbon inputs into rivers and streams. These recently deglaciated landscapes will transition to early successional plant species and on towards mature spruce forests. Each transitional terrestrial ecosystem will have different carbon cycling between the atmosphere, terrestrial, and aquatic systems until the mature spruce forests which is expected to have high carbon uptake and sequestration as well as increased inputs of dissolved organic and inorganic carbon into the rivers and streams. A new research project was initiated in the summer of 2011 focusing on glacier-dominated landscapes within the Wrangell-St. Elias National Park and Preserve in southcentral Alaska with the objective to quantify how the transition from deglaciated forelands to mature spruce forests (a successional sequence) alters the patterns and magnitudes of CO2 exchange, the dissolved carbon inputs from terrestrial to aquatic systems and the extent to which these are manifested due to changes in glacier coverage. We seek to examine present

  16. A raptor survey of the Canning and Kongakut Rivers, Arctic National Wildlife Refuge, Alaska, 1984

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Alaska National Interest Lands Conservation Act (ANILCA) directs the Department of the Interior to assess the potential for oil and natural gas resources of the...

  17. Late Quaternary paleoenvironmental records from the Chatanika River valley near Fairbanks (Alaska)

    Science.gov (United States)

    Schirrmeister, Lutz; Meyer, Hanno; Andreev, Andrei; Wetterich, Sebastian; Kienast, Frank; Bobrov, Anatoly; Fuchs, Margret; Sierralta, Melanie; Herzschuh, Ulrike

    2016-09-01

    Perennially-frozen deposits are considered as excellent paleoenvironmental archives similar to lacustrine, deep marine, and glacier records because of the long-term and good preservation of fossil records under stable permafrost conditions. A permafrost tunnel in the Vault Creek Valley (Chatanika River Valley, near Fairbanks) exposes a sequence of frozen deposits and ground ice that provides a comprehensive set of proxies to reconstruct the late Quaternary environmental history of Interior Alaska. The multi-proxy approach includes different dating techniques (radiocarbon-accelerator mass spectrometry [AMS 14C], optically stimulated luminescence [OSL], thorium/uranium radioisotope disequilibria [230Th/U]), as well as methods of sedimentology, paleoecology, hydrochemistry, and stable isotope geochemistry of ground ice. The studied sequence consists of 36-m-thick late Quaternary deposits above schistose bedrock. Main portions of the sequence accumulated during the early and middle Wisconsin periods. The lowermost unit A consists of about 9-m-thick ice-bonded fluvial gravels with sand and peat lenses. A late Sangamon (MIS 5a) age of unit A is assumed. Spruce forest with birch, larch, and some shrubby alder dominated the vegetation. High presence of Sphagnum spores and Cyperaceae pollen points to mires in the Vault Creek Valley. The overlying unit B consists of 10-m-thick alternating fluvial gravels, loess-like silt, and sand layers, penetrated by small ice wedges. OSL dates support a stadial early Wisconsin (MIS 4) age of unit B. Pollen and plant macrofossil data point to spruce forests with some birch interspersed with wetlands around the site. The following unit C is composed of 15-m-thick ice-rich loess-like and organic-rich silt with fossil bones and large ice wedges. Unit C formed during the interstadial mid-Wisconsin (MIS 3) and stadial late Wisconsin (MIS 2) as indicated by radiocarbon ages. Post-depositional slope processes significantly deformed both, ground

  18. Microbial Diversity in Soil Cores From the Yukon River Basin, Alaska

    Science.gov (United States)

    Baedecker, M.; Kirshtein, J. D.; Wickland, K. P.; Metge, D. W.; Schuster, P. F.; Voytek, M. A.

    2006-12-01

    Understanding the microbial environment in permafrost areas is important for understanding processes that release carbon and other nutrients from soils as a result of permafrost melting. Soils were collected in August 2005 from two sites in the Yukon River Basin, Alaska, and examined for microbial diversity as part of a larger project to investigate carbon cycling within the river basin. One site was located at the Bonanza Creek Long- Term Ecological Research Site near Fairbanks in an area of discontinuous permafrost and the other site was collected 400 kilometers to the north near Coldfoot in an area of continuous permafrost within the Arctic Circle. Both sites are characterized as black spruce forest and permafrost is 42-55 cm below land surface. Soil pore waters in the active layer at the Bonanza Creek site had a higher pH (5.06 versus 4.35), lower SO4 and DOC, and higher dissolved CH4 compared to the Coldfoot site. Dissolved oxygen was measured at >1.0 mg/L in water pumped from piezometers at both sites. Soil samples were collected from a range of depths above and below the permafrost and analyzed for total bacteria, for most probable number (MPN) of nine metabolic types of microorganisms, and for five metabolic types of microorganisms by quantitative polyermase chain reaction (QPCR). Soil geochemistry and climatic conditions affected the microbial abundances and distributions found at these two sites. The total number of bacteria by direct count ranged from 105 to 107 cells per gram dry weight (gdw) sediment with living cells comprising 1.4 to 98% of the total enumerated bacteria. In near-surface samples (top 40 cm), the MPN results indicate that aerobes, fermenters, humic acid reducers, and iron reducers account for most of the total bacteria. Nitrifiers and denitrifiers were found in a few samples, whereas sulfate reducers and methanogens were below our detection limit using the MPN method. The QPCR results indicated the presence of methanogens in 9 of 14

  19. Mercury and water-quality data from Rink Creek, Salmon River, and Good River, Glacier Bay National Park and Preserve, Alaska, November 2009-October 2011

    Science.gov (United States)

    Nagorski, Sonia A.; Neal, Edward G.; Brabets, Timothy P.

    2013-01-01

    Glacier Bay National Park and Preserve (GBNPP), Alaska, like many pristine high latitude areas, is exposed to atmospherically deposited contaminants such as mercury (Hg). Although the harmful effects of Hg are well established, information on this contaminant in southeast Alaska is scarce. Here, we assess the level of this contaminant in several aquatic components (water, sediments, and biological tissue) in three adjacent, small streams in GBNPP that drain contrasting landscapes but receive similar atmospheric inputs: Rink Creek, Salmon River, and Good River. Twenty water samples were collected from 2009 to 2011 and processed and analyzed for total mercury and methylmercury (filtered and particulate), and dissolved organic carbon quantity and quality. Ancillary stream water parameters (discharge, pH, dissolved oxygen, specific conductance, and temperature) were measured at the time of sampling. Major cations, anions, and nutrients were measured four times. In addition, total mercury was analyzed in streambed sediment in 2010 and in juvenile coho salmon and several taxa of benthic macroinvertebrates in the early summer of 2010 and 2011.

  20. The Mint River Fault: an Extensional Detachment in the York Mountains, Seward Peninsula, Alaska

    Science.gov (United States)

    Toro, J.; Burnette, L.; Amato, J.; Repetski, J.; Gehrels, G.

    2005-12-01

    The role of crustal extension in the origin of the gneiss domes of the Bering Strait region of Alaska and Russia has been debated for over a decade. Alternative models for gneiss dome formation include 1) thermal re-equilibration after crustal thickening by arc collision (Lieberman, 1988; Patrick and Evans, 1989); 2) extensional collapse of the crust during with mid-Cretaceous magmatism (Miller et al., 1992; Amato et al., 1994) and 3) thermally-induced diapiric rise of the high-grade rocks (Calvert et al., 1999). One major difference with the classic metamorphic core complexes of the Basin and Range is that, because of deep exhumation, evidence for mid-Cretaceous supra-crustal extension has not been widely documented in the Bering Strait region. In the York Mountains, the one area of the Seward Peninsula where unmetamorphosed rocks are preserved, the structure was originally described as a thrust belt (Sainsbury, 1969). New detailed mapping, structural analysis, 40Ar/39Ar thermochronology, and conodont biostratigraphy carried out in the York Mountains show that the Mint River Fault, which is the basal detachment of the supposed thrust belt, is actually a low angle extensional detachment fault. This fault separates polydeformed low greenschist grade rocks in the lower plate from unmetamorphosed Lower Ordovician to Silurian carbonates in the upper plate. The upper plate is cut by three major normal faults, the largest of which has about 4 km of down-to-the-south slip. These faults also tilt the Early Paleozoic carbonate succession. A younger-on-older relationship across one of the mayor faults is documented by conodont biostratigraphy demonstrating that these are not thrusts, as was previously believed. Stress inversion, based on minor brittle faults in the upper plate, indicates a direction of extension of 194, which is consistent with the strike of major normal faults. No direct evidence of bedding-plane thrusting could be documented, although minor folds do exist

  1. Modeling and Measuring the Interaction between Hydrokinetic Devices and the Hydraulic and Sedimentary Environment of the Tanana River, Alaska

    Science.gov (United States)

    Ravens, T. M.; Kartezhnikova, M.; Edgerly, E.; Opsahl, B.; Hansen, N.; Kasper, J.; Schmid, J.

    2014-12-01

    In this paper, we report on our efforts to model and measure the interaction between hydrokinetic (HK) devices and the hydraulic and sedimentary environment of the Tanana River, by Nenana Alaska. The Tanana River, by Nenana Alaska, has an open-water median flow rate of about 1325 m3/s, a width of about 200 m, a maximum depth of about 9 m, peak flow velocities of about 2.5 m/s, and suspended sediment concentrations as high as 2 g/L. Preliminary modeling of the hydraulic impact of a 45 KW cross-flow-style HK turbine using SNL-EFDC software found that the device raised water levels upstream of the device by about 0.5 cm. It also led to reductions in velocity of about 0.05 m and enhancements of about 0.01 m/s. In this paper, we will report on ongoing efforts to model the corresponding sedimentary impacts of HK devices at this location. In late August of 2014, a 15 KW open-center-style hydrokinetic turbine (manufactured by Oceana Energy Corporation) was deployed for a three week period at the Tanana River site. Device performance (e.g., power generation and angular frequency (rpm's)) were monitored along with environmental parameters including: velocity as a function of depth upstream and downstream of the device, turbulence at "hub elevation" upstream and downstream of the device, suspended sediment concentration upstream and downstream of the device, and sediment bed elevation before and after testing. In this paper, we will report on all of these data as well as data on the abrasion of device components. Further, we will present data on the dependence of device coefficient of performance and turbulence intensity. Finally, we will compare modeled and measured hydraulic and sedimentary impacts of the HK device.

  2. Fish Use of Several Tributaries to the Kenai River, Alaska : Final Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a summary of three Kenai River tributaries and the trout and salmon species that use them. The three Kenai River tributaries studied during 1982 and 1983...

  3. Abundance, Timing of Migration, and Egg-to-Smolt Survival of Juvenile Chum Salmon, Kwethluk River, Alaska, 2007 and 2008

    Science.gov (United States)

    Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.; U.S. Geological Survey; Gillikin, Daniel; U.S. Fish and Wildlife Service

    2010-01-01

    To better understand and partition mortality among life stages of chum salmon (Oncorhynchus keta), we used inclined-plane traps to monitor the migration of juveniles in the Kwethluk River, Alaska in 2007 and 2008. The migration of juvenile chum salmon peaked in mid-May and catch rates were greatest when water levels were rising. Movement of chum salmon was diurnal with highest catch rates occurring during the hours of low light (that is, 22:00 to 10:00). Trap efficiency ranged from 0.37 to 4.04 percent (overall efficiency = 1.94 percent). Total abundance of juvenile chum salmon was estimated to be 2.0 million fish in 2007 and 2.9 million fish in 2008. On the basis of the estimate of chum salmon females passing the Kwethluk River weir and age-specific fecundity, we estimated the potential egg deposition (PED) upstream of the weir and trapping site. Egg-to-smolt survival, calculated by dividing the estimate of juvenile chum salmon emigrating past the weir site by the estimate of PED, was 4.6 percent in 2007 and 5.2 percent in 2008. In addition to chum salmon, Chinook salmon O. tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and pink salmon (O. gorbuscha), as well as ten other fish species, were captured in the traps. As with chum salmon, catch of these species increased during periods of increasing discharge and peaked during hours of low light. This study successfully determined the characteristics of juvenile salmon migrations and estimated egg-to-smolt survival for chum salmon. This is the first estimate of survival for any juvenile salmon in the Arctic-Yukon-Kuskokwim region of Alaska and demonstrates an approach that can help to partition mortality between freshwater and marine life stages, information critical to understanding the dynamics of salmon in this region.

  4. RESEARCH: Effects of Recent Volcanic Eruptions on Aquatic Habitat in the Drift River, Alaska, USA: Implications at Other Cook Inlet Region Volcanoes.

    Science.gov (United States)

    DORAVA; MILNER

    1999-02-01

    / Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano. During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano. KEY WORDS: Aquatic habitat; Volcanoes; Lahars; Lahar-runout flows; Macroinvertebrates; Community structure; Community composition

  5. The Best of Alaska

    Institute of Scientific and Technical Information of China (English)

    郑钧

    2011-01-01

    Nothing awakes Alaska like a whale exploding out of the water or an eagle (鹰) pulling a silver fish from the river. Combine these images with high mountains, brilliant icebergs and wonderful meals and you really do have the best of Alaska!

  6. The Alaska Water Isotope Network (AKWIN): Precipitation, lake, river and stream dynamics

    Science.gov (United States)

    Rogers, M.; Welker, J. M.; Toohey, R.

    2011-12-01

    The hydrologic cycle is central to the structure and function of northern landscapes. The movement of water creates interactions between terrestrial, aquatic, marine and atmospheric processes. Understanding the processes and the spatial patterns that govern the isotopic (δ18O & δD) characteristics of the hydrologic cycle is especially important today as: a) modern climate/weather-isotope relations allow for more accurate interpretation of climate proxies and the calibration of atmospheric models, b) water isotopes facilitate understanding the role of storm tracks in regulating precipitation isotopic variability, c) water isotopes allow for estimates of glacial melt water inputs into aquatic systems, d) water isotopes allow for quantification of surface and groundwater interactions, e) water isotopes allow for quantification of permafrost meltwater use by plant communities, f) water isotopes aid in migratory bird forensics, g) water isotopes are critical to estimating field metabolic rates, h) water isotopes allow for crop and diet forensics and i) water isotopes can provide insight into evaporation and transpiration processes. As part of a new NSF MRI project at the Environment and Natural Resources Institute (ENRI) at the University of Alaska Anchorage and as an extension of the US Network for Isotopes in Precipitation (USNIP); we are forming AKWIN. The network will utilize long-term weekly sampling at Denali National Park and Caribou Poker Creek Watershed (USNIP sites-1989 to present), regular sampling across Alaska involving land management agencies (USGS, NPS, USFWS, EPA), educators, volunteers and citizen scientists, UA extended campuses, individual research projects, opportunistic sampling and published data to construct isoscapes and time series databases and information packages. We will be using a suite of spatial and temporal analysis methods to characterize water isotopes across Alaska and will provide web portals for data products. Our network is

  7. Seasonal flows of international British Columbia-Alaska rivers: The nonlinear influence of ocean-atmosphere circulation patterns

    Science.gov (United States)

    Fleming, Sean W.; Hood, Eran; Dalhke, Helen; O'Neel, Shad

    2016-01-01

    The northern portion of the Pacific coastal temperate rainforest (PCTR) is one of the least anthropogenically modified regions on earth and remains in many respects a frontier area to science. Rivers crossing the northern PCTR, which is also an international boundary region between British Columbia, Canada and Alaska, USA, deliver large freshwater and biogeochemical fluxes to the Gulf of Alaska and establish linkages between coastal and continental ecosystems. We evaluate interannual flow variability in three transboundary PCTR watersheds in response to El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Arctic Oscillation (AO), and North Pacific Gyre Oscillation (NPGO). Historical hydroclimatic datasets from both Canada and the USA are analyzed using an up-to-date methodological suite accommodating both seasonally transient and highly nonlinear teleconnections. We find that streamflow teleconnections occur over particular seasonal windows reflecting the intersection of specific atmospheric and terrestrial hydrologic processes. The strongest signal is a snowmelt-driven flow timing shift resulting from ENSO- and PDO-associated temperature anomalies. Autumn rainfall runoff is also modulated by these climate modes, and a glacier-mediated teleconnection contributes to a late-summer ENSO-flow association. Teleconnections between AO and freshet flows reflect corresponding temperature and precipitation anomalies. A coherent NPGO signal is not clearly evident in streamflow. Linear and monotonically nonlinear teleconnections were widely identified, with less evidence for the parabolic effects that can play an important role elsewhere. The streamflow teleconnections did not vary greatly between hydrometric stations, presumably reflecting broad similarities in watershed characteristics. These results establish a regional foundation for both transboundary water management and studies of long-term hydroclimatic and environmental change.

  8. Bird populations and habitat use, Canning River Delta, Alaska: Report to Arctic National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Bird populations and use of habitat at the Canning River Delta, Arctic National Wildlife Refuge, was the subject of a study during the summer of 1979 and 1980....

  9. The status of peregrine falcons and other raptors along the Porcupine River, Alaska, 1981: Final report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 1979, the U.S. Fish and Wildlife Service initiated a banding project on the Yukon, Porcupine, and Colville rivers where high concentrations of peregrines are...

  10. Oceanographic studies in Harrison Bay and the Colville River Delta, Alaska, to support the development of oil spill response strategies

    International Nuclear Information System (INIS)

    The risk of an oil spill resulting from the development of the Alpine oil field is considered to be low. The field is located on the North Slope of Alaska adjacent to the Alaskan Beaufort Sea and reaches coastal waters from the distributary channels of the Colville River Delta. The physical environmental (hydrodynamic) conditions that would affect the transport and fate of spilled oil was investigated to further reduce the risk. During the open-water season of 2001 in Harrison Bay, near shore current meters were deployed and data on weather and surface currents was analyzed. Ocean current and wind measurements were examined to evaluate the relationship between meteorology and water levels during the open-water season. The objective was to gain a better understanding of the near shore hydrodynamic processes at play in Harrison Bay, in order to plan the most appropriate spill response strategies. The results obtained indicate that surface currents within the bay adjacent to the Colville Delta are variable. They respond to wind forces as well as other possible mechanisms like estuarine circulation. The surface currents reach maximum speeds of 0.26 metre per second. For the late July-September deployment, the calculated net surface drift was a 0.02 metre per second current to the east southeast. In both Harrison Bay and Colville Delta, prevailing southwest and northeast winds, respectively, induced water level changes of more than 0.5 metre above and below the average. 7 refs., 3 tabs., 7 figs

  11. Interaction Between Lakes and Terrestrial Ecosystem Dynamics in the Yukon River Floodplain, in Interior Alaska, USA

    Science.gov (United States)

    Patil, V.; Griffith, B.; Euskirchen, E. S.

    2012-12-01

    Lakes have been decreasing in size and abundance in boreal ecosystems around the world. However, while as many as 35% of lakes in parts of interior Alaska are smaller than they were 50 years ago, up to 20% of lakes in the same regions experience large annual and intra-annual fluctuations in area (flooding), which have been linked to climate patterns via winter snowpack densities and the timing of spring thaw. Lake drying and flooding regime may influence plant community dynamics (e.g. succession), productivity, nutrient availability, and respiration, and thereby affect the carbon sink strength of boreal lake-margin wetlands. Climate change is likely to amplify drying trends and alter flooding patterns simultaneously. Predicting the future dynamics of boreal wetland complexes therefore requires quantifying the effects of flooding and drying on ecosystem processes, and the relative importance of these two mechanisms. In this study, we test the following hypotheses: 1) Both drying trends and flooding regime significantly affect lake-margin productivity, composition, and C storage by affecting soil moisture and soil nutrient concentrations, 2) frequently flooding lakes are associated with elevated soil moisture and productivity, but reduced soil carbon and nitrogen content, due to the differential influence of moisture on photosynthesis and decomposition, while drying lakes should show opposite trends. This study was conducted in the Yukon Flats National Wildlife Refuge, located 150 miles north of Fairbanks Alaska. We measured aboveground biomass, aboveground net primary productivity (ANPP), and a suite of soil characteristics within 100m of the lakeshore at 16 lakes in 2011 and 2012. Soil measurements included soil moisture, peat depth, seasonal thaw depth, total soil carbon and nitrogen, and available inorganic nitrogen. We classified lakes as drying, frequently flooding, or stable using remotely sensed measurements of long term trends as well as annual & intra

  12. Water and Sediment Quality in the Yukon River and its Tributaries Between Atlin, British Columbia, Canada, and Eagle, Alaska, USA, 2004

    Science.gov (United States)

    Halm, Douglas R.; Dornblaser, Mark M.

    2007-01-01

    The Yukon River basin is the fourth largest watershed in North America at 831,400 square kilometers (km2). Approximately 126,000 people live within the basin and depend on the Yukon River and its tributaries for drinking water, commerce, subsistence, and recreational fish and game resources. Climate warming in the Arctic and Subarctic regions encompassing the Yukon basin has recently become a concern because of possible far-reaching effects on the ecosystem. Large amounts of carbon and nutrients are stored in permafrost and have potential for release in response to this warming. These changes in carbon and nutrient cycling may result in changes in stream chemistry and productivity, including salmon populations, and ultimately changes in the chemistry and productivity of the Bearing Sea. To address these concerns, the U.S. Geological Survey (USGS) conducted a 5-year comprehensive water-quality study of the Yukon River and its major tributaries starting in 2000. The study included frequent water-quality sampling at a fixed site network as well as intensive sampling along the Yukon River and its major tributaries. This report contains observations of water and sediment quantity and quality of the Yukon River and its tributaries in Canada during 2004. Chemical, biological, physical, and discharge data are presented for the reach of river between Atlin, British Columbia, Canada, and Eagle, Alaska, USA.

  13. Rapid Recovery of a Gully Thermokarst: 10 Years of Observation of the Toolik River Thermokarst, North Slope, Alaska

    Science.gov (United States)

    Bowden, W. B.; Gooseff, M. N.; Stuckey, J. J.; Fulweber, R. A.; Larouche, J. R.

    2014-12-01

    As permafrost thaws, previously frozen soils may become unstable and subside, in some cases forming thermo-erosional features such as gully thermokarst (GTKs). The formation of these features can result in sediment and nutrient inputs to local streams and lakes. The initial evolution of GTKs is rapid (months to several years) and appears to follow a progression in which the loss of ground ice in the soil creates a subsurface cavity that allows for the transport of water downslope, followed by the collapse of the overlying soil into the cavity, with a subsequent period of sediment and nutrient export. However, there is considerable uncertainty about the length of time these features remain unstable and actively transport sediments and nutrients. We followed the evolution of one moderately-sized (~5,000 m2) GTK located in the headwaters of the Toolik River (N68.692733° W149.205433°) on the North Slope of Alaska (USA). This feature formed in July 2003 and we monitored it for several years thereafter. In 2007 we began to monitor the shape and contours of this feature and quantified the level of ecologically important solutes it exports to the local stream. As expected, large quantities of sediment and nutrients were exported from this feature when it first formed. However, within a year or two the sediment export decreased to episodic events and the nutrient export, while elevated above reference levels, was not remarkably high. Between 2007 and the present (2014), the shape and topography of the feature have changed very little (Figure) except for some headwall retrogression, suggesting that long-term sediment transport has decreased dramatically. Thus, the overall sediment loading to the river was smaller and has decreased more rapidly than we expected. The rapid reduction in sediment and nutrient delivery is consistent with the more recent geomorphic evolution and stabilization of this feature. We conclude - contrary to our initial hypotheses - that these features

  14. Natural versus anthropogenic dispersion of metals to the environment in the Wulik River area, western Brooks Range, northern Alaska

    Science.gov (United States)

    Kelley, K.D.; Hudson, T.

    2007-01-01

    Zinc-lead-silver mineral deposits in the Wulik River region, Alaska, contain an enormous accumulation of Zn. In addition to the giant deposits at Red Dog, at least nine other deposits are known. Natural weathering of these deposits has dispersed metals over a wide region over a long period of time (c. 10 000 years) through transport by stream and groundwater, stream sediments, formation of soils, and perhaps wind-blown atmospheric deposition from weathering of naturally enriched Pb-Zn surface deposits. Anthropogenic input also contributes metals to the environment. Mining of the Red Dog deposit, which began in 1989, produces fine-grained galena and sphalerite concentrates that are transported from the mine site by truck to a storage port facility. Wind-blown dispersion of concentrate dust along the road and around the port facility has been a source of local metal-rich surficial materials. Geochemical and mineralogical characteristics provide a means of distinguishing the natural versus anthropogenic metal sources. Soils over deposits have patterns of increasing metal contents with depth and proximity to the metal-bearing source, whereas ore concentrate dust is localized at the surface. The acidity produced by weathering of the sulphide deposits creates an environment in which elements such as Se and Mo are stable whereas Ca is not. Consequently, high Mo (up to 29 ppm) and Se (up to 17 ppm) and low Ca (<0.4%) concentrations characterize surficial materials near natural deposits. Acidic conditions also yield high Pb-Zn ratios (up to 70) because sphalerite is preferentially dissolved and Zn is mobilized during chemical weathering. In natural materials, secondary jarosite and anglesite are developed, and minor galena is etched and rounded due to a history of chemical and mechanical weathering. In contrast, dust-bearing samples have Pb/Zn ratios that are 0.4 or less, Ca contents are higher (0.2 to 3.6%), and Mo (<10 ppm) and Se (not detected) concentrations are low

  15. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska

    Science.gov (United States)

    Spencer, R.G.M.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, R.G.; Hernes, P.J.

    2009-01-01

    The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean. Citation: Spencer, R. G. M., G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, and P. J. Hernes (2009), Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska, Geophys. Res. Lett., 36, L06401, doi:10.1029/ 2008GL036831. Copyright 2009 by the American Geophysical Union.

  16. A promising tool for subsurface permafrost mapping-An application of airborne geophysics from the Yukon River Basin, Alaska

    Science.gov (United States)

    Abraham, Jared

    2011-01-01

    Permafrost is a predominant physical feature of the Earth's Arctic and Subarctic clines and a major consideration encompassing ecosystem structure to infrastructure engineering and placement. Perennially frozen ground is estimated to cover about 85 percent of the state of Alaska where northern reaches are underlain with continuous permafrost and parts of interior Alaska are underlain by areas of discontinuous and (or) sporadic permafrost (fig. 1). The region of Interior Alaska, where permafrost is scattered among unfrozen ground, is a complex mosaic of terrains and habitats. Such diversity creates arrays of lakes and surface-water and groundwater patterns that continental populations of migratory waterfowl and internationally significant fisheries have adapted to over time. A road or pipeline might pass over frozen and unfrozen ground, affecting the types of materials and engineering approaches needed to sustain the infrastructure.

  17. Large woody debris and salmonid habitat in the Anchor River basin, Alaska, following an extensive spruce beetle (Dendroctonus rufipennis) outbreak

    Science.gov (United States)

    A widespread and intense spruce beetle outbreak has killed most of the mature white spruce trees across many watersheds in south-central Alaska. To investigate the potential habitat impacts in a salmon stream, we characterized the current abundance and species composition of large woody debris (LWD...

  18. Hydrology and Glacier-Lake-Outburst Floods (1987-2004) and Water Quality (1998-2003) of the Taku River near Juneau, Alaska

    Science.gov (United States)

    Neal, Edward G.

    2007-01-01

    The Taku River Basin originates in British Columbia, Canada, and drains an area of 6,600 square miles at the U.S. Geological Survey's Taku River gaging station. Several mines operated within the basin prior to 1957, and mineral exploration has resumed signaling potential for future mining developments. The U.S. Geological Survey in cooperation with the Douglas Indian Association, Alaska Department of Environmental Conservation, and the U.S. Environmental Protection Agency conducted a water-quality and flood-hydrology study of the Taku River. Water-quality sampling of the Taku River from 1998 through 2003 established a baseline for assessing potential effects of future mining operations on water quality. The annual mean discharge of the Taku River is 13,700 cubic feet per second. The monthly mean discharge ranges from a minimum of 1,940 cubic feet per second in February to a maximum of 34,400 cubic feet per second in June. Nearly 90 percent of the annual discharge is from May through November. The highest spring discharges are sourced primarily from snowmelt and moderate discharges are sustained throughout the summer by glacial meltwaters. An ice cover usually forms over the Taku River in December persisting through the winter into March and occasionally into April. Glacier-lake-outburst floods originating from two glacier-dammed lakes along the margin of the Tulsequah Glacier in British Columbia, Canada, are the source of the greatest peak discharges on the Taku River. The largest flood during the period of record was 128,000 cubic feet per second on June 25, 2004, resulting from an outburst of Lake No Lake. Lake No Lake is the larger of the two lakes. The outburst-flood contribution to peak discharge was 80,000 cubic feet per second. The volume discharged from Lake No Lake is relatively consistent indicating drainage may be triggered when the lake reaches a critical stage. This suggests prediction of the timing of these outburst floods might be possible if lake

  19. Distribution of branched GDGTs in surface sediments from the Colville River, Alaska: Implications for the MBT'/CBT paleothermometer in Arctic marine sediments

    Science.gov (United States)

    Hanna, Andrea J. M.; Shanahan, Timothy M.; Allison, Mead A.

    2016-07-01

    Significant climate fluctuations in the Arctic over the recent past, and additional predicted future temperature changes, highlight the need for high-resolution Arctic paleoclimate records. Arctic coastal environments supplied with terrigenous sediment from Arctic rivers have the potential to provide annual to subdecadal resolution records of climate variability over the last few millennia. A potential tool for paleotemperature reconstructions in these marine sediments is the revised methylation index of branched tetraethers (MBT')/cyclization ratio of branched tetraethers (CBT) proxy based on branched glycerol dialkyl glycerol tetraethers (brGDGTs). In this study, we examine the source of brGDGTs in the Colville River, Alaska, and the adjacent Simpson Lagoon and reconstruct temperatures from Simpson Lagoon sediments to evaluate the applicability of this proxy in Arctic estuarine environments. The Colville catchment soils, fluvial sediments, and estuarine sediments contain statistically similar brGDGT distributions, indicating that the brGDGTs throughout the system are soil derived with little alteration from in situ brGDGT production in the river or coastal waters. Temperatures reconstructed from the MBT'/CBT indices for surface samples show good agreement with regional summer (June through September) temperatures, suggesting a seasonal bias in Arctic temperature reconstructions from the Colville system. In addition, we reconstruct paleotemperatures from an estuarine sediment core that spans the last 75 years, revealing an overall warming trend in the twentieth century that is consistent with trends observed in regional instrumental records. These results support the application of this brGDGT-based paleotemperature proxy for subdecadal-scale summer temperature reconstructions in Arctic estuaries containing organic material derived from sediment-laden, episodic rivers.

  20. Uranium isotopes (U-234/U-238) in rivers of the Yukon Basin (Alaska and Canada) as an aid in identifying water sources, with implications for monitoring hydrologic change in arctic regions

    Science.gov (United States)

    Kraemer, Thomas F.; Brabets, Timothy P.

    2012-01-01

    The ability to detect hydrologic variation in large arctic river systems is of major importance in understanding and predicting effects of climate change in high-latitude environments. Monitoring uranium isotopes (234U and 238U) in river water of the Yukon River Basin of Alaska and northwestern Canada (2001–2005) has enhanced the ability to identify water sources to rivers, as well as detect flow changes that have occurred over the 5-year study. Uranium isotopic data for the Yukon River and major tributaries (the Porcupine and Tanana rivers) identify several sources that contribute to river flow, including: deep groundwater, seasonally frozen river-valley alluvium groundwater, and high-elevation glacial melt water. The main-stem Yukon River exhibits patterns of uranium isotopic variation at several locations that reflect input from ice melt and shallow groundwater in the spring, as well as a multi-year pattern of increased variability in timing and relative amount of water supplied from higher elevations within the basin. Results of this study demonstrate both the utility of uranium isotopes in revealing sources of water in large river systems and of incorporating uranium isotope analysis in long-term monitoring of arctic river systems that attempt to assess the effects of climate change.

  1. Interglacial Extension of the Boreal Forest Limit in the Noatak Valley, Northwest Alaska: Evidence from an Exhumed River-Cut Bluff and Debris Apron

    Science.gov (United States)

    Edwards, M.E.; Hamilton, T.D.; Elias, S.A.; Bigelow, N.H.; Krumhardt, A.P.

    2003-01-01

    Numerous exposures of Pleistocene sediments occur in the Noatak basin, which extends for 130 km along the Noatak River in northwestern Alaska. Nk-37, an extensive bluff exposure near the west end of the basin, contains a record of at least three glacial advances separated by interglacial and interstadial deposits. An ancient river-cut bluff and associated debris apron is exposed in profile through the central part of Nk-37. The debris apron contains a rich biotic record and represents part of an interglaciation that is probably assignable to marine-isotope stage 5. Pollen spectra from the lower part of the debris apron closely resemble modern samples taken from the Noatak floodplain in spruce gallery forest, and macrofossils of spruce are also present at this level. Fossil bark beetles and carpenter ants occur higher in the debris apron. Mutual Climatic Range (MCR) estimates from the fossil beetles suggest temperatures similar to or warmer than today. Together, these fossils indicate the presence of an interglacial spruce forest in the western part of the Noatak Basin, which lies about 80 km upstream of the modern limit of spruce forest.

  2. Southwestern Alaska archeological survey, Kagati Lake, Kisarilik-Kwethluk Rivers: A final research report to the National Geographic Society

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Discusses archeological survey of the east of Kagati Lake to Nenevok Lake, north to Trail Creek and Kwethluk River valleys, west along the Kwethluk and Kisaralik...

  3. The occurrence of peregrine falcons (Falco peregrinus anatum) and other raptors on the Charley River, Alaska, 1981

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The primary objective of this field study was to assess the importance of the Charley River as nesting habitat for the endangered American Peregrine Falcon. Other...

  4. Spectacled Eiders (Somateria fischeri) capture and resight records, Kashunuk River, Yukon-Kuskokwim Delta, Alaska, 1995-2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Data set containing capture and band resight data associated with marked Spectacled Eiders, observed near the Kashunuk River, within the Yukon-Kuskokwim Delta,...

  5. Assessment of marine-derived nutrients in the Copper River Delta, Alaska, using natural abundance of the stable isotopes of nitrogen, sulfur, and carbon

    Science.gov (United States)

    Kline, Thomas C.; Woody, Carol Ann; Bishop, Mary Anne; Powers, Sean P.; Knudsen, E. Eric

    2007-01-01

    We performed nitrogen, sulfur, and carbon stable isotope analysis (SIA) on maturing and juvenile anadromous sockeye and coho salmon, and periphyton in two Copper River delta watersheds of Alaska to trace salmonderived nutrients during 2003–2004. Maturing salmon were isotopically enriched relative to alternate freshwater N, S, and C sources as expected, with differences consistent with species trophic level differences, and minor system, sex, and year-to-year differences, enabling use of SIA to trace these salmon-derived nutrients. Periphyton naturally colonized, incubated, and collected using Wildco Periphtyon Samplers in and near spawning sites was 34S- and 15N-enriched, as expected, and at all freshwater sites was 13C-depleted. At nonspawning and coho-only sites, periphyton 34S and 15N was generally low. However, 34S was low enough at some sites to be suggestive of sulfate reduction, complicating the use of S isotopes. Juvenile salmon SIA ranged in values consistent with using production derived from re-mineralization as well as direct utilization, but only by a minority fraction of coho salmon. Dependency on salmon-derived nutrients ranged from relatively high to relatively low, suggesting a space-limited system. No one particular isotope was found to be superior for determining the relative importance of salmon-derived nutrients.

  6. Reconstructing satellite images to quantify spatially explicit land surface change caused by fires and succession: A demonstration in the Yukon River Basin of interior Alaska

    Science.gov (United States)

    Huang, Shengli; Jin, Suming; Dahal, Devendra; Chen, Xuexia; Young, Claudia; Liu, Heping; Liu, Shuguang

    2013-05-01

    Land surface change caused by fires and succession is confounded by many site-specific factors and requires further study. The objective of this study was to reveal the spatially explicit land surface change by minimizing the confounding factors of weather variability, seasonal offset, topography, land cover, and drainage. In a pilot study of the Yukon River Basin of interior Alaska, we retrieved Normalized Difference Vegetation Index (NDVI), albedo, and land surface temperature (LST) from a postfire Landsat image acquired on August 5th, 2004. With a Landsat reference image acquired on June 26th, 1986, we reconstructed NDVI, albedo, and LST of 1987-2004 fire scars for August 5th, 2004, assuming that these fires had not occurred. The difference between actual postfire and assuming-no-fire scenarios depicted the fires and succession impact. Our results demonstrated the following: (1) NDVI showed an immediate decrease after burning but gradually recovered to prefire levels in the following years, in which burn severity might play an important role during this process; (2) Albedo showed an immediate decrease after burning but then recovered and became higher than prefire levels; and (3) Most fires caused surface warming, but cooler surfaces did exist; time-since-fire affected the prefire and postfire LST difference but no absolute trend could be found. Our approach provided spatially explicit land surface change rather than average condition, enabling a better understanding of fires and succession impact on ecological consequences at the pixel level.

  7. Klawock Lagoon, Alaska Benthic Habitats 2011 Biotic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  8. Klawock Lagoon, Alaska Benthic Habitats 2011 Substrate

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  9. Klawock Lagoon, Alaska Benthic Habitats 2011 Geodatabase

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  10. Klawock Lagoon, Alaska Benthic Habitats 2011 Geoform

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  11. Peat landforms along the Albany River, northern Ontario. An ecological study of peat landforms in Canada and Alaska

    Science.gov (United States)

    Glaser, P. H.

    1985-01-01

    During the summer of 1985 a field investigation was started in the Hudson Bay lowland region of northern Ontario, which represents the largest expanse of peatland in North America and is an important sink in the global carbon cycle. A key area in the lowlands is situated along the Albany River near the confluence of the Chepay River. Here the striking vegetation-landforms are transitional between those found on the bed of Glacial Lake Agassiz in northern Minnesota and southern Manitoba and the more northern peatlands in the Hudson Bay lowland region. In peatland studies elsewhere the landform patterns have been used not only to classify different peatland types but also as an indicator of potential developmetnal trends. The study area is generally defined by that covered by the TM scene E-40062-15532 taken on Sept. 16, 1982. The purpose of the field work is to acquire sufficent information to interpret the TM imagery and test various hypotheses on peatland development on the gasis of the pattern transitions.

  12. A progress report on fishery surveys along the route of the proposed Trans-Alaska Pipeline between the Yukon River and Atigun Pass during 1971

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This progress report represents a summary of findings of the field work conducted by USFWS during the summer of 1971 along the route of the proposed Trans-Alaska...

  13. Environmental contaminants in fish and their associated risk to piscivorous wildlife in the Yukon River Basin, Alaska

    Science.gov (United States)

    Hinck, J.E.; Schmitt, C.J.; Echols, K.R.; May, T.W.; Orazio, C.E.; Tillitt, D.E.

    2006-01-01

    Organochlorine chemical residues and elemental contaminants were measured in northern pike (Esox lucius), longnose sucker (Catostomus catostomus), and burbot (Lota lota) from 10 sites in the Yukon River Basin (YRB) during 2002. Contaminant concentrations were compared to historical YRB data and to toxicity thresholds for fish and piscivorous wildlife from the scientific literature. A risk analysis was conducted to screen for potential hazards to piscivorous wildlife for contaminants that exceeded literature-based toxicity thresholds. Concentrations of total DDT (sum of p,p???-homologs; 1.09-13.6 ng/g), total chlordane (0.67-7.5 ng/g), dieldrin (growth and reproduction in YRB fish. Concentrations of mercury (0.08-0.65 ??g/g), selenium (0.23-0.85 ??g/g), and zinc (11-56 ??g/g) exceeded toxicity thresholds in one or more samples and were included in the risk analysis for piscivorous wildlife. No effect hazard concentrations (NEHCs) and low effect hazard concentrations (LEHCs), derived from literature-based toxicity reference values and avian and mammalian life history parameters, were calculated for mercury, selenium, and zinc. Mercury concentrations in YRB fish exceeded the NEHCs for all bird and small mammal models, which indicated that mercury concentrations in fish may represent a risk to piscivorous wildlife throughout the YRB. Low risk to piscivorous wildlife was associated with selenium and zinc concentrations in YRB fish. Selenium and zinc concentrations exceeded the NEHCs and LEHCs for only the small bird model. These results indicate that mercury should continue to be monitored and assessed in Alaskan fish and wildlife. ?? 2006 Springer Science+Business Media, Inc.

  14. Extreme rates of riverbank erosion of the high bluff formed by the ice-rich syngenetic permafrost (yedoma), Itkillik River, Northern Alaska

    Science.gov (United States)

    Kanevskiy, M. Z.; Shur, Y.; Fortier, D.; Jorgenson, T.; Stephani, E.; Strauss, J.

    2013-12-01

    Riverbank erosion in areas underlain by ice-rich permafrost is strongly affected by the processes of thawing of ground ice, which include (1) thermal erosion, and (2) thermal denudation. Thermal erosion is a process of combined thermal and mechanical action of moving water, which results in simultaneous thawing of frozen soil and its removal by water. Thermal erosion can cause block collapse of eroded banks. Thermal denudation is a process of thawing of frozen soils exposed in the bluff due to solar energy and consequent removal of thawed soils by gravity. Studies of riverbank and coastal erosion revealed that the highest rates of erosion are typical of bluffs composed by yedoma (ice- and organic-rich syngenetically frozen silty deposits). Yedoma deposits can be up to 50 m thick, and they contain huge ice wedges up to 10 m wide. Since 2006, we have studied the process of riverbank erosion of the 35 m high exposure of yedoma along the Itkillik River in northern Alaska. Based on five measurements of the areas occupied by wedge ice in panoramic photographs taken in 2006, 2007, 2011, and 2012, the average wedge-ice volume makes 61% of the entire exposed bluff. The total volumetric ground ice content of the Itkillik yedoma, including wedge, segregated and pore ice, is 85%. We detect three main stages of the riverbank erosion for the study site and other similar sites in the areas of ice-rich permafrost: (1) thermal erosion combined with thermal denudation, (2) thermal denudation, and (3) slope stabilization. The first stage includes formation of thermoerosional niches; development of sub-vertical cracks and block-fall collapse of cornices; and thawing and disintegration of blocks of ground ice and frozen soil in the water. All these processes are accompanied by thermal denudation of the exposed bluff. On August 16, 2007, a big portion of the bluff fell down along the crack sub-parallel to the bluff. As a result, the vertical wall more than 65 m long entirely formed by

  15. The status of the peregrine falcon (Falco peregrines) in northeastern Alaska: East fork Chandalar River drainage east to the Canadian Border, Arctic Ocean south to the Porcupine and Chandalar Rivers (including the Arctic National Wildlife Range) and the S

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Prior to 1972, little was known about the Peregrine Falcon (Falco peregrinus) populations that breed in northeastern Alaska. The following is a report of peregrine...

  16. Offshore baseline for the northern Alaska coastal region generated to calculate shoreline change rates along exposed coastlines between the Okpilak-Hulahula River Delta and the Colville River Deltas for the time period 1947 to 2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Arctic Coastal Plain of northern Alaska is an area of strategic economic importance to the United States, is home to remote Native American communities, and...

  17. Offshore baseline for the northern Alaska coastal region generated to calculate shoreline change rates along sheltered coastlines between the Okpilak-Hulahula River Delta and the Colville River Delta for the time period 1947 to 2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Arctic Coastal Plain of northern Alaska is an area of strategic economic importance to the United States, is home to remote Native American communities, and...

  18. Dulbi River goose survey

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A survey of white-fronted goose (Anser albifrons) and Canada goose (Branta canadensis) broods was conducted on 58 3/8 miles of the Dulbi River in Alaska. Four...

  19. Assessment of the impact of a Trans-Alaska Pipeline oil spill on the birds and mammals of the Atigun River system

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — An oil spill resulting from a crack in the Trans-Alaska Pipeline was discovered on June 10, 1979 near pipeline mile post 166, on the north side of Atigun Pass....

  20. Western Alaska ESI: SOCECON (Socioeconomic Resource Points and Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for airports, mining sites, area boundaries, and scenic rivers in Western Alaska. Vector points and lines in this...

  1. A reconnaissance in northern Alaska across the Rocky Mountains, along Koyukuk, John, Anaktuvuk, and Colville rivers and the Arctic coast to Cape Lisburne, in 1901, with notes

    Science.gov (United States)

    Schrader, F.C.; Peters, W.J.

    1904-01-01

    Since 1898 the United States Geological Survey has been carrying on systematic topographic and geologic surveys in Alaska under an appropriation made for the investigation of the mineral resources of the Territory. This work has included not only areal surveys of regions already being developed by the miner and prospector, but also explorations and investigations of regions that are little known or entirely unexplored. As a result of these explorations a network of reconnaissance traverses has been extended over a large part of Alaska, where route surveys of this character must necessarily precede more detailed topographic and geologic mapping. They serve to outline the main geographic features of the country and afford the pioneer or prospector a guide for his journeys as well as help him to select his field of operations. The present report and maps are the results of such an investigation.

  2. Forestry timber typing. Tanana demonstration project, Alaska ASVT. [Alaska

    Science.gov (United States)

    Morrissey, L. A.; Ambrosia, V. G.

    1982-01-01

    The feasibility of using LANDSAT digital data in conjunction with topographic data to delineate commercial forests by stand size and crown closure in the Tanana River basin of Alaska was tested. A modified clustering approach using two LANDSAT dates to generate an initial forest type classification was then refined with topographic data. To further demonstrate the ability of remotely sensed data in a fire protection planning framework, the timber type data were subsequently integrated with terrain information to generate a fire hazard map of the study area. This map provides valuable assistance in initial attack planning, determining equipment accessibility, and fire growth modeling. The resulting data sets were incorporated into the Alaska Department of Natural Resources geographic information system for subsequent utilization.

  3. 77 FR 71588 - Alaska Electric Light and Power Company, et al.; Notice of Petition for Declaratory Order

    Science.gov (United States)

    2012-12-03

    ... Energy Regulatory Commission Alaska Electric Light and Power Company, et al.; Notice of Petition for Declaratory Order ] Alaska Electric Light and Power Company....... Docket Nos. EL13-24-000; Project No. 2307... River Authority, State of Louisiana. Southeast Alaska Power Agency Project Nos. 2911-036, 3015-013...

  4. Observations of the vegetation of the Atigun River floodplain as affected by the crude oil spill from the Trans-Alaska Pipeline

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is a summary of the results of botanical investigation conducted along the Atigun River, associated side channels and tributaries during the period 26 –...

  5. Waterfowl populations and production within the impoundment area of the proposed dam at Rampart on the Yukon River, Alaska in 1961: Preliminary report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report discusses the results of waterfowl surveys taken on the Yukon River during the 1961 calendar year. An analysis of the results is included. Survey...

  6. Remote Sensing, Modeling, and In-Situ Measurements to Study the Spring and Summer Thermal Regime of the Kuparuk River, Northern Alaska

    Science.gov (United States)

    Floyd, A.; Liljedahl, A. K.; Gens, R.; Prakash, A.; Mann, D. H.

    2011-12-01

    A combined use of remote sensing techniques, modeling and in-situ measurements is a pragmatic approach to study arctic hydrology, given the vastness, complexity, and logistical challenges posed by most arctic watersheds. Remote sensing techniques can provide tools to assess the geospatial variations that form the integrated response of a river system and therefore provide important details to study climate change effects on the remote arctic environment. The proposed study tests the applicability of remote sensing and modeling techniques to map, monitor and compare river temperatures and river break-up in the coastal and foothill sections of the Kuparak River, which is an intensely studied watershed. We co-registered about hundred synthetic aperture radar (SAR) images from RADARSAT-1, ERS-1 and ERS-2 satellites, acquired during the months of May through July for a period between 1999 and 2010. Co-registration involved a Fast Fourier Transform (FFT) match of amplitude images. The offsets were then applied to the radiometrically corrected SAR images, converted to dB values, to generate an image stack. We applied a mask to extract pixels representing only the river, and used an adaptive threshold to delineate open water from frozen areas. The variation in river break-up can be bracketed by defining open vs. frozen river conditions. Summer river surface water temperatures will be simulated through the well-established HEC-RAS hydrologic software package and validated with field measurements. The three-pronged approach of using remote sensing, modeling and field measurements demonstrated in this study can be adapted to work for other watersheds across the Arctic.

  7. Alaska Radiometric Ages

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Alaska Radiometric Age file is a database of radiometric ages of rocks or minerals sampled from Alaska. The data was collected from professional publications...

  8. Upper Kenai River Cooperative Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Upper Kenai River Cooperative Plan is the product of a joint effort of the Chugach National Forest, Kenai National Wildlife Refuge, Alaska Division of Parks and...

  9. Comparing Two Methods of Surface Change Detection on an Evolving Thermokarst Using High-Temporal-Frequency Terrestrial Laser Scanning, Selawik River, Alaska

    Directory of Open Access Journals (Sweden)

    Theodore B. Barnhart

    2013-05-01

    Full Text Available Terrestrial laser scanners (TLS allow large and complex landforms to be rapidly surveyed at previously unattainable point densities. Many change detection methods have been employed to make use of these rich data sets, including cloud to mesh (C2M comparisons and Multiscale Model to Model Cloud Comparison (M3C2. Rather than use simulated point cloud data, we utilized a 58 scan TLS survey data set of the Selawik retrogressive thaw slump (RTS to compare C2M and M3C2. The Selawik RTS is a rapidly evolving permafrost degradation feature in northwest Alaska that presents challenging survey conditions and a unique opportunity to compare change detection methods in a difficult surveying environment. Additionally, this study considers several error analysis techniques, investigates the spatial variability of topographic change across the feature and explores visualization techniques that enable the analysis of this spatiotemporal data set. C2M reports a higher magnitude of topographic change over short periods of time (~12 h and reports a lower magnitude of topographic change over long periods of time (~four weeks when compared to M3C2. We found that M3C2 provides a better accounting of the sources of uncertainty in TLS change detection than C2M, because it considers the uncertainty due to surface roughness and scan registration. We also found that localized areas of the RTS do not always approximate the overall retreat of the feature and show considerable spatial variability during inclement weather; however, when averaged together, the spatial subsets approximate the retreat of the entire feature. New data visualization techniques are explored to leverage temporally and spatially continuous data sets. Spatially binning the data into vertical strips along the headwall reduced the spatial complexity of the data and revealed spatiotemporal patterns of change.

  10. Water quality of the Chokosna, Gilahina, Lakina Rivers, and Long Lake watershed along McCarthy Road, Wrangell-St. Elias National Park and Preserve, Alaska, 2007–08

    Science.gov (United States)

    Brabets, Timothy P.; Ourso, Robert T.; Miller, Matthew P.; Brasher, Anne M.

    2011-01-01

    The Chokosna, Gilahina, and Lakina River basins, and the Long Lake watershed are located along McCarthy Road in Wrangell–St. Elias National Park and Preserve. The rivers and lake support a large run of sockeye (red) salmon that is important to the commercial and recreational fisheries in the larger Copper River. To gain a better understanding of the water quality conditions of these watersheds, these basins were studied as part of a cooperative study with the National Park Service during the open water periods in 2007 and 2008. Water type of the rivers and Long Lake is calcium bicarbonate with the exception of that in the Chokosna River, which is calcium bicarbonate sulfate water. Alkalinity concentrations ranged from 63 to 222 milligrams per liter, indicating a high buffering capacity in these waters. Analyses of streambed sediments indicated that concentrations of the trace elements arsenic, chromium, and nickel exceed levels that might be toxic to fish and other aquatic organisms. However, these concentrations reflect local geology rather than anthropogenic sources in this nearly pristine area. Benthic macroinvertebrate qualitative multi-habitat and richest targeted habitat samples collected from six stream sites along McCarthy Road indicated a total of 125 taxa. Insects made up the largest percentage of macroinvertebrates, totaling 83 percent of the families found. Dipterans (flies and midges) accounted for 43 percent of all macroinvertebrates found. Analysis of the macroinvertebrate data by non-metric multidimensional scaling indicated differences between (1) sites at Long Lake and other stream sites along McCarthy Road, likely due to different basin characteristics, (2) the 2007 and 2008 data, probably from the higher rainfall in 2008, and (3) macroinvertebrate data collected in south-central Alaska, which represents a different climate zone. The richness, abundance, and community composition of periphytic algae taxa was variable between sampling sites

  11. Preliminary integrated geologic map databases for the United States: Digital data for the reconnaissance geologic map of the lower Yukon River region, Alaska

    Science.gov (United States)

    ,

    2006-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  12. Renewable Energy in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    2013-03-01

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  13. Alaska geothermal bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  14. Alaska Melilotus invasions: Distribution, origin, and susceptibility of plant communities

    Science.gov (United States)

    Conn, J.S.; Beattie, K.L.; Shephard, M.A.; Carlson, M.L.; Lapina, I.; Hebert, M.; Gronquist, R.; Densmore, R.; Rasy, M.

    2008-01-01

    Melilotus alba and M. officinalis were introduced to Alaska in 1913 as potential forage crops. These species have become naturalized and are now invading large, exotic plant-free regions of Alaska. We determined distributions of M. alba and M. officinalis in Alaska from surveys conducted each summer from 2002 to 2005. Melilotus alba and M. officinalis occurred at 721 and 205 sites, respectively (39,756 total sites surveyed). The northward limit for M. alba and M. officinalis was 67.15??N and 64.87??N, respectively. Both species were strictly associated with soil disturbance. Melilotus alba extended no farther than 15 m from road edges except where M. alba on roadsides met river floodplains and dispersed downriver (Matanuska and Nenana Rivers). Melilotus has now reached the Tanana River, a tributary of the Yukon River. Populations on floodplains were most extensive on braided sections. On the Nenana River, soil characteristics did not differ between where M. alba was growing versus similar areas where it had not yet reached. The pH of river soils (7.9-8.3) was higher than highway soils (7.3). Upland taiga plant communities grow on acid soils which may protect them from invasion by Melilotus, which prefer alkaline soils; however, early succession communities on river floodplains are susceptible because soils are alkaline. ?? 2008 Regents of the University of Colorado.

  15. Offshore baseline for the northern Alaska coastal region generated to calculate shoreline change rates along exposed coastlines between the U.S.-Canadian border and the Okpilak-Hulahula River Delta for the time period 1947 to 2003

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Arctic Coastal Plain of northern Alaska is an area of strategic economic importance to the United States, is home to remote Native American communities, and...

  16. WestBeaufort_sheltered_baselines.shp - Offshore baseline for the northern Alaska coastal region generated to calculate shoreline change rates along sheltered coastlines between the Colville River Delta and Point Barrow for the time period 1947 to 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Arctic Coastal Plain of northern Alaska is an area of strategic economic importance to the United States, is home to remote Native American communities, and...

  17. Offshore baseline for the northern Alaska coastal region generated to calculate shoreline change rates along exposed coastlines between the Colville River Delta and Point Barrow for the time period 1947 to 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Arctic Coastal Plain of northern Alaska is an area of strategic economic importance to the United States, is home to remote Native American communities, and...

  18. Offshore baseline for the northern Alaska coastal region generated to calculate shoreline change rates along sheltered coastlines between the U.S.-Canadian border and the Okpilak-Hulahula River Delta for the time period 1947 to 2003

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Arctic Coastal Plain of northern Alaska is an area of strategic economic importance to the United States, is home to remote Native American communities, and...

  19. Seismicity and plate tectonics in south central Alaska

    Science.gov (United States)

    Van Wormer, J. D.; Davies, J.; Gedney, L.

    1974-01-01

    Hypocenter distribution shows that the Benioff zone associated with the Aleutian arc terminates in interior Alaska some 75 km north of the Denali fault. There appears to be a break in the subducting Pacific plate in the Yentna River-Prince William Sound area which separates two seismically independent blocks, similar to the segmented structure reported for the central Aleutian arc.

  20. Profile: American Indian/Alaska Native

    Science.gov (United States)

    ... Minority Population Profiles > American Indian/Alaska Native Profile: American Indian/Alaska Native Spotlight ACA Infographic for American Indians/ ... Program Circle of Life multimedia youth education program American Indian/Alaska Native Profile Great Plains Area Alaska Area ...

  1. Bibliography on Alaska estuaries

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This bibliography was compiled to assist in working up “profiles” for the estuaries in Alaska. The purpose of the profiles is to list in a narrative form the...

  2. Alaska waterfowl production, 1964

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the Waterfowl Production and Habitat Survey for Alaska during 1964. The primary purpose of the survey is to provide information on duck...

  3. Distribution and character of naleds in northeastern Alaska

    Science.gov (United States)

    Harden, Deborah; Barnes, Peter W.; Reimnitz, Erk

    1977-01-01

    An examination of the distribution of river naleds seen in Landsat satellite imagery and high- and low-altitude aerial photography of Alaska's North Slope indicates that these features are widespread east of the Colville River and less abundant to the west. Where naleds occur, stream channels are wide and often form braided channels. Their distribution can be related to changes in stream gradient and to the occurrence of springs. Large naleds, such as on the Kongakut River, often remain through the summer melt season to form the nucleus of icing in the succeeding winter. Major naleds also are likely to significantly influence the nature of permafrost in their immediate vicinity. The map of naleds may serve as a guide to the occurrence of year-round flowing water, a sparse commodity in northern Alaska.

  4. Venetie, Alaska energy assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Richard Pearson; Baca, Michael J.; Schenkman, Benjamin L.; Brainard, James Robert

    2013-07-01

    This report summarizes the Energy Assessment performed for Venetie, Alaska using the principals of an Energy Surety Microgrid (ESM) The report covers a brief overview of the principals of ESM, a site characterization of Venetie, a review of the consequence modeling, some preliminary recommendations, and a basic cost analysis.

  5. Eagle river flats bird dieoff: A summary of findings 1988

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Since 1982, periodic waterfowl die-offs have been documented at Ft. Richardson Army Base, Anchorage, Alaska in an area at the mouth of Eagle River known as Eagle...

  6. Coal resources of Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, R.B.

    1982-01-01

    In the late 1800s, whaling ships carried Alaskan coal, and it was used to thaw ground for placer gold mining. Unfortunate and costly political maneuvers in the early 1900s delayed coal removal, but the Alaska Railroad and then World War II provided incentives for opening mines. Today, 33 million acres (about 9% of the state) is classified as prospectively valuable for coal, much of it under federal title. Although the state's geology is poorly known, potential for discovery of new fields exists. The US Geological Survey estimates are outdated, although still officially used. The total Alaska onshore coal resource is estimated to be 216 to 4216 billion tons of which 141 billion tons are identified resources; an additional 1430 billion tons are believed to lie beneath Cook Inlet. Transportation over mountain ranges and wetlands is the biggest hurdle for removal. Known coal sources and types are described and mapped. 1 figure.

  7. Biospheric and petrogenic organic carbon flux along southeast Alaska

    Science.gov (United States)

    Cui, Xingqian; Bianchi, Thomas S.; Jaeger, John M.; Smith, Richard W.

    2016-10-01

    Holocene fjords store ca. 11-12% of the total organic carbon (OC) buried in marine sediments with fjords along southeast (SE) Alaska possibly storing half of this OC (Smith et al., 2015). However, the respective burial of biospheric (OCbio) and petrogenic OC (OCpetro) remains poorly constrained, particularly across glaciated versus non-glaciated systems. Here, we use surface sediment samples to quantify the sources and burial of sedimentary OC along SE Alaska fjord-coastal systems, and conduct a latitudinal comparison across a suite of fjords and river-coastal systems with distinctive OC sources. Our results for SE Alaska show that surface sediments in northern fjords (north of Icy Strait) with headwater glaciers are dominated by OCpetro, in contrast to marine and terrestrially-derived fresh OC in non-glaciated southern fjords. Along the continental shelf of the Gulf of Alaska, terrestrial OC is exported from rivers. Using end-member mixing models, we determine that glaciated fjords have significantly higher burial rates of OCpetro (∼ 1.1 ×103 gOC m-2yr-1) than non-glaciated fjords and other coastal systems, making SE Alaska potentially the largest sink of OCpetro in North America. In contrast, non-glaciated fjords in SE Alaska are effective in burying marine OC (OCbio-mari) (13-82 g OC m-2yr-1). Globally, OC in fjord sediments are comprised of a mixture of OCpetro and fresh OCbio, in contrast to the pre-aged OC from floodplain river-coastal systems. We find that there may be a general latitudinal trend in the role of fjords in processing OC, where high-latitude temperate glacial fjords (e.g., Yakutat Bay, SE Alaska) rebury OCpetro and non-glacial mid-latitude fjords (e.g., Doubtful Sound, Fiordland) sequester CO2 from phytoplankton and/or temperate forests. Overall, we propose that fjords are effective in sequestering OCbio and re-burying OCpetro. Based on our study, we hypothesize that climate change will have a semi-predictable impact on fjords' OC cycling in

  8. ANWR progress report number FY84-4: Population size, composition, and distribution of moose along the Canning and Kongakut Rivers within the Arctic National Wildlife Refuge, Alaska, fall 1983

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Aerial surveys to determine the population size, composition, and distribution of moose (Alces alces) along the Canning and Kongakut River drainages were conducted...

  9. GeoFORCE Alaska, A Successful Summer Exploring Alaska's Geology

    Science.gov (United States)

    Wartes, D.

    2012-12-01

    Thirty years old this summer, RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. This summer, in collaboration with the University of Texas Austin, the Rural Alaska Honors Institute launched a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science to entice kids to get excited about dinosaurs, volcanoes and earthquakes, and includes physics, chemistry, math, biology and other sciences. Students were recruited from the Alaska's Arctic North Slope schools, in 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The culmination is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks and Anchorage, Arizona, Oregon and the Appalachians. All trips focus on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska was begun by the University of Alaska Fairbanks in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska is managed by UAF's long-standing Rural Alaska Honors Institute, that has been successfully providing intense STEM educational opportunities for Alaskan high school students for over 30 years. The program will add a new cohort of 9th graders each year for the next four years. By the summer of 2015, GeoFORCE Alaska is targeting a capacity of 160 students in grades 9th through 12th. Join us to find out more about this exciting new initiative, which is enticing young Alaska Native

  10. Contemporary fault mechanics in southern Alaska

    Science.gov (United States)

    Kalbas, James L.; Freed, Andrew M.; Ridgway, Kenneth D.

    Thin-shell finite-element models, constrained by a limited set of geologic slip rates, provide a tool for evaluating the organization of contemporary faulting in southeastern Alaska. The primary structural features considered in our analysis are the Denali, Duke River, Totschunda, Fairweather, Queen Charlotte, and Transition faults. The combination of fault configurations and rheological properties that best explains observed geologic slip rates predicts that the Fairweather and Totschunda faults are joined by an inferred southeast-trending strike-slip fault that crosses the St. Elias Mountains. From a regional perspective, this structure, which our models suggest slips at a rate of ˜8 mm/a, transfers shear from the Queen Charlotte fault in southeastern Alaska and British Columbia northward to the Denali fault in central Alaska. This result supports previous hypotheses that the Fairweather-Totschunda connecting fault constitutes a newly established northward extension of the Queen Charlotte-Fairweather transform system and helps accommodate right-lateral motion (˜49 mm/a) of the Pacific plate and Yakutat microplate relative to stable North America. Model results also imply that the Transition fault separating the Yakutat microplate from the Pacific plate is favorably oriented to accommodate significant thrusting (23 mm/a). Rapid dip-slip displacement on the Transition fault does not, however, draw shear off of the Queen Charlotte-Fairweather transform fault system. Our new modeling results suggest that the Totschunda fault, the proposed Fairweather-Totschunda connecting fault, and the Fairweather fault may represent the youngest stage of southwestward migration of the active strike-slip deformation front in the long-term evolution of this convergent margin.

  11. Alaska highway pipeline inquiry

    Energy Technology Data Exchange (ETDEWEB)

    Lysyk, K.M.; Bohmer, E.E.; Phelps, W.L.

    1977-01-01

    A public enquiry was held to determine the social and economic impacts associated with the proposed Alaska Highway pipeline. The pipeline was proposed to carry natural gas from Prudhoe Bay to the continental United States. The pipeline would follow the trans-Alaskan pipeline to Fairbanks, and follow the Alaska Highway through southern Yukon into northern British Columbia. The 48 inch pipe would operate at a pressure of 1,260 psi and would carry 2.4 billion cubic feet of gas per day, and could operate at that level for at least 25 years. Issues considered included alternative routes, employment and training, economic impact, social impact, the Yukon Indian land claim, the Dempster Lateral pipeline, planning and regulation, and compensation. The enquiry concluded that the government of Canada should not give approval in principle to the proposed pipeline through the southern Yukon without resolving the issues of an advanced payment towards the settlement of the Yukon Indian land claim, of compensation from the pipeline company, the establishment of a planning and control agency, and the deferral of the commencement of construction of the pipeline. 8 figs.

  12. 2005 Alaska Division of Geological & Geophysical Surveys Lidar: Unalakleet, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This report is a summary of a LiDAR data collection over the community of Unalakleet, in the Norton Sound region of Alaska. The original data were collected on...

  13. Genetic diversity of sockeye salmon (`oncorhynchus nerka`) of Cook Inlet, Alaska, and its application to restoration of injured populations of the Kenai River. Exxon Valdez Oil Spill Restoration Project 93012 and 94255-2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Seeb, L.W.; Habicht, C.; Templin, W.D.; Fetzner, J.W.; Gates, R.B.

    1995-11-01

    Genetic data from sockeye salmon (Oncorhynchus nerka) were collected from all significant spawning populations contributing to mixed-stock harvests in Cook Inlet. A total of 68 allozyme loci were resolved from 37 populations. Mitochondrial DNA data from the NADH subunits 5 and 6 were collected from 19 of the populations. Mixed-stock analyses using maximum likelihood methods with 27 loci were evaluated to estimate the proportion of Kenai River populations in Central District drift fisheries. Simulations indicate that Kenai River populations can be identified in mixtures at a level of precision and accuracy useful for restoration and fishery management. Mixed-stock samples from Cook Inlet drift net fisheries were analyzed both inseason (48 hr) and post-season. Samples from fish wheels from the Kenai, Kasilof, Yentna, and Susitna River systems were also analyzed. Inclusion of mtDNA data in the analysis is being investigated to determine if it improves precision and accuracy. Results from this study are currently being used in the management and restoration of Kenai River sockeye salmon injured in the 1989 Exxon Valdex oil spill.

  14. Radioactivity at the Copper Creek copper lode prospect, Eagle district, east-central Alaska

    Science.gov (United States)

    Wedow, Helmuth; Tolbert, Gene Edward

    1952-01-01

    Investigation of radioactivity anomalies at the Copper Creek copper lode prospect, Eagle district, east-central Alaska, during 1949 disclosed that the radioactivity is associated with copper mineralization in highly metamorphosed sedimentary rocks. These rocks are a roof pendant in the Mesozoic "Charley River" batholith. The radioactivity is probably all due to uranium associated with bornite and malachite.

  15. Alaska Geoid Heights (GEOID96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' geoid height grid for Alaska is distributed as a GEOID96 model. The computation used 1.1 million terrestrial and marine gravity data held in the...

  16. Kevadel Alaska talves / Tiiu Ehrenpreis

    Index Scriptorium Estoniae

    Ehrenpreis, Tiiu

    2007-01-01

    Autori muljeid 22.-25. märtsini Fairbanksis toimunud Alaska Ülikooli ja Ülemaailmse Arktika Uurimise Keskuse (IARC) juhtimisel GLOBE'i programmi uue projekti "Aastaajad ja bioomid" koolitusseminarist

  17. Level III Ecoregions of Alaska

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. The ecoregions of Alaska are a...

  18. Predator control problems in Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One of the important wildlife management activities in Alaska is that of predator control. This simple statement requires some explanation. In the course of these...

  19. Alaska waterfowl production survey, 1968

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the Waterfowl Production and Habitat Survey for Alaska during 1968. The primary purpose of the survey is to provide information on duck...

  20. Alaska Athabascan stellar astronomy

    Science.gov (United States)

    Cannon, Christopher M.

    Stellar astronomy is a fundamental component of Alaska Athabascan cultures that facilitates time-reckoning, navigation, weather forecasting, and cosmology. Evidence from the linguistic record suggests that a group of stars corresponding to the Big Dipper is the only widely attested constellation across the Northern Athabascan languages. However, instruction from expert Athabascan consultants shows that the correlation of these names with the Big Dipper is only partial. In Alaska Gwich'in, Ahtna, and Upper Tanana languages the Big Dipper is identified as one part of a much larger circumpolar humanoid constellation that spans more than 133 degrees across the sky. The Big Dipper is identified as a tail, while the other remaining asterisms within the humanoid constellation are named using other body part terms. The concept of a whole-sky humanoid constellation provides a single unifying system for mapping the night sky, and the reliance on body-part metaphors renders the system highly mnemonic. By recognizing one part of the constellation the stargazer is immediately able to identify the remaining parts based on an existing mental map of the human body. The circumpolar position of a whole-sky constellation yields a highly functional system that facilitates both navigation and time-reckoning in the subarctic. Northern Athabascan astronomy is not only much richer than previously described; it also provides evidence for a completely novel and previously undocumented way of conceptualizing the sky---one that is unique to the subarctic and uniquely adapted to northern cultures. The concept of a large humanoid constellation may be widespread across the entire subarctic and have great antiquity. In addition, the use of cognate body part terms describing asterisms within humanoid constellations is similarly found in Navajo, suggesting a common ancestor from which Northern and Southern Athabascan stellar naming strategies derived.

  1. ALASKA1964_RUNUP - Alaska 1964 Tsunami Runup Heights at Seaside, Oregon (alaska1964_runup.shp)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set is a point shapefile representing tsunami inundation runup heights for the Alaska 1964 event based on observations and associated information obtained...

  2. On the climate and climate change of Sitka, Southeast Alaska

    Science.gov (United States)

    Wendler, Gerd; Galloway, Kevin; Stuefer, Martin

    2016-10-01

    Sitka, located in southeastern coastal Alaska, is the only meteorological station in Alaska and northern coastal British Columbia, with a long climatological record, going back to the first half of the nineteenth century. Sitka was the capital of Alaska, when it was part of the Russian Empire, to which Alaska belonged until 1867, when the American government purchased it. In 1827, the Russian established an observatory on Baranof Island, Sitka Harbor, which made 17-hourly observations, later extended to 19 and thereafter to all hours of the day. When analyzing the data, the 12-day time difference between the Russian (Julian) calendar, at which the observations were made, and ours (Gregorian) has to be considered. The climate of Sitka is maritime, with relative warm winter temperatures—there is no month with a mean temperature below freezing—and moderately warm summer temperatures with 4 months above the 10 °C level and plentiful precipitation all-year long. It is the warmest zone of Alaska. Even though there is a substantial break in observations in the late nineteenth century, these are the only observation, which started so early in the nineteenth century. Systematic US-based observations commenced much later normally in connection with the gold rush, whaling in Northern Alaska, and the fur trade, predominantly along the Yukon River. During the 186 years of observations from 1827 to 2013, the best linear fit gave a temperature increase of 1.56 °C for the whole period or 0.86 °C per century, somewhat lower than expected for the relatively high latitudes. The increase was nonlinear, with several multi-decadal variations. However, when comparing the first normal (1831-1860) to the last normal (1981-2010) and assuming a linear trend, a higher value of 1.06 °C per century was calculated. The discrepancy might be explained by nonlinearity and the fact that during the late nineteenth and early twentieth centuries, observations were sporadic. Furthermore, the

  3. Alaska GeoFORCE, A New Geologic Adventure in Alaska

    Science.gov (United States)

    Wartes, D.

    2011-12-01

    RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. A program of rigorous academic activity combines with social, cultural, and recreational activities. Students are purposely stretched beyond their comfort levels academically and socially to prepare for the big step from home or village to a large culturally western urban campus. This summer RAHI is launching a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science as the hook because most kids get excited about dinosaurs, volcanoes and earthquakes, but it includes physics, chemistry, math, biology and other sciences. Students will be recruited, initially from the Arctic North Slope schools, in the 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The carrot on the end of the stick is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks, Arizona, Oregon and the Appalachians. All trips are focused on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska is being launched by UAF in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska will be managed by UAF's long-standing Rural Alaska Honors Insitute (RAHI) that has been successfully providing intense STEM educational opportunities for Alaskan high school students for almost 30 years. The Texas program, with adjustments for differences in culture and environment, will be

  4. Satellite View of Alaska - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Satellite View of Alaska map layer is a 200-meter-resolution simulated-natural-color image of Alaska. Vegetation is generally green, with darker greens...

  5. Paleoseismic study of the Cathedral Rapids fault in the northern Alaska Range near Tok, Alaska

    Science.gov (United States)

    Koehler, R. D.; Farrell, R.; Carver, G. A.

    2010-12-01

    The Cathedral Rapids fault extends ~40 km between the Tok and Robertson River valleys and is the easternmost fault in a series of active south-dipping imbricate thrust faults which bound the northern flank of the Alaska Range. Collectively, these faults accommodate a component of convergence transferred north of the Denali fault and related to the westward (counterclockwise) rotation of the Wrangell Block driven by relative Pacific/North American plate motion along the eastern Aleutian subduction zone and Fairweather fault system. To the west, the system has been defined as the Northern Foothills Fold and Thrust Belt (NFFTB), a 50-km-wide zone of east-west trending thrust faults that displace Quaternary deposits and have accommodated ~3 mm/yr of shortening since latest Pliocene time (Bemis, 2004). Over the last several years, the eastward extension of the NFFTB between Delta Junction and the Canadian border has been studied by the Alaska Division of Geological & Geophysical Surveys to better characterize faults that may affect engineering design of the proposed Alaska-Canada natural gas pipeline and other infrastructure. We summarize herein reconnaissance field observations along the western part of the Cathedral Rapids fault. The western part of the Cathedral Rapids fault extends 21 km from Sheep Creek to Moon Lake and is characterized by three roughly parallel sinuous traces that offset glacial deposits of the Illinoian to early Wisconsinan Delta glaciations and the late Wisconsinan Donnelly glaciation, as well as, Holocene alluvial deposits. The northern trace of the fault is characterized by an oversteepened, beveled, ~2.5-m-high scarp that obliquely cuts a Holocene alluvial fan and projects into the rangefront. Previous paleoseismic studies along the eastern part of the Cathedral Rapids fault and Dot “T” Johnson fault indicate multiple latest Pleistocene and Holocene earthquakes associated with anticlinal folding and thrust faulting (Carver et al., 2010

  6. Tularemia in Alaska, 1938 - 2010

    Directory of Open Access Journals (Sweden)

    Hansen Cristina M

    2011-11-01

    Full Text Available Abstract Tularemia is a serious, potentially life threatening zoonotic disease. The causative agent, Francisella tularensis, is ubiquitous in the Northern hemisphere, including Alaska, where it was first isolated from a rabbit tick (Haemophysalis leporis-palustris in 1938. Since then, F. tularensis has been isolated from wildlife and humans throughout the state. Serologic surveys have found measurable antibodies with prevalence ranging from F. tularensis isolates from Alaska were analyzed using canonical SNPs and a multi-locus variable-number tandem repeats (VNTR analysis (MLVA system. The results show that both F. t. tularensis and F. t. holarctica are present in Alaska and that subtype A.I, the most virulent type, is responsible for most recently reported human clinical cases in the state.

  7. Alaska volcanoes guidebook for teachers

    Science.gov (United States)

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  8. Alaska Dental Health Aide Program

    Directory of Open Access Journals (Sweden)

    Sarah Shoffstall-Cone

    2013-08-01

    Full Text Available Background. In 1999, An Oral Health Survey of American Indian and Alaska Native (AI/AN Dental Patients found that 79% of 2- to 5-year-olds had a history of tooth decay. The Alaska Native Tribal Health Consortium in collaboration with Alaska’s Tribal Health Organizations (THO developed a new and diverse dental workforce model to address AI/AN oral health disparities. Objectives. This paper describes the workforce model and some experience to date of the Dental Health Aide (DHA Initiative that was introduced under the federally sanctioned Community Health Aide Program in Alaska. These new dental team members work with THO dentists and hygienists to provide education, prevention and basic restorative services in a culturally appropriate manner. Results. The DHA Initiative introduced 4 new dental provider types to Alaska: the Primary Dental Health Aide, the Expanded Function Dental Health Aide, the Dental Health Aide Hygienist and the Dental Health Aide Therapist. The scope of practice between the 4 different DHA providers varies vastly along with the required training and education requirements. DHAs are certified, not licensed, providers. Recertification occurs every 2 years and requires the completion of 24 hours of continuing education and continual competency evaluation. Conclusions. Dental Health Aides provide evidence-based prevention programs and dental care that improve access to oral health care and help address well-documented oral health disparities.

  9. The use of Copper River salmon and other wild resources by Upper Tanana communities, 1983-1984

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — At its February 1984 meeting, the Alaska Board of Fisheries determined that the uses of Copper River salmon by residents of Dot Lake qualified as subsistence uses....

  10. Resilience of Alaska's Boreal Forest to Climatic Change

    Science.gov (United States)

    Chapin, F. S., III; McGuire, A. D.; Ruess, R. W.; Hollingsworth, T. N.; Mack, M. C.; Johnstone, J. F.; Kasischke, E. S.; Euskirchen, E. S.; Jones, J. B.; Jorgenson, M. T.; Kielland, K.; Kofinas, G. P.; Turetsky, M. R.; Yarie, J.; Lloyd, A. H.; Taylor, D. L.

    2010-01-01

    This paper assesses the resilience of Alaska s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  11. THE HYDRAULIC CHARACTERISTICS AND GEOCHEMISTRY OF HYPORHEIC AND PARAFLUVIAL ZONES IN ARCTIC TUNDRA STREAMS, NORTH SLOPE, ALASKA

    Science.gov (United States)

    Sodium bromide and Rhodamine WT were used as conservative tracers to examine the hydrologic characteristics of seven tundra streams in Arctic Alaska, during the summers of 1994-1996. Continuous tracer additions were conducted in seven rivers ranging from 1st to 5th order with sam...

  12. 76 FR 16807 - Notice of Intent To Collect Fees on Public Land in Tangle Lakes, Alaska, Glennallen Field Office...

    Science.gov (United States)

    2011-03-25

    ... Alaska along the Denali Highway at milepost 21.5 and lies within the nationally designated Delta Wild and... 2011. The improvements will provide designated campsites with tables, tent or trailer space and fire... the public through meetings for the update of the Delta Wild and Scenic River management plan....

  13. Alaska Coal Geology, Resources, and Coalbed Methane Potential

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and...

  14. Chronic Liver Disease and American Indians/Alaska Natives

    Science.gov (United States)

    ... Native > Chronic Liver Disease Chronic Liver Disease and American Indians/Alaska Natives Among American Indians and Alaska Natives, ... 54. 1 At a glance – Cancer Rates for American Indian/Alaska Natives (2008-2012) Cancer Incidence Rates per ...

  15. Minority Women's Health: American Indians/Alaska Natives

    Science.gov (United States)

    ... Health > American Indians/Alaska Natives Minority Women's Health American Indians/Alaska Natives Related information How to Talk to ... disease. Return to top Health conditions common in American Indian and Alaska Native women Accidents Alcoholism and drug ...

  16. Fisheries Education in Alaska. Conference Report. Alaska Sea Grant Report 82-4.

    Science.gov (United States)

    Smoker, William W., Ed.

    This conference was an attempt to have the fishing industry join the state of Alaska in building fisheries education programs. Topics addressed in papers presented at the conference include: (1) fisheries as a part of life in Alaska, addressing participation of Alaska natives in commercial fisheries and national efforts; (2) the international…

  17. Alaska's renewable energy potential.

    Energy Technology Data Exchange (ETDEWEB)

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  18. Northern Alaska Landscape/Permafrost GIS Data

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — This data set represents an updated Ecological Subsection Map for Northern Alaska. This update includes permafrost mapping to include the following new layers:...

  19. Alaska Highway bibliography, 3rd edition

    DEFF Research Database (Denmark)

    Prange, Laurie

    Since the early 20th century various schemes were considered for the construction of roads, trails or railways 71 to link the Yukon, northern British Columbia and Alaska to the “outside.” These schemes were motivated by economic interests, including mining, lumber and tourism concerns. During....... The military need for the Alaska Highway and Canol pipeline declined at the end of World War II. In 1946, Canada officially accepted responsibility for maintaining and developing the Yukon portion of the Alaska Highway. The Alaska Highway affected both First Nations and non-First Nations peoples immediately...

  20. 1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska

    Science.gov (United States)

    Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.

    2014-01-01

    On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents

  1. Geochemical evidence for seasonal controls on the transportation of Holocene loess, Matanuska Valley, southern Alaska, USA

    Science.gov (United States)

    Muhs, Daniel; Budahn, James R.; Skipp, Gary L.; McGeehin, John

    2016-01-01

    Loess is a widespread Quaternary deposit in Alaska and loess accretion occurs today in some regions, such as the Matanuska Valley. The source of loess in the Matanuska Valley has been debated for more than seven decades, with the Knik River and the Matanuska River, both to the east, being the leading candidates and the Susitna River, to the west, as a less favorable source. We report here new stratigraphic, mineralogic, and geochemical data that test the competing hypotheses of these river sources. Loess thickness data are consistent with previous studies that show that a source or sources lay to the east, which rules out the Susitna River as a source. Knik and Matanuska River silts can be distinguished using Sc–Th–La, LaN/YbN vs. Eu/Eu∗, Cr/Sc, and As/Sb. Matanuska Valley loess falls clearly within the range of values for these ratios found in Matanuska River silt. Dust storms from the Matanuska River are most common in autumn, when river discharge is at a minimum and silt-rich point bars are exposed, wind speed from the north is beginning to increase after a low-velocity period in summer, snow depth is still minimal, and soil temperatures are still above freezing. Thus, seasonal changes in climate and hydrology emerge as critical factors in the timing of aeolian silt transport in southern Alaska. These findings could be applicable to understanding seasonal controls on Pleistocene loess accretion in Europe, New Zealand, South America, and elsewhere in North America.

  2. Geochemical evidence for seasonal controls on the transportation of Holocene loess, Matanuska Valley, southern Alaska, USA

    Science.gov (United States)

    Muhs, Daniel R.; Budahn, James R.; Skipp, Gary L.; McGeehin, John P.

    2016-06-01

    Loess is a widespread Quaternary deposit in Alaska and loess accretion occurs today in some regions, such as the Matanuska Valley. The source of loess in the Matanuska Valley has been debated for more than seven decades, with the Knik River and the Matanuska River, both to the east, being the leading candidates and the Susitna River, to the west, as a less favorable source. We report here new stratigraphic, mineralogic, and geochemical data that test the competing hypotheses of these river sources. Loess thickness data are consistent with previous studies that show that a source or sources lay to the east, which rules out the Susitna River as a source. Knik and Matanuska River silts can be distinguished using Sc-Th-La, LaN/YbN vs. Eu/Eu∗, Cr/Sc, and As/Sb. Matanuska Valley loess falls clearly within the range of values for these ratios found in Matanuska River silt. Dust storms from the Matanuska River are most common in autumn, when river discharge is at a minimum and silt-rich point bars are exposed, wind speed from the north is beginning to increase after a low-velocity period in summer, snow depth is still minimal, and soil temperatures are still above freezing. Thus, seasonal changes in climate and hydrology emerge as critical factors in the timing of aeolian silt transport in southern Alaska. These findings could be applicable to understanding seasonal controls on Pleistocene loess accretion in Europe, New Zealand, South America, and elsewhere in North America.

  3. Recruiting first generation college students into the Geosciences: Alaska's EDGE project

    Science.gov (United States)

    Prakash, A.; Connor, C.

    2008-12-01

    Funded in 2005-2008, by the National Science Foundation's Geoscience Education Division, the Experiential Discoveries in Geoscience Education (EDGE) project was designed to use glacier and watershed field experiences as venues for geospatial data collected by Alaska's grade 6-12 middle and high school teachers and their students. EDGE participants were trained in GIS and learned to analyze geospatial data to answer questions about the warming Alaska environment and to determine rates of ongoing glacier recession. Important emphasis of the program was the recruitment of Alaska Native students of Inupiat, Yup'ik, Athabascan, and Tlingit populations, living in both rural and urban areas around the state. Twelve of Alaska's 55 school districts have participated in the EDGE program. To engage EDGE students in the practice of scientific inquiry, each was required to carry out a semester scale research project using georeferenced data, guided by their EDGE teacher and mentor. Across Alaska students investigated several Earth systems processes including freezing conditions of lake ice; the changes in water quality in storm drains after rainfall events; movements of moose, bears, and bison across Alaskan landscapes; changes in permafrost depth in western Alaska; and the response of migrating waterfowl to these permafrost changes. Students correlated the substrate beneath their schools with known earthquake intensities; measured cutbank and coastal erosion on northern rivers and southeastern shorelines; tracked salmon infiltration of flooded logging roads; noted the changing behavior of eagles during late winter salmon runs; located good areas for the use of tidal power for energy production; tracked the extent and range of invasive plant species with warming; and the change of forests following deglaciation. Each cohort of EDGE students and teachers finished the program by attended a 3-day EDGE symposium at which students presented their research projects first in a

  4. 77 FR 16314 - Alaska Disaster #AK-00024

    Science.gov (United States)

    2012-03-20

    ... ADMINISTRATION Alaska Disaster AK-00024 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Alaska dated 03/13/2012... INFORMATION CONTACT: A. Escobar, Office of Disaster Assistance, U.S. Small Business Administration, 409...

  5. 78 FR 39822 - Alaska Disaster #AK-00028

    Science.gov (United States)

    2013-07-02

    ... ADMINISTRATION Alaska Disaster AK-00028 AGENCY: U.S. Small Business Administration. ACTION: Notice SUMMARY: This is a Notice of the Presidential declaration of a major disaster for the State of Alaska (FEMA-4122-DR... INFORMATION CONTACT: A. Escobar, Office of Disaster Assistance, U.S. Small Business Administration, 409...

  6. River engineering

    NARCIS (Netherlands)

    De Vries, M.

    1993-01-01

    One dimension models - basic eauations, analytical models, numberical models. One dimensional models -suspended load, roughness and resistance of river beds. Solving river problems - tools, flood mitigation, bank protection.

  7. Infant Mortality and American Indians/Alaska Natives

    Science.gov (United States)

    ... Alaska Native > Infant Heath & Mortality Infant Mortality and American Indians/Alaska Natives American Indian/Alaska Natives have 1.5 times the infant mortality rate as non-Hispanic whites. American Indian/Alaska Native babies are twice as likely as ...

  8. Arctic River Mobility: A Baseline Assessment

    Science.gov (United States)

    Rowland, J. C.; Wilson, C. J.; Brumby, S. P.; Pope, P. A.

    2009-12-01

    In many arctic river systems, permafrost and the presence of frozen floodplain materials provides a significant source of bank cohesion. Due to this cohesion, permafrost may play an important control of arctic river mobility and meandering dynamics. Whether changes in the rates of permafrost thawing has had or will have as significant a geomorphic impact on arctic river meandering as has already been observed for arctic coastline retreat, lake size and distribution, and hillslope stability is at present an unanswered question. The potential impact of climate driven changes in arctic river meandering has important implications for river planform morphology, floodplain dynamics, river ecology, and the export of carbon and nutrients to coastal oceans. We present results of remote sensing analysis of river mobility for the Yukon River in Alaska and sections of the Siberian Rivers including the Lena, the Kolyma and the Indigirka Rivers. Comparisons of river location at successive intervals in time were conducted using Landsat imagery archives and higher resolution aerial photographs and satellite imagery. Extraction of river channel locations was accomplished using the GeniePro automated feature extraction software. Over the period of Landsat coverage (mid-1980s to present) arctic rivers show limited to no movement at the resolution of the Landsat data (30 m per pixel). On the Yukon Flats regions of the Yukon River, the most mobile sections of the river have migration rates comparable to reach-average values reported for temperate rivers; given that large portions of the Yukon display no detectable movement, reach-averaged values are far less than observed in temperate systems. Field inspection of areas of high erosion along the Yukon River indicate that erosional processes associated with the thermal degradation of permafrost play a dominant role in many of these areas. Thermal niching and large scale bank collapse due to undercutting play a large role in bank erosion

  9. Observing a catastrophic thermokarst lake drainage in northern Alaska

    Science.gov (United States)

    Jones, Benjamin M.; Arp, Christopher D.

    2015-01-01

    The formation and drainage of thermokarst lakes have reshaped ice-rich permafrost lowlands in the Arctic throughout the Holocene. North of Teshekpuk Lake, on the Arctic Coastal Plain of northern Alaska, thermokarst lakes presently occupy 22.5% of the landscape, and drained thermokarst lake basins occupy 61.8%. Analysis of remotely sensed imagery indicates that nine lakes (>10 ha) have drained in the 1,750 km2 study area between 1955 and 2014. The most recent lake drainage was observed using in situ data loggers providing information on the duration and magnitude of the event, and a nearby weather station provided information on the environmental conditions preceding the lake drainage. Lake 195 (L195), an 80 ha thermokarst lake with an estimated water volume of ~872,000 m3, catastrophically drained on 05 July 2014. Abundant winter snowfall and heavy early summer precipitation resulted in elevated lake water levels that likely promoted bank overtopping, thermo-erosion along an ice-wedge network, and formation of a 9 m wide, 2 m deep, and 70 m long drainage gully. The lake emptied in 36 hours, with 75% of the water volume loss occurring in the first ten hours. The observed peak discharge of the resultant flood was 25 m3/s, which is similar to that in northern Alaska river basins whose areas are more than two orders of magnitude larger. Our findings support the catastrophic nature of sudden lake drainage events and the mechanistic hypotheses developed by J. Ross Mackay.

  10. 76 FR 81247 - Fisheries of the Exclusive Economic Zone Off Alaska; Groundfish of the Gulf of Alaska; Amendment 88

    Science.gov (United States)

    2011-12-27

    ... Part 679 Fisheries of the Exclusive Economic Zone Off Alaska; Groundfish of the Gulf of Alaska... 0648-BA97 Fisheries of the Exclusive Economic Zone Off Alaska; Groundfish of the Gulf of Alaska..., (907) 586-7228. SUPPLEMENTARY INFORMATION: The groundfish fisheries in the exclusive economic zone...

  11. Waterfowl banding, Innoko and Iditarod Rivers, Alaska, 1954

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Pintail, widgeon, shoveler, green-winged teal, mallard, white-fronted goose, and lesser Canada goose are mentioned. Banding conducted in July. Logistics, methods,...

  12. Western Alaska ESI: STREAMS (River and Stream Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines representing inland linear hydrography features used in the creation of the Environmental Sensitivity Index (ESI) for Western...

  13. Impact of remote oceanic forcing on Gulf of Alaska sea levels and mesoscale circulation

    Science.gov (United States)

    Melsom, Arne; Metzger, E. Joseph; Hurlburt, Harley E.

    2003-11-01

    We examine the relative importance of regional wind forcing and teleconnections by an oceanic pathway for impact on interannual ocean circulation variability in the Gulf of Alaska. Any additional factors that contribute to this variability, such as freshwater forcing from river runoff, are disregarded. The study is based on results from numerical simulations, sea level data from tide gauge stations, and sea surface height anomalies from satellite altimeter data. At the heart of this investigation is a comparison of ocean simulations that include and exclude interannual oceanic teleconnections of an equatorial origin. Using lagged correlations, the model results imply that 70-90% of the interannual coastal sea level variance in the Gulf of Alaska can be related to interannual sea levels at La Libertad, Equador. These values are higher than the corresponding range from sea level data, which is 25-55%. When oceanic teleconnections from the equatorial Pacific are excluded in the model, the explained variance becomes about 20% or less. During poleward propagation the coastally trapped sea level signal in the model is less attenuated than the observed signal. In the Gulf of Alaska we find well-defined sea level peaks in the aftermath of El Niño events. The interannual intensity of eddies in the Gulf of Alaska also peaks after El Niño events; however, these maxima are less clear after weak and moderate El Niño events. The interannual variations in eddy activity intensity are predominantly governed by the regional atmospheric forcing.

  14. Overview of environmental and hydrogeologic conditions at Moses Point, Alaska

    Science.gov (United States)

    Dorava, J.M.; Ayres, R.P.; Sisco, W.C.

    1994-01-01

    The Federal Aviation Administration facility at Moses Point is located at the mouth of the Kwiniuk River on the Seward Peninsula in northwestern Alaska. This area has long cold winters and short summers which affect the hydrology of the area. The Federal Aviation Administration owns or operates airport support facilities at the Moses Point site and wishes to consider the subsistence lifestyles of area residents and the quality of the current environment when evaluating options for remediation of environmental contamination at their facilities. Currently no operating wells are in the area, but the vulnerability of the aquifer and other alternative water supplies are being evaluated because the Federal Aviation Administration has a potential liability for the storage and use of hazardous materials in the area.

  15. Hyperspectral surveying for mineral resources in Alaska

    Science.gov (United States)

    Kokaly, Raymond F.; Graham, Garth E.; Hoefen, Todd M.; Kelley, Karen D.; Johnson, Michaela R.; Hubbard, Bernard E.

    2016-07-07

    Alaska is a major producer of base and precious metals and has a high potential for additional undiscovered mineral resources. However, discovery is hindered by Alaska’s vast size, remoteness, and rugged terrain. New methods are needed to overcome these obstacles in order to fully evaluate Alaska’s geology and mineral resource potential. Hyperspectral surveying is one method that can be used to rapidly acquire data about the distributions of surficial materials, including different types of bedrock and ground cover. In 2014, the U.S. Geological Survey began the Alaska Hyperspectral Project to assess the applicability of this method in Alaska. The primary study area is a remote part of the eastern Alaska Range where porphyry deposits are exposed. In collaboration with the Alaska Division of Geological and Geophysical Surveys, the University of Alaska Fairbanks, and the National Park Service, the U.S. Geological Survey is collecting and analyzing hyperspectral data with the goals of enhancing geologic mapping and developing methods to identify and characterize mineral deposits elsewhere in Alaska.

  16. Geology of the Alaska-Juneau lode system, Alaska

    Science.gov (United States)

    Twenhofel, William Stephens

    1952-01-01

    The Alaska-Juneau lode system for many years was one of the worlds leading gold-producing areas. Total production from the years 1893 to 1946 has amounted to about 94 million dollars, with principal values in contained gold but with some silver and lead values. The principal mine is the Alaska-Juneau mine, from which the lode system takes its name. The lode system is a part of a larger gold-bearing belt, generally referred to as the Juneau gold belt, along the western border of the Coast Range batholith. The rocks of the Alaska-Juneau lode system consist of a monoclinal sequence of steeply northeasterly dipping volcanic, state, and schist rocks, all of which have been metamorphosed by dynamic and thermal processes attendant with the intrusion of the Coast Range batholith. The rocks form a series of belts that trend northwest parallel to the Coast Range. In addition to the Coast Range batholith lying a mile to the east of the lode system, there are numerous smaller intrusives, all of which are sill-like in form and are thus conformable to the regional structure. The bedded rocks are Mesozoic in age; the Coast Range batholith is Upper Jurassic and Lower Cretaceous in age. Some of the smaller intrusives pre-date the batholith, others post-date it. All of the rocks are cut by steeply dipping faults. The Alaska-Juneau lode system is confined exclusively to the footwall portion of the Perseverance slate band. The slate band is composed of black slate and black phyllite with lesser amounts of thin-bedded quartzite. Intrusive into the slate band are many sill-like bodies of rocks generally referred to as meta-gabbro. The gold deposits of the lode system are found both within the slate rocks and the meta-gabbro rocks, and particularly in those places where meta-gabbro bodies interfinger with slate. Thus the ore bodies are found in and near the terminations of meta-gabbro bodies. The ore bodies are quartz stringer-lodes composed of a great number of quartz veins from 6

  17. Western Alaska ESI: HABITATS (Habitat Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for submerged aquatic vegetation (SAV) in Western Alaska. Vector polygons in this data set represent...

  18. Advancing Efforts to Energize Native Alaska (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2013-04-01

    This brochure describes key programs and initiatives of the DOE Office of Indian Energy Policy and Programs to advance energy efficiency, renewable energy, and energy infrastructure projects in Alaska Native villages.

  19. The human factor in Alaska's economic development

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report covers the human factor in Alaska's economic development. The regions earlier development is discussed and introduction to an evaluation of the...

  20. Alaska Steller Sea Lion Food Habits Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains food habits samples, usually scats, collected opportunistically on Steller sea lion rookeries and haulouts in Alaska from 1985 to present....

  1. ANWR and Alaska Peninsula Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (1252 records) were compiled by the U.S. Geological Survey and the State of Alaska Division of Geological & Geophysical Surveys. This...

  2. Problems confronting migratory birds in Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — We describe in this paper problems affecting the well-being of Alaska's migratory birds in the belief that recognition of these problems is a step towards finding...

  3. Southeast Alaska ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for estuarine, benthic, and pelagic fish in Southeast Alaska. Vector polygons in this data set represent locations...

  4. Central Gulf of Alaska Rockfish Permit Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The North Pacific Fishery Management Council adopted the Central Gulf of Alaska Rockfish Program (Rockfish Program) on June 14, 2010, to replace the expiring Pilot...

  5. Breeding peregrine falcon survey, Amchitka Island, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A breeding peregrine falcon (Falco peregrines) survey was conducted on Amchitka Island, Alaska Maritime National Wildlife Refuge from May 2-9, 1981 in conjunction...

  6. North Slope, Alaska ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species for the North Slope of Alaska. Vector...

  7. Kensington Mine Area Baseline Contaminants Study, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Hardrock mining for gold and other metals is proposed for the Kensington Mine, located on Lynn Canal in Southeast Alaska, approximately 45 miles north of Juneau....

  8. OCS Planning Areas Alaska NAD 83

    Data.gov (United States)

    Bureau of Ocean Energy Management, Department of the Interior — This data set contains BOEM Planning Area outlines in ESRI shapefile format for the BOEM Alaska Region. The Submerged Lands Act (SLA) boundary, along with the...

  9. Alaska Yukon : Waterfowl Breeding Population Survey

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Alaska-Yukon was again blessed with a generally widespread, early spring break-up in the interior and on the North Slope with perhaps a more normal spring phenology...

  10. Kodiak, Alaska 1 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1-second Kodiak Alaska Elevation Grid provides bathymetric data in ASCII raster format of 0.88-second resolution in geographic coordinates. This grid is...

  11. Fish and wildlife research in Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Problems, information needs, research facilities, current research, and documents related to long term planning of fish and wildlife research in Alaska. Appendices...

  12. 2004 Alaska highway invasive plants pilot survey

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — We investigated the distribution and abundance of non-native invasive plants along a section of the Alaska Highway adjacent to Tetlin National Wildlife Refuge, 20...

  13. Alaska Marine Mammal Strandings/Entanglements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database represents a summary of information on stranded marine mammals reported to NMFS throughout the State of Alaska in fulfillment of Title IV of the...

  14. The outlook for conservation in Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes conservation efforts in Alaska. Population growth, outdoor recreation, and proposed National Wildlife Refuges are discussed. The report...

  15. Aerial Gamma-Ray Surveys in Alaska

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Data generated by aerial sensing of radiation emanating from the earth's surface in Alaska provides general estimates of the geographic distribution of Uranium,...

  16. North Slope, Alaska ESI: NESTS (Nest Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for waterfowl, seabirds, gulls and terns for the North Slope of Alaska. Vector points in this data set...

  17. Southeast Alaska ESI: MGT (Management Area Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains management area data for National Parks, Wildlife Refuges, and areas designated as Critical Habitat in Southeast Alaska. Vector polygons in...

  18. Avian Habitat Data; Seward Peninsula, Alaska, 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data product contains avian habitat data collected on the Seward Peninsula, Alaska, USA, during 21 May – 10 June 2012. We conducted replicated 10-min surveys...

  19. Southeast Alaska ESI: SOCECON (Socioeconomic Resource Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for airports, aquaculture sites, boat ramps, marinas, heliports, and log storage areas in Southeast Alaska. Vector...

  20. Cross Cultural Scientific Communication in Alaska

    Science.gov (United States)

    Bertram, K. B.

    2006-12-01

    An example of cross-cultural education is provided by the Aurora Alive curriculum. Aurora Alive communicates science to Alaska Native students through cross-cultural educational products used in Alaska schools for more than a decade, including (1) a CDROM that provides digital graphics, bilingual (English and Athabascan language) narration-over-text and interactive elements that help students visualize scientific concepts, and (2) Teacher's Manuals containing more than 150 hands-on activities aligned to national science standards, and to Alaska Standards for Culturally Responsive Schools. Created by Native Elders and teachers working together with University Alaska Fairbanks Geophysical Institute scientists, Aurora Alive blends Native "ways of knowing" with current "western" research to teach the physics and math of the aurora.

  1. Alaska Steller Sea Lion Pup Count Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database contains counts of Steller sea lion pups on rookeries in Alaska made between 1961 and 2015. Pup counts are conducted in late June-July. Pups are...

  2. Permafrost Soils Database for Northern Alaska 2014

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — This database contains soil and permafrost stratigraphy for northern Alaska compiled from numerous project data files and reports. The Access Database has main data...

  3. North Slope, Alaska ESI: HABITATS (Habitat Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for benthic marine habitats for the North Slope of Alaska. Vector polygons in this data set represent...

  4. Southeast Alaska ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for waterfowl in Southeast Alaska. Vector polygons in this data set represent locations of foraging and rafting...

  5. Western Alaska ESI: FISHL (Fish Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for anadromous fish species in Western Alaska. Vector lines in this data set represent species occurrences...

  6. 50 CFR 17.5 - Alaska natives.

    Science.gov (United States)

    2010-10-01

    ... accomplished in a wasteful manner. (b) Edible portions of endangered or threatened wildlife taken or imported... consumption within native villages and towns in Alaska. (c) Non-edible by-products of endangered or...

  7. Alaska Simulator - A Journey to Planning

    Science.gov (United States)

    Weber, Barbara; Pinggera, Jakob; Zugal, Stefan; Wild, Werner

    The Alaska Simulator is an interactive software tool developed at the University of Innsbruck which allows people to test, analyze and improve their own planning behavior. In addition, the Alaska Simulator can be used for studying research questions in the context of software project management and other related fields. Thereby, the Alaska Simulator uses a journey as a metaphor for planning a software project. In the context of software project management the simulator can be used to compare traditional rather plan-driven project management methods with more agile approaches. Instead of pre-planning everything in advance agile approaches spread planning activities throughout the project and provide mechanisms for effectively dealing with uncertainty. The biggest challenge thereby is to find the right balance between pre-planning activities and keeping options open. The Alaska Simulator allows to explore how much planning is needed under different circumstances.

  8. Alaska gold rush trails study: Preliminary draft

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Preliminary study draft, with maps, of seven gold rush trails in Alaska, to determine suitability for inclusion in the National Scenic Trails system and their...

  9. Sitka, Alaska 1 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 1 arc-second resolution in geographic coordinates. This grid is strictly for...

  10. Homer, Alaska 1 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1-second Homer Alaska Elevation Grid provides bathymetric data in ASCII raster format of .89-second resolution in geographic coordinates. This grid is strictly...

  11. Western Alaska ESI: NESTS (Nest Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for nesting birds in Western Alaska. Vector points in this data set represent locations of nesting birds....

  12. North Slope, Alaska ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for diving birds, gulls and terns, seabirds, shorebirds, and waterfowl for the North Slope of Alaska....

  13. Continental Shelf Boundary - Alaska NAD83

    Data.gov (United States)

    Bureau of Ocean Energy Management, Department of the Interior — This data set contains Continental Shelf Boundaries (CSB) lines in ESRI shapefile format for the BOEM Alaska Region. The CSB defines the seaward limit of federally...

  14. Alaska1(ak1_iso) Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (72,677 records) were compiled by the U.S. Geological Survey and the State of Alaska Division of Geological & Geophysical Surveys. This...

  15. Alaska1(ak1_wpn) Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (10,578 records) were compiled by the U.S. Geological Survey and the State of Alaska Division of Geological & Geophysical Surveys. This...

  16. Ecological Subsections for Northern Alaska, 2012 update

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — This data set represents an updated Ecological Subsection Map for Northern Alaska. This 2012 revision focused on completing the incompletely mapped portion of the...

  17. Alaska Federal Oil and Gas Historical Leases

    Data.gov (United States)

    Bureau of Ocean Energy Management, Department of the Interior — This data set contains the outlines for historic (i.e., relinquished or inactive) federal oil and gas leases in the Alaska OCS Region through sale 193. They...

  18. Generalized thermal maturity map of Alaska

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of a polygon coverage and associated attribute data derived from the onshore portion of the 1996 "Generalized Thermal Maturity Map of Alaska"...

  19. Prince William Sound, Alaska ESI: HYDRO (Hydrology)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Prince William Sound, Alaska. ESI data characterize estuarine environments and wildlife...

  20. 2 minute Southcentral Alaska Elevation Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2-minute Southcentral Alaska Elevation Grid provides bathymetric data in ASCII raster format of 2-minute resolution in geographic coordinates. This grid is...

  1. Southeast Alaska ESI: FISHPT (Fish Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for anadromous fish streams in Southeast Alaska. Vector points in this data set represent locations of fish streams....

  2. Wild resource use in Northway, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report describes contemporary and recent historic use of fish and wildlife resources by residents of Northway, Alaska. Northway today consists primarily of an...

  3. Arctic and Aleutian terns, Amchitka Island, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Baird (1980) has recently reported on the ecology of Arctic terns (Sterna paradisaea) and Aleutian terns (Sterna aleutica) from 4 areas of mainland Alaska. However,...

  4. Notes on game conditions in Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is a report on game conditions in Alaska. This report covers laws that relate to the game animals, as well as physically attributes and ecology of the...

  5. Seward, Alaska 1 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1 arc-second Seward Alaska Elevation Grid provides bathymetric data in ASCII raster format of .89-second resolution in geographic coordinates. This grid is...

  6. Seldovia, Alaska 3 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 3-second Seldovia Alaska Elevation Grid provides bathymetric data in ASCII raster format of 3-second resolution in geographic coordinates. This grid is strictly...

  7. Interferometric Synthetic Aperture Radar (IFSAR) Alaska

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey (USGS) National Geospatial Program (NGP) developed the Alaska Mapping Initiative (AMI) to collaborate with the State and other Federal...

  8. North Slope, Alaska ESI: FACILITY (Facility Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  9. Caribou survey of northeastern Alaska: Preliminary report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report covers the Caribou survey of Northeastern Alaska. Objectives of the study are to determine the approximate total size of the caribou herd whose main...

  10. Geologic Map of Alaska: geologic units

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of a polygon coverage and associated attribute data derived from the 1980 Geologic Map of Alaska compiled by H.M. Beikman and published by the...

  11. Gravity Data for Southwestern Alaska #2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (1294 records) were compiled by the Alaska Geological Survey and the U.S. Geological Survey, Menlo Park, California. This data base was...

  12. The future of successful aging in Alaska

    Directory of Open Access Journals (Sweden)

    Jordan Lewis

    2013-08-01

    Full Text Available Background. There is a paucity of research on Alaska Natives and their views on whether or not they believe they will age successfully in their home and community. There is limited understanding of aging experiences across generations. Objective. This research explores the concept of successful aging from an urban Alaska Native perspective and explores whether or not they believe they will achieve a healthy older age. Design. A cultural consensus model (CCM approach was used to gain a sense of the cultural understandings of aging among young Alaska Natives aged 50 years and younger. Results. Research findings indicate that aging successfully is making the conscious decision to live a clean and healthy life, abstaining from drugs and alcohol, but some of Alaska Natives do not feel they will age well due to lifestyle factors. Alaska Natives see the inability to age well as primarily due to the decrease in physical activity, lack of availability of subsistence foods and activities, and the difficulty of living a balanced life in urban settings. Conclusions. This research seeks to inform future studies on successful aging that incorporates the experiences and wisdom of Alaska Natives in hopes of developing an awareness of the importance of practicing a healthy lifestyle and developing guidelines to assist others to age well.

  13. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  14. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-01-04

    ... procedure, Intergovernmental relations, Waste treatment and disposal. 40 CFR Part 258 Reporting and recordkeeping requirements, Waste treatment disposal, Water pollution control. Authority: This action is issued... AGENCY 40 CFR Parts 239 and 258 Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit...

  15. 75 FR 3888 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Science.gov (United States)

    2010-01-25

    ... Register on November 20, 2009 (74 FR 60228), to propose migratory bird subsistence harvest regulations in... Fish and Wildlife Service 50 CFR Part 92 RIN 1018-AW67 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2010 Season AGENCY: Fish and Wildlife...

  16. Building Alaska's Science and Engineering Pipeline: Evaluation of the Alaska Native Science & Engineering Program

    Science.gov (United States)

    Bernstein, Hamutal; Martin, Carlos; Eyster, Lauren; Anderson, Theresa; Owen, Stephanie; Martin-Caughey, Amanda

    2015-01-01

    The Urban Institute conducted an implementation and participant-outcomes evaluation of the Alaska Native Science & Engineering Program (ANSEP). ANSEP is a multi-stage initiative designed to prepare and support Alaska Native students from middle school through graduate school to succeed in science, technology, engineering, and math (STEM)…

  17. Preliminary volcano-hazard assessment for Mount Spurr Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Nye, Christopher J.

    2001-01-01

    Mount Spurr volcano is an ice- and snow-covered stratovolcano complex located in the north-central Cook Inlet region about 100 kilometers west of Anchorage, Alaska. Mount Spurr volcano consists of a breached stratovolcano, a lava dome at the summit of Mount Spurr, and Crater Peak vent, a small stratocone on the south flank of Mount Spurr volcano. Historical eruptions of Crater Peak occurred in 1953 and 1992. These eruptions were relatively small but explosive, and they dispersed volcanic ash over areas of interior, south-central, and southeastern Alaska. Individual ash clouds produced by the 1992 eruption drifted east, north, and south. Within a few days of the eruption, the south-moving ash cloud was detected over the North Atlantic. Pyroclastic flows that descended the south flank of Crater Peak during both historical eruptions initiated volcanic-debris flows or lahars that formed temporary debris dams across the Chakachatna River, the principal drainage south of Crater Peak. Prehistoric eruptions of Crater Peak and Mount Spurr generated clouds of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. A flank collapse on the southeast side of Mount Spurr generated a large debris avalanche that flowed about 20 kilometers beyond the volcano into the Chakachatna River valley. The debris-avalanche deposit probably formed a large, temporary debris dam across the Chakachatna River. The distribution and thickness of volcanic-ash deposits from Mount Spurr volcano in the Cook Inlet region indicate that volcanic-ash clouds from most prehistoric eruptions were as voluminous as those produced by the 1953 and 1992 eruptions. Clouds of volcanic ash emitted from the active vent, Crater Peak, would be a major hazard to all aircraft using Ted Stevens Anchorage International Airport and other local airports and, depending on wind direction, could drift a considerable distance beyond the volcano. Ash fall from future eruptions could disrupt many

  18. Alaskan wave and river hydrokinetic energy resource assessment, river energy converter testing and surface debris mitigation performance

    Science.gov (United States)

    Johnson, J.; Kasper, J.; Schmid, J.; Duvoy, P.; Ravens, T. M.; Hansen, N.; Montlaur, A.

    2014-12-01

    The Alaska Hydrokinetic Energy Research Center (AHERC) is conducting a wave energy assessment study at Yakutat, Alaska, and conducting ongoing river technology studies at the Tanana River Tests Site (TRTS) at Nenana, Alaska. In Aug. 2013 an acoustic Doppler current profiler (ADCP) was deployed in 40 m of water off Cannon Beach in Yakutat, AK as part of the Yakutat area wave energy resource assessment. Over the course of the 1.5 year deployment, the ADCP will record area wave and current data in order to verify the area wave energy resource. Preliminary data analysis shows a vigorous wave field with maximum wave heights up to 16 m in Nov. 2013. In addition to the in-situ directional wave data recorded by the ADCP, a SWAN wave climatology spanning the past 20 years is being developed along with a simulation of the wave field for the near shore (5 mhydrokinetic turbine from river debris flows and to determine the effect of RDDP generated river current turbulence on turbine efficiency. Previous tests have shown that the RDDP effectively sheds debris, however, large debris objects can cause RDDP rotation about its mooring point requiring that a stable attachment between the RDDP and protected floating structure be in place to ensure that debris is diverted away from the protected structure. Performance tests of an Oceana hydrokinetic power turbine will be conducted in late August or early September, 2014 at the TRTS in realistic Alaskan river conditions of current turbulence, high sediment flow and debris. Measurements of river sediment concentration, current velocity and river stage will be made, and current turbulence will be derived. CFD simulations of the RDDP interaction with the river flow will be completed to compare current velocity and turbulence results, depending on the opening angle of the device. Study activities and results will be presented.

  19. Satellite View of Alaska, with Shaded Relief - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Satellite View of Alaska, with Shaded Relief map layer is a 200- meter-resolution simulated-natural-color image of Alaska. Vegetation is generally green, with...

  20. 14 CFR 95.17 - Alaska Mountainous Area.

    Science.gov (United States)

    2010-01-01

    ... point where the 141°00′ W Meridian intersects the northeast coastline of Alaska; thence westward along the northern coastline of Alaska to the intersection of latitude 69°30′ N; point of beginning ....

  1. Grayscale Alaska Shaded Relief ? 200-Meter Resolution - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The grayscale Alaska shaded relief data were derived from National Elevation Dataset (NED) data, and show the terrain of Alaska at a resolution of 200 meters. The...

  2. USFWS Guide Use Areas within Alaska's National Wildlife Refuges (2014)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The United States Fish and Wildlife Service, Region 7 (Alaska) has established Guide Use Areas (GUA) within the National Wildlife Refuges in the state of Alaska....

  3. 100-Meter Resolution Satellite View of Alaska - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Satellite View of Alaska map layer is a 100-meter resolution simulated natural-color image of Alaska. Vegetation is generally green, with forests in darker...

  4. Muskox domestication and husbandry: Its prospects in Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is on the muskox domestication and reintroduction and its prospects in Alaska. The history of the muskox in Alaska, habitat and ecology are covered....

  5. Color Alaska Shaded Relief ? 200-Meter Resolution - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The color Alaska shaded relief data were derived from National Elevation Dataset (NED) data, and show the terrain of Alaska at a resolution of 200 meters. The NED...

  6. Gallstones in American Indian/Alaska Native Women

    Science.gov (United States)

    ... Asian-Americans Native Hawaiians and other Pacific Islanders American Indians/Alaska Natives Immigrant and migrant issues Taking care ... Enter email address Submit Home > Minority Women's Health > American Indians/Alaska Natives Minority Women's Health Gallstones Health conditions ...

  7. American Indian and Alaska Native Heart Disease and Stroke

    Science.gov (United States)

    ... High Blood Pressure Salt Cholesterol Million Hearts® WISEWOMAN American Indian and Alaska Native Heart Disease and Stroke Fact ... Vintage 2003 Postcensal Population Estimates from NCHS. The American Indian and Alaska Native Population There are approximately 4. ...

  8. Crater Peak (Mt. Spurr), Alaska: Eruptions of 1992

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Alaska has a number of active and potentially active volcanoes. More than one-half of the population of Alaska lives within 300 km of an active volcano. In the last...

  9. Legal and institutional problems facing geothermal development in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    The major players and the major difficulties each presents to geothermal development in Alaska are sketched. The following are included: the Alaskan natives, the posture of the state of Alaska, and the federal lands. (MHR)

  10. Northern gas : Arctic Canada and Alaska

    International Nuclear Information System (INIS)

    This paper discusses supply challenges in relation to Northern gas availability in Arctic Canada and Alaska. A background of BP Canada Energy Company was provided. It was suggested that gas from traditional North American basins would not meet demand, and that incremental sources of supply would be needed. A map of traditional and non-tradition supply sources was presented along with details of supply and infrastructure investment requirements from 2003-2025. The roles of producers, local distribution companies, pipelines and policy makers in infrastructure development were examined. Potential resources in Alaska and the Mackenzie Delta were discussed, along with details of the Mackenzie Valley Pipeline project and exploration activities. Alaska's North Slope gas resource was reviewed. Several large projects devolving from the Alaska Gas Pipeline represent an anticipated total investment of $20 billion. Various regulatory and economic conditions necessary for the successful completion of the project include the Alaska Fiscal Contract; Alaska gas provisions in the Federal Energy Bill; details of the Canadian regulatory process; and cost reductions and market outlooks. It was concluded that the Alaska Gas Pipeline would provide thousands of jobs and provide stability of long-term gas prices as well as meeting North America's energy needs. In addition, the pipeline would provide $16 billion in Canadian government revenues and $40 billion in US government revenues. The pipeline would provide 4.5 billion cubic feet per day of clean energy, with half the carbon dioxide emissions of coal. It would also provide hundreds of billions of dollars in consumer savings. tabs, figs

  11. A whole ecosystem approach to studying climate change in interior Alaska

    Science.gov (United States)

    Riggins, Susan; Striegl, Robert; McHale, Michael

    2011-01-01

    Yukon River Basin Principal Investigators Workshop; Portland, Oregon, 18-20 January 2011; High latitudes are known to be particularly susceptible to climate warming, leading to an emphasis of field and modeling research on arctic regions. Subarctic and boreal regions such as the Yukon River Basin (YRB) of interior Alaska and western Canada are less well studied, although they encompass large areas that are vulnerable to changes in forest composition, permafrost distribution, and hydrology. There is an urgent need to understand the resiliency and vulnerability of these complex ecosystems as well as their feedbacks to the global climate system. Consequently, U.S. Geological Survey scientists, with other federal agency, university, and private industry partners, is focusing subarctic interdisciplinary studies on the Beaver Creek Wild and Scenic River watershed (http://www.blm.gov/pgdata/content/ak/en/prog/nlcs/beavercrk_nwsr.html) and Yukon Flats National Wildlife Refuge (http://yukonflats.fws.gov/) in the YRB, south and west of Fort Yukon, Alaska. These areas are national treasures of wetlands, lakes, and uplands that support large populations of wildlife and waterfowl and are home to vibrant native Alaskan communities that depend on the area for a subsistence lifestyle.

  12. Tazimina Hydroelectric Project, Iliamna, Alaska Final Technical and Construction Cost Report

    Energy Technology Data Exchange (ETDEWEB)

    HDR Alaska, Inc.

    1998-11-01

    The Iliamna-Newhalen-Nondalton Electric Cooperative (INNEC) provides electrical power to three communities of the same names. These communities are located near the north shore of Iliamna Lake in south-central Alaska approximately 175 miles southwest of Anchorage. These communities have a combined population of approximately 600 residents. There is no direct road connection from these villages to larger population centers. Electric power has been generated by INNEC since 1983 using diesel generators located in the community of Newhalen. Fuel for these generators was transported up the Kvichak River, an important salmon river, and across Iliamna Lake. In dry years the river is low and fuel is flown into Iliamna and then trucked five miles into Newhalen. The cost, difficult logistics and potential spill hazard of this fuel was a primary reason for development of hydroelectric power in this area. A hydroelectric project was constructed for these communities, starting in the spring of 1996 and ending in the spring of 1998. The project site is at Tazimina Falls about 9 miles upstream of the confluence of the Tazimina River and the Newhalen River. The project has an installed capacity of 824 kilowatts (kW) and is expandable to 1.5 megawatts (MW). The project is run-of-the-river (no storage) and uses the approximately 100 feet of natural head provided by the falls. The project features include a channel control sill, intake structure, penstock, underground powerhouse, tailrace, surface control building, buried transmission line and communication cable, and access road.

  13. Earthquake Hazard and Risk in Alaska

    Science.gov (United States)

    Black Porto, N.; Nyst, M.

    2014-12-01

    Alaska is one of the most seismically active and tectonically diverse regions in the United States. To examine risk, we have updated the seismic hazard model in Alaska. The current RMS Alaska hazard model is based on the 2007 probabilistic seismic hazard maps for Alaska (Wesson et al., 2007; Boyd et al., 2007). The 2015 RMS model will update several key source parameters, including: extending the earthquake catalog, implementing a new set of crustal faults, updating the subduction zone geometry and reoccurrence rate. First, we extend the earthquake catalog to 2013; decluster the catalog, and compute new background rates. We then create a crustal fault model, based on the Alaska 2012 fault and fold database. This new model increased the number of crustal faults from ten in 2007, to 91 faults in the 2015 model. This includes the addition of: the western Denali, Cook Inlet folds near Anchorage, and thrust faults near Fairbanks. Previously the subduction zone was modeled at a uniform depth. In this update, we model the intraslab as a series of deep stepping events. We also use the best available data, such as Slab 1.0, to update the geometry of the subduction zone. The city of Anchorage represents 80% of the risk exposure in Alaska. In the 2007 model, the hazard in Alaska was dominated by the frequent rate of magnitude 7 to 8 events (Gutenberg-Richter distribution), and large magnitude 8+ events had a low reoccurrence rate (Characteristic) and therefore didn't contribute as highly to the overall risk. We will review these reoccurrence rates, and will present the results and impact to Anchorage. We will compare our hazard update to the 2007 USGS hazard map, and discuss the changes and drivers for these changes. Finally, we will examine the impact model changes have on Alaska earthquake risk. Consider risk metrics include average annual loss, an annualized expected loss level used by insurers to determine the costs of earthquake insurance (and premium levels), and the

  14. 77 FR 13683 - Alaska Federal Lands Long Range Transportation Plan

    Science.gov (United States)

    2012-03-07

    ... Federal Highway Administration Alaska Federal Lands Long Range Transportation Plan AGENCY: Federal Highway..., announced the availability of the draft Alaska Federal Lands Long Range Transportation Plans (LRTP) for... Alaska Federal Lands draft Long Range Transportation Plans. The draft Plans are available on our...

  15. Field surveying and topographic mapping in Alaska: 1947-83

    Science.gov (United States)

    Foley, Robert C.

    1987-01-01

    The U.S. Geological Survey's earliest presence in Alaska dates back to 1889. A decade later, topographic mapping became an integral part of the Geological Survey's Alaska program, mostly as reconnaissance-type mapping and special-purpose mapping of specific sites. It was not until after World War II that the Survey's Alaska topographic mapping efforts began to bear fruit.

  16. Initial Conceptualization and Application of the Alaska Thermokarst Model

    Science.gov (United States)

    Bolton, W. R.; Lara, M. J.; Genet, H.; Romanovsky, V. E.; McGuire, A. D.

    2015-12-01

    Thermokarst topography forms whenever ice-rich permafrost thaws and the ground subsides due to the volume loss when ground ice transitions to water. The Alaska Thermokarst Model (ATM) is a large-scale, state-and-transition model designed to simulate transitions between landscape units affected by thermokarst disturbance. The ATM uses a frame-based methodology to track transitions and proportion of cohorts within a 1-km2 grid cell. In the arctic tundra environment, the ATM tracks thermokarst-related transitions among wetland tundra, graminoid tundra, shrub tundra, and thermokarst lakes. In the boreal forest environment, the ATM tracks transitions among forested permafrost plateau, thermokarst lakes, collapse scar fens and bogs. The transition from one cohort to another due to thermokarst processes can take place if thaw reaches ice-rich ground layers either due to pulse disturbance (i.e. large precipitation event or fires), or due to gradual active layer deepening that eventually results in penetration of the protective layer. The protective layer buffers the ice-rich soils from the land surface and is critical to determine how susceptible an area is to thermokarst degradation. The rate of terrain transition in our model is determined by a set of rules that are based upon the ice-content of the soil, the drainage efficiency (or the ability of the landscape to store or transport water), the cumulative probability of thermokarst initiation, distance from rivers, lake dynamics (increasing, decreasing, or stable), and other factors. Tundra types are allowed to transition from one type to another (for example, wetland tundra to graminoid tundra) under favorable climatic conditions. In this study, we present our conceptualization and initial simulation results from in the arctic (the Barrow Peninsula) and boreal (the Tanana Flats) regions of Alaska.

  17. Wind Energy Resource Assessment on Alaska Native Lands in Cordova Region of Prince William Sound

    Energy Technology Data Exchange (ETDEWEB)

    Whissel, John C. [Native Village of Eyak, Cordova, AK (United States); Piche, Matthew [Native Village of Eyak, Cordova, AK (United States)

    2015-06-29

    The Native Village of Eyak (NVE) has been monitoring wind resources around Cordova, Alaska in order to determine whether there is a role for wind energy to play in the city’s energy scheme, which is now supplies entirely by two run-of-the-river hydro plants and diesel generators. These data are reported in Appendices A and B. Because the hydro resources decline during winter months, and wind resources increase, wind is perhaps an ideal counterpart to round out Cordova’s renewable energy supply. The results of this effort suggests that this is the case, and that developing wind resources makes sense for our small, isolated community.

  18. Alaska, Gulf spills share similarities

    International Nuclear Information System (INIS)

    The accidental Exxon Valdez oil spill in Alaska and the deliberate dumping of crude oil into the Persian Gulf as a tactic of war contain both glaring differences and surprising similarities. Public reaction and public response was much greater to the Exxon Valdez spill in pristine Prince William Sound than to the war-related tragedy in the Persian Gulf. More than 12,000 workers helped in the Alaskan cleanup; only 350 have been involved in Kuwait. But in both instances, environmental damages appear to be less than anticipated. Natures highly effective self-cleansing action is primarily responsible for minimizing the damages. One positive action growing out of the two incidents is increased international cooperation and participation in oil-spill clean-up efforts. In 1990, in the aftermath of the Exxon Valdez spill, 94 nations signed an international accord on cooperation in future spills. The spills can be historic environmental landmarks leading to creation of more sophisticated response systems worldwide

  19. Pillar Mountain Landslide, Kodiak, Alaska

    Science.gov (United States)

    Kachadoorian, Reuben; Slater, Willard H.

    1978-01-01

    Pillar Mountain landslide on the southeast face of Pillar Mountain is about 915 m (3,000 ft) southwest of the city of Kodiak, Alaska. The landslide is about 520 m (1,700 ft) wide at its base and extends approximately from sea level to an altitude of about 343 m (1,125 ft). The slide developed on an ancient and apparently inactive landslide. Renewed movement was first detected on December 5, 1971, following removal of about 230,000 m3 (300,000 yd3) of material from the base of the slope. Although movement of the landslide has decreased since December, 1971, movement continues and the possibility exists that it could increase as a result of an earthquake, water saturation of the landslide mass, or other causes. In the most extreme case, as much as 3.8 to 7.6 million m (5-10 million ) of debris could fall into the sea at Inner Anchorage. If this took place suddenly, it could generate a wave comparable in height to the tsunami that damaged Kodiak during the Alaskan Earthquake of 1964. Therefore, we believe that the Pillar landslide is a potential hazard to the city of Kodiak and its environs that merits a thorough investigation and evaluation.

  20. Chariot, Alaska Site Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-01-16

    The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. This region is about 125 miles north of (inside) the Arctic Circle and is bounded on the southwest by the Chukchi Sea. The closest populated areas are the Inupiat villages of Point Hope, 32 miles northwest of the site, and Kivalina,41 miles to the southeast. The site is accessible from Point Hope by ATV in the summer and by snowmobile in the winter. Project Chariot was part of the Plowshare Program, created in 1957 by the U.S. Atomic Energy Commission (AEC), a predecessor agency of the U.S. Department of Energy (DOE), to study peaceful uses for atomic energy. Project Chariot began in 1958 when a scientific field team chose Cape Thompson as a potential site to excavate a harbor using a series of nuclear explosions. AEC, with assistance from other agencies, conducted more than40 pretest bioenvironmental studies of the Cape Thompson area between 1959 and 1962; however, the Plowshare Program work at the Project Chariot site was cancelled because of strong public opposition. No nuclear explosions were conducted at the site.

  1. 77 FR 38013 - Fisheries of the Exclusive Economic Zone Off Alaska; Groundfish of the Gulf of Alaska; Amendment...

    Science.gov (United States)

    2012-06-26

    ...--FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA 0 1. The authority citation for part 679 continues to... National Oceanic and Atmospheric Administration 50 CFR Part 679 RIN 0648-BC23 Fisheries of the Exclusive Economic Zone Off Alaska; Groundfish of the Gulf of Alaska; Amendment 88; Correction AGENCY:...

  2. 76 FR 79620 - Fisheries of the Exclusive Economic Zone Off Alaska; Gulf of Alaska; Proposed 2012 and 2013...

    Science.gov (United States)

    2011-12-22

    ... National Oceanic and Atmospheric Administration 50 CFR Part 679 RIN 0648-XA711 Fisheries of the Exclusive Economic Zone Off Alaska; Gulf of Alaska; Proposed 2012 and 2013 Harvest Specifications for Groundfish... economic zone (EEZ) of the GOA under the Fishery Management Plan for Groundfish of the Gulf of Alaska...

  3. 76 FR 45217 - Fisheries of the Exclusive Economic Zone Off Alaska; Central Gulf of Alaska Rockfish Program...

    Science.gov (United States)

    2011-07-28

    ... review and comment. The groundfish fisheries in the exclusive economic zone of Alaska are managed under... National Oceanic and Atmospheric Administration 50 CFR Part 679 RIN 0648-BA97 Fisheries of the Exclusive Economic Zone Off Alaska; Central Gulf of Alaska Rockfish Program; Amendment 88 AGENCY: National...

  4. Correlation of tertiary formations of Alaska

    Science.gov (United States)

    MacNeil, F.S.; Wolfe, J.A.; Miller, D.J.; Hopkins, D.M.

    1961-01-01

    Recent stratigraphic and paleontologic studies have resulted in substantial revision of the age assignments and inter-basin correlations of the Tertiary formations of Alaska as given in both an earlier compilation by P. S. Smith (1939) and a tentative chart prepared for distribution at the First International Symposium on Arctic Geology at Calgary, Alberta (Miller, MacNeil, and Wahrhaftig, 1960). Current work in Alaska by the U. S. Geological Survey and several oil companies is furnishing new information at a rapid rate and further revisions may be expected. The correlation chart (Fig. 1), the first published chart to deal exclusively with the Tertiary of Alaska, had the benefit of a considerable amount of stratigraphic data and fossil collections from some oil companies, but recent surface mapping and drilling by other oil companies in several Tertiary basins undoubtedly must have produced much more information. Nevertheless, the extent of available data justifies the publication of a revised correlation chart at this time.

  5. Management of Large Predators in Alaska

    Directory of Open Access Journals (Sweden)

    Boertje, R.D.

    2005-06-01

    Full Text Available Populations of wolves (Canis lupus, brown bears (Ursus arctos, and black bears (Ursus americanus in Alaska are abundant and highly productive. Their long-term future is secure due to abundant habitat and good wildlife management practices. In many areas of Alaska hunting and trapping regulates wolf numbers and keep them "in balance" with moose populations. However, high predation rates by wolves can severely depress prey populations and then hold them at a very low density many years. This is often referred to as a predator pit. Several moose populations in interior Alaska are in predator pits. In some of these areas, high densities of black and brown bears complicate the situation. Bears generally prey on moose calves for only a few weeks after they are born, but in some areas they kill up to 65% of the calves produced. Moose populations faced with high levels of predation by both wolves and bears will not recover without special management actions to reduce the predation rate. Efforts to regulate predator populations outside of normal hunting and trapping seasons are highly controversial. Many people are very strongly opposed to reducing wolf or bear populations to increase moose populations and provide for a higher harvest by humans. Other people that depend on the moose for food and/or recreation strongly support predator management. It is a clash of values that is generates great controversy in Alaska. We provide a brief history of the controversy over predator management in Alaska and make recommendations on how to manage large predators in Alaska.

  6. 2012 Alaska Division of Geological and Geophysical Surveys (DGGS) Lidar: Whittier, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In support of geologic mapping and hazards evaluation in and near Whittier, Alaska, the Division of Geological and Geophysical Surveys (DGGS) acquired, and is...

  7. Tazimina hydroelectric project, Iliamna, Alaska. Final technical and construction cost report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The Iliamna-Newhalen-Nondalton Electric Cooperative (INNEC) provides electrical power to three communities of the same names. These communities are located near the north shore of Iliamna Lake in south-central Alaska approximately 175 miles southwest of Anchorage. A hydroelectric project was constructed for these communities, starting in the spring of 1996 and ending in the spring of 1998. The project site is on the Tazimina River about 12 miles northeast of Iliamna Lake. The taximina River flows west from the Aleutian Range. The project site is at Tazimina Falls about 9 miles upstream of the confluence of the Tazimina River and the Newhalen River. The project has an installed capacity of 824 kilowatts (kW) and is expandable to 1.5 megawatts (MW). The project is run-of-the-river (no storage) and uses the approximately 100 feet of natural head provided by the falls. The project features include a channel control sill, intake structure, penstock, underground powerhouse, tailrace, surface control building, buried transmission line and communication cable, and access road.

  8. Heat flow and temperature-depth curves throughout Alaska: finding regions for future geothermal exploration

    Science.gov (United States)

    Batir, Joseph F.; Blackwell, David D.; Richards, Maria C.

    2016-06-01

    The objective of this research is to contribute to the understanding of the thermal regime of Alaska and its relationship to geology, regional tectonics, and to suggest potential sites for future geothermal energy production. New heat flow data were collected and are combined with existing published and unpublished data, although large sections of Alaska still lack data. Fault traces were implemented into the heat flow contouring as an additional gridding constraint, to incorporate both heat flow measurements and geology. New heat flow data supported the use of geologic trends in the heat flow mapping procedure, and a heat flow map of Alaska was produced with this added constraint. The multi-input contouring strategy allows production of a map with a regional interpretation of heat flow, in addition to site-specific heat flow and thermal model interpretations in areas with sufficient data density. Utilizing the new heat flow map, temperature-at-depth curves were created for example areas. Temperature-at-depth curves are calculated to 10 km depth for the areas of Anchorage, Fairbanks, Juneau, the Alaska Peninsula, Bristol Bay, and the Copper River Basin. The temperatures-at-depth predicted near the population centers of Anchorage and Juneau are relatively low, limiting the geothermal resource potential. The Fairbanks area temperature estimates are near conventional power production temperatures (150 °C) between 3.5 and 4 km. All data areas, except at Juneau, have temperatures sufficient for low temperature geothermal applications (40 °C) by 2 km. A high heat flow region exists within the Aleutian Volcanic Arc, although new data show heat flow variations from 59 to 120 mW m-2, so individual geothermal resources within the arc will be irregularly located.

  9. Heat flow and temperature-depth curves throughout Alaska: finding regions for future geothermal exploration

    Science.gov (United States)

    Batir, Joseph F.; Blackwell, David D.; Richards, Maria C.

    2016-06-01

    The objective of this research is to contribute to the understanding of the thermal regime of Alaska and its relationship to geology, regional tectonics, and to suggest potential sites for future geothermal energy production. New heat flow data were collected and are combined with existing published and unpublished data, although large sections of Alaska still lack data. Fault traces were implemented into the heat flow contouring as an additional gridding constraint, to incorporate both heat flow measurements and geology. New heat flow data supported the use of geologic trends in the heat flow mapping procedure, and a heat flow map of Alaska was produced with this added constraint. The multi-input contouring strategy allows production of a map with a regional interpretation of heat flow, in addition to site-specific heat flow and thermal model interpretations in areas with sufficient data density. Utilizing the new heat flow map, temperature-at-depth curves were created for example areas. Temperature-at-depth curves are calculated to 10 km depth for the areas of Anchorage, Fairbanks, Juneau, the Alaska Peninsula, Bristol Bay, and the Copper River Basin. The temperatures-at-depth predicted near the population centers of Anchorage and Juneau are relatively low, limiting the geothermal resource potential. The Fairbanks area temperature estimates are near conventional power production temperatures (150 °C) between 3.5 and 4 km. All data areas, except at Juneau, have temperatures sufficient for low temperature geothermal applications (40 °C) by 2 km. A high heat flow region exists within the Aleutian Volcanic Arc, although new data show heat flow variations from 59 to 120 mW m‑2, so individual geothermal resources within the arc will be irregularly located.

  10. 75 FR 8329 - Regulations Governing the Conduct of Open Seasons for Alaska Natural Gas Transportation Projects...

    Science.gov (United States)

    2010-02-24

    ... Transportation Projects; Notice of Rescheduled Alaska Natural Gas Transportation Projects Open Season Pre-Filing... for an Alaska Natural Gas Transportation Project. The Workshop is being held at the Commission's... Alaska natural gas transportation projects. TransCanada Alaska Company LLC (TC Alaska) has recently...

  11. 78 FR 39821 - Alaska Disaster #AK-00029

    Science.gov (United States)

    2013-07-02

    ... ADMINISTRATION Alaska Disaster AK-00029 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for the..., Fort Worth, TX 76155. FOR FURTHER INFORMATION CONTACT: A. Escobar, Office of Disaster Assistance,...

  12. 77 FR 7228 - Alaska Disaster #AK-00023

    Science.gov (United States)

    2012-02-10

    ... ADMINISTRATION Alaska Disaster AK-00023 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This... applications to: U.S. Small Business Administration, Processing and Disbursement Center, 14925 Kingsport Road.... Small Business Administration, 409 3rd Street SW., Suite 6050, Washington, DC 20416....

  13. Persistence of triclopyr in Alaska subarctic environments

    Science.gov (United States)

    Field dissipation and vertical mobility of the butoxyethyl ester of triclopyr was assessed in two distinct geographic locations within the state of Alaska. Interior sites near Delta Junction included vegetated plots within highway rights-of-way (ROW) and Conservation Reserve Program (CRP) fields and...

  14. Ocean Observing System Demonstrated in Alaska

    Science.gov (United States)

    Schoch, G. Carl; Chao, Yi

    2010-05-01

    To demonstrate the utility of an ocean observing and forecasting system with diverse practical applications—such as search and rescue, oil spill response (perhaps relevent to the current Gulf of Mexico oil spill), fisheries, and risk management—a unique field experiment was conducted in Prince William Sound, Alaska, in July and August 2009. The objective was to quantitatively evaluate the performance of numerical models developed for the sound with an array of fixed and mobile observation platforms (Figure 1). Prince William Sound was chosen for the demonstration because of historical efforts to monitor ocean circulation following the 1989 oil spill from the Exxon Valdez tanker. The sound, a highly crenulated embayment of about 10,000 square kilometers at approximately 60°N latitude along the northern coast of the Gulf of Alaska, includes about 6900 kilometers of shoreline, numerous islands and fjords, and an extensive system of tidewater glaciers descending from the highest coastal mountain range in North America. Hinchinbrook Entrance and Montague Strait are the two main deep water connections with the Gulf of Alaska. The economic base of communities in the region is almost entirely resource-dependent. For example, Cordova's economy is based on commercial fishing and Valdez's economy is supported primarily by the trans-Alaska oil pipeline terminal.

  15. Tundra Rehabilitation in Alaska's Arctic

    Science.gov (United States)

    Lynn, L. A.

    2012-12-01

    Oil exploration in Alaska's Arctic has been conducted for more than 40 years, resulting in over 3,640 ha of gravel fill placed for roads, pads, and airstrips to support the industry. Likewise, tundra disturbance from burying power lines and by tundra vehicle travel are also common. Rehabilitation of disturbed sites began around 2002, with well over 150 ha that has been previously treated or is currently being rehabilitated. Two primary goals of rehabilitation efforts have been 1) revegetation by indigenous species, and 2) limiting thermokarst. Early efforts were concerned that removing gravel and having exposed bare ground would lead to extensive subsidence and eolian erosion. Native grass cultivars (e.g. Poa glauca, Arctagrostis latifolia, and Festuca rubra) were seeded to create vegetation cover quickly with the expectation that these grasses would survive only temporarily. The root masses and leaf litter were also expected to trap indigenous seed to enhance natural recolonization by indigenous plants. Due to the remote location of these sites, many of which are only accessible by helicopter, most are visited only two to three times following cultivation treatments, providing a limited data pool. At many sites, the total live seeded grass cover declined about 15% over the first 5¬-6 years (from around 30% to 15% cover), while total live indigenous vascular cover increased from no or trace cover to an average of 10% cover in that time. Cover of indigenous vascular plants at sites that were not seeded with native grass cultivars averaged just less than 10% after 10 years, showing no appreciable difference between the two approaches. Final surface elevations at the sites affect local hydrology and soil moisture. Other factors that influence the success of vegetation cover are proximity to the Arctic coast (salt effects), depth of remaining gravel, and changes in characteristics of the near-surface soil. Further development of rehabilitation techniques and the

  16. Late Pleistocene and Holocene tephrostratigraphy of interior Alaska and Yukon: Key beds and chronologies over the past 30,000 years

    Science.gov (United States)

    Davies, Lauren J.; Jensen, Britta J. L.; Froese, Duane G.; Wallace, Kristi L.

    2016-08-01

    The Aleutian Arc-Alaska Peninsula and Wrangell volcanic field are the main source areas for tephra deposits found across Alaska and northern Canada, and increasingly, tephra from these eruptions have been found further afield in North America, Greenland, and Europe. However, there have been no broad scale reviews of the Late Pleistocene and Holocene tephrostratigraphy for this region since the 1980s, and this lack of data is hindering progress in identifying these tephra both locally and regionally. To address this gap and the variable quality of associated geochemical and chronological data, we undertake a detailed review of the latest Pleistocene to Holocene tephra found in interior Alaska and Yukon. This paper discusses nineteen tephra that have distributions beyond southwest Alaska and that have the potential to become, or already are, important regional markers. This includes three 'modern' events from the 20th century, ten with limited data availability but potentially broad distributions, and six that are widely reported in interior Alaska and Yukon. Each tephra is assessed in terms of chronology, geochemistry and distribution, with new Bayesian age estimates and geochemical data when possible. This includes new major-element geochemical data for Crater Peak 1992, Redoubt 1989-90, and two andesitic tephra from St Michael Island (Tephra D), as well as revised age estimates for Dawson tephra, Oshetna, Hayes set H, Aniakchak CFE II, and the White River Ashes, northern and eastern lobes.

  17. Characterizing the Drivers of Intermittent Flow in Arctic Alaska Streams

    Science.gov (United States)

    Betts, E.; Kane, D. L.; Stephan, N.

    2012-12-01

    Fish and wildlife species in the Arctic have developed life history strategies to deal with the extreme climate of the North. In the case of Arctic grayling, these strategies include long life, yearly spawning and migration.. In order to understand how such a species will be affected by a changing climate, we must first determine how these adaptive strategies may be at odds with the changing Arctic landscape. Arctic grayling migrate to spawning grounds just after spring break-up; then they migrate to feeding sites in early summer and finally in the fall migrate back to their overwintering sites. Low precipitation and high evapotranspiration rates during the summer can lead to low water levels and a fragmentation of the hydrologic landscape. This fragmentation creates a barrier to fish migration. The Kuparuk River is a perennial stream originating in the foothills of the Brooks Range on the North Slope of Alaska. The basin is underlain by continuous permafrost which essentially blocks the surface system from interacting with the subpermafrost groundwater system. Shallow subsurface flow occurs in the active layer, that area above permafrost which undergoes seasonal thawing in the summer. Sections of the Kuparuk are intermittent in that during low flows in the system these reaches appear dry (no flow in channel). Water reappears in the channel, downstream of these dry reaches, and it is believed that water continues to flow below the surface through the unfrozen thaw bulb beneath these reaches. These dry reaches act as summer barriers to fish migration within the Kuparuk River system. Previous research of this phenomenon sought to understand the location and timing of these dry events. The current research to be presented here attempts to determine the drivers of these dry channel events. Dye tracers and discharge measurements are used to determine the amount of hyporheic flow along these dry reaches and a statistical model incorporating soil moisture, precipitation

  18. Aquatic carbon fluxes from the conterminous US and Alaska

    Science.gov (United States)

    Butman, D. E.; Stackpoole, S. M.; Stets, E.; McDonald, C.; Clow, D. W.; Striegl, R. G.

    2015-12-01

    In 2007, the First State of the Carbon Cycle Report estimated that rivers exported ~ 35 Tg-C yr-1 to coastal systems and reservoirs in the US served as sink of ~ 25 Tg-C yr-1 through sedimentation, each reported with 95% confidence that the estimate was within 100%. Significant progress has been made to constrain and improve these estimates by carefully considering how inland water ecosystems dynamically process, transport, and sequester carbon with attention given to the gaseous evasion of carbon across the air-water interface, a component that was not included in the 2007 estimates. As part of the U.S. Geological Survey's LandCarbon program, we present the first integrated assessment of freshwater carbon cycling for the conterminous US and Alaska. We estimate that 147 (95% confidence interval of 101- 208) Tg-C yr-1 is exported downstream or emitted to the atmosphere and sedimentation stores 22 (95% confidence interval of 10-68) Tg-C yr-1 in lakes and reservoirs. We show that there is significant regional variation in aquatic carbon flux, but verify that emission across stream and river surfaces represents the dominant removal flux at 85 Tg-C yr-1, or 58% of the total aquatic carbon flux. These new estimates for aquatic carbon fluxes indicate that inland waters must be considered in the context of national scale carbon accounting. For the conterminous US, we compare our results to the output of Terrestrial Biosphere Models. Analysis suggests that within the current modelling framework, calculations of Net Ecosystem Production may be overestimated by as much as 27%. Reconciliation of mass-flux interactions between terrestrial and aquatic carbon sources and sinks will require significant additional field data collection and modelling capacity.

  19. Moho Depth of the Yakutat Terrane, Southern Alaska

    Science.gov (United States)

    Christeson, G. L.; Van Avendonk, H. J.; Gulick, S. P.; Pavlis, G. L.; Hansen, R. A.

    2011-12-01

    The Yakutat terrane, a thickened oceanic plateau, is currently colliding with southern Alaska forming the Chugach-St. Elias orogen. Two-dimensional marine seismic profiles acquired during the STEEP project map the Moho of the terrane at a constant depth of 30-32 km over a distance >300 km from the Bering Glacier east to the Dangerous River Zone, and over a distance of >100 km from the Transition fault north towards Yakutat Bay. However, Moho depth of the terrane is poorly constrained to the north beneath the Chugach-St. Elias mountains. Fortunately, good Moho reflections are observed by land-based seismometers recording the marine shots of the STEEP project over source-receiver offsets up to 200 km. We will use these data to invert for Yakutat terrane Moho depth. We will first use all first-arriving energy to do a three-dimensional tomographic inversion for crustal velocity structure, and then will invert all interpreted Moho reflections for Moho depth. The results should give us new insights into the tectonic processes associated with the Chugach-St. Elias orogen.

  20. 77 FR 50712 - Information Collection: Southern Alaska Sharing Network and Subsistence Study; Proposed...

    Science.gov (United States)

    2012-08-22

    ... local sharing networks that structure contemporary subsistence-cash economies using research methods... Bureau of Ocean Energy Management Information Collection: Southern Alaska Sharing Network and Subsistence... in Alaska, ``Southern Alaska Sharing Network and Subsistence Study.'' DATES: Submit written...

  1. Post-fledging movements of juvenile Common Mergansers (mergus merganser) in Alaska as inferred by satellite telemetry

    Science.gov (United States)

    Pearce, J.M.; Petersen, M.R.

    2009-01-01

    We implanted satellite transmitters into eight juvenile Common Mergansers to investigate post-fledging movements from their natal river in southcentral Alaska. Subsequently, they moved widely throughout portions of western and southcentral Alaska up to 750 km from their natal areas during fall and winter months. Transmitters of two birds (one male and one female) continued to send location data into their second year and allowed us to determine the location and timing of the flightless molt period for each bird. Overall, our data suggest that juvenile Common Mergansers range widely immediately after fledging, that second year males and females may differ in their movement patterns, and that these movements have implications for population genetic structure of this species.

  2. Effects of the earthquake of March 27, 1964, on the Alaska highway system: Chapter C in The Alaska earthquake, March 27, 1964: effects on transportation, communications, and utilities

    Science.gov (United States)

    Kachadoorian, Reuben

    1968-01-01

    The great earthquake that struck Alaska about 5:36 p.m., Alaska standard time, Friday, March 27, 1964 (03:36:1.3.0, Greenwich mean time, March 28, 1964), severely crippled the highway system in the south-central part of the State. All the major highways and most secondary roads were impaired. Damage totaled more than $46 million, well over $25 million to bridges and nearly $21 million to roadways. Of the 204 bridges in south-central Alaska, 141 were damaged; 92 were severely damaged or destroyed. The earthquake damaged 186 of the 830 miles of roadway in south-central Alaska, 83 miles so severely that replacement or relocation was required. Earthquake damage to the roadways and bridges was chiefly by (1) seismic shaking, (2) compaction of fills as well as the underlying sediments, (3) lateral displacement of the roadway and bridges, (4) fractures, (5) landslides, (6) avalanches, (7) inundation by seismic sea waves, (8) scouring by seismic sea waves, (9) regional tectonic subsidence, causing inundation and erosion by high tides in subsided areas. The intensity of damage was controlled primarily by the geologic environment (including the depth of the water table) upon which the highway structures rested, and secondarily by the engineering characteristics of the structures. Structures on bedrock were only slightly damaged if at all, whereas those on unconsolidated sediments were slightly to severely damaged, or were completely destroyed by seismic shaking. The low-lying areas underlain by saturated sediments, such as the Snow River Crossing and Turnagain Arm sections of the Seward-Anchorage Highway, were the most severely damaged stretches of the highway system in south-central Alaska. At Snow River and Turnagain Arm, the sediments underlying the roadway are fine grained and the water table is shallow. These factors were responsible for the intense damage along this stretch of the highway. All the bridges on the Copper River Highway except for one on bedrock were

  3. On Rivers

    OpenAIRE

    Gleason, Colin Joseph

    2016-01-01

    Despite the importance of rivers to industry, agriculture, the climate system, and global ecosystems, our current knowledge of river discharge (volume of available water per unit time) is surprisingly poor for many regions of the world as political cloistering, aging infrastructure, and rapid human changes limit our ability to understand global surface waters holistically. Closing this knowledge gap is critical for better management of surface water in light of drought and increasing human de...

  4. Mortality trends among Alaska Native people: successes and challenges

    OpenAIRE

    Holck, Peter; Day, Gretchen Ehrsam; Provost, Ellen

    2013-01-01

    Background. Current mortality rates are essential for monitoring, understanding and developing policy for a population’s health. Disease-specific Alaska Native mortality rates have been undergoing change.Objective. This article reports recent mortality data (20042008) for Alaska Native/American Indian (AN/AI) people, comparing mortality rates to US white rates and examines changes in mortality patterns since 1980.Design. We used death record data from the state of Alaska, Department of Vital ...

  5. Geothermal energy in Alaska: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Markle, D.

    1979-04-01

    The following are presented: the history of geothermal energy in Alaska; a history of Alaska land ownership; legal and institutional barriers; and economics. Development, the socio-economic and physical data concerning geothermal energy are documented by regions. The six regions presented are those of the present Alaska State Planning Activities and those of the Federal Land Use Commission. Site data summaries of the one hundred and four separate geothermal spring locations are presented by these regions. (MHR)

  6. Cardiovascular disease among Alaska Natives: a review of the literature

    OpenAIRE

    Schumacher, Catherine; Davidson, Michael; Ehrsam, Gretchen

    2003-01-01

    Background. We reviewed the literature of population-based studies regarding heart disease and stroke occurrence among Alaska Natives. The existing literature suggests that differences in cardiovascular mortality rates and risk factors exist in Alaska Natives by ethnicity and residence. However, data sources are largely limited to mortality data and small community-based studies. Objectives. Because cardiovascular disease occurrence has not been well studied among Alaska Natives, it is import...

  7. Alaska Landscape Conservation Cooperative Boundaries, Feb 2013 update.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — This dataset depicts the terrestrial boundaries of the Landscape Conservation Cooperatives (LCC) within Alaska. Those LCCs are: Aleutian and Bering Sea Islands,...

  8. Environmental Audit of the Alaska Power Administration

    International Nuclear Information System (INIS)

    This report documents the results of the Comprehensive Baseline Environmental Audit of the Alaska Power Administration (APA) headquartered in Juneau, Alaska. This Audit was conducted by the US Department of Energy's (DOE's) Office of Environmental Audit (EH-24) from August 24 to December 8, 1992. The scope of the Audit was comprehensive, covering all environmental programs and activities with the exception of those relating to the National Environmental Policy Act (NEPA). Specifically considered was the compliance status of APA regarding Federal, state, and local statutes and regulations, DOE Orders and Directives, and best management practices. The technical disciplines addressed by the Audit were: air, surface water/drinking water, groundwater, waste management, toxic and chemical materials, quality assurance, inactive waste sites, and environmental management. Due to the nature of the activities carried out at the two Federal hydroelectric projects operated by APA, the area of radiation was not investigated during the Audit

  9. Surface melt dominates Alaska glacier mass balance

    Science.gov (United States)

    Larsen Chris F; Burgess, E; Arendt, A.A.; O'Neel, Shad; Johnson, A.J.; Kienholz, C.

    2015-01-01

    Mountain glaciers comprise a small and widely distributed fraction of the world's terrestrial ice, yet their rapid losses presently drive a large percentage of the cryosphere's contribution to sea level rise. Regional mass balance assessments are challenging over large glacier populations due to remote and rugged geography, variable response of individual glaciers to climate change, and episodic calving losses from tidewater glaciers. In Alaska, we use airborne altimetry from 116 glaciers to estimate a regional mass balance of −75 ± 11 Gt yr−1 (1994–2013). Our glacier sample is spatially well distributed, yet pervasive variability in mass balances obscures geospatial and climatic relationships. However, for the first time, these data allow the partitioning of regional mass balance by glacier type. We find that tidewater glaciers are losing mass at substantially slower rates than other glaciers in Alaska and collectively contribute to only 6% of the regional mass loss.

  10. EarthScope's Transportable Array in Alaska

    Science.gov (United States)

    Busby, R. W.; Woodward, R.; Hafner, K.

    2013-12-01

    Since 2003, EarthScope has been installing a network of seismometers, known as the Transportable Array-across the continental United States and southern Canada. The station deployments will be completed in the Conterminous US in the fall of 2013. Beginning in October, 2013, and continuing for 5 years, EarthScope's Transportable Array plans to create a grid of seismic sensors in approximately 300 locations In Alaska and Western Canada. The proposed station grid is 85 km, and target locations will supplement or enhance existing seismic stations operating in Alaska. When possible, they will also be co-located with existing GPS stations constructed by the Plate Boundary Observatory. We review the siting plans for stations, the progress towards reconnaissance and permitting, and detail the engineering concept of the stations. In order to be able to determine the required site conditions and descriptions of installation methods to the permitting agencies, the National Science Foundation (NSF) has been supporting exploratory work on seismic station design, sensor emplacement and communication concepts appropriate for the challenging high-latitude environment that is proposed for deployment. IRIS has installed several experimental stations to evaluate different sensor emplacement schemes both in Alaska and the lower-48 U.S. The goal of these tests is to maintain or enhance a station's noise performance while minimizing its footprint and the equipment, materials, and overall expense required for its construction. Motivating this approach are recent developments in posthole broadband seismometer design and the unique conditions for operating in Alaska, where most areas are only accessible by small plane or helicopter, and permafrost underlies much of the region. IRIS has experimented with different portable drills and drilling techniques to create shallow holes (1-5M) in permafrost and rock outcrops. Seasonal changes can affect the performance of seismometers in different

  11. Southwest Alaska Regional Geothermal Energy Projec

    Energy Technology Data Exchange (ETDEWEB)

    Holdmann, Gwen [Univ. of Alaska, Fairbanks, AK (United States)

    2015-04-30

    Drilling and temperature logging campaigns between the late 1970's and early 1980’s measured temperatures at Pilgrim Hot Springs in excess of 90°C. Between 2010 and 2014 the University of Alaska used a variety of methods including geophysical surveys, remote sensing techniques, heat budget modeling, and additional drilling to better understand the resource and estimate the available geothermal energy.

  12. Wildlife disease and environmental health in Alaska

    Science.gov (United States)

    Van Hemert, Caroline; Pearce, John; Oakley, Karen; Whalen, Mary

    2013-01-01

    Environmental health is defined by connections between the physical environment, ecological health, and human health. Current research within the U.S. Geological Survey (USGS) recognizes the importance of this integrated research philosophy, which includes study of disease and pollutants as they pertain to wildlife and humans. Due to its key geographic location and significant wildlife resources, Alaska is a critical area for future study of environmental health.

  13. 1994 Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Neal, Christina A.; Doukas, Michael P.; McGimsey, Robert G.

    1995-01-01

    During 1994, the Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, or false alarms at nine volcanic centers-- Mount Sanford, Iliamna, the Katmai group, Kupreanof, Mount Veniaminof, Shishaldin, Makushin, Mount Cleveland and Kanaga (table 1). Of these volcanoes, AVO has a real time, continuously recording seismic network only at Iliamna, which is located in the Cook Inlet area of south-central Alaska (fig. 1). AVO has dial-up access to seismic data from a 5-station network in the general region of the Katmai group of volcanoes. The remaining unmonitored volcanoes are located in sparsely populated areas of the Wrangell Mountains, the Alaska Peninsula, and the Aleutian Islands (fig. 1). For these volcanoes, the AVO monitoring program relies chiefly on receipt of pilot reports, observations of local residents and analysis of satellite imagery.

  14. Sustainable Energy Solutions for Rural Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Riley [Regulatory Assistance Project, Montpelier, VT (United States); Brutkoski, Donna [Regulatory Assistance Project, Montpelier, VT (United States); Farnsworth, David [Regulatory Assistance Project, Montpelier, VT (United States); Larsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-22

    The state of Alaska recognizes the challenges these rural communities face and provides financial support via the Power Cost Equalization (PCE) program. The PCE subsidizes the electricity prices paid by customers of these high-cost utilities. The PCE program is designed to spread the benefits of Alaska’s natural resources more evenly throughout the state. Yet even with this subsidy, electricity is still much more expensive for these rural customers. And beyond the PCE, other forms of assistance to rural utilities are becoming scarce given the state’s current fiscal environment. Nearly 90 percent of Alaska’s unrestricted budget funds in recent years have been tied to oil royalties—a sector experiencing significant declines in production and oil prices. Consequently, as Alaska looks to tighten budgets, the challenge of lowering rural utility costs, while encouraging self-sufficiency, has become more urgent.This study examines reliability, capital and strategic planning, management, workforce development, governance, financial performance and system efficiency in the various communities visited by the research team. Using those attributes, a tier system was developed to categorize rural Alaska utilities into Leading and Innovating Systems (Tier I), Advanced Diesel Systems (Tier II), Basic Systems (Tier III), and Underperforming Systems (Tier IV). The tier approach is not meant to label specific utilities, but rather to provide a general set of benchmarks and guideposts for improvement.

  15. The geochemical atlas of Alaska, 2016

    Science.gov (United States)

    Lee, Gregory K.; Yager, Douglas B.; Mauk, Jeffrey L.; Granitto, Matthew; Denning, Paul D.; Wang, Bronwen; Werdon, Melanie B.

    2016-06-21

    A rich legacy of geochemical data produced since the early 1960s covers the great expanse of Alaska; careful treatment of such data may provide significant and revealing geochemical maps that may be used for landscape geochemistry, mineral resource exploration, and geoenvironmental investigations over large areas. To maximize the spatial density and extent of data coverage for statewide mapping of element distributions, we compiled and integrated analyses of more than 175,000 sediment and soil samples from three major, separate sources: the U.S. Geological Survey, the National Uranium Resource Evaluation program, and the Alaska Division of Geological & Geophysical Surveys geochemical databases. Various types of heterogeneity and deficiencies in these data presented major challenges to our development of coherently integrated datasets for modeling and mapping of element distributions. Researchers from many different organizations and disparate scientific studies collected samples that were analyzed using highly variable methods throughout a time period of more than 50 years, during which many changes in analytical techniques were developed and applied. Despite these challenges, the U.S. Geological Survey has produced a new systematically integrated compilation of sediment and soil geochemical data with an average sample site density of approximately 1 locality per 10 square kilometers (km2) for the entire State of Alaska, although density varies considerably among different areas. From that compilation, we have modeled and mapped the distributions of 68 elements, thus creating an updated geochemical atlas for the State.

  16. U-Pb zircon and geochemical evidence for bimodal mid-Paleozoic magmatism and syngenetic base-metal mineralization in the Yukon-Tanana terrane, Alaska

    Science.gov (United States)

    Dusel-Bacon, C.; Wooden, J.L.; Hopkins, M.J.

    2004-01-01

    New SHRIMP (sensitive, high-resolution ion microprobe) U-Pb zircon ages and trace element geochemical data for mafic and felsic metaigneous rocks of the pericratonic Yukon-Tanana terrane in east-central Alaska help define the tectonic setting of mid-Paleozoic magmatism and syngenetic hydrothermal Zn-Pb-Ag mineralization along the ancient Pacific margin of North America. We compare data from similar greenschist-facies sequences of bimodal volcanic and subvolcanic rocks associated with carbonaceous and siliciclastic marine sedimentary rocks, in the Wood River area of the Alaska Range and the Salcha River area of the Yukon-Tanana Upland, and from amphibolite-facies augen gneiss and mafic gneiss (amphibolite) in the Goodpaster River area of the upland. Allowing for analytical uncertainties, igneous crystallization age ranges of 376-353 Ma, 378-346 Ma, and 374-358 Ma are indicated by 13 new SHRIMP U-Pb dates for the Wood River, Salcha River, and Goodpaster River areas, respectively. Bimodal magmatism is indicated by Late Devonian crystallization ages for both augen gneiss (371 ?? 3 and 362 ?? 4 Ma) and associated orthoamphibolite (369 ?? 3 Ma) in the upland and by stratigraphic interleaving of mafic and felsic rocks in the Alaska Range. Metabasites in all three study areas have elevated HFSE (high field strength element) and REE (rare earth element) contents indicative of generation in a within-plate (extensional) tectonic setting. Within-plate trace element signatures also are indicated for peralkaline metarhyolites that host the largest volcanogenic massive sulfide deposits of the Bonnifield district in the Wood River area and for metarhyolite tuff interlayered with the carbonaceous Nasina assemblage, which hosts sedimentary exhalative sulfide occurrences in the Salcha River area. Most of the other felsic metaigneous samples from the Alaska Range and the Yukon-Tanana Upland have geochemical signatures that are similar to those of both average upper continental crust

  17. River mobility in a permafrost dominated floodplain

    Science.gov (United States)

    Rowland, J.; Wilson, C.; Brumby, S.; Pope, P.

    2009-04-01

    Along arctic coastlines, recent studies have attributed dramatic increases in the rates of shoreline erosion to global climate change and permafrost degradation. While across much of the arctic, changes in the size and number of lakes have been interpreted as the result of permafrost degradation altering surface water dynamics. The potential influence of climate change and permafrost thawing on the mobility and form of arctic rivers, however, has been relatively unexplored to date. In rivers located within permafrost, some to potentially most, of the cohesive bank strength may be derived from frozen materials. It is likely that, as permafrost thaws, river bank erosion may increase, in turn influencing both migration rates and channel planform. Using automated feature extraction software (GeniePro), we quantified the of the mobility of a 200 km reach of the Yukon River through the Yukon Flats region located just north of Fairbanks, Alaska, USA. The Yukon Flats is an area of comprised of both continuous and discontinuous permafrost. Based on both changes in lake distributions and wintertime river base flows, it has been suggested that permafrost in this area has been experiencing recent thawing. In this reach, the Yukon River transitions from a 2 km wide braided channel to a multi-thread meandering channel where individual threads are approximately 1 km wide and the floodplain preserves prior meander cutoffs and oxbow lakes. Preliminary results from thirty years of LANDSAT imagery shows a surprising stability of channel location (at the image resolution of 30m/pixel) given the channel form. Within the braid-belt there is localized relocation of channel threads and mid-channel islands, though along much of the reach, the change in the location of channels banks is close to the resolution of the imagery. At the most active bends, bank migration rates range from 0.007 to 0.02 channel widths per year. These rates are comparable to system wide average rates observed on

  18. American Indian/Alaska Native College Student Retention Strategies

    Science.gov (United States)

    Guillory, Raphael M.

    2009-01-01

    This article presents findings from a qualitative study examining the similarities and differences between American Indian/Alaska Native student perceptions and the perceptions of state representatives, university presidents, and faculty about persistence factors and barriers to degree completion specific to American Indian/Alaska Native students…

  19. Alaska oil and gas: Energy wealth or vanishing opportunity

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1991-01-01

    The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

  20. 76 FR 68263 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Science.gov (United States)

    2011-11-03

    ... migratory birds in Alaska in a proposed rule published in the Federal Register on April 8, 2011 (76 FR 19876..., and a history, was originally addressed in the Federal Register on August 16, 2002 (67 FR 53511) and most recently on March 29, 2011 (76 FR 17353). Recent Federal Register documents, which are all...

  1. 78 FR 75321 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Science.gov (United States)

    2013-12-11

    ... 16, 2002 (67 FR 53511) and most recently on February 21, 2013 (78 FR 11988). Recent Federal Register... 9, 2013 (78 FR 21200), to amend 50 CFR part 20. While that proposed rule dealt primarily with the... FR 16405; March 28, 2000), we identified 7 to 12 partner organizations (Alaska Native nonprofits...

  2. 77 FR 58731 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Science.gov (United States)

    2012-09-21

    ... migratory birds in Alaska in a proposed rule published in the Federal Register on April 17, 2012, (77 FR..., and a history, was originally addressed in the Federal Register on August 16, 2002 (67 FR 53511) and most recently on March 26, 2012 (77 FR 17353). Recent Federal Register documents, which are...

  3. Natality and calf mortality of the Northern Alaska Peninsula and Southern Alaska Peninsula caribou herds

    Directory of Open Access Journals (Sweden)

    Richard A. Sellers

    2003-04-01

    Full Text Available We studied natality in the Northern Alaska Peninsula (NAP and Southern Alaska Peninsula (SAP caribou (Rangifer tarandus granti herds during 1996-1999, and mortality and weights of calves during 1998 and 1999- Natality was lower in the NAP than the SAP primarily because most 3-year-old females did not produce calves in the NAP Patterns of calf mortality in the NAP and SAP differed from those in Interior Alaska primarily because neonatal (i.e., during the first 2 weeks of life mortality was relatively low, but mortality continued to be significant through August in both herds, and aggregate annual mortality was extreme (86% in the NAP Predators probably killed more neonatal calves in the SAP, primarily because a wolf den (Canis lupus was located on the calving area. Despite the relatively high density of brown bears (Ursus arctos and bald eagles (Haliaeetus leucocephalus, these predators killed surprisingly few calves. Golden eagles (Aquila chrysaetos were uncommon on the Alaska Peninsula. At least 2 calves apparently died from pneu¬monia in the range of the NAP but none were suspected to have died from disease in the range of the SAP. Heavy scav¬enging by bald eagles complicated determining cause of death of calves in both the NAP and SAP.

  4. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    Science.gov (United States)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  5. 75 FR 2126 - Regulations Governing the Conduct of Open Seasons for Alaska Natural Gas Transportation Projects...

    Science.gov (United States)

    2010-01-14

    ... Gas Transportation Projects; Notice of Alaska Natural Gas Transportation Projects Open Season Pre... season for an Alaska Natural Gas Transportation Project. The Workshop is being hosted by the Alaska... capacity on Alaskan natural gas transportation projects. Both Denali--The Alaska Gas Pipeline LLC and...

  6. 75 FR 43118 - Fisheries of the Exclusive Economic Zone Off Alaska; Gulf of Alaska License Limitation Program

    Science.gov (United States)

    2010-07-23

    ... National Oceanic and Atmospheric Administration 50 CFR Part 679 RIN 0648-AY42 Fisheries of the Exclusive Economic Zone Off Alaska; Gulf of Alaska License Limitation Program AGENCY: National Marine Fisheries... economic zone (EEZ) of the Bering Sea and Aleutian Islands Management Area (BSAI) and the Gulf of...

  7. 78 FR 74079 - Fisheries of the Exclusive Economic Zone Off Alaska; Gulf of Alaska; Proposed 2014 and 2015...

    Science.gov (United States)

    2013-12-10

    ...: NMFS manages the GOA groundfish fisheries in the exclusive economic zone (EEZ) of the GOA under the... National Oceanic and Atmospheric Administration 50 CFR Part 679 RIN 0648-XC895 Fisheries of the Exclusive Economic Zone Off Alaska; Gulf of Alaska; Proposed 2014 and 2015 Harvest Specifications for...

  8. 75 FR 38452 - Fisheries of the Exclusive Economic Zone Off Alaska; Central Gulf of Alaska License Limitation...

    Science.gov (United States)

    2010-07-02

    ... National Oceanic and Atmospheric Administration 50 CFR Part 679 RIN 0648-AY42 Fisheries of the Exclusive Economic Zone Off Alaska; Central Gulf of Alaska License Limitation Program; Amendment 86 AGENCY: National... (FMP) is available for public review and comment. The groundfish fisheries in the exclusive...

  9. 76 FR 15826 - Fisheries of the Exclusive Economic Zone Off Alaska; Gulf of Alaska License Limitation Program

    Science.gov (United States)

    2011-03-22

    ... the Exclusive Economic Zone Off Alaska; Gulf of Alaska License Limitation Program AGENCY: National... fisheries in the exclusive economic zone of the Bering Sea and Aleutian Islands Management Area (BSAI) and... October 1, 1998 (63 FR 52642), and LLP licenses were required for Federal groundfish fisheries...

  10. Vulnerability of white spruce tree growth in interior Alaska in response to climate variability: Dendrochronological, demographic, and experimental perspectives

    Science.gov (United States)

    McGuire, Anthony; Ruess, R.W.; Lloyd, A.; Yarie, J.; Clein, J.S.; Juday, G.P.

    2010-01-01

    This paper integrates dendrochronological, demographic, and experimental perspectives to improve understanding of the response of white spruce (Picea glauca (Moench) Voss) tree growth to climatic variability in interior Alaska. The dendrochronological analyses indicate that climate warming has led to widespread declines in white spruce growth throughout interior Alaska that have become more prevalent during the 20th century. Similarly, demographic studies show that white spruce tree growth is substantially limited by soil moisture availability in both mid- and late-successional stands. Interannual variability in tree growth among stands within a landscape exhibits greater synchrony than does growth of trees that occupy different landscapes, which agrees with dendrochronological findings that the responses depend on landscape position and prevailing climate. In contrast, the results from 18 years of a summer moisture limitation experiment showed that growth in midsuccessional upland stands was unaffected by moisture limitation and that moisture limitation decreased white spruce growth in floodplain stands where it was expected that growth would be less vulnerable because of tree access to river water. Taken together, the evidence from the different perspectives analyzed in this study clearly indicates that white spruce tree growth in interior Alaska is vulnerable to the effects of warming on plant water balance.

  11. Spotted Seals, Phoca largha, in Alaska

    OpenAIRE

    Rugh, David J.; Shelden, Kim E. W.; Withrow, David E.

    1997-01-01

    The worldwide literature on management of spotted seals, Phoca largha, was reviewed and updated, and aerial surveys weref lown in 1992 and 1993 to determine the species' distribution and abundance in U.S. waters. In April, spotted seals were found only in the Bering Sea ice front. In June, they were seen along deteriorating ice floes and fast ice in Norton Sound. Surveys along most of Alaska's western coast in August and September found over 2,500 spotted seals in Kuskokwim Bay and concentrat...

  12. Improving Sanitation and Health in Rural Alaska

    Science.gov (United States)

    Bubenheim, David L.

    2013-01-01

    In rural Alaskan communities personal health is threatened by energy costs and limited access to clean water, wastewater management, and adequate nutrition. Fuel-­-based energy systems are significant factors in determining local accessibility to clean water, sanitation and food. Increasing fuel costs induce a scarcity of access and impact residents' health. The University of Alaska Fairbanks (UAF) School of Natural Resources and Agricultural Sciences (SNRAS), NASA's Ames Research Center, and USDA Agricultural Research Service (ARS) have joined forces to develop high-efficiency, low­-energy consuming techniques for water treatment and food production in rural circumpolar communities. Methods intended for exploration of space and establishment of settlements on the Moon or Mars will ultimately benefit Earth's communities in the circumpolar north. The initial phase of collaboration is completed. Researchers from NASA Ames Research Center and SNRAS, funded by the USDA­-ARS, tested a simple, reliable, low-energy sewage treatment system to recycle wastewater for use in food production and other reuse options in communities. The system extracted up to 70% of the water from sewage and rejected up to 92% of ions in the sewage with no carryover of toxic effects. Biological testing showed that plant growth using recovered water in the nutrient solution was equivalent to that using high-purity distilled water. With successful demonstration that the low energy consuming wastewater treatment system can provide safe water for communities and food production, the team is ready to move forward to a full-scale production testbed. The SNRAS/NASA team (including Alaska students) will design a prototype to match water processing rates and food production to meet rural community sanitation needs and nutritional preferences. This system would be operated in Fairbanks at the University of Alaska through SNRAS. Long­-term performance will be validated and operational needs of the

  13. Alaska-US gas line - design considerations for the Alaska segment of ANGTS (Alaska natural gas transportation system)

    Energy Technology Data Exchange (ETDEWEB)

    Hetland, N.

    1982-01-01

    In 1968, the largest single discovery of oil and natural gas ever found on the North American continent was made at Prudhoe Bay on the North Slope of Alaska. The Prudhoe Bay field contains over 26 tcf of recoverable natural gas, or ca 13% of the proven domestic gas reserves. To bring this natural gas to the market in the Lower 48 states, filings were made with the Federal Power Commission, the predecessor to the Federal Energy Regulatory Commission, to construct a pipeline transportation system. The gas pipeline project will initially transport ca 2 billion cu ft of gas daily, expandable to 3.2 billion cu ft/day with additional compressor stations. The total ANGTS comprises nearly 4,800 miles of pipeline with diameters ranging from 36 to 56 in., and initially ca 1.4 million hp will be installed to transport 2.0 billion cu ft/day. This presentation concentrates on the Alaska segment of the ANGTS.

  14. Spatial variation in spring CO2 efflux along the trans-Alaska pipeline, Alaska: Contribution of spring carbon

    Science.gov (United States)

    Kim, Y.

    2013-12-01

    Spring soil CO2 efflux-measurement was conducted in representative sites along the trans-Alaska pipeline during 2010 to 2012 for the understanding of spatial variation in spring CO2 efflux response to change in snow-melting timing. The sites is 3 tundra sites (coastal tundra, upland tundra, upland tundra, and sub-alpine tundra), 2 white spruce sites in tundra-boreal forest ecotone, and Gold Creek, and 3 black spruce sites in Coldfoot, upper and lower reaches of the Yukon River. Soil CO2 efflux-measurement, which is a portable manual chamber CO2 efflux system, was conducted during snow-covered and snow-melting periods, minimizing artificial effects. CO2 effluxes in snow-covered and exposed soils showed a significantly difference, suggesting that spring CO2 efflux is much higher than that in snow-covered soil. The efflux was measured at 4-direction due to the difference of exposed extent, implying the magnitude of CO2 production. Average diameter in breast height (DBH: 85 × 11 cm) of white spruce is much thicker than black spruce (DBH: 33 × 5 cm), suggesting the difference of heat uptake and emission capacity between both forests. Soil temperature at 5 cm below the surface is one of significant keys in determining soil CO2 efflux. The magnitude of spring CO2 efflux showed white spruce, black spruce, and tundra in turn, suggesting that spring CO2 efflux (> 8 gC/m2/day) of corresponds to summer soil CO2 efflux. Then, spring soil CO2 efflux should be not overlooked the contribution of annual soil carbon efflux in spite of difficulties in snow-disappeared timing and springtime.

  15. Two dimensional hydrodynamic modeling of a high latitude braided river

    Science.gov (United States)

    Humphries, E.; Pavelsky, T.; Bates, P. D.

    2014-12-01

    Rivers are a fundamental resource to physical, ecologic and human systems, yet quantification of river flow in high-latitude environments remains limited due to the prevalence of complex morphologies, remote locations and sparse in situ monitoring equipment. Advances in hydrodynamic modeling and remote sensing technology allow us to address questions such as: How well can two-dimensional models simulate a flood wave in a highly 3-dimensional braided river environment, and how does the structure of such a flood wave differ from flow down a similar-sized single-channel river? Here, we use the raster-based hydrodynamic model LISFLOOD-FP to simulate flood waves, discharge, water surface height, and velocity measurements over a ~70 km reach of the Tanana River in Alaska. In order to use LISFLOOD-FP a digital elevation model (DEM) fused with detailed bathymetric data is required. During summer 2013, we surveyed 220,000 bathymetric points along the study reach using an echo sounder system connected to a high-precision GPS unit. The measurements are interpolated to a smooth bathymetric surface, using Topo to Raster interpolation, and combined with an existing five meter DEM (Alaska IfSAR) to create a seamless river terrain model. Flood waves are simulated using varying complexities in model solvers, then compared to gauge records and water logger data to assess major sources of model uncertainty. Velocity and flow direction maps are also assessed and quantified for detailed analysis of braided channel flow. The most accurate model output occurs with using the full two-dimensional model structure, and major inaccuracies appear to be related to DEM quality and roughness values. Future work will intercompare model outputs with extensive ground measurements and new data from AirSWOT, an airborne analog for the Surface Water and Ocean Topography (SWOT) mission, which aims to provide high-resolution measurements of terrestrial and ocean water surface elevations globally.

  16. BC Alaska-Canada gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, K. [BP Canada Energy Company, Calgary, AB (Canada). BP Alaska Canada Gas Pipelines

    2006-07-01

    The Alaska natural gas pipeline project was discussed in relation to the Canadian oil and gas industry and pipeline infrastructure. Total project costs for the pipeline were estimated at approximately $20 billion. Options out of Alberta include increasing existing capacity to the west coast, as well as expanding pipeline capacity to supply midwest and east coast markets. Existing pipeline systems will be expanded, and a new pipeline from Alaska to Chicago has been proposed. The gas pipeline project is expected to be the largest private construction project in the history of North America, and will provide 6500 jobs in both the United States and Canada. Project challenges to date have included the development of relationships with Aboriginals and First Nations groups in Canada and the United States, as well as ensuring access to efficient, competitive market-based regulatory processes. Project risks to date have included capital and operating cost over-runs, regulatory and legal delays, completion risks, and commodity price risks. Stranded gas act processes were discussed, as well as fiscal contracts related to the legislative and public process. Elements of the fiscal contract were provided, as well as details of First Nations relationships and Crown consultation processes. tabs., figs.

  17. Glacial flour dust storms in the Gulf of Alaska: hydrologic and meteorological controls and their importance as a source of bioavailable iron

    Science.gov (United States)

    Crusius, J.; Schroth, A.W.; Gasso, S.; Moy, C.M.; Levy, R.C.; Gatica, M.

    2011-01-01

    Iron is an essential micronutrient that limits primary productivity in much of the ocean, including the Gulf of Alaska (GoA). However, the processes that transport iron to the ocean surface are poorly quantified. We combine satellite and meteorological data to provide the first description of widespread dust transport from coastal Alaska into the GoA. Dust is frequently transported from glacially-derived sediment at the mouths of several rivers, the most prominent of which is the Copper River. These dust events occur most frequently in autumn, when coastal river levels are low and riverbed sediments are exposed. The dust plumes are transported several hundred kilometers beyond the continental shelf into iron-limited waters. We estimate the mass of dust transported from the Copper River valley during one 2006 dust event to be between 25–80 ktons. Based on conservative estimates, this equates to a soluble iron loading of 30–200 tons. We suggest the soluble Fe flux from dust originating in glaciofluvial sediment deposits from the entire GoA coastline is two to three times larger, and is comparable to the annual Fe flux to GoA surface waters from eddies of coastal origin. Given that glaciers are retreating in the coastal GoA region and in other locations, it is important to examine whether fluxes of dust are increasing from glacierized landscapes to the ocean, and to assess the impact of associated Fe on marine ecosystems.

  18. Western Alaska ESI: MGT (Management Area Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains management area data for Designated Critical Habitats, Wildlife Refuges, Wild and Scenic Rivers, and State Parks. Vector polygons in this...

  19. Financing Opportunities for Renewable Energy Development in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Ardani, K.; Hillman, D.; Busche, S.

    2013-04-01

    This technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment. While privately funded options currently have limited application in Alaska, their implementation is theoretically possible based on successful execution in similar circumstances elsewhere. This report concludes that while tax status is a key consideration in determining appropriate financing structure, there are opportunities for both taxable and tax-exempt entities to participate in renewable energy project development.

  20. Hydrologic effects of the earthquake of March 27, 1964, outside Alaska, with sections on Hydroseismograms from the Nunn-Bush Shoe Co. well, Wisconsin, and Alaska earthquake effects on ground water in Iowa: Chapter C in The Alaska earthquakes, March 27, 1964: effects on hydrologic regimen

    Science.gov (United States)

    Vorhis, Robert C.; Rexin, Elmer E.; Coble, R.W.

    1967-01-01

    The Alaska earthquake of March 27, 1964, had widespread hydrologic effects throughout practically all of the United States. More than 1,450 water-level recorders, scattered throughout all the 50 States except Connecticut, Delaware, and Rhode Island, registered the earthquake. Half of the water-level records were obtained from ground-water observation wells and half at surface-water gaging stations. The earthquake is also known to have registered on water-level recorders on wells in Canada, England, Denmark, Belgium, Egypt, Israel, Libya, Philippine Islands, South-West Africa, South Africa, and Northern Territory of Australia. The Alaska earthquake is the first for which widespread surface-water effects are known. The effects were recorded at stations on flowing streams, rivers, reservoirs, lakes, and ponds. The 755 surface-water stations recording effects are spread through 38 States, but are most numerous in the south-central and southeastern States, especially in Florida and Louisiana. Most of the fluctuations recorded can be referred to more precisely as seismic seiches; however, a few stations recorded the quake as a minor change in stage. The largest recorded seiche outside Alaska was 1.83 feet on a reservoir in Michigan. The next largest was 1.45 feet on Lake Ouachita in Arkansas. The largest fluctuation in a well was 23 feet registered by a pressure recorder near Belle Fourche, S. Dak. Fluctuations of more than 10 feet were reported from wells in Alabama, Florida, Georgia, Illinois, Missouri, and Pennsylvania. A 3.40-foot fluctuation was recorded in a well in Puerto Rico. The Alaska earthquake was registered by about seven times as many water-level recorders as recorded the Hebgen Lake, Mont., earthquake of August 19, 1959.

  1. 2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris

    2015-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.

  2. 2012 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Herrick, Julie A.; Neal, Christina A.; Cameron, Cheryl E.; Dixon, James P.; McGimsey, Robert G.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, or suspected unrest at 11 volcanic centers in Alaska during 2012. Of the two verified eruptions, one (Cleveland) was clearly magmatic and the other (Kanaga) was most likely a single phreatic explosion. Two other volcanoes had notable seismic swarms that probably were caused by magmatic intrusions (Iliamna and Little Sitkin). For each period of clear volcanic unrest, AVO staff increased monitoring vigilance as needed, reviewed eruptive histories of the volcanoes in question to help evaluate likely outcomes, and shared observations and interpretations with the public. 2012 also was the 100th anniversary of Alaska’s Katmai-Novarupta eruption of 1912, the largest eruption on Earth in the 20th century and one of the most important volcanic eruptions in modern times. AVO marked this occasion with several public events.

  3. 2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris

    2015-08-14

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.

  4. Eolian deposition of glacial flour dust to the Gulf of Alaska during the Holocene

    Science.gov (United States)

    Moy, C. M.; Crusius, J.; Nichols, J. E.; Schroth, A. W.; Peteet, D. M.; Giosan, L.; Kenna, T. C.; Eglinton, T. I.

    2012-12-01

    Iron is an important micronutrient that limits the growth of phytoplankton in much of the global ocean. In the Gulf of Alaska (GoA), we have a limited knowledge of the processes that transport iron, and in particular, the role eolian dust plays in delivering iron to the ocean surface. In order to better understand both modern and past mechanisms of dust deposition in the GoA, we combine satellite, meteorological, and geochemical data from peat cores collected on Middleton Island (59.43°N, 146.34°W). Middleton Island is located on the edge of the continental shelf and is well-located to monitor the flux of particulate material into adjacent Fe-limited waters. Widespread dust events have been observed in MODIS satellite imagery emanating from exposed floodplains within the Copper River valley and adjacent glaciated river valleys in southcentral Alaska (AK). These events are most common in the fall when high pressure in the AK interior and low pressure in the central GoA establish a pressure gradient that drives anomalously strong northerly winds that entrain fine-grained glacial sediments exposed along Copper River floodplains. MODIS imagery indicates that dust reaches beyond the continental shelf, and in many instances, dust plumes have been observed passing over Middleton Island (100 km SSW of the Copper River delta). To better constrain dust deposition to the GoA during the Holocene, we collected cores from an extensive peatland on Middleton Island. Loss-on-ignition and profiling XRF data indicate significant variations in inorganic or clastic components within the organic peat matrix during the last 5,300 cal yr BP. Clastic content varies between 2 and 45% and is particularly elevated during the last 1,500 years of the record. Ti variations closely mirrors clastic content, and because these cores were collected near the island's topographic high point, we infer that all inorganic constituents are likely delivered as dust, with potential secondary contributions

  5. 50 CFR Table I to Part 36 - Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act...

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act, Pub. L. 96-487, December 2, 1980 I Table I to... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM ALASKA NATIONAL WILDLIFE REFUGES Pt. 36, Table I Table I...

  6. 2009 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  7. YELLOWSTONE RIVER WATCH (YRW)

    Science.gov (United States)

    Yellowstone River Watch seeks to expand its monitoring and education efforts throughout the Yellowstone River Basin by actively recruiting and training new teacher members. Yellowstone River Watch also seeks to advance existing school programs by offering quality assurance/quali...

  8. Cordova, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cordova, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  9. Sitka, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  10. Outer Continental Shelf Lease Blocks - Alaska Region NAD83

    Data.gov (United States)

    Bureau of Ocean Energy Management, Department of the Interior — This data set contains Outer Continental Shelf block outlines in ArcGIS shapefile format for the BOEM Alaska Region. OCS blocks are used to define small geographic...

  11. Interferometric Synthetic Aperture radar studies of Alaska volcanoes

    Science.gov (United States)

    Lu, Zhong; Wicks, Charles W., Jr.; Dzurisin, Daniel; Power, John A.; Thatcher, Wayne R.; Masterlark, Timothy

    2003-01-01

    In this article, we summarize our recent InSAR studies of 13 Alaska volcanoes, including New Trident, Okmok, Akutan, Kiska, Augustine, Westdahl, Peulik, Makushin, Seguam, Shishaldin, Pavlof, Cleveland, and Korovin volcanoes.

  12. AFSC/ABL: Ocean Acidification in Southeast Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database contains information from one primary project a Southeast Alaska (SEAK) environmental monitoring study. It also includes support analyses for Kodiak...

  13. Bird species and habitat inventory, mainland southeast Alaska, summer 1974

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This manuscript is a report of the bird species/habitat survey conducted on mainland southeast Alaska, June 20th through August 10th, 1974, by Daniel D. Gibson and...

  14. Snowshoe hare pellet counts: Tetlin National Wildlife Refuge, eastern Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Snowshoe hares (Lepus americanus) are a keystone herbivore in the boreal forests of Canada and Alaska, and are cyclical over an approximately 8 to 11 year period....

  15. North Slope, Alaska ESI: M_MAMMAL (Marine Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for whales, seals, walruses, and polar bears for the North Slope of Alaska. Vector polygons in this data...

  16. Cliff swallow populations in the southern Askinuk Mountains, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — During breeding season, cliff swallows are widely distributed throughout Alaska and North America south to Mexico, and they are locally common in western and...

  17. The Trail Inventory of Alaska Maritime NWR [Cycle 3

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Alaska Maritime National Wildlife Refuge. Trails in this inventory are...

  18. Southeast Alaska ESI: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for brown bears in Southeast Alaska. Vector polygons in this data set represent locations of bear concentrations....

  19. Contaminants and sea ducks in Alaska and the Circumpolar region

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In this paper we review nesting sea duck population declines in Alaska during the last several decades and explore the possibility that contaminants may be...

  20. Bald eagle nest survey, 1981, Amchitka Island, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A nesting survey for bald eagles Haliaeetus leucocephalus was conducted from May 29, 1981, on a portion of Amchitka Island, Aleutian Islands Unit, Alaska Maritime...

  1. Seward, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seward, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  2. Cook Inlet and Kenai Peninsula, Alaska ESI: FISHL (Fish Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for anadromous fish streams in Cook Inlet and Kenai Peninsula, Alaska. Vector lines in this data set represent...

  3. State waterfowl conservation stamp/print programs considerations for Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — An Alaska Waterfowl Conservation Stamp program has been proposed in several bills put before the legislature in 1983. The intent of this report is to present a...

  4. Reindeer and seabird survey of Hagemeister Island, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report describes the survey effort on Hagemeister Island in the Alaska Maritime NWR. Hagemeister Island is the second largest Bering Sea Island. Reindeer, red...

  5. Assessment of lead sources for waterfowl in Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Exposure to detrimental concentrations of lead has been documented in waterfowl in Alaska. In spectacled eiders (Somateria fischeri) and long-tailed ducks (Clangula...

  6. Geothermal energy in Alaska: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Markle, D.R.

    1979-04-01

    The various factors affecting geothermal resource development are summarized for Alaska including: resource data base, geological description, reservoir characteristics, environmental character, base and development status, institutional factors, economics, population and market, and development potential. (MHR)

  7. AFSC/REFM: Alaska Saltwater Sport Fishing Charter Business Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project was to collect cost, earning, and employment information from the Alaska saltwater sport fishing charter business sector during the...

  8. Alaska map quadrangles at 1:250,000 scale

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Outlines of 1:250,000 scale map quadrangles in Alaska for use as a geographic reference within Google Earth or other software capable of interpreting KML, with...

  9. Alaska Gravity Data per 2 x 4 min Cell (96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' gravity density grid for Alaska displays the distribution of about 1.1 million terrestrial and marine gravity data held in the National Geodetic Survey...

  10. 100-Meter Resolution Tree Canopy of Alaska - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer contains tree canopy data for Alaska, in an Albers Equal-Area Conic projection and at a resolution of 100 meters. The tree canopy data were derived...

  11. Notes on village economies and wildlife utilization in arctic Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Visits were made to 12 Eskimo villages in Arctic Alaska during the spring of 1954. At each settlement information was collected regarding the economy and the...

  12. AFSC/REFM: Atka mackerel Tagging Studies, Aleutian Islands, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — From 1999-2015, approximately 130,000 Atka mackerel have been tagged and released in the Aleutian Islands, Alaska, specifically at Seguam Pass, Tanaga Pass,...

  13. Ecology of Aleutian Canada geese at Buldir Island, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The only known breeding population of the endangered Aleutian Canada goose (Branta canadensis leucopareia) was studied from 1974 to 1977 at Buldir Island, Alaska....

  14. Alaska NWRS Legacy Seabird Monitoring Data Inventory and Compilation

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objective of this project is to compile and standardize data from the Alaska Peninsula/Becharof, Kodiak, Togiak, and Yukon Delta National Wildlife Refuges. This...

  15. Western Alaska ESI: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for brown bears in Western Alaska. Vector polygons in this data set represent terrestrial mammal...

  16. Cook Inlet and Kenai Peninsula, Alaska ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for herring spawning areas in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent...

  17. Southeast Alaska ESI: HABITATS (Habitat and Plant Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for seagrass habitats in Southeast Alaska. Vector polygons in this data set represent locations of seagrass...

  18. 24 arc-second Kenai Peninsula Bororugh Alaska Elevation Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 24 arc-second Kenai Peninsula Bororugh Alaska Elevation Grid provides bathymetric data in ASCII raster format of 24 second resolution in geographic coordinates....

  19. Northern fur seal pup weights, Pribilof Islands, Alaska, 1957-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database contains northern fur seal pup mass and length data by date, island, rookery and sex on the Pribilof Islands, Alaska, collected between 1957-2012....

  20. Seismic Lines in National Petroleum Reserve, Alaska, NPR-A

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is a part of U.S. Geological Survey Central Region Energy Resources Team National Petroleum Reserve, Alaska, Legacy Data Archive. The National...

  1. Southeast Alaska ESI: M_MAMPT (Marine Mammal Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for seals and sea lions in Southeast Alaska. Points in this data set represent locations of haulout and rookery...

  2. Urban contaminants project: Fish and Hood Creeks, Anchorage, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Urbanization has decreased water quality and adversely impacted biological communities in the lakes and streams of Anchorage, Alaska (Hock, 1981; Brabets, 1987;...

  3. Prince William Sound, Alaska ESI: SOCECON (Socioeconomic Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Prince William Sound, Alaska. ESI data characterize estuarine environments and wildlife...

  4. Western Alaska ESI: M_MAMMAL (Marine Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for seals, whales, dolphins, walruses, and Steller sea lions in Western Alaska. Vector polygons in this...

  5. Goose banding, Koyukuk and north slope Alaska, 1978

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Goose drive trapping and banding was successfully conducted in the Galena and North Slope areas of Alaska in 1978. This was the fourth year of a five consecutive...

  6. Alaska Steller sea lion Count Database (Non-pups)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database contains counts of adult and juvenile (non-pup) Steller sea lions on rookeries and haulouts in Alaska made between 1904 and 2015. Non-pup counts have...

  7. North Slope, Alaska ESI: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for brown bears, caribou, and muskoxen for the North Slope, Alaska. Vector polygons in this data set...

  8. National Wilderness Preservation System of the United States For Alaska

    Data.gov (United States)

    National Park Service, Department of the Interior — This coverage is the Alaska subset derived from the map layer described in the following: This map layer consists of National Wilderness Preservation System areas...

  9. AFSC/REFM: Alaska groundfish AGEDATA database,1982 to present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AFSC AGEDATA database is a collection of historic and ongoing fish ageing efforts by the Alaska Fisheries Science Center's Age and Growth Program from 1982 to...

  10. Southeast Alaska ESI: M_MAMMAL (Marine Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for seals, porpoises, otters, and whales in coastal Southeast Alaska. Vector polygons in this data set represent...

  11. Arctic tern survey on Adak Island, Alaska, 1987

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is on an Arctic Tern survey on Adak Island in Alaska during 1987. Study area, methods and results are discussed. Pictures and data are also included.

  12. Unalaska, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Unalaska, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  13. Alaska-Yukon sandhill crane survey data, 1957-1980

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sandhill cranes have been recorded on Alaska breeding pair surveys since 1957. Observations have been expanded for area only providing mean indexes of 2,200 for...

  14. Burning and browsing effects on willow growth in interior Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The dominant species in mature forests of interior Alaska is either white spruce (Picea glauca} or black spruce (P. mariana), with wood shrubs present at lower...

  15. 100-Meter Resolution Natural Earth of Alaska - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer contains a natural-earth image of Alaska. The image is land cover in natural colors combined with shaded relief, which produces a naturalistic...

  16. 100-Meter Resolution Impervious Surface of Alaska - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer contains impervious surface data for Alaska, in an Albers Equal-Area Conic projection and at a resolution of 100 meters. The impervious surface data...

  17. Seward, Alaska 1/3 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1/3-second Seward Alaska Elevation Grid provides bathymetric data in ASCII raster format of 1/3-second resolution in geographic coordinates. This grid is...

  18. Avian populations and habitat use in interior Alaska taiga

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Avian community structure, habitat occupancy levels, and species habitat use patterns were examined in the woody habitats of interior Alaska taiga. Some birds...

  19. Fall migration goose and swan observation in Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This paper summarizes the observations of migratory geese and swan in Alaska during the fall of 1965. Whistling Swans, Canada Geese, Black Brant, Emperor Geese, and...

  20. Aerial Images of Alaska's Arctic Coastal Plain; 1974-1979

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is comprised of 10 aerial images of three different study areas on Alaska's Arctic Coastal Plain flown by NASA in 1974, 1977, 1979 and obtained from...

  1. Gravity Data for Southwestern Alaska (1294 records compiled)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (1294 records) were compiled by the Alaska Geological Survey and the U.S. Geological Survey, Menlo Park, California. This data base was...

  2. Port Alexander, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Alexander, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  3. Avian Point Transect Survey; Seward Peninsula, Alaska, 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data product contains avian point-transect survey data and habitat data collected on the Seward Peninsula, Alaska, USA, during 21 May – 10 June 2012. We...

  4. An assessment of the reindeer grazing issue in Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Reindeer, a domestic relative of the caribou, were brought to Alaska in1892 from Siberia. The objective of this introduction was to provide an alternative food...

  5. The higher fungi of Amchitka and Adak Islands, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Fruiting body collections of higher fungi, basidiomycetes and ascomycetes, were made during a twelve day field study on two of Alaska's Aleutian Islands, Amchitka...

  6. The swans and geese of Alaska's arctic slope

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A mid-summer aerial search was made on the 23,000 square miles of waterfowl habitat on Alaska's Arctic slope. Observations included 159 whistling swan (Olor...

  7. St. Lazaria Island Alaska Maritime NWR military contaminants investigations

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — St. Lazaria Island, part of the Alaska Maritime National Wildlife Refuge, has over 540,000 burrow nesting Leach's and fork-tailed storm-petrels (Oceanodroma...

  8. Walrus study project, 1980 field collection report, Diomede, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes Pacific walrus harvest data that was collected in 1980 in Diomede, Alaska. Collection and analysis of specimen material from animals killed...

  9. Observations of 1981 spring harvest of walrus, Diomede, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes Pacific walrus harvest data that was collected in 1981 in Diomede, Alaska. This year the marine mammal division of the Fish and Wildlife...

  10. Aerial Survey Units for Harbor Seals in Coastal Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerial surveys of coastal Alaska are the primary method for estimating abundance of harbor seals. A particular challenge associated with aerial surveys of harbor...

  11. AFSC/ABL: Nearshore Fish Atlas of Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Information on the distribution and relative abundance of nearshore fishes from beach seine hauls in Alaska is now available to managers as an online Fish Atlas....

  12. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  13. Alaska Phocid Argos Telemetry Archive (2004-2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Polar Ecosystems Program conducts research and monitoring on phocid seals in the East Bering Sea, West Bering Sea, Gulf of Alaska, Beaufort Sea, and Chukchi Sea...

  14. The Trail Inventory of Alaska Maritime NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Alaska Maritime National Wildlife Refuge. Trails in this inventory are...

  15. The Trail Inventory of Alaska Peninsula NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Alaska Peninsula National Wildlife Refuge. Trails in this inventory are...

  16. 2011 Alaska Matanuska and Susitna Boroughs Lidar Point Clouds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Matanuska Susitna Borough LiDAR/Imagery Project covers 3680 sq/mi of the Matanuska-Susitna Borough in Alaska. Project parnters and funding sources include:...

  17. A 50% increase in the amount of terrestrial particles delivered by the Mackenzie River into the Beaufort Sea (Canadian Arctic Ocean) over the last 10 years

    OpenAIRE

    Doxaran, D; Devred, E.; M. Babin

    2015-01-01

    Global warming has a significant impact at the regional scale on the Arctic Ocean and surrounding coastal zones (i.e., Alaska, Canada, Greenland, Norway and Russia). The recent increase in air temperature has resulted in increased precipitations along the drainage basins of Arctic Rivers. It has also directly impacted land and seawater temperatures with the consequence of melting the permafrost and sea-ice. An increase in freshwater discharge by main Arctic rivers has ...

  18. Habitat correlates of wintering sea duck occurrence in southeast Alaska

    OpenAIRE

    Gunn, Theodora

    2009-01-01

    Southeast Alaska provides non-breeding habitat for >300,000 sea ducks, however little is known about habitat features that may influence their distribution within this area. We used an autologistic regression model to examine relationships between 10 species of sea ducks that winter in southeast Alaska [harlequin duck (Histrionicus histrionicus), red breasted merganser (Mergus serrator), common merganser (Mergus merganser), bufflehead (Bucephala albeola), Barrow’s goldeneye (Bucephala isla...

  19. Coal database for Cook Inlet and North Slope, Alaska

    Science.gov (United States)

    Stricker, Gary D.; Spear, Brianne D.; Sprowl, Jennifer M.; Dietrich, John D.; McCauley, Michael I.; Kinney, Scott A.

    2011-01-01

    This database is a compilation of published and nonconfidential unpublished coal data from Alaska. Although coal occurs in isolated areas throughout Alaska, this study includes data only from the Cook Inlet and North Slope areas. The data include entries from and interpretations of oil and gas well logs, coal-core geophysical logs (such as density, gamma, and resistivity), seismic shot hole lithology descriptions, measured coal sections, and isolated coal outcrops.

  20. Climate change and health effects in Northwest Alaska

    OpenAIRE

    Brubaker, Michael; Berner, James; Chavan, Raj; Warren, John

    2011-01-01

    This article provides examples of adverse health effects, including weather-related injury, food insecurity, mental health issues, and water infrastructure damage, and the responses to these effects that are currently being applied in two Northwest Alaska communities. Background: In Northwest Alaska, warming is resulting in a broad range of unusual weather and environmental conditions, including delayed freeze-up, earlier breakup, storm surge, coastal erosion, and thawing permafrost. These ar...

  1. Understanding Energy Code Acceptance within the Alaska Building Community

    Energy Technology Data Exchange (ETDEWEB)

    Mapes, Terry S.

    2012-02-14

    This document presents the technical assistance provided to the Alaska Home Financing Corporation on behalf of PNNL regarding the assessment of attitudes toward energy codes within the building community in Alaska. It includes a summary of the existing situation and specific assistance requested by AHFC, the results of a questionnaire designed for builders surveyed in a suburban area of Anchorage, interviews with a lender, a building official, and a research specialist, and recommendations for future action by AHFC.

  2. Alaska coal geology, resources, and coalbed methane potential

    Science.gov (United States)

    Flores, Romeo M.; Stricker, Gary D.; Kinney, Scott A.

    2004-01-01

    Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines in these two provinces. Alaskan coal resources have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. The identified resources are near existing and planned infrastructure to promote development, transportation, and marketing of this low-sulfur coal. The relatively short distances to countries in the west Pacific Rim make them more exportable to these countries than to the lower 48 States of the United States. Another untapped but potential resource of large magnitude is coalbed methane, which has been estimated to total 1,000 trillion cubic feet (28 trillion cubic meters) by T.N. Smith 1995, Coalbed methane potential for Alaska and drilling results for the upper Cook Inlet Basin: Intergas, May 15 - 19, 1995, Tuscaloosa, University of Alabama, p. 1 - 21.

  3. Alaska Arctic marine fish ecology catalog

    Science.gov (United States)

    Thorsteinson, Lyman K.; Love, Milton S.

    2016-08-08

    The marine fishes in waters of the United States north of the Bering Strait have received new and increased scientific attention over the past decade (2005–15) in conjunction with frontier qualities of the region and societal concerns about the effects of Arctic climate change. Commercial fisheries are negligible in the Chukchi and Beaufort Seas, but many marine species have important traditional and cultural values to Alaska Native residents. Although baseline conditions are rapidly changing, effective decisions about research and monitoring investments must be based on reliable information and plausible future scenarios. For the first time, this synthesis presents a comprehensive evaluation of the marine fish fauna from both seas in a single reference. Although many unknowns and uncertainties remain in the scientific understanding, information presented here is foundational with respect to understanding marine ecosystems and addressing dual missions of the U.S. Department of the Interior for energy development and resource conservation. 

  4. Development of the Alaska Chadux Corporation

    Energy Technology Data Exchange (ETDEWEB)

    McEwen, S. [Alaska Chadux Corporation, Anchorage, AK (United States); Taylor, E. [TAYLOR Environmental and Marine Services, Inc., Bainbridge Island, WA (United States)

    1997-10-01

    The Alaska Chadux Corporation is a primary response contractor providing oil spill services to a diverse group of member companies engaged in handling crude oil in Alaskan waters, especially in the Dutch Harbor, Cook Inlet and Kodiak, and Prince William Sound area. The corporation is also involved in the development of an in-house operations manual, development of response and operational policies addressing ISO 9000 and ISO 14000 guidelines and training and strategic development of response capabilities. This paper describes the processes used by Chadux to address the needs of the Corporation`s expanding membership, the concerns of regulatory agencies and operational response to the many remote and environmentally sensitive areas of an expanding geographic area. 4 refs.

  5. Alaska Arctic marine fish ecology catalog

    Science.gov (United States)

    2016-01-01

    The marine fishes in waters of the United States north of the Bering Strait have received new and increased scientific attention over the past decade (2005–15) in conjunction with frontier qualities of the region and societal concerns about the effects of Arctic climate change. Commercial fisheries are negligible in the Chukchi and Beaufort Seas, but many marine species have important traditional and cultural values to Alaska Native residents. Although baseline conditions are rapidly changing, effective decisions about research and monitoring investments must be based on reliable information and plausible future scenarios. For the first time, this synthesis presents a comprehensive evaluation of the marine fish fauna from both seas in a single reference. Although many unknowns and uncertainties remain in the scientific understanding, information presented here is foundational with respect to understanding marine ecosystems and addressing dual missions of the U.S. Department of the Interior for energy development and resource conservation. 

  6. Geologic map of Saint Lawrence Island, Alaska

    Science.gov (United States)

    Patton, William W.; Wilson, Frederic H.; Taylor, Theresa A.

    2011-01-01

    Saint Lawrence Island is located in the northern Bering Sea, 190 km southwest of the tip of the Seward Peninsula, Alaska, and 75 km southeast of the Chukotsk Peninsula, Russia (see index map, map sheet). It lies on a broad, shallow-water continental shelf that extends from western Alaska to northeastern Russia. The island is situated on a northwest-trending structural uplift exposing rocks as old as Paleozoic above sea level. The submerged shelf between the Seward Peninsula and Saint Lawrence Island is covered mainly with Cenozoic deposits (Dundo and Egiazarov, 1982). Northeast of the island, the shelf is underlain by a large structural depression, the Norton Basin, which contains as much as 6.5 km of Cenozoic strata (Grim and McManus, 1970; Fisher and others, 1982). Sparse test-well data indicate that the Cenozoic strata are underlain by Paleozoic and Proterozoic rocks, similar to those exposed on the Seward Peninsula (Turner and others, 1983). Saint Lawrence Island is 160 km long in an east-west direction and from 15 km to 55 km wide in a north-south direction. The east end of the island consists largely of a wave-cut platform, which has been elevated as much as 30 m above sea level. Isolated upland areas composed largely of granitic plutons rise as much as 550 m above the wave-cut platform. The central part of the island is dominated by the Kookooligit Mountains, a large Quaternary shield volcano that extends over an area of 850 km2 and rises to an elevation of 630 m. The west end of the island is composed of the Poovoot Range, a group of barren, rubble-covered hills as high as 450 m that extend from Boxer Bay on the southwest coast to Taphook Mountain on the north coast. The Poovoot Range is flanked on the southeast by the Putgut Plateau, a nearly flat, lake-dotted plain that stands 30?60 m above sea level. The west end of the island is marked by uplands underlain by the Sevuokuk pluton (unit Kg), a long narrow granite body that extends from Gambell on the

  7. Development of the Alaska Chadux Corporation

    International Nuclear Information System (INIS)

    The Alaska Chadux Corporation is a primary response contractor providing oil spill services to a diverse group of member companies engaged in handling crude oil in Alaskan waters, especially in the Dutch Harbor, Cook Inlet and Kodiak, and Prince William Sound area. The corporation is also involved in the development of an in-house operations manual, development of response and operational policies addressing ISO 9000 and ISO 14000 guidelines and training and strategic development of response capabilities. This paper describes the processes used by Chadux to address the needs of the Corporation's expanding membership, the concerns of regulatory agencies and operational response to the many remote and environmentally sensitive areas of an expanding geographic area. 4 refs

  8. Southwest Alaska Regional Geothermal Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Holdmann, Gwen [Univ. of Alaska, Fairbanks, AK (United States)

    2015-04-30

    The village of Elim, Alaska is 96 miles west of Nome, on the Seward Peninsula. The Darby Mountains north of the village are rich with hydrothermal systems associated with the Darby granitic pluton(s). In addition to the hot springs that have been recorded and studied over the last 100 years, additional hot springs exist. They are known through a rich oral history of the region, though they are not labeled on geothermal maps. This research primarily focused on Kwiniuk Hot Springs, Clear Creek Hot Springs and Molly’s Hot Springs. The highest recorded surface temperatures of these resources exist at Clear Creek Hot Springs (67°C). Repeated water sampling of the resources shows that maximum temperatures at all of the systems are below boiling.

  9. Major disruption of D″ beneath Alaska

    Science.gov (United States)

    Sun, Daoyuan; Helmberger, Don; Miller, Meghan S.; Jackson, Jennifer M.

    2016-05-01

    D″ represents one of the most dramatic thermal and compositional layers within our planet. In particular, global tomographic models display relatively fast patches at the base of the mantle along the circum-Pacific which are generally attributed to slab debris. Such distinct patches interact with the bridgmanite (Br) to post-bridgmanite (PBr) phase boundary to generate particularly strong heterogeneity at their edges. Most seismic observations for the D″ come from the lower mantle S wave triplication (Scd). Here we exploit the USArray waveform data to examine one of these sharp transitions in structure beneath Alaska. From west to east beneath Alaska, we observed three different characteristics in D″: (1) the western region with a strong Scd, requiring a sharp δVs = 2.5% increase; (2) the middle region with no clear Scd phases, indicating a lack of D″ (or thin Br-PBr layer); and (3) the eastern region with strong Scd phase, requiring a gradient increase in δVs. To explain such strong lateral variation in the velocity structure, chemical variations must be involved. We suggest that the western region represents relatively normal mantle. In contrast, the eastern region is influenced by a relic slab that has subducted down to the lowermost mantle. In the middle region, we infer an upwelling structure that disrupts the Br-PBr phase boundary. Such an interpretation is based upon a distinct pattern of travel time delays, waveform distortions, and amplitude patterns that reveal a circular-shaped anomaly about 5° across which can be modeled synthetically as a plume-like structure rising about 400 km high with a shear velocity reduction of ~5%, similar to geodynamic modeling predictions of upwellings.

  10. An overview of the 2009 eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Bull, Katharine F.; Buurman, Helena

    2013-06-01

    In March 2009, Redoubt Volcano, Alaska erupted for the first time since 1990. Explosions ejected plumes that disrupted international and domestic airspace, sent lahars more than 35 km down the Drift River to the coast, and resulted in tephra fall on communities over 100 km away. Geodetic data suggest that magma began to ascend slowly from deep in the crust and reached mid- to shallow-crustal levels as early as May, 2008. Heat flux at the volcano during the precursory phase melted ~ 4% of the Drift glacier atop Redoubt's summit. Petrologic data indicate the deeply sourced magma, low-silica andesite, temporarily arrested at 9-11 km and/or at 4-6 km depth, where it encountered and mixed with segregated stored high-silica andesite bodies. The two magma compositions mixed to form intermediate-silica andesite, and all three magma types erupted during the earliest 2009 events. Only intermediate- and high-silica andesites were produced throughout the explosive and effusive phases of the eruption. The explosive phase began with a phreatic explosion followed by a seismic swarm, which signaled the start of lava effusion on March 22, shortly prior to the first magmatic explosion early on March 23, 2009 (UTC). More than 19 explosions (or “Events”) were produced over 13 days from a single vent immediately south of the 1989-90 lava domes. During that period multiple small pyroclastic density currents flowed primarily to the north and into glacial ravines, three major lahars flooded the Drift River Terminal over 35 km down-river on the coast, tephra fall deposited on all aspects of the edifice and on several communities north and east of the volcano, and at least two, and possibly three lava domes were emplaced. Lightning accompanied almost all the explosions. A shift in the eruptive character took place following Event 9 on March 27 in terms of infrasound signal onsets, the character of repeating earthquakes, and the nature of tephra ejecta. More than nine additional

  11. Engaging Elements of Cancer-Related Digital Stories in Alaska.

    Science.gov (United States)

    Cueva, Melany; Kuhnley, Regina; Revels, Laura; Schoenberg, Nancy E; Lanier, Anne; Dignan, Mark

    2016-09-01

    The tradition of storytelling is an integral part of Alaska Native cultures that continues to be a way of passing on knowledge. Using a story-based approach to share cancer education is grounded in Alaska Native traditions and people's experiences and has the potential to positively impact cancer knowledge, understandings, and wellness choices. Community health workers (CHWs) in Alaska created a personal digital story as part of a 5-day, in-person cancer education course. To identify engaging elements of digital stories among Alaska Native people, one focus group was held in each of three different Alaska communities with a total of 29 adult participants. After viewing CHWs' digital stories created during CHW cancer education courses, focus group participants commented verbally and in writing about cultural relevance, engaging elements, information learned, and intent to change health behavior. Digital stories were described by Alaska focus group participants as being culturally respectful, informational, inspiring, and motivational. Viewers shared that they liked digital stories because they were short (only 2-3 min); nondirective and not preachy; emotional, told as a personal story and not just facts and figures; and relevant, using photos that showed Alaskan places and people. PMID:25865400

  12. Discovering unique tobacco use patterns among Alaska Native people

    Directory of Open Access Journals (Sweden)

    Julia A. Dilley

    2013-08-01

    Full Text Available Background . Alaska Native people are disproportionately impacted by tobacco-related diseases in comparison to non-Native Alaskans. Design. We used Alaska's Behavioral Risk Factor Surveillance System (BRFSS to describe tobacco use among more than 4,100 Alaska Native adults, stratified by geographic region and demographic groups. Results . Overall tobacco use was high: approximately 2 out of every 5 Alaska Native adults reported smoking cigarettes (41.2% and 1 in 10 reported using smokeless tobacco (SLT, 12.3%. A small percentage overall (4.8% reported using iq'mik, an SLT variant unique to Alaska Native people. When examined by geographic region, cigarette smoking was highest in remote geographic regions; SLT use was highest in the southwest region of the state. Use of iq'mik was primarily confined to a specific area of the state; further analysis showed that 1 in 3 women currently used iq'mik in this region. Conclusion . Our results suggest that different types of tobacco use are epidemic among diverse Alaska Native communities. Our results also illustrate that detailed analysis within racial/ethnic groups can be useful for public health programme planning to reduce health disparities.

  13. Exploring Alaska's Seamounts on RV Atlantis in North Pacific Ocean and Gulf of Alaska between 20040730 and 20040823

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Five seamounts (Denson, Dickins, Pratt, Welker and Giacomini) in the Gulf of Alaska that had not previously been observed by manned submersible or ROV were...

  14. Alaska Science Center: Providing Timely, Relevant, and Impartial Study of the Landscape, Natural Resources, and Natural Hazards for Alaska and Our Nation

    Science.gov (United States)

    USGS Alaska Science Center

    2007-01-01

    The U.S. Geological Survey (USGS), the Nation's largest water, earth, and biological science and civilian mapping agency, has studied the natural features of Alaska since its earliest geologic expeditions in the 1800s. The USGS Alaska Science Center (ASC), with headquarters in Anchorage, Alaska, studies the complex natural science phenomena of Alaska to provide scientific products and results to a wide variety of partners. The complexity of Alaska's unique landscapes and ecosystems requires USGS expertise from many science disciplines to conduct thorough, integrated research.

  15. 1996 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Neal, Christina A.; McGimsey, Robert G.

    1997-01-01

    During 1996, the Alaska Volcano Observatory (AVO) responded to eruptive activity, anomalous seismicity, or suspected volcanic activity at 10 of the approximately 40 active volcanic centers in the state of Alaska. As part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also disseminated information about eruptions and other volcanic unrest at six volcanic centers on the Kamchatka Peninsula and in the Kurile Islands, Russia.

  16. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  17. Overview of environmental and hydrogeologic conditions at the Merle K. "Mudhole" Smith Airport near Cordova, Alaska

    Science.gov (United States)

    Dorava, J.M.; Sokup, J.M.

    1994-01-01

    Air service to Cordova, Alaska and the surrounding region is provided by the Merle K. "Mudhole" Smith Airport, 21 kilometers east of the townsite. The Federal Aviation Administration owns or operates support facilities at the airport and wishes to consider the environmental setting and hydro- geologic conditions when evaluating options for remediation of potential contamination at these facilities. The airport is within the Copper River Delta wetlands area and the Chugach National Forest. Silts, sands, and gravels of fluvial origin underlie the airport. Potential flooding may be caused by outbursts of glacier-dammed lakes, glacier icemelt, snowmelt runoff, or precipitation. Surface spills and disposal of hazardous materials in conjunction with precipitation or flooding may adversely affect the quality of ground water. Drinking water at the airport is currently supplied by wells. Alternative drinking-water sources include local rivers and streams, transporting city water from Cordova, or undiscovered aquifers. Each alternative source, however, would likely cost significantly more to develop than using the existing shallow aquifer supply.

  18. Structure of the Red Dog District, western Brooks Range, Alaska

    Science.gov (United States)

    de Vera, Jean-Pierre P.; McClay, K. R.

    2004-01-01

    The Red Dog district of the western Brooks Range of northern Alaska, which includes the sediment-hosted Zn-Pb-Ag ± Ba deposits at Red Dog, Su-Lik, and Anarraaq, contains one of the world's largest reserves of zinc. This paper presents a new model for the structural development of the area and shows that understanding the structure is crucial for future exploration efforts and new mineral discoveries in the district. In the Red Dog district, a telescoped Late Devonian through Jurassic continental passive margin is exposed in a series of subhorizontally stacked, internally imbricated, and regionally folded thrust sheets. These sheets were emplaced during the Middle Jurassic to Late Cretaceous Brookian orogeny and subsequently were uplifted by late tectonic activity in the Tertiary. The thrust sheet stack comprises seven tectonostratigraphically distinct allochthonous sheets, three of which have been subject to regional and detailed structural analysis. The lowermost of these is the Endicott Mountains allochthon, which is overlain by the structurally higher Picnic Creek and Kelly River allochthons. Each individual allochthon is itself internally imbricated into a series of tectonostratigraphically coherent and distinct thrust plates and subplates. This structural style gives rise to duplex development and imbrication at a range of scales, from a few meters to tens of kilometers. The variable mechanical properties of the lithologic units of the ancient passive margin resulted in changes in structural styles and scales of structures across allochthon boundaries. Structural mapping and analysis of the district indicate a dominant northwest to west-northwest direction of regional tectonic transport. Local north to north-northeast transport of thrust sheets is interpreted to reflect the influence of underlying lateral and/or oblique ramps, which may have been controlled by inherited basin margin structures. Some thrust-sheet stacking patterns suggest out

  19. 100-Meter Resolution Satellite View with Shaded Relief of Alaska - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Satellite View with Shaded Relief of Alaska map layer is a 100-meter resolution simulated natural-color image of Alaska, with relief shading added to accentuate...

  20. USGS Small-scale Dataset - 100-Meter Resolution Satellite View of Alaska 201304 GeoTIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Satellite View of Alaska map layer is a 100-meter resolution simulated natural-color image of Alaska. Vegetation is generally green, with forests in darker...

  1. Alaska Steller Sea Lion and Northern Fur Seal Argos Telemetry Data Archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Alaska Ecosystems Program of the NOAA Alaska Fisheries Science Center National Marine Mammal Laboratory conducts research and monitoring on Steller sea lions...

  2. Alaska Maritime National Wildlife Refuge : Annual narrative report : Calendar year 1984

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Alaska Maritime NWR (including the Alaska Peninsula Unit, the Aleutian Islands Unit, the Bering Sea Unit, the Chukchi Sea Unit, and...

  3. AFSC/REFM: Community Profiles for North Pacific Fisheries, Alaska 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2005, the Alaska Fisheries Science Center (AFSC) compiled baseline socioeconomic information about 136 Alaska communities most involved in commercial fisheries....

  4. 78 FR 38358 - Call for Nominations: North Slope Science Initiative, Science Technical Advisory Panel, Alaska

    Science.gov (United States)

    2013-06-26

    ..., petroleum engineering, civil engineering, geology, sociology, cultural anthropology, economics, ornithology... Bureau of Land Management Call for Nominations: North Slope Science Initiative, Science Technical Advisory Panel, Alaska AGENCY: Bureau of Land Management, Alaska State Office, North Slope...

  5. Alaska Program Point and Line Feature GIS Data from COMIDA, ANIMIDA and cANIMIDA Programs

    Data.gov (United States)

    Bureau of Ocean Energy Management, Department of the Interior — Alaska Program Map Service contains point and line features from the following BOEM Alaska Region environmental monitoring programs: Chukchi Sea Offshore Monitoring...

  6. FastStats: Health of American Indian or Alaska Native Population

    Science.gov (United States)

    ... What's this? Submit Button NCHS Home Health of American Indian or Alaska Native Population Recommend on Facebook Tweet ... Health, United States, trend tables with data for American Indian or Alaska Native population Tables of Summary Health ...

  7. Grayscale Alaska Shaded Relief ? 200-Meter Resolution, Albers projection - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The grayscale Alaska shaded relief data were derived from National Elevation Dataset (NED) data, and show the terrain of Alaska at a resolution of 200 meters. The...

  8. Color Alaska Shaded Relief ? 200-Meter Resolution, Albers projection - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The color Alaska shaded relief data were derived from National Elevation Dataset (NED) data, and show the terrain of Alaska at a resolution of 200 meters. The NED...

  9. Alaska Geochemical Database (AGDB) - Geochemical Data for Rock, Sediment, Soil, Mineral, and Concentrate Sample Media

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Alaska Geochemical Database (AGDB) was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping,...

  10. 76 FR 58263 - Kenai Pipe Line Company; Tesoro Alaska Company; Tesoro Logistics Operations, LLC; Notice of...

    Science.gov (United States)

    2011-09-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Kenai Pipe Line Company; Tesoro Alaska Company; Tesoro Logistics Operations... Company (Tesoro Alaska), and Tesoro Logistics, LLC (TLO) (collectively, Tesoro) filed a Request...

  11. A five-year plan for the management and development of the Alaska fisheries

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This 5-year management program of the Alaska fisheries combines the ideas of the field men and administrators of the Division of Alaska Fisheries. Requirements for...

  12. USGS Small-scale Dataset - Satellite View of Alaska 200605 GeoTIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Satellite View of Alaska map layer is a 200-meter-resolution simulated-natural-color image of Alaska. Vegetation is generally green, with darker greens...

  13. USGS Small-scale Dataset - Satellite View of Alaska, with Shaded Relief 200605 GeoTIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Satellite View of Alaska, with Shaded Relief map layer is a 200- meter-resolution simulated-natural-color image of Alaska. Vegetation is generally green, with...

  14. Alaska Maritime National Wildlife Refuge : Annual narrative report : Calendar year 1992

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Alaska Maritime NWR (including the Alaska Peninsula Unit, the Aleutian Islands Unit, the Bering Sea Unit, the Chukchi Sea Unit, and...

  15. NWS Alaska Sea Ice Program: Operations and Decision Support Services

    Science.gov (United States)

    Schreck, M. B.; Nelson, J. A., Jr.; Heim, R.

    2015-12-01

    The National Weather Service's Alaska Sea Ice Program is designed to service customers and partners operating and planning operations within Alaska waters. The Alaska Sea Ice Program offers daily sea ice and sea surface temperature analysis products. The program also delivers a five day sea ice forecast 3 times each week, provides a 3 month sea ice outlook at the end of each month, and has staff available to respond to sea ice related information inquiries. These analysis and forecast products are utilized by many entities around the state of Alaska and nationally for safety of navigation and community strategic planning. The list of current customers stem from academia and research institutions, to local state and federal agencies, to resupply barges, to coastal subsistence hunters, to gold dredgers, to fisheries, to the general public. Due to a longer sea ice free season over recent years, activity in the waters around Alaska has increased. This has led to a rise in decision support services from the Alaska Sea Ice Program. The ASIP is in constant contact with the National Ice Center as well as the United States Coast Guard (USCG) for safety of navigation. In the past, the ASIP provided briefings to the USCG when in support of search and rescue efforts. Currently, not only does that support remain, but our team is also briefing on sea ice outlooks into the next few months. As traffic in the Arctic increases, the ASIP will be called upon to provide more and more services on varying time scales to meet customer needs. This talk will address the many facets of the current Alaska Sea Ice Program as well as delve into what we see as the future of the ASIP.

  16. Age, Distribution, and Style of Deformation in Alaska North of 60°N: Implications for Assembly of Alaska

    Science.gov (United States)

    Moore, T. E.; Box, S. E.

    2015-12-01

    The structural architecture of Alaska is the product of a complex history of deformation along both the Cordilleran and Arctic margins of North America through interactions with ocean plates and with continental elements of Laurentia, Siberia, and Baltica. We use geological constraints to assign areal deformation to 14 time intervals and map their distributions in Alaska. Alaska can be divided into three domains with differing histories of deformation. The northern domain experienced the Early Cretaceous Brookian orogeny, an oceanic arc-continent collisional orogeny, followed by a mid-Cretaceous extensional overprint. Opening of the oceanic Canada Basin rifted the orogen from the Canadian Arctic margin, producing the bent trends of the orogen. The second domain constitutes the Phanerozoic Peninsular-Wrangellia-Alexander arc terrane and its paired Mesozoic accretionary prisms. Its structural history is unrelated to domains to the north until a shared history of Late Cretaceous deformation. The third domain, situated between the first two domains and roughly bounded by the Cenozoic dextral Denali and Tintina faults, includes the Yukon Composite terrane (Laurentian origin) and the large Farewell (Baltica origin) terrane. These terranes are not linked until Late Cretaceous sedimentary overlap, but we have not identified a shared deformation between these two terranes that might mark their juxtaposition by collisional processes. Similar early Late Cretaceous sedimentary linkages stitch the northern and central domains. Late Late Cretaceous folding and thrusting across much of Alaska south of the Brooks Range correlates temporally with the collision of the southern domain with the remainder of Alaska. Early Cenozoic shortening is mild across much of the state but is significant in the Brooks Range, and correlates in time with dextral faulting, ridge subduction, and rotation of western Alaska. Late Cenozoic shortening is significant in southern Alaska inboard of the

  17. 75 FR 6370 - Regulations Governing the Conduct of Open Seasons for Alaska Natural Gas Transportation Projects...

    Science.gov (United States)

    2010-02-09

    ... Transportation Projects; Notice of Alaska Natural Gas Transportation Projects Open Season Pre-Filing Workshop... Alaska Natural Gas Transportation Project. The Workshop is being held at the Commission's headquarters in... commitments for the acquisition of capacity on Alaska natural gas transportation projects. TransCanada...

  18. 7 CFR 318.13-21 - Avocados from Hawaii to Alaska.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Avocados from Hawaii to Alaska. 318.13-21 Section 318... Articles From Hawaii and the Territories § 318.13-21 Avocados from Hawaii to Alaska. Avocados may be moved... marking requirements. The avocados may be moved interstate for distribution in Alaska only, the boxes...

  19. 77 FR 65843 - Fisheries of the Exclusive Economic Zone Off Alaska; Revisions to IFQ Program Regulations

    Science.gov (United States)

    2012-10-31

    ... Gulf of Alaska (GOA) and the Bering Sea and Aleutian Islands (BSAI) in the exclusive economic zone (EEZ...: PART 679--FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA 1. The authority citation for part 679... Economic Zone Off Alaska; Revisions to IFQ Program Regulations AGENCY: National Marine Fisheries...

  20. 25 CFR 142.8 - Is economy of operation a requirement for the Alaska Resupply Operation?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Is economy of operation a requirement for the Alaska... FINANCIAL ACTIVITIES ALASKA RESUPPLY OPERATION § 142.8 Is economy of operation a requirement for the Alaska..., or cooperative arrangements. Whenever possible joint arrangements for economy will be entered...

  1. 76 FR 45253 - Public Water Supply Supervision Program; Program Revision for the State of Alaska

    Science.gov (United States)

    2011-07-28

    ... AGENCY Public Water Supply Supervision Program; Program Revision for the State of Alaska AGENCY... State of Alaska has revised its approved State Public Water Supply Supervision Primacy Program. Alaska has adopted regulations analogous to the EPA's Ground Water Rule. The EPA has determined that...

  2. Sobriety and alcohol use among rural Alaska Native elders

    Directory of Open Access Journals (Sweden)

    Monica C. Skewes

    2016-02-01

    Full Text Available Background: Although notable health disparities related to alcohol use persist among Alaska Native people living in rural communities, there is a paucity of research examining drinking behaviour in particular segments of this population, including elders. One explanation for this is the distrust of behavioural health research in general and alcohol research in particular following the legacy of the Barrow Alcohol Study, still regarded as a notable example of ethics violations in cross-cultural research. Objective: The present study reports findings from one of the first research studies asking directly about alcohol abuse among rural Alaska Natives (AN since the study in Barrow took place in 1979. Design: We report findings regarding self-reported alcohol use included in an elder needs assessment conducted with 134 Alaska Native elders from 5 rural villages off the road system in Alaska. Data were collected in partnership between academic researchers and community members in accordance with the principles of Community-Based Participatory Research. Results: Findings showed very high rates of sobriety and low rates of alcohol use, contradicting stereotypes of widespread alcohol abuse among AN. Possible explanations and future research directions are discussed. Conclusions: This research represents one step forward in mending academic–community relationships in rural Alaska to further research on alcohol use and related health disparities.

  3. 2006 Compilation of Alaska Gravity Data and Historical Reports

    Science.gov (United States)

    Saltus, Richard W.; Brown, Philip J., II; Morin, Robert L.; Hill, Patricia L.

    2008-01-01

    Gravity anomalies provide fundamental geophysical information about Earth structure and dynamics. To increase geologic and geodynamic understanding of Alaska, the U.S. Geological Survey (USGS) has collected and processed Alaska gravity data for the past 50 years. This report introduces and describes an integrated, State-wide gravity database and provides accompanying gravity calculation tools to assist in its application. Additional information includes gravity base station descriptions and digital scans of historical USGS reports. The gravity calculation tools enable the user to reduce new gravity data in a consistent manner for combination with the existing database. This database has sufficient resolution to define the regional gravity anomalies of Alaska. Interpretation of regional gravity anomalies in parts of the State are hampered by the lack of local isostatic compensation in both southern and northern Alaska. However, when filtered appropriately, the Alaska gravity data show regional features having geologic significance. These features include gravity lows caused by low-density rocks of Cenozoic basins, flysch belts, and felsic intrusions, as well as many gravity highs associated with high-density mafic and ultramafic complexes.

  4. The U.S. Geological Survey in Alaska 1980 programs

    Science.gov (United States)

    Reed, Katherine M.; Technical assistance by Gilmore, Robert F.; Harris, Linda-Lee; Tennison, Lisa D.

    1980-01-01

    This circular describes the 1980 programs of the U.S. Geological Survey in Alaska. A brief description of the Alaskan operations of each major division of the Survey is followed by project descriptions arranged by geographic regions in which the work takes place. The mission of the Geological Survey is to identify the Nation 's land, water, energy, and mineral resources; to classify federally-owned mineral lands and waterpower sites; to resolve the exploration and development of energy and natural resources on Federal and Indian lands; and to explore and appraise the petroleum potential of the National Petroleum Reserve in Alaska. Alaska is at once the largest, the least populated, the least explored, and the least developed State in the Nation. More than half of the Nation 's 600 million acres of Outer Continental Shelf lies off Alaska 's coast. The land area of Alaska contains 375 million acres, 16 percent of the onshore land of the Nation. Its resources of all kinds present an opportunity to demonstrate how the needs of both conservation and development can be met for the benefit of the American people. (USGS)

  5. The U.S. Geological Survey in Alaska; 1981 programs

    Science.gov (United States)

    Reed, Katherine M.; Gilmore, Robert F.; Harris, Linda-Lee; Tennison, Lisa D.

    1981-01-01

    This Circular describes the 1981 programs and projects of the U.S. Geological Survey in Alaska. A brief description of the Alaskan operations of each office and division of the Survey is followed by project descriptions arranged by geographic regions in which the work takes place. The largest program at present is related to oil and gas exploration, but programs also include mineral appraisal, water-resource studies, volcanic and seismic programs, topographic mapping, glaciological and geohazard studies, and many other activities. Alaska is the largest and the least populated, least explored, and least developed of the Nation 's States. The land area contains 375 million acres and comprises 16 percent of the onshore land and more than half of the Outer Continental Shelf of the Nation. After Native and State of Alaska land selections of 44 million acres have been made, approximately 60 percent, 225 million acres, of Alaska land will remain under Federal jurisdiction. Federal lands in Alaska then will comprise approximately 30 percent of all onshore land in the Nation 's public domain. (USGS)

  6. The United States Geological Survey in Alaska; accomplishments during 1979

    Science.gov (United States)

    Albert, Nairn R. D.; Hudson, Travis

    1981-01-01

    This circular describes the 1980 programs of the U.S. Geological Survey in Alaska. A brief description of the Alaskan operations of each major division of the Survey is followed by project descriptions arranged by geographic regions in which the work takes place. The mission of the Geological Survey is to identify the Nation 's land, water, energy, and mineral resources; to classify federally-owned mineral lands and waterpower sites; to resolve the exploration and development of energy and natural resources on Federal and Indian lands; and to explore and appraise the petroleum potential of the National Petroleum Reserve in Alaska. Alaska is at once the largest, the least populated, the least explored, and the least developed State in the Nation. More than half of the Nation 's 600 million acres of Outer Continental Shelf lies off Alaska 's coast. The land area of Alaska contains 375 million acres, 16 percent of the onshore land of the Nation. Its resources of all kinds present an opportunity to demonstrate how the needs of both conservation and development can be met for the benefit of the American people. (USGS)

  7. Hydrology and Flood Profiles of Duck Creek and Jordan Creek Downstream from Egan Drive, Juneau, Alaska

    Science.gov (United States)

    Curran, Janet H.

    2007-01-01

    Hydrologic and hydraulic updates for Duck Creek and the lower part of Jordan Creek in Juneau, Alaska, included computation of new estimates of peak streamflow magnitudes and new water-surface profiles for the 10-, 50-, 100-, and 500-year floods. Computations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence interval flood magnitudes for both streams used data from U.S. Geological Survey stream-gaging stations weighted with regional regression equations for southeast Alaska. The study area for the hydraulic model consisted of three channels: Duck Creek from Taku Boulevard near the stream's headwaters to Radcliffe Road near the end of the Juneau International Airport runway, an unnamed tributary to Duck Creek from Valley Boulevard to its confluence with Duck Creek, and Jordan Creek from a pedestrian bridge upstream from Egan Drive to Crest Street at Juneau International Airport. Field surveys throughout the study area provided channel geometry for 206 cross sections, and geometric and hydraulic characteristics for 29 culverts and 15 roadway, driveway, or pedestrian bridges. Hydraulic modeling consisted of application of the U.S. Army Corps of Engineers' Hydrologic Engineering Center River Analysis System (HEC-RAS) for steady-state flow at the selected recurrence intervals using an assumed high tide of 20 feet and roughness coefficients refined by calibration to measured water-surface elevations from a 2- to 5-year flood that occurred on November 21, 2005. Model simulation results identify inter-basin flow from Jordan Creek to the southeast at Egan Drive and from Duck Creek to Jordan Creek downstream from Egan Drive at selected recurrence intervals.

  8. Amchitka Island, Alaska, special sampling project 1997

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Nevada Operations Office

    2000-06-28

    This 1997 special sampling project represents a special radiobiological sampling effort to augment the 1996 Long-Term Hydrological Monitoring Program (LTHMP) for Amchitka Island in Alaska. Lying in the western portion of the Aleutian Islands arc, near the International Date Line, Amchitka Island is one of the southernmost islands of the Rat Island Chain. Between 1965 and 1971, the U.S. Atomic Energy Commission conducted three underground nuclear tests on Amchitka Island. In 1996, Greenpeace collected biota samples and speculated that several long-lived, man-made radionuclides detected (i.e., americium-241, plutonium-239 and -240, beryllium-7, and cesium-137) leaked into the surface environment from underground cavities created during the testing. The nuclides of interest are detected at extremely low concentrations throughout the environment. The objectives of this special sampling project were to scientifically refute the Greenpeace conclusions that the underground cavities were leaking contaminants to the surface. This was achieved by first confirming the presence of these radionuclides in the Amchitka Island surface environment and, second, if the radionuclides were present, determining if the source is the underground cavity or worldwide fallout. This special sampling and analysis determined that the only nonfallout-related radionuclide detected was a low level of tritium from the Long Shot test, which had been previously documented. The tritium contamination is monitored and continues a decreasing trend due to radioactive decay and dilution.

  9. Long-term linkages between glaciers, permafrost and hydrology at two glacierized watersheds in Alaska

    Science.gov (United States)

    Gaedeke, A.; Liljedahl, A. K.; Gatesman, T.; Campbell, S. W.; Hock, R.; Oneel, S.

    2015-12-01

    Climate warming is expected to have considerable impact on the regional water balance of high latitude Arctic and sub-Arctic glacerized watersheds. In this study we combine field observations and the physically based Water Balance Simulation Model WaSiM to refine our understanding of the linkages between glaciers, permafrost and hydrology at two nearby basins with contrasting precipitation regimes: Jarvis Cr. watershed (630 km2) on the north (rain-shadow) side of Eastern Alaska Range and the south facing Phelan Cr. (32 km2), which include the US Geological Survey benchmark site Gulkana Glacier. Both are characterized by a semi-arid climate and are sub-watersheds of the Tanana River basin (12,000 km2). Our research questions include: How has glacier water storage and release varied in the past and how are they expected to change in the future? And what are the subsequent effects on lowland runoff and regional groundwater recharge? Our analyses show i) an increase in air temperature and summer warmth index (the sum of all mean monthly air temperature above 0 °C) in recent decades and ii) a continued negative glacier mass balance. Our findings suggest that, on the larger spatial scale (Tanana River basin), the reduced glacier coverage and increased glacier wastage has, in combination with limited changes in precipitation, lead to (i) increased mean annual and (ii) late winter (March) runoff. We postulate that this is due to increased groundwater recharge, which has been fueled by the 20% reduction in glacier coverage of the Tanana River basin. Here we aim to assess the combined effect of climate change, glacier shrinkage and thawing permafrost on the regional sub-arctic mountain- to lowland hydrologic system, which may transition into a regime with less surface and more subsurface water availability.

  10. Patterns and rates of riverbank erosion involving ice-rich permafrost (yedoma) in northern Alaska

    Science.gov (United States)

    Kanevskiy, Mikhail; Shur, Yuri; Strauss, Jens; Jorgenson, Torre; Fortier, Daniel; Stephani, Eva; Vasiliev, Alexander

    2016-01-01

    Yedoma, a suite of syngenetically frozen silty ice- and organic-rich deposits with large ice wedges that accumulated during the late Pleistocene, is vulnerable to thermal degradation and erosion because of the extremely high ice contents. This degradation can result in significant surface subsidence and retreat of coastal bluffs and riverbanks with large consequences to landscape evolution, infrastructure damage, and water quality. We used remote sensing and field observations to assess patterns and rates of riverbank erosion at a 35-m-high active yedoma bluff along the Itkillik River in northern Alaska. The total volumetric ground-ice content-including wedge, segregated, and pore ice-was estimated to be ~ 86%. The process of riverbank erosion and stabilization include three main stages typical of the areas with ice-rich permafrost: (1) thermal erosion combined with thermal denudation, (2) thermal denudation, and (3) slope stabilization. Active riverbank erosion at the main study site started in July 1995, when the Itkillik River changed its channel. The total retreat of the riverbank during 1995-2010 within different segments of the bluff varied from 180 to 280 m; the average retreat rate for the most actively eroded part of the riverbank was almost 19 m/y. From August 2007 to August 2011, the total retreat varied from 10 to almost 100 m. The average retreat rate for the whole 680-m-long bluff was 11 m/y. For the most actively eroded central part of the bluff (150 m long) it was 20 m/y, ranging from 16 to 24 m/y. More than 180,000 m3 of ground ice and organic-rich frozen soil, or almost 70,000 metric tons (t) of soil solids including 880 t of organic carbon, were transported to the river from the retreating bank annually. This study reports the highest long-term rates of riverbank erosion ever observed in permafrost regions of Eurasia and North America.

  11. River Morphology and River Channel Changes

    Institute of Scientific and Technical Information of China (English)

    CHANG Howard H

    2008-01-01

    River morphology has been a subject of great challenge to scientists and engineers who recognize that any effort with regard to river engineering must be based on a proper understanding of the morphological features involved and the responses to the imposed changes. In this paper,an overview of river morphology is presented from the geomorphic viewpoint. Included in the scope are the regime concept, river channel classification, thresholds in river morphology, and geomor-phic analysis of river responses. Analytical approach to river morphology based on the physical principles for the hydraulics of flow and sediment transport processes is also presented. The appli-cation of analytical river morphology is demonstrated by an example. Modeling is the modern tech-nique to determine both short-term and long-term river channel responses to any change in the en-vironment. The physical foundation of fluvial process-response must be applied in formatting a mathematical model. A brief introduction of the mathematical model FLUVIAL-12 is described.

  12. A Compilation and Review of Alaska Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Arlon Tussing; Steve Colt

    2008-12-31

    There have been many energy projects proposed in Alaska over the past several decades, from large scale hydro projects that have never been built to small scale village power projects to use local alternative energy sources, many of which have also not been built. This project was initially intended to review these rejected projects to evaluate the economic feasibility of these ideas in the light of current economics. This review included contacting the agencies responsible for reviewing and funding these projects in Alaska, including the Alaska Energy Authority, the Denali Commission, and the Arctic Energy Technology Development Laboratory, obtaining available information about these projects, and analyzing the economic data. Unfortunately, the most apparent result of this effort was that the data associated with these projects was not collected in a systematic way that allowed this information to be analyzed.

  13. Togiak River sportfishing studies

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In the spring of 1984 the Alaska Department of Fish and Game (ADF&G) entered into a cooperative agreement with the U.S. Fish and Wildlife Service (USF&WS)...

  14. Use of SAR data to study active volcanoes in Alaska

    Science.gov (United States)

    Dean, K.G.; Engle, K.; Lu, Zhiming; Eichelberger, J.; Near, T.; Doukas, M.

    1996-01-01

    Synthetic Aperture Radar (SAR) data of the Westdahl, Veniaminof, and Novarupta volcanoes in the Aleutian Arc of Alaska were analysed to investigate recent surface volcanic processes. These studies support ongoing monitoring and research by the Alaska Volcano Observatory (AVO) in the North Pacific Ocean Region. Landforms and possible crustal deformation before, during, or after eruptions were detected and analysed using data from the European Remote Sensing Satellites (ERS), the Japanese Earth Resources Satellite (JERS) and the US Seasat platforms. Field observations collected by scientists from the AVO were used to verify the results from the analysis of SAR data.

  15. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Science.gov (United States)

    Konkel, R. Steven

    2013-01-01

    Background In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. Method This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Results Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers:changing environmental conditions in remote Alaska villages,impacts associated

  16. A survey of radioactive fallout data in Alaska

    International Nuclear Information System (INIS)

    Considerable attention has been directed by the scientific community to assessing the levels and fate of radionuclides in Arctic ecosystems. The following text and tables present available data and discussion of radionuclide fallout in Alaska. A literature search of 23 on-line databases (Table 1) using Alaska, Strontium (Sr), Cesium (Cs), Plutonium (Pu) and Radionuclide as constraint terms responded with 177 possible citations. After eliminating duplicate citations, 31 articles were available: 17 were relevant to the subject matter; the remainder addressed geologic issues. All of the cited literature addressed 137Cs, 90Sr and 239,240Pu as a result of radionuclide fallout from nuclear testing or accidental release

  17. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Directory of Open Access Journals (Sweden)

    R. Steven Konkel

    2013-08-01

    Full Text Available Background . In 1984, the Alaska Department of Commerce and Economic Development (DCED issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW by January 2012. Method . This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1. (Alaska Department of Commerce and Economic Development, S. Konkel, 1984. It provides a foundation and baseline for understanding the development of this renewable energy source. Results . Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion . State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers: a. changing environmental conditions in remote Alaska

  18. Lead shot poisoning of a Pacific loon in Alaska

    Science.gov (United States)

    Wilson, H.M.; Oyen, J.L.; Sileo, L.

    2004-01-01

    Lead poisoning, associated with ingestion of spent lead shot, was diagnosed in an adult female Pacific loon (Gavia pacifica) observed with partial paralysis on 13 June 2002 and found dead on 16 June 2002 on Kigigak Island, Yukon Delta National Wildlife Refuge, western Alaska, USA. A necropsy revealed three pellets of ingested lead shot in the loona??s gizzard and a lead liver concentration of 31 ppm wet weight, which was consistent with metallic lead poisoning. This is the first report of lead poisoning in a Pacific loon and is the only account of lead toxicosis associated with ingestion of lead shot in any loon species breeding in Alaska.

  19. Floodplain Organic Carbon Storage in the Central Yukon River Basin

    Science.gov (United States)

    Lininger, K.; Wohl, E.

    2014-12-01

    Floodplain storage of organic carbon is an important aspect of the global carbon cycle that is not well understood or quantified. Although it is understood that rivers transport organic carbon to the ocean, little is known about the quantity of stored carbon in boreal floodplains and the influence of fluvial processes on this storage. We present results on total organic carbon (TOC) content within the floodplains of two rivers, the Dall River and Preacher Creek, in the central Yukon River Basin in the Yukon Flats National Wildlife Refuge of Alaska. The results indicate that organic carbon storage is influenced by fluvial disturbance and grain size. The Dall River, which contains a large amount of floodplain carbon, is meandering and incised, with well-developed floodplain soils, a greater percentage of relatively old floodplain surfaces and a slower floodplain turnover time, and finer grain sizes. Preacher Creek stores less TOC, transports coarser grain sizes, and has higher rates of avulsion and floodplain turnover time. Within the floodplain of a particular river, large spatial heterogeneity in TOC content also exists as a function of depositional environment and age and vegetation community of the site. In addition, saturated regions of the floodplains, such as abandoned channels and oxbow lakes, contain more TOC compared to drier floodplain environments. Frozen alluvial soils likely contain carbon that could be released into the environment with melting permafrost, and thus quantifying the organic carbon content in the active layer of floodplain soils could provide insight into the characteristics of the permafrost beneath. The hydrology in these regions is changing due to permafrost melt, and floodplain areas usually saturated could be dried out, causing breakdown and outgassing of carbon stored in previously saturated soils. Ongoing work will result in a first-order estimate of active-layer floodplain carbon storage for the central Yukon River Basin.

  20. Dietary intake of Alaska Native people in two regions and implications for health: the Alaska Native Dietary and Subsistence Food Assessment Project

    OpenAIRE

    Johnson, Jennifer S.; Elizabeth D. Nobmann; Asay, Elvin; Lanier, Anne P.

    2009-01-01

    Objectives. To calculate the energy and nutrient intake in 2 regions of Alaska and to describe theimplications for development of chronic disease among Alaska Native people (AN).Study design. Cross-sectional observation; 10 villages and 2 hub communities in rural Alaska;333 participants ages 13 to 88 years old.Methods. Trained interviewers collected 24-hour diet recalls during 4 seasons.Results. In both regions, AN reported a combination of traditional Native foods and store boughtfoods; most...

  1. Ecohydrology of Interior Alaska boreal forest systems

    Science.gov (United States)

    Cable, J.; Bolton, W. R.

    2012-12-01

    The ecohydrology of boreal forest ecosystems of Interior Alaska is not well understood largely because of challenges posed by the presence of discontinuous permafrost. Near-surface permafrost results in storage-dominated systems with cold, poorly drained soils, and slow growing, low statured coniferous trees (Picea mariana) or CDE's. The transition to permafrost-free areas can occur over a few meters and is accompanied by a vegetation community dominated by large deciduous trees (Populus sp. and Betula sp.) or DDE's. Typically, areas with permafrost are on north facing slopes and valley bottoms, and areas without permafrost are south facing. In Alaska's boreal forest, the permafrost is very warm and vulnerable to the effects of climate change. Once permafrost begins to thaw, the vegetation community shifts from coniferous to deciduous dominated. Streamflow in watersheds with a larger permafrost distribution tends to be higher and more responsive to precipitation events than in watersheds with low permafrost distribution. In fact, precipitation events in the low permafrost areas do not infiltrate past the rooting zone of the deciduous trees (~5-40 cm). This suggests that the deciduous trees may remove water from the system via uptake and transpiration. We focus on how vegetation water use affects boreal forest hydrology in areas of discontinuous permafrost. Specifically, we ask: what are the patterns of vegetation water use in areas with and without permafrost? This study focuses on the CDE and DDE systems. Our research sites are established on low and high locations on each aspect (south facing DDE, north facing CDE) to capture the variability associated with the different hillside drainage properties. At each of the four sites during the growing season, we measured various aspects of plant water use dynamics, including water flux, water content, water sources, depth of water uptake in the soil, and water stress. We use a Bayesian framework to analyze the data. We

  2. 2006 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    Science.gov (United States)

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Manevich, Alexander; Rybin, Alexander

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2006. A significant explosive eruption at Augustine Volcano in Cook Inlet marked the first eruption within several hundred kilometers of principal population centers in Alaska since 1992. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the fall of 2006 and continued to emit copious amounts of volcanic gas into 2007. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  3. 2007 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    McGimsey, Robert G.; Neal, Christina A.; Dixon, James P.; Malik, Nataliya; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2007. The year was highlighted by the eruption of Pavlof, one of Alaska's most frequently active volcanoes. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the autumn of 2006 and continued to emit copious amounts of steam and volcanic gas into 2007. Redoubt Volcano showed the first signs of the unrest that would unfold in 2008-09. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  4. 1995 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    McGimsey, Robert G.; Neal, Christina A.

    1996-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity (SVA) at 6 volcanic centers in 1995: Mount Martin (Katmai Group), Mount Veniaminof, Shishaldin, Makushin, Kliuchef/Korovin, and Kanaga. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) on the 1995 eruptions of 2 Russian volcanoes: Bezymianny and Karymsky. This report summarizes volcanic activity in Alaska during 1995 and the AVO response, as well as information on the 2 Kamchatkan eruptions. Only those reports or inquiries that resulted in a "significant" investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of phone calls throughout the year reporting steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1995 response record.

  5. Geologic framework of lower Cook Inlet, Alaska

    Science.gov (United States)

    Fisher, M.A.; Magoon, L.B.

    1978-01-01

    Three seismic reflectors are present throughout the lower Cook Inlet basin and can be correlated with onshore geologic features. The reflections come from unconformities at the base of the Tertiary sequence, at the base of Upper Cretaceous rocks, and near the base of Upper Jurassic strata. A contour map of the deepest horizon shows that Mesozoic rocks are formed into a northeast-trending syncline. Along the southeast flank of the basin, the northwest-dipping Mesozoic rocks are truncated at the base of Tertiary rocks. The Augustine-Seldovia arch trends across the basin axis between Augustine Island and Seldovia. Tertiary rocks thin onto the arch from the north and south. Numerous anticlines, smaller in structural relief and breadth than the Augustine-Seldovia arch, trend northeast parallel with the basin, and intersect the arch at oblique angles. The stratigraphic record shows four cycles of sedimentation and tectonism that are bounded by three regional unconformities in lower Cook Inlet and by four thrust faults and the modern Benioff zone in flysch rocks of the Kenai Peninsula and the Gulf of Alaska. The four cycles of sedimentation are, from oldest to youngest, the early Mesozoic, late Mesozoic, early Cenozoic, and late Cenozoic. Data on organic geochemistry of the rocks from one well suggest that Middle Jurassic strata may be a source of hydrocarbons. Seismic data show that structural traps are formed by northeast-trending anticlines and by structures formed at the intersections of these anticlines with the transbasin arch. Stratigraphic traps may be formed beneath the unconformity at the base of Tertiary strata and beneath unconformities within Mesozoic strata.

  6. Allegheny County Major Rivers

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of major rivers that flow through Allegheny County. These shapes have been taken from the Hydrology dataset. The Ohio River,...

  7. Qingjiang River Developer

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    THE 400-kilometer Qingjiang River, second tributary of the Yangtze River in Hubei Province, has a drainage area of 17,000 square kilometers. Its advantageous natural conditions have made it a key water power development project.

  8. Iowa's Sovereign Meandered Rivers

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This data set depicts Iowa's Meandered Rivers. These rivers are deemed sovereign land & therefore require any person wishing to conduct construction activities...

  9. River and Stream Pollution

    Science.gov (United States)

    ... Topics Games Activities Lessons MENU River and Stream Pollution Kids Homepage Topics Pollution River and Stream Pollution ... stream in the first place by disturbing the land as little as possible. Farmers and construction workers ...

  10. Onchocerciasis (River Blindness) FAQs

    Science.gov (United States)

    ... The CDC Parasites - Onchocerciasis (also known as River Blindness) Note: Javascript is disabled or is not supported ... infected Simulium blackfly. It is also called River Blindness because the fly that transmits infection breeds in ...

  11. Post-Flood Recovery of Invertebrate Communities on the Salmon Streams of the Lower Kenai Peninsula, Alaska.

    Science.gov (United States)

    Mauger, S.

    2005-05-01

    Cook Inlet Keeper and the Homer Soil and Water Conservation District have been partnering since 1998 to monitor water quality on the lower Kenai Peninsula's most economically, culturally, and socially important salmon streams: Anchor River, Stariski Creek, Deep Creek, and Ninilchik River. Although these rivers support abundant salmon populations and are nutrient rich, these waterways ranked only "fair" in a 1997 macroinvertebrate assessment of Kenai Peninsula salmon streams by the University of Alaska Anchorage's Environment and Natural Resources Institute, perhaps providing an early warning signal that these high priority watersheds are being degraded. These streams are under new stresses from: 1) population growth and urban sprawl; 2) widespread spruce bark beetle infestation; 3) elevated sediment and temperature levels; and 4) catastrophic flooding events in the Fall of 2002. Cook Inlet Keeper expanded its bioassessment program in 2003 and 2004 to track the biological communities in these streams and to understand flood effects on stream productivity. Preliminary results suggest that short term reductions in abundance but not diversity occurred after flood events and that chronic sediment deposition may be responsible for sub-optimal community assessments.

  12. Factors influencing nest survival and productivity of Red-throated Loons (Gavia stellata) in Alaska

    Science.gov (United States)

    Rizzolo, Daniel; Schmutz, Joel A.; McCloskey, Sarah E.; Fondell, Thomas F.

    2014-01-01

    Red-throated Loon (Gavia stellata) numbers in Alaska have fluctuated dramatically over the past 3 decades; however, the demographic processes contributing to these population dynamics are poorly understood. To examine spatial and temporal variation in productivity, we estimated breeding parameters at 5 sites in Alaska: at Cape Espenberg and the Copper River Delta we estimated nest survival, and at 3 sites within the Yukon-Kuskokwim Delta we estimated nest survival and productivity. Nest survival varied broadly among sites and years; annual estimates (lower, upper 95% confidence interval) ranged from 0.09 (0.03, 0.29) at Cape Espenberg in 2001 to 0.93 (0.76, 0.99) at the Copper River Delta in 2002. Annual variation among sites was not concordant, suggesting that site-scale factors had a strong influence on nest survival. Models of nest survival indicated that visits to monitor nests had a negative effect on nest daily survival probability, which if not accounted for biased nest survival strongly downward. The sensitivity of breeding Red-throated Loons to nest monitoring suggests other sources of disturbance that cause incubating birds to flush from their nests may also reduce nest survival. Nest daily survival probability at the Yukon-Kuskokwim Delta was negatively associated with an annual index of fox occurrence. Survival through the incubation and chick-rearing periods on the Yukon-Kuskokwim Delta ranged from 0.09 (0.001, 0.493) to 0.50 (0.04, 0.77). Daily survival probability during the chick-rearing period was lower for chicks that had a sibling in 2 of 3 years, consistent with the hypothesis that food availability was limited. Estimates of annual productivity on the Yukon-Kuskokwim Delta ranged from 0.17 to 1.0 chicks per pair. Productivity was not sufficient to maintain population stability in 2 of 3 years, indicating that nest depredation by foxes and poor foraging conditions during chick rearing can have important effects on productivity.

  13. Mithi River Restoration Project

    OpenAIRE

    Sanghani, Himanshu

    2009-01-01

    It took only few years to turn a naturally owing river into a drain. 17.84 k.m stretch of MithiNadi (river), an arterial river, running along north-south axis of Bombay (Mumbai) is facing the grimproblems of backyard atrocities. Finding its way through the odds of household garbage, industrialsewage, other pollutants and encroachments, Mithi river originates from the conuence of two essentialreservoirs; Vihar Lake and Powai Lake and merging with Arabian Sea at Mahim creek. The stategovernment...

  14. Measuring River Pollution

    Science.gov (United States)

    Ayyavoo, Gabriel

    2004-01-01

    The Don River watershed is located within Canada's most highly urbanized area--metropolitan Toronto. Many residential and commercial uses, including alterations to the river's course with bridges, have had a significant impact on the Don's fauna and flora. Pollutants have degraded the river's water quality, a situation exacerbated by the…

  15. Effects of the earthquake of March 27, 1964, at Seward, Alaska: Chapter E in The Alaska earthquake, March 27, 1964: effects on communities

    Science.gov (United States)

    Lemke, Richard W.

    1967-01-01

    Seward, in south-central Alaska, was one of the towns most devastated by the Alaska earthquake of March 27, 1964. The greater part of Seward is built on an alluvial fan-delta near the head of Resurrection Bay on the southeast coast of the Kenai Peninsula. It is one of the few ports in south-central Alaska that is ice free all year, and the town’s economy is almost entirely dependent upon its port facilities. The Alaska earthquake of March 27, 1964, magnitude approximately 8.3–8.4, began at 6:36 p.m. Its epicenter was in the northern part of the Prince William Sound area; focal depth was 20–50 km. Strong ground motion at Seward lasted 3–4 minutes. During the shaking, a strip of land 50–400 feet wide along the Seward waterfront, together with docks and other harbor facilities, slid into Resurrection Bay as a result of large-scale submarine landsliding. Fractures ruptured the ground for'severa1 hundred feet back from the landslide scarps. Additional ground was fractured in the Forest Acres subdivision and on the alluvial floor of the Resurrection River valley; fountaining and sand boils accompanied the ground fracturing. Slide-generated wares, possibly seiche waves, and seismic sea waves crashed onto shore; ware runup was as much as 30 feet above mean lower low water and caused tremendous damage; fire from burning oil tanks added to the destruction. Damage from strong ground motion itself was comparatively minor. Tectonic subsidence of about 3.6 feet resulted in low areas being inundated at high tide. Thirteen people were killed and five were injured as a result of the earthquake. Eighty-six houses were totally destroyed and 260 were heavily damaged. The harbor facilities were almost completely destroyed, and the entire economic base of the town was wiped out. The total cost to replace the destroyed public and private facilities was estimated at $22 million. Seward lies on the axis of the Chugach Mountains geosyncline. The main structural trend in the mapped

  16. Comparison of eMODIS and MOD/MYD13A2 NDVI products during 2012-2014 spring green-up periods in Alaska and northwest Canada

    Science.gov (United States)

    Verbyla, David

    2015-04-01

    Accurate monitoring of vegetation dynamics is required to understand the inter-annual variability and long term trends in terrestrial carbon exchange in tundra and boreal ecoregions. In western North America, two Normalized Vegetation Index (NDVI) products based on spectral reflectance data from the Moderate Resolution Imaging Spectroradiometer (MODIS) are available. The MOD/MYD13A2 NDVI product is available as a 16-day composite product in a sinusoidal projection as global hdf tiles. The eMODIS Alaska NDVI product is available as a 7-day composite geotif product in a regional equal area conic projection covering Alaska and the entire Yukon River Basin. These two NDVI products were compared for the 2012-2014 late May-late June spring green-up periods in Alaska and the Yukon Territory. Relative to the MOD/MYD13A2 NDVI product, it is likely that the eMODIS NDVI product contained more cloud-contaminated NDVI values. For example, the MOD/MYD13A2 product flagged substantially fewer pixels as "good quality" in each 16-day composite period compared to the corresponding MODIS Alaska NDVI product from a 7-day composite period. During the spring green-up period, when field-based NDVI increases, the eMODIS NDVI product averaged 43 percent of pixels that declined by at least 0.05 NDVI between 2 composite periods, consistent with cloud-contamination problems, while the MOD/MYD13A2 NDVI averaged only 6 percent of pixels. Based on a cloudy Landsat-8 scene, the eMODIS compositing process selected 23 percent pixels, while the MOD/MYD13A2 compositing process selected less than 0.003 percent pixels. Based on the results, it appears that the MOD/MYD13A2 NDVI product is superior for scientific applications based on NDVI phenology in the tundra and boreal regions of northwestern North America.

  17. Alaska School Facilities Preventive Maintenance Handbook. 1997 Edition.

    Science.gov (United States)

    Mearig, Tim; Crittenden, Edwin; Morgan, Michael

    The State of Alaska has issued preventive maintenance guidelines for educational facilities designed to prevent premature failure, or to maximize or extend the useful life of a facility and its components, including roofing inspections, repainting, and door hardware adjustments. The handbook examines preventive maintenance state legislation, and…

  18. Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska

    International Nuclear Information System (INIS)

    The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact

  19. Aerial Images of Alaska's Arctic Coastal Plain; 1948, 1949

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is comprised of 36 black and white 9x9 inch aerial images of four different study areas on Alaska's Arctic Coastal Plain taken between 1948-1949 and...

  20. Climate change and health effects in Northwest Alaska

    Directory of Open Access Journals (Sweden)

    Michael Brubaker

    2011-10-01

    Full Text Available This article provides examples of adverse health effects, including weather-related injury, food insecurity, mental health issues, and water infrastructure damage, and the responses to these effects that are currently being applied in two Northwest Alaska communities.In Northwest Alaska, warming is resulting in a broad range of unusual weather and environmental conditions, including delayed freeze-up, earlier breakup, storm surge, coastal erosion, and thawing permafrost. These are just some of the climate impacts that are driving concerns about weather-related injury, the spread of disease, mental health issues, infrastructure damage, and food and water security. Local leaders are challenged to identify appropriate adaptation strategies to address climate impacts and related health effects.The tribal health system is combining local observations, traditional knowledge, and western science to perform community-specific climate change health impact assessments. Local leaders are applying this information to develop adaptation responses.The Alaska Native Tribal Health Consortium will describe relationships between climate impacts and health effects and provide examples of community-scaled adaptation actions currently being applied in Northwest Alaska.Climate change is increasing vulnerability to injury, disease, mental stress, food insecurity, and water insecurity. Northwest communities are applying adaptation approaches that are both specific and appropriate.The health impact assessment process is effective in raising awareness, encouraging discussion, engaging partners, and implementing adaptation planning. With community-specific information, local leaders are applying health protective adaptation measures.

  1. Alternative perspectives on the sustainability of Alaska's commercial fisheries.

    Science.gov (United States)

    Loring, Philip A

    2013-02-01

    Many believe commercial fisheries in Alaska (U.S.A.) are sustainability success stories, but ongoing socioeconomic problems across the state raise questions about how this sustainability is being defined and evaluated. Problems such as food insecurity and the disenfranchisement of Alaska Natives from fishing rights are well documented, yet these concerns are obscured by marketing campaigns that convey images of flourishing fishing communities and initiatives to certify Alaska's fisheries as responsibly managed. Fisheries management mandates and approaches built on such metrics and technologies as maximum sustainable yield and systems of tradable quotas actually serve to constrain, circumscribe, and marginalize some Alaskans' opportunities for effecting change in how the benefits of these fisheries are allocated. Beneath the narrative of sustainability, these management technologies perpetuate a cognitive ecological model of sustainability that is oriented to single-species outcomes, that casts people as parasites, and thus assumes the necessity of trade-offs between biological and social goals. Alternative cognitive models are available that draw metaphors from different ecological concepts such as keystone species and mutualisms. Such models, when used to inform management approaches, may improve societal outcomes in Alaska and elsewhere by promoting food security and sustainability through diversified natural resource harvest strategies that are more flexible and responsive to environmental variability and change. PMID:22988912

  2. Project RavenCare: global multimedia telemedicine in Alaska

    Science.gov (United States)

    Tohme, Walid G.; Collmann, Jeff R.; Mun, Seong K.; Vastola, David J.

    1995-05-01

    Project RavenCare is a testbed for assessing the utility of teleradiology, telemedicine and electronic patient records systems for delivering health care to Native Alaskans in remote villages. It is being established as a joint project between the department of radiology at Georgetown University Medical Center and the Southeast Alaska Regional Health Corporation (SEARHC) in Sitka, Alaska. This initiative will establish a sustained routine clinical multimedia telemedicine support for a village clinic in Hoonah, Alaska and a regional hospital in Sitka. It will link the village clinic in Hoonah to Mt. Edgecumbe Hospital in Sitka. This regional hospital will in turn be linked to Georgetown University Hospital through the T1- VSAT (very small aperture terminal) of the NASA-ACTS (Advanced Communication Technology Satellite). Regional physicians in Hoonah lack support in providing relatively routine care in areas such as radiology and pathology. This project is an initial step in a general plan to upgrade telecommunications in the health care system of the Southeast Alaska region and will address aspects of two problems; limited communication between the village health clinics and the hospital and lack of subspecialty support for hospital-based physicians in Sitka.

  3. Alaska Native Community Energy Planning and Projects (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-06-01

    This fact sheet provides information on the Alaska Native villages selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

  4. Aerial Image of Alaska's Arctic Coastal Plain; 1955

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is comprised of a single aerial image of a single area on Alaska's Arctic Coastal Plain taken on 21 June 1955 by the U.S. Air Force and obtained from...

  5. Alternative perspectives on the sustainability of Alaska's commercial fisheries.

    Science.gov (United States)

    Loring, Philip A

    2013-02-01

    Many believe commercial fisheries in Alaska (U.S.A.) are sustainability success stories, but ongoing socioeconomic problems across the state raise questions about how this sustainability is being defined and evaluated. Problems such as food insecurity and the disenfranchisement of Alaska Natives from fishing rights are well documented, yet these concerns are obscured by marketing campaigns that convey images of flourishing fishing communities and initiatives to certify Alaska's fisheries as responsibly managed. Fisheries management mandates and approaches built on such metrics and technologies as maximum sustainable yield and systems of tradable quotas actually serve to constrain, circumscribe, and marginalize some Alaskans' opportunities for effecting change in how the benefits of these fisheries are allocated. Beneath the narrative of sustainability, these management technologies perpetuate a cognitive ecological model of sustainability that is oriented to single-species outcomes, that casts people as parasites, and thus assumes the necessity of trade-offs between biological and social goals. Alternative cognitive models are available that draw metaphors from different ecological concepts such as keystone species and mutualisms. Such models, when used to inform management approaches, may improve societal outcomes in Alaska and elsewhere by promoting food security and sustainability through diversified natural resource harvest strategies that are more flexible and responsive to environmental variability and change.

  6. STUDY OF THE SUBARCTIC HEAT ISLAND AT FAIRBANKS, ALASKA

    Science.gov (United States)

    The heat island associated with the City of Fairbanks, Alaska was studied as a means of isolating the effects of self-heating modified radiative transfer from other causes of heat islands. Minimal winter insolation virtually eliminated the effects of variable albedo and the daily...

  7. Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

  8. 75 FR 8396 - Izembek National Wildlife Refuge, Cold Bay, Alaska

    Science.gov (United States)

    2010-02-24

    ... Fish and Wildlife Service Izembek National Wildlife Refuge, Cold Bay, Alaska AGENCY: U.S. Fish and... Washington, DC. In addition, we will hold public scoping meetings in King Cove, Cold Bay, Sand Point, and... traders, to a World War II outpost. The Izembek Wilderness covers much of the refuge and includes...

  9. Long Range Program, Library Development in Alaska 1973-1978.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of State Libraries.

    A statewide library development program designed to provide total library services to meet educational, informational, and cultural needs of the people of Alaska is outlined in this document. The body of the report is divided into three sections. In the first, the purpose, scope, and development of the plan are summarized. The second section…

  10. 78 FR 41942 - Alaska; Major Disaster and Related Determinations

    Science.gov (United States)

    2013-07-12

    ... Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to... Assistance--Disaster Housing Operations for Individuals and Households; 97.050, Presidentially Declared... SECURITY Federal Emergency Management Agency Alaska; Major Disaster and Related Determinations...

  11. 76 FR 59420 - Proposed Information Collection; Alaska Guide Service Evaluation

    Science.gov (United States)

    2011-09-26

    ... Fish and Wildlife Service Proposed Information Collection; Alaska Guide Service Evaluation AGENCY: Fish... Wildlife Service) will ask the Office of Management and Budget (OMB) to approve the information collection... the IC to the Service Information Collection Clearance Officer, Fish and Wildlife Service, MS...

  12. The integrated hydrologic and societal impacts of a warming climate in interior Alaska

    Science.gov (United States)

    Jones, Charles E., Jr.

    In this dissertation, interdisciplinary research methods were used to examine how changes in hydrology associated with climate affect Alaskans. Partnerships were established with residents of Fairbanks and Tanana to develop scientific investigations relevant to rural Alaskans. In chapter 2, local knowledge was incorporated into scientific models to identify a social-ecological threshold used to model potential driftwood harvest from the Yukon River. Anecdotal evidence and subsistence calendar records were combined with scientific data to model the harvest rates of driftwood. Modeling results estimate that between 1980 and 2010 hydrologic factors alone were responsible for a 29% decrease in the annual wood harvest, which approximately balanced a 23% reduction in wood demand due to a decline in number of households. The community's installation of wood-fired boilers in 2007 created a threshold increase (76%) in wood demand that is not met by driftwood harvest. Modeling of climatic scenarios illustrates that increased hydrologic variability decreases driftwood harvest and increases the financial or temporal costs for subsistence users. In chapter 3, increased groundwater flow related to permafrost degradation was hypothesized to be affect river ice thickness in sloughs of the Tanana River. A physically-based, numerical model was developed to examine the importance of permafrost degradation in explaining unfrozen river conditions in the winter. Results indicated that ice melt is amplified by increasing groundwater upwelling rates, groundwater temperatures, and snowfall. Modeling results also suggest that permafrost degradation could be a valid explanation of the phenomenon, but does not address the potential drivers (e.g. warming climate, forest fire, etc.) of the permafrost warming. In chapter 4, remote sensing techniques were hypothesized to be useful for mapping dangerous ice conditions on the Tanana River in interior Alaska. Unsupervised classification of high

  13. Status of EarthScope's Transportable Array in Alaska

    Science.gov (United States)

    Hafner, K.; Busby, R. W.; Enders, M.

    2014-12-01

    The EarthScope's Transportable Array has completed its first year of operations in Alaska. The proposed station grid uses 85 km spacing & consists of ~290 locations in Alaska and Western Canada. About 60 of the grid locations will be at existing seismic stations operated by the AEC, AVO & ATWC and are being upgraded with shallow borehole installations or higher quality sensors as appropriate. About 10 new stations will be collocated with PBO GPS stations. At the end of July 2014, 90% of the site reconnaissance has been completed, & 25 sites have been permitted with private landowners or the State of Alaska. 11 new TA stations have been installed, & 7 existing stations (AK network code) have been upgraded. Data from these stations is flowing to the Array Network Facility (ANF) and being archived at the IRIS DMC. As the Transportable Array has moved to Alaska, IRIS has experimented with different portable drills and drilling techniques to create shallow holes (1-5 m deep, 15-20 cm in diameter) in permafrost and rock outcrops for seismometer installation. The goal of these new methods is to maintain or enhance a station's noise performance while minimizing its footprint & the equipment, materials, and overall expense required for its construction. Motivating this approach are recent developments in posthole broadband seismometer design & the unique conditions for operating in Alaska, where most areas are only accessible by small plane or helicopter, & permafrost underlies much of the region. IRIS contracted with a drilling specialist to create a prototype Transportable Drill (less than 1300 lbs with tooling) that is capable of augering to 5 m in unconsolidated materials and permafrost, downhole hammering to 2.5 m in bedrock with a steel casing following the bit and diamond coring in solid rock to 2 m. This drill has been successfully deployed by helicopter to create a hole 2.7 m deep and 15 cm diameter in bedrock. The auger mode was used successfully to install a

  14. Assessing the Accuracy of Alaska National Hydrography Data for Mapping and Science

    Science.gov (United States)

    Arundel, S. T.; Yamamoto, K. H.; Mantey, K.; Vinyard-Houx, J.; Miller-Corbett, C. D.

    2012-12-01

    In July, 2011, the National Geospatial Program embarked on a large-scale Alaska Topographic Mapping Initiative. Maps will be published through the USGS US Topo program. Mapping of the state requires an understanding of the spatial quality of the National Hydrography Dataset (NHD), which is the hydrographic source for the US Topo. The NHD in Alaska was originally produced from topographic maps at 1:63,360 scale. It is critical to determine whether the NHD is accurate enough to be represented at the targeted map scale of the US Topo (1:25,000). Concerns are the spatial accuracy of data and the density of the stream network. Unsuitably low accuracy can be a result of the lower positional accuracy standards required for the original 1:63,360 scale mapping, temporal changes in water features, or any combination of these factors. Insufficient positional accuracy results in poor vertical integration with data layers of higher positional accuracy. Poor integration is readily apparent on the US Topo, particularly relative to current imagery and elevation data. In Alaska, current IFSAR-derived digital terrain models meet positional accuracy requirements for 1:24,000-scale mapping. Initial visual assessments indicate a wide range in the quality of fit between features in NHD and the IFSAR. However, no statistical analysis had been performed to quantify NHD feature accuracy. Determining the absolute accuracy is cost prohibitive, because of the need to collect independent, well-defined test points for such analysis; however, quantitative analysis of relative positional error is a feasible alternative. The purpose of this study is to determine the baseline accuracy of Alaska NHD pertinent to US Topo production, and to recommend reasonable guidelines and costs for NHD improvement and updates. A second goal is to detect error trends that might help identify areas or features where data improvements are most needed. There are four primary objectives of the study: 1. Choose study

  15. Alaska-Washington effects on northern oil and gas projects

    Energy Technology Data Exchange (ETDEWEB)

    Persily, L. [Alaska Dept. of Revenue, Juneau, AK (United States)

    2003-07-01

    This paper presents a review of a natural gas project proposal for Alaska. The proven reserves of the Alaskan North Slope total 35 trillion cubic feet (tcf) of natural gas. Potential gas reserves are estimated at about 100 tcf, but the gas is stranded and far from markets. The challenge of developing the resource lies in the development and construction of a pipeline to Alberta. While many companies have expressed interest in the project, investors believe the risk is too high for the multi-billion-dollar construction cost. In 1977, the government of Alaska created an oil-wealth savings account from the profits of the Prudhoe Bay oil discovery. The author suggested that instead of using the account for paying dividends to Alaskans as is currently done, the government should consider using the money to help reduce the risk and encourage private investors. BP and ConocoPhillips have indicated that they want risk-sharing help from the U.S. Treasury to build the pipeline. The author explained why gas price risk is such a concern and why North Slope producers are asking for financial assurances. Some Alaskans would prefer that a public corporation build, own and operate a gas project. Instead of building a pipeline to Alberta, they would prefer to build and operate a pipeline from Prudhoe Bay to a coastal liquefaction plant where a fleet of tankers would bring the refined LNG product to markets. The Alaska Native concern is another issue that requires attention. The issues which are important to Alaska natives include maintaining local control over taxation, social issues, and a financial stake in the project. Several Native corporations have formed a partnership and hope to buy into the Alaska gas project.

  16. The 2009 eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Bull, Katharine F.; Cameron, Cheryl; Coombs, Michelle L.; Diefenbach, Angie; Lopez, Taryn; McNutt, Steve; Neal, Christina; Payne, Allison; Power, John A.; Schneider, David J.; Scott, William E.; Snedigar, Seth; Thompson, Glenn; Wallace, Kristi; Waythomas, Christopher F.; Webley, Peter; Werner, Cynthia A.; Schaefer, Janet R.

    2012-01-01

    Redoubt Volcano, an ice-covered stratovolcano on the west side of Cook Inlet, erupted in March 2009 after several months of escalating unrest. The 2009 eruption of Redoubt Volcano shares many similarities with eruptions documented most recently at Redoubt in 1966–68 and 1989–90. In each case, the eruptive phase lasted several months, consisted of multiple ashproducing explosions, produced andesitic lava and tephra, removed significant amounts of ice from the summit crater and Drift glacier, generated lahars that inundated the Drift River valley, and culminated with the extrusion of a lava dome in the summit crater. Prior to the 2009 explosive phase of the eruption, precursory seismicity lasted approximately six months with the fi rst weak tremor recorded on September 23, 2008. The first phreatic explosion was recorded on March 15, and the first magmatic explosion occurred seven days later, at 22:34 on March 22. The onset of magmatic explosions was preceded by a strong, shallow swarm of repetitive earthquakes that began about 04:00 on March 20, 2009, less than three days before an explosion. Nineteen major ash-producing explosions generated ash clouds that reached heights between 17,000 ft and 62,000 ft (5.2 and 18.9 km) ASL. During ash fall in Anchorage, the Ted Stevens International Airport was shut down for 20 hours, from ~17:00 on March 28 until 13:00 on March 29. On March 23 and April 4, lahars with fl ow depths to 10 m in the upper Drift River valley inundated parts of the Drift River Terminal (DRT). The explosive phase ended on April 4 with a dome collapse at 05:58. The April 4 ash cloud reached 50,000 ft (15.2 km) and moved swiftly to the southeast, depositing up to 2 mm of ash fall in Homer, Anchor Point, and Seldovia. At least two and possibly three lava domes grew and were destroyed by explosions prior to the final lava dome extrusion that began after the April 4 event. The fi nal lava dome ceased growth by July 1, 2009, with an estimated volume of 72

  17. 75 FR 76352 - Fisheries of the Exclusive Economic Zone Off Alaska; Gulf of Alaska; Proposed 2011 and 2012...

    Science.gov (United States)

    2010-12-08

    ... development of this data base will require the cooperation of several agencies including NMFS, the Alaska... and survey data. NMFS stock assessment scientists believe that unbiased commercial fishery catch-per... final rule to implement Amendment 87 to the FMP on October 6, 2010 (75 FR 61639), effective November...

  18. Paleolimnology of Lake Tubutulik, an iron-meromictic Eocene Lake, eastern Seward Peninsula, Alaska

    Science.gov (United States)

    Dickinson, Kendell A.

    1988-01-01

    Sideritic lacustrine mudstone was found in drill core from a uranium deposit in the Death Valley area in the eastern part of the Seward Peninsula, Alaska. The precursor sediments for this rock were deposited in an unusual "iron-meromictic" Eocene lake, herein named Lake Tubutulik, which occupied part of the Boulder Creek basin, a structural graben that is probably a southern extension of the larger Death Valley basin. The Boulder Creek basin is bounded on the west by granite of the Late Cretaceous Darby Pluton, on the east by Precambrian to Paleozoic metasedimentary rocks. The lake basin was formed by basaltic flows that dammed the river valley of the ancestral Tubutulik River in early Eocene time. Lake Tubutulik contained a nearshore facies of fine-grained organic mud and an offshore facies of laminated sideritic mud. The offshore (profundal) laminated mudstone consists of alternating layers of authigenic siderite and detrital layers containing mostly quartz and clay minerals. Both lacustrine facies contain turbidities. The lacustrine sediments graded laterally into an onshore facies of colluvial and fluvial sandstone, paludal mudstone, and coal. The ancient lake apparently occupied a small deep basin in a tectonically active area of high relief. Meromixus was probably stabilized by reduced iron and bicarbonate dissolved in the monimolimnion. The intensity of meromixus decreased as the lake became shallower from sediment filling. The source of the iron, abundant in the monimolimnion of Lake Tubutulik, was probably the Eocene basalt. Based on carbon isotope analysis of the siderite, the dissolved bicarbonate in the profundal facies was largely inorganic. Sideritic carbon in one sample from the onshore paludal facies has an isotopic signature ( δ13C = +16.9) consistent with residual carbon formed during methanogenic fermentation.

  19. Paleolimnology of Lake Tubutulik, an iron-meromictic Eocene Lake, eastern Seward Peninsula, Alaska

    Science.gov (United States)

    Dickinson, K.A.

    1988-01-01

    Sideritic lacustrine mudstone was found in drill core from a uranium deposit in the Death Valley area in the eastern part of the Seward Peninsula, Alaska. The precursor sediments for this rock were deposited in an unusual "iron-meromictic" Eocene lake, herein named Lake Tubutulik, which occupied part of the Boulder Creek basin, a structural graben that is probably a southern extension of the larger Death Valley basin. The Boulder Creek basin is bounded on the west by granite of the Late Cretaceous Darby Pluton, on the east by Precambrian to Paleozoic metasedimentary rocks. The lake basin was formed by basaltic flows that dammed the river valley of the ancestral Tubutulik River in early Eocene time. Lake Tubutulik contained a nearshore facies of fine-grained organic mud and an offshore facies of laminated sideritic mud. The offshore (profundal) laminated mudstone consists of alternating layers of authigenic siderite and detrital layers containing mostly quartz and clay minerals. Both lacustrine facies contain turbidities. The lacustrine sediments graded laterally into an onshore facies of colluvial and fluvial sandstone, paludal mudstone, and coal. The ancient lake apparently occupied a small deep basin in a tectonically active area of high relief. Meromixus was probably stabilized by reduced iron and bicarbonate dissolved in the monimolimnion. The intensity of meromixus decreased as the lake became shallower from sediment filling. The source of the iron, abundant in the monimolimnion of Lake Tubutulik, was probably the Eocene basalt. Based on carbon isotope analysis of the siderite, the dissolved bicarbonate in the profundal facies was largely inorganic. Sideritic carbon in one sample from the onshore paludal facies has an isotopic signature (??13C = +16.9) consistent with residual carbon formed during methanogenic fermentation. ?? 1988.

  20. Bear-salmon study, 1952, Brown's River, Uyak Bay, Kodiak Island, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A relatively small number of unspawned salmon are taken by bear. Although the figures are not as exact as those of the Sulua Creek study, the number represents...

  1. H12325: NOS Hydrographic Survey , Approaches to Kuskokwim River, Alaska, 2011-09-17

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  2. H12169: NOS Hydrographic Survey , Kuskokwim River, Alaska, 2010-09-02

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  3. H12165: NOS Hydrographic Survey , Kuskokwim River, Alaska, 2010-07-26

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  4. A survey for cliff-nesting birds of prey along the Noatak River, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The primary objective of the study was to locate peregrine falcon nesting sites and to locate nest sites of other raptor species and assess their location in...

  5. 76 FR 51887 - Safety Zone; Patuxent River, Patuxent River, MD

    Science.gov (United States)

    2011-08-19

    ...) entitled ``Safety Zone; Patuxent River, Patuxent River, MD'' in the Federal Register (76 FR 36447). We... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Patuxent River, Patuxent River, MD AGENCY... safety zone during the ``NAS Patuxent River Air Expo '11,'' which consists of aerial...

  6. Measuring perceptions of climate change in northern Alaska: pairing ethnography with cultural consensus analysis

    Directory of Open Access Journals (Sweden)

    Courtney Carothers

    2014-12-01

    Full Text Available Given current and projected warming trends in the Arctic and the important role played by subsistence hunting and fishing in the life of northern rural communities, it is increasingly important to document local observations of climate change and its impacts on livelihood practices. We describe ethnographic research exploring local observations of climate changes and related impacts on subsistence fisheries in three Iñupiat communities in northwest Alaska and six Athabascan communities in the Yukon River drainage. We found consistent agreement among perceptions concerning a broad range of environmental changes affecting subsistence practices in these communities. These observations of environmental changes are not experienced in isolation but within the context of accompanying social changes that are continually reshaping rural Alaskan communities and subsistence economies. In this paper we reflect on our research approach combining multiple methods of inquiry. Participant observation and semidirected interviews provided the conceptual framework for broadening our focus from climate and environmental change to community residents' understanding of climate change in the context of their holistic human-environment worldview. Cultural consensus analysis allowed us to assess the extent to which perceptions of change are shared among hunters and fishers within and between villages and regions and to identify those phenomena occurring or experienced at smaller scales. Reflecting on this multimethods approach, we highlight important questions that have emerged about how we understand, synthesize, and represent local knowledge, especially as it is used in regulatory or management arenas.

  7. Streambed scour evaluations and conditions at selected bridge sites in Alaska, 2012

    Science.gov (United States)

    Beebee, Robin A.; Schauer, Paul V.

    2015-11-19

    Streambed scour potential was evaluated at 18 river- and stream-spanning bridges in Alaska that have unknown foundation details or a lack of existing scour analysis. All sites were evaluated for stream stability and long-term scour potential. Contraction scour and abutment scour were calculated for 17 bridges, and pier scour was calculated for 7 bridges that had piers. Vertical contraction (pressure flow) scour was calculated for sites with overtopping floods (where the modeled water surface was higher than the superstructure of the bridge). In most cases, hydraulic models of the 1- and 0.2-percent annual exceedance probability floods (also known as the 100- and 500-year floods, respectively) were used to derive hydraulic variables for the scour calculations. Alternate flood values were used in scour calculations for sites where smaller floods overtopped a bridge or where standard flood-frequency estimation techniques did not apply. Scour was also calculated for large recorded floods at several sites. Equations for scour in cohesive soils were used for sites where streambed sediment was silt-sized or smaller.

  8. Contribution of glacier runoff to freshwater discharge into the Gulf of Alaska

    Science.gov (United States)

    Neal, E.G.; Hood, E.; Smikrud, K.

    2010-01-01

    Watersheds along the Gulf of Alaska (GOA) are undergoing climate warming, glacier volume loss, and shifts in the timing and volume of freshwater delivered to the eastern North Pacific Ocean. We estimate recent mean annual freshwater discharge to the GOA at 870 km3 yr-1. Small distributed coastal drainages contribute 78% of the freshwater discharge with the remainder delivered by larger rivers penetrating coastal ranges. Discharge from glaciers and icefields accounts for 47% of total freshwater discharge, with 10% coming from glacier volume loss associated with rapid thinning and retreat of glaciers along the GOA. Our results indicate the region of the GOA from Prince William Sound to the east, where glacier runoff contributes 371 km3 yr -1, is vulnerable to future changes in freshwater discharge as a result of glacier thinning and recession. Changes in timing and magnitude of freshwater delivery to the GOA could impact coastal circulation as well as biogeochemical fluxes to near-shore marine ecosystems and the eastern North Pacific Ocean. Copyright ?? 2010 by the American Geophysical Union.

  9. Case studies: Alaska - Doyon, Limited and the Red Dog experience

    International Nuclear Information System (INIS)

    Alaska, the northernmost state of the USA, provides a range of examples of sustainable mineral resource development involving aboriginal people. For several decades the aboriginal people of Alaska have been active participants in efforts to integrate mineral development with traditional lifestyles. This opportunity is the result of an innovative agreement between Alaska's native people and the US Government designed to integrate native interests into the economic development of the state while preserving traditional native culture. Alaska was purchased from Russia in 1867, but it was not until 1971 that the US government reached a settlement with Alaska's native people. This was formalized as the Alaska Native Claims Settlement Act (ANCSA), an act of the US Congress that provided land, cash, and other rights and obligations to Alaska natives. As part of ANCSA, the state was divided into 12 separate geographical regions representative of the ethnic variety of Alaska's native population (Alaska Miners Association, 2003 Handbook and Service Directory; www.alaskaminers.org). Within each region a privately held corporation was established; these were owned and managed principally by natives who could demonstrate a relationship to the respective ethnic group. These corporations are known as 'regional corporations' and their native American owners are 'shareholders'. Each regional corporation was given land, mineral rights, and cash. Each regional corporation received a different amount of each, largely determined by the number of shareholders and the extent of the region. The regional corporations have both social and economic obligations to their shareholders. Within each region approximately 10 to 15% of the land was provided to the natives in a number of distinct parcels distributed across the region. Some land was provided in areas of traditional native habitation, such as near native villages, allowing a continuation of traditional lifestyles. For various reasons

  10. Using dissolved organic matter age and composition to detect permafrost thaw in boreal watersheds of interior Alaska

    Science.gov (United States)

    O'Donnell, Jonathan A.; Aiken, George R.; Walvoord, Michelle Ann; Raymond, Peter A.; Butler, Kenna; Dornblaser, Mark M.; Heckman, Katherine

    2014-01-01

    Recent warming at high latitudes has accelerated permafrost thaw, which can modify soil carbon dynamics and watershed hydrology. The flux and composition of dissolved organic matter (DOM) from soils to rivers are sensitive to permafrost configuration and its impact on subsurface hydrology and groundwater discharge. Here, we evaluate the utility of DOM composition and age as a tool for detecting permafrost thaw in three rivers (Beaver, Birch, and Hess Creeks) within the discontinuous permafrost zone of interior Alaska. We observed strong temporal controls on Δ14C content of hydrophobic acid isolates (Δ14C-HPOA) across all rivers, with the most enriched values occurring during spring snowmelt (75 ± 8‰) and most depleted during winter flow (−21 ± 8‰). Radiocarbon ages of winter flow samples ranged from 35 to 445 yr BP, closely tracking estimated median base flow travel times for this region (335 years). During spring snowmelt, young DOM was composed of highly aromatic, high molecular-weight compounds, whereas older DOM of winter flow had lower aromaticity and molecular weight. We observed a significant correlation between Δ14C-HPOA and UV absorbance coefficient at 254 nm (α254) across all study rivers. Usingα254 as an optical indicator for Δ14C-HPOA, we also observed a long-term decline in α254 during maximum annual thaw depth over the last decade at the Hess Creek study site. These findings suggest a shift in watershed hydrology associated with increasing active layer thickness. Further development of DOM optical indicators may serve as a novel and inexpensive tool for detecting permafrost degradation in northern watersheds.

  11. Geomorphic consequences of volcanic eruptions in Alaska: A review

    Science.gov (United States)

    Waythomas, Christopher F.

    2015-10-01

    Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta-Katmai eruption, the 1989-1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed. A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment-water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite large

  12. River Restoration and Meanders

    OpenAIRE

    G. Mathias Kondolf

    2006-01-01

    Among the most visually striking river restoration projects are those that involve the creation of a new channel, often in a new alignment and generally with a form and dimensions that are different from those of the preproject channel. These channel reconstruction projects often have the objective of creating a stable, single-thread, meandering channel, even on rivers that were not historically meandering, on rivers whose sediment load and flow regime would not be consistent with such stable...

  13. Dispersion in Alluvial River

    OpenAIRE

    Ferdousi, Amena

    2014-01-01

    River pollution is the contamination of river water by pollutant being discharged directly or indirectly on it. Depending on the degree of pollutant concentration, subsequent negative environmental effects such as oxygen depletion and severe reductions in water quality may occur which affect the whole environment. River pollution can then cause a serious threat for fresh water and as well as the entire living creatures. Dispersion in natural stream is the ability of a stream to dilute soluble...

  14. Blood Politics, Ethnic Identity, and Racial Misclassification among American Indians and Alaska Natives

    OpenAIRE

    Haozous, Emily A.; Carolyn J. Strickland; Palacios, Janelle F.; Teshia G. Arambula Solomon

    2014-01-01

    Misclassification of race in medical and mortality records has long been documented as an issue in American Indian/Alaska Native data. Yet, little has been shared in a cohesive narrative which outlines why misclassification of American Indian/Alaska Native identity occurs. The purpose of this paper is to provide a summary of the current state of the science in racial misclassification among American Indians and Alaska Natives. We also provide a historical context on the importance of this pro...

  15. Geologic studies in Alaska by the U.S. Geological Survey, 1996

    Science.gov (United States)

    Gray, John E.; Riehle, James R.

    1998-01-01

    This collection of 12 papers continues the annual series 1 of U.S. Geological Survey (USGS) reports on geologic investigations in Alaska. The annual volume presents results from new or ongoing studies in Alaska that are of interest to scientists in academia, industry, land and resource managers, and the general public. The Geological Studies in Alaska volume reports the results of studies that cover a broad spectrum of earth science topics from many parts of the state (fig. 1).

  16. Internet and broadband adoption in indigenous communities: An analysis of rural Alaska

    OpenAIRE

    Hudson, Heather E.

    2012-01-01

    Alaska is the largest state in the U.S., but with the nation's lowest population density of only 1.2 persons per square mile. About 15 percent of the population are Alaska Natives. Approximately two-thirds of this indigenous population live in more than 200 villages, most of which are remote settlements without road access. A current broadband infrastructure project in rural southwest Alaska provides an opportunity to gather reliable data on rural broadband adoption and use, and perceived bar...

  17. Numerical modeling of the 1964 Alaska tsunami in western Passage Canal and Whittier, Alaska

    Directory of Open Access Journals (Sweden)

    D. J. Nicolsky

    2010-12-01

    Full Text Available A numerical model of the wave dynamics in Passage Canal, Alaska during the Mw 9.2 megathrust earthquake is presented. During the earthquake, several types of waves were identified at the city of Whittier, located at the head of Passage Canal. The first wave is thought to have been a seiche, while the other two waves were probably triggered by submarine landslides. We model the seiche wave, landslide-generated tsunami, and tectonic tsunami in Passage Canal and compute inundation by each type of wave during the 1964 event. Modeled results are compared with eyewitness reports and an observed inundation line. Results of the numerical experiments let us identify where the submarine landslides might have occurred during the 1964 event. We identify regions at the head and along the northern shore of Passage Canal, where landslides triggered a wave that caused most of the damage in Whittier. An explanation of the fact that the 1964 tectonic tsunami in Whittier was unnoticed is presented as well. The simulated inundation by the seiche, landslide-generated tsunami, and tectonic tsunami can help to mitigate tsunami hazards and prepare Whittier for a potential tsunami.

  18. RIVER FLOW CONDITIONS AND DYNAMIC STATE ANALYSIS OF PAHANG RIVER

    OpenAIRE

    Muhamad Barzani Gasim; M. E. Toriman; Mushrifah Idris; Pan Ian Lun; M. K.A. Kamarudin; A. A. Nor Azlina; Mazlin Mokhtar; S.A. Sharifah Mastura

    2013-01-01

    Pahang River (Sg. Pahang) is the longest river in Peninsular Malaysia. Flood is a common event in Pahang River Basin during wet season which triggered by monsoon season. The hydrodynamic study of Pahang River should be well understood especially when it is a target of northeast monsoon which influenced the Pahang River Basin every year (from November to March). 17 river cross section stations were selected and used to measure its drainage capacity, hydraulic parameters and estimation of flow ...

  19. Blood Politics, Ethnic Identity, and Racial Misclassification among American Indians and Alaska Natives

    Directory of Open Access Journals (Sweden)

    Emily A. Haozous

    2014-01-01

    Full Text Available Misclassification of race in medical and mortality records has long been documented as an issue in American Indian/Alaska Native data. Yet, little has been shared in a cohesive narrative which outlines why misclassification of American Indian/Alaska Native identity occurs. The purpose of this paper is to provide a summary of the current state of the science in racial misclassification among American Indians and Alaska Natives. We also provide a historical context on the importance of this problem and describe the ongoing political processes that both affect racial misclassification and contribute to the context of American Indian and Alaska Native identity.

  20. Blood politics, ethnic identity, and racial misclassification among American Indians and Alaska Natives.

    Science.gov (United States)

    Haozous, Emily A; Strickland, Carolyn J; Palacios, Janelle F; Solomon, Teshia G Arambula

    2014-01-01

    Misclassification of race in medical and mortality records has long been documented as an issue in American Indian/Alaska Native data. Yet, little has been shared in a cohesive narrative which outlines why misclassification of American Indian/Alaska Native identity occurs. The purpose of this paper is to provide a summary of the current state of the science in racial misclassification among American Indians and Alaska Natives. We also provide a historical context on the importance of this problem and describe the ongoing political processes that both affect racial misclassification and contribute to the context of American Indian and Alaska Native identity.