WorldWideScience

Sample records for alaska national uranium

  1. Uranium hydrogeochemical and stream sediment reconnaissance of the Ketchikan NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; Minor, M.M.; McInteer, C.; Hansel, J.N.; Broxton, D.E.

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaisance (HSSR) of the Ketchikan NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume, these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1;1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  2. Uranium hydrogeochemical and stream sediment reconnaissance of the Craig NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Craig NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  3. Uranium hydrogeochemical and stream sediment reconnaissance of the Circle NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Hardy, L.C.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Circle NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  4. Uranium hydrogeochemical and stream sediment reconnaissance of the Melozitna NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Hardy, L.C.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Melozitna NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  5. Uranium hydrogeochemical and stream sediment reconnaissance of the Beaver NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; Hensley, W.K.; Thomas, G.J.; Martell, C.J.; Maassen, L.W.

    1981-11-01

    The report presents results of a Hydrogeochemical and Stream Sediment Reconnaisance (HSSR) of the Ketchikan NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) protion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume, these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1;1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  6. Uranium hydrogeochemical and stream sediment reconnaissance of the Nabesne NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Garcia, S.R.; Hanks, D.; George, W.E.; Boliver, S.L.

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Nabesna NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory (see, for example, Planner and others, 1981), and will not be included in this report

  7. Investigation of Alaska's uranium potential

    International Nuclear Information System (INIS)

    Eakins, G.R.

    1975-01-01

    Of the various geographical regions in Alaska that were examined in an exhaustive literary search for the possibility of uranium--either vein type or sedimentary--six offer encouragement: the Copper River Basin, the alkaline intrusive belt of west-central Alaska and Selawik Basin area, the Seward Peninsula, the Susitna Lowland, the coal-bearing basins of the north flank of the Alaska Range, the Precambrian gneisses of the USGS 1:250,000 Goodnews quadrangle, and Southeastern Alaska, which has the sole operating uranium mine in the state. Other areas that may be favorable for the presence of uranium include the Yukon Flats area, the Cook Inlet Basin, and the Galena Basin

  8. National uranium resource evaluation. Uranium hydrogeochemical and stream sediment reconnaissance of the Mt. Fairweather NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hensley, W.K.; Thomas, G.J.; Martell, C.J.; Maassen, L.W.

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Fairweather NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in macine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  9. Uranium hydrogeochemical and stream-sediment reconnaissance of the Teller NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    1982-06-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Teller NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  10. Uranium Hydrogeochemical and Stream-Sediment Reconnaissance of the Bendeleben NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Bendeleben NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting program of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  11. Uranium hydrogeochemical and stream-sediment reconnaissance of the Noatak NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Noatak NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report. 16 figures, 12 tables

  12. Uranium hydrogeochemical and stream-sediment reconnaissance of the Charley River NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Charley River NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  13. National Uranium Resource Evaluation: uranium hydrogeochemical and stream-sediment reconnaissance of the Shishmaref NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Shishmaref NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  14. Uranium hydrogeochemical and stream sediment reconnaissance of the Kateel River NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Kateel River NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  15. National Uranium Resource Evaluation: uranium hydrogeochemical and stream-sediment reconnaissance of the Shungnak NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Shungnak NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  16. Uranium hydrogeochemical and stream-sediment reconnaissance of the Black River NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Black River NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  17. National uranium resource evaluation. Uranium hydrogeochemical and stream sediment reconnaissance of the Lookout Ridge NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; Garcia, S.R.; Hanks, D.; George, W.E.; Bolivar, S.L.

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the lookout Ridge NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  18. National uranium resource evaluation. Uranium hydrogeochemical and stream sediment reconnaissance of the Harrison Bay NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Minor, M.M.; McInteer, C.; Hansel, J.N.; Broxton, D.E.

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Harrison Bay NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  19. Uranium Hydrogeochemical and Stream-Sediment Reconnaissance of the Seward NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, D.L.; Hardy, L.D.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR) of the Seward NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  20. Uranium hydrogeochemical and stream-sediment reconnaissance of the Ophir NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Ophir NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report. 14 figures, 10 tables

  1. Uranium hydrogeochemical and stream-sediment reconnaissance of the Kantishna River NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Kantishna River NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  2. Uranium hydrogeochemical and stream-sediment reconnaissance of the Tanana NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    1982-04-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Tanana NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendix A describes the sample medium and summarizes the analytical results for that medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting program of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will be included in this report

  3. Uranium hydrogeochemical and stream-sediment reconnaissance of the Eagle NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Hardy, L.C.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Eagle NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  4. National uranium resource evaluation, preliminary report

    International Nuclear Information System (INIS)

    1976-06-01

    The results of the initial phase of the National Uranium Resource Evaluation (NURE) are reported. NURE is a comprehensive nationwide program to evaluate uranium resources and to identify areas favorable for uranium exploration. Part I presents estimates of uranium ore reserves and potential resources available at costs (not prices) of $10, $15, and $30 per pound U 3 O 8 (uranium oxide). These estimates comprise the national uranium resource position. They are, however, preliminary because limitations of time and available geologic data prevented adequate assessment of some areas that may be favorable for potential resources. Part II presents the potential uranium resources for each of 13 regions, whose boundaries have been drawn chiefly on geologic considerations. The general geology is summarized, and the types of uranium deposits are described. Although limited geologic reconnaissance was done in various parts of the country, the report is based primarily on the compilation and evaluation of data in ERDA files. Mining companies furnished a substantial amount of information on exploration results, development, production, and future plans. Published, manuscript, and open-file reports by government agencies, universities, and research organizations were reviewed. In addition, many individuals affiliated with universities and with state and federal agencies provided supplemental geologic information. This was particularly helpful in the eastern and central states and in Alaska, where information on uranium occurrences is limited

  5. Reports on investigations of uranium anomalies. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Goodknight, C.S.; Burger, J.A.

    1982-10-01

    During the National Uranium Resource Evaluation (NURE) program, conducted for the US Department of Energy (DOE) by Bendix Field Engineering Corporation (BFEC), radiometric and geochemical surveys and geologic investigations detected anomalies indicative of possible uranium enrichment. Data from the Aerial Radiometric and Magnetic Survey (ARMS) and the Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR), both of which were conducted on a national scale, yielded numerous anomalies that may signal areas favorable for the occurrence of uranium deposits. Results from geologic evaluations of individual 1 0 x 2 0 quadrangles for the NURE program also yielded anomalies, which could not be adequately checked during scheduled field work. Included in this volume are individual reports of field investigations for the following six areas which were shown on the basis of ARMS, HSSR, and (or) geologic data to be anomalous: (1) Hylas zone and northern Richmond basin, Virginia; (2) Sischu Creek area, Alaska; (3) Goodman-Dunbar area, Wisconsin; (4) McCaslin syncline, Wisconsin; (5) Mt. Withington Cauldron, Socorro County, New Mexico; (6) Lake Tecopa, Inyo County, California. Field checks were conducted in each case to verify an indicated anomalous condition and to determine the nature of materials causing the anomaly. The ultimate objective of work is to determine whether favorable conditions exist for the occurrence of uranium deposits in areas that either had not been previously evaluated or were evaluated before data from recent surveys were available. Most field checks were of short duration (2 to 5 days). The work was done by various investigators using different procedures, which accounts for variations in format in their reports. All papers have been abstracted and indexed

  6. Investigation of Alaska's uranium potential. Part 1. Reconnaissance program, West-Central Alaska and Copper River basin. Part 2. Uranium and thorium in granitic and alkaline rocks in Western Alaska

    International Nuclear Information System (INIS)

    Eakins, G.R.; Jones, B.K.; Forbes, R.B.

    1977-02-01

    A 6-week reconnaissance program was conducted in west-central Alaska and in the Copper River basin--Chitina River valley area to aid in determining the uranium potential of the state. Division personnel also submitted samples from the Healy, Eagle, and Charley River quadrangles. Collected were 916 stream-sediment samples and 427 bedrock samples for uranium, thorium, and potassium oxide determinations, and 565 water samples for uranium analyses. A statistical analysis of the determinations was made using a computer at the University of Alaska. Thresholds, anomalies, and U:Th ratios were calculated for eight separate regions. Anomalous values of the U, Th, and K 2 O, and radiometric measurements are discussed. A combination of all uranium exploration techniques is needed to locate potential uranium deposits in Alaska. Correlations between aerial and ground radiometric surveys and geochemical surveys were often lacking, indicating that each method may or may not be effective, depending on local conditions. One hundred and eight rock samples were selected from traverses across five plutons in western Alaska and analyzed for uranium, thorium, and potassium. The highest uranium concentrations detected were 86 and 92 ppM from a mineralized dike intrusion zone in the Selawik Lake Complex. Analysis of individual plutons yields strong correlations between mineralogy and radioactivity. The mineralogical variable that correlates with uranium or thorium varies from one pluton to the next. Based on these correlations, mineralogical guidelines are offered for the selection of uranium enriched variants in four of the five plutons

  7. National uranium resource evaluation, Montrose Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Goodknight, C.S.; Ludlam, J.R.

    1981-06-01

    The Montrose Quadrangle in west-central Colorado was evaluated to identify and delineate areas favorable for the occurrence of uranium deposits according to National Uranium Resource Evaluation program criteria. General surface reconnaissance and geochemical sampling were conducted in all geologic environments in the quadrangle. Preliminary data from aerial radiometric and hydrogeochemical and stream-sediment reconnaissance were analyzed and brief followup studies were performed. Twelve favorable areas were delineated in the quadrangle. Five favorable areas contain environments for magmatic-hydrothermal uranium deposits along fault zones in the Colorado mineral belt. Five areas in parts of the Harding and Entrada Sandstones and Wasatch and Ohio Creek Formations are favorable environments for sandstone-type uranium deposits. The area of late-stage rhyolite bodies related to the Lake City caldera is a favorable environment for hydroauthigenic uranium deposits. One small area is favorable for uranium deposits of uncertain genesis. All near-surface Phanerozoic sedimentary rocks are unfavorable for uranium deposits, except parts of four formations. All near-surface plutonic igneous rocks are unfavorable for uranium deposits, except five areas of vein-type deposits along Tertiary fault zones. All near-surface volcanic rocks, except one area of rhyolite bodies and several unevaluated areas, are unfavorable for uranium. All near-surface Precambrian metamorphic rocks are unfavorable for uranium deposits. Parts of two wilderness areas, two primitive areas, and most of the subsurface environment are unevaluated

  8. Uranium concentrations in stream waters and sediments from selected sites in the eastern Seward Peninsula, Koyukuk, and Charley River areas, and across South-Central Alaska

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.; Hill, D.E.

    1978-04-01

    During the summer of 1975, a 6-week reconnaissance was conducted in widespread areas of Alaska as part of the National Uranium Resource Evaluation (NURE) program; Water, stream sediment, and bedrock samples were taken from the eastern Seward Peninsula, from north of Koyukuk River, from the Charley River area, and from across south central Alaska. This report contains the LASL uranium determinations resulting from fluorometric analysis of the water samples and delayed-neutron counting of the stream sediment samples. Results of total uranium for 611 water and 641 sediment samples, from 691 stream locations, are presented. Overlays showing the numbered sample locations and graphically portraying the concentrations of uranium in water and stream sediment samples, at 1:250,000 scale for use with existing National Topographic Map Series (NTMS) sheets and published geologic maps, are provided as plates. The main purposes of this work are to make the uranium data available to the public in the standard computer format used in the NURE Hydrogeochemical and Stream Sediment Reconnaissance (i.e., with a DOE sample number giving the latitude and longitude of each sample location) and to provide uranium concentration overlays at the standard scale of 1:250,000 adopted by the DOE for the NURE program. It also allows a plausible explanation of differences between the uranium values for sediment as determined by acid dissolution/extraction/fluorometry and by delayed-neutron counting that were noted in the earlier report

  9. National Uranium Resource Evaluation, Tonopah quadrangle, Nevada

    International Nuclear Information System (INIS)

    Hurley, B.W.; Parker, D.P.

    1982-04-01

    The Tonopah Quadrangle, Nevada, was evaluated using National Uranium Resource Evaluation criteria to identify and delineate areas favorable for uranium deposits. Investigations included reconnaissance and detailed surface geologic and radiometric studies, geochemical sampling and evaluation, analysis and ground-truth followup of aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data, and subsurface data evaluation. The results of these investigations indicate environments favorable for hydroallogenic uranium deposits in Miocene lacustrine sediments of the Big Smoky Valley west of Tonopah. The northern portion of the Toquima granitic pluton is favorable for authigenic uranium deposits. Environments considered unfavorable for uranium deposits include Quaternary sediments; intermediate and mafic volcanic and metavolcanic rocks; Mesozoic, Paleozoic, and Precambrian sedimentary and metasedimentary rocks; those plutonic rocks not included within favorable areas; and those felsic volcanic rocks not within the Northumberland and Mount Jefferson calderas

  10. 75 FR 8396 - Izembek National Wildlife Refuge, Cold Bay, Alaska

    Science.gov (United States)

    2010-02-24

    ...] Izembek National Wildlife Refuge, Cold Bay, Alaska AGENCY: U.S. Fish and Wildlife Service, Interior..., we will hold public scoping meetings in King Cove, Cold Bay, Sand Point, and Nelson Lagoon in Alaska... Aleutian arc chain of volcanoes. Landforms include mountains, active volcanoes, U-shaped valleys, glacial...

  11. National uranium resource evaluation Prescott Quadrangle Arizona

    International Nuclear Information System (INIS)

    May, R.T.; White, D.L.; Nystrom, R.J.

    1982-01-01

    The Prescott Quadrangle was evaluated for uranium favorability by means of a literature search, examination of uranium occurrences, regional geochemical sampling of Precambrian rocks, limited rubidium-strontium studies, scintillometer traverses, measurement of stratigraphic sections, subsurface studies, and an aerial radiometric survey. A limited well-water sampling program for Cenozoic basins was also conducted. Favorability criteria used were those developed for the National Uranium Resource Evaluation. Five geologic environments are favorable for uranium. Three are in Tertiary rocks of the Date Creek-Artillery Basin, Big Sandy Valley, and Walnut Grove Basin. Two are in Precambrian rocks in the Bagdad and Wickenburg areas. Unfavorable areas include the southwestern crystalline terrane, the Paleozoic and Mesozoic beds, and metamorphic and plutonic Precambrian rocks of the Bradshaw and Weaver Mountains. Unevaluated areas are the basalt-covered mesas, alluvium-mantled Cenozoic basins, the Hualapai Mountains, and the Kellwebb Mine

  12. Occurrence of parsonite, a secondary uranium mineral, in alaskite of the Wheeler Creek pluton, Alaska

    International Nuclear Information System (INIS)

    Miller, T.P.; Johnson, B.

    1978-01-01

    Reconnaissance investigations in the Purcell Mountains of westcentral Alaska in 1977 revealed the presence of parsonite, a hydrous phosphate of lead and uranium with the formula Pb 2 UO 2 (PO 4 ) 2 2H 2 O. This is the first reported occurrence of parsonite in Alaska. The parsonite occurs as a soft, yellow to chocolate brown coating closely associated with green muscovite on fracture surfaces in a shear zone in alaskite of the Wheeler Creek pluton. Thin magnetite veinlets are also present. The identification of parsonite was confirmed by x-ray diffraction. Delayed neutron analysis were run on samples of the Alaskite

  13. National Uranium Resource Evaluation: Durango Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Theis, N.J.; Madson, M.E.; Rosenlund, G.C.; Reinhart, W.R.; Gardner, H.A.

    1981-06-01

    The Durango Quadrangle (2 0 ), Colorado, was evaluated using National Uranium Resource Evaluation criteria to determine environments favorable for uranium deposits. General reconnaissance, geologic and radiometric investigations, was augmented by detailed surface examination and radiometric and geochemical studies in selected areas. Eight areas favorable for uranium deposits were delineated. Favorable geologic environments include roscoelite-type vanadium-uranium deposits in the Placerville and Barlow Creek-Hermosa Creek districts, sandstone uranium deposits along Hermosa Creek, and vein uranium deposits in the Precambrian rocks of the Needle Mountains area and in the Paleozoic rocks of the Tuckerville and Piedra River Canyon areas. The major portions of the San Juan volcanic field, the San Juan Basin, and the San Luis Basin within the quadrangle were judged unfavorable. Due to lack of information, the roscoelite belt below 1000 ft (300 m), the Eolus Granite below 0.5 mi (0.8 km), and the Lake City caldera are unevaluated. The Precambrian Y melasyenite of Ute Creek and the Animas Formation within the Southern Ute Indian Reservation are unevaluated due to lack of access

  14. National uranium resource evaluation: Nogales Quadrangle, Arizona

    International Nuclear Information System (INIS)

    Luning, R.H.; Brouillard, L.A.

    1982-04-01

    Literature research, surface geologic investigations, rock sampling, and radiometric surveys were conducted in the Nogales Quadrangle, Arizona, to identify environments and to delineate areas favorable for uranium deposits according to criteria formulated during the National Uranium Resource Evaluation program. The studies were augmented by aerial radiometric and hydrogeochemical and stream-sediment surveys. No favorable environments were identified. Environments that do display favorable characteristics include magmatic-hydrothermal and authigenic environments in Precambrian and Jurassic intrusives, as well as in certain Mesozoic and Cenozoic igneous and sedimentary rocks

  15. National Uranium Resource Evaluation, Llano Quadrangle, Texas

    International Nuclear Information System (INIS)

    Droddy, M.J.; Hovorka, S.D.

    1982-04-01

    The Llano 2 0 quadrangle was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for the occurrence of uranium deposits. The areas were delineated according to criteria established for the National Uranium Resource Evaluation program. Surface studies included investigations of uranium occurrences described in the literature, location of aerial radiometric anomalies, carborne scintillometer surveys, outcrop investigations, and followup of hydrogeochemical and stream-sediment reconnaissance data. A radon emanometry survey and investigations of electric and gamma-ray well logs, drillers' logs, and well core samples were performed to evaluate the subsurface potential of the Llano Quadrangle. An environment favorable for pegmatitic deposits is identified in the Town Mountain Granite

  16. National Uranium Resource Evaluation: Bozeman Quadrangle, Montana

    International Nuclear Information System (INIS)

    Lange, I.M.; Fields, R.W.; Fountain, D.M.; Moore, J.N.; Qamar, A.I.; Silverman, A.J.; Thompson, G.R.; Chadwick, R.A.; Custer, S.G.; Smith, D.L.

    1982-08-01

    The Bozeman Quadrangle, Montana, was evaluated to identify and delineate areas containing environments favorable for uranium deposits. This evaluation was conducted using methods and criteria developed for the National Uranium Resource Evaluation program. General surface reconnaissance, mapping, radiometric traverses, and geochemical sampling were performed in all geologic environments within the quadrangle. Aerial radiometric and HSSR data were evaluated and followup studies of these anomalies and most of the previously known uranium occurrences were conducted. Detailed gravity profiling was done in the Tertiary Three Forks-Gallatin Basin and the Madison and Paradise Valleys. Also, selected well waters were analyzed. Eight areas are considered favorable for sandstone uranium deposits. They include the Tertiary Three Forks-Gallatin basin, the Madison and Paradise Valleys, and five areas underlain by Cretaceous fluvial and marginal-marine sandstones. Other environments within the quadrangle are considered unfavorable for uranium deposits when judged by the program criteria. A few environments were not evaluated due to inaccessibility and/or prior knowledge of unfavorable criteria

  17. National Uranium Resource Evaluation: Bozeman Quadrangle, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Lange, I.M.; Fields, R.W.; Fountain, D.M.; Moore, J.N.; Qamar, A.I.; Silverman, A.J.; Thompson, G.R.; Chadwick, R.A.; Custer, S.G.; Smith, D.L.

    1982-08-01

    The Bozeman Quadrangle, Montana, was evaluated to identify and delineate areas containing environments favorable for uranium deposits. This evaluation was conducted using methods and criteria developed for the National Uranium Resource Evaluation program. General surface reconnaissance, mapping, radiometric traverses, and geochemical sampling were performed in all geologic environments within the quadrangle. Aerial radiometric and HSSR data were evaluated and followup studies of these anomalies and most of the previously known uranium occurrences were conducted. Detailed gravity profiling was done in the Tertiary Three Forks-Gallatin Basin and the Madison and Paradise Valleys. Also, selected well waters were analyzed. Eight areas are considered favorable for sandstone uranium deposits. They include the Tertiary Three Forks-Gallatin basin, the Madison and Paradise Valleys, and five areas underlain by Cretaceous fluvial and marginal-marine sandstones. Other environments within the quadrangle are considered unfavorable for uranium deposits when judged by the program criteria. A few environments were not evaluated due to inaccessibility and/or prior knowledge of unfavorable criteria.

  18. National Uranium Resource Evaluation: Manhattan Quadrangle, Kansas

    International Nuclear Information System (INIS)

    Fair, C.L.; Smit, D.E.

    1982-08-01

    Surface reconnaissance and detailed subsurface studies were conducted in the Manhattan Quadrangle, Kansas, to evaluate uranium favorability using National Uranium Resource Evaluation criteria. These studies were designed in part to follow up airborne radiometric and hydrogeochemical and stream-sediment surveys. More than 600 well records were examined in the subsurface phase of the study. Results of these investigations indicate environments favorable for channel-controlled peneconcordant sandstone uranium deposits in Cretaceous rocks and for Wyoming roll-type deposits in Pennsylvanian sandstones. The Cretaceous sandstone environments exhibit such favorable characteristics as a bottom unconformity, high bed load, braided fluvial channels, large-scale cross-bedding, and one anomalous outcrop. The Pennsylvanian sandstone environments exhibit such favorable characteristics as arkosic cross-bedded sandstones, included pyrite and organic debris, interbedded shales, and gamma-ray log anomalies. Environments considered unfavorable for uranium deposits are limestone and dolomite environments, marine black shale environments, evaporative precipitate environments, and some fluvial sandstone environments. Environments considered unevaluated because not enough data were available include Precambrian plutonic, metamorphic, and sedimentary rocks, even though a large number of thin sections were available for study

  19. National Uranium Resource Evaluation: Marfa Quadrangle, Texas

    International Nuclear Information System (INIS)

    Henry, C.D.; Duex, T.W.; Wilbert, W.P.

    1982-09-01

    The uranium favorability of the Marfa 1 0 by 2 0 Quadrangle, Texas, was evaluated in accordance with criteria established for the National Uranium Resource Evaluation. Surface and subsurface studies, to a 1500 m (5000 ft) depth, and chemical, petrologic, hydrogeochemical, and airborne radiometric data were employed. The entire quadrangle is in the Basin and Range Province and is characterized by Tertiary silicic volcanic rocks overlying mainly Cretaceous carbonate rocks and sandstones. Strand-plain sandstones of the Upper Cretaceous San Carlos Formation and El Picacho Formation possess many favorable characteristics and are tentatively judged as favorable for sandstone-type deposits. The Tertiary Buckshot Ignimbrite contains uranium mineralization at the Mammoth Mine. This deposit may be an example of the hydroauthigenic class; alternatively, it may have formed by reduction of uranium-bearing ground water produced during diagenesis of tuffaceous sediments of the Vieja Group. Although the presence of the deposit indicates favorability, the uncertainty in the process that formed the mineralization makes delineation of a favorable environment or area difficult. The Allen intrusions are favorable for authigenic deposits. Basin fill in several bolsons possesses characteristics that suggest favorability but which are classified as unevaluated because of insufficient data. All Precambrian, Paleozoic, other Mesozoic, and other Cenozoic environments are unfavorable

  20. National uranium resource evaluation: Williams quadrangle, Arizona

    International Nuclear Information System (INIS)

    O'Neill, A.J.; Nystrom, R.J.; Thiede, D.S.

    1981-03-01

    Geologic environments of the Williams Quadrangle, Arizona, were evaluated for uranium favorability by means of literature research, uranium-occurrence investigation and other surface studies, subsurface studies, aerial radiometric data, hydrogeochemical data, and rock-sample analytic data. Favorability criteria are those of the National Uranium Resource Evaluation program. Three geologic environments are favorable for uranium: the Tertiary fluvial rocks of the Colorado Plateau where they unconformably overlie impermeable bed rock (for channel-controlled peneconcordant deposits); collapse breccia pipes in Paleozoic strata of the Colorado Plateau (for vein-type deposits in sedimentary rocks); and Precambrian crystalline rocks of the Hualapai, Peacock, and Aquarius Mountains, and Cottonwood and Grand Wash Cliffs (for magmatic-hydrothermal deposits). Unfavorable geologic environments are: Tertiary and Quaternary volcanic rocks, Tertiary and Quaternary sedimentary rocks of the Colorado Plateau, nearly all Paleozoic and Mesozoic sedimentary rocks, and the Precambrian-Cambrian unconformity of the Grand Wash Cliffs area. Tertiary rocks in Cenozoic basins and Precambrian crystalline rocks in the Grand Canyon region and in parts of the Aquarius Mountains and Cottonwood and Grand Wash Cliffs are unevaluated

  1. National Uranium Resource Evaluation: Hutchinson Quadrangle, Kansas

    International Nuclear Information System (INIS)

    Fair, C.L.; Smit, D.E.; Gundersen, J.N.

    1982-08-01

    Surface reconnaissance and detailed subsurface studies were done within the Hutchinson Quadrangle, Kansas, to evaluate uranium favorability in accordance with National Uranium Resource Evaluation criteria. These studies were designed in part to follow up prior airborne radiometric, hydrogeochemical, and stream-sediment surveys. Over 4305 well records were examined in the subsurface phase of this study. The results of these investigations indicate environments favorable for channel-controlled peneconcordant sandstone deposits in rocks of Cretaceous age and for Wyoming and Texas roll-type deposits in sandstones of Pennsylvanian age. The Cretaceous sandstone environments exhibit favorable characteristics such as a bottom unconformity; high bedload; braided, fluvial channels; large-scale cross-bedding; and an anomalous outcrop. The Pennsylvanian sandstone environments exhibit favorable characteristics such as arkosic cross-bedded sandstones, included pyrite and organic debris, interbedded shales, and gamma-ray log anomalies. Environments considered unfavorable for uranium deposits are limestone and dolomite environments, marine black shale environments, evaporative precipitate environments, and some fluvial sandstone environments. Environments considered unevaluated due to insufficient data include Precambrian plutonic, metamorphic, and sedimentary rocks, even though a large number of thin sections were available for study

  2. Uranium

    International Nuclear Information System (INIS)

    1982-01-01

    The development, prospecting, research, processing and marketing of South Africa's uranium industry and the national policies surrounding this industry form the headlines of this work. The geology of South Africa's uranium occurences and their positions, the processes used in the extraction of South Africa's uranium and the utilisation of uranium for power production as represented by the Koeberg nuclear power station near Cape Town are included in this publication

  3. National Uranium Resource Evaluation: Okanogan Quadrangle, Washington

    International Nuclear Information System (INIS)

    Bernardi, M.L.; Powell, L.K.; Wicklund, M.A.

    1982-06-01

    The Okanogan Quadrangle, Washington, was evaluated to identify and delineate areas containing environments favorable for the occurrence of uranium deposits using criteria developed for the National Uranium Resource Evaluation program. Reconnaissance and detailed surface studies were augmented by aerial radiometric surveys and hydrogeochemical and stream-sediment reconnaissance studies. The results of the investigations indicate six environments favorable for uranium deposits. They are unclassified, anatectic, allogenic, and contact-metasomatic deposits in Late Precambrian and (or) Early Paleozoic mantling metamorphic core-complex rocks of the Kettle gneiss dome; magmatic-hydrothermal deposits in the Gold Creek pluton, the Magee Creek pluton, the Wellington Peak pluton, and the Midnite Mine pluton, all located in the southeast quadrant of the quadrangle; magmatic-hydrothermal allogenic deposits in Late Paleozoic and (or) Early Mesozoic black shales in the Castle Mountain area; allogenic deposits in Early Paleozoic metasedimentary rocks in the Harvey Creek area and in Late Precambrian metasedimentary rocks in the Blue Mountain area; and sandstone deposits in Eocene sedimentary rocks possibly present in the Enterprise Valley. Seven geologic units are considered unfavorable for uranium deposits. They are all the remaining metamorphic core-complex rocks, Precambrian metasedimentary rocks,Tertiary sedimentary and volcanic rocks, and all Pleistocene and Recent deposits; and, excluding those rocks in the unevaluated areas, include all the remaining plutonic rocks, Paleozoic miogeoclinical rocks, and Upper Paleozoic and Mesozoic eugeosynclinal rocks. Three areas, the Cobey Creek-Frosty Creek area, the Oregon City Ridge-Wilmont Creek area, and the area underlain by the Middle Cambrian Metaline Formation and its stratigraphic equivalents may possibly be favorable but are unevaluated due to lack of data

  4. National uranium project - an initiative to generate national database on uranium in drinking water of the country

    International Nuclear Information System (INIS)

    Sahoo, S.K.; Tripathi, R.M.; Jha, V.N.; Kumar, Ajay; Patra, A.C.; Vinod Kumar, A.

    2018-01-01

    Uranium is a naturally occurring lithophilic heavy element found in earth crust since inception of the earth. It is present naturally in all rock and soil and the concentration depends on geological formation and local geology. Groundwater interact with the host rocks and the wet weathering process facilitate the solubility of uranium in groundwater. The concentration of uranium in groundwater is influenced by geo-chemical parameters such as host rock characteristics and pH, Eh, ORP, ligands, etc. of the interacting water medium. Uranium is a radioactive element of low specific activity (25 Bq/mg) having both chemical and radiological toxicity but its chemical toxicity supersede the radio-toxicity. After a reporting of high uranium content in drinking water of Punjab, BARC has taken a pro-active initiative to generate a national database on uranium in drinking water in all the districts of India under National Uranium Project (NUP)

  5. Fire history and fire management implications in the Yukon Flats National Wildlife Refuge, interior Alaska

    Science.gov (United States)

    S. A. Drury; P. J. Grissom

    2008-01-01

    We conducted this investigation in response to criticisms that the current Alaska Interagency Fire Management Plans are allowing too much of the landscape in interior Alaska to burn annually. To address this issue, we analyzed fire history patterns within the Yukon Flats National Wildlife Refuge, interior Alaska. We dated 40 fires on 27 landscape points within the...

  6. Uranium concentrations in natural waters, South Park, Colorado. [Part of National Uranium Resource Evaluation program

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R.R. Jr.; Aamodt, P.L.

    1976-08-01

    During the summer of 1975, 464 water samples from 149 locations in South Park, Colorado, were taken for the Los Alamos Scientific Laboratory in order to test the field sampling and analytical methodologies proposed for the NURE Hydrogeochemical and Stream Sediment Reconnaissance for uranium in the Rocky Mountain states and Alaska. The study showed, in the South Park area, that the analytical results do not vary significantly between samples which were untreated, filtered and acidified, filtered only, or acidified only. Furthermore, the analytical methods of fluorometry and delayed-neutron counting, as developed at the LASL for the reconnaissance work, provide fast, adequately precise, and complementary procedures for analyzing a broad range of uranium in natural waters. The data generated using this methodology does appear to identify uraniferous areas, and when applied using sound geochemical, geological, and hydrological principles, should prove a valuable tool in reconnaissance surveying to delineate new districts or areas of interest for uranium exploration.

  7. Uranium concentrations in lake and stream waters and sediments from selected sites in the Susitna River Basin, Alaska

    International Nuclear Information System (INIS)

    Hill, D.E.

    1977-03-01

    During the summer of 1976, 141 water and 211 sediment samples were taken from 147 locations in the Susitna River basin in Alaska by the Geophysical Institute of the University of Alaska for the LASL. These samples were taken to provide preliminary information on the uranium concentrations in waters and sediments from the Susitna River basin and to test the analytical methods proposed for the NURE Hydrogeochemical and Stream Sediment Reconnaissance for uranium in Alaska. The uranium determinations resulting from the fluorometric analysis of the water samples and the delayed-neutron counting of the sediment samples are presented. The low levels of uranium in the water samples, many of which were below the detectable limit of the LASL fluorometric technique, indicate that a more sensitive analytical method is needed for the analysis of Alaskan water samples from this area. An overlay showing numbered sample locations and overlays graphically portraying the concentrations of uranium in the water and sediment samples, all at 1:250,000 scale for use with existing USGS topographic sheets, are also provided as plates

  8. Overview of the National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance Program

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1980-01-01

    A Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) for uranium is currently being conducted throughout the conterminous United States and Alaska. The HSSR is part of the National Uranium Resource Evaluation sponsored by the US Department of Energy. This ambitious geochemical reconnaissance program is conducted by four Department of Energy laboratories: Los Alamos Scientific Laboratory, Lawrence Livermore Laboratory, Oak Ridge Gaseous Diffusion Plant, and Savannah River Laboratory. The program is based on an extensive review of world literature, reconnaissance work done in other countries, and pilot studies conducted by each laboratory. Sample-collection methods and sample density are determined to optimize the probability of detecting potential uranium mineralization. To achieve this aim, each laboratory has developed independent standardized field collection procedures that are designed for its section of the country. Field parameters such as pH, conductivity, climate, geography, and geology are recorded at each site. Most areas are sampled at densities of one sample site per 10 to 23 km 2 . The HSSR program has helped to improve existing hydrogeochemical reconnaissance exploration techniques. In addition to providing industry with data that may help to identify potential uranium districts and to extend known uranium provinces, the HSSR also provides multielement analytical data that can be used in water quality, soil, sediment, environmental, and base-metal exploration studies

  9. Overview of the National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance Program

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1980-07-01

    A Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) for uranium is currently being conducted throughout the conterminous United States and Alaska. The HSSR is part of the National Uranium Resource Evaluation sponsored by the US Department of Energy. This ambitious geochemical reconnasissance program is conducted by four Department of Energy Laboratories: Los Alamos Scientific Laboratory, Lawrence Livermore Laboratory, Oak Ridge Gaseous Diffusion Plant, and Savannah River Laboratory. Each laboratory was assigned a geographic region of the United States. The program is based on an extensive review of world literature, reconnaissance work done in other countries, and pilot studies conducted by each laboratory. Sample-collection methods and sample density are determined to optimize the probability of detecting potential uranium mineralization. To achieve this aim, each laboratory has developed independent standardized field collection procedures that are designed for its section of the country. Field parameters such as pH, conductivity, climate, geography, and geology are recorded at each site. Most areas are sampled at densities of one sample site per 10 to 23 km 2 . The HSSR program has helped to improve existing hydrogeochemical reconnaissance exploration techniques. In addition to providing industry with data that may help to identify potential uranium districts and to extend known uranium provinces, the HSSR also provides multielement analytical data that can be used in water quality, soil, sediment, environmental, and base-metal exploration studies

  10. Uranium hydrogeochemical and stream sediment reconnaissance data from the area of the Noatak and portions of the Baird Mountains and Ambler River Quadrangles, Alaska

    International Nuclear Information System (INIS)

    Aamodt, P.L.; Hill, D.E.; Sharp, R.R. Jr.

    1978-05-01

    During August 1976, a total of 876 natural waters and 861 bottom sediments were collected at a nominal density of one location each 23 km 2 from streams and small lakes throughout the Noatak NTMS quadrangle, the southern two-thirds of the Baird Mountains NTMS quadrangle, and in the southwest corner of the Ambler River NTMS quadrangle. These samples were collected as part of the National Uranium Resource Evaluation program in Alaska being conducted by the Los Alamos Scientific Laboratory (LASL). The field collection and treatment of the samples were performed following strict LASL specifications. Total uranium was measured in the waters by fluorometry and in the sediments by delayed-neutron counting, using stringent quality assurance controls at the LASL. The uranium contents of the waters ranged from below the detection limit of 0.02 parts per billion (ppB) to a high of 8.38 ppB, and the uranium contents of the sediments ranged from a low of 0.3 parts per million (ppM) to a high of 34.0 ppM. In general, the locations of waters containing relatively high uranium contents were found to occur in clusters, and particularly in the headwaters of streams draining the southern slopes of the Baird Mountains. Few sediments contained relatively high uranium contents. These usually occurred singly at isolated locations scattered throughout the area. No obvious association exists between the location of high-uranium waters and sediments anywhere in the study area. The geology, mineralogy, and hydrology of this area is only generally described in the literature; therefore, it is difficult to correlate these data with particular aspects of the physical environment where individual samples were collected. However, the data do indicate that certain areas underlaid by Paleozoic sedimentary rocks and granitic intrusives within the Baird Mountains and a quartz-pebble conglomerate in the Waring Mountains may warrant more detailed field investigations

  11. 76 FR 39857 - Alaska Coastal Management Program Withdrawal From the National Coastal Management Program Under...

    Science.gov (United States)

    2011-07-07

    ... DEPARTMENT OF COMMERCE National Oceanic Atmospheric Administration Alaska Coastal Management Program Withdrawal From the National Coastal Management Program Under the Coastal Zone Management Act (CZMA) AGENCY: Office of Ocean and Coastal Resource Management (OCRM), National Ocean Service (NOS...

  12. National Uranium Resource Evaluation: Harrisburg Quadrangle, Pennsylvania

    International Nuclear Information System (INIS)

    Popper, G.H.P.

    1982-08-01

    The Harrisburg Quadrangle, Pennsylvania, was evaluated to identify geologic environments and delineate areas favorable for uranium deposits. The evaluation, based primarily on surface reconnaissance, was carried out for all geologic environments within the quadrangle. Aerial radiometric and hydrogeochemical and stream-sediment reconnaissance surveys provided the supplementary data used in field-work followup studies. Results of the investigation indicate that environments favorable for peneconcordant sandstone uranium deposits exist in the Devonian Catskill Formation. Near the western border of the quadrangle, this environment is characterized by channel-controlled uranium occurrences in basal Catskill strata of the Broad Top syncline. In the east-central portion of the quadrangle, the favorable environment contains non-channel-controlled uranium occurrences adjacent to the Clarks Ferry-Duncannon Members contact. All other geologic environments are considered unfavorable for uranium deposits

  13. The United States National Climate Assessment - Alaska Technical Regional Report

    Science.gov (United States)

    Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart; Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart

    2012-01-01

    The Alaskan landscape is changing, both in terms of effects of human activities as a consequence of increased population, social and economic development and their effects on the local and broad landscape; and those effects that accompany naturally occurring hazards such as volcanic eruptions, earthquakes, and tsunamis. Some of the most prevalent changes, however, are those resulting from a changing climate, with both near term and potential upcoming effects expected to continue into the future. Alaska's average annual statewide temperatures have increased by nearly 4°F from 1949 to 2005, with significant spatial variability due to the large latitudinal and longitudinal expanse of the State. Increases in mean annual temperature have been greatest in the interior region, and smallest in the State's southwest coastal regions. In general, however, trends point toward increases in both minimum temperatures, and in fewer extreme cold days. Trends in precipitation are somewhat similar to those in temperature, but with more variability. On the whole, Alaska saw a 10-percent increase in precipitation from 1949 to 2005, with the greatest increases recorded in winter. The National Climate Assessment has designated two well-established scenarios developed by the Intergovernmental Panel on Climate Change (Nakicenovic and others, 2001) as a minimum set that technical and author teams considered as context in preparing portions of this assessment. These two scenarios are referred to as the Special Report on Emissions Scenarios A2 and B1 scenarios, which assume either a continuation of recent trends in fossil fuel use (A2) or a vigorous global effort to reduce fossil fuel use (B1). Temperature increases from 4 to 22°F are predicted (to 2070-2099) depending on which emissions scenario (A2 or B1) is used with the least warming in southeast Alaska and the greatest in the northwest. Concomitant with temperature changes, by the end of the 21st century the growing season is expected

  14. National uranium resource evaluation, Rapid City Quadrangle, South Dakota

    International Nuclear Information System (INIS)

    Nanna, R.F.; Milton, E.J.

    1982-04-01

    The Rapid City (1 0 x 2 0 ) Quadrangle, South Dakota, was evaluated for environments favorble for uranium deposits to a depth of 1500 m. Criteria used were those of the National Uranium Resource Evaluation. Field reconnaissance involved the use of hand-held scintillometers to investigate uranium occurrences reported in the literature and anomalies in aerial radiometric surveys, and geochemical samples of stream sediments and well waters. Gamma-ray logs were used to define the favorable environments in the subsurface. Environments favorable for sandstone-type uranium deposits occur in the Inyan Kara Group, the Fox Hills Sandstone, and the Hell Creek Formation. Environments considered unfavorable for uranium deposits include all Precambrian, Paleozoic, Mesozoic, and Tertiary rocks other than those identified as favorable

  15. National uranium resource evaluation: Clifton Quadrangle, Arizona and New Mexico

    International Nuclear Information System (INIS)

    White, D.L.; Foster, M.

    1982-05-01

    The Clifton Quadrangle, Arizona and New Mexico, was evaluated to identify environments and delineate areas favorable for uranium deposits. The evaluation used criteria formulated for the National Uranium Resource Evaluation program. Evidence for the evaluation was based on surface studies, hydrogeochemical and stream-sediment reconnaissance, and aerial radiometric surveys. The quadrangle encompasses parts of three physiographic provinces: the Colorado Plateau, the transition zone, and the Basin and Range. The one environment determined, during the present study, to be favorable for uranium deposits is the Whitewater Creek member of the Cooney tuff, which is favorable for magmatic-hydrothermal uranium deposits on the west side of the Bursum caldera. No other areas were favorable for uranium deposits in sandstone, limestone, volcanogenic, igneous, or metamorphic environments. The subsurface is unevaluated because of lack of information, as are areas where access is a constraint

  16. National Uranium Resource Evaluation: Wichita Falls Quadrangle, Texas and Oklahoma

    International Nuclear Information System (INIS)

    Edwards, M.B.; Andersen, R.L.

    1982-08-01

    The uranium favorability of the Wichita Falls Quadrangle, Texas and Oklahoma, was determined by using National Uranium Resource Evaluation criteria; by subsurface studies of structure, facies distribution, and gamma-ray anomalies in well logs to a depth of 1500 m; and by surface studies involving extensive field sampling and radiometric surveying. These were supplemented by both aerial radiometric and hydrogeochemical and stream-sediment reconnaissance studies. Favorable environments were identified in fluviodeltaic to fan-delta sandstones in the upper Strawn, Canyon, and Cisco Groups (Pennsylvania to Lower Permian), which occur exclusively in the subsurface. Evaluation was based on the presence of a good uranium source, abundant feldspar, good hydrogeologic characteristics, association with carbonaceous shales, presence of coal and oil fields, and anomalies in gamma logs. Additional favorable environments include deltaic to alluvial sandstones in the Wichita-Albany Group (Lower Permian), which crops out widely and occurs in the shallow subsurface. Evaluation was based on high uranium values in stream-sediment samples, a small uranium occurrence located during the field survey, anomalous gamma logs, good uranium source, and hydrogeologic characteristics. Unfavorable environments include Cambrian to Permian limestones and shales. Pennsylvanian to Permian fluviodeltaic systems that have poor uranium sources, and Permian, Cretaceous, and Pleistocene formations that lack features characteristic of known uranium occurrences

  17. National Uranium Resource Evaluation: Athens Quadrangle, Georgia and South Carolina

    International Nuclear Information System (INIS)

    Lee, C.H.

    1979-09-01

    Reconnaissance and detailed geologic and radiometric investigations were conducted throughout the Athens Quadrangle, Georgia and South Carolina, to evaluate the uranium favorability using National Uranium Resource Evaluation criteria. Surface and subsurface studies were augmented by aerial radiometric surveys, emanometry studies and hydrogeochemical and stream-sediment reconnaissance studies. The results of the investigations indicate environments favorable for allogenic deposits in metamorphic rocks adjacent to granite plutons, and Texas roll-type sandstone deposits in the Coastal Plain Province. Environments considered unfavorable for uranium deposits are the placers of the Monazite Belt, pegmatites, and base- and precious-metal veins associated with faults and shear zones in metamorphic rocks

  18. Reconnaissance study of the uranium and thorium contents of plutonic rocks of the southwestern Seward Peninsula, Alaska

    International Nuclear Information System (INIS)

    Miller, T.P.; Bunker, C.M.

    1976-01-01

    Large granitic Cretaceous plutons are exposed along and adjacent to an arcuate belt of igneous and high-grade metamorphic rocks in the southeastern Seward Peninsula of Alaska. Reconnaissance studies of these plutons have shown that the Darby pluton has well above average amounts of uranium and thorium (11.2 ppm and 58.7 ppm, respectively), the Kachauik pluton contains average to above average uranium and thorium (5.7 ppm and 22.5 ppm, respectively), and the Bendeleben pluton contains average amounts of uranium and thorium (3.4 ppm and 16.7 ppm, respectively). The three plutons show compositional and textural differences indicative of different source materials that may have controlled the distribution of uranium and thorium. The high uranium and thorium contents of the Darby pluton, similar to those of the Conway Granite of New Hampshire which has been mentioned as a possible low-grade thorium resource, suggest that this pluton may be a favorable area for economic concentrations of uranium and thorium

  19. 76 FR 68502 - National Petroleum Reserve-Alaska Oil and Gas Lease Sale 2011 and Notice of Availability of the...

    Science.gov (United States)

    2011-11-04

    ... Petroleum Reserve-Alaska Oil and Gas Lease Sale 2011 and Notice of Availability of the Detailed Statement of Sale for Oil and Gas Lease Sale 2011 in the National Petroleum Reserve-Alaska AGENCY: Bureau of Land... tracts in the National Petroleum Reserve-Alaska. The United States reserves the right to withdraw any...

  20. Uranium hydrogeochemical and stream sediment reconnaissance of the Valdez NTMS Quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Valdez NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System (GJOIS) at Oak Ridge National Laboratory (ORNL). Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others (1981a) into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples.

  1. National Uranium Resource Evaluation: Wells Quadrangle, Nevada, Idaho, and Utah

    International Nuclear Information System (INIS)

    Proffitt, J.L.; Mayerson, D.L.; Parker, D.P.; Wolverson, N.; Antrim, D.; Berg, J.; Witzel, F.

    1982-08-01

    The Wells 2 0 Quadrangle, Nevada, Idaho, and Utah, was evaluated using National Uranium Resource Evaluation criteria to delineate areas favorable for uranium deposits. Our investigation has resulted in the delineation of areas that contain Tertiary sedimentary rocks favorable for hydroallogenic deposits in the Mountain City area (Favorable Area A) and in the Oxley Peak area north of Wells (Favorable Area B). Environments considered to be unfavorable for uranium deposits include Tertiary felsic volcanic, felsic plutonic, intermediate to mafic volcanic, Paleozoic and Mesozoic sedimentary rocks, Precambrian rocks, and most Tertiary sedimentary rocks located outside the favorable areas. Present-day basins are unevaluated environments because of a paucity of adequate outcrop and subsurface data. However, the scarce data indicate that some characteristics favorable for uranium deposits are present in the Susie Creek-Tule Valley-Wild Horse basin, the Contact-Granite Range-Tijuana John stocks area, the Charleston Reservoir area, and the Wells-Marys River basin

  2. National uranium resource evaluation, Dickinson quadrangle, North Dakota

    International Nuclear Information System (INIS)

    Lee, C.H.; Pack, D.D.; Galipeau, J.M.; Lawton, D.E.

    1982-05-01

    The Dickinson Quadrangle, North Dakota, was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for uranium deposits. Criteria used in the evaluation were developed for the National Uranium Resource Evaluation program. The evaluation primarily consisted of a surface study, subsurface investigation, and an in-house ground-water geochemical study. These studies were augumented by aerial radiometric and hydrogeochemical and stream-sediment studies. The evaluation results indicate that the Sentinel Butte and Tongue River Members of the Fort Union Formation have environments favorable for uraniferous lignite deposits. The Sentinel Butte, Tongue River, and Ludlow Members of the Fort Union Formation are favorable for sandstone uranium deposits. Environments unfavorable for uranium deposits are the remaining Cenozoic rocks and all the rocks of the Cretaceous

  3. National Uranium Resource Evaluation: Salina Quadrangle, Utah

    International Nuclear Information System (INIS)

    Lupe, R.D.; Campbell, J.A.; Franczyk, K.J.; Luft, S.J.; Peterson, F.; Robinson, K.

    1982-09-01

    Two stratigraphic units, the Late Jurassic Salt Wash Member of the Morrison Formation and the Triassic Chinle Formation, were determined to be favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the US Department of Energy in the Salina 1 x 2 0 Quadrangle, Utah. Three areas judged favorable for the Salt Wash Member are the Tidwell and Notom districts, and the Henry Mountains mineral belt. The criteria used to establish favorability were the presence of: (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Four favorable areas have been outlined for the Chinle Formation. These are the San Rafael Swell, Inter River, and the Orange Cliffs subareas and the Capitol Reef area. The criteria used to establish these areas are: the sandstone-to-mudstone ratios and the geographic distribution of the Petrified Forest Member of the Chinle Formation which is considered as the probable source for the uranium

  4. National Uranium Resource Evaluation, Tularosa Quadrangle, New Mexico

    International Nuclear Information System (INIS)

    Berry, V.P.; Nagy, P.A.; Spreng, W.C.; Barnes, C.W.; Smouse, D.

    1981-12-01

    Uranium favorability of the Tularosa Quadrangle, New Mexico, was evaluated to a depth of 1500 m using National Uranium Resource Evaluation criteria. Uranium occurrences reported in the literature were located, sampled, and described in detail. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, and geochemical anomalies, interpreted from hydrogeochemical and stream-sediment reconnaissance, were also investigated. Additionally, several hundred rock samples were studied in thin section, and supplemental geochemical analyses of rock and water samples were completed. Fluorometric analyses were completed for samples from the Black Range Primitive Area to augment previously available geochemical data. Subsurface favorability was evaluated using gamma-ray logs and descriptive logs of sample cuttings. One area of uranium favorability was delineated, based on the data made available from this study. This area is the Nogal Canyon cauldron margin zone. Within the zone, characterized by concentric and radial fractures, resurgent doming, ring-dike volcanism, and intracauldron sedimentation, uranium conentration is confined to magmatic-hydrothermal and volcanogenic uranium deposits

  5. National Uranium Resource Evaluation: Lewistown Quadrangle, Montana

    International Nuclear Information System (INIS)

    Culver, J.C.

    1982-09-01

    Uranium resources in the Lewistown Quadrangle, Montana, were evaluated to a depth of 1500 m (5000 ft). All existing geologic data were considered, including geologic surveys, literature, theses, radiometric surveys, oil- and water-well logs. Additional data were generated during the course of two field seasons, including the collection of more than 350 water, rock, crude oil and panned concentrate samples for analyses, sedimentary facies maps, structural geology and isopach maps, and field examination of reported areas of anomalous radioactivity. Three environments with potential for the occurrence of a minimum of 100 t of 0.01% U 3 O 8 were delineated. The most favorable environment is located in the southeastern portion of the quadrangle; here, Tertiary felsic dikes intrude four potential sandstone host rocks in the Kootenai Formation and the Colorado Shale. Structural-chemical traps for allogenic uranium are provided by the juxtaposition of oil-bearing domes. A second potential environment is located in the Eagle Sandstone in the northwestern and western portions of the quadrangle; here, anomalous water samples were obtained downtip from oxidized outcrops that are structurally related to Tertiary intrusive rocks of the Bearpaw and Highwood Mountains. Lignitic lenses and carbonaceous sandstones deposited in a near-shore lagoonal and deltaic environment provide potential reductants for hexavalent uranium in this environment. A third environment, in the Judith River Formation, was selected as favorable on the basis of water-well and gamma-ray log anomalies and their structural relationship with the Bearpaw Mountains. Organic materials are present in the Judith River Formation as potential reductants. They were deposited in a near-shore fluvial and lagoonal system similar to the depositional environment of the Jackson Group of the Texas Gulf Coast

  6. Uranium hydrogeochemical and stream sediment reconnaissance of the Healy NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-05-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Healy NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements multivariate statistical analyses have been included

  7. Uranium hydrogeochemical and stream sediment reconnaissance of the Seldovia NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-05-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Seldovia NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report

  8. Uranium hydrogeochemical and stream sediment reconnaissance of the Philip Smith Mountains NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-09-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Philip Smith Mountains NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report

  9. Uranium hydrogeochemical and stream sediment reconnaissance of the Philip Smith Mountains NTMS quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Philip Smith Mountains NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report.

  10. Uranium hydrogeochemical and stream sediment reconnaissance of the Mt. Hayes NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-05-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Mt. Hayes quadrangle, Alaska, are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and Laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report

  11. Uranium hydrogeochemical and stream sediment reconnaissance of the Chandalar NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-09-01

    Results of a hydrogeochemical and stream sediment reconnaissance of the Chandalar NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, may field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report

  12. Lake Habitat and Fish Surveys on Interior Alaska National Wildlife Refuges, 1984–1986

    Data.gov (United States)

    Department of the Interior — A large-scale lake study on Interior Alaska National Wildlife Refuges (NWR) was undertaken from 1984–1986. Six NWRs were surveyed (Innoko, Kanuti, Koyukuk, Nowitna,...

  13. 76 FR 21404 - National Park Service Alaska Region's Subsistence Resource Commission (SRC) Program

    Science.gov (United States)

    2011-04-15

    ... National Park SRC will meet at the Shungnak Public School, 907-437-2151, in Shungnak, Alaska on Wednesday... changed, a notice will be published in local newspapers and announced on local radio stations prior to the...

  14. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Nigaragua

    International Nuclear Information System (INIS)

    1977-08-01

    On invitation of the Nicaraguan Government, the U. S. Atomic Energy Commission conducted a reconnaissance for uranium in March, 1953. Operating and abandoned mines, as well as prospects, formations, contacts, dikes and sills enroute to these mines were tested by scintillometer. Reconnaissance included two mineralized areas exposed in windows within the volcanic belt but did not include the schists and granitic intrusions in the north eastern part of the country. No anomalous radioactivity was detected. No uranium occurrences were discovered during the 1953 reconnaissance and no uranium deposits or prospects are indicated on the metallogenetic map of Central America or in the bibliography of Nicaraguan geology. Information is net available on current exploration in Nicaragua. All subsoil mineral resources besides quarry materials belong to the state. In the interest of national defence, uranium, thorium, lithium and their derivatives, along with certain other mineral substances, may be classified as o f temporary strategic interest , and their exploration or exploitation would then be subject to special laws. The Ministry of Economy may establish permanent or temporary national reserves on which mining activities are essentially precluded. Foreign nationals and corporations may acquire mineral concessions although particular regulations may be applicable to such an acquisition. Exploration of any favourable formations has been hindered by volcanic ash cover in western Nicaragua and dense vegetation in the East. Little geologic work has been done on the Paleozoic metamorphic rocks or Todos Santos Formation of the Northern Highlands. These could possibly show some potential for discovery of uranium as might the alaskites near Siuna. The potential resources of Nicaragua are estimated at less than 1,000 tonnes uranium

  15. Decree 3322/1971 of 23 December on the purposes of the National Uranium Enterprise

    International Nuclear Information System (INIS)

    1972-01-01

    This Decree determines the purposes of the National Uranium Enterprise set up by a Decree of 22 February 1969. In collaboration with the Junta de Energia Nuclear, the Enterprise will in particular work uranium deposits, produce uranium concentrates, enrich uranium, manufacture fuel elements, process nuclear fuel and engage in the trade of the products obtained. (NEA) [fr

  16. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Lebanon

    International Nuclear Information System (INIS)

    1977-10-01

    Geologically speaking, Lebanon is a young country since the oldest rocks are of Upper Jurassic age. Two volcanic periods are included in the more recent rocks. The country is intersected by numerous faults mainly striking NNE but also including numerous small transverse faults. No prospecting for nuclear raw materials has been recorded and there is no known activity at the present time. Lebanon has no national geological organization to support uranium prospecting. From the geological standpoint, possibilities of occurrences of nuclear minerals in Lebanon are poor and the Speculative Potential is placed in the less than 1000 tonnes uranium category. (author)

  17. Uranium hydrogeochemical and stream-sediment reconnaissance of the Teshekpuk NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.

    1982-04-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Teshekpuk NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  18. Uranium hydrogeochemical and stream sediment reconnaissance of the Atlin NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Altin NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Only 6 samples were taken in the Atlin Quadrangle. Appendix A describes the sample media and summarizes the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into stream-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Information on the field and analytical procedures used by the Los Alamos National laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report. Chemical analysis and field data for water samples from this quadrangle were open filed by the DOE Grand Junction Office as GJX-166

  19. National Uranium Resource Evaluation: Baker Quadrangle, Oregon and Idaho

    International Nuclear Information System (INIS)

    Bernardi, M.L.; Robins, J.W.

    1982-05-01

    The Baker Quadrangle, Oregon, and Idaho, was evaluated to identify areas containing geologic environments favorable for uranium deposits. The criteria used was developed for the National Uranium Resource Evaluation program. Stream-sediment reconnaissance and detailed surface studies were augmented by subsurface-data interpretion and an aerial radiometric survey. Results indicate that lower Pliocene sedimentary rocks in the Lower Powder River Valley-Virtue Flat basin are favorable characteristics, they remain unevaluated because of lack of subsurface data. Tertiary sandstones, possibly present at depth in the Long and Cascade Valleys, also remain unevaluated due to lack of subsurface data. All remaining environments in the Baker Quadrangle are unfavorable for all classes of uranium deposits

  20. National Uranium Resource Evaluation: Lamar quadrangle, Colorado and Kansas

    International Nuclear Information System (INIS)

    Maarouf, A.M.; Johnson, V.C.

    1982-01-01

    Uranium resources of the Lamar Quadrangle, Colorado and Kansas, were evaluated using National Uranium Resource Evaluation criteria. The environment favorable for uranium is the Lower Cretaceous Dakota Sandstone in the area east of John Martin Reservoir for south Texas roll-type sandstone deposits. Carbonaceous trash and sulfides are abundant in the Dakota Sandstone. The unit underlies a thick Upper Cretaceous section that contains bentonitic beds and uraniferous marine black shale. Water samples from the Dakota Sandstone aquifer contain as much as 122 ppB U 3 O 8 . Geologic units considered unfavorable include most of the Paleozoic rocks, except in the Brandon Fault area; the Upper Cretaceous rocks; and the Ogallala Formation. The Dockum Group, Morrison Formation, and Lytle Member of the Purgatoire Formation are unevaluated because of lack of data

  1. National uranium resource evaluation, NURE 1979: annual activity report

    International Nuclear Information System (INIS)

    1980-03-01

    NURE is a DOE-directed program with the major goal of establishing reliable and timely comprehensive estimates of the uranium resources of the nation. To develop and compile geologic, geophysical, and other information which will contribute to assessing the distribution and magnitude of uranium resources and to determine areas favorable for the occurrence of uranium in the United States, NURE has been organized into the following elements: (1) quadrangle evaluation; (2) aerial radiometric reconnaissance; (3) subsurface investigations; (4) hydrogeochemical and stream-sediment reconnaissance; (5) geologic studies; (6) technology applications; and (7) information dissemination. The extensive effort now under way on each of these NURE program elements will result in a systematic collection and compilation of data which will be culminating in a comprehensive report covering certain priority areas of the United States. This report summarizes the technical activities undertaken during 1979 to support this program

  2. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Turkey

    International Nuclear Information System (INIS)

    1977-08-01

    Turkey has an area of 296 185 sq mi or 767 120 square kilometers. The geology is dominated lay Tertiary and post-Tertiary rocks which are very widespread but extensive outcrops of Mesozoic rocks also occur. Paleozoic rocks, mainly gneisses, mica schists and quartzites occur in the ancient massifs, principally the Istranca massif in Thrace, the Merideres massif in western Anatolia and the Karrshir massif in central Anatolia. Prospecting for uranium began in Turkey in 1953 and the Atomic Energy Raw Materials Division of the Maden Tetkikive Arama Enstitusu (M.T.A.) was founded in 1956. By 1962 a total of 78% of the whole country had been covered by serial radiometric reconnaissance prospecting. Uranium was discovered at Kasar in western Anatolia in 1961 and several hundred tons of reserves estimated two years later. Uranium prospecting was largely recessed from 1963 to 1967. IAEA/UNDP assistance was provided in 1962-63 and 1965 and between 1974 and 1977 in a detailed exploration programme in the Kasar area. In the whole country nearly 600 anomalies and occurrences had been identified by 1963. Several occurrences principally in Western Anatolia had been assigned a small reserve. A recent official estimate places the total national reserve at 3150 tonnes uranium in the less than 30% category of reasonably assured resources. A speculative Potential of between 30,000 and 50,000 tonnes uranium is considered to be reasonable. (author)

  3. Uranium hydrogeochemical and stream sediment reconnaissance of the Arctic NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1981-09-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Arctic NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into stream sediment samples. For the group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report

  4. Uranium hydrogeochemical and stream sediment reconnaissance of the Nome NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1981-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Nome NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into groups of stream sediment and stream water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL, and will not be included in this report

  5. Uranium hydrogeochemical and stream sediment reconnaissance of the Cordova NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.

    1981-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Cordova NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into groups of stream sediment and stream water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report

  6. Uranium hydrogeochemical and stream sediment reconnaissance of the Kenai NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance of the Kenai NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses

  7. Uranium hydrogeochemical and stream sediment reconnaissance of the McCarthy NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaisance (HSSR) of the McCarthy NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of stream sediments. For the sake of brevity, many field site observations have not been included in this volume, these data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical result. Statistical tables, tables of raw data, and 1;1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  8. Uranium hydrogeochemical and stream sediment reconnaissance of the Solomon NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1981-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Solomon NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into groups of stream sediment and stream water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report

  9. Uranium hydrogeochemical and stream sediment reconnaissance of the Hughes NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.

    1981-09-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Hughes NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory (ORNL). Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report

  10. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Panama

    International Nuclear Information System (INIS)

    1977-08-01

    About 20 percent of Panama has been covered by airborne radiometric surveys, largely in the Azuero-Petaquilia area. Essentially no ground examinations have been made. About one third of the country remains unmapped. Most of the rest has been examined only in rapid reconnaissance largely by the United Nations and oil companies. Detailed mapping has been confined to the Canal Zone. No uranium deposits or prospects of economic interest are known in Panama. There appears to be no information available on present exploration activities for uranium. Panama has no specific legislation relating to nuclear energy. However, all mineral deposits belong to the state, except for salt and similar materials, and are governed by the mineral resources code. There appears to be only one remote possibility for uranium mineralization in Panama, namely, sandstone-type deposits. Marginal marine and fluvial sediments, such as host sandstone-type deposits elsewhere, are most abundant 1n the lower Cenozoic parts of the Azuero and possibly Bocas del Toro basins and are probably absent or poorly developed in the Darien and Central basin. Rocks with even moderate background uranium concentrations to be leached and deposited in such sediments are confined to the silicic and alkaline Intrusive rocks of the La Yeguada Formation 1n western Panama and possibly the Rio Guayabo stock in the Sierra de Maje of eastern Panama. Only the La Yeguada Formation is extensive enough and near enough to a potential sedimentary ore host to be important. Uranium concentrations have not been measured in this unit but its silicic composition, relatively young age (with respect to other volcanic rocks in Panama) and high ash content suggest that it may have relatively high Teachable uranium content. The best areas for exploration for La Yeguada-derived sandstone-type uranium deposits would be in the Pese formation between Santiago and Chitre in the Azuero basin. Possibly favourable sandstone type exploration ground

  11. Uranium hydrogeochemical and stream sediment reconnaissance of the Nulato NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Znkl, R.J.; Shellel, D.C. Jr.; Langfeldt, S.L.; Hardy, L.C.

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Nulato NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  12. Uranium hydrogeochemical and stream-sediment reconnaissance of the Sagavanirktok NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Sagavanirktok NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  13. Uranium hydrogeochemical and stream sediment reconnaissance of the Candle NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Candle NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  14. Uranium hydrogeochemical and stream-sediment reconnaissance of the Port Alexander NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Port Alexander NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available fom DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  15. Uranium Hydrogeochemical and stream sediment reconnaissance of the Tanacross NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Tanacross NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  16. Uranium hydrogeochemical and stream-sediment reconnaissance of the Point Lay NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    D'Andrea, R.F. Jr.; Zinkl, R.J.; Hardy, L.C.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Point Lay NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  17. Uranium hydrogeochemical and stream-sediment reconnaissance of the Unalakleet NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Unalakleet NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information onthe field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  18. Uranium hydrogeochemical and stream sediment reconnaissance Misheguk Mountain NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Misheguk Mountain NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  19. Uranium hydrogeochemical and stream-sediment reconnaissance of the Umiat NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Umiat NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  20. Uranium hydrogeochemical and stream sediment reconnaissance of the Howard Pass NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Howard Pass NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analysis, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  1. Uranium hydrogeochemical and stream-sediment reconnaissance of the Ruby NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Ruby NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  2. Uranium hydrogeochemical and stream-sediment reconnaissance of the Selawik NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-07-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Selawik NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  3. Uranium hydrogeochemical and stream sediment reconnaissance of the Beechey Point NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Beechey Point NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANI) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory (see, for example, Planner and others, 1981) and will not be included in this report

  4. Uranium hydrogeochemical and stream-sediment reconnaissance of the Utukok River NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Utukok River NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1;1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  5. Uranium hydrogeochemical and stream sediment reconnaissance of the Coleen NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1982-02-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Coleen NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these date are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laborarory and will not be included in this report

  6. Uranium hydrogeochemical and stream-sediment reconnaissance of the Big Delta NTMS quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L. C.; D& #x27; Andrea, Jr., R. F.; Zinkl, R. J.; Shettel, Jr., D. L.; Langfeldt, S. L. [comps.

    1982-02-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Big Delta NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  7. Uranium hydrogeochemical and stream-sediment reconnaissance of the Big Delta NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.

    1982-02-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Big Delta NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  8. Uranium hydrogeochemical and stream-sediment reconnaissance of the Wainwright NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1982-04-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Wainwright NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  9. Uranium hydrogeochemical and stream-sediment reconnaissance of the Mt. Michelson NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-04-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Michelson NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  10. Uranium hydrogeochemical and stream sediment reconnaissance of the Livengood NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1981-11-01

    This report presents results of a hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Livengood NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-water and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  11. Program plan for the National Uranium Mine Tailings Office

    International Nuclear Information System (INIS)

    1983-03-01

    The National Uranium Mine Tailings Program was formed to conduct research into the long-term environmental behaviour of uranium mine tailings. This research is necessary to provide a data base upon which close-cut criteria for uranium mines can be based. The research program to be carried out under the auspices of the National Tailings Program Office has, as its goal, the development of this data base, and the formulation of a series of reports based on that data base. These documents are to be designed to allow the uranium mining industry to produce site-specific close-out plans which will be acceptable to the regulatory authorities. This report addresses the program to be undertaken to meet the above broad objective. It focusses on defining in more specific and explicit terms what the program objectives need to be to meet the close-out requirements currently perceived by the regulatory agencies involved. These program objectives have been refined and summarized as follows: On close-out, the tailings site shall: 1. Meet currently accepted individual exposure criteria, and meet air and water quality regulations. 2. Ensure a predictable decline in release rates of contaminants to the environment. Ideally, this decline would be monotonic in nature. 3. Meet the ALARA principle both at present and into the long-term future. 4. Ensure that the management strategy or technologies employed in close-out shall be of a passive nature and not require ongoing institutional intervention. On the basis of these program objectives, this report identifies specific program product in terms of manuals of practice, guidelines, etc. that are to be produced as a result of program activity. These documents will effectively provide guidance on acceptable close-out technology to the uranium industry and regulatory agencies

  12. POPs data for salmonids and macroinvertebrates from Glacier Bay, Alaska - Measuring persistent organic pollutants in resident salmonids and benthic macroinvertebrates in streams near Glacier National Park, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 2007 pilot study was initiated by the University of Alaska Southeast in which baseline levels of contaminants, including persistent organic pollutants (POPs) and...

  13. Uranium hydrogeochemical and stream sediment reconnaissance of the McGrath and Talkeetna NTMS Quadrangles, Alaska, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Aamodt, P.L.; Jacobsen, S.I.; Hill, D.E.

    1979-04-01

    During the summer of 1977, 1268 water and 1206 sediment samples were collected from 1292 lakes and streams throughout the two quadrangles in south-central Alaska. Each of the water samples was analyzed for uranium and 12 other elements and each of the sediment samples for uranium, thorium, and 41 other elements. Uranium concentrations in water samples range from below 0.02 ppB to 19.64 ppB. In general, lake waters contain somewhat less uranium than stream waters, and the highest concentrations in both sample types were found in or near the Alaska Range. Uranium concentrations in sediment samples range from 0.10 ppM to 172.40 ppM. The highest concentrations are found in samples collected in the Alaska Range near areas of felsic igneous rocks. Sediment samples having high thorium concentrations also come from areas underlain by felsic igneous rocks in the Alaska Range. The following areas were found to be most favorable for significant uranium mineralization: (1) the Windy Fork stock on the southeastern boundary of the McGrath quadrangle; (2) an area in the northwest corner of the Talkeetna quadrangle near the Mespelt prospects; (3) the Hidden River drainage in the northeast corner of the Talkeetna quadrangle; (4) an area near Chelatna Lake in the center of the Talkeetna quadrangle; (5) the Kichatna River drainage, near the western border of the Talkeetna quadrangle; and (6) an area near the Mount Estelle pluton in the extreme southwest corner of the Talkeetna quadrangle

  14. Uranium hydrogeochemical and stream sediment reconnaissance of the Valdez NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-05-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Valdez NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System (GJOIS) at Oak Ridge National Laboratory (ORNL). Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others (1981a) into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report

  15. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Guatemala

    International Nuclear Information System (INIS)

    1977-08-01

    Before 1959 a private individual (Mr. Rene Abularach) is reported to have made an airborne radiometric survey of the Sierra de las Minas and Sierra Madre Ranges. Although many anomalies were detected by this survey, none were verified in the ground survey followup, despite apparently adequate flight control. In 1968 a United Nations Special Fund Mineral Survey Project completed over 1,000 km of carborne radiometric survey with geiger counter readings at 500 m intervals. No anomalies were detected, but background radioactivity for several formations and geologic environments was established. In 1969 the Guatemalan government solicited the IAEA for technical assistance In conducting a preliminary uranium favorability study designed to formulate recommendations for a national radioactive ore prospecting program. A carborne radiometric survey was made of environments theoretically favorable for uranium deposition, with spot geological and radiometric examinations being .conducted in the more favorable areas. All Important mining regions of Guatemala except the leterites and the ultrabasics were visited. No evidence of a uranium province was observed 1n these field investigations and the recommendation was made that the government not embark on a more detailed national prospecting program at that time. At the time of completion of the IAEA-Guatemalan government (GOG) reconnaissance program in 1971, no uranium reserves or resources were known. More recent information on uranium occurrences and resources 1n Guatemala does not appear to be available. Information on more recent uranium reconnaissance than that undertaken during 1971 IAEA-GOG study is lacking. However, in more recent years the country's mineral potential has been generally evaluated with the aid of the UN and ICAITI (Central American Research Institute for Industry). Except for quarry materials, the state owns all minerals. The state has priority on purchase of any mineral production needed for the country

  16. Uranium

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    The article includes a historical preface about uranium, discovery of portability of sequential fission of uranium, uranium existence, basic raw materials, secondary raw materials, uranium's physical and chemical properties, uranium extraction, nuclear fuel cycle, logistics and estimation of the amount of uranium reserves, producing countries of concentrated uranium oxides and percentage of the world's total production, civilian and military uses of uranium. The use of depleted uranium in the Gulf War, the Balkans and Iraq has caused political and environmental effects which are complex, raising problems and questions about the effects that nuclear compounds left on human health and environment.

  17. National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana

    International Nuclear Information System (INIS)

    Damp, J.N.; Jennings, M.D.

    1982-04-01

    The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated

  18. National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana

    Energy Technology Data Exchange (ETDEWEB)

    Damp, J N; Jennings, M D

    1982-04-01

    The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated.

  19. Results of elemental analyses of water and waterborne sediment samples from areas of Alaska proposed for the Chukchi Imuruk National Reserve, Selawik National Wildlife Refuge, and Cape Krusenstern National Monument

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.

    1978-10-01

    During July--August 1976, waters and sediments were collected from streams and lakes over an area of 100,000 km 2 around Kotzebue, Alaska, as part of the National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance. The work provides multielement results for 949 waters and 886 sediments from 979 locations. Of these, 492 waters and 452 sediments are from 517 locations in the proposed Chukchi Imuruk Reserve; 447 waters and 423 sediments are from 451 locations in the proposed Selawik Wildlife Refuge; and 10 waters and 11 sediments are from 11 locations in the proposed Cape Krusenstern Monument. The field data, with concentrations of 13 elements in the waters and 43 in the sediments, are presented, and the sample locations are shown on accompanying plates. The waters were analyzed for uranium by fluorometry or delayed-neutron counting and calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, titanium, and zinc by plasma-source emission spectrography. The sediment samples were analyzed for uranium by delayed-neutron counting, beryllium and lithium by arc-source emission spectrography, bismuth, cadmium, copper, lead, nickel, niobium, silver, tin, and tungsten by x-ray fluorescence, and aluminum, antimony, barium, calcium, cerium, cesium, chlorine, chromium, cobalt, dysprosium, europium, gold, hafnium, iron, lanthanum, lutetium, magnesium, manganese, potassium, rubidium, samarium, scandium, sodium, strontium, tantalum, terbium, thorium, titanium, vanadium, ytterbium, and zinc by neutron activation. Uranium to thorium ratios in each sediment are also provided

  20. Hydrogeochemical and stream sediment reconnaissance (HSSR) program of the National Uranium Resource Evaluation (NURE) 1973-1984. Technical history

    International Nuclear Information System (INIS)

    1985-01-01

    The Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program of the National Uranium Resource Evaluation (NURE) generated a database of interest to scientists and other professional personnel in the academic, business, industrial, and governmental communities. NURE was a program of the Department of Energy Grand Junction Office (GJO) to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. The HSSR program provided for the collection of water and sediment samples located on the 1 0 x 2 0 National Topographic Map Series (NTMS) quadrangle grid across the conterminous United States and Alaska and the analysis of these samples for uranium as well as for a number of additional elements. Although the initial purpose of the program was to provide information regarding uranium resources, the information recorded about other elements and general field or site characteristics has made this database potentially valuable for describing the geochemistry of a location and addressing other issues such as water quality. The purpose of this Technical History is to summarize in one report those aspects of the HSSR program that are likely to be important in helping users assess the database and make informed judgements about its application to specific research questions. The history begins with an overview of the NURE Program and its components. Following a general description of the goals, objectives, and key features of the HSSR program, the implementation of the program at each of the four federal laboratories is presented in four separate chapters. These typically cover such topics as sample collection, sample analysis, and data management. 80 refs., 5 figs., 9 tabs

  1. Uranium prospecting program: memorandum of request United Nations Assistance Rotatory Fund for Naturals resources in Uranium Prospecting

    International Nuclear Information System (INIS)

    1976-01-01

    The Uruguayan government required assistance to Unit Nations funds with the aim of studies the Natural resources in Uranium prospecting, their antecedent, actual and projected works, equipment and end considerations

  2. Environmental Limits of Tall Shrubs in Alaska's Arctic National Parks.

    Science.gov (United States)

    Swanson, David K

    2015-01-01

    We sampled shrub canopy volume (height times area) and environmental factors (soil wetness, soil depth of thaw, soil pH, mean July air temperature, and typical date of spring snow loss) on 471 plots across five National Park Service units in northern Alaska. Our goal was to determine the environments where tall shrubs thrive and use this information to predict the location of future shrub expansion. The study area covers over 80,000 km2 and has mostly tundra vegetation. Large canopy volumes were uncommon, with volumes over 0.5 m3/m2 present on just 8% of plots. Shrub canopy volumes were highest where mean July temperatures were above 10.5°C and on weakly acid to neutral soils (pH of 6 to 7) with deep summer thaw (>80 cm) and good drainage. On many sites, flooding helped maintain favorable soil conditions for shrub growth. Canopy volumes were highest where the typical snow loss date was near 20 May; these represent sites that are neither strongly wind-scoured in the winter nor late to melt from deep snowdrifts. Individual species varied widely in the canopy volumes they attained and their response to the environmental factors. Betula sp. shrubs were the most common and quite tolerant of soil acidity, cold July temperatures, and shallow thaw depths, but they did not form high-volume canopies under these conditions. Alnus viridis formed the largest canopies and was tolerant of soil acidity down to about pH 5, but required more summer warmth (over 12°C) than the other species. The Salix species varied widely from S. pulchra, tolerant of wet and moderately acid soils, to S. alaxensis, requiring well-drained soils with near neutral pH. Nearly half of the land area in ARCN has mean July temperatures of 10.5 to 12.5°C, where 2°C of warming would bring temperatures into the range needed for all of the potential tall shrub species to form large canopies. However, limitations in the other environmental factors would probably prevent the formation of large shrub canopies

  3. Environmental Limits of Tall Shrubs in Alaska's Arctic National Parks.

    Directory of Open Access Journals (Sweden)

    David K Swanson

    Full Text Available We sampled shrub canopy volume (height times area and environmental factors (soil wetness, soil depth of thaw, soil pH, mean July air temperature, and typical date of spring snow loss on 471 plots across five National Park Service units in northern Alaska. Our goal was to determine the environments where tall shrubs thrive and use this information to predict the location of future shrub expansion. The study area covers over 80,000 km2 and has mostly tundra vegetation. Large canopy volumes were uncommon, with volumes over 0.5 m3/m2 present on just 8% of plots. Shrub canopy volumes were highest where mean July temperatures were above 10.5°C and on weakly acid to neutral soils (pH of 6 to 7 with deep summer thaw (>80 cm and good drainage. On many sites, flooding helped maintain favorable soil conditions for shrub growth. Canopy volumes were highest where the typical snow loss date was near 20 May; these represent sites that are neither strongly wind-scoured in the winter nor late to melt from deep snowdrifts. Individual species varied widely in the canopy volumes they attained and their response to the environmental factors. Betula sp. shrubs were the most common and quite tolerant of soil acidity, cold July temperatures, and shallow thaw depths, but they did not form high-volume canopies under these conditions. Alnus viridis formed the largest canopies and was tolerant of soil acidity down to about pH 5, but required more summer warmth (over 12°C than the other species. The Salix species varied widely from S. pulchra, tolerant of wet and moderately acid soils, to S. alaxensis, requiring well-drained soils with near neutral pH. Nearly half of the land area in ARCN has mean July temperatures of 10.5 to 12.5°C, where 2°C of warming would bring temperatures into the range needed for all of the potential tall shrub species to form large canopies. However, limitations in the other environmental factors would probably prevent the formation of large

  4. Geochemical studies in Alaska by the U.S. geological survey, 1989

    International Nuclear Information System (INIS)

    Goldfarb, R.J.; Nash, J.T.; Stoeser, J.W.

    1990-01-01

    This book contains six papers concerned with exploration geochemistry, and stable isotope and trace element chemistry of metallic ore deposits in Alaska. Application of geostatistical techniques to the National Uranium Resource Evaluation (NURE) program stream-sediment data allows to target new areas of southeastern Alaska that are favorable for Greens Creek-type volcanogenic massive sulfide (VMS) deposits

  5. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Chile

    International Nuclear Information System (INIS)

    1977-08-01

    CCEN has invited proposals from international mining companies for the recovery of uranium from copper-bearing waters at the large Chuquicamata mine. As of mid-1977, it was reported that one proposal from all. S. company had been received. It has been estimated that production of 85 tonnes U/year might be realized here. Relatively little interest is shown in uranium by domestic (Chilean) companies because of the fear that the discovery of uranium might lead to nationalization of the properties. In spite of the possibilities mentioned above, there has been relatively little uranium discovered to date in Chile. In view of the relatively small size of these known deposits and until reconnaissance has taken a harder look at these possibilities, it would be prudent to place the potential of Chile in the 1,000-10,000 tonnes range

  6. National Uranium Resource Evaluation: Lawton Quadrangle, Oklahoma and Texas

    International Nuclear Information System (INIS)

    Al-Shaieb, Z.; Thomas, R.G.; Stewart, G.F.

    1982-04-01

    Uranium resources of the Lawton Quadrangle, Oklahoma and Texas, were evaluated to a depth of 1500 m using National Uranium Resource Evaluation criteria. Five areas of uranium favorability were delineated. Diagenetically altered, quartzose and sublithic, eolian and marginal-marine sandstones of the Permian Rush Springs Formation overlying the Cement Anticline are favorable for joint-controlled deposits in sandstone, non-channel-controlled peneconcordant deposits, and Texas roll-front deposits. Three areas contain lithologies favorable for channel-controlled peneconcordant deposits: arkosic sandstones and granule conglomerates of the Permian Post Oak Conglomerate south of the Wichita Mountains; subarkosic and sublithic Lower Permian fluvio-deltaic and coastal-plain sandstones of the eastern Red River Valley; and subsurface arkosic, subarkosic, and sublithic alluvial-fan and fan-delta sandstones of the Upper Pennsylvanian-Lower Permian sequence in the eastern Hollis Basin. The coarse-grained facies of the Cambrian Quanah Granite and genetically related aplite and pegmatite dikes in the Wichita Mountains are favorable for orthomagmatic and autometasomatic deposits, respectively

  7. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Indonesia

    International Nuclear Information System (INIS)

    1977-10-01

    Indonesia is a country of south east Asia comprising a large island group extending east-west for over 3000 miles. The geology of Indonesia is fairly well known but is extremely complicated. Successive mountain movements took place around an ancient crustal area. The oldest, of Permian-Triassic age formed northeast Sumatra, northern Java and western Kalimantan. This was followed by the Sumatra orogenesis and finally in Cretaceous and Tertiary times the southern half of Java and the islands as far as New Guinea were formed. Geological studies tend to indicate that the most favourable uranium areas are likely to be in West Sumatra and West Kalimantan. Exploration by the Directorate of Survey and Geology of the National Atomic Energy Agency has been carried out on a small scale since 1961. Exploration concession have been granted to French, German and Japanese organisations. No uranium reserve or resource figures have ever been stated but small occurrences and radioactive anomalies have been found in West and South Sumatra, West and Central Kalimantan and in West Irian. Although the geology of some areas appears to be favourable, little success has attended exploration efforts to date and thus the Speculative Potential is noted as between 1,000 and 10,000 tonnes uranium. (author)

  8. 75 FR 51103 - Notice of Public Meetings for the National Park Service (NPS) Alaska Region's Subsistence...

    Science.gov (United States)

    2010-08-18

    ... SRC and Wrangell-St. Elias SRC plan to meet to develop and continue work on National Park Service (NPS... reconvene on Thursday, October 7, 2010, from 9 a.m. to 5 p.m. or until business is completed. This meeting will be held at Fast Eddy's Motel and Restaurant located at Mile 1313 on the Alaska Highway in Tok, AK...

  9. Uranium

    International Nuclear Information System (INIS)

    Cuney, M.; Pagel, M.; Leroy, J.

    1992-01-01

    First, this book presents the physico-chemical properties of Uranium and the consequences which can be deduced from the study of numerous geological process. The authors describe natural distribution of Uranium at different scales and on different supports, and main Uranium minerals. A great place in the book is assigned to description and classification of uranium deposits. The book gives also notions on prospection and exploitation of uranium deposits. Historical aspects of Uranium economical development (Uranium resources, production, supply and demand, operating costs) are given in the last chapter. 7 refs., 17 figs

  10. Uranium hydrogeochemical and stream sediment reconnaissance of the Lime Hills and Tyonek NTMS Quadrangles, Alaska, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Jacobsen, S.I.; Aamodt, P.L.; Sharp, R.R. Jr.

    1979-01-01

    The U contents of the 671 waters from the Lime Hills quadrangle range from below 0.02 ppB to a high of 11.29 ppB. U contents of the 667 sediments from this quadrangle range from a low of 0.1 ppM to a high of 94.9 ppM. Both waters and sediments containing relatively high U concentrations are found to cluster in association with plutonic rocks in the Alaska Range, and particularly so in the vicinity of the Tired Pup batholith and Mount Estelle pluton. The U contents of 575 waters from the Tyonek quadrangle range from below the detection limit to 13.13 ppB. Relatively high U concentrations in waters were found to cluster near the Mount Estelle pluton and undifferentiated igneous, metasedimentary, and volcanic rocks in the Alaska Range and in Pleistocene deposits along the Castle Mountain fault. Uranium contents in 502 sediments from the Tyonek quadrangle range from 0.1 to 58 ppM. Most sediment samples having high U concentrations are from locations near the Mount Estelle pluton and Styx River batholith in the Alaska Range. Data for samples collected in the Alaska Range and the two flanking lowlands were also examined separately. Water samples from all source types in the Alaska Range had a higher mean U concentration (0.85 ppB) than those from the Western Lowland (0.34 ppB) or the Susitna Lowland (0.51 ppB). The mean U concentrations for lake water samples from the Alaska Range and the lowland areas are similar. Sediment samples from streams and lakes in the Alaska Range have a markedly higher mean U concentration (7.00 ppM) than sediment samples from either the Western Lowland (2.46 ppM) or the Susitna Lowland area

  11. 78 FR 23312 - Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National...

    Science.gov (United States)

    2013-04-18

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National Enrichment Facility, Eunice, New Mexico..., National Enrichment Facility in Eunice, New Mexico, and has authorized the introduction of uranium...

  12. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Bahrain

    International Nuclear Information System (INIS)

    1977-11-01

    Bahrain consists of limestone, sandstone and marl of Cretaceous and Tertiary ages. The potential for discoveries of uranium is very limited and thus the Speculative potential is placed in the category of less than 1000 tonnes uranium. (author)

  13. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Israel

    International Nuclear Information System (INIS)

    1977-12-01

    The geology of Israel is relatively simple. Most of the country is underlain by sedimentary rocks of Secondary and Tertiary age. As far as the IAEA is aware no systematic exploration has been done for conventional type uranium deposits. Israel has no uranium deposits, and no high or low-grade uranium ores. However, there are uranium 'sources' which are mainly phosphate rock.Proven phosphate reserves in Israel are estimated at about 220 million tons in five different locations. The average uranium concentration is between 100 and 170 ppm. This makes the uranium content in the proven phosphate reserves of Israel to be about 25,000 tons. Together with the possibility of additional discoveries and on the assumption that the economic conditions for the production of both phosphate and uranium become favourable the Speculative Potential is placed in the 10,000 to 50,000 tonnes uranium category. (author)

  14. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article briefly discusses the Australian government policy and the attitude of political party factions towards the mining and exporting of the uranium resources in Australia. Australia has a third of the Western World's low-cost uranium resources

  15. Uranium

    International Nuclear Information System (INIS)

    Poty, B.; Cuney, M.; Bruneton, P.; Virlogeux, D.; Capus, G.

    2010-01-01

    With the worldwide revival of nuclear energy comes the question of uranium reserves. For more than 20 years, nuclear energy has been neglected and uranium prospecting has been practically abandoned. Therefore, present day production covers only 70% of needs and stocks are decreasing. Production is to double by 2030 which represents a huge industrial challenge. The FBR-type reactors technology, which allows to consume the whole uranium content of the fuel, is developing in several countries and will ensure the long-term development of nuclear fission. However, the implementation of these reactors (the generation 4) will be progressive during the second half of the 21. century. For this reason an active search for uranium ores will be necessary during the whole 21. century to ensure the fueling of light water reactors which are huge uranium consumers. This dossier covers all the aspects of natural uranium production: mineralogy, geochemistry, types of deposits, world distribution of deposits with a particular attention given to French deposits, the exploitation of which is abandoned today. Finally, exploitation, ore processing and the economical aspects are presented. Contents: 1 - the uranium element and its minerals: from uranium discovery to its industrial utilization, the main uranium minerals (minerals with tetravalent uranium, minerals with hexavalent uranium); 2 - uranium in the Earth's crust and its geochemical properties: distribution (in sedimentary rocks, in magmatic rocks, in metamorphic rocks, in soils and vegetation), geochemistry (uranium solubility and valence in magmas, uranium speciation in aqueous solution, solubility of the main uranium minerals in aqueous solution, uranium mobilization and precipitation); 3 - geology of the main types of uranium deposits: economical criteria for a deposit, structural diversity of deposits, classification, world distribution of deposits, distribution of deposits with time, superficial deposits, uranium

  16. Influence of political opposition and compromise on conservation outcomes in the Tongass National Forest, Alaska.

    Science.gov (United States)

    Beier, Colin M

    2008-12-01

    To understand how a highly contentious policy process influenced a major conservation effort, I examined the origins, compromises, and outcomes of the Alaska National Interest Lands Conservation Act of 1980 (ANILCA) for the Tongass National Forest. Tongass wilderness designation was among the most controversial issues in the ANILCA debate, and it faced strong opposition from influential lawmakers, land managers, and Alaska residents. To investigate the influence of this opposition on Tongass conservation outcomes, I conducted a gap analysis of Tongass reserves and a policy analysis of the ANILCA debate and traced the influence of specific interests through the amendments, negotiations, and resulting compromises needed to enact ANILCA. Overall, I found that Tongass reserves comprise a broadly representative cross-section of ecosystems and species habitats in southeastern Alaska. Redrawn reserve boundaries, industry subsidies, and special access regulations reflected compromises to minimize the impact of wilderness conservation on mining, timber, and local stakeholder interests, respectively. Fragmentation of the Admiralty Island National Monument-the most ecologically valuable and politically controversial reserve-resulted from compromises with Alaskan Native (indigenous peoples of Alaska) corporations and timber interests. Despite language to accommodate "reasonable access" to wilderness reserves, ongoing access limitations highlight the concerns of Alaska residents that opposed ANILCA several decades ago. More broadly, the Tongass case suggests that early and ambitious conservation action may offset strong political opposition; compromises needed to establish key reserves often exacerbate development impacts in unprotected areas; and efforts to minimize social conflicts are needed to safeguard the long-term viability of conservation measures.

  17. Abandoned Uranium Mine (AUM) Priority Mine Points, Navajo Nation, 2016, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains point features representing priority abandoned uranium mines in Navajo Nation, as determined by the US EPA and the Navajo Nation. USEPA and...

  18. Abandoned Uranium Mine (AUM) Priority Mine Areas, Navajo Nation, 2016, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains polygon features representing priority abandoned uranium mines in Navajo Nation, as determined by the US EPA and the Navajo Nation. USEPA...

  19. Uranium

    International Nuclear Information System (INIS)

    Mackay, G.A.

    1978-01-01

    The author discusses the contribution made by various energy sources in the production of electricity. Estimates are made of the future nuclear contribution, the future demand for uranium and future sales of Australian uranium. Nuclear power growth in the United States, Japan and Western Europe is discussed. The present status of the six major Australian uranium deposits (Ranger, Jabiluka, Nabarlek, Koongarra, Yeelerrie and Beverley) is given. Australian legislation relevant to the uranium mining industry is also outlined

  20. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Oman

    International Nuclear Information System (INIS)

    1977-11-01

    The geology of Oman is unlikely to lie favourable for uranium occurrence being mainly of marine sedimentary origin. No exploration for uranium has been reported or is planned. The Speculative Potential is placed in the category of less than 1000 tonnes uranium. (author)

  1. Uranium

    International Nuclear Information System (INIS)

    Stewart, E.D.J.

    1974-01-01

    A discussion is given of uranium as an energy source in The Australian economy. Figures and predictions are presented on the world supply-demand position and also figures are given on the added value that can be achieved by the processing of uranium. Conclusions are drawn about Australia's future policy with regard to uranium (R.L.)

  2. Uranium

    International Nuclear Information System (INIS)

    Toens, P.D.

    1981-03-01

    The geological setting of uranium resources in the world can be divided in two basic categories of resources and are defined as reasonably assured resources, estimated additional resources and speculative resources. Tables are given to illustrate these definitions. The increasing world production of uranium despite the cutback in the nuclear industry and the uranium requirements of the future concluded these lecture notes

  3. Development of the disposal technology research component of the national uranium tailings program

    International Nuclear Information System (INIS)

    Melis, L.A.

    1983-03-01

    The National Technical Planning Group on Uranium Tailings Research, organized by CANMET in 1980, recommended the establishment of a National Uranium Tailings Program to develop research on the long-term abandonment of uranium mine tailings. This report deals with the disposal technology component of this program and attempts to provide recommendations with respect to potential research avenues in this area. A description of uranium tailings in Canada is provided in order to identify the current situation with uranium tailings management. Uranium mining sites described include the Elliot Lake and Bancroft area of Ontario, the northern Saskatchewan properties and the two abandoned sites in the North West Territories. The description of the sites was facilitated by subdividing the tailings into inactive sites, active sites, new tailings sites and areas of tailings in a close-out situation. Methods identified as promising include subsurface disposal, in-situ leaching, prevention of pyrite oxidation and reclamation studies at abandoned sites

  4. 78 FR 13379 - Wrangell-St. Elias National Park and Preserve, Alaska; Proposed Mining Plan of Operations

    Science.gov (United States)

    2013-02-27

    ...] Wrangell-St. Elias National Park and Preserve, Alaska; Proposed Mining Plan of Operations AGENCY: National...) unpatented placer claims within Wrangell-St. Elias National Park and Preserve. Public Availability: This plan...: Wrangell-St. Elias National Park and Preserve Headquarters, Mile 106.8 Richardson Highway, Post Office Box...

  5. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Thailand

    International Nuclear Information System (INIS)

    1977-08-01

    Thailand is a country with an area of 514?000 square kilometres situated in the centre of continental south-east Asia, The geology of Thailand is very varied with sedimentary formations ranging from Cambrian to Quaternary in age and including sandstones, shales, limestones of many varieties. Among the igneous rocks, granites are very important and rhyolites, tuffs diorites, basalts and ultrabasic rocks also exist. Tin is the most important mineral occurrence. Available information on the geology and mineral resources suggests that the country may contain significant resources of radioactive minerals. Favourable potential host types are; 1) uranium and thorium in monazite in beach sands and tin placer deposits; 2) uranium in sandstones, principally in Jurassic sandstones of the Khorat Plateau; 3) uranium in Tertiary lignite deposits; 4) uranium in veins in granites; 5) uranium related to fluorite deposits; 6) uranium in black shales and phosphates. Uranium mineralization in sedimentary rocks at Phu Wieng was discovered in 1970. The area has been radiometrically grid mapped and limited shallow drilling has shown continuity.of the narrow, carbonaceous, conglomeratic sandstone host bed. No uranium reserves or resources can be stated at the present time, but the favourable geology of the Khorat Plateau, the known uranium occurrence and the very small exploration coverage is possibly indicative of a good future potential. The Speculative Potential is estimated to be between 1000 and 10,000 tonnes uranium. (author)

  6. Monitoring of health and environment by National Uranium Company (NUC)

    International Nuclear Information System (INIS)

    Georgescu, D.P.; Banciu, O

    1998-01-01

    Among the activities of geological survey, exploitation and processing of radioactive ore performed by National Uranium Company (NUC) a major attention is paid to personnel medical monitoring, to influences on the public health in the affected zones and also to the impact on environment, based on specific criteria and accomplished by medical and technical institutions having an adequate profile, in conformity with the enforced laws and with recommendations of international authorities on this field. Health monitoring of the active and retired personnel and of population from the affected sites by the NUC activities is done on the basis of a program established in co-operation with the Work Protection Department and the management of the company's subunits. The methodology used at present has the following three stages: 1. Periodical medical examination of the personnel including all the compulsory investigations requested by the Ministry of Health; 2. Annual epidemiology descriptive studies concerning the analysis of the personnel health state; 3. Analytical epidemiologic studies (retrospective and prospective) having the aim of surveying the radiation effects on the human target organs of the exposed personnel and also the impact on the public health in the influenced zones. At present the incidence of professional diseases liked to uranium is no longer a problem. Attention has to be focused to the diseases due to microclimate, noise, intensive physical effort and stress (non-specific chronic breathing diseases, arterial high blood pressure, heart diseases, digestive diseases and neuroses). The paper presents also the environmental factors investigated in connection with the importance which they have in radioactive contamination: air, water, soil, sediments, vegetation, and agricultural products. There are given the results of the tests performed on 25,000 samples and from more then 20,000 radiometric measurements performed between 1975 - 1997 in each subunit of

  7. National Uranium Resource Evaluation: Albany Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Field, M T; Truesdell, D B

    1982-09-01

    The Albany 1/sup 0/ x 2/sup 0/ Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Areas of favorable geology and aeroradioactivity anomalies were examined and sampled. Most Triassic and Jurassic sediments in the Connecticut Basin, in the central part of the quadrangle, were found to be favorable for sandstone uranium deposits. Some Precambrian units in the southern Green Mountains of Vermont were found favorable for uranium deposits in veins in metamorphic rocks.

  8. National Uranium Resource Evaluation: Albany Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire

    International Nuclear Information System (INIS)

    Field, M.T.; Truesdell, D.B.

    1982-09-01

    The Albany 1 0 x 2 0 Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Areas of favorable geology and aeroradioactivity anomalies were examined and sampled. Most Triassic and Jurassic sediments in the Connecticut Basin, in the central part of the quadrangle, were found to be favorable for sandstone uranium deposits. Some Precambrian units in the southern Green Mountains of Vermont were found favorable for uranium deposits in veins in metamorphic rocks

  9. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Syria

    International Nuclear Information System (INIS)

    1977-11-01

    Very little information is available to IAEA on the geology and uranium potential of Syria. In 1975 a contract was awarded to Huntings Geology and Geophysics Ltd by the Ministry of Petroleum and Mineral Resources to carry out a study of the country's mineral resources with particular reference to phosphate uranium, chrome and industrial materials. The results of this survey are not known. Apart from the assumption of some possibility of uranium recovery as a by-product from phosphate production it is assumed that the Speculative Potential is likely to be less than 1000 tonnes uranium. (author)

  10. Gravity Data for the National Petroleum Reserve-Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (53,520 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received...

  11. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Laos

    International Nuclear Information System (INIS)

    1977-11-01

    Laos is a land locked country containing about 3.5 million people living primarily at a subsistence level. Geologically, the country contains a few places that may be marginally favourable for uranium deposits. A uranium potential in the upper half of Category 1 is assigned. (author)

  12. Uranium

    International Nuclear Information System (INIS)

    Whillans, R.T.

    1981-01-01

    Events in the Canadian uranium industry during 1980 are reviewed. Mine and mill expansions and exploration activity are described, as well as changes in governmental policy. Although demand for uranium is weak at the moment, the industry feels optimistic about the future. (LL)

  13. International Uranium Resources Evaluation Project (IUREP) national favourability studies: India

    International Nuclear Information System (INIS)

    1977-08-01

    Physiographically India has a total area of 3,268,010 km 2 in three distinct regions. 1. The Peninsular shield in the south with an area of 823,310 km 2 . 2. The Himalayan mountain system with an area of 1,797,200 km 2 . 3. The Indo-Gangetic alluvial plain with an area of 647,500 km 2 . The three presently recognised major uranium provinces in India are: 1. The Singhbhum uranium province; 2. The Rajasthan uranium province, 3. The Madhya Pradesh uranium province. The Atomic Minerals Division of the Department of Atomic Energy has carried out a vigorous exploration programme since 1949 but despite their efforts a great deal of ground has still to be explored. At present, structurally controlled deposits account for most of the uranium resources of India. Uranium occurrences and deposits have been outlined in (1) Vein type deposits (the Singhbhum belt), (2) Conglomerate (Karnataka and Udaipur area, Raiasthan), (3) Sandstones (Madhra Pradesh and Swaliks, Himachal Pradesh, (4) Others such as carbonatites, marine phosphates, etc, (Mussorrie - Sahasradhara In Uttar Pradesh and Chatterpur-Saucur in Madhya Pradesh), (5) By-product Uranium in copper tailings and beach sands. India's total resources are listed as 52,538 tonnes uranium (68,300 short tons U 3 O 8 ) with additional resources from monazite of 12700 tonnes uranium. In view of the wide geological favourability, the many types of occurrences already known and the vast areas of unexplored ground it is estimated that the Speculative Potential may be between 150,000 and 250,000 tonnes uranium which is Category 5. (author)

  14. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Belgium

    International Nuclear Information System (INIS)

    1977-12-01

    Uranium occurrences and resources - To date the uranium identified in Belgium is limited to a number of occurrences and none of these have as yet proved significant from a reserve or resource viewpoint. The main uranium occurrences ares (1) In the Upper Cambrian graphite schists corresponding to the culm of Sweden small zones are found (30 - 50 cm thick) with an average of 20 ppm uranium. (2) Near Vise at the base of the Carboniferous the Visean formation is discordantly superimposed on the Permian (Frasnian) and overlain by shales and phyllites. Solution pockets at the boundary contain phosphatic lenses that contain uranium values of up to 200 ppm. Autunite and Torbernite are the main uranium minerals associated with a number of complex phosphatic minerals. Within the Chalk (Maestrichtien) of the Mons basin, that is mainly in the Ciply - St. Symphorien and Baudow district. Here is found enrichment of uranium up to 140 ppm over large areas related to phosphatic chalk. The thickness of the zone varies from a few to 20 metres. However, as the P 2 O 5 content is not high enough for the deposits to be exploited at present for phosphate there is little possibility of the uranium being concentrated at high enough levels to be exploited for itself alone. (4) Near to Vielsalm (in the Stavelot Massif) are some thin quartz veins containing small amounts of copper and uranium minerals (Torbornite). Values of up to 70 ppm are recorded. (5) A number of low uranium values are recorded associated with phosphatic nodules and zones in the Lower Pleistocene and Tertiary

  15. Copper Mountain, Wyoming, intermediate-grade uranium resource assessment project. Final report. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Madson, M.E.; Ludlam, J.R.; Fukui, L.M.

    1982-11-01

    Intermediate-grade uranium resources were delineated and estimated for Eocene and Precambrian host rock environments in the 39.64 mi 2 Copper Mountain, Wyoming, assessment area. Geologic reconnaissance and geochemical, geophysical, petrologic, borehole, and structural data were interpreted and used to develop a genetic model for uranium mineralization in these environments. Development of a structural scoring system and application of computer graphics in a high-confidence control area established the basis for estimations of uranium resources in the total assessment area. 8 figures, 5 tables

  16. Abandoned Uranium Mine (AUM) Surface Areas, Navajo Nation, 2016, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains polygon features that represent all Abandoned Uranium Mines (AUMs) on or within one mile of the Navajo Nation. Attributes include mine...

  17. Abandoned Uranium Mine (AUM) Enforcement Action Mine Areas, Navajo Nation, 2016, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains polygon features that represent abandoned uranium mines with EPA enforcement actions as of March 2016 in the Navajo Nation. Attributes...

  18. Abandoned Uranium Mine (AUM) Points, Navajo Nation, 2016, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains point features of all Abandoned Uranium Mines (AUMs) on or within one mile of the Navajo Nation. Points are centroids developed from the...

  19. Abandoned Uranium Mine (AUM) Enforcement Action Mine Points, Navajo Nation, 2016, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains point features that represent abandoned uranium mines with EPA enforcement actions as of March 2016 in Navajo Nation. Attributes include...

  20. National Uranium Resource Evaluation: Lovelock Quadrangle, Nevada and California

    International Nuclear Information System (INIS)

    Berry, V.P.; Bradley, M.T.; Nagy, P.A.

    1982-08-01

    Uranium resources of the Lovelock Quadrangle, Nevada and California, were evaluated to a depth of 1500 m using available surface and subsurface geological information. Uranium occurrences reported in the literature and in reports of the Atomic Energy Commission were located, sampled, and described in detail. Areas of anomalous radioactivity, as interpreted from the aerial radiometric reconnaissance survey and from the hydrochemical and stream-sediment reconnaissance survey reports, were also investigated. A general reconnaissance of the geologic environments exposed in surface outcrops was carried out; and over 400 rock, sediment, and water geochemical analyses were made from the samples taken. Additionally, 119 rock samples were petrographically studied. A total of 21 occurrences were located, sampled, and described in detail. Six uranium occurrences, previously unreported in the literature, were located during hydrogeochemical and stream-sediment reconnaissance, aerial radiometric reconnaissance survey followup, or general outcrop reconnaissance. Nine areas of uranium favorability were delineated within the Lovelock Quadrangle. One area, which contains the basal units of the Hartford Hill Rhyolite, is favorable for hydroallogenic uranium deposits. Eight areas are favorable for uranium deposits in playa sediments. These playas are considered favorable for nonmarine carbonaceous sediment deposits and evaporative deposits. The total volume of rock in favorable areas of the Lovelock Quadrangle is estimated to be 190 km 3 . The remaining geologic units are considered to be unfavorable for uranium deposits. These include upper Paleozoic and Mesozoic volcanic, plutonic, sedimentary, and metamorphic rocks. Also unfavorable are Tertiary and Quaternary volcanic flows and intrusive phases, tuffs, and sediments

  1. Montane-breeding bird distribution and abundance across national parks of southwestern Alaska

    Science.gov (United States)

    Amundson, Courtney L.; Handel, Colleen M.; Ruthrauff, Daniel R.; Tibbitts, T. Lee; Gill, Robert E.

    2018-01-01

    Between 2004 and 2008, biologists conducted an inventory of breeding birds during May–June primarily in montane areas (>100 m above sea level) in Aniakchak National Monument and Preserve (Aniakchak NMP), Katmai National Park and Preserve (Katmai NPP), and Lake Clark National Park and Preserve (Lake Clark NPP) in southwestern Alaska. Observers conducted 1,021 point counts along 169 transects within 63 10-km × 10-km plots that were randomly selected and stratified by ecological subsection. We created hierarchical N-mixture models to estimate detection probability and abundance for 15 species, including 12 passerines, 2 galliforms, and 1 shorebird. We first modeled detection probability relative to observer, date within season, and proportion of dense vegetation cover around the point, then modeled abundance as a function of land cover composition (proportion of seven coarse-scale land cover types) within 300 m of the survey point. Land cover relationships varied widely among species but most showed selection for low to tall shrubs (0.2–5 m tall) and an avoidance of alpine and 2 dwarf shrub–herbaceous cover types. After adjusting for species not observed, we estimated a minimum of 107 ± 9 species bred in the areas surveyed within the three parks combined. Species richness was negatively associated with elevation and associated land cover types. At comparable levels of survey effort (n = 721 birds detected), species richness was greatest in Lake Clark NPP (75 ± 12 species), lowest in Aniakchak NMP (45 ± 6 species), and intermediate at Katmai NPP (59 ± 10 species). Species richness was similar at equivalent survey effort (n = 973 birds detected) within the Lime Hills, Alaska Range, and Alaska Peninsula ecoregions (68 ± 8; 79 ± 11; 67 ± 11, respectively). Species composition was similar across all three parks and across the three major ecoregions (Alaska Range, Alaska Peninsula, Lime Hills) that encompass them. Our results provide baseline estimates of

  2. National Uranium Resource Evaluation: Spartanburg Quadrangle, South Carolina and North Carolina

    International Nuclear Information System (INIS)

    Schot, E.H.; Galipeau, J.M.

    1980-11-01

    The Spartanburg Quadrangle, South Carolina and North Carolina, was evaluated for uranium favorability using National Uranium Resource Evaluation criteria. The evaluation included the study and analysis of published and collected geologic, geophysical, and geochemical data from subsurface, surface, and aerial studies. Five environments are favorable for uranium deposits. The Triassic Wadesboro Basin has ground waters with anomalously high uranium concentrations and uranium-to-conductivity ratios. The Upper Cretaceous Tuscaloosa-Middendorf Formation is near a uranium source and has sediments favorable for uranium deposition. The contact-metamorphic aureoles associated with the Liberty Hill-Kershaw and Winnsboro-Rion plutonic complexes are close to uranium sources and contain the reductants (sulfides, graphite) necessary for precipitation. The East Fork area in the Charlotte Belt has ground waters with uranium concentrations 4 to 132 times the mean concentration reported for the surrounding Piedmont area. Unfavorable environments include the Catawba Granite, the area west of the Winnsboro-Rion complex, gold-quartz veins, the vermiculite district, and the Western Monazite Belt

  3. Extraction of uranium low-grade ores from Great Divide Basin, Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Judd, J.C.; Nichols, I.L.; Huiatt, J.L.

    1983-04-01

    The US Bureau of Mines is investigating the leachability of carbonaceous uranium ore samples submitted by the DOE under an Interagency Agreement. Studies on eight samples from the Great Divide Basin, Wyoming, are the basis of this report. The uranium content of the eight ore samples ranged from 0.003 to 0.03% U 3 O 8 and contained 0.7 to 45% organic carbon. Experiments were performed to determine the feasibility of extracting uranium using acid leaching, roast-acid leaching and pressure leaching techniques. Acid leaching with 600 lb/ton H 2 SO 4 plus 10 lb/ton NaClO 3 for 18 h at 70 0 C extracted 65 to 83% of the uranium. One sample responded best to a roast-leach treatment. When roasting for 4 h at 500 0 C followed by acid leaching of the calcine using 600 lb/ton H 2 SO 4 , the uranium extraction was 82%. Two of the samples responded best to an oxidative pressure leach for 3 h at 200 0 C under a total pressure of 260 psig; uranium extractions were 78 and 82%

  4. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Afghanistan

    International Nuclear Information System (INIS)

    1976-12-01

    Although Afghanistan has an extent of some 650,065 square kilometres, only a very small proportion of it has been surveyed for uranium, and that only at the preliminary reconnaissance stage. Earlier work by bi-lateral teams identified a number of small uranium anomalies and occurrences and more recently (1974-75) an IAEA geologist discovered evidence of uranium mineralisation in the Neogene - Lower Pleistocene continental sediments of the Jalalabad Basin to the east of Kabul. The I.A.E.A. expert outlined three areas totalling 20,000 km where systematic uranium exploration would be justified. Up to the present no positive programme has been agreed. On very tenuous evidence a Speculative Potential of 2000 tonnes U 3 O 8 is suggested for Afghanistan. (author)

  5. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Australia

    International Nuclear Information System (INIS)

    1977-08-01

    In Australia most exploration for uranium has been conducted by companies and individuals. The geological mapping and airborne radiometric surveying conducted by the BMR is made available to interested persons. Exploration for uranium in Australia can be divided into two periods - 1947 to 1961 and 1966-1977. During the first period the Commonwealth Government introduced measures to encourage uranium exploration including a system of rewards for the discovery of uranium ore. This reward system resulted in extensive activity by prospectors particularly in the known mineral fields. Equipped with a Geiger counter or scintillometer, individuals with little or no experience in prospecting could compete with experienced prospectors and geologists. During this period several relative small uranium deposits were discovered generally by prospectors who found outcropping mineralisation. The second phase of uranium exploration in Australia began in 1966 at which time reserves amounted to only 6,200 tonnes of uranium and by 3 977 reserves had been increased to 289,000 tonnes. Most of the exploration was done by companies with substantial exploration budgets utilising more advanced geological and geophysical techniques. In the field of airborne radiometer the development of multi-channel gamma ray spectrometers with large volume crystal detectors increased the sensitivity of the tool as a uranium detector and resulted in several major discoveries. Expenditure or exploration for uranium increased from 1966 to 1971 but has declines in recent years. After listing the major geological elements of Australia, its uranium production and resources are discussed. During the period 1954-71 the total production of uranium concentrate in Australia amounted to 7,780 tonnes of uranium, and was derived from deposits at Rum Jungle (2,990 tonnes U) and the South Alligator River (610 tonnes U) in the Northern Territory, Mary Kathleen (3,460 tonnes U) in Queensland and Radium Hill (720 tonnes U

  6. Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R M

    1976-01-01

    Evidence of expanding markets, improved prices and the short supply of uranium became abundantly clear in 1975, providing the much needed impetus for widespread activity in all phases of uranium operations. Exploration activity that had been at low levels in recent years in Canada was evident in most provinces as well as the Northwest Territories. All producers were in the process of expanding their uranium-producing facilities. Canada's Atomic Energy Control Board (AECB) by year-end had authorized the export of over 73,000 tons of U/sub 3/0/sub 8/ all since September 1974, when the federal government announced its new uranium export guidelines. World production, which had been in the order of 25,000 tons of U/sub 3/0/sub 8/ annually, was expected to reach about 28,000 tons in 1975, principally from increased output in the United States.

  7. Effect of imports of uranium on the national security. Critical technologies

    International Nuclear Information System (INIS)

    1989-09-01

    The report gives results of an investigation to determine the effects of uranium imports on the national security. Uranium is essential to the operation of the Navy's nuclear-powered fleet, for nuclear weapon capability and for civilian nuclear energy generation. US utilities imported 43.8 percent of their uranium requirements in 1986 and 51.1 percent in 1987. The report finds that the domestic industry's competitiveness has deteriorated in recent years, due to the easily accessible and richer deposits available elsewhere. The report concludes, however, that in a national security emergency, defense requirements could be met through stockpiles of finished nuclear materials set aside for military needs. Furthermore, civilian requirements could be met through US production, reliable imports, inventories, and tails reprocessing. The report, therefore, finds that uranium is not being imported in such quantities or under such circumstances as to represent a threat to the national security

  8. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Sweden

    International Nuclear Information System (INIS)

    1977-11-01

    Sweden, covers an area of approx. 450 000 square kilometers. It has a population of 8 millions. With few exceptions in the northern part the access can be regarded as good. A dense network of motorroads and railroad exists. The results obtained by the exploration works combined with other available geo-information permit a separation of two principal uranium provinces in Sweden. The first one is confined to sediments of Upper Cambrian and Lower Ordovician which appears in Southern Sweden and along the border of the Caledonian mountain range in Central Sweden. The uranium occurrence are stratiform, of blackshale type which occurs in the Peltura zone of Upper Cambrian or they are associated to a phosphatite-bearing unit of Lower Ordovician overlying the Cambrian shale formation. The distribution of uranium in Upper Cambrian rocks is in general dependant on their lithology which itself is related to the paleography. This conditions explain relatively higher uranium content of the shale from Billigen.The potential resources of the province are estimated at about 1 million tonnes uranium. The second uranium province, called Arjeplog-Arvidsjaur, situated immediately south of the Arctic circle, comprises one deposit - Pleutajokk - and a group of more than twenty occurrences of similar characteristics and age (1 700 - 1 800 my.). The results of the past exploration have shown that uranium is present in different types of rocks. Because of the presence of uranium in many of the pegmatites the possibility of the formation of large low grade deposits should be tested. Favourable areas are those regions where the geological conditions are similar to the geology of the Grenville province in Canada or the Damara belt of SW-Africa. Special studies are recommended on this subject

  9. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Taiwan

    International Nuclear Information System (INIS)

    1977-12-01

    Taiwan is an island of 36,000 sq km located 160 km east of mainland China. Geologically, the oldest rocks are Tertiary, and the only igneous rocks on the island are Quaternary andesites and basalts. Copper, gold, and silver are the only known metallic minerals produced. Uranium occurrences and exploration efforts are unknown. The potential uranium resource of Taiwan is considered a category 1 resource. (author)

  10. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Honduras

    International Nuclear Information System (INIS)

    1977-08-01

    In 1953, the U.S. Atomic Energy Commission, on invitation of the government of Honduras, conducted uranium reconnaissance in parts of the country. The survey consisted of scintillometric examination of all formations, veins, dikes, sills and contacts along more than 1,500 km of road. Additionally, 17 mines and prospects were examined, but in no location were uranium occurrences found. The largest and most consistently radioactive deposit noted was a body of volcanic ash at Santa Rosa de Copan, a sample of which assayed 15 ppm U 3 O 8 . A uranium prospect has been described from the Yatnala area in northwest Honduras. Uraninite and oxidation products occur in association with copper and mercury minerals in veinlets as well as disseminations in a Lower Cretaceous limestone conglomerate, the llama Formation. The llama Formation is the conglomeratic facies of the Atima (limestone) Formation, both of which are in the Yojoa Group. At the time of the U. N. development program survey in May, 1970, no uranium deposits were known in Honduras. Information is not available on current exploration in Honduras. The state owns most mineral deposits but may grant rights for exploration and exploitation of the subsoil. Mineral and surface titles are separate. Deposits of uranium and its salts, thorium and similar atomic energy substances are reserved to the state. Foreign citizens and companies, with some exceptions, may acquire mineral rights. Several groups of sediments might be of interest for uranium exploration. The Todos Santos redbeds and the El Plan Formation are both shallow marine and hence may contain marginal marine facies favorable for uranium. In the southern and central Cordillera, the Valle de Angeles sediments, particularly the sandstones, may be of interest. The contacts between Permian granites and schists (Paleozoic) may also warrant attention. Lacking further information on which to base a more optimistic outlook, it is estimated that the uranium potential of

  11. Uranium hydrogeochemical and stream sediment reconnaissance of the Dixon Entrance NTMS and Prince Rupert D-6 quadrangles, Alaska, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Warren, R.G.; Hensley, W.K.; Hanks, D.E.

    1980-09-01

    During August 1978, sediment and water samples were collected from 203 lakes, streams, and springs in the Dixon Entrance and Prince Rupert D-6 quadrangles, Alaska. Variations in concentrations of all 43 elements among the five sieve fractions at each location are generally less than analytical uncertainty. Therefore, elemental analyses are generally comparable for a wide range in sieve fractions for sediment sample locations in southeastern Alaska. However, at some few locations, several elemental concentrations increase with finer mesh size; for uranium, such an increase may be associated with mineralization. Waterborne sediment samples collected from the center of a stream yield analyses essentially identical to those collected from the adjacent bank for most elements. Chlorine concentrations are generally higher in bank sediments, probably as a result of concentration of halogens in the vegetation that stabilizes the bank. At a few locations, concentrations of the ferrous elements, particularly Mn and Co, differ notably between the stream center and bank: such behavior is characteristic of mineralized areas. Concentrations of the ferrous elements, particularly Mn and Co, are strikingly enriched in the stream sediments compared either to lake sediments or to crustal abundances. This suggests that this area might be a favorable location for strategic resources of these elements. Uranium concentrations in all 950 sediment samples of all sieve fractions range from 0.54 to 22.80 ppM, with a median of 2.70 ppM

  12. National uranium resource evaluation: Lemmon quadrangle, South Dakota and North Dakota

    International Nuclear Information System (INIS)

    Sewell, J.M.; Pickering, L.A.

    1982-06-01

    The Lemmon Quadrangle was evaluated to identify and delineate geologic environments favorable for the occurrence of uranium deposits using criteria developed for the National Uranium Resource Evaluation program. Surface studies included investigation of uranium occurrences, general surface reconnaissance, and detailed rock sampling in selected areas. In addition, followup studies were conducted on carborne spectrometric, aerial radiometric, and hydrogeochemical and stream-sediment surveys. Subsurface investigations included examination of geophysical well logs and ground-water geochemical data. These investigations indicate environments favorable for sandstone-type uranium deposits in the Upper Cretaceous strata and lignite-type deposits in the Paleocene strata. Environments unfavorable for uranium deposits include Tertiary sandstones and Jurassic and Cretaceous strata, exclusive of the Upper Cretaceous sandstones

  13. 50 CFR Appendix I to Part 37 - Legal Description of the Coastal Plain, Arctic National Wildlife Refuge, Alaska

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Legal Description of the Coastal Plain, Arctic National Wildlife Refuge, Alaska I Appendix I to Part 37 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM...

  14. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Bangladesh

    International Nuclear Information System (INIS)

    1978-01-01

    With the exception of the exploration activities in relation with the Beach Sand Project along the eastern Bay of Bengal, no systematic exploration for uranium had been done before December 1976, when a radiometric survey was implemented by the IAEA. As a result of this survey high radioactivity up to 450 cps was detected in placer Tipam deposits, The background of the terrain made up by Tertiary sediments is 160 - 170 cps. An anomaly was found in Kalipur Chara area which coincides with concentration of heavy minerals derived from Tipam Sandstones. Another anomaly was found within a horizon of Tipam sandstone crossing Hari River. An isolated outcrop in the riverbed showed a count rate up to 4 times background. During the follow up work it was found that this steeply dipping mineralized band stretches (with interruptions) over a distance of at least 3km along a strike. Samples collected from three different spils showed concentration of uranium 50, 60 and 140 ppm. The mineralized bed varies in thickness from a few cm to 2 m. It consists of alternating altered and unaltered sandstone. Bangladesh and Australian experts have separated monazite, zircon, ilmenite, rutile and magnetite from local sands at Cox's Bazar, 96 km southeast of Dacca. Radioactive mineral content is around 3,1% and exploitation may be feasible. Concerning the present status of exploration the technical assistance mission of the IAEA in the field of uranium exploration in Bangladesh is continuing with the objective to evaluate uranium potential in Chittongong and Sylhet district. Concerning areas favourable for uranium first priority should be given to areas of Hari River and Kalipur Chara where radioactive anomalies were detected. In general the area covered by Tipam Sandstone appears to be favourable for uranium mineralization. The potential for new discoveries in Bangladesh appears to be not too bad. Speculative potential could be in the order of 1-10,000 tons uranium

  15. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Canada

    International Nuclear Information System (INIS)

    1977-08-01

    Exploration for mineral deposits in Canada resulted in the discovery of large uranium deposits, such as at Great. Bear Lake, Northwest Territories (1930), in the Elliot Lake area, Ontario (1949); Beaverlodge, Wollaston Lake Fold Belt and Carswell Structure in Saskatchewan (1946-1975) and many uranium occurrences in the Canadian Shield, in the Orogenic Belts and in the Platforms. Uranium output in Canada since 1942 until and including 1976 amounted to 112,000 tonnes U. Reasonably Assured uranium resources as of 1976 amounted to 167,000 tonnes U (at a price up to $40/lb. U 3 0 8 ) and 15,000 tonnes U (at a price more than $40 up to $60/lb. U 3 O 8 ). Estimated Additional uranium resources as of 1976 amounted to 392,000 tonnes U (at a price up to $40/lb. U-Og) and 264,000 tonnes U (at a price more than $40 up to $60/lb. U 3 0 8 ). Possible further potential beyond the above mentioned classes is tentatively estimated to be in the 6th category according to NEA/IAEA favourability classification. (author)

  16. Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA.

    Science.gov (United States)

    Hoover, Joseph; Gonzales, Melissa; Shuey, Chris; Barney, Yolanda; Lewis, Johnnye

    2017-01-01

    Regional water pollution and use of unregulated water sources can be an important mixed metals exposure pathway for rural populations located in areas with limited water infrastructure and an extensive mining history. Using censored data analysis and mapping techniques we analyzed the joint geospatial distribution of arsenic and uranium in unregulated water sources throughout the Navajo Nation, where over 500 abandoned uranium mine sites are located in the rural southwestern United States. Results indicated that arsenic and uranium concentrations exceeded national drinking water standards in 15.1 % (arsenic) and 12.8 % (uranium) of tested water sources. Unregulated sources in close proximity (i.e., within 6 km) to abandoned uranium mines yielded significantly higher concentrations of arsenic or uranium than more distant sources. The demonstrated regional trends for potential co-exposure to these chemicals have implications for public policy and future research. Specifically, to generate solutions that reduce human exposure to water pollution from unregulated sources in rural areas, the potential for co-exposure to arsenic and uranium requires expanded documentation and examination. Recommendations for prioritizing policy and research decisions related to the documentation of existing health exposures and risk reduction strategies are also provided.

  17. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Brunei

    International Nuclear Information System (INIS)

    1978-02-01

    Brunei is a very small country consisting of only 5,800 sq km, and with only 150,000 people. Its main mineral products are crude oil and natural gas. It is hot and humid throughout the year being located only 4 degrees north of the equator on the island of Borneo. The sultanate of Brunei contains very thick sediments, some of which probably have the characteristics of a good uranium host rock for sandstone type deposits, but tacking a classic source, the uranium potential is minimal. Potential for other types of uranium deposits is likewise considered minimal. Therefore Brunei is assigned a potential in category 1 (less than 1000 tonnes U). (author)

  18. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Malaysia

    International Nuclear Information System (INIS)

    1977-12-01

    Malaysia is a country of 330,000 square kilometers and a population of 11.9 million. The country is divided into two parts 640 kilometers apart. West Malaysia consists of the Malay Peninsula, and East Malaysia of the provinces of Sarawak and Sabah, formerly North Borneo. The country is the world's leading producer of tin and rubber. Geologic descriptions in detail are difficult to find although maps are available. Uranium exploration, chiefly by the Malaysian Geological Survey, has been carried out without discovery of commercial quantities. Based on possible recovery of uranium from deeply weathered granites on the Malay Peninsula, and possible discoveries in East Malaysia, a uranium potential of 1,000 to 10,000 tonnes U (category 2) is assigned. (author)

  19. National Uranium Resource Evaluation: Greensboro Quadrangle, North Carolina and Virginia

    International Nuclear Information System (INIS)

    Dribus, J.R.; Hurley, B.W.; Lawton, D.E.; Lee, C.H.

    1982-07-01

    The Greensboro Quadrangle, North Carolina and Virginia, was evaluated to identify and delineate areas favorable for the occurrence of uranium deposits. General surface reconnaissance and geochemical sampling were carried out in all geologic environments within the quadrangle. Aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data were analyzed, and ground-truth followup studies of anomalies were conducted. Detailed surface investigations, log and core studies, and a radon emanometry survey were conducted in selected environments. The results of this investigation suggest environments favorable for allogenic uranium deposits in metamorphic rocks adjacent to the intrusive margins of the Rolesville, Castalia, Redoak, and Shelton granite plutons, and sandstone-type deposits in the sediments of the Durham and Dan River Triassic basin systems. Environments in the quadrangle considered unfavorable for uranium deposits are pegmatites and metamorphic rocks and their included veins associated with fault and shear zones

  20. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Iraq

    International Nuclear Information System (INIS)

    1977-11-01

    Iraq consists of a lowland trough lying between asymmetrical and very different upland massifs to the east, north and west and continuing southeastwards to the Persian Gulf. The region is one of crustal weakness and subsidence with relatively young plastic sedimentary rocks engulfed in downwarped, ancient, rigid and highly resistant blocks. Exploration in the 1954-55 period found some minor radioactive anomalies and very low uranium contents in limestones and phosphates. The results of an aerial radiometric survey in 1973-74 are not known to IAEA. Iraq has no reported uranium resources but there are several favourable formations which warrant a detailed survey. In view of the size of the country and the small amount of systematic exploration carried out up to the present time, the Speculative Potential is considered to lie in the 1,000 to 10,000 tonnes uranium category. (author)

  1. Uranium Hydrogeochemical and Stream Sediment Reconnaissance data from the area of the Teller, Bendeleben, Candle, and Kateel River Quadrangles, Seward Peninsula and vicinity, Alaska

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.; Hill, D.E.

    1978-05-01

    During July-August 1976, 2026 natural waters and 2085 bottom sediments were collected from 2209 sample locations (at a nominal density of one location each 23 km 2 ) on streams and small lakes throughout the Teller, Bendeleben, Candle, and western one-third of the Kateel River NTMS quadrangles, Alaska. Total uranium was measured in the waters by fluorometry and in the sediments and a few waters by delayed-neutron counting. The uranium content of the waters ranged from below the detection limit of 0.02 parts per billion (ppB) to a high of 14.50 ppB, averaging 0.44 ppB, and that of the sediments ranged from a low of 0.2 parts per million (ppM) to a high of 107.4 ppM, averaing 3.93 ppM. The uranium data for water and sediment are separately presented--as computer listings that include pertinent field measurements from each location, as graphically portrayed concentration overlays at 1:250,000 scale for each quadrangle, and as reduced figures showing contours drawn at various concentration levels for each quadrangle--and their areal distributions are compared and correlated with the known features and uranium showings. A test of increasingly detailed methods of data evaluation shows that the more extensive the evaluation, the more useful the reconnaissance uranium data are likely to be. The validity and potential usefulness of the HSSR uranium data are conclusively substantiated by the fact that evidence of all 23 of the reported uranium showings in the 50,000-km 2 study area can be discerned. Several new locations of interest for further field investigation are identified in each of the quadrangles, and most notably in the Bendeleben Mountains. However, the data presented would appear equally useful in guiding field investigation around the uranium occurrences already known, as noteworthy samples often come from close by but on tributary drainages adjacent, opposite, or above them

  2. Uranium

    International Nuclear Information System (INIS)

    Perkin, D.J.

    1982-01-01

    Developments in the Australian uranium industry during 1980 are reviewed. Mine production increased markedly to 1841 t U 3 O 8 because of output from the new concentrator at Nabarlek and 1131 t of U 3 O 8 were exported at a nominal value of $37.19/lb. Several new contracts were signed for the sale of yellowcake from Ranger and Nabarlek Mines. Other developments include the decision by the joint venturers in the Olympic Dam Project to sink an exploration shaft and the release of an environmental impact statement for the Honeymoon deposit. Uranium exploration expenditure increased in 1980 and additions were made to Australia's demonstrated economic uranium resources. A world review is included

  3. Uranium

    International Nuclear Information System (INIS)

    Gabelman, J.W.; Chenoweth, W.L.; Ingerson, E.

    1981-01-01

    The uranium production industry is well into its third recession during the nuclear era (since 1945). Exploration is drastically curtailed, and many staffs are being reduced. Historical market price production trends are discussed. A total of 3.07 million acres of land was acquired for exploration; drastic decrease. Surface drilling footage was reduced sharply; an estimated 250 drill rigs were used by the uranium industry during 1980. Land acquisition costs increased 8%. The domestic reserve changes are detailed by cause: exploration, re-evaluation, or production. Two significant discoveries of deposits were made in Mohave County, Arizona. Uranium production during 1980 was 21,850 short tons U 3 O 8 ; an increase of 17% from 1979. Domestic and foreign exploration highlights were given. Major producing areas for the US are San Juan basin, Wyoming basins, Texas coastal plain, Paradox basin, northeastern Washington, Henry Mountains, Utah, central Colorado, and the McDermitt caldera in Nevada and Oregon. 3 figures, 8 tables

  4. Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA

    OpenAIRE

    Hoover, Joseph; Gonzales, Melissa; Shuey, Chris; Barney, Yolanda; Lewis, Johnnye

    2016-01-01

    Regional water pollution and use of unregulated water sources can be an important mixed metals exposure pathway for rural populations located in areas with limited water infrastructure and an extensive mining history.?Using censored data analysis and mapping techniques we analyzed the joint geospatial distribution of arsenic and uranium in unregulated water sources throughout the Navajo Nation, where over 500 abandoned uranium mine sites are located in the rural southwestern United States. Re...

  5. The Y-12 National Security Complex Foreign Research Reactor Uranium Supply Production

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, T. [Nuclear Technology and Nonproliferation Programs, B and W Y-12, L.L.C., Y-12 National Security Complex, Oak Ridge, Tennessee (United States); Keller, A.P. [Disposition and Supply Programs, B and W Y-12, L.L.C., Y-12 National Security Complex, Oak Ridge, Tennessee (United States)

    2011-07-01

    The Foreign Research Reactor (FRR) Uranium Supply Program at the Y-12 National Security Complex supports the nonproliferation objectives of the National Nuclear Security Administration (NNSA) HEU Disposition, the Reduced Enrichment Research and Test Reactors (RERTR), and the United States (U.S.) FRR Spent Nuclear Fuel (SNF) Acceptance Programs. The FRR Supply Program supports the important U.S. government nuclear nonproliferation commitment to serve as a reliable and cost-effective uranium supplier for those foreign research reactors that are converting or have converted to Low-Enriched Uranium (LEU) fuel under the RERTR Program. The NNSA Y-12 Site Office maintains the prime contracts with foreign government agencies for the supply of LEU for their research reactors. The LEU is produced by down blending Highly Enriched Uranium (HEU) that has been declared surplus to the U.S. national defense needs. The down blending and sale of the LEU supports the Surplus HEU Disposition Program Record of Decision to make the HEU non-weapons usable and to recover the economic value of the uranium to the extent feasible. In addition to uranium metal feedstock for fuel fabrication, Y-12 can produce LEU in different forms to support new fuel development or target fabrication for medical isotope production. With production improvements and efficient delivery preparations, Y-12 continues to successfully support the global research reactor community. (author)

  6. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    International Nuclear Information System (INIS)

    Santos, E.S.; Robinson, K.; Geer, K.A.; Blattspieler, J.G.

    1982-09-01

    Uranium resources of the Newcastle 1 0 x2 0 Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group

  7. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Vietnam

    International Nuclear Information System (INIS)

    1977-11-01

    The Chaine Annamatique represents the last of the three orogenic episodes that shook Indochina and forms most of Vietnam's boundary with Laos, In south Vietnam the mountains which have a north-south trend are formed of granites, gneisses and mica schists and are inseparable from the anti-hercynian formations. Iron ore, gold, lead, copper, tin, wolfraun, bismuth and molybdenium minerals are found. Plans had been made in 1960 to prospect for uranium but no information is available on whether that work was ever done. The only evidence of occurrences of nuclear raw materials is that titaniferous sands occur in several coastal regions and that uranium was once listed as having been produced in Forth Vietnam. Although the geology of Vietnam is not very conducive to the formation and preservation of uranium deposits it is possible that because of the granite terrain and presence of other metalliferous minerals, the Speculative Potential should be stated as in category 2 i.e. from 1,000 to 10,000 tonnes uranium. (author)

  8. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E S; Robinson, K; Geer, K A; Blattspieler, J G

    1982-09-01

    Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.

  9. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Niue

    International Nuclear Information System (INIS)

    1977-12-01

    Niue is described as a coral island containing 259 square kilometers, located between Tonga and the Southern Cook Islands in the Central Pacific. Geologically, little is known, or can be deduced from available information, therefore reported occurrences of uranium are the basis for a potential in category 1 (less than 1,000 tonnes U) . (author)

  10. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Recent decisions by the Australian Government will ensure a significant expansion of the uranium industry. Development at Roxby Downs may proceed and Ranger may fulfil two new contracts but the decision specifies that apart from Roxby Downs, no new mines should be approved. The ACTU maintains an anti-uranium policy but reaction to the decision from the trade union movement has been muted. The Australian Science and Technology Council (ASTEC) has been asked by the Government to conduct an inquiry into a number of issues relating to Australia's role in the nuclear fuel cycle. The inquiry will examine in particular Australia's nuclear safeguards arrangements and the adequacy of existing waste management technology. In two additional decisions the Government has dissociated itself from a study into the feasibility of establishing an enrichment operation and has abolished the Uranium Advisory Council. Although Australian reserves account for 20% of the total in the Western World, Australia accounts for a relatively minor proportion of the world's uranium production

  11. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The French Government has decided to freeze a substantial part of its nuclear power programme. Work has been halted on 18 reactors. This power programme is discussed, as well as the effect it has on the supply of uranium by South Africa

  12. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Argentina

    International Nuclear Information System (INIS)

    1977-08-01

    Argentina is a predominantly lowland area of 2,789,240 square kilometers. The capital is Buenos Aires. The entire length of Argentina is bordered on the west by the Andes Mountains. Tile Northwest Andes-Piedmont region consists of deep valleys containing salt basins and volcanoes, and is an earthquake zone. Patagonia, in the south, is essentially an arid region of windy plateaus and valleys. The southern Andes are narrower and lower than the northern Andes and in the extreme south contain glaciers and ice fields. The east-central plain (Pampa) of Argentina has dry and humid sectors and contains most of the population. The largest rivers are chiefly in the northeast, many having only seasonal flow. There has been extensive surface and subsurface exploration for uranium in Argentina for over 20 years. Although most of the work has been performed by the CNEA, advisors from the U.S. and from the IAEA have also taken part. Private industry has been involved, but apparently only on a small scale. In the OECD report of 1970, it was stated that 400,000 square kilometers of Argentina appear very favorable for uranium while an additional 900,000 square kilometers offer fair possibilities. Uranium exploration to date suggests that sandstones of Permian and Cretaceous ages exposed in Western Argentina in the Cordillera are very promising for discovery of new deposits. Past CNEA estimates have indicated that there is considerable hope for new discoveries in those areas where reserves are now known. In addition to the known uraniferous provinces which are indeed favorable for further exploration, there are several other large areas that warrant attention. There are, for example, in the Santa Cruz area of about 15,500 square kilometers Cretaceous and Tertiary sediments with favorable facies for uranium deposition. In the Patagonia Cordillera, Jurassic, Cretaceous, and Tertiary sediments are of interest for prospecting, These rocks contain carbonaceous material and have been

  13. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Spain

    International Nuclear Information System (INIS)

    1977-10-01

    Spain, with an area of 504 748 km''2, occupies a large part of the Iberian Peninsula. At present the country appears to have about 6300 t of reasonably assured uranium reserves and 8500 t of additional estimated reserves (all at less than $30/lb of U 3 O 8 ). Spain has devoted some $33 million to prospecting for uranium since the beginning of such work. Most of the reasonably assured reserves are located in ores impregnating Cambrian schists intersected by Hercynian granites (of so-called 'Iberian type'); a small amount, however, is found in veins in Hercynian granites of the Spanish Meseta. The additional estimated reserves are situated in the peripheral post-Hercynian continental basins of the Meseta. Apart from these classical ores, sub-ores have been identified in Silurian quartzites with low concentrations of uranium associated with refractory minerals, totalling more than 200,000 t of U (at concentrations of a few hundred ppm); there are likewise uranium-bearing Oligocene lignites in the Ebro Basin with some 140,000 t of U. These facts, and also the very wide distribution of uranium in space and time (from the Cambrian to the Miocene!) and the country's favourable geological characteristics, suggest that Spain ought in fact to have large reserves of uranium, a conclusion unfortunately belied by the paucity of the economic reserves identified so far. Two things must be borne in mind, however; firstly, Spain's financial outlay for uranium prospecting up till now represents only a quarter of what has been invested in France, for example, and, secondly, the nature of the mineralised bodies in Spain makes exploration difficult. In conclusion it seems that prospecting both of the Iberian-type deposits in the Meseta region and of the deposits associated with detrital sediments in the peripheral continental basins - especially blind mineralized bodies - should hold out excellent prospects for Spain. Consequently we propose that Spain should be placed at least in

  14. 78 FR 63518 - Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National...

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National Enrichment Facility, Eunice, New Mexico... Louisiana Energy Services (LES), LLC, National Enrichment Facility in Eunice, New Mexico, and has authorized...

  15. National Uranium Resource Evaluation: Albuquerque Quadrangle, New Mexico

    International Nuclear Information System (INIS)

    Green, M.W.

    1982-09-01

    Areas and formations within the Albuquerque 1 0 x 2 0 Quadrangle, New Mexico designated as favorable, in order of decreasing relative favorability, include: (1) the Westwater Canyon and Brushy Basin Members of the Morrison Formation; (2) the Todilto Limestone of Late Jurassic age; (3) the Dakota Sandstone of Early and Late Cretaceous age; (4) the Ojo Alamo Sandstone of Tertiary age on the eastern side of the San Juan Basin; (5) the Galisteo Formation of Tertiary age within the Hagan Basin, in the eastern part of the Albuquerque Quadrangle; and (6) the Menefee Formation of Late Cretaceous age in the eastern part of the San Juan Basin. Favorability of the Westwater Canyon and Brushy Basin is based on the presence of favorable facies and sandstone-to-shale ratios, the presence of large masses of detrital and humic organic matter in sandstone host rocks, low to moderate dip of host beds, high radioactivity of outcropping rocks, numerous uranium occurrences, and the presence of large subsurface uranium deposits. The Todilto Limestone is considered favorable because of the presence of numerous medium to small uranium deposits in association with intraformational folds and with detrital and humic organic matter. The Dakota Sandstone is considered favorable only in areas within the Grants mineral belt where Tertiary faulting has allowed movement of uranium-bearing groundwater from the underlying Morrison Formation into organic-rich sandstone in the basal part of the Dakota. The Menefee Formation is locally favorable in the area of La Ventana Mesa where the control for known uranium deposits is both structural and stratigraphic. The Ojo Alamo Sandstone and the Galisteo Formations are considered favorable because of favorable facies, the presence of organic matter and pyrite; and low- to medium-grade mineral occurrences

  16. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Bolivia

    International Nuclear Information System (INIS)

    1977-08-01

    Bolivia has an area of 1,098,580 square kilometers. Its capital is La Paz. The western part of the country is dominated by two ranges of the Andes Mountains, the Cordillera Occidental on the vest flank of the high plateau (Altiplano) and the Cordillera Real (or Oriental) on the east flank. The northern Andes average 5,486 meters in elevation; the southern Andes are not as lofty. The Altiplano is 3,658 to A,267 meters high and 129 km. in average width; it is the largest basin of inland drainage in South America and contains the renowned Lake Titicaca on the Peruvian-Bolivian border. The eastern tropical lowlands or pampas (Oriente) comprise about two-thirds of the country, with rain forest in the northern portion. An intermediate zone of valleys and basins lies between the eastern Andes and Oriente. Bolivia differs from other Andean countries, like Chile, Peru and Ecuador, in having large areas of Preeambrian schists, gneisses, migmatites and granites. These crop out in the eastern part of the country. Parts of these rocks contain banded iron formations (i.e., in the Muttin region) and are probably early Precambrian in age. Little systematic exploration for uranium was undertaken in Bolivia until the late 1960's. In 1967, 1968 and 1969 technical assistance was requested from, and provided by, the IAEA. This work led to evaluation of radioactive anomalies in veins of northeast Bolivia and in sandstones in the extreme southern part of the country. Although no uranium reserves are now credited to Bolivia, the geologic possibilities for several kinds of uranium deposits coupled with the relatively limited work done to date suggest that uranium orebodies will be discovered. It is estimated that the potential resources of Bolivia are in the range of 10,000 to 100,000 tonnes uranium

  17. Killer whale surveys conducted in the Aleutian Islands, Bering Sea, and western and central Gulf of Alaska by Alaska Fisheries Science Center, National Marine Mammal Laboratory from 2001-07-01 to 2010-07-12 (NCEI Accession 0137766)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a compilation of line-transect data collected on surveys in the Aleutian Islands, Bering Sea, and western and central Gulf of Alaska, 2001 - 2010....

  18. National Uranium Resource Evaluation. Bibliographic index of Grand Junction office uranium reports

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.B.

    1981-05-01

    In October 1978, Mesa College entered into subcontract with Bendix Field Engineering Corporation (BFEC) to prepare a bibliographic index of the uranium raw materials reports issued by the Grand Junction Office of the US Department of Energy (DOE). Bendix, prime contractor to the Grand Junction Office, operates the Technical Library at the DOE facility. Since the early 1950s, approximately 2700 reports have been issued by the Grand Junction Office. These reports were the results of uranium investigations conducted by federal agencies and their subcontractors. The majority of the reports cover geology, mineralogy, and metallurgy of uranium and/or thorium. No single, complete list of these reports existed. The purpose of this subcontract was to compile a comprehensive index to these reports. The Mesa College geology faculty worked with the BFEC and DOE staffs to develop the format for the index. Undergraduate geology students from Mesa compiled a master record sheet for each report. All reports issued up to January 1, 1979 were included in the bibliography. The bibliography is in preliminary, unedited form. It is being open-filed at this time, on microfiche, to make the information available to the public on a timely basis. The bibliography is divided into a master record list arranged in alpha-numeric order by report identification number, with separate indices arranged by title, author, state and county, 1/sup 0/ x 2/sup 0/ NTMS quadrangle, key words, and exploration area.

  19. National Uranium Resource Evaluation. Bibliographic index of Grand Junction office uranium reports

    International Nuclear Information System (INIS)

    Johnson, J.B.

    1981-05-01

    In October 1978, Mesa College entered into subcontract with Bendix Field Engineering Corporation (BFEC) to prepare a bibliographic index of the uranium raw materials reports issued by the Grand Junction Office of the US Department of Energy (DOE). Bendix, prime contractor to the Grand Junction Office, operates the Technical Library at the DOE facility. Since the early 1950s, approximately 2700 reports have been issued by the Grand Junction Office. These reports were the results of uranium investigations conducted by federal agencies and their subcontractors. The majority of the reports cover geology, mineralogy, and metallurgy of uranium and/or thorium. No single, complete list of these reports existed. The purpose of this subcontract was to compile a comprehensive index to these reports. The Mesa College geology faculty worked with the BFEC and DOE staffs to develop the format for the index. Undergraduate geology students from Mesa compiled a master record sheet for each report. All reports issued up to January 1, 1979 were included in the bibliography. The bibliography is in preliminary, unedited form. It is being open-filed at this time, on microfiche, to make the information available to the public on a timely basis. The bibliography is divided into a master record list arranged in alpha-numeric order by report identification number, with separate indices arranged by title, author, state and county, 1 0 x 2 0 NTMS quadrangle, key words, and exploration area

  20. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Burma

    International Nuclear Information System (INIS)

    1977-10-01

    There is no information on production of nuclear raw materials in Burma, although there are some uranium occurrences. Hunting Geophysics Ltd has done some aerial prospecting work in the area of Victoria Point in Southern Burma. All the data collected has been plotted on several maps and issued to various Burmese organizations, with a complete report. The follow-up ground exploration was done by a prospecting party headed by Dr Gjelsvik. The Hunting Geophysics' and Dr Gjelsvik reports are not available in the IAEA. The Raw Materials Division in the Union of Burma Atomic Energy Center commenced operations in 1955. The area of Mogok was selected by U Soo Win, the head of the Division, as most favourable for uranium exploration. The region is mountainous, with heavy forest cover. A ground gamma-ray survey was carried out in Mogok Mineral Belt by two geologists accompanied by two assistants, at a spacing of one km. This work showed monazite in all streams over an area of about 150 sq km and has given a detailed studies led to the discovery of some uraninite and pitchblende in the overburden of an old lode. Based, on these first discoveries the Government of Burma requested assistance from the IAEA and an expert was sent there for a period of one year. His field work was mainly limited in the Mogok Mineral Belt, however some reconnaissance field trips were made in other parts of the country. Dr D L Searle concluded that the Mogok area represents a zone of high temperature mineralization but a lower temperature form of uranium mineralization may have developed along the outer edges of the principal high grade zone. He recommended that the area between the Mogok scarp and the Shweli River be systematically traversed. Uranium bearing minerals in Burma are the following: monazite bearing beach sands near Amherst, Tenasserim; monazite placers from near Momeik, Northern Shan States; uraninte crystals from the gem-gravels around Mogok; a radioactive anomaly in syenite at

  1. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Burma

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-10-15

    There is no information on production of nuclear raw materials in Burma, although there are some uranium occurrences. Hunting Geophysics Ltd has done some aerial prospecting work in the area of Victoria Point in Southern Burma. All the data collected has been plotted on several maps and issued to various Burmese organizations, with a complete report. The follow-up ground exploration was done by a prospecting party headed by Dr Gjelsvik. The Hunting Geophysics' and Dr Gjelsvik reports are not available in the IAEA. The Raw Materials Division in the Union of Burma Atomic Energy Center commenced operations in 1955. The area of Mogok was selected by U Soo Win, the head of the Division, as most favourable for uranium exploration. The region is mountainous, with heavy forest cover. A ground gamma-ray survey was carried out in Mogok Mineral Belt by two geologists accompanied by two assistants, at a spacing of one km. This work showed monazite in all streams over an area of about 150 sq km and has given a detailed studies led to the discovery of some uraninite and pitchblende in the overburden of an old lode. Based, on these first discoveries the Government of Burma requested assistance from the IAEA and an expert was sent there for a period of one year. His field work was mainly limited in the Mogok Mineral Belt, however some reconnaissance field trips were made in other parts of the country. Dr D L Searle concluded that the Mogok area represents a zone of high temperature mineralization but a lower temperature form of uranium mineralization may have developed along the outer edges of the principal high grade zone. He recommended that the area between the Mogok scarp and the Shweli River be systematically traversed. Uranium bearing minerals in Burma are the following: monazite bearing beach sands near Amherst, Tenasserim; monazite placers from near Momeik, Northern Shan States; uraninte crystals from the gem-gravels around Mogok; a radioactive anomaly in syenite at

  2. Idaho National Engineering and Environmental Laboratory Site Report on the Production and Use of Recycled Uranium

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Lewis; D. C. Barg; C. L. Bendixsen; J. P. Henscheid; D. R. Wenzel; B. L. Denning

    2000-09-01

    Recent allegations regarding radiation exposure to radionuclides present in recycled uranium sent to the gaseous diffusion plants prompted the Department of Energy to undertake a system-wide study of recycled uranium. Of particular interest, were the flowpaths from site to site operations and facilities in which exposure to plutonium, neptunium and technetium could occur, and to the workers that could receive a significant radiation dose from handling recycled uranium. The Idaho National Engineering and Environmental Laboratory site report is primarily concerned with two locations. Recycled uranium was produced at the Idaho Chemical Processing Plant where highly enriched uranium was recovered from spent fuel. The other facility is the Specific Manufacturing Facility (SMC) where recycled, depleted uranium is manufactured into shapes for use by their customer. The SMC is a manufacturing facility that uses depleted uranium metal as a raw material that is then rolled and cut into shapes. There are no chemical processes that might concentrate any of the radioactive contaminant species. Recyclable depleted uranium from the SMC facility is sent to a private metallurgical facility for recasting. Analyses on the recast billets indicate that there is no change in the concentrations of transuranics as a result of the recasting process. The Idaho Chemical Processing Plant was built to recover high-enriched uranium from spent nuclear fuel from test reactors. The facility processed diverse types of fuel which required uniquely different fuel dissolution processes. The dissolved fuel was passed through three cycles of solvent extraction which resulted in a concentrated uranyl nitrate product. For the first half of the operating period, the uranium was shipped as the concentrated solution. For the second half of the operating period the uranium solution was thermally converted to granular, uranium trioxide solids. The dose reconstruction project has evaluated work exposure and

  3. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Mexico

    International Nuclear Information System (INIS)

    1977-07-01

    Reserves of uranium are located in the north eastern part of Mexico, primarily in the states of Tamaulipas and Chihuahua. Most of the remainder of Mexico's reserves are near the Tamaulipas-Neuvo Leon state border in the Tertiary Frio Formation, where they apparently occur in the types of uranium deposits found in Texas, U.S.A. There are two deposits, La Coma and Buenavista, but nothing has been published on dimensions of the ore bodies. Forty-five miles northeast of Hermosillo, in Sonora state is the Los Amoles district where uranium is found associated with gold and other metals in low-grade deposits on the margins of a Cretaceous batholith. Another occurrence is reported in the mining district of Placer de Guadelupe and Puerto del Aire, about 40-50 km northeast of Chihuahua City, in the state of Chihuahua. Reserves of U 3 O 8 which were published in January 1977 by Nuclear Exchange Corporation of Menlo Park, California, are listed. The government of Mexico has not estimated potential resources. It should be noted that much of Mexico appears favourable for uranium, and only 10 percent has been explored. According to NUEXCO (1977), efforts to find uranium are being increased in an attempt to supply Mexico's nuclear reactor requirements through 1990. Activity is reported to be centered in Tamaulipas and Chihuahua states and to a lesser extent in Nueva Leon, Sonora, Coahuila, and Baja California. Major effort will continue to be placed in Chihuahua state to supply the Penna Bianca mill. Correspondence between favorable geological settings for uranium and the geologic regions of Mexico is reported. Mexico is a country with considerable areas that appear promising for discovery of sandstone, vein, and tuff-related deposits. On the other hand, its potential for Precambrian conglomerate and unconformity-related deposits is limited. Considering these geologic factors, as well as the relatively limited amount of exploration done to date, a guesstimate of speculative

  4. National uranium resource evaluation, Las Vegas Quadrangle, Nevada, Arizona, and California

    International Nuclear Information System (INIS)

    Johnson, C.; Glynn, J.

    1982-03-01

    The Las Vegas 1 0 x 2 0 quadrangle, Nevada, Arizona, and California, contains rocks and structures from Precambrian through Holocene in age. It lies within the Basin and Range physiographic province adjacent to the westernmost portion of the Colorado Plateau. Miocene nonmarine sedimentary rocks of the Horse Spring Formation contain in excess of 100 tons U 3 O 8 in deposits at a grade of 0.01% or greater, and therefore meet National Uranium Resource Evaluation base criteria for uranium favorability. One favorable area lies in the South Virgin Mountains at the type locality of the Horse Spring Formation, although the favorable environment extends into the unevaluated Lake Mead National Recreation Area and Desert National Wildlife Range. Environments within the Las Vegas Quadrangle considered unfavorable for uranium include the Shinarump Conglomerate member of the Triassic Chinle Formation, Mesozoic sediments of the Glen Canyon Group, Precambrian pegmatites, Pliocene and Quaternary calcrete, Laramide thrust faults, and a late Precambrian unconformity

  5. National uranium resource evaluation. Raton Quadrangle New Mexico and Colorado. Final report

    International Nuclear Information System (INIS)

    Reid, B.E.; Griswold, G.B.; Jacobsen, L.C.; Lessard, R.H.

    1980-12-01

    Using National Uranium Resource Evaluation criteria, the Raton Quadrangle (New Mexico and Colorado) contains one environment favorable for uranium deposits, the permeable arkosic sandstone members of the Pennsylvanian-Permian Sangre de Cristo Formation for either peneconcordant or roll-type deposits. The favorable parts of the Sangre de Cristo lie mostly in the subsurface in the Raton and Las Vegas Basins in the eastern part of the quadrangle. An area in the Costilla Peak Massif was investigated for uranium by determining geochemical anomalies in stream sediments and spring waters. Further work will be required to determine plutonic environment type. Environments unfavorable for uranium deposits include the Ogallala, Raton, and Vermejo Formations, the Trinidad Sandstone, the Pierre Shale, the Colorado Group, the Dakota Sandstone, the Morrison Formation, the Entrada and Glorieta Sandstones, Mississippian and Pennsylvanian rocks, quartz-pebble conglomerates, pegmatities, and Tertiary granitic stocks

  6. Data release on the Salton Sea Quadrangle, California and Arizona. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Chew, R.T. III; Antrim, D.R.

    1982-10-01

    The purpose of the National Uranium Resource Evaluation (NURE) was to delineate and evaluate all geologic environments favorable for the occurrence of uranium deposits. A favorable environment was defined as having the potential to contain an occurrence of at least 100 tons of U 3 O 8 at an average grade of not less than 0.01% U 3 O 8 . In the Salton Sea Quadrangle, reported uranium occurrences were evaluated, and geologic environments thought to be favorable were examined. This report includes the field data collected during that work and a summary of the quadrangle geology and uranium favorability. This is the final report to be prepared on this quadrangle under the NURE program

  7. Caribou distribution during calving in the northeast National Petroleum Reserve-Alaska, June 1998 to 2000

    Directory of Open Access Journals (Sweden)

    Lynn E. Noel

    2003-04-01

    Full Text Available Barren ground caribou (Rangifer tarandus granti of the Teshekpuk Caribou Herd (TCH inhabit the western portion of Alaska's Arctic Coastal Plain within the National Petroleum Reserve—Alaska (NPR-A. Alaska's North Slope communities, management agencies, and private industry are interested in this herd because of its importance as a subsistence resource and location relative to potential petroleum development. From 1998 through 2000, we monitored caribou distribution during the calving period within the Northeast Planning Area of the NPR-A using systematic strip-transect aerial surveys, as well as VHF and satellite telemetry for cow caribou. Aerial survey and telemetry data indicated cows with calves were distributed around Teshekpuk Lake, with a concentration south of the lake in 1999 and 2000. Inconsistencies in weather conditions, survey timing (both strip-transect and VHF surveys, 100% coverage survey areas, and small sample sizes confound interpretations of our results. However, several patterns were apparent. Later transect survey timing (7—12 June versus 4—7 and 5—8 June resulted in more cow/calf pairs recorded. Our 18% coverage area, originally based on VHF telemetry data for the extent of TCH calving, covered a consistently high proportion (95% to 100% of the annual calving ranges (95% kernel utilization distributions, but accounted for only 24% to 46% of the adult cows in the TCH based on the current Alaska Department of Fish and Game population estimate (1999 and average 1998¬2000 herd composition. It appears that either our transect survey methodology significantly underestimated the true number of caribou cows in the study area, many cows calved outside the area or moved into the area and calved after our surveys, or we have over estimated the number of reproductive cows in the herd. Our 100% coverage transect areas covering oil and gas lease areas, contained 38% of the calving range with 23% of TCH cows in 1999; and 18% of

  8. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Finland

    International Nuclear Information System (INIS)

    1977-11-01

    Finland covers an area of 337,000 skm. One third of the country lies north of the northern polar circle. 31,613 skm are covered by lakes. 71% of the landscape are covered by coniferous -wood. Climatlcal conditions are continental. The topography of the country is gently rolling with highest elevations of 300 m in the northern part. The most interesting geological units for uranium are Karelian, marginal meta-sediments, mainly quarzites and conglomerates but also schists. These schists are intruded by orogenlc plutonic rocks which are 1800-My-old. Potassium granites are common adjacent to the contact of the Pre-karelian basement (2500 My). In addition to these geological environment uranium and thorium minerals have been found in a large carbonatite in northern Finland, which is explored now

  9. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Sikkim

    International Nuclear Information System (INIS)

    1977-11-01

    Sikkim is a country in the eastern Himalayas and is bound on the west by Nepal, on the north by Tibet, on the east by Bhutan and on the south by India. Precambrian Darjeeling gneiss forms the rim of the amphitheatre while schists of Late Precambrian to Lower Paleozoic rocks form tee habital interior. A small outcrop of carboniferous to Permain methomorphic rocks is preserved in the Tista Basin as well in a thin outcrop trust upon fluvitile beds of Sivalik which is mostly of Pliestocene age. Imbricate thrusts have stacked the rocks in a vast heap where reverse metamorphism is common. Ni information is available concerning uranium occurrences and resources as well as past and present explorations. The uranium potential of Sikkim is almost zero

  10. National Legislation and Regulations in the Uranium Legacy Radiation Safety of the Former USSR

    International Nuclear Information System (INIS)

    Romanov, V.V.; Shandala, N.K.; Titov, A.V.; Seregin, V.A.; Kiselev, S.M.

    2012-01-01

    There are many uranium legacy sites in Russia and ex-Soviet republics in the Central Asia, which are decommissioned now. In Russia, there is a number of operating uranium mines and ore milling facilities to be decommissioned after termination of their life cycle. Today, the list of Russian subsoil areas of the federal significance includes 135 uranium deposits. The uranium legacy management is accompanied with the environmental impact. The intensity of such impact depends on the amount of generated waste, degree of its confining and dispersion in the environment. The whole question reduces itself to the following: to what extent this impact is harmful to the environment and human health. The proper regulation of this problem is a criterion for the safe work. Today, the advanced guidance document is under development 'Health-care requirements for design and operation of facilities for uranium ore mining and milling'. In order to enhance the regulatory framework, the following tasks are urgent: introduction of the existing exposure situation in the national laws and regulations in compliance with the ICRP statutory system; development criteria for remediation of sites and their gradual return to uncontrolled use. The similar criteria have been developed within the Russian-Norwegian cooperation for the purpose of remediation of the sites for temporary SNF and Radioactive Wastes storage; review of possibilities and methods for optimization of the remediation strategies under development; identification of the special category - R W originated from the uranium ore mining and milling. Some regulatory problems assume to be solved under the Eurasian Economic Community inter-state target programme 'Reclamation of areas of the Eurasian Economic Community member-states affected by the uranium mines'. Within this programme, by examples of the uranium legacy facilities in Kyrgyzstan and in Tajikistan, posed to trans-border disasters and required urgent remediation, the

  11. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Singapore

    International Nuclear Information System (INIS)

    1977-12-01

    Singapore's fairly small size belies its wealth which comes not from production and use of its own raw materials including mineral products, but from importing raw materials and using them in manufacturing and refining. The state has a granite core exposed in the center of the island covered on the west by quartzites and shales, and on the east by recent detritus. There is no mining industry and no uranium potential is assigned to Singapore. (author)

  12. National Uranium Resource Evaluation: Aztec quadrangle, New Mexico and Colorado

    International Nuclear Information System (INIS)

    Green, M.W.

    1982-09-01

    Areas and formations within the Aztec 1 0 x 2 0 Quadrangle, New Mexico and Colorado considered favorable for uranium endowment of specified minimum grade and tonnage include, in decreasing order of favorability: (1) the Early Cretaceous Burro Canyon Formation in the southeastern part of the Chama Basin; (2) the Tertiary Ojo Alamo Sandstone in the east-central part of the San Juan Basin; and (3) the Jurassic Westwater Canyon and Brushy Basin Members of the Morrison Formation in the southwestern part of the quadrangle. Favorability of the Burro Canyon is based on the presence of favorable host-rock facies, carbonaceous material and pyrite to act as a reductant for uranium, and the presence of mineralized ground in the subsurface of the Chama Basin. The Ojo Alamo Sandstone is considered favorable because of favorable host-rock facies, the presence of carbonaceous material and pyrite to act as a reductant for uranium, and the presence of a relatively large subsurface area in which low-grade mineralization has been encountered in exploration activity. The Morrison Formation, located within the San Juan Basin adjacent to the northern edge of the Grants mineral belt, is considered favorable because of mineralization in several drill holes at depths near 1500 m (5000 ft) and because of favorable facies relationships extending into the Aztec Quadrangle from the Grants mineral belt which lies in the adjacent Albuquerque and Gallup Quadrangles. Formations considered unfavorable for uranium deposits of specified tonnage and grade include the remainder of sedimentary and igneous formations ranging from Precambrian to Quaternary in age. Included under the unfavorable category are the Cutler Formation of Permian age, and Dakota Sandstone of Late Cretaceous age, and the Nacimiento and San Jose Formations of Tertiary age

  13. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Iran

    International Nuclear Information System (INIS)

    1977-12-01

    Iran is on the southern flank of the Alpine-Himalayan mountain system and has within its extensive boundaries rocks ranging from crystalline metamorphics and igneous rocks of Precambrian age to sediments of Tertiary - Pleistocene age, some of which could be considered as potentially favourable for uranium deposits. The search for uranium started about 1959 and in the following years some 40 radioactive anomalies and a small number of uranium occurrences were identified. In 1977 the Atomic Energy Organization of Iran greatly expanded its exploration activities and contracted for 895,000 line kilometres to be flown by three contractors in an aerial spectrometric survey designed to cover almost the two fifths of the whole country. The follow-up of this survey will continue for several years. Purely on the basis of its size (1,648,004 km 2 ), its several favourable host rock areas, its location on the flank of the Alpine-Himalayan system and the relatively small amount of systematic exploration coverage completed to date the Speculative Potential could be placed in the 50,000 - 100,000 tonnes category. (author)

  14. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Philippines

    International Nuclear Information System (INIS)

    1976-12-01

    Comparison between the geology of the Philippines and favourable geological environments for uranium in other parts of the world suggests that the Philippine geology is not likely to be favourable for the discovery of uranium. Previous work has been mainly of a reconnaissance type and orientated mainly to checking the existing mining areas for radioactivity. The only occurrence known at the present time is at Larap Mine in the Paracale District of Camarines Norte in Luzon. A magnetite iron ore body operated by Philippines Iron Mines Inc contained certain distinct beds, which, in addition to magnetite also contain copper, molybdenum and iron sulphides and uraninite. It is estimated that 200 short tons U 3 O 8 is contained in 500,000 tons ore grading 0.04% U 3 O 8 at Larap. A number of other largely untested but similar occurrences have also been identified in the Paracale District. A few small occurrences of uranium have recently been identified on the island of Samar. It is suggested that the Speculative Potential of the Philippines may be of the order of 1000 tonnes U 3 O 8 . (author)

  15. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Luxembourg

    International Nuclear Information System (INIS)

    1977-12-01

    The Grand Duchy of Luxembourg is a tiny, roughly triangular, sovereign state situated in Western Europe and bordered by Belgium, the Federal Republic of Germany and Prance. Its total surface area is 998 sq. miles (2,586 sq. kilometres). Its situation in Europe has made it a natural crossroads, with its language, economic interests and ways of life reflecting its close association with its neighbours. It has, however, remained a separate, if not always autonomous, political unit since the tenth century. It is one of the nine member states of the European Economic Community. The country is made up of an elevated northern tableland and a southern lower plateau. The northern section comprises part of the Ardennes mountains which continue in south-east Belgium and form a plateau generally ranging between 1,000 and 2,000 feet. Iron ore mines are located near the French border. The southern section has an elevation of below 15,000 feet and comprises mainly heavily wooded good agricultural land. There has been virtually no work done; no uranium occurrences of significance are recorded. No specific exploration for uranium in Luxembourg is apparent at the present. There are no specific regulations relating to uranium exploration,which is covered by the rules relating to mineral exploration in general

  16. National Uranium Resource Evaluation: Crystal City Quadrangle, Texas

    International Nuclear Information System (INIS)

    Greimel, T.C.

    1982-08-01

    The uranium resources of the Crystal City Quadrangle, Texas, were evaluated to a depth of 1500 m using surface and subsurface geologic information. Uranium occurrences reported in the literature, in reports of the US Atomic Energy Commission and the US Geological Survey Computerized Resources Information Bank, were located, described, and sampled. Geochemical anomalies interpreted from hydrogeochemical and stream-sediment reconnaissance were also investigated and sampled in detail. Areas of uranium favorability in the subsurface were located through interpretation of lithofacies patterns and structure derived from electric-log data. Gamma-ray well logs and results of geochemical sample analyses were used as supportive data in locating these areas. Fifteen surface and subsurface favorable areas were delineated in the quadrangle. Eight are in fluvial and genetically associated facies of the Pliocene Goliad Sandstone, Miocene Oakville Sandstone, Miocene Catahoula Tuff, and Oligocene Frio Clay. One area encompasses strand plain-barrier bar, fluvial-deltaic, and lagoonal-margin facies of the Eocene Jackson Group. Two areas are in strand plain-barrier bar and probable fluvial facies of the Eocene Yegua Formation. Four areas are in fluvial-deltaic, barrier-bar, and lagoonal-margin facies of the Eocene Queen City Formation and stratigraphically equivalent units. Seventeen geologic units are considered unfavorable, and seven are unevaluated due to lack of data

  17. Report of the National Technical Planning Group on Uranium Tailings Research

    International Nuclear Information System (INIS)

    Lapp, P.A.

    1981-09-01

    The National Technical Planning Group on Uranium Tailings Research was formed in 1980 to review present activities and plan a research program on the management of wastes after a mine and mill have shut down. At present there are more than 100 million tonnes of uranium tailings on the surface in Canada. Most of these are under management; however, some 8 million tonnes have been abandoned completely. The group concluded that: 1) there has been no systematic attempt to collect and organize the results of measurements already made on tailings; 2) there is an inadequate understanding of the processes that take place in tailings and in the pathways to the biosphere; 3) there is insufficient evidence on the extent of the long-term problem in the closeout of a uranium tailings basin; 4) there is a need to establish standardized measurement methodologies to improve the quality of data taken at different sites across Canada; 5) generic research and development on tailings disposal technology should be within the scope of a national program, whereas site-specific work is the purview of the mines and regulatory agencies; and 6) the uranium producers' contribution to the national tailings program should be their research on site-specific disposal alternatives. The first of these conclusions leads to the proposal to establish a national uranium tailings research program. The second suggests the need for a modelling program, the third and fourth for a national measurement program, and the remaining conclusions refer to disposal technologies research. The conclusions form the basis for a set of recommendations on uranium tailings research

  18. National Uranium Resource Evaluation: Providence Quadrangle, Connecticut, Rhode Island, and Massachusetts

    International Nuclear Information System (INIS)

    Zollinger, R.C.; Blauvelt, R.P.; Chew, R.T. III.

    1982-09-01

    The Providence Quadrangle, Connecticut, Rhode Island, and Massachusetts, was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for uranium deposits. Criteria for this evaluation were developed by the National Uranium Resource Evaluation program. Environments were recognized after literature research, surface and subsurface geologic reconnaissance, and examination of known uranium occurrences and aeroradioactivity anomalies. Environments favorable for authigenic uranium deposits were found in the Quincy and Cowesett Granites. An environment favorable for contact-metasomatic deposits is in and around the borders of the Narragansett Pier Granite where it intrudes the Pennsylvanian sediments of the Narragansett Basin. An environment favorable for authigenic deposits in metamorphic rocks is in a migmatite on the eastern edge of the Scituate Granite Gneiss batholith. Environments favorable for contact-metasomatic deposits occur at the contacts between many of the granitic rocks and metamorphic rocks of the Blackstone Series. Results of this study also indicate environments favorable for sandstone-type uranium deposits are present in the rocks of the Narragansett Basin. Environments unfavorable for uranium deposits in the quadrangle include all granites not classified as favorable and the metamorphic rocks of eastern Connecticut. Glacial deposits and Cretaceous-Tertiary sediments remain unevaluated

  19. International Uranium Resources Evaluation Project (IUREP) national favourability studies: France

    International Nuclear Information System (INIS)

    1977-09-01

    France, with an area of 550,000 km 2 , has been prospecting its territory for uranium for more than 30 years. The proven uranium reserves in all the ore categories defined by the NEA/lAEA are estimated at around 120,000 tU, of which 25,000 tU have already been mined. About 70% of these reserves are associated with granites, while the bulk of the remainder is located in Permian sediments and the last in Paleogene sediments. The prospecting effort has not been distributed equally over French territory. More than half of it - recent orogens and large basins - have been little or very little prospected. On the other hand, the Hercynian massifs and their Upper Paleozoic mantle have been systematically prospected. Nevertheless, even within the latter there is still room for further exploration: extensions of already known mineralizations both laterally and vertically, conventional mineralizations deep down or under a mantle, types of mineralizations not investigated previously (those associated with acid or intermediate vulcanism, peribatholithic shales, alkaline complexes etc.). Of course, in the areas that have not been so well explored, because they appear less favourable, there are still some possibilities, namely, in the areas of recent orogens, mineralizations associated with antemesozoic cores (same types as above) or directly associated with orogenesis (slightly to moderately metamorphic sandstone-phyllitic formations, certain sedimentary formations etc.). As for the large basins, they are capable of containing mineralizations associated with some of their formations (Paleogene of the Basin of Aquitaine etc), but they may also cover workable uranium deposits. It is possible that, in the not to distant future access may be gained to such ores in particular cases. On this basis it does not seem unreasonable to reckon with the discovering of new resources of an order of magnitude between half and the same as those already found. (author)

  20. National Uranium Resource Evaluation: Moab Quadrangle, Colorado and Utah

    International Nuclear Information System (INIS)

    Campbell, J.A.; Franczyk, K.J.; Lupe, R.D.; Peterson, F.

    1982-09-01

    Portions of the Salt Wash Member of the Morrison, the Chinle, the Rico, the Cutler, and the Entrada Formations are favorable for uranium deposits that meet the minimum size and grade requirements of the US Department of Energy within the Moab 1' x 2' Quadrangle, Utah and Colorado. Nine areas are judged favorable for the Late Jurassic Salt Wash Member. The criteria used to evaluate these areas as favorable include the presence of (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Three favorable areas have been outlined for the Late Triassic Chinle Formation. The criteria used to evaluate these areas are the sandstone-to-shale ratios for the Chinle Formation and the distribution of the Petrified Forest Member of the Chinle, which is considered the source for the uranium. Two favorable areas have been delineated for the Permian Cutler Formation, and one for the Permian Rico Formation. The criteria used to outline favorable areas are the distribution of favorable facies within each formation. Favorable facies are those that are a result of deposition in environments that are transitional between fluvial and marine. One favorable area is outlined in the Jurassic Entrada Sandstone in the southeastern corner of the quadrangle in the Placerville district. Boundaries for this area were established by geologic mapping

  1. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Maldives

    International Nuclear Information System (INIS)

    1977-11-01

    Maldives, an archipelago consisting of between 1,000 and 2,000 islands and atolls in the Indian Ocean contain only 300 square kilometers and is populated by around 130,000 people who are engaged in raising of copra, fruits, taro, and other agricultural products, and in fishing. There is not now and never has been a mining industry except for quarrying of coral road metal. Geologically the coral islands, based on present geological thinking is not a favourable host or source of uranium, and is therefore assigned a zero potential. (author)

  2. Geochemical orientation survey of stream sediment, stream water, and ground water near uranium prospects, Monticello area, New York. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Rose, A.W.; Smith, A.T.; Wesolowski, D.

    1982-08-01

    A detailed geochemical test survey has been conducted in a 570 sq km area around six small copper-uranium prospects in sandstones of the Devonian Catskill Formation near Monticello in southern New York state. This report summarizes and interprets the data for about 500 stream sediment samples, 500 stream water samples, and 500 ground water samples, each analyzed for 40 to 50 elements. The groundwater samples furnish distinctive anomalies for uranium, helium, radon, and copper near the mineralized localities, but the samples must be segregated into aquifers in order to obtain continuous well-defined anomalies. Two zones of uranium-rich water (1 to 16 parts per billion) can be recognized on cross sections; the upper zone extends through the known occurrences. The anomalies in uranium and helium are strongest in the deeper parts of the aquifers and are diluted in samples from shallow wells. In stream water, copper and uranium are slightly anomalous, as in an ore factor derived from factor analysis. Ratios of copper, uranium, and zinc to conductivity improve the resolution of anomalies. In stream sediment, extractable uranium, copper, niobium, vanadium, and an ore factor furnish weak anomalies, and ratios of uranium and copper to zinc improve the definition of anomalies. The uranium/thorium ratio is not helpful. Published analyses of rock samples from the nearby stratigraphic section show distinct anomalies in the zone containing the copper-uranium occurrences. This report is being issued without the normal detailed technical and copy editing, to make the data available to the public before the end of the National Uranium Reconnaissance Evaluation program

  3. Geochemical orientation survey of stream sediment, stream water, and ground water near uranium prospects, Monticello area, New York. National Uranium Resource Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    Rose, A. W.; Smith, A. T.; Wesolowski, D.

    1982-08-01

    A detailed geochemical test survey has been conducted in a 570 sq km area around six small copper-uranium prospects in sandstones of the Devonian Catskill Formation near Monticello in southern New York state. This report summarizes and interprets the data for about 500 stream sediment samples, 500 stream water samples, and 500 ground water samples, each analyzed for 40 to 50 elements. The groundwater samples furnish distinctive anomalies for uranium, helium, radon, and copper near the mineralized localities, but the samples must be segregated into aquifers in order to obtain continuous well-defined anomalies. Two zones of uranium-rich water (1 to 16 parts per billion) can be recognized on cross sections; the upper zone extends through the known occurrences. The anomalies in uranium and helium are strongest in the deeper parts of the aquifers and are diluted in samples from shallow wells. In stream water, copper and uranium are slightly anomalous, as in an ore factor derived from factor analysis. Ratios of copper, uranium, and zinc to conductivity improve the resolution of anomalies. In stream sediment, extractable uranium, copper, niobium, vanadium, and an ore factor furnish weak anomalies, and ratios of uranium and copper to zinc improve the definition of anomalies. The uranium/thorium ratio is not helpful. Published analyses of rock samples from the nearby stratigraphic section show distinct anomalies in the zone containing the copper-uranium occurrences. This report is being issued without the normal detailed technical and copy editing, to make the data available to the public before the end of the National Uranium Reconnaissance Evaluation program.

  4. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Italy

    International Nuclear Information System (INIS)

    1977-10-01

    The Italian Republic comprises a 1200 - Km - long peninsula ex- tending from southern Europe into the Mediterranean Sea, and a number of adjacent islands, among which the principals are Sicily and Sardinia. The total area is in excess of 300,000 Sq.Km, the islands account for some 50, 000 Sq.Km. From a physiographic and morphologic point of view, Italy mainly consists of the Alpine region and the Po valley to the North and of the Appennine range and small Coastal plains to the Centre and South. Plains occupied only 20% of the total area, hills and mountains, up to 4,810 m of elevation, contribute almost equally to the remaining 80%. The most promising uranium mineralizations have been found in the Bergamasc Alps, near the small town of Novazza. Pitchblende and minor sphalerite (formation temperature, 80 deg. - 100 deg. C) occur disseminated in volcanics of permian age. The host rocks at the Novazza uranium deposit, consist of an acid ignimbrite with cineritic texture. The rocks have been affected by metasomatism which brought abundant neo-formation minerals such as silica, sericite, carbonates and minor adularia, albite and muscovite. The reasonably assured resources of the Novazza deposit have been estimated to be 1,200 ton of U having a grade of 900 p.p.m. U. Estimated additional resources are 1,000 ton U. Production is scheduled to start in 1980

  5. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Jordan

    International Nuclear Information System (INIS)

    1977-08-01

    Jordanian geology is dominated by the Great Rift Valley System. Most of the country is covered by Cretaceous and Eocene sediments, largely sandstones and limestones. These include phosphorates and bituminous limestones in the Upper Cretaceous, South of the Dead Sea, Mesozoic and Paleozoic rocks overlie exposed granitic Pre Cambrian basement rocks carrying many minor intrusives . Phosphates provide the main mineral export of Jordan. The Natural Resources Authority (Geological Survey and Bureau of Mines) initiated a survey in 1972 of the distribution of uranium on the phosphorite horizon. In 1974 the Survey calculated that the uranium content of the phosphate areas surveyed up to that time was 5 million metric tonnes U 3 O 8 . The average U 3 O 8 content is approximately 0.02% U 3 O 8 . The exploitation of such resources would be as a byproduct of the phosphate industry and dependent on the rate of phosphate production and the capacity of triple super-phosphate plants, none of which exist at the present time. In the southern area in Paleozoic and Pre Cambrian areas there are some hopes of conventional type deposits being found but the potential appears to be small. (author)

  6. Idaho National Engineering Laboratory materials in inventory natural and enriched uranium management and storage costs

    International Nuclear Information System (INIS)

    Nebeker, R.L.

    1995-11-01

    On July 13, 1994, the Office of Environmental Management (EM) was requested to develop a planning process that would result in management policies for dealing with nuclear materials in inventory. In response to this request, EM launched the Materials In Inventory (MIN) Initiative. A Headquarters Working Group was established to develop the broad policy framework for developing MIN management policies. MIN activities cover essentially all nuclear materials within the DOE complex, including such items as spent nuclear fuel, depleted uranium, plutonium, natural and enriched uranium, and other materials. In August 1995, a report discussing the natural and enriched uranium portion of the Initiative for the Idaho National Engineering Laboratory (INEL) was published. That report, 'Idaho National Engineering Laboratory Materials-in-Inventory, Natural and Enriched Uranium'.' identified MIN under the control of Lockheed Idaho Technologies Company at the INEL. Later, additional information related to the costs associated with the storage of MIN materials was requested to supplement this report. This report provides the cost information for storing, disposing, or consolidating the natural and enriched uranium portion of the MIN materials at the INEL. The information consists of eight specific tables which detail present management costs and estimated costs of future activities

  7. Field manual for ground water reconnaissance. Savannah River Laboratory National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V.; Baucom, E.I.

    1977-01-01

    A manual is presented that is intended to direct and coordinate field operations, site selection, groundwater sample collection, and information codes for the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. The manual provides public relations information for field sampling teams as well as technical direction

  8. Field manual for stream sediment reconnaissance. Savannah River Laboratory National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V.; Baucom, E.I.

    1976-07-01

    A manual is presented that is intended to direct and coordinate field operations, site selection, stream sediment sample collection, water sample collection, and information codes for the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. The manual provides public relations information for field sampling teams as well as technical direction

  9. Foreign research reactor uranium supply program: The Y-12 national security complex process

    International Nuclear Information System (INIS)

    Nelson, T.; Eddy, B.G.

    2010-01-01

    The Foreign Research Reactor (FRR) Uranium Supply Program at the Y-12 National Security Complex supports the nonproliferation objectives of the HEU Disposition Program, the Reduced Enrichment Research and Test Reactors (RERTR) Program, and the United States FRR Spent Nuclear Fuel (SNF) Acceptance Program. The Y-12 National Nuclear Security Administration (NNSA) Y-12 Site Office maintains the prime contracts with foreign governments for the supply of Low-Enriched Uranium (LEU) for their research reactors. The LEU is produced by down blending Highly Enriched Uranium (HEU) that has been declared surplus to the U.S. national defense needs. The down blending and sale of the LEU supports the Surplus HEU Disposition Program Record of Decision to make the HEU non-weapons usable and to recover the economic value of the uranium to the extent feasible. This program supports the important U.S. government and nuclear nonproliferation commitment to serve as a reliable and cost-effective uranium supplier for those foreign research reactors that are converting or have converted to LEU fuel under the guidance of the NNSA RERTR Program. In conjunction with the FRR SNF Acceptance Program which supports the global nonproliferation efforts to disposition U.S.-origin HEU, the Y-12 FRR Uranium Supply Program can provide the LEU for the replacement fuel fabrication. In addition to feedstock for fuel fabrication, Y-12 supplies LEU for target fabrication for medical isotope production. The Y-12 process uses supply forecasting tools, production improvements and efficient delivery preparations to successfully support the global research reactor community

  10. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Austria

    International Nuclear Information System (INIS)

    1977-10-01

    The Federal Republic of Austria is situated in the southeastern part of Central Europe. The country covers a total area of 83.350 square kilometers, the population amounts to 7.5 million inhabitants. The geographical features of Austria are dominated by the E-W-trending chain of the Alps (approximately 60% of the country). The northeastern part of the country is formed by the nonalpine mountains and hills of the Bohemian Massif. There are a large depression, the basin of Vienna, as well as parts of the Pannonian basin in the eastern part. The main hydrographic features are characterized by the river Danube and its tributaries. With the exception of a small part in the west of the country, the drainage system of which is directed to the river Rhine, all other rivers are drained by the Danube. The elevations in the Alps reach heights of up to 3 800 m. Many of the E-W striking mountain chains are higher than 2000 to 2500 m. Several major N-S trending passes over the mountains are favourable for the transportation systems (railroads, motorroads) - The kind of land use in Austria is mainly determined by the character of the landscape which is made up of mountains and valleys as well as of depressions in the eastern part of the country. In the lowlands, good farmland is available. At lower and at medium elevations, forests and grassland predominate in the Alps. At higher elevations, the Alps are covered with grasslands; a great part of the rocks has no soil cover, another part is covered by perennial snow and ice.The presence of many uranium occurrences in the Permo-Triassic sediments justifies a detailed survey of these strata. Special studies on the lithology and the formation of uranium in these rocks have been made during the last few years. They should be evaluated to point out new favourable prospective areas. The potential of Uranium which is assumed to be found in Austria is 10,000 - 50,000 t U

  11. Dynamic tests for qualifying of national uranium hexafluoride

    International Nuclear Information System (INIS)

    Araujo Figueiredo, C. de; Abreu Mendonca Schvartzman, M.M. de; Vasconcelos, M.C.R.L.

    1990-01-01

    The dynamic behaviour of the Brazilian uranium hexafluoride is analyzed in this paper, with regard to its radiolytic decomposition and to the action of catalysts on the reaction between UF 6 and H 2 . The process gas (UF 6 /H 2 ) was submitted in the laboratory of dynamic tests (DV-II) to similar conditions as those used in the enrichment plant presently being erected in Resende - RJ, 'First Cascade - FC'. The tests carried out have shown that the Brazilian UF 6 has the same dynamic behaviour of the German UF 6 . It does not contain either any catalyst of the reaction between UF 6 and H 2 which could render it inappropriate for use in commercial plants. (author) [pt

  12. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    International Nuclear Information System (INIS)

    Campbell, J.A.

    1982-09-01

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1 0 x 2 0 Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains

  13. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J A

    1982-09-01

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1/sup 0/ x 2/sup 0/ Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains.

  14. Uranium

    International Nuclear Information System (INIS)

    Battey, G.C.; McKay, A.D.

    1988-01-01

    Production for 1986 was 4899 t U 3 O 8 (4154 t U), 30% greater than in 1985, mainly because of a 39% increase in production at Ranger. Exports for 1986 were 4166 t U 3 O 8 at an average f.o.b. unit value of $40.57/lb U 3 O 8 . Private exploration expenditure for uranium in Australia during the 1985-86 fiscal year was $50.2 million. Plans were announced to increase the nominal capacity of the processing plant at Ranger from 3000 t/year U 3 O 8 to 4500 t and later to 6000 t/year. Construction and initial mine development at Olympic Dam began in March. Production is planned for mid 1988 at an annual rate of 2000 t U 3 O 8 , 30 000 t Cu, and 90 000 oz (2800 kg) Au. The first long-term sales agreement was concluded in September 1986. At the Manyingee deposit, testing of the alkaline solution mining method was completed, and the treatment plant was dismantled. Spot market prices (in US$/lb U 3 O 8 ) quoted by Nuexco were generally stable. From January-October the exchange value fluctuated from US$17.00-US$17.25; for November and December it was US$16.75. Australia's Reasonably Assured Resources of uranium recoverable at less than US$80/kg U at December 1986 were estimated as 462 000 t U, 3000 t U less than in 1985. This represents 30% of the total low-cost RAR in the WOCA (World Outside the Centrally Planned Economy Areas) countries. Australia also has 257 000 t U in the low-cost Estimated Additional Resources Category I, 29% of the WOCA countries' total resources in this category

  15. Alaska North Slope National Energy Strategy initiative: Analysis of five undeveloped fields

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.P.; Allaire, R.B.; Doughty, T.C.; Faulder, D.D.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1993-05-01

    The US Department of Energy was directed in the National Energy Strategy to establish a federal interagency task force to identify specific technical and regulatory barriers to the development of five undeveloped North Slope Alaska fields and make recommendations for their resolution. The five fields are West Sak, Point Thomson, Gwydyr Bay, Seal Island/Northstar, and Sandpiper Island. Analysis of environmental, regulatory, technical, and economic information, and data relating to the development potential of the five fields leads to the following conclusions: Development of the five fields would result in an estimated total of 1,055 million barrels of oil and 4.4 trillion cubic feet of natural gas and total investment of $9.4 billion in 1992 dollars. It appears that all five of the fields will remain economically marginal developments unless there is significant improvement in world oil prices. Costs of regulatory compliance and mitigation, and costs to reduce or maintain environmental impacts at acceptable levels influence project investments and operating costs and must be considered in the development decision making process. The development of three of the fields (West Sak, Point Thomson, and Gwydyr Bay) that are marginally feasible would have an impact on North Slope production over the period from about 2000 to 2014 but cannot replace the decline in Prudhoe Bay Unit production or maintain the operation of the Trans-Alaska Pipeline System (TAPS) beyond about 2014 with the assumption that the TAPS will shut down when production declines to the range of 400 to 200 thousand barrels of oil/day. Recoverable reserves left in the ground in the currently producing fields and soon to be developed fields, Niakuk and Point McIntyre, would range from 1 billion to 500 million barrels of oil corresponding to the time period of 2008 to 2014 based on the TAPS shutdown assumption.

  16. Alaska North Slope National Energy Strategy initiative: Analysis of five undeveloped fields

    International Nuclear Information System (INIS)

    Thomas, C.P.; Allaire, R.B.; Doughty, T.C.; Faulder, D.D.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1993-05-01

    The US Department of Energy was directed in the National Energy Strategy to establish a federal interagency task force to identify specific technical and regulatory barriers to the development of five undeveloped North Slope Alaska fields and make recommendations for their resolution. The five fields are West Sak, Point Thomson, Gwydyr Bay, Seal Island/Northstar, and Sandpiper Island. Analysis of environmental, regulatory, technical, and economic information, and data relating to the development potential of the five fields leads to the following conclusions: Development of the five fields would result in an estimated total of 1,055 million barrels of oil and 4.4 trillion cubic feet of natural gas and total investment of $9.4 billion in 1992 dollars. It appears that all five of the fields will remain economically marginal developments unless there is significant improvement in world oil prices. Costs of regulatory compliance and mitigation, and costs to reduce or maintain environmental impacts at acceptable levels influence project investments and operating costs and must be considered in the development decision making process. The development of three of the fields (West Sak, Point Thomson, and Gwydyr Bay) that are marginally feasible would have an impact on North Slope production over the period from about 2000 to 2014 but cannot replace the decline in Prudhoe Bay Unit production or maintain the operation of the Trans-Alaska Pipeline System (TAPS) beyond about 2014 with the assumption that the TAPS will shut down when production declines to the range of 400 to 200 thousand barrels of oil/day. Recoverable reserves left in the ground in the currently producing fields and soon to be developed fields, Niakuk and Point McIntyre, would range from 1 billion to 500 million barrels of oil corresponding to the time period of 2008 to 2014 based on the TAPS shutdown assumption

  17. Hydrogeochemical and stream sediment reconnaissance basic data for Harrison Bay quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 328 water samples from the Harrison Bay Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  18. Hydrogeochemical and stream sediment reconnaissance basic data for Meade River quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 515 water samples from the Meade River Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  19. Hydrogeochemical and stream sediment reconnaissance basic data for Iditarod Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 1410 water samples from the Iditarod Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  20. Hydrogeochemical and stream sediment reconnaissance basic data for Charley River Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 1322 water samples from the Charley River Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  1. Hydrogeochemical and stream sediment reconnaissance basic data for St. Michael Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 159 water samples from the St. Michael Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  2. Hydrogeochemical and stream sediment reconnaissance basic data for Ruby Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 693 water samples from the Ruby Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  3. National logging program for the National Uranium Resource Evaluation. Final report

    International Nuclear Information System (INIS)

    The Mineral Engineering Division (MED) of High Life Helicopters, Inc., operated from May, 1979, through August, 1981, as a subcontractor to the Department of Energy (DOE) to acquire downhole geophysical log information in support of the National Uranium Resource Evaluation program (NURE). MED acquired downhole geophysical log information in 26 1 0 x 2 0 NTMS quadrangles in Colorado, Montana, Nebraska, North Dakota, South Dakota, and Wyoming. MED obtained the log information by gaining permission to log oil and gas wells, water wells, and coal exploration holes. Actual geophysical logging was subcontracted to Century Geophysical Corporation. After logging of each well and completed, MED submitted the log information and other pertinent data to Bendix Field Engineering Corporation (BFEC) for evaluation. MED collected over 700,000 feet of geophysical logs. Additionally, MED conducted a search of log libraries for existing log data for twelve of the quadrangles included in the program. It should be noted that ERTEC, Inc. conducted geophysical logging and a log library search to five quadrangles in Wyoming. These areas were later assigned to MED. The location of all wells logged by MED and ERTEC and the location of other log data is shown on the enclosed maps. Detailed information that pertains to each well is provided following each map

  4. Isotopic characterization of uranium in soils of the Ipanema National Forest (FLONA-Ipanema)

    International Nuclear Information System (INIS)

    Silva, F.B.; Marques, F.H.; Enzweiler, J.; Ladeira, F.S.B.

    2015-01-01

    The National Forest of Ipanema (FLONA) is situated on a geological anomaly, known as 'Domo de Aracoiaba'. The soils of the area include Oxisols, Inceptsols and Alfisols. The amount of uranium and respective isotope activities in a soil depend on the parental rock and on the pedologic processes. The aim of this study was to investigate the activities for uranium isotopes ("2"3"8U, "2"3"4U, "2"3"5U) and the activity ratio (AR) "2"3"4U/ "2"3"8U or secular equilibrium for different soil types of the area collected at horizons A and B. The amount of uranium showed no significant differences for soils generated from alkaline intrusive rocks and sandstone, however, secular equilibrium was observed for Oxisol (RA = 1), while Inceptsol presented RA> 1 and the other soils, Alfisols, presented RA values <1. (author)

  5. National uranium resource evaluation, Hot Springs Quadrangle, South Dakota and Nebraska

    International Nuclear Information System (INIS)

    Truesdell, D.B.; Daddazio, P.L.; Martin, T.S.

    1982-06-01

    The Hot Springs Quadrangle, South Dakota and Nebraska, was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for the occurrence of uranium deposits. The evaluation used criteria developed by the National Uranium Resource Evaluation program. Surface reconnaissance was conducted using a portable scintillometer and a gamma spectrometer. Geochemical sampling was carried out in all geologic environments accessible within the quadrangle. Additional investigations included the followup of aerial radiometric and hydrogeochemical anomalies and a subsurface study. Environments favorable for sandstone-type deposits occur in the Inyan Kara Group and Chadron Member of the White River Group. Environments favorable for marine black-shale deposits occur in the Hayden Member of the Minnelusa Formation. A small area of the Harney Peak Granite is favorable for authigenic deposits. Environments considered unfavorable for uranium deposits are the Precambrian granitic and metasedimentary rocks and Paleozoic, Mesozoic, and Tertiary sedimentary rocks other than those previously mentioned

  6. Bowhead whale aerial abundance survey conducted by Alaska Fisheries Science Center, National Marine Mammal Laboratory from 2011-04-19 to 2011-06-11 (NCEI Accession 0133937)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerial photographic surveys for bowhead whales were conducted near Point Barrow, Alaska, from 19 April to 6 June in 2011. Approximately 4,594 photographs containing...

  7. Public feelings and environmental impacts from uranium mining inside Kakadu National Park and around Grand Canyon National Park

    International Nuclear Information System (INIS)

    McKlveen, J.W.; Kvasnicka, J.

    1989-01-01

    There are two uranium mines in the Northern Territory of Australia, Ranger and Nabarlek. The Ranger mine, the only producing operation, is located in the Kakadu National Park, which has been listed on the United Nations' World Heritage list. The park is dedicated to preserving the Australian aboriginal culture: It contains several aboriginal villages and historic sites. Uranium mining in the park has been accepted quite well by the public and the aborigines. Employees of the Ranger mine and their relatives have established a public information program that includes tours of the mining and milling operations. There is no environmental impact to the area from the mining and milling of uranium at the Ranger site. The region around the Grand Canyon contains many highgrade uranium deposits. The ore is contained in unique breccia pipe formations. The pipes, which resemble a cylinder with a diemter of ∼ 100 m and a height of ∼ 300 m, originated as limestone solution cavities located ∼ 400 m below the plateau. There are several exposed deposits along the canyon walls, but no mining operations are allowed within the park boundaries. While the real environmental impact is insignificant, the perceived impact is tremendous. Many special-interest groups have attempted to halt the mining operations. No valid environmental impacts have been predicted or observed as a result of the current mining operations. However, one mine has been delayed for religious reasons by a local tribe or native Americans

  8. National/international R and D programs on uranium mill tailings

    International Nuclear Information System (INIS)

    Hamel, P.E.

    1981-05-01

    The mining and milling of uranium ores results in the production of large quantities of wastes containing low concentrations of radionuclides such as uranium, thorium, radium, radon and their daughter products. The current concern of the regulatory authorities is with the extent of the problems and the disposal methods that must be required now to ensure that an acceptable level of protection is maintained in the long term. This concern is the subject of a number of R and D programs. In Canada, the Technical Planning Group on Uranium Tailings was established to review ongoing activities and to plan a research program on the management of wastes after the mine and mill have shut down. The Group has completed its review and a report containing its conclusions and recommendations for a proposed national R and D program has been prepared. Included is a proposal for a centralized organizational structure for the coordination and managment of the total program which is to be supported jointly by the federal government, two (Ontario, Saskatchewan) provincial governments, and uranium producers. At the international level, the Nuclear Energy Agency originated, in 1979, a program to study the extent of the long-term problems of uranium mill tailings, and to develop an internationally acceptable methodology for making rational decisions regarding their long-term management taking into account the ICRP principles and system of dose limitation

  9. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Costa Rica

    International Nuclear Information System (INIS)

    1977-08-01

    Most parts of Costa Rica, except for the Quaternary volcanic belt, have neither been studied or mapped in detail. Concerning past exploration limited uranium exploration took place in the late 1960's but details are lacking. No additional information is available. A bibliography of Costa Rican geology (Dengo, 19t>2a) and the metallogenic map of Central America (1CAITI, 1970) do not report any uranium occurrences. Data on current exploration activities for uranium are lacking. Mining is essentially regulated by a 1953 code and a 1964 supplement, but the production and use of radioactive materials are controlled by the Costa Rican Atomic Energy Commission. New raining and petroleum laws reportedly are being considered. Mining rights are available with few restrictions to foreign nationals and corporations. Costa Rica contains no rocks older than Cretaceous. The Mesozoic continental clastic sequences of Honduras and northern Nicaragua do not extend this far south. The massive intrusions of acidic granites and syenites in the Talamanca ranges are probably older than the oldest formations now seen adjacent to them and could not have contributed to their mineralization except through weathering. There may be a faint possibility for uranium deposition in lodes and fracture zones within the granitic rocks, but no such deposits have been reported. Insofar as the sediments are concerned, only the shallow water faces of the marine sediments of the Caribbean coastal region offer the remotest possibilities. The uranium potential of Costa Rica is estimated, at less than 1,000 tonnes

  10. Mercury in fishes from Wrangell-St. Elias National Park and Preserve, Alaska

    Science.gov (United States)

    Kowalski, Brandon M.; Willacker, James J.; Zimmerman, Christian E.; Eagles-Smith, Collin A.

    2014-01-01

    In this study, mercury (Hg) concentrations were examined in fishes from Wrangell-St. Elias National Park and Preserve, Alaska, the largest and one of the most remote units in the national park system. The goals of the study were to (1) examine the distribution of Hg in select lakes of Wrangell-St. Elias National Park and Preserve; (2) evaluate the differences in Hg concentrations among fish species and with fish age and size; and (3) assess the potential ecological risks of Hg to park fishes, wildlife, and human consumers by comparing Hg concentrations to a series of risk benchmarks. Total Hg concentrations ranged from 17.9 to 616.4 nanograms per gram wet weight (ng/g ww), with a mean (± standard error) of 180.0 ±17.9 across the 83 individuals sampled. Without accounting for the effects of size, Hg concentrations varied by a factor of 10.9 across sites and species. After accounting for the effects of size, Hg concentrations were even more variable, differing by a factor of as much as 13.2 within a single species sampled from two lakes. Such inter-site variation suggests that site characteristics play an important role in determining fish Hg concentrations and that more intensive sampling may be necessary to adequately characterize Hg contamination in the park. Size-normalized Hg concentrations also differed among three species sampled from Tanada Lake, and Hg concentrations were strongly correlated with age. Furthermore, potential risks to park fish, wildlife, and human users were variable across lakes and species. Although no fish from two of the lakes studied (Grizzly Lake and Summit Lake) had Hg concentrations exceeding any of the benchmarks used, concentrations in Copper Lake and Tanada Lake exceeded conservative benchmarks for bird (90 ng/g ww in whole-body) and human (150 ng/g ww in muscle) consumption. In Tanada Lake, concentrations in most fishes also exceeded benchmarks for risk to moderate- and low-sensitivity avian consumers (180 and 270 ng/g ww in

  11. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Greece

    International Nuclear Information System (INIS)

    1977-10-01

    Greece, with an area of 131,944 km 2 , has been actively explored since 1971 under a programme of co-operation with UNDP and IAEA on which close to US $1 million have been spent so far. The programme is focused on the Rhodope Precambrian massif, which is the most attractive structural unit from the geological point of view. The indications available at present, and which have been known for a long time, are also to be found in this unit. They are associated either with Tertiary continental volcanism or with detritic sediments in basins covering this massif. So far there is no evidence of their being of any economic value. The paucity of data available on the basement of the Rhodope precludes any prediction as to the possibility of its containing Pre-cambrian uranium mineralizations. One might perhaps think in terms of mineralizations of the alaskite or alkaline complex type, or also of vein-type deposits. But it is primarily in the deposits associated with tertiary trachy-rhyolitic volcanism that we have most confidence, especially in the Rhodope massif and the Vardar region but possibly elsewhere in the Hellenides as well. All things considered, we place Greece in Group 2 of the IUREP classification. (author)

  12. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Portugal

    International Nuclear Information System (INIS)

    1977-10-01

    Portugal is situated on the western edge of the Iberian Meseta. At present, its reasonably assured reserves are about 7800 t of U (including 1000 t of U at more than 830/lb U 3 O 8 ) and 850 t of U in estimated additional reserves. This potential is divided between vein deposits and deposits located in the peribatholithic schists or enclaved in granite. Two main districts share these reserves - Beira at the centre of the country and Alto Alentejo in the east, approximately at the same latitude as Lisbon. In spite of the considerable prospecting activities authorized by Portugal in the Meseta area, the subject cannot yet be regarded as exhausted. Additional resources may still be located in the horizontal and vertical extensions of the vein mineralizations or schists from the already known deposits or outside the districts containing such deposits. Moreover, certain post-Palaeozoic sedimentary basins exhibit features favourable for the presence of uranium-bearing deposits and therefore deserve to be taken into consideration. However, there are as yet no examples of economic mineralization in such locations in Portugal. All things considered, we considered it reasonable to place Portugal in category No. 3 of the classiffication adopted by BJREP. (author)

  13. Hydrogeochemical and stream sediment reconnaissance of the National Uranium Resource Evaluation Program. Progress report, January--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, T.A.; Bunker, M.E.; Hansel, J.M. Jr.

    1978-10-01

    The modifications to the Los Alamos Scientific Laboratory (LASL) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program, necessary to incorporate the expansion and revision of the overall HSSR program as required by the Department of Energy, have been completed. To date, approximately 57% of the total area assigned to the LASL in the Rocky Mountain region and Alaska has been sampled and plans are well under way to sample an additional 28% during FY 78. Contracts have been let to complete the sampling of the LASL area in the lower states and bids to sample an additional 33% of Alaska are being evaluated. Twenty reports (2 in press and 18 in preparation) are presently scheduled to be open filed within six months, reporting uranium data only for 18 complete quadrangles and multielement data for 11 complete quadrangles. In addition, data releases are being prepared to open file the uranium data from portions of 13 quadrangles that are now outside the LASL reporting boundary but which had been sampled by the LASL prior to the establishment of the new boundary in October 1977. By the end of the quarter, all multielement analysis systems were operational. Water samples from 7780 locations and sediment samples from 4170 locations were analyzed for uranium. Samples from approximately 6500 locations were analyzed by one or more of the multielement methods.

  14. Hydrogeochemical and stream sediment reconnaissance of the National Uranium Resource Evaluation Program. Progress report, January--March 1978

    International Nuclear Information System (INIS)

    Weaver, T.A.; Bunker, M.E.; Hansel, J.M. Jr.

    1978-10-01

    The modifications to the Los Alamos Scientific Laboratory (LASL) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program, necessary to incorporate the expansion and revision of the overall HSSR program as required by the Department of Energy, have been completed. To date, approximately 57% of the total area assigned to the LASL in the Rocky Mountain region and Alaska has been sampled and plans are well under way to sample an additional 28% during FY 78. Contracts have been let to complete the sampling of the LASL area in the lower states and bids to sample an additional 33% of Alaska are being evaluated. Twenty reports (2 in press and 18 in preparation) are presently scheduled to be open filed within six months, reporting uranium data only for 18 complete quadrangles and multielement data for 11 complete quadrangles. In addition, data releases are being prepared to open file the uranium data from portions of 13 quadrangles that are now outside the LASL reporting boundary but which had been sampled by the LASL prior to the establishment of the new boundary in October 1977. By the end of the quarter, all multielement analysis systems were operational. Water samples from 7780 locations and sediment samples from 4170 locations were analyzed for uranium. Samples from approximately 6500 locations were analyzed by one or more of the multielement methods

  15. National Uranium Resource Evaluation: intermediate-grade uranium resource assessment project for part of the Maybell District, Sand Wash Basin, Colorado

    International Nuclear Information System (INIS)

    Goodknight, C.S.

    1983-04-01

    Intermediate-grade uranium resources in the Miocene Browns Park Formation were assessed for part of the Maybell district in the Sand Wash Basin, Colorado, as part of the National Uranium Resource Evaluation program conducted by Bendix Field Engineering Corporation for the US Department of Energy. Two sites, each 2 mi 2 (5 km 2 ) in size, in the district were selected to be assessed. Site selection was based on evaluation of geologic, geophysical, and geochemical data that were collected from a larger project area known to contain uranium enrichment. The assessment of the sites was accomplished primarily by drilling 19 holes through the Browns Park Formation and by using the geophysical and geochemical data from those holes and from a larger number of industry-drilled holes. Analytical results of samples from uranium prospects, mainly along faults in the sites, were also used for the assessment. Data from surface samples and from drill-hole samples and logs of the site south of Lay Creek indicate that no intermediate-grade uranium resources are present. However, similar data from the site north of Lay Creek verify that approximately 25 million lb (11.2 million kg) of intermediate-grade uranium resources may be present. This assessment assumes that an average uranium-enriched thickness of 10 ft (3 m) at a grade of 0.017% U 3 O 8 is present in at least two thirds of the northern site. Uranium enrichment in this site occurs mainly in the lower 150 ft (45 m) of the Browns Park Formation in fine- to medium-grained sandstone that contains abundant clay in its matrix. Facies variations within the Browns Park preclude correlation of individual beds or zones of uranium enrichment between closely spaced drill holes

  16. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Brazil

    International Nuclear Information System (INIS)

    1977-06-01

    Brazil occupies an area of about 8.5 million square kilometers -- almost half of the South American continent. The dominant geographic feature is the Amazon basin. The Amazon River and its more than 200 tributaries drain about 60 percent of the country. The basin is a vast tropical rain forest, whereas the remainder of Brazil is made up predominantly of highlands. The Central Highlands, which extends into the Amazon basin, occupies nearly all of southern Brazil and includes major mountain chains such as the Serra do Mar, Serra da Mantiqueira, and Serra do Espinhago. The Guiana Highlands fringe the northern Amazon basin and extend into Venezuela, Guyana, Surinam, and French Guiana. Lowland areas other than the Amazon basin are found in western Mato Grosso, and along the Atlantic coast from French Guiana to Uruguay. The geology of Brazil is dominated structurally and areally by three major shields composed of crystalline rocks of Archean and Proterozoic age. Collectively they comprise the Brazilian complex which is probably the largest Precambrian outcrop in the world. The complex is made up of gneisses, granites, mica schists, quartzites, dolomites, skarns, diorites, itabirites and gabbros, many of which are deeply metamorphosed. Faults, quartz veins, and dikes are common. Recurrent granitization has occurred from the Precambrian to Late Tertiary. The area of Brazil is large and its geology is favorable, in places, for every known type of uranium deposit. This is not reflected in the amount of 'known' and 'inferred' reserves -- slightly more than 21,000 tons. Rather, it is an indication of the small amount of exploration done, taking into account the large area to be covered. The speculative potential can only be guessed. It is guessed to be 500,000 tons

  17. The model of interaction with the National Operator when doing uranium mining in Kazakhstan

    International Nuclear Information System (INIS)

    Yermilov, A.; Niyetbayev, M.; Sakharova, Y.

    2014-01-01

    The report presents a model of organizational and production interaction with the National Operator, NAC Kazatomprom JSC, with regard to uranium mining in Kazakhstan by means of mechanism of joint management of mining, processing and service companies. NAC Kazatomprom JSC is the world's largest producer of uranium, and Uranium One Holding is the largest foreign partner of the National Operator. The mining assets of Uranium One Holdings include the following joint ventures: Betpak Dala LLP (South Inkai and Akdala Mines), Karatau LLP, Akbastau JSC, Kyzylkum LLP and KRC Zarechnoye JSC. It shows that the project management in the form of joint ventures allows for minimization of investment risks in Kazakhstan. The practice of corporate communication with NAC Kazatomprom JSC goes far beyond the “investment– receipt of dividends” scheme when the investment guarantees mean control over the enterprise activities through participation in the meetings of enterprise management bodies. The sustainable model has been developed for the interaction with the National Operator and with state authorities of the Republic of Kazakhstan through or together with the National Operator, whereby various projects have been implemented starting with the joint support of social development of Kazakhstan regions in excess of the minimum amounts established by the government in subsoil use contracts (through Kazatomprom-Demeu LLP, specially established for this purpose) and ending with the implementation of such major projects as the “Atomic Ring” or innovative projects on the construction of alternative energy sources (solar power plant) on sites of joint industrial projects. Effective cooperation with the National operator Kazatomprom allowed to successfully establish and run at the jointly owned mines the program of efficiency improvement which stimulates continuous improvement of current operations and results in considerable cost reduction. The key ideas of the Efficiency

  18. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Introduction to Data Files, United States: Volume 1

    International Nuclear Information System (INIS)

    1985-01-01

    One product of the Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program, a component of the National Uranium Resource Evaluation (NURE), is a data-base of interest to scientists and professionals in the academic, business, industrial, and governmental communities. This database contains individual records for water and sediment samples taken during the reconnaissance survey of the entire United States, excluding Hawaii. The purpose of this report is to describe the NURE HSSR data by highlighting its key characteristics and providing user guides to the data. A companion report, ''A Technical History of the NURE HSSR Program,'' summarizes those aspects of the HSSR Program which are likely to be important in helping users understand the database. Each record on the database contains varying information on general field or site characteristics and analytical results for elemental concentrations in the sample; the database is potentially valuable for describing the geochemistry of specified locations and addressing issues or questions in other areas such as water quality, geoexploration, and hydrologic studies. This report is organized in twelve volumes. This first volume presents a brief history of the NURE HSSR program, a description of the data files produced by ISP, a Users' Dictionary for the Analysis File and graphs showing the distribution of elemental concentrations for sediments at the US level. Volumes 2 through 12 are comprised of Data Summary Tables displaying the percentile distribution of the elemental concentrations on the file. Volume 2 contains data for the individual states. Volumes 3 through 12 contain data for the 1 0 x 2 0 quadrangles, organized into eleven regional files; the data for the two regional files for Alaska (North and South) are bound together as Volume 12

  19. Winter wolf predation in a multiple ungulate prey system, Gates of the Arctic National Park, Alaska

    Science.gov (United States)

    Dale, Bruce W.; Adams, Layne G.; Bowyer, R. Terry; Carbyn, Ludwig N.; Fritts, Steven H.; Seip, Dale R.

    1995-01-01

    We investigated patterns of winter wolf predation, including prey selection, prey switching, kill rates, carcass utilization, and consumption rates for four wolf packs during three different study periods (March 1989, March 1990, and November 1990) in Gates of the Arctic National Park and Preserve, Alaska. Wolves killed predominantly caribou (165 caribou, seven moose, and five Dall sheep) even when moose and sheep were more abundant. Prey selection varied between study periods. More moose were killed in march 1989, a particularly deep snow year, and more sheep were killed in November 1990 than during other periods. Overall kill rates ranged from 0-8 days/ungulate killed (x̅ = 2.0, SD = 1.6) and did not vary between study periods.  Pack size and species killed explained significant variation in the length of time intervals between kills. Although caribou density varied nearly 40-fold between pack territories, it had little influence on predation characteristics except at low densities, when kill rates may have declined. Caribou distribution had marked effects on wolf predation rate.

  20. Reproductive characteristics of migratory golden eagles in Denali National Park, Alaska

    Science.gov (United States)

    McIntyre, Carol L.; Adams, Layne G.

    1999-01-01

    We describe reproductive characteristics of Golden Eagles (Aquila chrysaetos) breeding in Denali National Park, Alaska during an entire snowshoe hare (Lepus americanus) cycle, 1988-1997. Data on nesting eagles were collected at 58 to 72 nesting areas annually using two aerial surveys. Surveys were conducted during the incubation period to determine occupancy and nesting activities and late in the nestling period to count nestlings and determine nesting success. Annual occupancy rates of nesting areas did not vary significantly, whereas laying rates, success rates, and mean brood size varied significantly over the study period. Fledgling production for the study population varied sevenfold during the ten-year period. Laying rates, mean brood size, and overall population productivity were significantly correlated with abundance of cyclic snowshoe hare and Willow Ptarmigan (Lugopus lagopus) populations. Reproductive rates of Golden Eagles in Denali were similar to those of Golden Eagles from other high latitude study areas in North America, but lower than for Golden Eagles from temperate zone study areas in North America.

  1. Uranium hydrogeochemical and stream sediment reconnaissance of the Sterling NTMS quadrangle, Colorado. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Garcia, S.R.; Hanks, D.; George, W.E.; Boliver, S.L.

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaisance (HSSR) of the Sterling NTMS quadrangle, Colorado. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume, these data are, however, available on the magnetic tape. appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1;1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  2. Uranium hydrogeochemical and stream sediment reconnaissance of the Limon NTMS quadrangle, Colorado. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Minor, M.M.; McInteer, C.; Hansel, J.N.; Broxton, D.E.

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Limon NTMS quadrangle, Colorado. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume, these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream water, lake water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information of the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory (see, for example, Planner and others, 1981) and will not be included in this report

  3. Aerial Radiological Survey of Abandoned Uranium Mines (AUM) Map Service, Navajo Nation, 1994-1999, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map service contains data from aerial radiological surveys of 41 potential uranium mining areas (1,144 square miles) within the Navajo Nation that were...

  4. Application for assistance to United Nations rotating fund for the study of natural resources, for uranium prospecting

    International Nuclear Information System (INIS)

    1976-01-01

    This memoranda is a United Nations petition about natural resources study which allow the uranium prospecting. These areas will be studied on sedentary, anomalous and crystal land as well as radiometric rises

  5. National uranium resource evaluation. Uranium hydrogeochemical and stream sediment reconnaissance of the Greeley NTMS quadrangle, Colorado

    International Nuclear Information System (INIS)

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance of the Greeley NTMS quadrangle, Colorado. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses

  6. National Uranium Resource Evaluation, Scranton Quadrangle, Pennsylvania, New York, and New Jersey

    International Nuclear Information System (INIS)

    Baillieul, T.A.; Indelicato, G.J.; Penley, H.M.

    1980-11-01

    Reconnaissance and detailed geologic and radiometric investigations were conducted throughout the Scranton Quadrangle, Pennsylvania, New York, and New Jersey, to evaluate uranium favorability using National Uranium Resource Evaluation criteria. Surface and subsurface studies were augmented by aerial radiometric, hydrogeochemical and stream sediment reconnaissance, and emanometry surveys. Results of the investigations indicate four environments favorable for uranium deposits: In the Precambrian metamorphic terrain of the Reading Prong, magmatic-hydrothermal and anatectic deposits may occur in the northwestern massif; contact metasomatic deposits may occur in a portion of the southeastern massif. The alluvial-fan environment at the base of the Upper Devonian Catskill Formation appears favorable for deposits in peneconcordant channel controlled sandstones. Seven environments are considered unfavorable for uranium deposits: the southeastern massif of the Reading Prong, exclusive of that portion denoted as a favorable contact metasomatic environment; the lower Paleozoic sedimentary units; the Beemerville nepheline syenite complex; the Upper Devonian Catskill Formation, exclusive of the favorable basal alluvial-fan facies; Mississippian and Pennsylvanian units; and peat bogs. Two environments were not evaluated: the Spechty Kopf Formation, because of paucity of exposure and lack of sufficient data; and the Newark Basin, because of cultural density and inadequate subsurface information

  7. Monitoring population status of sea otters (Enhydra lutris) in Glacier Bay National Park and Preserve, Alaska: options and considerations

    Science.gov (United States)

    Esslinger, George G.; Esler, Daniel N.; Howlin, S.; Starcevich, L.A.

    2015-06-25

    After many decades of absence from southeast Alaska, sea otters (Enhydra lutris) are recolonizing parts of their former range, including Glacier Bay, Alaska. Sea otters are well known for structuring nearshore ecosystems and causing community-level changes such as increases in kelp abundance and changes in the size and number of other consumers. Monitoring population status of sea otters in Glacier Bay will help park researchers and managers understand and interpret sea otter-induced ecosystem changes relative to other sources of variation, including potential human-induced impacts such as ocean acidification, vessel disturbance, and oil spills. This report was prepared for the National Park Service (NPS), Southeast Alaska Inventory and Monitoring Network following a request for evaluation of options for monitoring sea otter population status in Glacier Bay National Park and Preserve. To meet this request, we provide a detailed consideration of the primary method of assessment of abundance and distribution, aerial surveys, including analyses of power to detect interannual trends and designs to reduce variation around annual abundance estimates. We also describe two alternate techniques for evaluating sea otter population status—(1) quantifying sea otter diets and energy intake rates, and (2) detecting change in ages at death. In addition, we provide a brief section on directed research to identify studies that would further our understanding of sea otter population dynamics and effects on the Glacier Bay ecosystem, and provide context for interpreting results of monitoring activities.

  8. 5 Meter Alaska Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is comprised of 5-meter ifsar-derived Digital Elevation Models (DEMs) over Alaska only. It is distributed as one-degree blocks with overedge. Horizontal...

  9. A geologic guide to Wrangell-Saint Elias National Park and Preserve, Alaska; a tectonic collage of northbound terranes

    Science.gov (United States)

    Winkler, Gary R.; with contributions by MacKevett, E. M.; Plafker, George; Richter, D.H.; Rosenkrans, D.S.; Schmoll, H.R.

    2000-01-01

    Wrangell-Saint Elias National Park and Preserve, the largest unit in the U.S. National Park System, encompasses near 13.2 million acres of geological wonderments. This geologic guide presents history of exploration and Earth-science investigation; describes the complex geologic makeup; characterizes the vast college of accretion geologic terranes in this area of Alaska's continental margin; recapitulates the effects of earthquakes, volcanoes, and glaciers; characterizes the copper and gold resources of the parklands; and describes outstanding locales within the park and preserve area. A glossary of geologic terms and a categorized list of additional sources of information complete this report.

  10. National low-level waste management program radionuclide report series, Volume 15: Uranium-238

    International Nuclear Information System (INIS)

    Adams, J.P.

    1995-09-01

    This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ( 238 U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which 238 U can be found, and 238 U behavior in the environment and in the human body

  11. National Uranium Resource Evaluation Program: the Hydrogeochemical Stream Sediment Reconnaissance Program at LLNL

    International Nuclear Information System (INIS)

    Higgins, G.H.

    1980-08-01

    From early 1975 to mid 1979, Lawrence Livermore National Laboratory (LLNL) participated in the Hydrogeochemical Stream Sediment Reconnaissance (HSSR), part of the National Uranium Resource Evaluation (NURE) program sponsored by the Department of Energy (DOE). The Laboratory was initially responsible for collecting, analyzing, and evaluating sediment and water samples from approximately 200,000 sites in seven western states. Eventually, however, the NURE program redefined its sampling priorities, objectives, schedules, and budgets, with the increasingly obvious result that LLNL objectives and methodologies were not compatible with those of the NURE program office, and the LLNL geochemical studies were not relevant to the program goal. The LLNL portion of the HSSR program was consequently terminated, and all work was suspended by June 1979. Of the 38,000 sites sampled, 30,000 were analyzed by instrumental neutron activation analyses (INAA), delayed neutron counting (DNC), optical emission spectroscopy (OES), and automated chloride-sulfate analyses (SC). Data from about 13,000 sites have been formally reported. From each site, analyses were published of about 30 of the 60 elements observed. Uranium mineralization has been identified at several places which were previously not recognized as potential uranium source areas, and a number of other geochemical anomalies were discovered

  12. A national approach to the regulation of water discharge from uranium mines

    International Nuclear Information System (INIS)

    Willis, J.L.

    1985-09-01

    This paper is concerned with outlining the development of a national approach to the regulation of water discharge from uranium mines in Australia. The history of the Australian uranium industry is briefly sketched to illustrate the changes that have taken place in environmental management, and more particularly water management, over this period. The main focus of the paper is on the requirements relating to the establishment of effluent discharge limits contained in the Code of Practice on the Management of Radioactive Wastes from the Mining and Milling of Radioactive Ores, 1982. The code adopts a site specific approach to the formulation of discharge limits rather than providing generic recommendations. This approach requires the application of a rigorous and disciplined methodology

  13. Regional seismic lines reprocessed using post-stack processing techniques; National Petroleum Reserve, Alaska

    Science.gov (United States)

    Miller, John J.; Agena, W.F.; Lee, M.W.; Zihlman, F.N.; Grow, J.A.; Taylor, D.J.; Killgore, Michele; Oliver, H.L.

    2000-01-01

    This CD-ROM contains stacked, migrated, 2-Dimensional seismic reflection data and associated support information for 22 regional seismic lines (3,470 line-miles) recorded in the National Petroleum Reserve ? Alaska (NPRA) from 1974 through 1981. Together, these lines constitute about one-quarter of the seismic data collected as part of the Federal Government?s program to evaluate the petroleum potential of the Reserve. The regional lines, which form a grid covering the entire NPRA, were created by combining various individual lines recorded in different years using different recording parameters. These data were reprocessed by the USGS using modern, post-stack processing techniques, to create a data set suitable for interpretation on interactive seismic interpretation computer workstations. Reprocessing was done in support of ongoing petroleum resource studies by the USGS Energy Program. The CD-ROM contains the following files: 1) 22 files containing the digital seismic data in standard, SEG-Y format; 2) 1 file containing navigation data for the 22 lines in standard SEG-P1 format; 3) 22 small scale graphic images of each seismic line in Adobe Acrobat? PDF format; 4) a graphic image of the location map, generated from the navigation file, with hyperlinks to the graphic images of the seismic lines; 5) an ASCII text file with cross-reference information for relating the sequential trace numbers on each regional line to the line number and shotpoint number of the original component lines; and 6) an explanation of the processing used to create the final seismic sections (this document). The SEG-Y format seismic files and SEG-P1 format navigation file contain all the information necessary for loading the data onto a seismic interpretation workstation.

  14. Utilizing the geochemical data from the National Uranium Resource Evaluation (NURE) program: an evaluation of the Butte quadrangle, Montana

    International Nuclear Information System (INIS)

    Van Eeckhout, E.M.

    1980-12-01

    Some 1370 water and 1951 sediment samples were collected from 1994 locations in the Butte quadrangle, Montana, in 1976 and 1977 by the University of Montana for the Los Alamos Scientific Laboratory (LASL). The LASL analyzed the water samples for uranium and the sediment samples for uranium plus 42 additional elements. The data were then released to the Montana College of Mineral Science and Technology (MCMS and T), which was responsible for the evaluation of the uranium data. The data have subsequently been released by the LASL in an open-file report (Broxton, 1980). Statistical evaluations of the data were undertaken for uranium, copper, lead, zinc, manganese, gold, and silver. The uranium evaluations indicated certain areas in the western part of the quadrangle to be favorable for further investigation (particularly along the Rock Creek), as well as anomalous areas just north of Anaconda. The entire Boulder Batholith area had a high uranium background, but there didn't appear to be any particular site in this area that might be worth pursuing. The multielement evaluations confirmed the known base and precious metal provinces within the quadrangle. A methodology for evaluating data tapes from the National Uranium Resource Evaluation (NURE) program was developed and presented throughout this report. This methodology could be developed further to define areas worth exploring for commodities other than uranium

  15. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.; Coolidge, C.M.; Kratochvil, A.L.; Sever, C.K.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium and 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.

  16. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    International Nuclear Information System (INIS)

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.; Coolidge, C.M.; Kratochvil, A.L.; Sever, C.K.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium and 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates

  17. Decree No. 67/77 of 6 May establishing a National Uranium Undertaking as a public body

    International Nuclear Information System (INIS)

    1977-01-01

    This Decree, promulgated on 29 March 1977, sets up a National Uranium Undertaking (ENU). The ENU Statute which is attached to the Decree lays down that its main purpose is to prospect for and inventory uranium deposits, to explore known deposits, to set up facilities for recovery and treatment of uranium ores, and finally, to market the products obtained. The ENU has taken over the work which, until now, had been carried out in that field by the Junta de Energia Nuclear and it is placed under the authority of the Minister of Industry and Technology. (NEA) [fr

  18. 50 CFR 36.33 - What do I need to know about using cabins and related structures on Alaska National Wildlife...

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false What do I need to know about using cabins and related structures on Alaska National Wildlife Refuges? 36.33 Section 36.33 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE...

  19. Facilitating the Development and Evaluation of a Citizen Science Web Site: A Case Study of Repeat Photography and Climate Change in Southwest Alaska's National Parks

    Science.gov (United States)

    Mullen, Karina C.; Newman, Gregory; Thompson, Jessica L.

    2013-01-01

    Interviews with national park visitors across the country revealed that climate change education through place-based, hands-on learning using repeat photographs and technology is appealing to park visitors. This manuscript provides a summary of the development of a repeat photography citizen science Web site for national parks in Southwest Alaska.…

  20. A report on the collection of data relevant to the Canadian National Uranium Tailings Program

    International Nuclear Information System (INIS)

    Smith, A.

    1984-10-01

    In December of 1983, Systemhouse Ltd. was awarded a contract to collect data relevant to the Canadian National Uranium Tailings Program and to convert it into a machine readable format. The work was carried out in four phases, namely, data identification, data collection, data transcription/conversion and data verification. The main priority was to identify as much relevant data as possible. The identified data was priorized against a predefined criteria established in conjunction with the project scientific authority. A total of 428 studies were identified as being relevant. Data from 19 of these were converted to machine-readable format, giving information on 2398 samples from 78 boreholes

  1. Relocation of the Air National Guard 176th Wing to Elmendorf AFB, Alaska

    Science.gov (United States)

    2007-09-01

    Park. Between 20 and 70 moose are estimated by Alaska Fish and Game to live on Elmendorf AFB, depending on the time of year, as portions of the herd ...also supports populations of small mammals including beaver (Castor canadensis), muskrat (Ondatra zibethicus), porcupine (Erethizon dorsatum), red

  2. Generating Multispectral VIIRS Imagery in Near Real-Time for Use by the National Weather Service in Alaska

    Science.gov (United States)

    Broderson, D.; Dierking, C.; Stevens, E.; Heinrichs, T. A.; Cherry, J. E.

    2016-12-01

    The Geographic Information Network of Alaska (GINA) at the University of Alaska Fairbanks (UAF) uses two direct broadcast antennas to receive data from a number of polar-orbiting weather satellites, including the Suomi National Polar Partnership (S-NPP) satellite. GINA uses data from S-NPP's Visible Infrared Imaging Radiometer Suite (VIIRS) to generate a variety of multispectral imagery products developed with the needs of the National Weather Service operational meteorologist in mind. Multispectral products have two primary advantages over single-channel products. First, they can more clearly highlight some terrain and meteorological features which are less evident in the component single channels. Second, multispectral present the information from several bands through just one image, thereby sparing the meteorologist unnecessary time interrogating the component single bands individually. With 22 channels available from the VIIRS instrument, the number of possible multispectral products is theoretically huge. A small number of products will be emphasized in this presentation, with the products chosen based on their proven utility in the forecasting environment. Multispectral products can be generated upstream of the end user or by the end user at their own workstation. The advantage and disadvantages of both approaches will be outlined. Lastly, the technique of improving the appearance of multispectral imagery by correcting for atmospheric reflectance at the shorter wavelengths will be described.

  3. An Aerial Radiological Survey of Abandoned Uranium Mines in the Navajo Nation

    International Nuclear Information System (INIS)

    Hendricks, T.J.

    2001-01-01

    Aerial radiological surveys of forty-one geographical areas in the Navajo Nation were conducted during the period of October 1994 through October 1999. The surveys were conducted at the request of the U.S. Environmental Protection Agency (EPA) Region 9 and were performed by personnel of the Remote Sensing Laboratory (RSL) located in Las Vegas, Nevada, a facility of the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office. The aerial survey and subsequent processing characterized the overall radioactivity levels and excess bismuth 214 activity (indicator of uranium ore deposits and/or uranium mines) within the surveyed areas. A total of 772,000 aerial gamma spectra and associated position parameters were obtained and analyzed during the multi-year operation. The survey determined that only 15 square miles (39 square kilometers) of the 1,144 square miles (2,963 square kilometers) surveyed (approximately 1.3 %) had excess bismuth indications above the minimum reportable activity, thus reducing the area requiring further investigation by a nominal factor of 76. Radiation contour data files, produced by RSL, were converted to Geographic Information System-compatible digital files and provided to EPA and EPA contractors for inclusion in numerous reports and graphics products

  4. Resource use, dependence and vulnerability: community-resource linkages on Alaska's Tongass National Forest

    Science.gov (United States)

    E.T. Mekbeb; R.J. Lilieholm; D.J. Blahna; L.E. Kruger

    2009-01-01

    Understanding how rural communities use and depend upon local natural resources is a critical factor in developing policies to sustain the long-term viability of human and natural systems. Such “community-resource” linkages are particularly important in Alaska, where rural communities – many of them comprised of indigenous Alaskan Natives – are highly dependent upon...

  5. Descriptions of marine mammal specimens in Marine Mammal Osteology Reference Collection, Alaska Fisheries Science Center, National Marine Mammal Laboratory from 1938-01-01 to 2015-12-05 (NCEI Accession 0140937)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NMFS Alaska Fisheries Science Center National Marine Mammal Laboratory (NMML) Marine Mammal Osteology Collection consists of approximately 2500 specimens (skulls...

  6. National Public Information Symposium on Peaceful Uses of Nuclear Energy, NUC Info' 2000. Radioactive Waste Management and Site Restoration in Uranium Industry. Proceedings. Volume 2

    International Nuclear Information System (INIS)

    Dobos, Ion; Comsa, Olivia

    2000-01-01

    These proceedings published in two volumes contain materials presented at the National Public Information Symposium on Peaceful Uses of Nuclear Energy, NUC Info' 2000. Radioactive Waste Management and Site Restoration in Uranium Industry - held on 5th September to 8th September 2000 at Baita - Bihor, Romania. The proceedings are structured in 4 sections: 1. Management of radioactive wastes arising from uranium mining, milling and decommissioning; 2. Uranium mine closing down; 3. Environmental restoration of uranium mining and milling sites; 4. Management of radioactive wastes arising from nuclear applications. The contributions in this volume debate the issues of environment restoration at uranium ore mining and management of radioactive wastes resulted from nuclear applications

  7. Hydrogeochemical and stream sediment reconnaissance of the National Uranium Resource Evaluation Program. Progress report, July--September 1976

    International Nuclear Information System (INIS)

    Morris, W.A.

    1977-01-01

    Water and/or sediment samples have been collected from some 47,000 sample locations covering about 504,000 km 2 which represents 19% of the area assigned to the LASL for the HSSR program. Slightly over half of this sampling work was done this quarter and included the first commercial, helicopter-borne sampling contract in Alaska where 4468 locations were sampled over an area of 94,000 km 2 . Thus far, uranium determinations have been made for some 12,000 water samples by fluorometry and for over 15,000 sediment samples by delayed-neutron counting. The main effort of this quarter has been directed toward completing all outstanding commercial sampling contracts and analyzing the backlog of water and sediment samples

  8. Social implications of alternatives to clearcutting on the Tongass National Forest: an exploratory study of residents' responses to alternative silvicultural treatments at Hanus Bay, Alaska.

    Science.gov (United States)

    James A. Burchfield; Jeffrey M. Miller; Stewart Allen; Robert F. Schroeder; Theron. Miller

    2003-01-01

    After a series of eight harvest treatments were completed at Hanus Bay, Alaska, on the Tongass National Forest in 1998, 27 respondents representing nine interest groups were interviewed to understand their reactions to the various harvest patterns in the eight treatment areas. Harvests patterns included three stands with 25 percent retention of basal area; three stands...

  9. Constancy and cover of plants in the Petersburg and Wrangell Districts, Tongass National Forest and associated private and other public lands, southeast Alaska.

    Science.gov (United States)

    Bert R. Mead

    2002-01-01

    This study provides a comprehensive and inclusive description and inventory of the vegetation within the Stikine area of southeast Alaska. Private and other public lands were included as well as Tongass National Forest lands contained in the Petersburg and Wrangell Ranger Districts. Previous inventories have concentrated almost exclusively on tree species within forest...

  10. Assessment of undiscovered oil and gas resources in the Cretaceous Nanushuk and Torok Formations, Alaska North Slope, and summary of resource potential of the National Petroleum Reserve in Alaska, 2017

    Science.gov (United States)

    Houseknecht, David W.; Lease, Richard O.; Schenk, Christopher J.; Mercier, Tracey J.; Rouse, William A.; Jarboe, Palma B.; Whidden, Katherine J.; Garrity, Christopher P.; Lewis, Kristen A.; Heller, Samuel; Craddock, William H.; Klett, Timothy R.; Le, Phuong A.; Smith, Rebecca; Tennyson, Marilyn E.; Gaswirth, Stephanie B.; Woodall, Cheryl A.; Brownfield, Michael E.; Leathers-Miller, Heidi M.; Finn, Thomas M.

    2017-12-22

    The U.S. Geological Survey estimated mean undiscovered, technically recoverable resources of 8.7 billion barrels of oil and 25 trillion cubic feet of natural gas (associated and nonassociated) in conventional accumulations in the Cretaceous Nanushuk and Torok Formations in the National Petroleum Reserve in Alaska, adjacent State and Native lands, and State waters. The estimated undiscovered oil resources in the Nanushuk and Torok Formations are significantly higher than previous estimates, owing primarily to recent, larger than anticipated oil discoveries.

  11. Treeline biogeochemistry and dynamics, Noatak National Preserve, northwestern Alaska: A section in Studies by the U.S. Geological Survey in Alaska, 2000

    Science.gov (United States)

    Stottlemyer, Robert; Binkley, Dan; Steltzer, Heidi; Wilson, Frederic H.; Galloway, John P.

    2002-01-01

    The extensive boreal biome is little studies relative to its global importance. Its high soil moisture and low temperatures result in large below-ground reservoirs of carbon (C) and nitrogen (N). Presently, such high-latitude ecosystems are undergoing the largest temperature increases in global warming. Change in soil temperature or moisture in the large pools of soil organic matter could fundamentally change ecosystem C and N budgets. Since 1990, we have conducted treeline studies in a small (800 ha) watershed in Noatak National Preserve, northwestern Alaska. Our objectives were to (1) gain an understanding of treeline dynamics, structure, and function; and (2) examine the effects of global climate change, particularly soil temperature, moisture, and N availability, on ecosystem processes. Our intensive site studies show that the treeline has advanced into turdra during the past 150 years. Inplace and laboratory incubations indicate that soil organic-layer mineralization rates increase with a temperature change >5 degrees C. N availability was greatest in soils beneath alder and lowest beneath willow or cottongrass tussocks. Watershed output of inorganic N as NO3 was 70 percent greater than input. The high inorganic-N output likely reflects soil freeze-thaw cycles, shallow flowpaths to the stream, and low seasonal biological retention. Concentrations and flux of dissolved organic carbon (DOC) in streamwater increased during spring melt and in autumn, indicating a seasonal accumulation of soil and forest-floor DOC and a shallower flowpath for meltwater to the stream. In sum, our research suggests that treeling transitionzone processes are quite sensitive to climate change, especially those functions regulating the C and N cycles.

  12. Recycled Uranium Mass Balance Project Y-12 National Security Complex Site Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    This report has been prepared to summarize the findings of the Y-12 National Security Complex (Y-12 Complex) Mass Balance Project and to support preparation of associated U. S. Department of Energy (DOE) site reports. The project was conducted in support of DOE efforts to assess the potential for health and environmental issues resulting from the presence of transuranic (TRU) elements and fission products in recycled uranium (RU) processed by DOE and its predecessor agencies. The United States government used uranium in fission reactors to produce plutonium and tritium for nuclear weapons production. Because uranium was considered scarce relative to demand when these operations began almost 50 years ago, the spent fuel from U.S. fission reactors was processed to recover uranium for recycling. The estimated mass balance for highly enriched RU, which is of most concern for worker exposure and is the primary focus of this project, is summarized in a table. A discrepancy in the mass balance between receipts and shipments (plus inventory and waste) reflects an inability to precisely distinguish between RU and non-RU shipments and receipts involving the Y-12 Complex and Savannah River. Shipments of fresh fuel (non-RU) and sweetener (also non-RU) were made from the Y-12 Complex to Savannah River along with RU shipments. The only way to distinguish between these RU and non-RU streams using available records is by enrichment level. Shipments of {le}90% enrichment were assumed to be RU. Shipments of >90% enrichment were assumed to be non-RU fresh fuel or sweetener. This methodology using enrichment level to distinguish between RU and non-RU results in good estimates of RU flows that are reasonably consistent with Savannah River estimates. Although this is the best available means of distinguishing RU streams, this method does leave a difference of approximately 17.3 MTU between receipts and shipments. Slightly depleted RU streams received by the Y-12 Complex from ORGDP and

  13. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Yemen Arab Republic

    International Nuclear Information System (INIS)

    1977-11-01

    The Yemen Arab Republic occupies a part of the southern Arabian Shield and has been subject to considerable faulting and movement. As far as is known no uranium exploration has ever been undertaken or is presently contemplated in the country. Uranium could occur in the Shield rocks and conditions are right for calcrete type uranium deposits. The Speculative Potential may be in category 2, i.e. between 1000 and 10,000 tonnes uranium. (author)

  14. Increasing rock-avalanche size and mobility in Glacier Bay National Park and Preserve, Alaska detected from 1984 to 2016 Landsat imagery

    Science.gov (United States)

    Coe, Jeffrey A.; Bessette-Kirton, Erin; Geertsema, Marten

    2018-01-01

    In the USA, climate change is expected to have an adverse impact on slope stability in Alaska. However, to date, there has been limited work done in Alaska to assess if changes in slope stability are occurring. To address this issue, we used 30-m Landsat imagery acquired from 1984 to 2016 to establish an inventory of 24 rock avalanches in a 5000-km2 area of Glacier Bay National Park and Preserve in southeast Alaska. A search of available earthquake catalogs revealed that none of the avalanches were triggered by earthquakes. Analyses of rock-avalanche magnitude, mobility, and frequency reveal a cluster of large (areas ranging from 5.5 to 22.2 km2), highly mobile (height/length slopes for failure during periods of warm temperatures.

  15. Low-altitude photographic transects of the Arctic Network of National Park Units and Selawik National Wildlife Refuge, Alaska, July 2013

    Science.gov (United States)

    Marcot, Bruce G.; Jorgenson, M. Torre; DeGange, Anthony R.

    2014-01-01

    During July 16–18, 2013, low-level photography flights were conducted (with a Cessna 185 with floats and a Cessna 206 with tundra tires) over the five administrative units of the National Park Service Arctic Network (Bering Land Bridge National Preserve, Cape Krusenstern National Monument, Gates of the Arctic National Park and Preserve, Kobuk Valley National Park, and Noatak National Preserve) and the U.S. Fish and Wildlife Service’s Selawik National Wildlife Refuge in northwest Alaska, to provide images of current conditions and prevalence of land-cover types as a baseline for measuring future change, and to complement the existing grid-based sample photography of the region. Total flight time was 17 hours, 46 minutes, and total flight distance was 2,590 kilometers, at a mean altitude of about 300 meters above ground level. A total of 19,167 photographs were taken from five digital camera systems: 1. A Drift® HD-170 (focal length 5.00 mm);

  16. National Public Information Symposium on Peaceful Uses of Nuclear Energy, NUC Info'2000. Radioactive Waste Management and Site Restoration in Uranium Industry. Proceedings. Volume 1

    International Nuclear Information System (INIS)

    Dobos, Ion; Comsa, Olivia

    2000-01-01

    These proceedings published in two volumes contain materials presented at the National Public Information Symposium on Peaceful Uses of Nuclear Energy, NUC Info'2000, Radioactive Waste Management and Site Restoration in Uranium Industry, held on 5. September to 8. September 2000 at Baita Bihor, Romania. As the name of Symposium indicates, this manifestation is addressed not only to specialists but rather to the public at large. The proceedings are structured in 4 sections: 1. Management of radioactive waste arising from uranium mining, milling and decommissioning; 2. Uranium mine close-down; 3. Environmental restoration of uranium mining and milling sites; 4. Management of radioactive waste arising from nuclear applications. The first volume also contains an inaugural session dedicated to nuclear power, nuclear fuel cycle and development of uranium industry in Romania. The contributions in the first volume deal with the management of radioactive waste arising from uranium mining, milling and decommissioning and uranium mine close-out

  17. The evolving Alaska mapping program.

    Science.gov (United States)

    Brooks, P.D.; O'Brien, T. J.

    1986-01-01

    This paper describes the development of mapping in Alaska, the current status of the National Mapping Program, and future plans for expanding and improving the mapping coverage. Research projects with Landsat Multispectral Scanner and Return Vidicon imagery and real- and synthetic-aperture radar; image mapping programs; digital mapping; remote sensing projects; the Alaska National Interest Lands Conservation Act; and the Alaska High-Altitude Aerial Photography Program are also discussed.-from Authors

  18. Spatial pattern analysis of cruise ship-humpback whale interactions in and near Glacier Bay National Park, Alaska.

    Science.gov (United States)

    Harris, Karin; Gende, Scott M; Logsdon, Miles G; Klinger, Terrie

    2012-01-01

    Understanding interactions between large ships and large whales is important to estimate risks posed to whales by ships. The coastal waters of Alaska are a summer feeding area for humpback whales (Megaptera novaeangliae) as well as a prominent destination for large cruise ships. Lethal collisions between cruise ships and humpback whales have occurred throughout Alaska, including in Glacier Bay National Park (GBNP). Although the National Park Service (NPS) establishes quotas and operating requirements for cruise ships within GBNP in part to minimize ship-whale collisions, no study has quantified ship-whale interactions in the park or in state waters where ship traffic is unregulated. In 2008 and 2009, an observer was placed on ships during 49 different cruises that included entry into GBNP to record distance and bearing of whales that surfaced within 1 km of the ship's bow. A relative coordinate system was developed in ArcGIS to model the frequency of whale surface events using kernel density. A total of 514 whale surface events were recorded. Although ship-whale interactions were common within GBNP, whales frequently surfaced in front of the bow in waters immediately adjacent to the park (west Icy Strait) where cruise ship traffic is not regulated by the NPS. When ships transited at speeds >13 knots, whales frequently surfaced closer to the ship's midline and ship's bow in contrast to speeds slower than 13 knots. Our findings confirm that ship speed is an effective mitigation measure for protecting whales and should be applied to other areas where ship-whale interactions are common.

  19. The geochemical atlas of Alaska, 2016

    Science.gov (United States)

    Lee, Gregory K.; Yager, Douglas B.; Mauk, Jeffrey L.; Granitto, Matthew; Denning, Paul; Wang, Bronwen; Werdon, Melanie B.

    2016-06-21

    A rich legacy of geochemical data produced since the early 1960s covers the great expanse of Alaska; careful treatment of such data may provide significant and revealing geochemical maps that may be used for landscape geochemistry, mineral resource exploration, and geoenvironmental investigations over large areas. To maximize the spatial density and extent of data coverage for statewide mapping of element distributions, we compiled and integrated analyses of more than 175,000 sediment and soil samples from three major, separate sources: the U.S. Geological Survey, the National Uranium Resource Evaluation program, and the Alaska Division of Geological & Geophysical Surveys geochemical databases. Various types of heterogeneity and deficiencies in these data presented major challenges to our development of coherently integrated datasets for modeling and mapping of element distributions. Researchers from many different organizations and disparate scientific studies collected samples that were analyzed using highly variable methods throughout a time period of more than 50 years, during which many changes in analytical techniques were developed and applied. Despite these challenges, the U.S. Geological Survey has produced a new systematically integrated compilation of sediment and soil geochemical data with an average sample site density of approximately 1 locality per 10 square kilometers (km2) for the entire State of Alaska, although density varies considerably among different areas. From that compilation, we have modeled and mapped the distributions of 68 elements, thus creating an updated geochemical atlas for the State.

  20. Performance Assessment Transport Modeling of Uranium at the Area 5 Radioactive Waste Management Site at the Nevada National Security Site

    International Nuclear Information System (INIS)

    2010-01-01

    ., 2002). It is important to note that, in scientific literature, uranium Kds are seen to be highly variable, dependent on geologic media and waters (U.S. Environmental Protection Agency, Office of Air and Radiation, 1999). Solubility limits for uranium used in the model were also determined based on site geochemical data using geochemical software (Cochran et al., 2001). In the Area 5 RWMS GoldSim model, uranium solubility limits are represented by a log-uniform distribution with a minimum value of 2e-6 moles per liter (mol/L) and a maximum value of 7e-3 mol/L. Uranium reacts with oxygen in the pore water to form a dioxide (UO 2 ), a trioxide (UO 3 ), and a large number of intermediate oxides, the most important of which is triuranium octoxide (U 3 O 8 ). UO 2 , UO 3 , and U 3 O 8 are relatively insoluble in water. Depleted Uranium Studies Related to Disposal at the Nevada National Security Site Two studies evaluated DU disposal at the Nevada National Security Site (NNSS): (1) Final Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (U.S. Department of Energy, 1999) and (2) Assessment of Preferred Depleted Uranium Disposal Forms (Croff et al., 2000). The second study evaluated four DU forms specifically (U 3 O 8 , UO 2 , uranium tetrafluoride, and uranium metal). The study indicated that the proposed DU waste forms do not have characteristics that prohibit disposal at the NNSS.

  1. Exploration-systems approach to the Copper Mountain area uranium deposits, central Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Sayala, D.; Lindgren, J.; Babcock, L.

    1982-09-01

    This report presents the results of multidisciplinary investigations of uranium deposits in the Copper Mountain District of central Wyoming. Although the studies on which the report is based began in 1977, work on the project has been discontinuous and was conducted partly by investigators no longer on the project. The project report represents an effort by the authors to compile and interpret the various data and to draw reasonable conclusions. Although an attempt is made to integrate, where possible, the results of different studies (or surveys), the report is organized into individual sections that present methods and results for each approach used. Investigations reported separately include geology, geochemistry, geophysics, and emanometry. These are aimed at characterizing and understanding the Copper Mountain uranium district and aiding in the detection of similar districts. A summary of overall project results, a comparison of the usefulness of individual approaches or combinations of approaches, and conclusions are presented in separate report sections for the project as a whole. All six sections in this report have been abstracted and indexed

  2. Demonstration and evaluation of solid state photomultiplier tube for uranium exploration instrumentation. National uranium resources evaluation. Final report

    International Nuclear Information System (INIS)

    Polichar, R.M.

    1982-06-01

    The purpose of this program has been to evaluate the recently developed solid state photomultiplier tube (SSPMT) technology as a potential improvment to future uranium exploration instrumentation. To this end, six SSPMTs have been constructed and evaluated in a manner similar to that of conventional phototubes. Special regard has been placed on the measurement of pulse height resolution and the factors that affect it in tube design and manufacture. The tubes were subjected to a number of tests similar to those performed on conventional photomultiplier tubes. The results indicate that good, high-resolution spectra can be obtained from the tubes and that they behave generally in a predictable manner. They exhibited a linear gain increase with applied potential. They show only slight dependence of performance with applied potential. Their sensitivity is, for the most part, uniform and predictable. However, several characteristics were found that were not predictable. These include a general drop in measured quantum efficiency, a worsening resolution with operation, and a bump in the sensitivity curve corresponding to the shape of the projected dimension of the anode. The SSPMT remains an attractive new technology in gamma-ray spectroscopy, and promises to make significant improvements in the area of uranium exploration instrumentation. 16 figures, 5 tables

  3. Mapping polar bear maternal denning habitat in the National Petroleum Reserve -- Alaska with an IfSAR digital terrain model

    Science.gov (United States)

    Durner, George M.; Simac, Kristin S.; Amstrup, Steven C.

    2013-01-01

    The National Petroleum Reserve–Alaska (NPR-A) in northeastern Alaska provides winter maternal denning habitat for polar bears (Ursus maritimus) and also has high potential for recoverable hydrocarbons. Denning polar bears exposed to human activities may abandon their dens before their young are able to survive the severity of Arctic winter weather. To ensure that wintertime petroleum activities do not threaten polar bears, managers need to know the distribution of landscape features in which maternal dens are likely to occur. Here, we present a map of potential denning habitat within the NPR-A. We used a fine-grain digital elevation model derived from Interferometric Synthetic Aperture Radar (IfSAR) to generate a map of putative denning habitat. We then tested the map’s ability to identify polar bear denning habitat on the landscape. Our final map correctly identified 82% of denning habitat estimated to be within the NPR-A. Mapped denning habitat comprised 19.7 km2 (0.1% of the study area) and was widely dispersed. Though mapping denning habitat with IfSAR data was as effective as mapping with the photogrammetric methods used for other regions of the Alaskan Arctic coastal plain, the use of GIS to analyze IfSAR data allowed greater objectivity and flexibility with less manual labor. Analytical advantages and performance equivalent to that of manual cartographic methods suggest that the use of IfSAR data to identify polar bear maternal denning habitat is a better management tool in the NPR-A and wherever such data may be available.

  4. Destructive analysis capabilities for plutonium and uranium characterization at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Tandon, Lav; Kuhn, Kevin J.; Drake, Lawrence R.; Decker, Diana L.; Walker, Laurie F.; Colletti, Lisa M.; Spencer, Khalil J.; Peterson, Dominic S.; Herrera, Jaclyn A.; Wong, Amy S.

    2010-01-01

    Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguards Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.

  5. Automated electron microprobe identification of minerals in stream sediments for the national uranium resources evaluation program

    International Nuclear Information System (INIS)

    Mosley, W.C. Jr.

    1979-01-01

    Over 500 stream sediment particles have been analyzed. About 96% have been identified as distinct minerals. Most of the others appeared to be mixtures. Only zinc-bearing gahnite had to be analyzed further for positive identification. Monazite and zircon were the only minerals with concentrations of uranium significantly above the detection limit. The Frantz Isodynamic Magnetic Separator isolated the monazite into the 1.0 fraction. Monazite particles in anomalous sediments contained up to 3.7 wt % uranium. This uranium concentration is unusually high for monazite, which normally has about 0.5 wt % uranium, and may be the cause of the anomaly

  6. Small cetacean aerial survey conducted in Alaskan waters by Alaska Fisheries Science Center, National Marine Mammal Laboratory from 1997-05-08 to 1999-07-04 (NCEI Accession 0131991)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerial surveys were conducted to produce abundance estimates for the three Alaska stocks of harbor porpoise. Surveys occurred from May to July 1997 for the Southeast...

  7. Dtags beluga whale data collected from Bristol Bay by Alaska Fisheries Scientific Center, National Marine Mammal Laboratory from 2011-05-01 to 2014-08-31 (NCEI Accession 0142174)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Suction cup attached multi-sensor tags were placed on beluga whales in Bristol Bay, Alaska, to collect depth, 3D acceleration and sound. Data were coupled with...

  8. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Cook Islands

    International Nuclear Information System (INIS)

    1977-11-01

    The Cook Islands total only 320 square kilometers in area are located in the central South Pacific, and are made up of either volcanic material or coral. Since neither rock type is considered a good host or source of uranium, the uranium potential of the Cook Islands is considered nil. (author)

  9. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Democratic Kampuchea (Cambodia)

    International Nuclear Information System (INIS)

    1977-10-01

    The potential for uranium deposits appears to be poor in Cambodia. It is largely alluvium. Uranium may occur in discordant deposits in metamorphics and intrusives in the Cardamon and Elephant Hills in the south, and in placers of U/TH minerals in the delta or banks of the Mekong River. The potential is in category 1 (less than 1000 tonnes U ). (author)

  10. Environmental management of uranium mining projects in Australia - a national perspective

    International Nuclear Information System (INIS)

    Usback, R.

    1987-01-01

    The environmental management of uranium mining projects in Australia is described. The paper reveals that the environmental examination of uranium mining proposals, and the establishment of environmental protection measures for such proposals, have been integrated with other requirements to meet the needs of local communities. (U.K.)

  11. Analyses of national uranium resources evaluation reference materials from New Brunswick Laboratory

    International Nuclear Information System (INIS)

    Smith, J.R.; Caffrey, A.J.; Helmer, R.G.; Willis, C.P.; Rogers, J.W.

    1981-10-01

    Samples of pitchblende ore, monazite sand and uranium oxide have been analyzed for uranium and thorium content by gamma-ray counting and delayed neutron counting. Relative and absolute concentrations were measured. The methods of analysis are described and the final results presented

  12. Correlates of Overweight and Obesity Among American Indian/Alaska Native and Non-Hispanic White Children and Adolescents: National Survey of Children’s Health, 2007

    OpenAIRE

    Ness, Maria; Barradas, Danielle T.; Irving, Jennifer; Manning, Susan E.

    2012-01-01

    Risk factors for overweight and obesity may be different for American Indian and Alaska Native (AI/AN) children compared to children of other racial/ethnic backgrounds, as obesity prevalence among AI/AN children remains much higher. Using data from the 2007 National Survey of Children’s Health, behavioral (child’s sport team participation, vigorous physical activity, television viewing, and computer use), household (parental physical activity, frequency of family meals, rules limiting televis...

  13. Uranium Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — An integral part of Y‑12's transformation efforts and a key component of the National Nuclear Security Administration's Uranium Center of Excellence, the Uranium...

  14. Data report: Jean Lake Area, Nevada. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Cook, J.R.

    1982-05-01

    This report presents the results of detailed sampling of soils, rocks, and dry lake bed material from the area of Jean Dry Lake in southern Nevada. The study area is in the Kingman 1 0 x 2 0 quadrangle of the National Topographic Map Series. Samples were collected from 1000 sites. The target density of sampling was 16 sites per square mile in the lake bed and four sites per square mile for soil samples. Neutron activation analyses are presented for uranium and 16 other elements. Scintillometer readings are reported for each site. Analytical data and scintillometer measurements are presented in tables. Statistical summaries and a brief description of the results are given. Data from the sites (on microfiche in pocket) include; (1) elemental analyses (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, and V); and (2) scintillometer readings. To make the data available for public use without further delay, this report is being issued without the normal technical and copy editing

  15. Seasonal effects on ground water chemistry of the Ouachita Mountains. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Steele, K.F.; Fay, W.M.; Cavendor, P.N.

    1982-08-01

    Samples from 13 ground water sites (10 springs and 3 wells) in the Ouachita Mountains were collected nine times during a 16-month period. Daily sampling of six sites was carried out over an 11-day period, with rain during this period. Finally, hourly sampling was conducted at a single site over a 7-hour period. The samples were analyzed for pH, conductivity, temperature, total alkalinity, nitrate, ammonia, sulfate, phosphate, chloride, silica, Na, K, Li, Ca, Mg, Sr, Ba, Fe, Mn, Zn, Cu, Co, Ni, Pb, Hg, Br, F, V, Al, Dy, and U. Despite the dry season during late summer, and wet seasons during late spring and late fall in the Ouachita Mountain region, there was no significant change in the ground water chemistry with season. Likewise, there was no significant change due to rain storm events (daily sampling) or hourly sampling. The report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation. 9 figures, 19 tables

  16. Computer-modeling codes to improve exploration nuclear-logging methods. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Wilson, R.D.; Price, R.K.; Kosanke, K.L.

    1983-03-01

    As part of the Department of Energy's National Uranium Resource Evaluation (NURE) project's Technology Development effort, a number of computer codes and accompanying data bases were assembled for use in modeling responses of nuclear borehole logging Sondes. The logging methods include fission neutron, active and passive gamma-ray, and gamma-gamma. These CDC-compatible computer codes and data bases are available on magnetic tape from the DOE Technical Library at its Grand Junction Area Office. Some of the computer codes are standard radiation-transport programs that have been available to the radiation shielding community for several years. Other codes were specifically written to model the response of borehole radiation detectors or are specialized borehole modeling versions of existing Monte Carlo transport programs. Results from several radiation modeling studies are available as two large data bases (neutron and gamma-ray). These data bases are accompanied by appropriate processing programs that permit the user to model a wide range of borehole and formation-parameter combinations for fission-neutron, neutron-, activation and gamma-gamma logs. The first part of this report consists of a brief abstract for each code or data base. The abstract gives the code name and title, short description, auxiliary requirements, typical running time (CDC 6600), and a list of references. The next section gives format specifications and/or directory for the tapes. The final section of the report presents listings for programs used to convert data bases between machine floating-point and EBCDIC

  17. Statistical Techniques Applied to Aerial Radiometric Surveys (STAARS): cluster analysis. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Pirkle, F.L.; Stablein, N.K.; Howell, J.A.; Wecksung, G.W.; Duran, B.S.

    1982-11-01

    One objective of the aerial radiometric surveys flown as part of the US Department of Energy's National Uranium Resource Evaluation (NURE) program was to ascertain the regional distribution of near-surface radioelement abundances. Some method for identifying groups of observations with similar radioelement values was therefore required. It is shown in this report that cluster analysis can identify such groups even when no a priori knowledge of the geology of an area exists. A method of convergent k-means cluster analysis coupled with a hierarchical cluster analysis is used to classify 6991 observations (three radiometric variables at each observation location) from the Precambrian rocks of the Copper Mountain, Wyoming, area. Another method, one that combines a principal components analysis with a convergent k-means analysis, is applied to the same data. These two methods are compared with a convergent k-means analysis that utilizes available geologic knowledge. All three methods identify four clusters. Three of the clusters represent background values for the Precambrian rocks of the area, and one represents outliers (anomalously high 214 Bi). A segmentation of the data corresponding to geologic reality as discovered by other methods has been achieved based solely on analysis of aerial radiometric data. The techniques employed are composites of classical clustering methods designed to handle the special problems presented by large data sets. 20 figures, 7 tables

  18. International Uranium Resources Evaluation Project (IUREP) national favourability studies: El Salvador

    International Nuclear Information System (INIS)

    1977-08-01

    No information is available on past uranium exploration in El Salvador. The foetallogenic map of Central America (ICAITI, 1970) shows no uranium occurrences, and no descriptions of occurrences are available for this study. Information on current uranium exploration in El Salvador is not available. The 1922 mining code, as amended, covers all minerals, with special rules applicable to phosphates, petroleum and other hydrocarbons. The state owns all minerals, including phosphates, except for salt and other common materials. Mineral and surface rights are distinct. Both citizens and aliens may acquire mineral rights. There is a possibility of uranium potential in the clastic sediments containing interbedded volcanics, particularly where the latter are tuffaceous. These rocks occur chiefly in the north western part of the country and are of limited areal extent. The possibility of uranium occurrences associated with acid volcanics cannot be discounted, but it is difficult to evaluate rocks of this type for uranium with the present state of knowledge. Accordingly, potential resources are estimated at between 0 and 1,000 tonnes uranium

  19. Los Alamos Scientific Laboratory approach to hydrogeochemical and stream sediment reconnaissance for uranium in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1981-01-01

    The Los Alamos Scientific Laboratory of the United States is conducting a geochemical survey for uranium in the Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in Alaska. This survey is part of a national hydrogeochemical and stream sediment reconnaissance in which four Department of Energy laboratories will study the uranium resources of the United States to provide data for the National Uranium Resource Evaluation program. The reconnaissance will identify areas having higher than background concentrations of uranium in ground waters, surface waters, and water-transported sediments. Water and sediment samples are collected at a nominal density of one sample location per 10 km/sup 2/ except for lake areas of Alaska where the density is one sample location per 23 km/sup 2/. Water samples are analyzed for uranium by fluorometry which has a 0.02 parts per billion lower limit of detection. Concentrations of 12 additional elements in water are determined by plasma-source emission spectrography. All sediments are analyzed for uranium by delayed-neutron counting with a 20 parts per billion lower limit of detection, which is well below the range of uranium concentrations in natural sediment samples. Elemental concentrations in sediments are also determined by neutron activation analysis for 31 elements by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. The multielement analyses provide valuable data for studies concerning pathfinder elements, environmental pollution, elemental distributions, dispersion halos, and economic ore deposits other than uranium. To date, all of four Rocky Mountain states and about 80% of Alaska have been sampled. About 220,000 samples have been collected from an area of nearly 2,500,000 km/sup 2/.

  20. Los Alamos Scientific Laboratory approach to hydrogeochemical and stream sediment reconnaissance for uranium in the United States

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1981-01-01

    The Los Alamos Scientific Laboratory of the United States is conducting a geochemical survey for uranium in the Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in Alaska. This survey is part of a national hydrogeochemical and stream sediment reconnaissance in which four Department of Energy laboratories will study the uranium resources of the United States to provide data for the National Uranium Resource Evaluation program. The reconnaissance will identify areas having higher than background concentrations of uranium in ground waters, surface waters, and water-transported sediments. Water and sediment samples are collected at a nominal density of one sample location per 10 km 2 except for lake areas of Alaska where the density is one sample location per 23 km 2 . Water samples are analyzed for uranium by fluorometry which has a 0.02 parts per billion lower limit of detection. Concentrations of 12 additional elements in water are determined by plasma-source emission spectrography. All sediments are analyzed for uranium by delayed-neutron counting with a 20 parts per billion lower limit of detection, which is well below the range of uranium concentrations in natural sediment samples. Elemental concentrations in sediments are also determined by neutron activation analysis for 31 elements by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. The multielement analyses provide valuable data for studies concerning pathfinder elements, environmental pollution, elemental distributions, dispersion halos, and economic ore deposits other than uranium. To date, all of four Rocky Mountain states and about 80% of Alaska have been sampled. About 220,000 samples have been collected from an area of nearly 2,500,000 km 2

  1. World's trend of national nuclear power policy and long-term perspective of nuclear power and supply and demand of uranium fuels

    International Nuclear Information System (INIS)

    Matsuo, Yuji; Nishida, Naoki; Yamaguchi, Yuji; Shimogoori, Kei; Murakami, Tomoko

    2013-01-01

    Based on perspective of nuclear power reflecting latest trend of national nuclear policy, supply and demand of uranium resources until 2035 was evaluated based on latest data. After the Fukushima nuclear accident, Germany and Italy dramatically changed nuclear power to phase out, while United States, Russia, France and Korea as well as China and India continued to promote nuclear power with no essential change of policy. Thus world's nuclear power capacity was foreseen to expand from 389 GW (2010) to 471 GW (2035, low growth case) and 760 GW (2035, high growth case). Following sharp increase of uranium cost after 2005, investment on natural uranium development became active and new operation start of uranium enrichment plants was anticipated in US and Europe, and then both supply and demand of natural uranium and uranium enrichment service would tend to relax until around 2020 and until 2035 extreme tightness of supply and demand might not occur even for high growth case. Uranium demand of Asian region including China and India would be largely expanded with natural uranium from Africa and Australia and uranium enrichment services from US, and Asian high overseas dependence would be continued. (T. Tanaka)

  2. Metal exposure and effects in voles and small birds near a mining haul road in Cape Krusenstern National Monument, Alaska.

    Science.gov (United States)

    Brumbaugh, William G; Mora, Miguel A; May, Thomas W; Phalen, David N

    2010-11-01

    Voles and small passerine birds were live-captured near the Delong Mountain Regional Transportation System (DMTS) haul road in Cape Krusenstern National Monument in northwest Alaska to assess metals exposure and sub-lethal biological effects. Similar numbers of animals were captured from a reference site in southern Cape Krusenstern National Monument for comparison. Histopathological examination of selected organs, and analysis of cadmium, lead, and zinc concentrations in liver and blood samples were performed. Voles and small birds captured from near the haul road had about 20 times greater blood and liver lead concentrations and about three times greater cadmium concentrations when compared to those from the reference site, but there were no differences in zinc tissue concentrations. One vole had moderate metastatic mineralization of kidney tissue, otherwise we observed no abnormalities in internal organs or DNA damage in the blood of any of the animals. The affected vole also had the greatest liver and blood Cd concentration, indicating that the lesion might have been caused by Cd exposure. Blood and liver lead concentrations in animals captured near the haul road were below concentrations that have been associated with adverse biological effects in other studies; however, subtle effects resulting from lead exposure, such as the suppression of the activity of certain enzymes, cannot be ruled out for some individual animals. Results from our 2006 reconnaissance-level study indicate that overall, voles and small birds obtained from near the DMTS road in Cape Krusenstern National Monument were not adversely affected by metals exposure; however, because of the small sample size and other uncertainties, continued monitoring of lead and cadmium in terrestrial habitats near the DMTS road is advised.

  3. 76 FR 1458 - Public Meeting for the National Park Service Alaska Region's Subsistence Resource Commission (SRC...

    Science.gov (United States)

    2011-01-10

    ... Plan Update. c. Subsistence Uses of Horns, Antlers, Bones and Plants EA Update. 13. New Business. 14... guarantee that we will be able to do so. Wrangell-St. Elias National Park SRC Meeting Date and Location: The... if all business is completed. For Further Information on the Gates of the Arctic National Park SRC...

  4. 77 FR 58868 - Teleconference for the National Park Service Alaska Region's Subsistence Resource Commission Program

    Science.gov (United States)

    2012-09-24

    ... Wildlife Updates 8. NPS Staff Reports 9. New Business 10. Public and other Agency Comments 11. Select Time... Subsistence Collections Environmental Assessment Update b. SRC Letters 10. New Business a. Susitna-Watana...: National Park Service, Interior. ACTION: Notice of open public meetings. SUMMARY: The Lake Clark National...

  5. An integrated quantitative basin analysis study of the northern part of the Arctic national Wildlife Refuge, Northeastern Alaska

    Science.gov (United States)

    Yu, Z.; Lerche, Ian

    1992-06-01

    An integrated basin analysis was conducted using one- and two-dimensional quantitative dynamic models (1-D and 2-D) in the northern part of the Arctic National Wildlife Refuge (ANWR), Northeastern Alaska. Exploratory well data have been used in the reconstructions of: (1) geohistory including basement subsidence, sediment deposition, change of porosity and compaction, permeability, fluid pressure and fluid flow with time and depth; (2) thermal history including heat flux evolution with time, temperature change with time and depth, and thermal maturation history; and (3) hydrocarbon generation history including the change in the amount of hydrocarbons generated with time and depth, and determining the time and depth of peak hydrocarbon generation. 1-D and 2-D basin modeling codes were used with selected wells, and also with a 18 km section, west of ANWR, with five well controls. It is concluded that: (1) the main source rock west of ANWR area matured first about 40-30 Ma ago in the south and gradually to the north about 10-8 Ma ago on the coastal plain; (2) the modeled erosion thickness at Beli Unit-1 location, northeastern Brooks Range, was 1500-3000 m and at least 3000 m at Canning River Unit B-1; and (3) an overpressure zone within the Hue shale and the lowest part of the Canning Formation caused by rapid Tertiary deposition retained porosity, increased the temperature and speeded hydrocarbon generation in the lower part of the coastal plain.

  6. Arctic lake physical processes and regimes with implications for winter water availability and management in the National Petroleum Reserve Alaska.

    Science.gov (United States)

    Jones, Benjamin M; Arp, Christopher D; Hinkel, Kenneth M; Beck, Richard A; Schmutz, Joel A; Winston, Barry

    2009-06-01

    Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA.

  7. Rural Alaska Mentoring Project (RAMP)

    Science.gov (United States)

    Cash, Terry

    2011-01-01

    For over two years the National Dropout Prevention Center (NDPC) at Clemson University has been supporting the Lower Kuskokwim School District (LKSD) in NW Alaska with their efforts to reduce high school dropout in 23 remote Yup'ik Eskimo villages. The Rural Alaska Mentoring Project (RAMP) provides school-based E-mentoring services to 164…

  8. Abandoned Uranium Mine (AUM) Regions, Navajo Nation, 2016, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains polygon features representing the boundaries of the six Abandoned Uranium Mines (AUM) Regions, including the: Central, Eastern, Northern,...

  9. Abandoned Uranium Mine (AUM) Region Polygons, Navajo Nation, 2016, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains polygon features representing the boundaries of the six Abandoned Uranium Mines (AUM) Regions, including the: Central, Eastern, Northern,...

  10. Alaska 2 Arc-second Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is a tiled collection of the 3D Elevation Program (3DEP) and is 2 arc-second (approximately 60 m) resolution covering Alaska. The elevations in this Digital...

  11. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility.

    Science.gov (United States)

    Döppner, T; Callahan, D A; Hurricane, O A; Hinkel, D E; Ma, T; Park, H-S; Berzak Hopkins, L F; Casey, D T; Celliers, P; Dewald, E L; Dittrich, T R; Haan, S W; Kritcher, A L; MacPhee, A; Le Pape, S; Pak, A; Patel, P K; Springer, P T; Salmonson, J D; Tommasini, R; Benedetti, L R; Bond, E; Bradley, D K; Caggiano, J; Church, J; Dixit, S; Edgell, D; Edwards, M J; Fittinghoff, D N; Frenje, J; Gatu Johnson, M; Grim, G; Hatarik, R; Havre, M; Herrmann, H; Izumi, N; Khan, S F; Kline, J L; Knauer, J; Kyrala, G A; Landen, O L; Merrill, F E; Moody, J; Moore, A S; Nikroo, A; Ralph, J E; Remington, B A; Robey, H F; Sayre, D; Schneider, M; Streckert, H; Town, R; Turnbull, D; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-07-31

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10^{16} neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

  12. Technical Basis For Radiological Acceptance Criteria For Uranium At The Y-12 National Security Complex

    Energy Technology Data Exchange (ETDEWEB)

    Veinot, K. G.

    2009-07-22

    The purpose of this report is to establish radiological acceptance criteria for uranium. Other factors for acceptance not considered include criticality safety concerns, contaminants to the process stream, and impacts to the Safety Basis for the affected facilities. Three types of criteria were developed in this report. They include limits on external penetrating and non-penetrating radiation and on the internal hazard associated with inhalation of the material. These criteria are intended to alleviate the need for any special controls beyond what are normally utilized for worker protection from uranium hazards. Any proposed exceptions would require case-by-case evaluations to determine cost impacts and feasibility. Since Y-12 has set rigorous ALARA goals for worker doses, the external limits are based on assumptions of work time involved in the movement of accepted material plus the desire that external doses normally received are not exceeded, and set so that no special personnel monitoring would be required. Internal hazard controls were established so that dose contributions from non-uranium nuclides would not exceed 10% of that expected from the uranium component. This was performed using a Hazard Index (HI) previously established for work in areas contaminated with non-uranium nuclides. The radiological acceptance criteria for uranium are summarized in Table 1. Note that these limits are based on the assumption that radioactive daughter products have reached equilibrium.

  13. International Uranium Resources Evaluation Project (IUREP) national favourability studies: The Netherlands

    International Nuclear Information System (INIS)

    1978-01-01

    The Netherlands is part of the lowlands of Western Europe formed by negative crustal movements that have been offset by sedimentation. This specific area stretching from western Belgium into north-western Germany forms part of an epicontinental area that has been relatively stable since the end of the Hercynian orogeny. In Holland the subsidence has generally been small through- out the Mesozonic and Cenozoic though interrupted by short periods of erosion and non-subsidence. Thus the general geology of the Netherlands is dominated by the fact that throughout the Tertiary and Quaternary what now comprises the Netherlands formed part of a subsiding basin. Most of the surface geology of the country is dominated by f luvio-glacial shallow marine and lacoustine deposits. Prospecting for radioactive minerals in the Netherlands has been very limited. Some work has been carried out by the Geological Survey and by private consultants but this was very preliminary. To-date no uranium reserves or resources have been identified in the Netherlands. One small uranium occurrence has been recorded in Zeeland near Walcheren where some small uranium concentrations were found in association with phosphatic nodules. Apart from very limited targets in the Cretaceous and small phosphatic uranium associations there are no apparent uranium exploration targets in the Netherlands. On this basis we would, at this time, place the uranium potential of the Netherlands in Group I of the IUREP classification

  14. AFSC/ABL: National Marine Fisheries Service - Alaska Sablefish Tag Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set captures the tag release and recovery information for sablefish from the early 1970s until present. It also contains tag release and recovery data for...

  15. National Status and Trends: Contaminant body burdens and histopathology of fish and shellfish from Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In response to the growing concerns among Chugach communities, contaminant body burden and histopathological condition of chum and sockeye salmon (Oncorhynchus keta...

  16. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Becker, N.M. [Los Alamos National Lab., NM (United States); Vanta, E.B. [Wright Laboratory Armament Directorate, Eglin Air Force Base, FL (United States)

    1995-05-01

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

  17. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    International Nuclear Information System (INIS)

    Becker, N.M.; Vanta, E.B.

    1995-01-01

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980's at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments

  18. Hydrogeochemical and stream-sediment reconnaissance, orientation study, Ouachita Mountain area, Arkansas. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Steele, K.F.

    1982-08-01

    A hydrogeochemical ground water orientation study was conducted in the multi-mineralized area of the Ouachita Mountains, Arkansas in order to evaluate the usefulness of ground water as a sampling medium for uranium exploration in similar areas. Ninety-three springs and nine wells were sampled in Clark, Garland, Hot Springs, Howard, Montgomery, Pike, Polk, and Sevier Counties. Manganese, barite, celestite, cinnabar, stibnite, copper, lead, and zinc are present. The following parameters were determined: pH, conductivity, alkalinity, U, Br, Cl, F, He, Mn, Na, V, Al, Dy, NO 3 , NH 3 , SO 4 , and PO 4 . The minerals appear to significantly affect the chemistry of the ground water. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation

  19. Department of Energy, highly enriched uranium ES ampersand H vulnerability assessment, Idaho National Engineering Laboratory site assessment team report

    International Nuclear Information System (INIS)

    1996-01-01

    In accordance with the February 22, 1996 directive issued by Secretary of Energy O'Leary on the Vulnerability Assessment of Highly Enriched Uranium (HEU) Storage, the Idaho National Engineering Laboratory conducted an assessment of the site's HEU holdings and any associated vulnerabilities. The assessment was conducted between April 25 and May 24, 1996. The scope of this assessment, as defined in the Assessment Plan, included all HEU, and any spent fuel not evaluated in the Spent Fuel Vulnerability Assessment. Addressed in this assessment were all of the holdings at the Idaho National Engineering Laboratory (INEL) except any located at Argonne National Laboratory-West (ANL-W) and the Naval Reactors Facility. Excluded from the assessment were those HEU holdings previously assessed in the Idaho National Engineering Laboratory Spent Nuclear Fuel Inventory and Vulnerability Site Assessment Report and any HEU holdings evaluated in the Plutonium Vulnerability Assessment Report

  20. 76 FR 62090 - Public Meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource...

    Science.gov (United States)

    2011-10-06

    ...' Workshop. 12. New Business. a. Gates of the Arctic National Park SRC Draft Hunting Plan Recommendation 10... location are changed, a notice will be published in local newspapers and announced on local radio stations prior to the meeting date. SRC meeting locations and dates may need to be changed based on inclement...

  1. 77 FR 30320 - National Park Service Alaska Region's Subsistence Resource Commission

    Science.gov (United States)

    2012-05-22

    ... Introductions 3. Administrative Announcements 4. Old Business a. SRC Hunting Plan Recommendations (HP 10-01) b... Date and Location: The Gates of the Arctic National Park SRC teleconference meeting will be held on Tuesday, June 19, 2012, from 1 p.m. to 4 p.m. or until business is completed at the Gates of the Arctic...

  2. Uranium management activities

    International Nuclear Information System (INIS)

    Jackson, D.; Marshall, E.; Sideris, T.; Vasa-Sideris, S.

    2001-01-01

    One of the missions of the Department of Energy's (DOE) Oak Ridge Office (ORO) has been the management of the Department's uranium materials. This mission has been accomplished through successful integration of ORO's uranium activities with the rest of the DOE complex. Beginning in the 1980's, several of the facilities in that complex have been shut down and are in the decommissioning process. With the end of the Cold War, the shutdown of many other facilities is planned. As a result, inventories of uranium need to be removed from the Department facilities. These inventories include highly enriched uranium (HEU), low enriched uranium (LEU), normal uranium (NU), and depleted uranium (DU). The uranium materials exist in different chemical forms, including metals, oxides, solutions, and gases. Much of the uranium in these inventories is not needed to support national priorities and programs. (author)

  3. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Republic of Korea

    International Nuclear Information System (INIS)

    1977-12-01

    The Republic of Korea, occupies the southern end of the Korean peninsula. It has a long history of mining and mineral production, and has an active and fairly well equipped Geological Survey. The country in general is quite highly mineralized with many minerals including uranium although there has been no uranium production from it yet. Uranium occurs in granites, schists, and in black carbonaceous shales. The Korean Geological survey has estimated that one ore body contains 650 tonnes U in 1,600,000 tons of ore at an average grade of 0.047 percent U 3 O 8 . Many recent reports also indicate very large resources of uranium in very low grade ranges. The uranium potential for the Republic of Korea is considered in Category 2 (1,000 - 10,000 tonnes U) in the normal IUREP context. However, a very large resource may exist in the very low grades in black shales of the country. This resource is considered as in category 6 (500,000 to 1,000,000 tonnes U). (author)

  4. National Uranium Resource Evaluation: uranium hydrogeochemical and stream-sediment reconnaissance of the Wolf Point NTMS Quadrangle, Montana

    International Nuclear Information System (INIS)

    1982-06-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Wolf Point NTMS quadrangle, Montana. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  5. Uranium hydrogeochemical and stream sediment reconnaissance of the Clovis NTMS Quadrangle, New Mexico. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Clovis NTMS Quadrangle, New Mexico. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through E describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses.Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  6. 2005 Alaska Division of Geological & Geophysical Surveys Lidar: Unalakleet, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This report is a summary of a LiDAR data collection over the community of Unalakleet, in the Norton Sound region of Alaska. The original data were collected on...

  7. International Uranium Resources Evaluation Project (IUREP) national favourability studies: United Arab Emirates

    International Nuclear Information System (INIS)

    1977-11-01

    While most of the rocks in the United Arab Emirates are of sedimentary marine origin there are also some granites and metamorphic rock areas. It is understood that Hunting Geology and Geophysics Ltd were contracted in 1975 to carry out a mineral survey over 11,500 square kilometres utilising, among others, gamma-ray spectrometry. The results of this survey are not known. A report in 1974 of a large occurrence of uranium in Fujairah was later discredited but at least two radioactive anomalies are known in the country. The existence of granitic rocks and the appropriate conditions for calcareous duricrust formations may indicate some slight potential for uranium. The Speculative Potential may be in the 1000 to 10,000 tonnes uranium category. (author)

  8. Dynamic multistate site occupancy models to evaluate hypotheses relevant to conservation of Golden Eagles in Denali National Park, Alaska

    Science.gov (United States)

    Martin, Julien; McIntyre, Carol L.; Hines, James E.; Nichols, James D.; Schmutz, Joel A.; MacCluskie, Margaret C.

    2009-01-01

    The recent development of multistate site occupancy models offers great opportunities to frame and solve decision problems for conservation that can be viewed in terms of site occupancy. These models have several characteristics (e.g., they account for detectability) that make them particularly well suited for addressing management and conservation problems. We applied multistate site occupancy models to evaluate hypotheses related to the conservation and management of Golden Eagles (Aquila chrysaetos) in Denali National Park, Alaska, and provided estimates of transition probabilities among three occupancy states for nesting areas (occupied with successful reproduction, occupied with unsuccessful reproduction, and unoccupied). Our estimation models included the effect of potential recreational activities (hikers) and environmental covariates such as a snowshoe hare (Lepus americanus) index on transition probabilities among the three occupancy states. Based on the most parsimonious model, support for the hypothesis of an effect of potential human disturbance on site occupancy dynamics was equivocal. There was some evidence that potential human disturbance negatively affected local colonization of territories, but there was no evidence of an effect on reproductive performance parameters. In addition, models that assume a positive relationship between the hare index and successful reproduction were well supported by the data. The statistical approach that we used is particularly useful to parameterize management models that can then be used to make optimal decisions related to the management of Golden Eagles in Denali. Although in our case we were particularly interested in managing recreational activities, we believe that such models should be useful to for a broad class of management and conservation problems.

  9. Arctic lake physical processes and regimes with implications for winter water availability and management in the national petroleum reserve alaska

    Science.gov (United States)

    Jones, Benjamin M.; Arp, C.D.; Hinkel, Kenneth M.; Beck, R.A.; Schmutz, J.A.; Winston, B.

    2009-01-01

    Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p modeled lake area extent from 1985 to 2007 showed no long-term trends. In addition, high-resolution aerial photography, bathymetric surveys, water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA. ?? 2008 Springer Science+Business Media, LLC.

  10. Health survey of occupationally exposed personnel during and after ceasing the activity at Uranium National Company-Feldioara branch

    International Nuclear Information System (INIS)

    Bochie, Olivia; Bogdan, Gabriela

    2000-01-01

    The working personnel at the uranium ore mining of National Uranium Company is exposed to risk factors which affect the health condition by generating a specific morbidity. The main characteristic of this morbidity is the prevalence of respiratory system diseases (five times more frequent than in control population). The illness of other organs is not significantly different from non exposed people. The hemograms of uranium mining workers present the following characteristics: hematocrit, hemoglobin and thrombocytes number have normal values; also, within normal bounds but a little bit smaller is the leucocyte number; erythrocyte constants present lower values, particularly in elder people (50-55 years). These studies allowed to draw the conclusion that the presence of radioactive ore adds the risk of internal and external contamination due to radioactive powders, radon and its products generated by alpha decay to other risks specific for the mining activity, such as, unfavorable microclimate, powders containing SiO 2 aerosols, noxious powders and toxic gases. The working conditions, age and habits (smoking, particularly) are supplementary risk factors influencing the health condition of occupationally exposed personnel. (authors)

  11. Comparative study of radon exposure in Canadian homes and uranium mines - a discussion on the importance of national radon program

    International Nuclear Information System (INIS)

    Chen, Jing

    2017-01-01

    The history of lung cancer in uranium miners is well known for over hundreds of years when the disease was referred to as 'miner's disease' or 'mountain sickness'. Radon levels in uranium mines have decreased significantly over the past 30 years as a result of effective radiation protection measures at workplaces. For the most recent 10-year period, the average radon concentrations to underground and surface workers in Canadian uranium mines were 111 and 11 Bq m -3 , respectively. Based on the recent radon survey carried out in roughly 14 000 homes in 121 health regions across Canada and the more recent radon and thoron survey in 33 Canadian cities and 4000 homes, the average radon concentration in Canadian homes is 77 Bq m -3 . This study demonstrates that, nowadays, workers are exposed to radon in underground mines at a comparable radon level to what Canadians are exposed to at home. Since exposure to indoor radon is the main source of natural radiation exposure to the population, it is important for the National Radon Program to further increase radon awareness, and to encourage more Canadians to take appropriate actions to reduce radon exposure. (authors)

  12. National Uranium Resource Evaluation. General procedure for calibration and reduction of aerial gamma-ray measurements: specification BFEC 1250-B

    International Nuclear Information System (INIS)

    Purvance, D.; Novak, E.

    1983-12-01

    The information contained in this specification was acquired over the course of the US Department of Energy (DOE) National Uranium Resource Evaluation (NURE) program during the period 1974 through 1982. NURE was a program of the DOE Grand Junction Area Office to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. Bendix Field Engineering Corporation (BFEC) has been the operating contractor for the DOE Grand Junction facility. The requirements stipulated herein had been incorporated as contractual specifications for the various subcontractors engaged in the aerial gamma-ray surveys, which were a major aspect of the NURE program. Although this phase of NURE activities has been completed, there exists valuable knowledge gained from these years of experience in the calibration of gamma-ray spectrometer systems and in the reduction of calibration data. Specification BFEC 1250-B is being open-filed by the US Department of Energy at this time to make this knowledge available to those desiring to apply gamma-ray spectrometry to other geophysical problems

  13. International Uranium Resources Evaluation Project (IUREP) national favourability studies: New Hebrides

    International Nuclear Information System (INIS)

    1977-12-01

    The New Hebrides consists of about 70 islands in the Southwest Pacific Ocean. The 12 largest, and main islands are volcanic cones with a few marine sediments. A manganese mining industry is presently producing but there has been no known activity in uranium exploration or mining. The area of the New Hebrides is nearly 15,000 square kilometers, and the principal industries are centered around agriculture and fishing. The uranium potential is estimated in category 1 (less than 1,000 tonnes U) (author)

  14. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Belize (Former British Honduras)

    International Nuclear Information System (INIS)

    1977-08-01

    Belize is a well-forested area of 22,960 square kilometers. Its capital is Belmopan. The country is generally flat north of the capital city. The flat, swampy Caribbean Coast of Belize gradually ascends to the low peaks of the Maya and Cockscomb Mountains (elevation to 1,120 meters). The area south of the Maya Mountains is much more rugged than the area to the north. The country is drained by seventeen rivers, the chief ones being the Belize, Hondo, New, Sibun, Monkey and Moho. There is 'hurricane danger in the July-October period. Belize has reportedly been surveyed by Gamma Ray Spectrometer for phosphates which probably would have contained sufficient uranium to be detectable. The survey traversed about 1,000 line kms along major north-south and east-west roads as well as many secondary roads and trails. The uranium readings ranged from 0. to 9.9 ppm with a uranium content of 1-2 ppm in the limestone areas and 2-7 ppm in the alluvium-covered areas. The U/Th ratio varied from 0.11 to 1.65. A recent traverse across the Mountain Pine Ridge batholith gave one reading as high as 36 ppm but the average was about 9-10 ppm. The upper 1000-3000 feet of core and cuttings from nine deep oil wells were checked for phosphates and uranium. Most of the core and cuttings were almost pure limestones. The P 2 0 3 content was less than 0.05 percent and no uranium was detected. It is very doubtful that any significant uranium occurrences will be found in the sediments surrounding the Maya Mountain uplift. However, there is a slight chance that uranium might occur in the granites and pegmatites in the Maya Mountains. The potential of Belize is estimated to be in the less than 1.000 tonnes uranium range, considering the restricted range, of geologic environments encountered there

  15. Roanoke 10 x 20 NTMS area, Virginia. Data report (abbreviated): National Uranium Resource Evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.

    1980-12-01

    This abbreviated data report presents results of ground water and stream sediment reconnaissance in the National Topographic Map Series Roanoke 1 0 x 2 0 quadrangle. Surface sediment samples were collected at 1235 sites. Ground water samples were collected at 767 sites. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented. Data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity), (2) physical measurements where applicable (water temperature, well description, etc.), and (3) elemental analyses (U, Al, Br, Cl, Dy, F, Mn, Na, and V). Data from sediment sites include (1) stream water chemistry measurements (pH, conductivity, and alkalinity), and (2) elemental analyses for sediment samples (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are tabulated. Areal distribution maps, histograms, and cumulative frequency plots for most elements and for U/Th and U/Hf ratios are included. Key data from stream water sites include (1) water quality measurements (pH, conductivity, and alkalinity) and (2) elemental analyses (U, Al, Br, Cl, Dy, F, Mg, Mn, Na, and V). Uranium concentrations in the sediments range from 0.50 to 83.50 ppM with a mean of 6.67 ppM. A cluster of high log (U/Th + Hf) ratios appear in the southeastern portion of the quadrangle. Uranium, thorium, and the rare earth elements show a striking correlation with the geology of the area

  16. National uranium resource evaluation program. Hydrogeochemical and stream sediment reconnaissance basic data for Oklahoma City NTMS Quadrangle, Oklahoma. Uranium resource evaluation project

    International Nuclear Information System (INIS)

    1978-01-01

    Field and laboratory data are presented for 812 groundwater samples and 847 stream sediment samples. Statistical and areal distributions of uranium and other possibly uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Based on the results from groundwater sampling, the most promising formations for potential uranium mineralization in the quadrangle are the Permian Bison, Purcell-Salt Plains-Kingman, Fairmont, Dog Creek, Chickasha, Duncan, and Cedar Hills Formations. These units are characterized by relatively high average concentrations of uranium, conductivity, arsenic, calcium, lithium, molybdenum, and sulfate. In addition, groundwaters from the Pennsylvanian Oscar Formation are characterized by values above the 85th percentile for uranium, conductivity, the uranium/sulfate ratio, arsenic, and vanadium. Results of stream sediment sampling indicate that the most promising formations for potential uranium mineralization include the same Permian Formation as indicated by groundwater sampling (Bison, Purcell-Salt Plains-Kingman, Fairmont, Dog-Creek, Chickasha, Duncan, and Cedar Hill Formations) in an area where these formations crop out north of the North Canadian River. Stream sediment samples from this area are characterized by concentrations above the 85th percentile for uranium, thorium, arsenic, lithium, manganese, and vanadium

  17. Investigation of Great Basin big sagebrush and black greasewood as biogeochemical indicators of uranium mineralization. Final report. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Diebold, F.E.; McGrath, S.

    1982-11-01

    The effects of varying phosphate concentrations in natural aqueous systems upon the uptake of uranium by big sagebrush (Artemesia tridentata subsp. tridentata) and black greasewood (Sarcobatus vermiculatus (Hook) Torr.) were investigated. Two separate growth experiments with five drip-flow hyroponic units were used and plant seedlings were grown for 60 days in solutions of varying phosphate and uranium concentrations. Successful growth experiments were obtained only for big sagebrush; black greasewood did not sustain sufficient growth. The phosphate concentration of the water did affect the uptake of uranium by the big sagebrush, and this effect is most pronounced in the region of higher concentrations of uranium in the water. The ratio of the concentration of uranium in the plant to that in the water was observed to decrease with increasing uranium concentration in solution. This is indicative of an absorption barrier in the plants. The field data shows that big sagebrush responds to uranium concentrations in the soil water and not the groundwater. The manifestation of these results is that the use of big sagebrush as a biogeochemical indicator of uranium is not recommended. Since the concentration of phosphate must also be knwon in the water supplying the uranium to the plant, one should analyze this natural aqueous phase as a hydrochemical indicator rather than the big sagebrush

  18. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. All grid cells within the rectangular data area (from 61 to 66 degrees North latitude and...

  19. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....

  20. Alaska Geoid Heights (GEOID96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' geoid height grid for Alaska is distributed as a GEOID96 model. The computation used 1.1 million terrestrial and marine gravity data held in the...

  1. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Western Samoa

    International Nuclear Information System (INIS)

    1977-12-01

    Western Samoa consists principally of two large islands with seven other smaller ones, five of which are uninhabited. No concrete geologic description could be found, but on the basis of a volcanic origin for some of the islands a category 1 uranium potential is assigned. There is no mining industry, and no government agency appears to have a geologic department. (author)

  2. 75 FR 48305 - Kaibab National Forest; Arizona; Uranium Exploratory Drilling Project

    Science.gov (United States)

    2010-08-10

    ... Drilling Project AGENCY: Forest Service, USDA. ACTION: Notice; correction. SUMMARY: This is a correction to a notice of intent to prepare an Environmental Impact Statement for the Uranium Exploratory Drilling... Exploratory Drilling Project, 800 S. 6th St., Williams, AZ 86046. Questions may also be submitted by facsimile...

  3. International Uranium Resources Evaluation Project (IUREP) national favourability studies: United Kingdom

    International Nuclear Information System (INIS)

    1977-10-01

    Although uranium prospecting was commenced in the United Kingdom (area 244,813 km) at the end of the last century and was resumed just after the Second World War, it does not seem, for various reasons, despite the level of competence of its specialists and the level of instrumentation available, that the country has been adequately prospected for uranium. The small reserves discovered to date, some 7400t U for all the official NEA/lAEA categories, probably do not reflect the true uranium potential of the United Kingdom. However, they do indicate without doubt that the resources remaining to be discovered are so located that detection will be difficult. The most promising areas of investigation in our opinion are the Old Red Sandstones of the Devonian period on the one hand and the districts where the uraniferous black shales of the Cambro-Ordovician and Namurian have suffered perturbations which may have led to immobilization of their uranium content (in particular, granitizations). All the considerations put forward in this analysis lead us to place the United Kingdom in category 4 of the classification adopted for IUREP. (author)

  4. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Sri Lanka

    International Nuclear Information System (INIS)

    1977-10-01

    Sri Lanka is essentially a detached portion of the Deccan Plateau of south India and like it, is underlain almost everywhere by hard old Precambrian rocks. Prior to 1940 there was no systematic organised geological survey work on the island. Between 1957 and 1962 a partial aerial survey and field traverses were conducted in a search for radio- active minerals. Since then a modest programme has continued. Thorianite was first discovered in placer deposits in 1903 and prospecting has found many other refractory radioactive minerals probably derived from the weathering of pegmatites. Monazite is found as an important constituent of beach placer deposits and it is estimated to have an average content of 8-10%ThO 2 and 0.3 - 0.5% U 3 O 8 . Up to 1000 tons monazite per year could be produced from the beach sand industry. Sri Lanka has had very little systematic exploration for uranium and as it is largely composed of Precambrian rocks it deserves closer attention. On the other hand it is part of a thorium rich province and there is a body of technical opinion that believes that thorium rich provinces are unlikely to contain significant uranium deposits. For these reasons it is estimated that the Speculative Potential may be within the range of 1000 to 10,000 tonnes uranium. In addition it maybe possible to produce up to 5 tonnes uranium and 100 tonnes thorium from the beach sand industry on an annual basis. (author)

  5. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Fiji Islands

    International Nuclear Information System (INIS)

    1977-12-01

    The Fiji Islands, comprising over 300 islands, with a total area of 18,700 square kilometers are basically either volcanic or coral. A small mining industry exists, however, and on the basis of that fact, and without geologic support of any kind a Category 1 (0 to 1,000 tonnes U) uranium potential has been assigned. (author)

  6. Visitor, State of Alaska

    Science.gov (United States)

    /Fishing License Get a Birth Certificate, Marriage License, etc. Alaska Permanent Fund Dividend Statewide Library Alaska Historical Society Alaska State Museum Sheldon Jackson Museum Industry Facts Agriculture

  7. A comparison of gas geochemistry of fumaroles in the 1912 ash-flow sheet and on active stratovolcanoes, Katmai National Park, Alaska

    Science.gov (United States)

    Sheppard, D.S.; Janik, C.J.; Keith, T.E.C.

    1992-01-01

    Fumarolic gas samples collected in 1978 and 1979 from the stratovolcanoes Mount Griggs, Mount Mageik, and the 1953-68 SW Trident cone in Katmai National Park, Alaska, have been analysed and the results presented here. Comparison with recalculated analyses of samples collected from the Valley of Ten Thousand Smokes (VTTS) in 1917 and 1919 demonstrates differences between gases from the short-lived VTTS fumaroles, which were not directly magma related, and the fumaroles on the volcanic peaks. Fumarolic gases of Mount Griggs have an elevated total He content, suggesting a more direct deep crustal or mantle source for these gases than those from the other volcanoes. ?? 1992.

  8. 77 FR 4578 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Science.gov (United States)

    2012-01-30

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-AKR-ANIA; 9924-PYS] Alaska Region's... public meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource Commission (SRC..., Alaska Region. [FR Doc. 2012-1860 Filed 1-27-12; 8:45 am] BILLING CODE 4310-HE-P ...

  9. 77 FR 4579 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Science.gov (United States)

    2012-01-30

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-AKR-DENA; 9924-PYS] Alaska Region's... public meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource Commission (SRC..., Associate Regional Director, Resources and Subsistence, Alaska Region. [FR Doc. 2012-1877 Filed 1-27-12; 8...

  10. 77 FR 4581 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Science.gov (United States)

    2012-01-30

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-AKR-LACL; 9924-PYS] Alaska Region's... public meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource Commission (SRC... Meeting Debora R. Cooper, Associate Regional Director, Resources and Subsistence, Alaska Region. [FR Doc...

  11. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Papua New Guinea

    International Nuclear Information System (INIS)

    1977-08-01

    No uranium mineralisation has been identified in Papua New Guinea; there has, however, been virtually no exploitation specifically for uranium. The extensive Mesozoic platform sediments overlying Palaeozoic metamorphic and Permian or Triassic granite basement appear to be the most prospective units for uranium. During the Triassic, fluviatile and marginal marine arkose, feldspathic and volcanic sandstone, and minor reffal limestone were deposited in downfaulted interior and marginal basins of the platform. Locally these sediments are underlain by dacitic volcanics. A new and more widespread phase of shallow marine, deltaic, and fluciatile sedimentation occurred during the Middle and at places also during the Early Jurassic. Arkose and feldspathic and quartzose sandstone are interbedded with a grade laterally into carbonaceous and pyritic shale, and siltstone. By the Late Jurassic the shales had transgressed over the coarse clastics, and marginal marine sandstone, siltstone, and mudstone with some coal beds had been deposited over the larger part of the platform. From Late Jurassic to Late Cretaceous, shales remain the dominant rock type but are intercalated with quartz-feldspar sandstone associated with marine regressions. The Jurassic and Cretaceous shales are source rocks for petroleum. During the Late Cretaceous the northeast part of the platform was uplifted and the Mesozoic cover partly eroded. Sedimentation of fine elastics continued over the edge of the platform and on the continental slope. The Mesozoic sandstones are potential host rocks to uranium mineralisation, particularly where they are interbedded with carbonaceous and pyritic shale. Their potential is enhanced where they are situated near petroleum reservoirs which could have provided hydrogen sulphide or hydrocarbons capable of precipitating uranium from circulating solutions by reduction. Triassic and Jurassic coarse clastics, which are restricted to a few areas, are considered to be the most

  12. International Uranium Resources Evaluation Project (IUREP) national favourability studies: People's Democratic Republic of Yemen (ADEN)

    International Nuclear Information System (INIS)

    1977-10-01

    The Arabian Shield forms the western part of the country and is composed of Precambrian metasediments of undescribed composition. The literature mentions calcareous duricrust formations in the eastern desert part of the country. This juxtaposition of possible source and duricrust is very similar to Somalia and leads to the view that the Speculative Potential may be in the 1000 to 10,000 tonnes uranium category. (author)

  13. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Denmark (Greenland)

    International Nuclear Information System (INIS)

    1977-11-01

    The report deals almost exclusively with Greenland. A major omission is any broad description of the geology of the island. One which can be recommended is 'A survey of the economic geology of Greenland' by B.J. Nielsen published by the Geological Survey of Greenland. Nielsen has also published several articles on the uranium occurrences in Greenland, some of which are noted in the references. A review of the geology is necessary in order to determine how the known occurrences fit into the pattern of uranium mineralisation in the North Atlantic regions and Canada, and to suggest further potential by analogy with these regions. Maps are significantly also lacking and three suitable examples are attached. Additions to the general map would be the areas examined and the extent of airborne radiometry. A further major omission is a definition of the meaning of potential resources, especially as 250,000 tonnes are claimed for the lujavrites at present and a future potential of 500,000 tonnes. I presume that this is the contained uranium which can be calculated as being present in the rock units, rather than any estimate of the amount of uranium which could be recovered economically. The figures for RAH and EAR at Kvanefjeld could conveniently be updated (Nov. 77) to RAH 15,750 t U, EAR 10,000 t U, TOTAL 25,750 t U. As these alkalic rocks are confined to the Garder province of the Ketilidian mobile belt some more definite indication of similar uraniferous types could be made from the excellent published maps and lead to more realistic estimates using the NURE formulae

  14. Strong demand for natural uranium

    International Nuclear Information System (INIS)

    Kalinowski, P.

    1975-01-01

    The Deutsches Atomforum and the task group 'fuel elements' of the Kerntechnische Gesellschaft had organized an international two-day symposium in Mainz on natural uranium supply which was attended by 250 experts from 20 countries. The four main themes were: Demand for natural uranium, uranium deposits and uranium production, attitude of the uranium producing countries, and energy policy of the industrial nations. (orig./AK) [de

  15. National uranium resource evaluation. Geology and recognition criteria for sandstone uranium deposits of the salt wash type, Colorado Plateau Province. Final report

    International Nuclear Information System (INIS)

    Thamm, J.K.; Kovschak, A.A. Jr.; Adams, S.S.

    1981-01-01

    The uranium-vanadium deposits of the Salt Wash Member of the Morrison Formation in the Colorado Plateau are similar to sandstone uranium deposits elsewhere in the USA. The differences between Salt Wash deposits and other sandstone uranium deposits are also significant. The Salt Wash deposits are unique among sandstone deposits in that they are dominantly vanadium deposits with accessory uranium. The Salt Wash ores generally occur entirely within reduced sandstone, without adjacent tongues of oxidized sandstone. They are more like the deposits of Grants, which similarly occur in reduced sandstones. Recent studies of the Grants deposits have identified alteration assemblages which are asymmetrically distributed about the deposits and provide a basis for a genetic model for those deposits. The alteration types recognized by Shawe in the Slick Rock district may provide similar constraints on ore formation when expanded to broader areas and more complete chemical analyses

  16. Los Alamos Scientific Laboratory approach to hydrogeochemical and stream sediment reconnaissance for uranium in the United States

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1980-01-01

    The Los Alamos Scientific Laboratory of the United States is conducting a geochemical survey for uranium in the Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in Alaska. This survey is part of a national hydrogeochemical and stream sediment reconnaissance in which four Department of Energy laboratories will study the uranium resources of the United States to provide data for the National Uranium Resource Evaluation program. The reconnaissance will identify areas having higher than background concentrations of uranium in ground waters, surface waters, and water-transported sediments. The reconnaissance data will be combined with data from airborne radiometric surveys and geological and geophysical investigations to provide an improved estimate for the economics and availability of nuclear fuel resources in the United States and to make information available to industry for use in the exploration and development of uranium resources. Water samples are analyzed for uranium by fluorometry which has a 0.02 parts per billion lower limit of detection. Concentrations of 12 additional elements in water are determined by plasma-source emission spectrography. All sediments are analyzed for uranium by delayed-neutron counting and a 20 parts per billion lower limit of detection. Elemental concentrations in sediments are also determined by neutron activation analysis, x-ray fluorescence, and by arc-source emission spectrography. To date, all of four Rocky Mountain states and about 80% of Alaska have been sampled. About 220,000 samples have been collected from an area of nearly 2,500,000 km 2 . The philosophy, sampling methodology, analytical techniques, and progress of the reconnaissance are described in several published pilot study, reconnaissance, and technical reports. The Los Alamos program was designed to maximize the identification of uranium in terrains of varied geography, geology, and climate

  17. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance basic data for Beeville NTMS Quadrangle, Texas. Uranium resource evaluation project

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-31

    Results of a reconnaissance geochemical survey of the Beeville Quadrangle, Texas are reported. Field and laboratory data are presented for 373 groundwater and 364 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. The groundwater data indicate that the northwestern corner of the quadrangle is the most favorable for potential uranium mineralization. Favorability is indicated by high uranium concentrations; high arsenic, molybdenum, and vanadium concentrations; and proximity and similar geologic setting to the mines of the Karnes County mining district. Other areas that appear favorable are an area in Bee and Refugio Counties and the northeastern part of the quadrangle. Both areas have water chemistry similar to the Karnes County area, but the northeastern area does not have high concentrations of pathfinder elements. The stream sediment data indicate that the northeastern corner of the quadrangle is the most favorable for potential mineralization, but agricultural practices and mineralogy of the outcropping Beaumont Formation may indicate a false anomaly. The northwestern corner of the quadrangle is considered favorable because of its proximity to the known uranium deposits, but the data do not seem to support this.

  18. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance basic data for Beeville NTMS Quadrangle, Texas. Uranium resource evaluation project

    International Nuclear Information System (INIS)

    1979-01-01

    Results of a reconnaissance geochemical survey of the Beeville Quadrangle, Texas are reported. Field and laboratory data are presented for 373 groundwater and 364 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. The groundwater data indicate that the northwestern corner of the quadrangle is the most favorable for potential uranium mineralization. Favorability is indicated by high uranium concentrations; high arsenic, molybdenum, and vanadium concentrations; and proximity and similar geologic setting to the mines of the Karnes County mining district. Other areas that appear favorable are an area in Bee and Refugio Counties and the northeastern part of the quadrangle. Both areas have water chemistry similar to the Karnes County area, but the northeastern area does not have high concentrations of pathfinder elements. The stream sediment data indicate that the northeastern corner of the quadrangle is the most favorable for potential mineralization, but agricultural practices and mineralogy of the outcropping Beaumont Formation may indicate a false anomaly. The northwestern corner of the quadrangle is considered favorable because of its proximity to the known uranium deposits, but the data do not seem to support this

  19. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Saudi Arabia

    International Nuclear Information System (INIS)

    1977-09-01

    Saudi Arabia occupies most of the Arabian Peninsula and has an area of 872,722 sq miles, or 2,260,350 sq km. The ancient Arabian Shield of igneous and metamorphic rocks comprises most of the western third of the country. The shield contains many extinct volcanoes surrounded by lava beds. Sloping eastwards are the newer sedimentary areas in which rich oil fields are found. In Saudi Arabia oil is paramount and less effort has been put into searching for mineral deposits than in other countries of similar size and geology. Pour aerial radiometric surveys have been undertaken and some of the anomalies discovered in the earlier ones were ground checked by an IAEA expert in 1963-64. Two anomalies warranted more detailed work, these were the Jabal Said anomaly in the Central Shield area and the Al Ghrayyat in Wadi Sawawin about 70 miles from the Jordan border. The Jabal Said anomaly consists of a zone of altered rocks consisting largely of pegmatite and pegmatite granite= Allanite, pyrochlore, cyrtolite, xenotime and monazite are the ore minerals,, The deposit was estimated to have 2.2 million tons of ore grading 0.2 - 0.3 percent Nb 2 O 5 and 0.03 - 0,05% U 3 O 8 . The other occurrence at Al Ghrayyat is similar but with much lower grade uranium content. In view of the huge size of Saudi Arabia, the existence of many geologically favourable rock types and the poor coverage by sophisticated uranium exploration techniques, the Speculative Potential is placed between 10,000 and 50,000 Tonnes uranium. (author)

  20. National Uranium Resource Evaluation Program (NURE): hydrogeochemical and stream sediment reconnaissance in the eastern United States

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V. Jr.

    1976-01-01

    A geochemical reconnaissance of twenty-five eastern states for uranium will be conducted by the Savannah River Laboratory for the U.S. Energy Research and Development Administration. A sound technical basis for the reconnaissance is being developed by intensive studies of sampling, analysis, and data management. Results of three orientation studies in the southern Appalachian Piedmont and Blue Ridge areas indicate that multi-element analysis of -100 mesh (less than 149 μm) stream sediments will provide adequate information for reconnaissance. Stream and groundwater samples also provide useful information but are not considered cost-effective for regional reconnaissance in the areas studied

  1. International Uranium Resources Evaluation Project (IUREP) national favourability studies: United States of America

    International Nuclear Information System (INIS)

    1977-08-01

    In the first years of the uranium program, starting in 1948, drilling was primarily undertaken by the government. The AEC and the U.S. Geological Survey continued a modest program until the mid-1950's. The government drilled about 5-6 million feet (1.7 million meters), and a number of significant ore deposits were defined, primarily in the Uravan Mineral Belt, Colorado. Except for the early years, private drilling exceeded the government program. Drilling reached a peak of 2.8 million meters in 1957, but dropped back to 0.6 million meters in 1965 when the government purchase program had been phased out. Later, with resurgence of uranium demand it rose again to nearly 9.1 million meters in 1969. After a decline in the early 1970's, activity rose dramatically to 10.3 million meters in 1976. Total drilling through 1976 has been about 88.3 million meters. Exploration costs from 1966 through 1976 are estimated to be $679 million. During 1976, 32 percent of the drilling or 3.3 million meters was in the Wyoming Basins, with 4.5 million meters or 43 percent in the Colorado Plateau, and 0.9 million meters or 8 percent in the Gulf Coastal Plain. Total 1976 drilling was 0.9 million meters and average depth of hole 155 meters; this contrasts with 1.7 million meters and 53 meters average depth in 1960. Reserves of uranium are located in the western portion of the country with over 85 percent in the Colorado Plateau and Wyoming Basins. The Basin and Range province of Oregon, California, Nevada, Arizona, New Mexico, and Texas is receiving considerable exploration emphasis. Other areas of increasing activity include sedimentary rocks of the Great Plains and the crystalline rocks of the Rocky Mountains, Appalachian Mountains, and the Precambrian shield of Michigan and Wisconsin. Work in the new areas emphasizes geologic and geophysical assessment, so relatively little drilling has been done. When programs have matured, it is assumed that drilling effort will be accelerated

  2. International Uranium Resources Evaluation Project (IUREP) national favourability studies: People's Republic of Mongolia

    International Nuclear Information System (INIS)

    1977-12-01

    Mongolia, a country of 1,525,000 square kilometers, and a population of almost the same number of people is land locked between China and USSR. Historically it's closest ties have been with China, but it is now more closely associated with USSR. Geologically it's complex - most exposed formations are younger than PreCambrian although old exist. Potential for uranium is considered fairly good because the fairly complex geology appears to be favourable both for continental sandstone type deposits and calcretes (less than 50%) and vein type, and other deposits (more than 50$). Considerable effort should be made to obtain additional information related to Mongolian geology. (author)

  3. International Uranium Resources Evaluation Project (IUREP) national favourability studies: People's Republic of China

    International Nuclear Information System (INIS)

    1977-10-01

    China with an area close to 10,000,000 sq km and a fifth of the world's population, has a history of mining and, in fact is quite self sufficient in most of it's needs for the more basic mineral products.However, there is a dearth of knowledge of its resources of uranium. One can however, make the assumption that geologically, there are probably several areas that contain the combination of favourable host rocks and source. The speculative potential of China is estimated to be in Category 5, 100,000 to 500,000 tonnes U. (author)

  4. Geostatistics project of the national uranium resource evaluation program. Progress report, October 1979-March 1980

    International Nuclear Information System (INIS)

    Campbell, K.; Bement, T.R.; Howell, J.A.; Beckman, R.J.; Jackson, K.; Buslee, P.

    1980-08-01

    During the period covered by this report, the authors investigated the serial properties of aerial radiometric data. Results were applied to the choice of minimum segment width in the maximum variance segments algorithm and to the use of aerial radiometric data in the design of ground sampling experiments. The report also presents the results of a comparison of normal and lognormal percentile estimation techniques. Twenty-two quadrangles are being analyzed in the search for a uranium favorability index. Computer codes developed during this investigation have been provided to the Bendix Field Engineering Corporation in Grand Junction, Colorado

  5. International Uranium Resources Evaluation Project (IUREP) national favourability studies: French Polynesia

    International Nuclear Information System (INIS)

    1977-12-01

    French Polynesia comprises several district groups of islands in the South Pacific having a total population of 134,000 and an area of 5000 square kilometers. The high islands are commonly volcanic in origin while the lower islands are generally coral. They lie in the Tropic zone and are generally warm. Rainfall ranges from a few centimeters per year to as much as 1000. Because of their volcanic or coral origins, the islands of French Polynesia are not considered to have a uranium potential. (author)

  6. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment pilot survey of Llano area, Texas

    International Nuclear Information System (INIS)

    Nichols, C.E.; Kane, V.E.; Minkin, S.C.; Cagle, G.W.

    1976-01-01

    A pilot geochemical survey of the Llano, Texas, area was conducted during February and March 1976. The purpose of this work was to prepare for a subsequent reconnaissance geochemical survey of uranium in Central Texas. Stream sediment, stream water, well water, and plant ash from five geologic areas were analyzed in the laboratory for approximately 25 parameters. Examples of anomalous values in stream sediment and stream water indicate the usefulness of both sample types in identifying anomalies at a regional reconnaissance-scale station spacing of approximately 5 km (3 mi). Groundwater samples, which generally best indicate the geochemistry of formations at depth in a survey of this type, represent another important tool in detecting uranium mineralization. Anomalies in San Saba County are associated with the Marble Falls-Smithwich Formations and the Strawn Series (Pennsylvanian), the Houy Formation (Devonian and lower Mississippian), and the Hickory Sandstone Member of the Riley Formation (Cambrian). In Burnet County anomalous values are due to the influence of the Valley Spring Formation (Precambrian); and in Blanco County anomalies are found associated with the Riley Formation

  7. Southeast Alaska ESI: MGT (Management Area Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains management area data for National Parks, Wildlife Refuges, and areas designated as Critical Habitat in Southeast Alaska. Vector polygons in...

  8. Tephrochronology of the Brooks River Archaeological District, Katmai National Park and Preserve, Alaska: What can and cannot be done with tephra deposits

    Science.gov (United States)

    Riehle, J.R.; Dumond, D.E.; Meyer, C.E.; Schaaf, J.M.

    2000-01-01

    The Brooks River Archaeological District (BRAD) in Katmai National Park and Preserve is a classical site for the study of early humans in Alaska. Because of proximity to the active Aleutian volcanic arc, there are numerous tephra deposits in the BRAD, which are potentially useful for correlating among sites of archaeological investigations. Microprobe analyses of glass separates show, however, that most of these tephra deposits are heterogeneous mixtures of multiple glass populations. Some glasses are highly similar to pyroclasts of Aniakchak Crater (160 km to the south), others are similar to pyroclasts in the nearby Valley of Ten Thousand Smokes, and some are similar to no other tephra samples from the Alaska Peninsula. Moreover, tephra deposits in any one archaeological study site are not always similar to those from nearby sites, indicating inconsistent preservation of these mainly thin, fine-grained deposits. At least 15, late Holocene tephra deposits are inferred at the BRAD. Their heterogeneity is the result of either eruptions of mixed or heterogeneous magmas, like the 1912 Katmai eruption, or secondary mixing of closely succeeding tephra deposits. Because most cannot be reliably distinguished from one another on the basis of megascopic properties, their utility for correlations is limited. At least one deposit can be reliably identified because of its thickness (10 cm) and colour stratification. Early humans seem not to have been significantly affected by these tephra falls, which is not surprising in view of the resilience exhibited by both plants and animals following the 1912 Katmai eruption.

  9. Communication received from the United Kingdom of Great Britain and Northern Ireland concerning its national holdings of civil high enriched uranium

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of the note verbale and its attachment dated 1 July 1998 received by the Director General of the IAEA from the Permanent Mission to the IAEA of the United Kingdom of Great Britain and Northern Ireland, making available information on its national holdings of civil high enriched uranium as of 31 December 1997

  10. Fitting a three-parameter lognormal distribution with applications to hydrogeochemical data from the National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Kane, V.E.

    1979-10-01

    The standard maximum likelihood and moment estimation procedures are shown to have some undesirable characteristics for estimating the parameters in a three-parameter lognormal distribution. A class of goodness-of-fit estimators is found which provides a useful alternative to the standard methods. The class of goodness-of-fit tests considered include the Shapiro-Wilk and Shapiro-Francia tests which reduce to a weighted linear combination of the order statistics that can be maximized in estimation problems. The weighted-order statistic estimators are compared to the standard procedures in Monte Carlo simulations. Bias and robustness of the procedures are examined and example data sets analyzed including geochemical data from the National Uranium Resource Evaluation Program

  11. Savannah River Laboratory semiannual report, April-September 1979. Hydrogeochemical and stream sediment reconnaissance: National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    1979-10-01

    This report summarizes the accomplishments, status, and program of the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. SRL has accepted responsibility for Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of 1,500,000 square miles in 30 eastern and 7 far-western states. The report is a progress report covering the period April 1979 through September 1979. SRL efforts in the following areas are discussed: reconnaissance and detailed studies in geological programs; management, analysis, and interpretation of analytical and field data; reporting of HSSR results; sample preparation methods; and neutron activation analysis and other analytical techniques. Appendix A to the report summarizes the SRL-NURE production of the April 1979-September 1979 period and the program plans for the first half of FY-1980. Page-scale maps are included that show the status of completed sampling, analysis, and data reports placed on open file

  12. National acquisition of sufficient know-how to determine procurement of natural and enriched uranium

    International Nuclear Information System (INIS)

    Peix, J.; Rougeau, J.-P.

    1977-01-01

    Today, the guarantees of a natural uranium supply and of its enrichment, seem to be the necessary conditions for assuring the development of nuclear electric program. However, decisions cannot be made before further consideration of the consequences it will have on the whole service of the nuclear fuel cycle. Whether the supplies are immediate, or medium term, or long term, the lead-times of the fuel cycle and the present situation of the world energy supplies are such that a country committed to develop nuclear electric energy must equip itself quickly with the indispensable human potential to define its own supply policy and then, to assure a strict achievement up to its interests. Thus, without forecasting any sort of policy, the first matter is to study the problems arising from nuclear fuel cycle and to propose a minimal human and technical potential, indicating the different stages of its constitution. (author)

  13. Analysis of monazite, zircon, and apatite from the southeastern Piedmont. National uranium resource evaluation program

    International Nuclear Information System (INIS)

    Karfunkel, B.S.; Fay, W.M.; Price, V. Jr.

    1981-12-01

    Two hundred sixty-three monazite, 191 zircon, and 16 apatite grains from 52 stream-sediment locations in the Southeastern Piedmont were analyzed by electron microprobe for one of the following suites of elements: Ca, La, Ce, Pr, Nd, Sm, Eu, Gd, Er, Dy, Y, Th, U, P, and F, or Ca, La, Ce, Fe, Er, Hf, Y, Th, U, P, Zr, Mg, Al, and Si. Monazite samples that had high uranium or thorium content and zircon samples that had high hafnium or iron content from a total of six locations were reanalyzed to confirm the initial results. This report contains a description of sample collection and preparation procedures, analytical methods, tables of analyses, and a statistical summary of analyses

  14. Ecological, economical and social impact of uranium mining activity on local communities in the area of Banat-Oravita branch of National Uranium Company

    International Nuclear Information System (INIS)

    Cocar, D.; Grigorita, L.

    2000-01-01

    In this work, the ecological, economical and social effects of uranium mining activity on environment and local communities in Caras Severin county are considered. 4412 radiochemical analyses and about 6730 radiometric measurements were made. The waters of local rivers were found to be contaminated with natural uranium and 226 radium, but the biological risk is not significant. Their concentrations and effective doses are presented in 8 tables referring to the rivers Lisava, Jitin, Caras. Also, samples of water from springs and wells in the Banat mining area were analysed for natural uranium and 226 Ra, their concentrations being found under the maximum permissible level. The air quality was not affected by accidental radon emissions. In order to limit the ecological impact on the environment, remedial action measures are proposed. The economic and social impact on the local communities are due mainly to the decline of activity, the most important effect being the unemployment

  15. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Federal Republic of Germany

    International Nuclear Information System (INIS)

    1977-10-01

    The Federal Republic of Germany is situated in Central Europe. It covers an area of 250,000 square kilometres and has a population of 60 millions. The Federal Republic consists of 10 individual states. The capital of the country is Bonn. The northern and northwestern parts of the country are formed of flat lowlands, the Norddeutsche Tiefebene. Towards the south follow hilly and mountainous regions with elevations not exceeding 1000 m. In the southwestern and southeastern regions the elevations may reach 1500m in the Black Forest and Bayerischer Wald. The foreland of the Alps and the northern part of the Alps itself with elevations close to 3000 m make up the southern part of the Federal Republic. The main rivers - Rhine, Weser and Elbe - are directed towards northwest and drain the country to the North Sea. Only the southern part is drained by the southeast running river Danube. The climate is moderate, generally with frequent snow during the winter season and warm periods during the summer. The precipitation is distributed uniformly throughout the year. Due to the high industrialization a dense network of railroads, highways and motorroads exists.According to what is geologically known about the country, the chances for the discovery of large quantities of low-coast uranium resources must be considered to be limited. The potential for new discoveries of those deposits can be estimated to be around 10 000 t U. The potential for very low-grade uranium ore, such as granites, low-grade sedimentary rocks (sandstones, shales) can be estimated to range between 10,000 - 50,000 t U or possibly more taking into account very low-grade concentrations in shales. This material is not mineable under present conditions. Environmental considerations may prevent mining in the future

  16. National Uranium Resource Evaluation. Groundwater prospecting for sandstone-type uranium deposits: the merits of mineral-solution equilibria versus single element tracer methods. Final report

    International Nuclear Information System (INIS)

    Chatham, J.R.; Wanty, R.B.; Langmuir, D.

    1981-02-01

    Groundwaters from aquifers in two different sandstone-type uranium mining districts in Texas and Wyoming were collected and chemically analyzed. The data were used to compare the merits of using the computed saturation state of the groundwater with respect to uranium minerals, to that of single-element tracers in the groundwater for geochemical prospecting. Chemical properties of the Texas waters were influenced locally by preferred groundwater flow within buried fluvial channel deposits; upward leakage of brines along growth faults into the aquifer; and the establishment of a redox interface (Eh = 0 volts) within the aquifer. Chemical characteristics of aquifer waters in Wyoming changed gradually downdip, reflecting regional homogeneity in groundwater flow and a more gradual downdip reduction of Eh values than in Texas. The most reliable indicator of reduced uranium ore in both study sites was the saturation state of groundwater with respect to uraninite or coffinite. For both minerals, this saturation state increased from 15 to 20 log units as reduced ore deposits were approached over distances of 3 to 4.5 km in both sites. Tyuyamunite and carnotite approached or exceeded saturation in some oxidized waters of the Texas site reflecting possible occurrences of these minerals. The radiogenic elements Ta and Rn were excellent indicators of ore directly within the deposits, where anomalous values were 2 to 3 orders of magnitude above background. Helium also increased near the ore, although anomalies were generally displaced in the direction of groundwater flow. Uranium and uranium isotope values did not individually pinpoint ore, but may be used together to classify groundwater samples in terms of their position relative to uranium mineralization

  17. Geology and mineral resources of the Florence, Beaufort, Rocky Mount, and Norfolk 10 x 20 NTMS quadrangles. National Uranium Resource Evaluation program

    International Nuclear Information System (INIS)

    Harris, W.B.

    1982-08-01

    This document provides geologic and mineral resources data for previously-issued Savannah River Laboratory hydrogeochemical and stream sediment reports of the Beaufort, Florence, Norfolk, and Rocky Mount 1 0 x 2 0 National Topographic Map Series quadrangles in the southeastern United States. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation program

  18. Geology and mineral resources of the Florence, Beaufort, Rocky Mount, and Norfolk 1/sup 0/ x 2/sup 0/ NTMS quadrangles. National Uranium Resource Evaluation program

    Energy Technology Data Exchange (ETDEWEB)

    Harris, W.B.

    1982-08-01

    This document provides geologic and mineral resources data for previously-issued Savannah River Laboratory hydrogeochemical and stream sediment reports of the Beaufort, Florence, Norfolk, and Rocky Mount 1/sup 0/ x 2/sup 0/ National Topographic Map Series quadrangles in the southeastern United States. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation program.

  19. Wilderness insights From Alaska: Past, present, and future

    Science.gov (United States)

    Deborah L. Williams

    2007-01-01

    For many reasons, a significant percentage of Alaska’s wildlands have been successfully protected. The passage of the Alaska National Interest Lands Conservation Act (ANILCA), in particular, represents one of the greatest land protection measures in human history. Numerous important factors have contributed to Alaska’s conservation successes, and many of these factors...

  20. Isotopic characterization of uranium in soils of the Ipanema National Forest (FLONA-Ipanema); Caracterizacao isotopica de uranio em solos da Floresta Nacional de Ipanema (FLONA-Ipanema)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, F.B.; Marques, F.H., E-mail: fernandobaliani@yahoo.com.br, E-mail: fernando_henrique06@hotmail.com [Laboratorio de Pocos de Caldas (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil); Enzweiler, J.; Ladeira, F.S.B., E-mail: Jacinta@ige.unicamp.br, E-mail: fsbladeira@ige.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Instituto de Geociencias

    2015-07-01

    The National Forest of Ipanema (FLONA) is situated on a geological anomaly, known as 'Domo de Aracoiaba'. The soils of the area include Oxisols, Inceptsols and Alfisols. The amount of uranium and respective isotope activities in a soil depend on the parental rock and on the pedologic processes. The aim of this study was to investigate the activities for uranium isotopes ({sup 238}U, {sup 234}U, {sup 235}U) and the activity ratio (AR) {sup 234}U/ {sup 238}U or secular equilibrium for different soil types of the area collected at horizons A and B. The amount of uranium showed no significant differences for soils generated from alkaline intrusive rocks and sandstone, however, secular equilibrium was observed for Oxisol (RA = 1), while Inceptsol presented RA> 1 and the other soils, Alfisols, presented RA values <1. (author)

  1. Alaska's renewable energy potential.

    Energy Technology Data Exchange (ETDEWEB)

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  2. Santa Cruz 10 x 20 NTMS area, California: data report (abbreviated), National Uranium Resource Evaluation Program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.

    1981-07-01

    This abbreviated data report presents results of ground water and stream/surface sediment reconnaissance in the National Topographic Map Series (NTMS) Santa Cruz 1 0 x 2 0 quadrangle. Surface sediment samples were collected at 1270 sites, at a target sampling density of one site per 13 square kilometers (five square miles). Ground water samples were collected at 636 sites. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Mass spectrometry results are given for helium in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, and BB

  3. Economic growth and change in southeast Alaska.

    Science.gov (United States)

    Rhonda Mazza

    2004-01-01

    This report focuses on economic trends since the 1970s in rural southeast Alaska. These trends are compared with those in the Nation and in nonmetropolitan areas of the country to determine the extent to which the economy in rural southeast Alaska is affected by regional activity and by larger market forces. Many of the economic changes occurring in rural southeast...

  4. Pocatello 10 x 20 NTMS area Idaho. Data report: National Uranium Resource Evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.

    1980-07-01

    This data report presents results of groundwater and stream/surface sediment reconnaissance in the National Topographic Map Series (NTMS) Pocatello 1 0 x 2 0 quadrangle. Surface samples (sediment) were collected from 1701 sites. The target sampling density was one site per 16 square kilometers (six square miles). Ground water samples were collected at 381 sites. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Mass spectrometry results are given for helium in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included. Data from sediment sites include: (1) stream water chemistry measurements where applicable (pH, conductivity, and alkalinity); and (2) elemental analyses for sediment samples (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are also tabulated. Areal distribution maps, histograms, and cumulative frequency plots for most elements; U/Th, U/Hf, and U/La ratios; and scintillometer readings for sediment sample sites are included on the microfiche. Data from groundwater sites include: (1) water chemistry measurements (pH, conductivity, and alkalinity); (2) physical measurements where applicable (water temperature, well description, and scintillometer reading); and (3) elemental analyses (U, Al, Br, Cl, Dy, F, He, Mg, Mn, Na, and V). Data from stream water sites include: (1) water chemistry measurements (pH, conductivity, and alkalinity); and (2) elemental analyses

  5. Uranium of Kazakhstan

    International Nuclear Information System (INIS)

    Tsalyuk, Yu.; Gurevich, D.

    2000-01-01

    Over 25 % of the world's uranium reserves are concentrated in Kazakhstan. So, the world's largest Shu-Sarysu uranium province is situated on southern Kazakhstan, with resources exceeding 1 billion tonnes of uranium. No less, than 3 unique deposits with resources exceeding 100,000 tonnes are situated here. From the economic point of view the most important thing is that these deposits are suitable for in-situ leaching, which is the cheapest, environmentally friendly and most efficient method available for uranium extracting. In 1997 the Kazatomprom National Joint-Stock Company united all Kazakhstan's uranium enterprises (3 mine and concentrating plants, Volkovgeologiya Joint-Stock Company and the Ulbinskij Metallurgical plant). In 1998 uranium production came to 1,500 tonnes (860 kg in 1997). In 1999 investment to the industry were about $ 30 million. Plans for development of Kazakhstan's uranium industry provide a significant role for foreign partners. At present, 2 large companies (Comeco (Canada), Cogema (France) working in Kazakhstan. Kazakatomprom continues to attract foreign investors. The company's administration announced that in that in next year they have plan to make a radical step: to sell 67 % of stocks to strategic investors (at present 100 % of stocks belongs to state). Authors of the article regard, that the Kazakhstan's uranium industry still has significant reserves to develop. Even if the scenario for the uranium industry could be unfavorable, uranium production in Kazakhstan may triple within the next three to four years. The processing of uranium by the Ulbinskij Metallurgical Plant and the production of some by-products, such as rhenium, vanadium and rare-earth elements, may provide more profits. Obviously, the sale of uranium (as well as of any other reserves) cannot make Kazakhstan a prosperous country. However, country's uranium industry has a god chance to become one of the most important and advanced sectors of national economy

  6. Alaska Steller Sea Lion and Northern Fur Seal Argos Telemetry Data Archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Alaska Ecosystems Program of the NOAA Alaska Fisheries Science Center National Marine Mammal Laboratory conducts research and monitoring on Steller sea lions and...

  7. DIissolution of low enriched uranium from the experimental breeder reactor-II fuel stored at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Almond, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-28

    The Idaho National Laboratory (INL) is actively engaged in the development of electrochemical processing technology for the treatment of fast reactor fuels using irradiated fuel from the Experimental Breeder Reactor-II (EBR-II) as the primary test material. The research and development (R&D) activities generate a low enriched uranium (LEU) metal product from the electrorefining of the EBR-II fuel and the subsequent consolidation and removal of chloride salts by the cathode processor. The LEU metal ingots from past R&D activities are currently stored at INL awaiting disposition. One potential disposition pathway is the shipment of the ingots to the Savannah River Site (SRS) for dissolution in H-Canyon. Carbon steel cans containing the LEU metal would be loaded into reusable charging bundles in the H-Canyon Crane Maintenance Area and charged to the 6.4D or 6.1D dissolver. The LEU dissolution would be accomplished as the final charge in a dissolver batch (following the dissolution of multiple charges of spent nuclear fuel (SNF)). The solution would then be purified and the 235U enrichment downblended to allow use of the U in commercial reactor fuel. To support this potential disposition path, the Savannah River National Laboratory (SRNL) developed a dissolution flowsheet for the LEU using samples of the material received from INL.

  8. Australia and uranium

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A brief justification of the Australian Government's decision to mine and export Australian Uranium is presented along with a description of the Alligator River Region in the Northern Territory where the major mines are to be located. Aboriginal interests and welfare in the region, the proposed Kakadu National Park and the economic benefits resulting from uranium development are also briefly covered. (J.R.)

  9. Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, James A. [Argonne National Lab. (ANL), Argonne, IL (United States); Krummel, John R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hlava, Kevin J. [Argonne National Lab. (ANL), Argonne, IL (United States); Moore, H. Robert [Argonne National Lab. (ANL), Argonne, IL (United States); Orr, Andrew B. [Argonne National Lab. (ANL), Argonne, IL (United States); Schlueter, Scott O. [Argonne National Lab. (ANL), Argonne, IL (United States); Sullivan, Robert G. [Argonne National Lab. (ANL), Argonne, IL (United States); Zvolanek, Emily A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-21

    As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the “footprint” of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines.

  10. Uranium resources in fine-grained carbonaceous rocks of the Great Divide Basin, south-central Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Burger, J.A.; Roe, L.M. II; Hacke, C.M.; Mosher, M.M.

    1982-11-01

    The uranium resources of the fine-grained carbonaceous rocks of the Great Divide Basin in southern Wyoming were assessed. The assessment was based primarily on data from some 600 boreholes. The data included information from geophysical logs, lithologic logs and cores, and drill cuttings. The cores and cuttings were analyzed for chemical U 3 O 8 , radiometric U, Th and trace elements. Selected samples were examined by thin section, sieve analysis, x-ray, SEM, ion probe, and alpha track methods. The uranium is associated with fine-grained carbonaceous shales, siltstones, mudstones, and coals in radioactive zones 5 to 50 ft thick that are continuous over broad areas. These rocks have a limited stratigraphic range between the Red Desert tongue of the Wasatch Formation and the lower part of the Tipton tongue of the Green River Formation. Most of this uranium is syngenetic in origin, in part from the chelation of the uranium by organic material in lake-side swamps and in part as uranium in very fine detrital heavy minerals. The uraniferous fine-grained carbonaceous rocks that exceed a cutoff grade of 100 ppM eU 3 O 8 extend over an area of 542 mi 2 and locally to a depth of approximately 2000 ft. The uraniferous area is roughly ellipical and embraces the zone of change between the piedmont and alluvial-fan facies and the lacustrine facies of the intertonguing Battle Spring, Wasatch, and Green River Formations. About 1.05 x 10 6 tons U 3 O 8 , based on gross-gamma logs not corrected for thorium, are assigned to the area in the first 500 ft; an estimated 3.49 x 10 6 tons are assigned to a depth of 1000 ft. These units also contain a substantial thorium resource that is also associated with fine-grained rocks. The thorium-to-uranium ratio generally ranges between 1 and 4. A thorium resource of 3.43 x 10 6 tons to a depth of 500 ft is estimated for the assessment area. 5 figures, 3 tables

  11. Electricity Transmission, Pipelines, and National Trails. An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, James A; Krummel, John R; Hlava, Kevin J; Moore, H Robert; Orr, Andrew B; Schlueter, Scott O; Sullivan, Robert G; Zvolanek, Emily A

    2014-03-25

    As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the “footprint” of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines. Based on Platts electrical transmission line data, a total of 101 existing intersections with national trails on federal land were found, and 20 proposed intersections. Transmission lines and pipelines are proposed in Alaska; however there are no

  12. State of Alaska

    Science.gov (United States)

    Assistance Center Occupations Requiring Licenses Corporations Employer Information Alaska's Job Bank/Alaska Assistance Center Alaska's Job Bank Occupations Requiring Licenses Corporations Unemployment Insurance Tax Child Care Child Protection Denali KidCare Food Stamps Poison Control Seasonal Flu Immunization

  13. Determination of Background Uranium Concentration in the Snake River Plain Aquifer under the Idaho National Engineering and Environmental Laboratory's Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    Molly K. Leecaster; L. Don Koeppen; Gail L. Olson

    2003-01-01

    Uranium occurs naturally in the environment and is also a contaminant that is disposed of at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory. To determine whether uranium concentrations in the Snake River Plain Aquifer, which underlies the laboratory, are elevated as a result of migration of anthropogenic uranium from the Subsurface Disposal Area in the RWMC, uranium background concentrations are necessary. Guideline values are calculated for total uranium, 234U, 235U, and 238U from analytical results from up to five datasets. Three of the datasets include results of samples analyzed using isotope dilution thermal ionization mass spectrometry (ID-TIMS) and two of the datasets include results obtained using alpha spectrometry. All samples included in the statistical testing were collected from aquifer monitoring wells located within 10 miles of the RWMC. Results from ID-TIMS and alpha spectrometry are combined when the data are not statistically different. Guideline values for total uranium were calculated using four of the datasets, while guideline values for 234U were calculated using only the alpha spectrometry results (2 datasets). Data from all five datasets were used to calculate 238U guideline values. No limit is calculated for 235U because the ID-TIMS results are not useful for comparison with routine monitoring data, and the alpha spectrometry results are too close to the detection limit to be deemed accurate or reliable for calculating a 235U guideline value. All guideline values presented represent the upper 95% coverage 95% confidence tolerance limits for background concentration. If a future monitoring result is above this guideline, then the exceedance will be noted in the quarterly monitoring report and assessed with respect to other aquifer information. The guidelines (tolerance limits) for total U, 234U, and 238U are 2.75 pCi/L, 1.92 pCi/L, and 0.90 pCi/L, respectively

  14. Boston 10 x 20 NTMS area, Massachusetts, and New Hampshire. Data report (abbreviated): National Uranium Resource Evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.

    1980-01-01

    Results of ground water and stream sediment reconnaissance in the National Topographic Map Series (NTMS) Boston 1 0 x 2 0 quadrangle are presented. Surface sediment samples were collected at 669 sites. Ground water samples were collected at 303 sites. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented. Data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity), (2) physical measurements where applicable (water temperature, well description, etc.), and (3) elemental analyses (U, Al, Br, Cl, Dy, F, Mn, Na, and V). Data from sediment sites include (1) stream water chemistry measurements (pH, conductivity, and alkalinity), and (2) elemental analyses for sediment samples (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are also tabulated. Areal distribution maps, histograms, and cumulative frequency plots for most elements and for U/Th and U/Hf ratios are included on the microfiche. Key data from stream water sites include (1) water quality measurements (pH, conductivity, and alkalinity) and (2) elemental analyses (U, Al, Br, Ci, Dy, F, Mg, Mn, Na, and V). The maximum uranium concentration in the sediments of the Boston quadrangle was 82.1 ppM. The mean of the logarithms of the uranium concentrations in sediments was 0.68, which corresponds to 4.8 ppM uranium. A cluster of samples with uranium values greater than 40 ppM and which have low thorium concentrations occurs in Essex County, Massachusetts

  15. Uranium prospecting program: memorandum of request United Nations Assistance Rotatory Fund for Naturals resources in Uranium Prospecting; Programa prospeccion Uranio: memorando de solicitud de asistencia al fondo Rotatorio de Naciones Unidas para el estudio de los Recursos Naturales para la prospeccion de Uranio

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The Uruguayan government required assistance to Unit Nations funds with the aim of studies the Natural resources in Uranium prospecting, their antecedent, actual and projected works, equipment and end considerations.

  16. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from WECOMA in the Coastal Waters of Southeast Alaska and British Columbia, Monterey Bay National Marine Sanctuary and others from 2007-05-11 to 2007-06-14 (NODC Accession 0083685)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0083685 includes chemical, discrete sample, physical and profile data collected from WECOMA in the Coastal Waters of Southeast Alaska and British...

  17. Depleted uranium

    International Nuclear Information System (INIS)

    Huffer, E.; Nifenecker, H.

    2001-02-01

    This document deals with the physical, chemical and radiological properties of the depleted uranium. What is the depleted uranium? Why do the military use depleted uranium and what are the risk for the health? (A.L.B.)

  18. H.R. 1098: A Bill to establish a wholly-owned Government corporation to manage the Nation's uranium enrichment enterprise. Introduced in the House of Representatives, One Hundredth First Congress, First Session, February 23, 1989

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    H.R. 1098 is a bill to establish a wholly-owned Government corporation to manage the Nation's uranium enrichment enterprise, operating as a continuing commercial enterprise on a profitable and efficient basis, and for other purposes

  19. Neutron activation and other analytical data for plutonic rocks from North America and Africa. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Price, V.; Fay, W.M.; Cook, J.R.

    1982-09-01

    The objective of this report is to retrieve the elements of an analytical study of granites and associated other plutonic rocks which was begun as a part of the U.S. Department of Energy's National Uranium Resource Evaluation (NURE) program. A discussion of the Savannah River Laboratory (SRL) neutron activation analysis system is given so that a user will understand the linmitations of the data. Enough information is given so that an experienced geochemist can clean up the data set to the extent required by any project. The data are generally good as they are presented. It is intended that the data be read from a magnetic tape written to accompany this report. Microfiche tables of the data follow the text. These tables were prepared from data on the tape, and programs which will read the tape are presented in the section THE DATA TAPE. It is our intent to write a later paper which will include a thoroughly scrubbed data set and a technical discussion of results of the study. 1 figure

  20. National inventory of uranium mine sites. Version 2 - September 2007. Realised in the framework of the M.I.M.A.U.S.A. program Memory and impact of Uranium Mines: synthesis and archives

    International Nuclear Information System (INIS)

    2007-01-01

    The M.I.M.A.U.S.A. program allows to end in a compilation and a synthesis of the available data to allow the I.R.S.N., the national and local authorities, but also the public to have a source of quality information about the history of the French uranium mining sites and the possible systems of radiological surveillance set up at the moment; To assure the perpetuity of the knowledge of these sites in spite of the stop of the concerned activities; To establish a working tool for the government services in charge of the definition of the refitting and surveillance programs; And to improve the representativeness of the national network of radiation monitoring in the environment, notably as regards the stations of measure exploited by the I.R.S.N..The M.I.M.A.U.S.A. inventory or the national inventory of the uranium mining sites in France consists of the most exhaustive possible inventory of the sites on which were practised the activities in connection with the exploration (works of recognition of significant scale, the extraction or the treatment of the uranium ore in metropolitan France. The acquired information is synthesized in the form of index cards of sites presented in this document, with in introduction, the manual of the reserved columns and the used terms. The present version follows upon a first version published in 2004. The novelties of the version 2007: a more exhaustive inventory, 30 sites were added, enriched and corrected information, more complete identification of the receiving rivers, more precise and accessible geographical localization, zoom-news on certain mining zones, a paragraph current events. The sources of information are: Areva-Nc, A.N.D.R.A., D.R.I.R.E., and A.S.N.. (N.C.)

  1. Qualification of national fluoroelastomers for using in installations that work with uranium hexafluoride

    International Nuclear Information System (INIS)

    Abreu Mendonca Schvartzman, M.M. de; Vasconcelos, M.C.R.L. de; Fraga, R.R.

    1990-01-01

    This paper describes the techniques utilized for testing and qualifying national fluororelastomers, also known as 'Vitons', to be employed as sealing material in UF 6 handling equipments of the Centro de Desenvolvimento da Tecnologia Nuclear - CDTN in Belo Horizonte. Comparisons are made between the results obtained with nacional Vitons and the imported Viton previously qualified by the Germans for use in an enrichment plant. (author) [pt

  2. A multi-proxy geochemical investigation of late-Quaternary paleoenvironmental change from Burial Lake, Noatak National Preserve, Alaska

    Science.gov (United States)

    Finkenbinder, M. S.; Abbott, M.; Stoner, J. S.; Dorfman, J. M.

    2012-12-01

    Here we present a new multi-proxy geochemical analysis of paleoenvironmental change inferred from sediment cores recovered from Burial Lake (68.434° N, 159.174° W; 430 m ASL) in northwest Alaska. Previous work on cores from 7.9 m water depth sampled at comparatively low resolution revealed basal sediments date to ~ 40,000 cal yr BP and an unconformity during a period of aridity around the Last Glacial Maximum (LGM). We therefore collected multiple overlapping Livingston cores from the lake depocenter (21.5 m water depth) in the summer of 2010 in an effort to develop a temporally continuous, high resolution record spanning prior to the LGM to the present. We focus our interpretations on a 6.51 m core developed through wiggle matching proxy data from core sites A10 and C10. We use traditional laboratory methods and investigate new approaches to assess changes in sedimentation and productivity. We are measuring dry bulk density, organic matter via Loss-on-ignition at 550° C, biogenic silica, magnetic susceptibility, grain size via laser diffractometry, and elemental abundances via scanning x-ray fluorescence (XRF). Future research seeks to test the reliability of two commonly used XRF proxies, for organic matter (incoherence/coherence ratios) and aquatic productivity (Si/Ti ratios). Age control is provided by 12 Accelerator Mass Spectrometry radiocarbon dates of discrete terrestrial macrofossils. Results from these analyses indicate that the depocenter core is continuous and the sediment record spans the last ~ 38,000 cal yr BP and most importantly contains sediments spanning the LGM. Preliminary geochemical results demonstrate substantial cyclicity in organic matter and aquatic productivity beginning in the late-glacial. We seek to analyze the periodicity of these proxies through spectral analysis, although initial observations suggest multi-century to millennial scale variability. In addition, we note the presence of two abrupt, non-linear transitions in organic

  3. Black and Brown Bear Activity at Selected Coastal Sites in Glacier Bay National Park and Preserve, Alaska: A Preliminary Assessment Using Noninvasive Procedures

    Science.gov (United States)

    Partridge, Steve; Smith, Tom; Lewis, Tania

    2009-01-01

    A number of efforts in recent years have sought to predict bear activity in various habitats to minimize human disturbance and bear/human conflicts. Alaskan coastal areas provide important foraging areas for bears (Ursus americanus and U. arctos), particularly following den emergence when there may be no snow-free foraging alternatives. Additionally, coastal areas provide important food items for bears throughout the year. Glacier Bay National Park and Preserve (GLBA) in southeastern Alaska has extensive coastal habitats, and the National Park Service (NPS) has been long interested in learning more about the use of these coastal habitats by bears because these same habitats receive extensive human use by park visitors, especially kayaking recreationists. This study provides insight regarding the nature and intensity of bear activity at selected coastal sites within GLBA. We achieved a clearer understanding of bear/habitat relationships within GLBA by analyzing bear activity data collected with remote cameras, bear sign mapping, scat collections, and genetic analysis of bear hair. Although we could not quantify actual levels of bear activity at study sites, agreement among measures of activity (for example, sign counts, DNA analysis, and video record) lends support to our qualitative site assessments. This work suggests that habitat evaluation, bear sign mapping, and periodic scat counts can provide a useful index of bear activity for sites of interest.

  4. Sitka, Alaska 9 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 9 arc-second resolution in geographic coordinates. This grid is strictly for...

  5. North Slope, Alaska ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species for the North Slope of Alaska. Vector...

  6. Homer, Alaska 8 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 8-second Homer Alaska Elevation Grid provides bathymetric data in ASCII raster format of 8-second resolution in geographic coordinates. This grid is strictly for...

  7. Western Alaska ESI: FISHL (Fish Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for anadromous fish species in Western Alaska. Vector lines in this data set represent species occurrences...

  8. Gravity Data for Southwestern Alaska #2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (1294 records) were compiled by the Alaska Geological Survey and the U.S. Geological Survey, Menlo Park, California. This data base was...

  9. Prince William Sound, Alaska ESI: HYDRO (Hydrology)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Prince William Sound, Alaska. ESI data characterize estuarine environments and wildlife by...

  10. Southeast Alaska ESI: SOCECON (Socioeconomic Resource Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for airports, aquaculture sites, boat ramps, marinas, heliports, and log storage areas in Southeast Alaska. Vector...

  11. Alaska North-South Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' surface deflection of the vertical grid for Alaska is the DEFLEC96 model. The computation used about 1.1 million terrestrial and marine gravity data...

  12. Klawock Lagoon, Alaska Benthic Habitats 2011 Geoform

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  13. Klawock Lagoon, Alaska Benthic Habitats 2011 Substrate

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  14. Alaska Steller Sea Lion Food Habits Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains food habits samples, usually scats, collected opportunistically on Steller sea lion rookeries and haulouts in Alaska from 1985 to present....

  15. Alaska Steller Sea Lion Pup Count Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database contains counts of Steller sea lion pups on rookeries in Alaska made between 1961 and 2015. Pup counts are conducted in late June-July. Pups are...

  16. Western Alaska ESI: LAKES (Lake Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing lakes and land masses used in the creation of the Environmental Sensitivity Index (ESI) for Western Alaska. The...

  17. North Slope, Alaska ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for diving birds, gulls and terns, seabirds, shorebirds, and waterfowl for the North Slope of Alaska....

  18. Alaska East-West Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' surface deflection of the vertical grid for Alaska is the DEFLEC96 model. The computation used about 1.1 millionterrestrial and marine gravity data held...

  19. Alaska1(ak1_wpn) Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (10,578 records) were compiled by the U.S. Geological Survey and the State of Alaska Division of Geological & Geophysical Surveys. This...

  20. ANWR and Alaska Peninsula Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (1252 records) were compiled by the U.S. Geological Survey and the State of Alaska Division of Geological & Geophysical Surveys. This...

  1. Prince William Sound, Alaska ESI: INVERT (Invertebrates)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Prince William Sound, Alaska. ESI data characterize estuarine environments and wildlife by...

  2. Klawock Lagoon, Alaska Benthic Habitats 2011 Geodatabase

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  3. Central Gulf of Alaska Rockfish Permit Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The North Pacific Fishery Management Council adopted the Central Gulf of Alaska Rockfish Program (Rockfish Program) on June 14, 2010, to replace the expiring Pilot...

  4. Southeast Alaska ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for waterfowl in Southeast Alaska. Vector polygons in this data set represent locations of foraging and rafting...

  5. Seldovia, Alaska 3 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 3-second Seldovia Alaska Elevation Grid provides bathymetric data in ASCII raster format of 3-second resolution in geographic coordinates. This grid is strictly...

  6. Sitka, Alaska 1 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 1 arc-second resolution in geographic coordinates. This grid is strictly for...

  7. Sitka, Alaska 3 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 3 arc-second resolution in geographic coordinates. This grid is strictly for...

  8. 2 minute Southcentral Alaska Elevation Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2-minute Southcentral Alaska Elevation Grid provides bathymetric data in ASCII raster format of 2-minute resolution in geographic coordinates. This grid is...

  9. Seward, Alaska 3 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 3 arc-second Seward Alaska Elevation Grid provides bathymetric data in ASCII raster format of 2.67-second resolution in geographic coordinates. This grid is...

  10. Seldovia, Alaska 1 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seldovia, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 1 arc-second resolution in geographic coordinates. This grid is strictly for...

  11. Kodiak, Alaska 3 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 3-second Kodiak Alaska Elevation Grid provides bathymetric data in ASCII raster format of 2.67-second resolution in geographic coordinates. This grid is strictly...

  12. Klawock Lagoon, Alaska Benthic Habitats 2011 Biotic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  13. Southeast Alaska ESI: FISHPT (Fish Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for anadromous fish streams in Southeast Alaska. Vector points in this data set represent locations of fish streams....

  14. Prince William Sound, Alaska ESI: INDEX

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Prince William Sound, Alaska. ESI data characterize estuarine environments and wildlife by...

  15. Western Alaska ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, and anadromous fish species in Western Alaska. Vector polygons in this data set...

  16. North Slope, Alaska ESI: FACILITY (Facility Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  17. Southeast Alaska ESI: NESTS (Nest Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for alcids, shorebirds, waterfowl, diving birds, pelagic birds, gulls, and terns in Southeast Alaska. Points in this...

  18. Southeast Alaska ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for estuarine, benthic, and pelagic fish in Southeast Alaska. Vector polygons in this data set represent locations of...

  19. National assessment of shoreline change—Summary statistics for updated vector shorelines and associated shoreline change data for the north coast of Alaska, U.S.-Canadian Border to Icy Cape

    Science.gov (United States)

    Gibbs, Ann E.; Richmond, Bruce M.

    2017-09-25

    Long-term rates of shoreline change for the north coast of Alaska, from the U.S.-Canadian border to the Icy Cape region of northern Alaska, have been updated as part of the U.S. Geological Survey’s National Assessment of Shoreline Change Project. Short-term shoreline change rates are reported for the first time. Additional shoreline position data were used to compute rates where the previous rate-of-change assessment only included two shoreline positions at a given location. The calculation of uncertainty associated with the long-term average rates has also been updated to match refined methods used in other study regions of the National Assessment of Shoreline Change Project. The average rates of this report have a reduced amount of uncertainty compared to those presented in the first assessment for this region.

  20. CSI : Alaska

    International Nuclear Information System (INIS)

    Letwin, S.

    2005-01-01

    This presentation emphasized the need for northern gas supply at a time when conventional natural gas supplies are decreasing and demand is growing. It highlighted the unique qualifications of Enbridge Inc. in creating an infrastructure to move the supply to where it is in most demand. Enbridge has substantial northern experience and has a unique approach for the construction of the Alaskan Gas Pipeline which entails cooperation, stability and innovation (CSI). Enbridge's role in the joint venture with AltaGas and Inuvialuit Petroleum was discussed along with its role in the construction of the first Canadian pipeline in 1985. The 540 mile pipeline was buried in permafrost. A large percentage of Enbridge employees are of indigenous descent. Enbridge recognizes that the amount of capital investment and the associated risk needed for the Alaska Gas Pipeline will necessitate a partnership of producers, pipeline companies, Native organizations, the State of Alaska, market participants and other interested parties. 9 figs

  1. Geochronology of plutonic rocks and their tectonic terranes in Glacier Bay National Park and Preserve, southeast Alaska: Chapter E in Studies by the U.S. Geological Survey in Alaska, 2008-2009

    Science.gov (United States)

    Brew, David A.; Tellier, Kathleen E.; Lanphere, Marvin A.; Nielsen, Diane C.; Smith, James G.; Sonnevil, Ronald A.

    2014-01-01

    We have identified six major belts and two nonbelt occurrences of plutonic rocks in Glacier Bay National Park and Preserve and characterized them on the basis of geologic mapping, igneous petrology, geochemistry, and isotopic dating. The six plutonic belts and two other occurrences are, from oldest to youngest: (1) Jurassic (201.6–145.5 Ma) diorite and gabbro of the Lituya belt; (2) Late Jurassic (161.0–145.5 Ma) leucotonalite in Johns Hopkins Inlet; (3) Early Cretaceous (145.5–99.6 Ma) granodiorite and tonalite of the Muir-Chichagof belt; (4) Paleocene tonalite in Johns Hopkins Inlet (65.5–55.8 Ma); (5) Eocene granodiorite of the Sanak-Baranof belt; (6) Eocene and Oligocene (55.8–23.0 Ma) granodiorite, quartz diorite, and granite of the Muir-Fairweather felsic-intermediate belt; (7) Eocene and Oligocene (55.8–23.0 Ma) layered gabbros of the Crillon-La Perouse mafic belt; and (8) Oligocene (33.9–23.0 Ma) quartz monzonite and quartz syenite of the Tkope belt. The rocks are further classified into 17 different combination age-compositional units; some younger belts are superimposed on older ones. Almost all these plutonic rocks are related to Cretaceous and Tertiary subduction events. The six major plutonic belts intrude the three southeast Alaska geographic subregions in Glacier Bay National Park and Preserve, from west to east: (1) the Coastal Islands, (2) the Tarr Inlet Suture Zone (which contains the Border Ranges Fault Zone), and (3) the Central Alexander Archipelago. Each subregion includes rocks assigned to one or more tectonic terranes. The various plutonic belts intrude different terranes in different subregions. In general, the Early Cretaceous plutons intrude rocks of the Alexander and Wrangellia terranes in the Central Alexander Archipelago subregion, and the Paleogene plutons intrude rocks of the Chugach, Alexander, and Wrangellia terranes in the Coastal Islands, Tarr Inlet Suture Zone, and Central Alexander Archipelago subregions.

  2. One hundred prime references on hydrogeochemical and stream sediment surveying for uranium as internationally practiced, including 60 annotated references

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.; Bolivar, S.L.

    1981-04-01

    The United States Department of Energy (DOE), formerly the US ERDA, has initiated a nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). This program is part of the US National Uranium Resource Evaluation, designed to provide an improved estimate for the availability and economics of nuclear fuel resources and make available to industry information for use in exploration and development of uranium resources. The Los Alamos National Laboratory is responsible for completing the HSSR in Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in the state of Alaska. This report contains a compilation of 100 prime references on uranium hydrogeochemical and stream sediment reconnaissance as internationally practiced prior to 1977. The major emphasis in selection of these references was directed toward constructing a HSSR program with the purpose of identifying uranium in the Los Alamos National Laboratory area of responsibility. The context of the annotated abstracts are the authors' concept of what the respective article contains relative to uranium geochemistry and hydrogeochemical and stream sediment surveying. Consequently, in many cases, significant portions of the original articles are not discussed. The text consists of two parts. Part I contains 100 prime references, alphabetically arranged. Part II contains 60 select annotated abstracts, listed in chronological order

  3. Johnson City 10 x 20 NTMS area, Kentucky, North Carolina, Tennessee, and Virginia: data report (abbreviated). National Uranium Resource Evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Fay, W.M.

    1980-10-01

    Results of ground water and stream sediment reconnaissance in the National Topographic Map Series (NTMS) Johnson City 1 0 x 2 0 quadrangle are presented. Surface sediment samples were collected at 959 sites. Ground water samples were collected at 1099 sites. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water. Data from ground water sites include: (1) water chemistry measurements (pH, conductivity, and alkalinity); (2) physical measurements where applicable (water temperature, well description, etc.); and (3) elemental analyses (U, Al, Br, Cl, Dy, F, Mn, Na, and V). Data from sediment sites include: (1) stream water chemistry measurements; and (2) elemental analyses for sediment samples (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are given. Areal distribution maps, histograms, and cumulative frequency plots for most elements and for U/Th and U/Hf ratios are included on the microfiche. The Johnson City Quadrangle is underlain by Precambrian cyrstalline rocks in the southeastern corner of the quadrangle and by Paleozoic sediments in the remainder of the quadrangle. The highest uranium concentrations in sediments (up to 22 ppM) are in samples from the Precambrian crystalline rock areas. These samples also have high thorium concentrations suggesting that most of the uranium is in resistate minerals such as monazite. The U/Th ratios in sediment samples are generaly low with the higher values (up to 2.07) mostly within the lower Paleozoic sediments, particularly the Copper Ridge Dolomite. The uranium concentration in ground water is also highest in the lower Paleozoic sediments

  4. Business, State of Alaska

    Science.gov (United States)

    Investment Advisors Business Law Charitable Gaming Division of Banking & Securities Laws Relating to Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting

  5. Alaska Community Transit

    Science.gov (United States)

    Grant Information Human Services Funding 5310 5316 (Repealed) 5317 (Repealed) Alaska Mental Health Trust Department of Transportation & Public Facilities/ Alaska Community Transit Search DOT&PF State of Alaska Photo banner DOT&PF> Program Development > Alaska Community Transit Home About Us

  6. Alaska State Trails Program

    Science.gov (United States)

    Recreation Search DNR State of Alaska Home Menu Parks Home Alaska State Trails Boating Safety Design and Home / Alaska State Trails Alaska State Trails Program Trails in the Spotlight Glacier Lake and Saddle Trails in Kachemak State Park Glacier Lake A Popular route joins the Saddle and Glacier Lake Trails. The

  7. Tuberculosis among Children in Alaska.

    Science.gov (United States)

    Gessner, Bradford D.

    1997-01-01

    The incidence of tuberculosis among Alaskan children under 15 was more than twice the national rate, with Alaska Native children showing a much higher incidence. Children with household exposure to adults with active tuberculosis had a high risk of infection. About 22 percent of pediatric tuberculosis cases were identified through school…

  8. A new approach for geochemical surveys of large areas for uranium resource potential

    International Nuclear Information System (INIS)

    Arendt, J.W.; Butz, T.R.; Cagle, G.W.; Kane, V.E.; Nichols, C.E.

    1977-01-01

    The Grand Junction, Colorado office of the United States Energy Research and Development Administration (ERDA) is conducting the National Uranium Resource Evaluation Program to evaluate the uranium resources in the United States and Alaska. The program is designed to identify favorable areas for uranium exploration, to assess the supply of domestic resources, and to improve exploration technology. The Nuclear Division of the Union Carbide Corporation has been assigned the responsibility of conducting a hydrogeochemical and stream sediment survey of the mid-continental states in the United States. This survey covers approximately 2,500,000 km 2 (1,000,000 mi 2 ) and includes the states of Texas, Oklahoma, Kansas, Nebraska, South Dakota, North Dakota, Minnesota, Wisconsin, Michigan, Indiana, Illinois, and Iowa. The uranium potential of sandstones, Precambrian conglomerates, veins, granites, and phosphorites is being assessed utliizing a three-part program consisting of pilot surveys in each geological province and two phases of reconnaissance sampling of drainage basins. Samples of stream sediment, stream water, groundwater, algae, and vegetation are analyzed for uranium and some 20 additional elements. Data resulting from this program is released to private industry by ERDA as it becomes available. Analysis of results from a typical three-part survey are given. For distinctive geological regions, the pilot survey will: (1) define characteristic concentration background levels of the elements of interest, (2) identify potential uranium pathfinder elements, (3) determine relationship between stream, stream sediment and botanical samples, (4) identify any necessary modification to field sampling techniques, and (5) determine necessary sensitivities required for chemical analysis. The first reconnaissance phase average sample spacing of one station per 250 km 2 (100 mi 2 ) drainage basin is shown to delineate general boundaries of uranium provinces, and the second

  9. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  10. Western Australian uranium opening to global markets

    International Nuclear Information System (INIS)

    Hall, G.

    2008-01-01

    The change of government in Western Australia (WA) in September 2008 brought with it a change in the state policy on uranium mining. For a period previously, although uranium exploration was allowed, mining leases were granted excluding the right to mine uranium. The Barnett Liberal/National Government has reversed that policy, and is now granting mining leases including uranium, and will allow uranium mining projects to proceed into production subject to all appropriate approvals processes.

  11. Uranium exploration

    International Nuclear Information System (INIS)

    De Voto, R.H.

    1984-01-01

    This paper is a review of the methodology and technology that are currently being used in varying degrees in uranium exploration activities worldwide. Since uranium is ubiquitous and occurs in trace amounts (0.2 to 5 ppm) in virtually all rocks of the crust of the earth, exploration for uranium is essentially the search of geologic environments in which geologic processes have produced unusual concentrations of uranium. Since the level of concentration of uranium of economic interest is dependent on the present and future price of uranium, it is appropriate here to review briefly the economic realities of uranium-fueled power generation. (author)

  12. Concentrations and activity ratios of uranium isotopes in groundwater from Donana National Park, South of Spain

    International Nuclear Information System (INIS)

    Bolivar, J. P.; Olias, M.; Gonzalez-Garcia, F.; Garcia-Tenorio, R.

    2008-01-01

    The levels and distribution of natural radionuclides in groundwaters from the unconfined Almonte-Marismas aquifer, upon which Donana National Park is located, have been analysed. Most sampled points were multiple piezometers trying to study the vertical distribution of the hydrogeochemical characteristics in the aquifer. Temperature, pH, electrical conductivity, dissolved oxygen and redox potential were determined in the field. A large number of parameters, physico-chemical properties, major and minor ions, trace elements and natural radionuclides (U-isotopes, Th-isotopes, Ra-isotopes and 210 Po), were also analysed. In the southern zone, where aeolian sands crop out, water composition is of the sodium chloride type, and the lower U-isotopes concentrations have been obtained. As water circulates through the aquifer, bicarbonate and calcium concentrations increase slightly, and higher radionuclides concentrations were measured. Finally, we have demonstrated that 234 U/ 238 U activity ratios can be used as markers of the type of groundwater and bedrock, as it has been the case for old waters with marine origin confined by a marsh in the south-east part of aquifer

  13. 77 FR 26744 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Science.gov (United States)

    2012-05-07

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... of reduction payment tender of Southeast Alaska purse seine salmon permits. SUMMARY: The National... Southeast Alaska purse seine salmon fishery. The program authorizes NMFS to make payments to permit holders...

  14. The Tevalac: A national facility for relativistic heavy-ion research to 10 GeV per nucleon with uranium

    International Nuclear Information System (INIS)

    1982-12-01

    This preliminary proposal addresses forefront physics research through the end of this century. It presents the implications of recent theoretical insights gained from relativistic heavy-ion studies that have led physicists to believe that the densities and temperatures needed to deconfine quarks from hadrons can be reached with only a ten-fold increase in beam energy beyond that available in today's highest-energy heavy-ion accelerators. In addition, the proposal describes a variety of other new and enhanced experimental opportunities that will be opened up by such an increase in projectile energy. Also presented are an accelerator concept, called the Tevalac, that provides the requisite 10-GeV/nucleon uranium beams and a program for research and development necessary to ensure that the facility to be proposed at a later date is ready for construction and will fit within the national program. Relativistic heavy-ion experiments using 1--2-GeV/nucleon beams have already demonstrated that high temperatures (of the order of 100 MeV) and high densities (up to four times normal nuclear density) are reached in head-on projectile-target collisions. Theoretical predictions now indicate a high probability that, when large amounts of nuclear matter are raised to the extreme temperatures and densities obtainable in head-on heavy-ion collisions at Tevalac beam energies, the quarks that constitute the individual nucleons will be deconfined: they will no longer be bound within individual nucleons, and a state of matter never before observed on earth--the quark-gluon plasma--will be created briefly. The investigation of the quark-gluon plasma will lead to unprecedented scientific opportunities and will serve as a bridge between conventional nuclear physics, which studies complex systems of particles, and high-energy physics, which studies the most fundamental constituents of matter

  15. AFSC/REFM: Community Profiles for North Pacific Fisheries, Alaska 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2005, the Alaska Fisheries Science Center (AFSC) compiled baseline socioeconomic information about 136 Alaska communities most involved in commercial fisheries....

  16. Trends in uranium supply

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M [International Atomic Energy Agency, Division of Nuclear Power and Reactors, Nuclear Materials and Fuel Cycle Section, Vienna (Austria)

    1976-07-01

    Prior to the development of nuclear power, uranium ores were used to a very limited extent as a ceramic colouring agent, as a source of radium and in some places as a source of vanadium. Perhaps before that, because of the bright orange and yellow colours of its secondary ores, it was probably used as ceremonial paint by primitive man. After the discovery of nuclear fission a whole new industry emerged, complete with its problems of demand, resources and supply. Spurred by special incentives in the early years of this new nuclear industry, prospectors discovered over 20 000 occurrences of uranium in North America alone, and by 1959 total world production reached a peak of 34 000 tonnes uranium from mines in South Africa, Canada and United States. This rapid growth also led to new problems. As purchases for military purposes ended, government procurement contracts were not renewed, and the large reserves developed as a result of government purchase incentives, in combination with lack of substantial commercial market, resulted in an over-supply of uranium. Typically, an over-supply of uranium together with national stockpiling at low prices resulted in depression of prices to less than $5 per pound by 1971. Although forecasts made in the early 1970's increased confidence in the future of nuclear power, and consequently the demand for uranium, prices remained low until the end of 1973 when OPEC announced a very large increase in oil prices and quite naturally, prices for coal also rose substantially. The economics of nuclear fuel immediately improved and prices for uranium began to climb in 1974. But the world-wide impact of the OPEC decision also produced negative effects on the uranium industry. Uranium production costs rose dramatically, as did capital costs, and money for investment in new uranium ventures became more scarce and more expensive. However, the uranium supply picture today offers hope of satisfactory development in spite of the many problems to be

  17. Trends in uranium supply

    International Nuclear Information System (INIS)

    Hansen, M.

    1976-01-01

    Prior to the development of nuclear power, uranium ores were used to a very limited extent as a ceramic colouring agent, as a source of radium and in some places as a source of vanadium. Perhaps before that, because of the bright orange and yellow colours of its secondary ores, it was probably used as ceremonial paint by primitive man. After the discovery of nuclear fission a whole new industry emerged, complete with its problems of demand, resources and supply. Spurred by special incentives in the early years of this new nuclear industry, prospectors discovered over 20 000 occurrences of uranium in North America alone, and by 1959 total world production reached a peak of 34 000 tonnes uranium from mines in South Africa, Canada and United States. This rapid growth also led to new problems. As purchases for military purposes ended, government procurement contracts were not renewed, and the large reserves developed as a result of government purchase incentives, in combination with lack of substantial commercial market, resulted in an over-supply of uranium. Typically, an over-supply of uranium together with national stockpiling at low prices resulted in depression of prices to less than $5 per pound by 1971. Although forecasts made in the early 1970's increased confidence in the future of nuclear power, and consequently the demand for uranium, prices remained low until the end of 1973 when OPEC announced a very large increase in oil prices and quite naturally, prices for coal also rose substantially. The economics of nuclear fuel immediately improved and prices for uranium began to climb in 1974. But the world-wide impact of the OPEC decision also produced negative effects on the uranium industry. Uranium production costs rose dramatically, as did capital costs, and money for investment in new uranium ventures became more scarce and more expensive. However, the uranium supply picture today offers hope of satisfactory development in spite of the many problems to be

  18. TIGER/Line Shapefile, 2014, Series Information File for the Current American Indian/Alaska Native/Native Hawaiian Areas (AIANNH) National Shapefile

    Data.gov (United States)

    US Census Bureau, Department of Commerce — The American Indian/Alaska Native/Native Hawaiian (AIANNH) Areas Shapefile includes the following legal entities: federally recognized American Indian reservations...

  19. GIS-based identification of areas that have resource potential for critical minerals in six selected groups of deposit types in Alaska

    Science.gov (United States)

    Karl, Susan M.; Jones, James V.; Hayes, Timothy S.

    2016-11-16

    Alaska has considerable potential for undiscovered mineral resources. This report evaluates potential for undiscovered critical minerals in Alaska. Critical minerals are those for which the United States imports more than half of its total supply and which are largely derived from nations that cannot be considered reliable trading partners. In this report, estimated resource potential and certainty for the state of Alaska are analyzed and mapped for the following six selected mineral deposit groups that may contain one or more critical minerals: (1) rare earth elements-thorium-yttrium-niobium(-uranium-zirconium) [REE-Th-Y-Nb(-U-Zr)] deposits associated with peralkaline to carbonatitic igneous intrusive rocks; (2) placer and paleoplacer gold (Au) deposits that in some places might also produce platinum group elements (PGE), chromium (Cr), tin (Sn), tungsten (W), silver (Ag), or titanium (Ti); (3) platinum group elements(-cobalt-chromium-nickel-titanium-vanadium) [PGE(-Co-Cr-Ni-Ti-V)] deposits associated with mafic to ultramafic intrusive rocks; (4) carbonate-hosted copper(-cobalt-silver-germanium-gallium) [Cu(-Co-Ag-Ge-Ga)] deposits; (5) sandstone-hosted uranium(-vanadium-copper) [U(-V-Cu)] deposits; and (6) tin-tungsten-molybdenum(-tantalum-indium-fluorspar) [Sn-W-Mo(-Ta-In-fluorspar)] deposits associated with specialized granites.This study used a data-driven, geographic information system (GIS)-implemented method to identify areas that have mineral resource potential in Alaska. This method systematically and simultaneously analyzes geoscience data from multiple geospatially referenced datasets and uses individual subwatersheds (12-digit hydrologic units) as the spatial unit of classification. The final map output uses a red, yellow, green, and gray color scheme to portray estimated relative potential (High, Medium, Low, Unknown) for each of the six groups of mineral deposit types, and it indicates the relative certainty (High, Medium, Low) of that estimate for

  20. Alaska Child Support Services Division

    Science.gov (United States)

    Payments Online! The CSSD Business Services Portal offers employers the convenience of paying child support ://my.Alaska.gov. Reporting online will save you time and money! If your business already has a myAlaska account Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska

  1. National Uranium Resource Evaluation. Aerial gamma ray and magnetic survey, Tawas City and Flint quadrangles, Michigan. Final report

    International Nuclear Information System (INIS)

    1981-07-01

    The Tawas City and Flint quadrangles of Michigan cover a land area of 6500 square miles, and an additional water surface area of 7200 square miles. Extremely thick Paleozoic deposits overlie a regional downwarp of the Precambrian basement called the Michigan Basin. These Paleozoic deposits shoal to only 1500 feet in the northeast corner. The entire survey area is covered by a mantle of Quaternary glacial material. A search of available literature revealed no economically feasible uranium deposits. Thirty-five uranium anomalies were detected and are discussed briefly. All appear to have cultural, and/or locally unsaturated associations, and none appear to contain significant measured quantities of uranium. Magnetic data appear to be in good agreement with existing structural interpretations of the area

  2. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, Catherine

    2012-12-31

    Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940’s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability

  3. 2012 Alaska Division of Geological and Geophysical Surveys (DGGS) Lidar: Whittier, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In support of geologic mapping and hazards evaluation in and near Whittier, Alaska, the Division of Geological and Geophysical Surveys (DGGS) acquired, and is making...

  4. Alaska volcanoes guidebook for teachers

    Science.gov (United States)

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  5. Maynard Participation in Alaska Forum on the Environment Panel Discussion on Increasing Input to the US National Climate Assessment (NCA) and the Intergovernmental Panel on Climate Change (IPCC) Processes from Alaska, with Emphasis on Indigenous Peoples Issues

    Science.gov (United States)

    Maynard, Nancy G.

    2012-01-01

    Dr. Nancy Maynard was invited by the Alaska Forum on the Environment to participate in a Panel Discussion to discuss (1) background about what the US NCA and International IPCC assessments are, (2) the impact the assessments have on policy-making, (3) the process for participation in both assessments, (4) how we can increase participation by Indigenous Peoples such as Native Americans and Alaska Natives, (5) How we can increase historical and current impacts input from Native communities through stories, oral history, "grey" literature, etc. The session will be chaired by Dr. Bull Bennett, a cochair of the US NCA's chapter on "Native and Tribal Lands and Resources" and Dr. Maynard is the other co-chair of that chapter and they will discuss the latest activities under the NCA process relevant to Native Americans and Alaska Natives. Dr. Maynard is also a Lead Author of the "Polar Regions" chapter of the IPCC WG2 (5th Assessment) and she will describes some of the latest approaches by the IPCC to entrain more Indigenous peoples into the IPCC process.

  6. Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium in Mixed Oxide

    International Nuclear Information System (INIS)

    Mount, M.; O'Connell, W.; Cochran, C.; Rinard, P.; Dearborn, D.; Endres, E.

    2002-01-01

    As a follow-on to the Lawrence Livermore National Laboratory (LLNL) effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler for measurement of highly enriched uranium (HEU) oxide, a method has been developed to extend the use of the PAN shuffler to the measurement of HEU in mixed uranium-plutonium (U-Pu) oxide. This method uses the current LLNL HEU oxide calibration algorithms, appropriately corrected for the mixed U-Pu oxide assay time, and recently developed PuO 2 calibration algorithms to yield the mass of 235 U present via differences between the expected count rate for the PuO 2 and the measured count rate of the mixed U-Pu oxide. This paper describes the LLNL effort to use PAN shuffler measurements of units of certified reference material (CRM) 149 (uranium (93% Enriched) Oxide - U 3 O 8 Standard for Neutron Counting Measurements) and CRM 146 (uranium Isotopic Standard for Gamma Spectrometry Measurements) and a selected set of LLNL PuO 2 -bearing containers in consort with Monte Carlo simulations of the PAN shuffler response to each to (1) establish and validate a correction to the HEU calibration algorithm for the mixed U-Pu oxide assay time, (2) develop a PuO 2 calibration algorithm that includes the effect of PuO 2 density (2.4 g/cm 3 to 4.8 g/cm 3 ) and container size (8.57 cm to 9.88 cm inside diameter and 9.60 cm to 13.29 cm inside height) on the PAN shuffler response, and (3) develop and validate the method for establishing the mass of 235 U present in an unknown of mixed U-Pu oxide.

  7. Lake Champlain 10 x 20 NTMS area New York, Vermont, and New Hampshire: data report (abbreviated). National Uranium Resource Evaluation program, hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Cook, J.R.

    1981-03-01

    This abbreviated data report presents results of ground water and stream sediment reconnaissance in the National Topographic Map Series (NTMS) Lake Champlain 1 0 x 2 0 quadrangle. Surface sediment samples were collected at 1196 sites. Ground-water samples were collected at 619 sites. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, for uranium and 8 other elements in ground water, and for uranium and 9 other elements in surface water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Data from ground-water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity), (2) physical measurements where applicable (water temperature, well description, etc.), and (3) elemental analyses (U, Al, Br, Cl, Dy, F, Mn, Na, and V). Data from sediment sites include (1) stream water chemistry measurements (pH, conductivity, and alkalinity), and (2) elemental analyses for sediment samples (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are also tabulated. A real distribution maps, histograms, and cumulative frequency plots for most elements and for U/Th and U/Hf ratios are included. Key data from stream water sites include (1) water quality measurements (pH, conductivity, and alkalinity) and (2) elemental analyses (U, Al, Br, Cl, Dy, F, Mg, Mg, Na, and V). Uranium concentrations in the sediments range from 0.30 to 43.40 ppM with a mean of 3.03 ppM. A cluster of high log (U/Th+Hf) ratios appear in the southeastern portion of the quadrangle. The U x 1000/conductivity ratio in surface water is high in this same area

  8. Uranium in Canada

    International Nuclear Information System (INIS)

    1987-09-01

    Canadian uranium exploration and development efforts in 1985 and 1986 resulted in a significant increase in estimates of measured uranium resources. New discoveries have more than made up for production during 1985 and 1986, and for the elimination of some resources from the overall estimates, due to the sustained upward pressure on production costs and the stagnation of uranium prices in real terms. Canada possesses a large portion of the world's uranium resources that are of current economic interest and remains the major focus of inter-national uranium exploration activity. Expenditures for uranium exploration in Canada in 1985 and 1986 were $32 million and $33 million, respectively. Although much lower than the $130 million total reported for 1979, expenditures for 1987 are forecast to increase. Exploration and surface development drilling in 1985 and 1986 were reported to be 183 000 m and 165σ2 000 m, respectively, 85 per cent of which was in Saskatchewan. Canada has maintained its position as the world's leading producer and exporter of uranium. By the year 2000, Canada's annual uranium requirements will be about 2 100 tU. Canada's known uranium resources are more than sufficient to meet the 30-year fuel requirements of those reactors in Canada that are either in operation now or expected to be in service by the late 1990s. A substantial portion of Canada's identified uranium resources is thus surplus to Canadian needs and available for export. Annual sales currently approach $1 billion, of which exports account for 85 per cent. Forward domestic and export contract commitments totalled 73 000 tU and 62 000 tU, respectively, as of early 1987

  9. Trends in spatial patterns of heavy metal deposition on national park service lands along the Red Dog Mine haul road, Alaska, 2001-2006.

    Directory of Open Access Journals (Sweden)

    Peter N Neitlich

    Full Text Available Spatial patterns of Zn, Pb and Cd deposition in Cape Krusenstern National Monument (CAKR, Alaska, adjacent to the Red Dog Mine haul road, were characterized in 2001 and 2006 using Hylocomium moss tissue as a biomonitor. Elevated concentrations of Cd, Pb, and Zn in moss tissue decreased logarithmically away from the haul road and the marine port. The metals concentrations in the two years were compared using Bayesian posterior predictions on a new sampling grid to which both data sets were fit. Posterior predictions were simulated 200 times both on a coarse grid of 2,357 points and by distance-based strata including subsets of these points. Compared to 2001, Zn and Pb concentrations in 2006 were 31 to 54% lower in the 3 sampling strata closest to the haul road (0-100, 100-2000 and 2000-4000 m. Pb decreased by 40% in the stratum 4,000-5,000 m from the haul road. Cd decreased significantly by 38% immediately adjacent to the road (0-100m, had an 89% probability of a small decrease 100-2000 m from the road, and showed moderate probabilities (56-71% for increase at greater distances. There was no significant change over time (with probabilities all ≤ 85% for any of the 3 elements in more distant reference areas (40-60 km. As in 2001, elemental concentrations in 2006 were higher on the north side of the road. Reductions in deposition have followed a large investment in infrastructure to control fugitive dust escapement at the mine and port sites, operational controls, and road dust mitigation. Fugitive dust escapement, while much reduced, is still resulting in elevated concentrations of Zn, Pb and Cd out to 5,000 m from the haul road. Zn and Pb levels were slightly above arctic baseline values in southern CAKR reference areas.

  10. Analyzing the impacts of off-road vehicle (ORV) trails on watershed processes in Wrangell-St. Elias National Park and Preserve, Alaska.

    Science.gov (United States)

    Arp, Christopher D; Simmons, Trey

    2012-03-01

    Trails created by off-road vehicles (ORV) in boreal lowlands are known to cause local impacts, such as denuded vegetation, soil erosion, and permafrost thaw, but impacts on stream and watershed processes are less certain. In Wrangell-St. Elias National Park and Preserve (WRST), Alaska, ORV trails have caused local resource damage in intermountain lowlands with permafrost soils and abundant wetlands and there is a need to know whether these impacts are more extensive. Comparison of aerial photography from 1957, 1981, and 2004 coupled with ground surveys in 2009 reveal an increase in trail length and number and show an upslope expansion of a trail system around points of stream channel initiation. We hypothesized that these impacts could also cause premature initiation and headward expansion of channels because of lowered soil resistance and greater runoff accumulation as trails migrate upslope. Soil monitoring showed earlier and deeper thaw of the active layer in and adjacent to trails compared to reference sites. Several rainfall-runoff events during the summer of 2009 showed increased and sustained flow accumulation below trail crossings and channel shear forces sufficient to cause headward erosion of silt and peat soils. These observations of trail evolution relative to stream and wetland crossings together with process studies suggest that ORV trails are altering watershed processes. These changes in watershed processes appear to result in increasing drainage density and may also alter downstream flow regimes, water quality, and aquatic habitat. Addressing local land-use disturbances in boreal and arctic parklands with permafrost soils, such as WRST, where responses to climate change may be causing concurrent shifts in watershed processes, represents an important challenge facing resource managers.

  11. Alaska Gravity Data per 2 x 4 min Cell (96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' gravity density grid for Alaska displays the distribution of about 1.1 million terrestrial and marine gravity data held in the National Geodetic Survey...

  12. Feasibility studies on electrochemical separation and recovery of uranium by using domestic low grade uranium resources

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Chong Hun; Lee, Kune Woo; Won, Hui Jun; Choi, Wang Kyu; Kim, Gye Nam; Lee, Yu Ri; Lee, Joong Moung

    2005-12-01

    The up-to-date electrochemical uranium separation technology has been developed for uranium sludge waste treatment funded by a long term national nuclear technology development program. The objective of the studies is to examine applicability of the uranium separation technology to making use of the low grade uranium resources in the country. State of the arts of uranium separation and recovery from the low grade national uranium resources. - The amount of the high grade uranium resources(0.1 % U 3 O 8 contents) in the world is 1,750,000MTU and that of the low grade uranium resources(0.04 % U 3 O 8 contents) in the country is 340,000MTU. - The world uranium price will be increase to more than 30$/l0b in 10 years, so that the low grade uranium in the country become worth while to recover. - The conventional uranium recovery technologies are based on both acidic - The ACF electrochemical uranium separation technology is the state of the art technology in the world and the adsorption capability of 690 mgU/g is several ten times higher than that of a conventional zeolite and the uranium stripping efficiency by desorption is more than 99%. So, this technology is expected to replace the existing solvent extraction technology. Feasibility of the ACF electrochemical uranium separation technology as an uranium recovery method. Lab scale demonstration of uranium separation and recovery technologies have been carried out by using an ACF electrochemical method

  13. Precise coulometric titration of uranium in a high-purity uranium metal and in uranium compounds

    International Nuclear Information System (INIS)

    Tanaka, Tatsuhiko; Yoshimori, Takayoshi

    1975-01-01

    Uranium in uranyl nitrate, uranium trioxide and a high-purity uranium metal was assayed by the coulometric titration with biamperometric end-point detection. Uranium (VI) was reduced to uranium (IV) by solid bismuth amalgam in 5M sulfuric acid solution. The reduced uranium was reoxidized to uranium (VI) with a large excess of ferric ion at a room temperature, and the ferrous ion produced was titrated with the electrogenerated manganese(III) fluoride. In the analyses of uranium nitrate and uranium trioxide, the results were precise enough when the error from uncertainty in water content in the samples was considered. The standard sample of pure uranium metal (JAERI-U4) was assayed by the proposed method. The sample was cut into small chips of about 0.2g. Oxides on the metal surface were removed by the procedure shown by National Bureau of Standards just before weighing. The mean assay value of eleven determinations corrected for 3ppm of iron was (99.998+-0.012) % (the 95% confidence interval for the mean), with a standard deviation of 0.018%. The proposed coulometric method is simple and permits accurate and precise determination of uranium which is matrix constituent in a sample. (auth.)

  14. Uranium industry seminar

    International Nuclear Information System (INIS)

    1980-01-01

    The tenth annual Uranium Industry Seminar, sponsored by the US Department of Energy's (DOE) Grand Junction Office, was held in Grand Junction, Colorado, on October 22 and 23, 1980. There were 700 registered attendees as compared to 833 attending the previous year. The attendees were drawn largely from uranium and other energy resource companies, electric utility firms, energy consultants and service companies, and governmental agencies. In addition, there were representatives present from Indian tribes, universities, the media, DOE laboratories, and foreign countries and organizations. There were 14 papers presented at the seminar by speakers from the Department of Energy, US Geological Survey, and Bendix Field Engineering Corporation which is the on-site prime contractor for DOE's Grand Junction Office. The topics the papers dealt with were uranium policies, exploration, respources, supply, enrichment, and market conditions. There also were papers describing the National Uranium Resource Evaluation program and international activities. All 14 papers in this Proceedings have been abstracted and indexed

  15. Uranium industry seminar: proceedings

    International Nuclear Information System (INIS)

    1981-01-01

    The eleventh annual Uranium Industry Seminar, sponsored by the Grand Junction Area Office of the US Department of Energy (DOE), was held in Grand Junction, Colorado, on October 21 and 22, 1981. There were 491 registered attendees as compared to 700 attending the previous year. The attendees were largely from uranium and other energy resource companies, electric utility firms, energy consultants and service companies, and governmental agencies. In addition, there were representatives present from Indian tribes, universities, the media, DOE laboratories, and foreign countries and organizations. Papers presented at the seminar dealt with uranium policies, exploration, resources, supply, enrichment, and market conditions. There also were papers on the National Uranium Resource Evaluation Program and international activities. Thirteen papers included in this report have been abstracted and indexed

  16. Timber products output and timber harvests in Alaska: projections for 1992-2010.

    Science.gov (United States)

    D.J. Brooks; R.W. Haynes

    1994-01-01

    Projections of Alaska timber products output, the derived demand for raw material, and timber harvest by owner are developed from a trend-based analysis. By using a spread-sheet model, material flows in the Alaska forest sectorare fully accounted for. Demand for Alaska national forest timber is projected and depends on product output and harvest by other owners. Key...

  17. 77 FR 41754 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Science.gov (United States)

    2012-07-16

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... program in the Southeast Alaska purse seine salmon fishery. NMFS conducted a referendum to approve the..., Chief, Financial Services Division, NMFS, Attn: SE Alaska Purse Seine Salmon Buyback, 1315 East-West...

  18. 78 FR 33810 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Science.gov (United States)

    2013-06-05

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... reduction loan for the fishing capacity reduction program in the Southeast Alaska purse seine salmon fishery... July 22, 2012. Since then, all harvesters of Southeast Alaska purse seine salmon must pay the fee and...

  19. 77 FR 12568 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Science.gov (United States)

    2012-03-01

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... Salmon Fishery. NMFS will hold a series of public meetings with Southeast Alaska purse seine salmon... to Paul Marx, Chief, Financial Services Division, NMFS, Attn: SE Alaska Purse Seine Salmon Buyback...

  20. 76 FR 41763 - Proposed Information Collection; Comment Request; Alaska Region Logbook Family of Forms

    Science.gov (United States)

    2011-07-15

    ... Collection; Comment Request; Alaska Region Logbook Family of Forms AGENCY: National Oceanic and Atmospheric... (NMFS) Alaska Region manages the United States (U.S.) groundfish fisheries of the Exclusive Economic.... NMFS Alaska Region requests information from participating groundfish participants. This information...