WorldWideScience

Sample records for alanines

  1. Allosteric inhibition of Staphylococcus aureus d-alanine:d-alanine ligase revealed by crystallographic studies

    OpenAIRE

    Liu, Shenping; Chang, Jeanne S.; Herberg, John T.; Horng, Miao-Miao; Tomich, Paul K.; Lin, Alice H.; Marotti, Keith R

    2006-01-01

    d-alanine:d-alanine ligase (DDl) is an essential enzyme in bacterial cell wall biosynthesis and an important target for developing new antibiotics. It catalyzes the formation of d-alanine:d-alanine dipeptide, sequentially by using one d-alanine and one ATP as substrates for the first-half reaction, and a second d-alanine substrate to complete the reaction. Some gain of function DDl mutants can use an alternate second substrate, causing resistance to vancomycin, one of the last lines of defens...

  2. Response of Alanine Dosemeter to Heavy Ions

    Institute of Scientific and Technical Information of China (English)

    LiWenjian; SuXu; YangYingjie; YuanJianlei; DangBingrong; WangXiao; MaQiufeng; ZhouLibin; HaoJifang; MaoShuhong

    2003-01-01

    The amino acid L-α-alanine has been investigated for use as a radiation detector in low and high LET radiation fields[1]. The radiatioa detector is cheap and easy to handle. The radiation inducing free radicals are stable at normal laboratory conditions for doses below 104 Gy over a long period of time, which makes the detector useful for intercomparison and documentation purposes. The dosimetric features of alanine-based electron spin resonance (ESR) detectors in high energy electron beams used in radiotherapy were considered[2]. The 5 mm long alanine detectors were found to be the most suitable for carrying out in vivo dosimetry on patients undergoing electron beam radiotherapy. However, data concerning dosimetry of the alanine dosemeter to heavy charged particles are lacking, especially in China.

  3. On the existence of ‘L-alanine cadmium bromide'

    Science.gov (United States)

    Srinivasan, Bikshandarkoil R.

    2013-12-01

    It is argued that the recently reported nonlinear optical crystal L-alanine cadmium bromide, grown by slow solvent evaporation method at room temperature [P. Ilayabarathi, J. Chandrasekaran, Spectrochim. Acta 96A (2012) 684-689] is the well-known L-alanine crystal. The isolation of L-alanine crystal is explained due to fractional crystallization.

  4. On the existence of 'L-alanine cadmium bromide'.

    Science.gov (United States)

    Srinivasan, Bikshandarkoil R

    2013-12-01

    It is argued that the recently reported nonlinear optical crystal L-alanine cadmium bromide, grown by slow solvent evaporation method at room temperature [P. Ilayabarathi, J. Chandrasekaran, Spectrochim. Acta 96A (2012) 684-689] is the well-known L-alanine crystal. The isolation of L-alanine crystal is explained due to fractional crystallization.

  5. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yong-Zhi; Sheng, Yu [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Li, Lan-Fen [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Tang, De-Wei [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Liu, Xiang-Yu [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Zhao, Xiaojun, E-mail: zhaoxj@scu.edu.cn [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Liang, Yu-He, E-mail: zhaoxj@scu.edu.cn; Su, Xiao-Dong [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China)

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.

  6. Dose Response of Alanine Detectors Irradiated with Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    2011-01-01

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type, when irradiated with ion beams. The purpose of this study is to investigate the response behaviour of the alanine detector in clinical carbon ion beams and compare the results with model predictions....... Methods: Alanine detectors have been irradiated with carbon ions with an energy range of 89-400 MeV/u. The relative effectiveness of alanine has been measured in this regime. Pristine and spread out Bragg peak depth-dose curves have been measured with alanine dosimeters. The track-structure based alanine......-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasi mono energetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties...

  7. Dosimetry for the external radiation therapy. Dosimetry with alanine; Dosimetrie fuer die externe Strahlentherapie. Dosimetrie mit Alanin

    Energy Technology Data Exchange (ETDEWEB)

    Anton, Mathias [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Alanin-Dosimetrie'

    2013-06-15

    The alanine-ESR dosimetry in the PTB is described. The response power of alanine related to the water energy dose for X-rays with average energy of 10-1000 keV is presented. Furthermore the application of alanine for the quality assurance in the radiation therapy is described by means of the prostate irradiation and the therapy of a tumor in the neck region as examples. (HSI)

  8. Alanine aminotransferase controls seed dormancy in barley

    Science.gov (United States)

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G.; Fincher, Geoffrey B.; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  9. Crystal structure of the Apo form of D-Alanine:D-Alanine ligase (DDl) from Streptococcus mutans.

    Science.gov (United States)

    Lu, Yongzhi; Xu, Hongyan; Zhao, Xiaojun

    2010-08-01

    D-Alanine:D-Alanine ligase (DDl) catalyzes the formation of D-Alanine:D-Alanine dipeptide and is an essential enzyme in bacterial cell wall biosynthesis.. This enzyme does not have a human ortholog, making it an attractive target for developing new antibiotic drugs. We determined the crystal structure at 2.23 A resolution of DDl from Streptococcus mutans (SmDDl), the principal aetiological agent of human dental caries. This structure reveals that SmDDl is a dimer and has a disordered omega-loop region.

  10. The structure of alanine racemase from Acinetobacter baumannii.

    Science.gov (United States)

    Davis, Emily; Scaletti-Hutchinson, Emma; Opel-Reading, Helen; Nakatani, Yoshio; Krause, Kurt L

    2014-09-01

    Acinetobacter baumannii is an opportunistic Gram-negative bacterium which is a common cause of hospital-acquired infections. Numerous antibiotic-resistant strains exist, emphasizing the need for the development of new antimicrobials. Alanine racemase (Alr) is a pyridoxal 5'-phosphate dependent enzyme that is responsible for racemization between enantiomers of alanine. As D-alanine is an essential component of the bacterial cell wall, its inhibition is lethal to prokaryotes, making it an excellent antibiotic drug target. The crystal structure of A. baumannii alanine racemase (AlrAba) from the highly antibiotic-resistant NCTC13302 strain has been solved to 1.9 Å resolution. Comparison of AlrAba with alanine racemases from closely related bacteria demonstrates a conserved overall fold. The substrate entryway and active site of the enzymes were shown to be highly conserved. The structure of AlrAba will provide the template required for future structure-based drug-design studies.

  11. Enzyme-Catalyzed Polymerization of Beta-alanine Esters, A Sustainable Route Towards the Formation of Poly-Beta-alanine

    NARCIS (Netherlands)

    Steunenberg, P.; Uiterweerd, M.; Sijm, M.; Scott, E.L.; Zuilhof, H.; Sanders, J.P.M.; Franssen, M.C.R.

    2013-01-01

    The synthesis of poly-ß-alanine by a lipase catalyzed polycondensation reaction between ß-alanine esters is reported. The effect of different solvents, reaction temperatures and substrate/enzyme concentrations on polymer yield and degree of polymerization (DP) was determined. Also the effect of meth

  12. β-Alanine supplementation for athletic performance: an update.

    Science.gov (United States)

    Bellinger, Phillip M

    2014-06-01

    β-alanine supplementation has become a common practice among competitive athletes participating in a range of different sports. Although the mechanism by which chronic β-alanine supplementation could have an ergogenic effect is widely debated, the popular view is that β-alanine supplementation augments intramuscular carnosine content, leading to an increase in muscle buffer capacity, a delay in the onset of muscular fatigue, and a facilitated recovery during repeated bouts of high-intensity exercise. β-alanine supplementation appears to be most effective for exercise tasks that rely heavily on ATP synthesis from anaerobic glycolysis. However, research investigating its efficacy as an ergogenic aid remains equivocal, making it difficult to draw conclusions as to its effectiveness for training and competition. The aim of this review was to update, summarize, and critically evaluate the findings associated with β-alanine supplementation and exercise performance with the most recent research available to allow the development of practical recommendations for coaches and athletes. A critical review of the literature reveals that when significant ergogenic effects have been found, they have been generally shown in untrained individuals performing exercise bouts under laboratory conditions. The body of scientific data available concerning highly trained athletes performing single competition-like exercise tasks indicates that this type of population receives modest but potentially worthwhile performance benefits from β-alanine supplementation. Recent data indicate that athletes may not only be using β-alanine supplementation to enhance sports performance but also as a training aid to augment bouts of high-intensity training. β-alanine supplementation has also been shown to increase resistance training performance and training volume in team-sport athletes, which may allow for greater overload and superior adaptations compared with training alone. The ergogenic

  13. The antiproton depth–dose curve measured with alanine detectors

    CERN Document Server

    Bassler, Niels; Palmans, Hugo; Holzscheiter, Michael H; Kovacevic, Sandra

    2008-01-01

    n this paper we report on the measurement of the antiproton depth–dose curve, with alanine detectors. The results are compared with simulations using the particle energy spectrum calculated by FLUKA, and using the track structure model of Hansen and Olsen for conversion of calculated dose into response. A good agreement is observed between the measured and calculated relative effectiveness although an underestimation of the measured values beyond the Bragg-peak remains unexplained. The model prediction of response of alanine towards heavy charged particles encourages future use of the alanine detectors for dosimetry of mixed radiation fields.

  14. Colorimetry method for estimation of glycine, alanine and isoleucine

    Directory of Open Access Journals (Sweden)

    Shah S

    2007-01-01

    Full Text Available A simple and sensitive colorimetry method has been developed for estimation of amino acids glycine, alanine and isoleucine. Amino acids were derivatized with dichlone in presence of sodium bicarbonate. Amino acids showed maximum absorbance at 470 nm. The method was validated in terms of linearity (5-25 µg/ml for glycine, alanine and isoleucine, precision (intra-day variation 0.13-0.78, 0.22-1.29, 0.58-2.52% and inter-day variation 0.52-2.49, 0.43-3.12, 0.58- 4.48% for glycine, alanine and isoleucine respectively, accuracy (91.43-98.86, 96.26-105.99 and 95.73-104.82 for glycine, alanine and isoleucine respectively, limit of detection (0.6, 1 and 1 µg/ml for glycine, alanine and isoleucine respectively and limit of quantification (5 µg/ml for glycine, alanine and isoleucine. The method was found to be simple and sensitive.

  15. Structure of D-alanine-D-alanine ligase from Yersinia pestis: nucleotide phosphate recognition by the serine loop.

    Science.gov (United States)

    Tran, Huyen Thi; Hong, Myoung Ki; Ngo, Ho Phuong Thuy; Huynh, Kim Hung; Ahn, Yeh Jin; Wang, Zhong; Kang, Lin Woo

    2016-01-01

    D-Alanyl-D-alanine is an essential precursor of bacterial peptidoglycan and is synthesized by D-alanine-D-alanine ligase (DDL) with hydrolysis of ATP; this reaction makes DDL an important drug target for the development of antibacterial agents. Five crystal structures of DDL from Yersinia pestis (YpDDL) were determined at 1.7-2.5 Å resolution: apo, AMP-bound, ADP-bound, adenosine 5'-(β,γ-imido)triphosphate-bound, and D-alanyl-D-alanine- and ADP-bound structures. YpDDL consists of three domains, in which four loops, loop 1, loop 2 (the serine loop), loop 3 (the ω-loop) and loop 4, constitute the binding sites for two D-alanine molecules and one ATP molecule. Some of them, especially the serine loop and the ω-loop, show flexible conformations, and the serine loop is mainly responsible for the conformational change in substrate nucleotide phosphates. Enzyme-kinetics assays were carried out for both the D-alanine and ATP substrates and a substrate-binding mechanism was proposed for YpDDL involving conformational changes of the loops.

  16. The polyproline II conformation in short alanine peptides is noncooperative.

    Science.gov (United States)

    Chen, Kang; Liu, Zhigang; Kallenbach, Neville R

    2004-10-26

    The finding that short alanine peptides possess a high fraction of polyproline II (PII) structure (Phi=-75 degrees, Psi=+145 degrees ) at low temperature has broad implications for unfolded states of proteins. An important question concerns whether or not this structure is locally determined or cooperative. We have monitored the conformation of alanine in a series of model peptides AcGGAnGGNH2 (n=1-3) over a temperature range from -10 degrees C to +80 degrees C. Use of 15N-labeled alanine substitutions makes it possible to measure 3JalphaN coupling constants accurately over the full temperature range. Based on a 1D next-neighbor model, the cooperative parameter sigma of PII nucleation is evaluated from the coupling constant data. The finding that sigma is close to unity (1 +/- 0.2) indicates a noncooperative role for alanine in PII structure formation, consistent with statistical surveys of the Protein Data Bank that suggest that most PII structure occurs in isolated residues. Lack of cooperativity in these models implies that hydration effects that influence PII conformation in water are highly localized. Using a nuclear Overhauser effect ratio strategy to define the alanine Psi angle, we estimate that, at 40 degrees C, the time-averaged alanine conformation (Phi=-80 degrees, Psi=+170 degrees ) deviates from canonical PII structure, indicating that PII melts at high temperature. Thus, the high-temperature state of short alanine peptides seems to be an unfolded ensemble with higher distribution in the extended beta structure basin, but not a coil.

  17. On the existence of ``l-threonine formate'', ``l-alanine lithium chloride'' and ``bis l-alanine lithium chloride'' crystals

    Science.gov (United States)

    Petrosyan, A. M.; Ghazaryan, V. V.; Fleck, M.

    2013-03-01

    We argue that the recently reported crystals "L-threonine formate" as well as "L-alanine lithium chloride" and "bis L-alanine lithium chloride" actually are the well-known crystals L-threonine and L-alanine, respectively.

  18. First-principles studies of pure and fluorine substituted alanines

    Science.gov (United States)

    Ahmad, Sardar; Vaizie, Hamide; Rahnamaye Aliabad, H. A.; Ahmad, Rashid; Khan, Imad; Ali, Zahid; Jalali-Asadabadi, S.; Ahmad, Iftikhar; Khan, Amir Abdullah

    2016-05-01

    This paper communicates the structural, electronic and optical properties of L-alanine, monofluoro and difluoro substituted alanines using density functional calculations. These compounds exist in orthorhombic crystal structure and the calculated structural parameters such as lattice constants, bond angles and bond lengths are in agreement with the experimental results. L-alanine is an indirect band gap insulator, while its fluorine substituted compounds (monofluoroalanine and difluoroalanine) are direct band gap insulators. The substitution causes reduction in the band gap and hence these optically tailored direct wide band gap materials have enhanced optical properties in the ultraviolet (UV) region of electromagnetic spectrum. Therefore, optical properties like dielectric function, refractive index, reflectivity and energy loss function are also investigated. These compounds have almost isotropic nature in the lower frequency range while at higher energies, they have a significant anisotropic nature.

  19. The Response of Alanine Dosimeters in Thermal Neutron Fields

    DEFF Research Database (Denmark)

    Schmitz, T.; Bassler, Niels; Sharpe, P.

    Purpose: Boron Neutron Capture Therapy (BNCT) is a special kind of particle therapy, based on the neutron induced fission of the boron isotope 10B [1]. We have performed dosimetry experiments on the mixed neutron and gamma fields at the TRIGA Mark II research reactor in Mainz. Commonly, dosimetry...... in such fields is realized by foil activation and ion chambers [2]. Here we investigate alanine as an easier and more robust alternative dosimeter. Methods: We have performed four phantom experiments at the TRIGA Mark II research reactor in Mainz [3], in a predominantly thermal neutron field with a strong gamma...... neutron capture of hydrogen. The primary gamma dose deposited originate from the reactor core itself. Conclusion: Alanine dosimeters are suitable of measurements in mixed neutron fields and the alanine response in thermal neutron fields can be fully understood by the used interpretation model. In further...

  20. Alanine Radiation Detectors in Therapeutic Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo;

    of the depth dose curves. Solid state detectors, such as diamond detectors, radiochromic films, TLDs and the amino acid alanine are used due to there good spatial resolution. If used in particle beams their response often exhibits a dependence on particle energy and type, so the acquired signal is not always...... at energies below 20 MeV/u. We implemented this model in the Monte Carlo code FLUKA. At the GSI heavy ion facility in Darmstadt, Germany, alanine has been irradiated with carbon ions at energies between 88 an 400 MeV/u, which is the energy range used for therapy. The irradiation and the detector response have...

  1. Computational alanine scanning with linear scaling semiempirical quantum mechanical methods.

    Science.gov (United States)

    Diller, David J; Humblet, Christine; Zhang, Xiaohua; Westerhoff, Lance M

    2010-08-01

    Alanine scanning is a powerful experimental tool for understanding the key interactions in protein-protein interfaces. Linear scaling semiempirical quantum mechanical calculations are now sufficiently fast and robust to allow meaningful calculations on large systems such as proteins, RNA and DNA. In particular, they have proven useful in understanding protein-ligand interactions. Here we ask the question: can these linear scaling quantum mechanical methods developed for protein-ligand scoring be useful for computational alanine scanning? To answer this question, we assembled 15 protein-protein complexes with available crystal structures and sufficient alanine scanning data. In all, the data set contains Delta Delta Gs for 400 single point alanine mutations of these 15 complexes. We show that with only one adjusted parameter the quantum mechanics-based methods outperform both buried accessible surface area and a potential of mean force and compare favorably to a variety of published empirical methods. Finally, we closely examined the outliers in the data set and discuss some of the challenges that arise from this examination.

  2. The Antiproton Depth Dose Curve Measured with Alanine Detectors

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, Johnny Witterseh; Palmans, Hugo;

    2008-01-01

    In this paper we report on the measurement of the antiproton depth dose curve, with alanine detectors. The results are compared with simulations using the particle energy spectrum calculated by FLUKA, and using the track structure model of Hansen et Olsen for conversion of calculated dose...

  3. Pressure-induced phase transformations in L-alanine crystals

    DEFF Research Database (Denmark)

    Olsen, J. Staun; Gerward, Leif; Freire, P.T.C.

    2008-01-01

    Raman scattering and synchrotron X-ray diffraction have been used to investigate the high-pressure behavior of L-alanine. This study has confirmed a structural phase transition observed by Raman scattering at 2.3 GPa and identified it as a change from orthorhombic to tetragonal structure. Another...

  4. Crystal structures of d-alanine-d-alanine ligase from Xanthomonas oryzae pv. oryzae alone and in complex with nucleotides.

    Science.gov (United States)

    Doan, Thanh Thi Ngoc; Kim, Jin-Kwang; Ngo, Ho-Phuong-Thuy; Tran, Huyen-Thi; Cha, Sun-Shin; Min Chung, Kyung; Huynh, Kim-Hung; Ahn, Yeh-Jin; Kang, Lin-Woo

    2014-03-01

    D-Alanine-D-alanine ligase (DDL) catalyzes the biosynthesis of d-alanyl-d-alanine, an essential bacterial peptidoglycan precursor, and is an important drug target for the development of antibacterials. We determined four different crystal structures of DDL from Xanthomonas oryzae pv. oryzae (Xoo) causing Bacteria Blight (BB), which include apo, ADP-bound, ATP-bound, and AMPPNP-bound structures at the resolution between 2.3 and 2.0 Å. Similarly with other DDLs, the active site of XoDDL is formed by three loops from three domains at the center of enzyme. Compared with d-alanyl-d-alanine and ATP-bound TtDDL structure, the γ-phosphate of ATP in XoDDL structure was shifted outside toward solution. We swapped the ω-loop (loop3) of XoDDL with those of Escherichia coli and Helicobacter pylori DDLs, and measured the enzymatic kinetics of wild-type XoDDL and two mutant XoDDLs with the swapped ω-loops. Results showed that the direct interactions between ω-loop and other two loops are essential for the active ATP conformation for D-ala-phosphate formation.

  5. Formation of simple biomolecules from alanine in ocean by impacts

    Science.gov (United States)

    Umeda, Y.; Sekine, T.; Furukawa, Y.; Kakegawa, T.; Kobayashi, T.

    2013-12-01

    The biomolecules on the Earth are thought either to have originated from the extraterrestrial parts carried with flying meteorites or to have been formed from the inorganic materials on the Earth through given energy. From the standpoint to address the importance of impact energy, it is required to simulate experimentally the chemical reactions during impacts, because violent impacts may have occurred 3.8-4.0 Gyr ago to create biomolecules initially. It has been demonstrated that shock reactions among ocean (H2O), atmospheric nitrogen, and meteoritic constitution (Fe) can induce locally reduction environment to form simple bioorganic molecules such as ammonia and amino acid (Nakazawa et al., 2005; Furukawa et al., 2009). We need to know possible processes for alanine how chemical reactions proceed during repeated impacts and how complicated biomolecules are formed. Alanine can be formed from glycine (Umeda et al., in preparation). In this study, we carried out shock recovery experiments at pressures of 4.4-5.7 GPa to investigate the chemical reactions of alanine. Experiments were carried out with a propellant gun. Stainless steel containers (30 mm in diameter, 30 mm long) with 13C-labeled alanine aqueous solution immersed in olivine or hematite powders were used as targets. Air gap was present in the sample room (18 mm in diameter, 2 mm thick) behind the sample. The powder, solution, and air represent meteorite, ocean, and atmosphere on early Earth, respectively. Two powders of olivine and hematite help to keep the oxygen fugacity low and high during experiments, respectively in order to investigate the effect of oxygen fugacity on chemical processes of alanine. The recovered containers, after cleaned completely, were immersed into liquid nitrogen to freeze sample solution and then we drilled on the impact surface to extract water-soluble run products using pure water. Thus obtained products were analyzed by LC/MS for four amino acids (glycine, alanine, valine, and

  6. Degradation of glycine and alanine on irradiated quartz.

    Science.gov (United States)

    Pawlikowski, Maciej; Benko, Aleksandra; Wróbel, Tomasz P

    2013-04-01

    Recent researches suggest participation of minerals in the formation of life under primordial conditions. Among all of the minerals, quartz seems to be one of the most probable to take part in such processes. However, an external source of energy is needed, e.g. electric discharge. A device simulating the proposed conditions was designed and was used to simulate prebiotic conditions. Investigation of processes occurring during the stimulation of quartz with electric discharge was studied by means of Ultraviolet-visible (UV-VIS) spectroscopy, in order to monitor the generation kinetics of free radicals. Additionally, infrared spectroscopy was applied to identify chemical reaction products created in a solution of alanine or glycine, in the presence of quartz treated with electric discharge. Formation of increased amounts of free radicals, compared to experiments performed without quartz and/or amino acid, is reported, along with identification of possible degradation products of alanine. No synthetic reactions were observed.

  7. Crystal structures of Aedes aegypti alanine glyoxylate aminotransferase.

    Science.gov (United States)

    Han, Qian; Robinson, Howard; Gao, Yi Gui; Vogelaar, Nancy; Wilson, Scott R; Rizzi, Menico; Li, Jianyong

    2006-12-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75A high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1A resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  8. Crystal Structures of Aedes Aegypt Alanine Glyoxylate Aminotransferase

    Energy Technology Data Exchange (ETDEWEB)

    Han,Q.; Robinson, H.; Gao, Y.; Vogelaar, N.; Wilson, S.; Rizzi, M.; Li, J.

    2006-01-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75{angstrom} high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1{angstrom} resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  9. Pressure-induced phase transitions in L-alanine, revisited.

    Science.gov (United States)

    Tumanov, N A; Boldyreva, E V; Kolesov, B A; Kurnosov, A V; Quesada Cabrera, R

    2010-08-01

    The effect of pressure on L-alanine has been studied by X-ray powder diffraction (up to 12.3 GPa), single-crystal X-ray diffraction, Raman spectroscopy and optical microscopy (up to approximately 6 GPa). No structural phase transitions have been observed. At approximately 2 GPa the cell parameters a and b become accidentally equal to each other, but without a change in space-group symmetry. Neither of two transitions reported by others (to a tetragonal phase at approximately 2 GPa and to a monoclinic phase at approximately 9 GPa) was observed. The changes in cell parameters were continuous up to the highest measured pressures and the cells remained orthorhombic. Some important changes in the intermolecular interactions occur, which also manifest themselves in the Raman spectra. Two new orthorhombic phases could be crystallized from a MeOH/EtOH/H(2)O pressure-transmitting mixture in the pressure range 0.8-4.7 GPa, but only if the sample was kept at these pressures for at least 1-2 d. The new phases converted back to L-alanine on decompression. Judging from the Raman spectra and cell parameters, the new phases are most probably not L-alanine but its solvates.

  10. Transport of the alpha-amino-mono-carboxylic acid L-alanine by the beta-alanine carrier of the rabbit ileum

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Munck, B G

    1987-01-01

    The proposal that the beta-alanine carrier of the rabbit ileum is a high affinity carrier of the neutral amino acids was examined by means of measurements of influx across the brush border membrane of the intact epithelium using L-alanine as a representative of the neutral amino acids. Confirming...... the proposal, evidence was provided for mutual competitive inhibition between beta-alanine and L-alanine; and it was also demonstrated that a process contributes to the influx of L-alanine, which is characterized by a maximum rate of transport equal to that of beta-alanine and a Kt, which is equal to the Ki...... of L-alanine against the influx of beta-alanine. In the concentration range 0.01 to 0.125 mM the influx of L-alanine was found to be linearly related to the concentration indicating a significant unstirred layer influence on present and previous estimates of the Kt values for influx of amino acids...

  11. Isotopic effects in mechanistic studies of biotransformations of fluorine derivatives of L-alanine catalysed by L-alanine dehydrogenase.

    Science.gov (United States)

    Szymańska-Majchrzak, Jolanta; Pałka, Katarzyna; Kańska, Marianna

    2017-05-01

    Synthesis of 3-fluoro-[2-(2)H]-L-alanine (3-F-[(2)H]-L-Ala) in reductive amination of 3-fluoropyruvic acid catalysed by L-alanine dehydrogenase (AlaDH) was described. Fluorine derivative was used to study oxidative deamination catalysed by AlaDH applied kinetic (for 3-F-L-Ala in H2O - KIE's on Vmax: 1.1; on Vmax/KM: 1.2; for 3-F-L-Ala in (2)H2O - on Vmax: 1.4; on Vmax/KM: 2.1) and solvent isotope effect methods (for 3-F-L-Ala - SIE's on Vmax: 1.0; on Vmax/KM: 0.87; for 3-F-[2-(2)H]-L-Ala - on Vmax: 1.4; on Vmax/KM: 1.5). Studies explain some details of reaction mechanism.

  12. Analysis of an Alanine/Arginine Mixture by Using TLC/FTIR Technique

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2014-01-01

    Full Text Available We applied TLC/FTIR coupled with mapping technique to analyze an alanine/arginine mixture. Narrow band TLC plates prepared by using AgI as a stationary phase were used to separate alanine and arginine. The distribution of alanine and arginine spots was manifested by a 3D chromatogram. Alanine and arginine can be successfully separated by the narrow band TLC plate. In addition, the FTIR spectra of the separated alanine and arginine spots on the narrow band TLC plate are roughly the same as the corresponding reference IR spectra.

  13. Ergogenic effects of β-alanine and carnosine: proposed future research to quantify their efficacy.

    Science.gov (United States)

    Caruso, John; Charles, Jessica; Unruh, Kayla; Giebel, Rachel; Learmonth, Lexis; Potter, William

    2012-07-01

    β-alanine is an amino acid that, when combined with histidine, forms the dipeptide carnosine within skeletal muscle. Carnosine and β-alanine each have multiple purposes within the human body; this review focuses on their roles as ergogenic aids to exercise performance and suggests how to best quantify the former's merits as a buffer. Carnosine normally makes a small contribution to a cell's total buffer capacity; yet β-alanine supplementation raises intracellular carnosine concentrations that in turn improve a muscle's ability to buffer protons. Numerous studies assessed the impact of oral β-alanine intake on muscle carnosine levels and exercise performance. β-alanine may best act as an ergogenic aid when metabolic acidosis is the primary factor for compromised exercise performance. Blood lactate kinetics, whereby the concentration of the metabolite is measured as it enters and leaves the vasculature over time, affords the best opportunity to assess the merits of β-alanine supplementation's ergogenic effect. Optimal β-alanine dosages have not been determined for persons of different ages, genders and nutritional/health conditions. Doses as high as 6.4 g day(-1), for ten weeks have been administered to healthy subjects. Paraesthesia is to date the only side effect from oral β-alanine ingestion. The severity and duration of paraesthesia episodes are dose-dependent. It may be unwise for persons with a history of paraesthesia to ingest β-alanine. As for any supplement, caution should be exercised with β-alanine supplementation.

  14. The effect of immunonutrition (glutamine, alanine on fracture healing

    Directory of Open Access Journals (Sweden)

    Abdullah Küçükalp

    2014-11-01

    Full Text Available Background: There have been various studies related to fracture healing. Glutamine is an amino acid with an important role in many cell and organ functions. This study aimed to make a clinical, radiological, and histopathological evaluation of the effects of glutamine on fracture healing. Methods: Twenty rabbits were randomly allocated into two groups of control and immunonutrition. A fracture of the fibula was made to the right hind leg. All rabbits received standard food and water. From post-operative first day for 30 days, the study group received an additional 2 ml/kg/day 20% L-alanine L-glutamine solution via a gastric catheter, and the control group received 2 ml/kg/day isotonic via gastric catheter. At the end of 30 days, the rabbits were sacrificed and the fractures were examined clinically, radiologically, and histopathologically in respect to the degree of union. Results: Radiological evaluation of the control group determined a mean score of 2.5 according to the orthopaedists and 2.65 according to the radiologists. In the clinical evaluation, the mean score was 1.875 for the control group and 2.0 for the study group. Histopathological evaluation determined a mean score of 8.5 for the control group and 9.0 for the study group. Conclusion: One month after orally administered glutamine–alanine, positive effects were observed on fracture healing radiologically, clinically, and histopathologically, although no statistically significant difference was determined.

  15. Caffeine–N-phthaloyl-β-alanine (1/1

    Directory of Open Access Journals (Sweden)

    Moazzam H. Bhatti

    2012-06-01

    Full Text Available The title co-crystal [systematic name: 3-(1,3-dioxoisoindolin-2-ylpropanoic acid–1,3,7-trimethyl-1H-purine-2,6(3H,7H-dione (1/1], C8H10N4O2·C11H9NO4, is the combination of 1:1 adduct of N-phthaloyl-β-alanine with caffeine. The phthalimide and purine rings in the N-phthaloyl-β-alanine and caffeine molecules are essentially planar, with r.m.s. deviations of the fitted atoms of 0.0078 and 0.0118 Å, respectively. In the crystal, the two molecules are linked via an O—H...N hydrogen bond involving the intact carboxylic acid (COOH group. The crystal structure is consolidated by C—H...O interactions. The H atoms of a methyl group of the caffeine molecule are disordered over two sets of sites of equal occupancy.

  16. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Sandrini, Michael; Piskur, Jure

    2001-01-01

    beta -Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamy-beta -alanine as the sole nitrogen source and exhibits diminished beta -alanine synthase...... no pyrimidine catabolic pathway, it enabled growth on N-carbamyl- beta -alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta -alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial...... N- carbamyl amidohydrolases. All three beta -alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N-carbamyl-beta...

  17. Role of L-alanine for redox self-sufficient amination of alcohols

    OpenAIRE

    Klatte, Stephanie; Wendisch, Volker F

    2015-01-01

    Background In white biotechnology biocatalysis represents a key technology for chemical functionalization of non-natural compounds. The plasmid-born overproduction of an alcohol dehydrogenase, an L-alanine-dependent transaminase and an alanine dehydrogenase allows for redox self-sufficient amination of alcohols in whole cell biotransformation. Here, conditions to optimize the whole cell biocatalyst presented in (Bioorg Med Chem 22:5578–5585, 2014), and the role of L-alanine for efficient amin...

  18. Ergogenic Effects of β-Alanine and Carnosine: Proposed Future Research to Quantify Their Efficacy

    OpenAIRE

    John Caruso; Jessica Charles; Kayla Unruh; Rachel Giebel; Lexis Learmonth; William Potter

    2012-01-01

    β-alanine is an amino acid that, when combined with histidine, forms the dipeptide carnosine within skeletal muscle. Carnosine and β-alanine each have multiple purposes within the human body; this review focuses on their roles as ergogenic aids to exercise performance and suggests how to best quantify the former’s merits as a buffer. Carnosine normally makes a small contribution to a cell’s total buffer capacity; yet β-alanine supplementation raises intracellular carnosine concentrations that...

  19. Beta-alanine and dopamine in the reddish brown scales of Papilio butterflies

    Energy Technology Data Exchange (ETDEWEB)

    Umebachi, Yoshishige; Ishizaki, Yumi (Kanazawa Univ. (Japan). Faculty of Science)

    1983-12-01

    (1) Reddish brown scales of the anal eye spot in the hind-wings of P. demoleus and P. machaon have been examined for ..beta..-alanine and dopamine. (2) The scales were fractionated into 70% ethanol-soluble fraction, 4% HCl-methanol-soluble fraction, and the residual scales, and the ..beta..-alanine content of each fraction was determined. Most of the ..beta..-alanine present in the scales has been found in the residual scales. On acid hydrolysis of the residual scales, the ..beta..-alanine has been rather rapidly released, and the hydrolysate has contained a large amount of ..beta..-alanine. (3) The protein-bound brown pigment (HCl-ppt fraction), which was extracted with 1 N NaOH and precipitated by being acidified with HCl, has contained a large amount of ..beta..-alanine. In most or at least some of the ..beta..-alanine, the NH/sub 2/-group has been proved to be free. (4) /sup 14/C-Labelled ..beta..-alanine and /sup 14/C-dopamine, which were injected at prepupal or pupal stage, have been incorporated in the highest degree into the residual scales. And the /sup 14/C has been confirmed to be present in the HCl-ppt fraction. (5) All these results indicate that the pigment of the reddish brown scales contains ..beta..-alanine and dopamine.

  20. Ab initio study of alanine polypeptide chains twisting

    CERN Document Server

    Solovyov, I A; Solovyov, A V; Yakubovitch, A V; Greiner, Walter; Solov'yov, Andrey V.; Solov'yov, Ilia A.; Yakubovitch, Alexander V.

    2005-01-01

    We have investigated the potential energy surfaces for alanine chains consisting of three and six amino acids. For these molecules we have calculated potential energy surfaces as a function of the Ramachandran angles Phi and Psi, which are widely used for the characterization of the polypeptide chains. These particular degrees of freedom are essential for the characterization of proteins folding process. Calculations have been carried out within ab initio theoretical framework based on the density functional theory and accounting for all the electrons in the system. We have determined stable conformations and calculated the energy barriers for transitions between them. Using a thermodynamic approach, we have estimated the times of characteristic transitions between these conformations. The results of our calculations have been compared with those obtained by other theoretical methods and with the available experimental data extracted from the Protein Data Base. This comparison demonstrates a reasonable corres...

  1. Microhardness studies on nonlinear optical -alanine single crystals

    Indian Academy of Sciences (India)

    R Hanumantharao; S Kalainathan

    2013-06-01

    Vickers and Knoop microhardness tests were carried out on grown -alanine single crystals by slow evaporation technique over a load range of 10–50 g on selected broad (2 0 3) plane. Vickers (v) and Knoop (k) microhardness for the above loads were found to be in the range of 60–71 kg/mm2 and 35–47 kg/mm2, respectively. Vickers microhardness number (v) and Knoop microhardness number (k) were found to increase with increasing load. Meyer’s index number () calculated from v shows that the material belongs to the soft material category. Using Wooster’s empirical relation, the elastic stiffness constant (11) was calculated from Vickers hardness values. Young’s modulus was calculated using Knoop hardness values. Hardness anisotropy has been observed in accordance with the orientation of the crystal.

  2. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Chandra H McAllister

    Full Text Available Alanine aminotransferase (AlaAT, E.C. 2.6.1.2, is a pyridoxal-5'-phosphate-dependent (PLP enzyme that catalyzes the reversible transfer of an amino group from alanine to 2-oxoglutarate to produce glutamate and pyruvate, or vice versa. It has been well documented in both greenhouse and field studies that tissue-specific over-expression of AlaAT from barley (Hordeum vulgare, HvAlaAT results in a significant increase in plant NUE in both canola and rice. While the physical phenotypes associated with over-expression of HvAlaAT have been well characterized, the role this enzyme plays in vivo to create a more N efficient plant remains unknown. Furthermore, the importance of HvAlaAT, in contrast to other AlaAT enzyme homologues in creating this phenotype has not yet been explored. To address the role of AlaAT in NUE, AlaAT variants from diverse sources and different subcellular locations, were expressed in the wild-type Arabidopsis thaliana Col-0 background and alaat1;2 (alaat1-1;alaat2-1 knockout background in various N environments. The analysis and comparison of both the physical and physiological properties of AlaAT over-expressing transgenic plants demonstrated significant differences between plants expressing the different AlaAT enzymes under different external conditions. This analysis indicates that the over-expression of AlaAT variants other than HvAlaAT in crop plants could further increase the NUE phenotype(s previously observed.

  3. Efficient L-Alanine Production by a Thermo-Regulated Switch in Escherichia coli.

    Science.gov (United States)

    Zhou, Li; Deng, Can; Cui, Wen-Jing; Liu, Zhong-Mei; Zhou, Zhe-Min

    2016-01-01

    L-Alanine has important applications in food, pharmaceutical and veterinary and is used as a substrate for production of engineered thermoplastics. Microbial fermentation could reduce the production cost and promote the application of L-alanine. However, the presence of L-alanine significantly inhibit cell growth rate and cause a decrease in the ultimate L-alanine productivity. For efficient L-alanine production, a thermo-regulated genetic switch was designed to dynamically control the expression of L-alanine dehydrogenase (alaD) from Geobacillus stearothermophilus on the Escherichia coli B0016-060BC chromosome. The optimal cultivation conditions for the genetically switched alanine production using B0016-060BC were the following: an aerobic growth phase at 33 °C with a 1-h thermo-induction at 42 °C followed by an oxygen-limited phase at 42 °C. In a bioreactor experiment using the scaled-up conditions optimized in a shake flask, B0016-060BC accumulated 50.3 g biomass/100 g glucose during the aerobic growth phase and 96 g alanine/100 g glucose during the oxygen-limited phase, respectively. The L-alanine titer reached 120.8 g/l with higher overall and oxygen-limited volumetric productivities of 3.09 and 4.18 g/l h, respectively, using glucose as the sole carbon source. Efficient cell growth and L-alanine production were reached separately, by switching cultivation temperature. The results revealed the application of a thermo-regulated strategy for heterologous metabolic production and pointed to strategies for improving L-alanine production.

  4. Dependence of alanine gel dosimeter response as a function of photon clinical beams dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cleber Feijo, E-mail: cleber.feijo@famesp.com.br [Faculdade Metodo de Sao Paulo (FAMESP), SP (Brazil); Campos, Leticia Lucente, E-mail: Icrodri@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-11-01

    Gel dosimetry is a new area developed by Gore, it is ery useful for application in radiotherapy because using NMR imaging as evaluation technique is possible to evaluate three dimensional absorbed dose distribution. The measure technique is based on difference of ferrous (Fe{sup 2+}) and ferric (Fe{sup 3+}) ) ions concentration that can be measured also by spectrophotometry technique. The Alanine gel dosimeter was developed at IPEN. The alanine is an amino acid and tissue equivalent material that presents significant improvement on previous alanine dosimetry systems. The addition of Alanine increases the production of ferric ions in the solution. This work aims to study the dose rate dependence of photon clinical beams radiation on the alanine gel dosimeter optical response, as well as the response repeatability and gel production reproducibility, since this property is very important for characterization and standardization of any dosimeter. (author)

  5. Impact of charged amino acid substitution in the transmembrane domain of L-alanine exporter, AlaE, of Escherichia coli on the L-alanine export.

    Science.gov (United States)

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2017-01-01

    The Escherichia coli alaE gene encodes the L-alanine exporter, AlaE, that catalyzes active export of L-alanine using proton electrochemical potential. The transporter comprises only 149 amino acid residues and four predicted transmembrane domains (TMs), which contain three charged amino acid residues. The AlaE-deficient L-alanine non-metabolizing cells (ΔalaE cells) appeared hypersusceptible to L-alanyl-L-alanine showing a minimum inhibitory concentration (MIC) of 2.5 µg/ml for the dipeptide due to a toxic accumulation of L-alanine. To elucidate the mechanism by which AlaE exports L-alanine, we replaced charged amino acid residues in the TMs, glutamic acid-30 (TM-I), arginine-45 (TM-II), and aspartic acid-84 (TM-III) with their respective charge-conserved amino acid or a net neutral cysteine. The ΔalaE cells producing R45K or R45C appeared hypersusceptible to the dipeptide, indicating that arginine-45 is essential for AlaE activity. MIC of the dipeptide in the ΔalaE cells expressing E30D and E30C was 156 µg/ml and >10,000 µg/ml, respectively, thereby suggesting that a negative charge at this position is not essential. The ΔalaE cells expressing D84E or D84C showed an MIC >10,000 and 78 µg/ml, respectively, implying that a negative charge is required at this position. These results were generally consistent with that of the L-alanine accumulation experiments in intact cells. We therefore concluded that charged amino acid residues (R45 and D84) in the AlaE transmembrane domain play a pivotal role in L-alanine export. Replacement of three cysteine residues at C22, C28 (both in TM-I), and C135 (C-terminal region) with alanine showed only a marginal effect on L-alanine export.

  6. Ergogenic Effects of β-Alanine and Carnosine: Proposed Future Research to Quantify Their Efficacy

    Directory of Open Access Journals (Sweden)

    John Caruso

    2012-06-01

    Full Text Available β-alanine is an amino acid that, when combined with histidine, forms the dipeptide carnosine within skeletal muscle. Carnosine and β-alanine each have multiple purposes within the human body; this review focuses on their roles as ergogenic aids to exercise performance and suggests how to best quantify the former’s merits as a buffer. Carnosine normally makes a small contribution to a cell’s total buffer capacity; yet β-alanine supplementation raises intracellular carnosine concentrations that in turn improve a muscle’s ability to buffer protons. Numerous studies assessed the impact of oral β-alanine intake on muscle carnosine levels and exercise performance. β-alanine may best act as an ergogenic aid when metabolic acidosis is the primary factor for compromised exercise performance. Blood lactate kinetics, whereby the concentration of the metabolite is measured as it enters and leaves the vasculature over time, affords the best opportunity to assess the merits of β-alanine supplementation’s ergogenic effect. Optimal β-alanine dosages have not been determined for persons of different ages, genders and nutritional/health conditions. Doses as high as 6.4 g day−1, for ten weeks have been administered to healthy subjects. Paraesthesia is to date the only side effect from oral β-alanine ingestion. The severity and duration of paraesthesia episodes are dose-dependent. It may be unwise for persons with a history of paraesthesia to ingest β-alanine. As for any supplement, caution should be exercised with β-alanine supplementation.

  7. Thermochemical Study of Lanthanum Complex Crystal with β-Alanine

    Institute of Scientific and Technical Information of China (English)

    陈平初; 屈松生; 詹正坤; 吴新明

    2002-01-01

    Lanthanum complex crystal with β-alanine (1∶3) was synthesized. Through the DTA,TG,chemistry analysis and comparison with literature, it shows that its form is {[La2(β-ala)6* (H2O)4](ClO4)6*H2O}n, and its purity is 98.86%. The dissolution enthalpy of the reactants and products in 2 mol*L-1 HCl solution (298.15K) was measured by using the isoperibol reaction calorimetry. ΔrHm was calculated by a designed thermochemical cycle of the coordination reaction. From the results and other auxiliary quantities, the standard molar enthalpy of formation of [La2(β-ala)6*(H2O)4](ClO4)6*H2O is obtained to be ΔfHm°{[La2(β-ala)6*(H2O)4](ClO4)6*H2O} = - 7062.911 kJ*mol-1.

  8. Enzymatic characterization and crystal structure analysis of the D-alanine-D-alanine ligase from Helicobacter pylori.

    Science.gov (United States)

    Wu, Dalei; Zhang, Liang; Kong, Yunhua; Du, Jiamu; Chen, Shuai; Chen, Jing; Ding, Jianping; Jiang, Hualiang; Shen, Xu

    2008-09-01

    D-Alanine-D-alanine ligase is the second enzyme in the D-Ala branch of bacterial cell wall peptidoglycan assembly, and recognized as an attractive antimicrobial target. In this work, the D-Ala-D-Ala ligase of Helicobacter pylori strain SS1 (HpDdl) was kinetically and structurally characterized. The determined apparent K(m) of ATP (0.87 microM), the K(m1) (1.89 mM) and K(m2) of D-Ala (627 mM), and the k(cat) (115 min(-1)) at pH 8.0 indicated its relatively weak binding affinity and poor catalytic activity against the substrate D-Ala in vitro. However, by complementary assay of expressing HpDdl in Escherichia coli Delta ddl mutant, HpDdl was confirmed to be capable of D-Ala-D-Ala ligating in vivo. Through sequence alignment with other members of the D-Ala-D-X ligase superfamily, HpDdl keeps two conservatively substituted residues (Ile16 and Leu241) and two nonconserved residues (Leu308 and Tyr311) broadly located in the active region of the enzyme. Kinetic analyses against the corresponding HpDdl mutants (I16V, L241Y, L241F, L308T, and Y311S) suggested that these residues, especially Leu308 and Tyr311, might partly contribute to the unique catalytic properties of the enzyme. This was fairly proved by the crystal structure of HpDdl, which revealed that there is a 3(10)-helix (including residues from Gly306 to Leu312) near the D-Ala binding region in the C-terminal domain, where HpDdl has two sequence deletions compared with other homologs. Such 3(10)-helix may participate in D-Ala binding and conformational change of the enzyme. Our present work hopefully provides useful information for understanding the D-Ala-D-Ala ligase of Helicobacter pylori.

  9. β - Alanine protects mice from memory deficits induced by ageing, scopolamine, diazepam and ethanol

    Directory of Open Access Journals (Sweden)

    Dhingra D

    2006-01-01

    Full Text Available The present study was undertaken to investigate the effects of β-alanine (a glycine agonist, on learning and memory in mice. β-alanine (5, 10, 20 and 40 mg/kg i.p. was administered for 6 successive days, to young (3 months old and aged-mice (16 months old. The learning and memory parameters were assessed, using elevated plus-maze and passive-avoidance apparatus. The effect of β-alanine (20 mg/kg for 6 days on locomotor function of young and aged mice, was studied using photoactometer, to rule out the increase in locomotor performance of mice. β-alanine at both the doses (10 and 20 mg/kg, significantly improved learning and memory of young- and aged- mice. β-alanine also reversed scopolamine (0.4 mg/kg i.p., ethanol (1.0 g/kg i.p. and diazepam (1.0 mg/kg i.p. -induced amnesia in young mice. There was no significant effect of β-alanine on the locomotor activity of both young and aged mice. The probable underlying mechanism of the memory-enhancing effect of β-alanine appears to be related to its antioxidant, anti-amyloid and procholinergic activities.

  10. Growth and characterization of L-Alanine-doped Zinc Thiourea Chloride single crystal (ZTC)

    Science.gov (United States)

    Dhumane, N. R.; Hussaini, S. S.; Dongre, V. G.; Ghugare, P.; Shirsat, M. D.

    2009-06-01

    Single crystal of L-Alanine-doped Zinc Thiourea Chloride (ZTC) was grown by slow evaporation technique. L-Alanine was added in saturated ZTC solution by molar percent. The second-harmonic generation efficiency was studied by Kurtz and Perry powder SHG test for 1, 2, and 3 mole% L-Alanine-doped ZTC and compared with pure ZTC. We observed enhancement in the SHG efficiency of L-Alanine-doped ZTC. Higher enhancement was observed for 3 mole% L-Alanine-doped ZTC. Incorporation of L-Alanine in the crystal was confirmed by energy dispersive X-ray analysis (EDAX). The Fourier transform infrared spectroscopy (FTIR) qualitatively confirms the presence of all the functional groups. The unit cell parameters and crystal structure were determined by single crystal X-ray diffraction. The UV-visible absorption spectra of L-Alanine-doped ZTC show excellent transmittance from 300 nm to 1100 nm. The thermal stability of the grown crystal was also studied by thermo-gravimetric analysis (TGA).

  11. Spectroscopic Evidence for an Oxazolone Structure of the b(2) Fragment Ion from Protonated Tri-Alanine

    NARCIS (Netherlands)

    Oomens, J.; Young, S.; Molesworth, S.; Van Stipdonk, M.

    2009-01-01

    Infrared multiple photon dissociation (IRMPD) spectroscopy is used to identify the structure of the b(2)(+) ion generated from protonated tri-alanine by collision induced dissociation (CID). The IRMPD spectrum of b(2)(+) differs markedly from that of protonated cyclo-alanine-alanine, demonstrating t

  12. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives.

    Science.gov (United States)

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-08-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [(3) H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [(3) H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [(3) H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed.

  13. Temperature dependences of piezoelectric, elastic and dielectric constants of L-alanine crystal

    Science.gov (United States)

    Tylczyński, Z.; Sterczyńska, A.; Wiesner, M.

    2011-09-01

    Temperature changes in the components of piezoelectric, elastic and dielectric tensors were studied in L-alanine crystals in the range 100-300 K. A jumpwise increase in the c55 component of the elastic stiffness accompanied by maxima in damping of all face-shear modes observed at 199 K in L-alanine crystal were interpreted as a result of changes in the NH3+ vibrations occurring through electron-phonon coupling. All components of the piezoelectric tensor show small anomalies in this temperature range. The components of the electromechanical coupling coefficient determined indicate that L-alanine is a weak piezoelectric.

  14. Interactions of L-alanine with alumina as studied by vibrational spectroscopy.

    Science.gov (United States)

    Garcia, Ana R; de Barros, Ricardo Brito; Fidalgo, Alexandra; Ilharco, Laura M

    2007-09-25

    The interactions of L-alanine with gamma- and alpha-alumina have been investigated by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). L-alanine/alumina samples were dried from aqueous suspensions, at 36.5 degrees C, with two amino acid concentrations (0.4 and 0.8 mmol g-1) and at different pH values (1, 6, and 13). The vibrational spectra proved that the nature of L-alanine interactions with both aluminas is the same (hydrogen bonding), although the groups involved depend on the L-alanine form and on alumina surface groups, both controlled by the pH. For samples prepared at pH 1, cationic L-alanine [CH3CH(NH3+)COOH] displaces physisorbed water from alumina, and strong hydrogen bonds are established between the carbonyl groups of alanine, as electron donors, and the surface Al-OH2+ groups of alumina. This occurs at the expense of alanine dimer dissociation and breaking of intramolecular bonds. When samples are prepared at pH 6, the interacting groups are Al-OH2+ and the carboxylate groups of zwitterionic L-alanine [CH3CH(NH3+)COO-]. The affinity of L-alanine toward alumina decreases, as the strong NH3+...-OOC intermolecular hydrogen bonds prevail over the interactions with alumina. Thus, for a load of 0.8 mmol g-1, phase segregation is observed. On alpha-alumina, crystal deposition is even observed for a load of 0.4 mmol g-1. At pH 13, the carboxylate groups of anionic L-alanine [CH3CH(NH2)COO-] are not affected by alumina. Instead, hydrogen bond interactions occur between NH2 and the Al-OH surface groups of the substrate. Complementary N2 adsorption-desorption isotherms showed that adsorption of L-alanine occurs onto the alumina pore network for samples prepared at pH 1 and 13, whereas at pH 6 the amino acid/alumina interactions are not strong enough to promote adsorption. The mesoporous structure and the high specific surface area of gamma-alumina make it a more efficient substrate for adsorption of L-alanine. For each alumina, however, it is

  15. Optical and Spectral Studies on β Alanine Metal Halide Hybrid Crystals

    Science.gov (United States)

    Sweetlin, M. Daniel; Selvarajan, P.; Perumal, S.; Ramalingom, S.

    2011-10-01

    We have synthesized and grown β alanine metal halide hybrid crystals viz. β alanine cadmium chloride (BACC), an amino acid transition metal halide complex crystal and β alanine potassium chloride (BAPC), an amino acid alkali metal halide complex crystal by slow evaporation method. The grown crystals were found to be transparent and have well defined morphology. The optical characteristics of the grown crystals were carried out with the help of UV-Vis Spectroscopy. The optical transmittances of the spectrums show that BAPC is more transparent than BACC. The Photoluminescence of the materials were determined by the Photoluminescent Spectroscopy

  16. Degradation of pyrimidines in Saccharomyces kluyveri: transamination of beta-alanine

    DEFF Research Database (Denmark)

    Schnackerz, K D; Andersen, G; Dobritzsch, D

    2008-01-01

    Beta-alanine is an intermediate in the reductive degradation of uracil. Recently we have identified and characterized the Saccharomyces kluyveri PYD4 gene and the corresponding enzyme beta -alanine aminotransferase ((Sk)Pyd4p), highly homologous to eukaryotic gamma-aminobutyrate aminotransferase...... (GABA-AT). S. kluyveri has two aminotransferases, GABA aminotransferase ((Sk)Uga1p) with 80% and (Sk)Pyd4p with 55% identity to S. cerevisiae GABA-AT. (Sk)Pyd4p is a typical pyridoxal phosphate-dependent aminotransferase, specific for alpha-ketoglutarate (alpha KG), beta-alanine (BAL) and gamma...

  17. In vivo dosimetry with L-alpha-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Boey, R.; Van Der Velden, K. [Industriele Hogeschool van het Gemeenschapsonderwijs Limburg, Hasselt (Belgium); Schaeken, B. [Algemeen Ziekenhuis Middelheim, Antwerp (Belgium). Dept. of Radiotherapy

    1995-12-01

    When organic substances are irradiated, stable electrons can be formed. The concentration of these electrons is detected via electron paramagnetic resonance (EPR), a non-destructive form of dosimetry. L-alpha-alanine is extremely suited as a detector because of its high stability and high yield of unpaired electrons. With an EMS 104 spectrometer, we measure the peak-to-peak value of the first derivate of the resonance-spectrum. This value is proportional to the concentration of unpaired electrons and therefore with the absorbed dose. Prior to the in vivo measurements in teletherapy, a calibration curve had to be established. This clearly showed a linear relationship between the EPR-signal and the absorbed dose, except for very low dose where precision was low (20% 1 sd). This indicates that the background signal of the dosimeter is strongly orientation dependent. For this reason it was decided to use pre-irradiated detectors. A number of in vivo measurements has been performed. It was found that the error propagation plays a major role in the calculation of the measured absorbed dose, in the range 1 Gy-6 Gy. Contrary to in vivo measurements in brachytherapy, where higher doses are measured, large uncertainties (30% 1 sd) on the entry dose calculations were observed. For this reason, it is recommended to use a statistical method of reducing this standard deviation to an acceptable level. The proposed method, consisting of 2 detectors and the usage of weight coefficients on our standard deviations, gave promising results. However, theoretical calculations and in vivo measurements show that this method is still not satisfactory to reduce the uncertainty to an acceptable standard in clinical situations.

  18. Exercise training and beta-alanine-induced muscle carnosine loading.

    Directory of Open Access Journals (Sweden)

    Tine eBex

    2015-05-01

    Full Text Available Purpose. Beta-alanine (BA supplementation has been shown to augment muscle carnosine concentration, thereby promoting high-intensity exercise performance. Trained muscles of athletes have a higher increase in carnosine concentration after BA supplementation compared to untrained muscles, but it remains to be determined whether this is due to an accumulation of acute exercise effects or to chronic adaptations from prior training. The aim of the present study was to investigate whether high-volume (HV and/or high-intensity (HI exercise can improve BA-induced carnosine loading in untrained subjects.Methods. All participants (n=28 were supplemented with 6.4 g/day of BA for 23 days. The subjects were allocated to a control group, HV or HI training group. During the BA supplementation period, the training groups performed 9 exercise sessions consisting of either 75–90 min continuous cycling at 35–45% Wmax (HV or 3 to 5 repeats of 30s cycling at 165% Wmax with 4 min recovery (HI. Carnosine content was measured in soleus and gastrocnemius medialis by proton magnetic resonance spectroscopy.Results. There was no difference in absolute increase in carnosine content between the groups in soleus and gastrocnemius muscle. For the average muscle carnosine content, a higher absolute increase was found in HV (+ 2.95 mM; P = 0.046 and HI (+ 3.26 mM; P = 0.028 group compared to the control group (+ 1.91 mM. However, there was no additional difference between the HV and HI training group.Conclusions. HV and HI exercise training showed no significant difference on BA-induced muscle carnosine loading in soleus and gastrocnemius muscle. It can be suggested that there can be a small cumulative effect of exercise on BA supplementation efficiency, although differences did not reach significance on individual muscle level.

  19. Normal serum alanine aminotransferase activity in uncomplicated obesity

    Institute of Scientific and Technical Information of China (English)

    Gianluca Iacobellis; Antonio Moschetta; Maria Cristina Ribaudo; Alessandra Zappaterreno; Concetta Valeria Iannucci; Frida Leonetti

    2005-01-01

    AIM: To evaluate serum alanine aminotransferase (ALT)activity in a well-characterized group of uncomplicated obese subjects and its correlation with insulin resistance,plasma adiponectin, and leptin concentrations.METHODS: One hundred and five uncomplicatedobese subjects (87 women, 18 men, age 34.3±9.6 years,BMI 39.9±8.3 kg/m2)were studied. Serum ALT activity was evaluated. Insulin sensitivity was assessed by euglycemic hyperinsulinemic clamp (M index) and fasting insulin. Plasma leptin and adiponectin levels were also measured.RESULTS: Serum ALT concentration in the whole group of uncomplicated obese subjects was 17.73±6.33 U/L with none of the subjects presenting ALT levels greater than 43 U/L and only 9 (11%) women and 3 (19%) men showed ALT levels >19 and >30 U/L for women and men,respectively. No significant difference was detected in serum ALT levels between severe obese subjects (BMI >40 kg/m2) and those with BMI <40 kg/m2 (18.63±6.25 vs 17.26±6.02 U/L). ALT was significantly correlated with fasting insulin (r = 0.485, P = 0.02) and triglycerides (r= 0.358, P= 0.03).CONCLUSION: Serum ALT activity is practically normal in uncomplicated obese subjects, independently of their obesity degree. These findings suggest the role of obesityrelated comorbidities and not of BMI as main risk factors for elevated ALT levels in obese subjects.

  20. A comparative study on the growth and characterization of nonlinear optical amino acid crystals: L-alanine (LA) and L-alanine alaninium nitrate (LAAN).

    Science.gov (United States)

    Aravindan, A; Srinivasan, P; Vijayan, N; Gopalakrishnan, R; Ramasamy, P

    2008-11-15

    A comparative study on the properties of L-alanine and LAAN crystals has been made and discussed. It may be concluded that the protonation of the amino group in the L-alanine molecule is the key factor in increasing the relative SHG efficiency of LAAN. The protonation is justified by the crystal structure analysis, FTIR and photoluminescence studies. The factor group vibrations are compared and found that there is an increase in vibrational modes of LA when reacted with nitric acid forming LAAN.

  1. Determination of the carbon, hydrogen and nitrogen contents of alanine and their uncertainties using the certified reference material L-alanine (NMIJ CRM 6011-a).

    Science.gov (United States)

    Itoh, Nobuyasu; Sato, Ayako; Yamazaki, Taichi; Numata, Masahiko; Takatsu, Akiko

    2013-01-01

    The carbon, hydrogen, and nitrogen (CHN) contents of alanine and their uncertainties were estimated using a CHN analyzer and the certified reference material (CRM) L-alanine. The CHN contents and their uncertainties, as measured using the single-point calibration method, were 40.36 ± 0.20% for C, 7.86 ± 0.13% for H, and 15.66 ± 0.09% for N; the results obtained using the bracket calibration method were also comparable. The method described in this study is reasonable, convenient, and meets the general requirement of having uncertainties ≤ 0.4%.

  2. Substrate Specificity of the Aspartate:Alanine Antiporter (AspT) of Tetragenococcus halophilus in Reconstituted Liposomes*

    OpenAIRE

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-01-01

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of l-aspartate1− with l-alanine0. Although physiological functions of AspT were well studied, l-aspartate1−:l-alanine0 antiport mechanisms are still unsolved. Here we report that the binding sites of l-aspartate and l-alanine are independently present in AspT by means of ...

  3. Second harmonic generation studies in L-alanine single crystals grown from solution

    Science.gov (United States)

    Boomadevi, Shanmugam; Pandiyan, Krishnamoorthy

    2014-01-01

    Single crystals of L-alanine of dimensions 2×1.1×0.5 cm3 were grown by evaporation method using deionised water as a solvent. The morphology of the grown crystals had (1 2 0) and (0 1 1) as their prominent faces. UV-vis-near IR spectrum shows the transparency range of L-alanine crystal available for frequency doubling from 250 to 1400 nm. Phase-matched second harmonic generation was observed in L-alanine sample by using 7 ns Q-switched Nd:YAG laser with OPO set up. In the present work, phase matching was achieved by angle and wavelength tuning. The angular and spectral phase-matching bandwidths were determined experimentally for a 1.5 mm thick L-alanine crystal and the results have been compared with their theoretical results. Further the possible reasons for the broadening of SHG spectrum have been discussed.

  4. Second harmonic generation studies in L-alanine single crystals grown from solution

    Energy Technology Data Exchange (ETDEWEB)

    Boomadevi, Shanmugam, E-mail: sboomi@gmail.com [Department of Physics, Periyar Maniammai University, Thanjavur-613 403, Tamil Nadu (India); Pandiyan, Krishnamoorthy [School of Electrical and Electronics Engineering, SASTRA University, Thanjavur-613 401, Tamil Nadu (India)

    2014-01-01

    Single crystals of L-alanine of dimensions 2×1.1×0.5 cm{sup 3} were grown by evaporation method using deionised water as a solvent. The morphology of the grown crystals had (1 2 0) and (0 1 1) as their prominent faces. UV–vis-near IR spectrum shows the transparency range of L-alanine crystal available for frequency doubling from 250 to 1400 nm. Phase-matched second harmonic generation was observed in L-alanine sample by using 7 ns Q-switched Nd:YAG laser with OPO set up. In the present work, phase matching was achieved by angle and wavelength tuning. The angular and spectral phase-matching bandwidths were determined experimentally for a 1.5 mm thick L-alanine crystal and the results have been compared with their theoretical results. Further the possible reasons for the broadening of SHG spectrum have been discussed.

  5. Brain alanine formation as an ammonia-scavenging pathway during hyperammonemia

    DEFF Research Database (Denmark)

    Dadsetan, Sherry; Kukolj, Eva; Bak, Lasse Kristoffer

    2013-01-01

    (MSO) enhances incorporation of (15)NH4(+) in alanine during acute hyperammonemia. We observed a fourfold increased amount of (15)NH4 incorporation in brain alanine in rats treated with MSO. Furthermore, co-cultures of neurons and astrocytes exposed to (15)NH4Cl in the absence or presence of MSO......Hyperammonemia is a major etiological toxic factor in the development of hepatic encephalopathy. Brain ammonia detoxification occurs primarily in astrocytes by glutamine synthetase (GS), and it has been proposed that elevated glutamine levels during hyperammonemia lead to astrocyte swelling...... and cerebral edema. However, ammonia may also be detoxified by the concerted action of glutamate dehydrogenase (GDH) and alanine aminotransferase (ALAT) leading to trapping of ammonia in alanine, which in vivo likely leaves the brain. Our aim was to investigate whether the GS inhibitor methionine sulfoximine...

  6. Implementation of an alanine dosimetry service; Puesta en marcha de un servicio de dosimetria de alanima

    Energy Technology Data Exchange (ETDEWEB)

    Gago Arias, A.; Nunez Pelaez, N.; Peteiro Vilaseco, E.; Gomez Rodriguez, F.; Gonzalez Castano, D. M.

    2011-07-01

    This work facing the implementation of an alanine dosimetry service, linked to the installation of Co{sub 6}0 Radio physics Laboratory (LP) and Paramagnetic Resonance Service of the University of Santiago de Compostela (USC).

  7. SYNTHESIS OF D-AND L-β-(4-CHLOROPHENYL)-α-ALANINE

    Institute of Scientific and Technical Information of China (English)

    沈宗璇; 张雅文; 顾德本; 滕洪流; 杨冰

    1991-01-01

    N-acetyl-β-(4-chloropheayl)-DL-α-alanine ethyl ester was synthesized from p-chlorobenzyl chloride via diethyl malonate method. The ethyl ester was effectively resofued by enzymatic hydrolysis with using of subtilisin carlsberg.

  8. SU-E-T-643: Pure Alanine Dosimeter for Verification Dosimetry in IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Al-Karmi, Anan M.; Zraiqat, Fadi [Physics Department, King Fahd University of Petroleum & Minerals, Dhahran 31261 (Saudi Arabia)

    2015-06-15

    Purpose: The objective of this study was evaluation of accuracy of pure alanine dosimeters measuring intensity-modulated radiation therapy (IMRT) dose distributions in a thorax phantom. Methods: Alanine dosimeters were prepared in the form of 110 mg pure L-α-alanine powder filled into clear tissue-equivalent polymethylmethacrylate (PMMA) plastic tubes with the dimensions 25 mm length, 3 mm inner diameter, and 1 mm wall thickness. A dose-response calibration curve was established for the alanine by placing the dosimeters at 1.5 cm depth in a 30×30×30 cm{sup 3} solid water phantom and then irradiating on a linac with 6 MV photon beam at 10×10 cm{sup 2} field size to doses ranging from 1 to 5 Gy. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the absorbed dose in alanine. An IMRT treatment plan was designed for a commercial heterogeneous CIRS thorax phantom and the dose values were calculated at three different points located in tissue, lung, and bone equivalent materials. A set of dose measurements was carried out to compare measured and calculated dose values by placing the alanine dosimeters at those selected locations inside the thorax phantom and delivering the IMRT to the phantom. Results: The alanine dose measurements and the IMRT plan dose calculations were found to be in agreement within ±2%. Specifically, the deviations were −0.5%, 1.3%, and −1.7% for tissue, lung, and bone; respectively. The slightly large deviations observed for lung and bone may be attributed to tissue inhomogeneity, steep dose gradients in these regions, and uncontrollable changes in spectrometer conditions. Conclusion: The results described herein confirmed that pure alanine dosimeter was suitable for in-phantom dosimetry of IMRT beams because of its high sensitivity and acceptable accuracy. This makes the dosimeter a promising option for quality control of the therapeutic beams, complementing the commonly used ionization chambers, TLDs, and films.

  9. L-alanine supplementation in late infantile glycogen storage disease type II.

    Science.gov (United States)

    Bodamer, Olaf A; Haas, Dorothea; Hermans, Monique M; Reuser, Arnold J; Hoffmann, Georg F

    2002-08-01

    We report a male with late infantile glycogen storage disease type II (Pompe's disease) who presented at 12 months of age with muscular hypotonia and developmental delay. Oral supplementation with L-alanine has been administered for 5 years. Progression of skeletal myopathy was slow, and cardiomyopathy resolved almost completely. L-alanine may be a valuable supplement for infants with glycogen storage disease type II.

  10. Effect of abomasal glucose infusion on alanine metabolism and urea production in sheep.

    Science.gov (United States)

    Obitsu, T; Bremner, D; Milne, E; Lobley, G E

    2000-08-01

    The effect of abomasal infusion of glucose (120 kJ/d per kg body weight (BW)0.75, 758 mmol/d) on urea production, plasma alanine-N flux rate and the conversion of alanine-N to urea was studied in sheep offered a low-N diet at limited energy intake (500 kJ/d per kg BW0.75), based on hay and grass pellets. Glucose provision reduced urinary N (P = 0.040) and urea (P = 0.009) elimination but this was offset by poorer N digestibility. Urea-N production was significantly reduced (822 v. 619 mmol/d, P = 0.024) by glucose while plasma alanine-N flux rate was elevated (295 v. 342 mmol/d, P = 0.011). The quantity of urea-N derived from alanine tended to be decreased by glucose (127 v. 95 mmol/d) but the fraction of urea production from alanine was unaltered (15%). Plasma urea and alanine concentrations (plus those of the branched chain amino acids) decreased in response to exogenous glucose, an effect probably related to enhanced anabolic usage of amino acids and lowered urea production.

  11. Expression, crystallization and preliminary X-ray crystallographic analysis of D-alanine-D-alanine ligase from OXA-23-producing Acinetobacter baumannii K0420859.

    Science.gov (United States)

    Huynh, Kim-Hung; Tran, Huyen-Thi; Pham, Tan-Viet; Ngo, Ho-Phuong-Thuy; Cha, Sun-Shin; Chung, Kyung Min; Lee, Sang Hee; Kang, Lin-Woo

    2014-04-01

    Acinetobacter baumannii causes bacteraemia, pneumonia, other respiratory-tract and urinary-tract infections in humans. OXA-23 carbapenemase-producing A. baumannii K0420859 (A. baumannii OXA-23) is resistant to carbapenem, a common antibacterial drug. To develop an efficient and novel antibacterial drug against A. baumannii OXA-23, D-alanine-D-alanine ligase, which is essential in bacterial cell-wall synthesis, is of interest. Here, the D-alanine-D-alanine ligase (AbDdl) gene from A. baumannii OXA-23 was cloned and expressed, and the AbDdl protein was purified and crystallized; this enzyme can be used as a novel target for an antibacterial drug against A. baumannii OXA-23. The AbDdl crystal diffracted to a resolution of 2.8 Å and belonged to the orthorhombic space group P212121, with unit-cell parameters a = 113.4, b = 116.7, c = 176.5 Å, a corresponding VM of 2.8 Å(3) Da(-1) and a solvent content of 56.3%, and six protomers in the asymmetric unit.

  12. Alanine aminotransferase, gamma-glutamyltransferase (GGT) and all-cause mortality: results from a population-based Danish twins study alanine aminotransferase, GGT and mortality in elderly twins

    DEFF Research Database (Denmark)

    Fraser, Abigail; Thinggaard, Mikael; Christensen, Kaare;

    2009-01-01

    Abstract Background/Aims: Alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT) are widely used markers of liver disease. Several population-based cohort studies have found associations of these liver enzymes with all-cause mortality. None of these studies controlled for genetic...

  13. Alanine and TLD coupled detectors for fast neutron dose measurements in neutron capture therapy (NCT).

    Science.gov (United States)

    Cecilia, A; Baccaro, S; Cemmi, A; Colli, V; Gambarini, G; Rosi, G; Scolari, L

    2004-01-01

    A method was investigated to measure gamma and fast neutron doses in phantoms exposed to an epithermal neutron beam designed for neutron capture therapy (NCT). The gamma dose component was measured by TLD-300 [CaF2:Tm] and the fast neutron dose, mainly due to elastic scattering with hydrogen nuclei, was measured by alanine dosemeters [CH3CH(NH2)COOH]. The gamma and fast neutron doses deposited in alanine dosemeters are very near to those released in tissue, because of the alanine tissue equivalence. Couples of TLD-300 and alanine dosemeters were irradiated in phantoms positioned in the epithermal column of the Tapiro reactor (ENEA-Casaccia RC). The dosemeter response depends on the linear energy transfer (LET) of radiation, hence the precision and reliability of the fast neutron dose values obtained with the proposed method have been investigated. Results showed that the combination of alanine and TLD detectors is a promising method to separate gamma dose and fast neutron dose in NCT.

  14. Effect of 10 week beta-alanine supplementation on competition and training performance in elite swimmers.

    Science.gov (United States)

    Chung, Weiliang; Shaw, Greg; Anderson, Megan E; Pyne, David B; Saunders, Philo U; Bishop, David J; Burke, Louise M

    2012-10-09

    Although some laboratory-based studies show an ergogenic effect with beta-alanine supplementation, there is a lack of field-based research in training and competition settings. Elite/Sub-elite swimmers (n = 23 males and 18 females, age = 21.7 ± 2.8 years; mean ± SD) were supplemented with either beta-alanine (4 weeks loading phase of 4.8 g/day and 3.2 g/day thereafter) or placebo for 10 weeks. Competition performance times were log-transformed, then evaluated before (National Championships) and after (international or national selection meet) supplementation. Swimmers also completed three standardized training sets at baseline, 4 and 10 weeks of supplementation. Capillary blood was analyzed for pH, bicarbonate and lactate concentration in both competition and training. There was an unclear effect (0.4%; ± 0.8%, mean, ± 90% confidence limits) of beta-alanine on competition performance compared to placebo with no meaningful changes in blood chemistry. While there was a transient improvement on training performance after 4 weeks with beta-alanine (-1.3%; ± 1.0%), there was an unclear effect at ten weeks (-0.2%; ± 1.5%) and no meaningful changes in blood chemistry. Beta-alanine supplementation appears to have minimal effect on swimming performance in non-laboratory controlled real-world training and competition settings.

  15. Alanine racemase is essential for the growth and interspecies competitiveness of Streptococcus mutans

    Institute of Scientific and Technical Information of China (English)

    Yuan Wei; Xin Xu; Ming-Yun Li; Wei Qiu; Xue-Dong Zhou; Xin Zheng; Ke-Ke Zhang; Shi-Da Wang; Yu-Qing Li; Lei Cheng; Ji-Yao Li

    2016-01-01

    D-alanine (D-Ala) is an essential amino acid that has a key role in bacterial cell wall synthesis. Alanine racemase (Alr) is a unique enzyme that interconverts L-alanine and D-alanine in most bacteria, making this enzyme a potential target for antimicrobial drug development. Streptococcus mutans is a major causative factor of dental caries. The factors involved in the survival, virulence and interspecies interactions of S. mutans could be exploited as potential targets for caries control. The current study aimed to investigate the physiological role of Alr in S. mutans. We constructed alr mutant strain of S. mutans and evaluated its phenotypic traits and interspecies competitiveness compared with the wild-type strain. We found that alr deletion was lethal to S. mutans. A minimal supplement of D-Ala (150μg·mL−1) was required for the optimal growth of the alr mutant. The depletion of D-alanine in the growth medium resulted in cell wall perforation and cell lysis in the alr mutant strain. We also determined the compromised competitiveness of the alr mutant strain relative to the wild-type S. mutans against other oral streptococci (S. sanguinis or S. gordonii), demonstrated using either conditioned medium assays or dual-species fluorescent in situ hybridization analysis. Given the importance and necessity of alr to the growth and competitiveness of S. mutans, Alr may represent a promising target to modulate the cariogenicity of oral biofilms and to benefit the management of dental caries.

  16. Effect of 10 Week Beta-Alanine Supplementation on Competition and Training Performance in Elite Swimmers

    Directory of Open Access Journals (Sweden)

    Louise M. Burke

    2012-10-01

    Full Text Available Although some laboratory-based studies show an ergogenic effect with beta-alanine supplementation, there is a lack of field-based research in training and competition settings. Elite/Sub-elite swimmers (n = 23 males and 18 females, age = 21.7 ± 2.8 years; mean ± SD were supplemented with either beta-alanine (4 weeks loading phase of 4.8 g/day and 3.2 g/day thereafter or placebo for 10 weeks. Competition performance times were log-transformed, then evaluated before (National Championships and after (international or national selection meet supplementation. Swimmers also completed three standardized training sets at baseline, 4 and 10 weeks of supplementation. Capillary blood was analyzed for pH, bicarbonate and lactate concentration in both competition and training. There was an unclear effect (0.4%; ±0.8%, mean, ±90% confidence limits of beta-alanine on competition performance compared to placebo with no meaningful changes in blood chemistry. While there was a transient improvement on training performance after 4 weeks with beta-alanine (−1.3%; ±1.0%, there was an unclear effect at ten weeks (−0.2%; ±1.5% and no meaningful changes in blood chemistry. Beta-alanine supplementation appears to have minimal effect on swimming performance in non-laboratory controlled real-world training and competition settings.

  17. Substrate Specificity of the Aspartate:Alanine Antiporter (AspT) of Tetragenococcus halophilus in Reconstituted Liposomes*

    Science.gov (United States)

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-01-01

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of l-aspartate1− with l-alanine0. Although physiological functions of AspT were well studied, l-aspartate1−:l-alanine0 antiport mechanisms are still unsolved. Here we report that the binding sites of l-aspartate and l-alanine are independently present in AspT by means of the kinetic studies. We purified His6-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (Km = 0.35 ± 0.03 mm for l-aspartate, Km = 0.098 ± 0 mm for d-aspartate, Km = 26 ± 2 mm for l-alanine, Km = 3.3 ± 0.2 mm for d-alanine). Competitive inhibition by various amino acids of l-aspartate or l-alanine in self-exchange reactions revealed that l-cysteine selectively inhibited l-aspartate self-exchange but only weakly inhibited l-alanine self-exchange. Additionally, l-serine selectively inhibited l-alanine self-exchange but barely inhibited l-aspartate self-exchange. The aspartate analogs l-cysteine sulfinic acid, l-cysteic acid, and d-cysteic acid competitively and strongly inhibited l-aspartate self-exchange compared with l-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of l-aspartate and l-alanine are independently located in the substrate translocation pathway of AspT. PMID:21719707

  18. Substrate specificity of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus in reconstituted liposomes.

    Science.gov (United States)

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-08-19

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT.

  19. Nucleation kinetics, growth and studies of β-alanine single crystals

    Science.gov (United States)

    Shanthi, D.; Selvarajan, P.; HemaDurga, K. K.; Lincy Mary Ponmani, S.

    2013-06-01

    Solubility and metastable zone width for the re-crystallized salt of β-alanine was determined. Induction period measurement for the selected supersaturation ratios at room temperature (31 °C) was carried out for supersaturated aqueous solutions of β-alanine and it is noticed that induction period decreases with increase of supersaturation ratio. The nucleation parameters such as Gibbs free energy change, radius and number of molecules of the critical nucleus, interfacial tension and the nucleation rate have been evaluated by classical nucleation theory. Single crystals of β-alanine were grown using the optimized nucleation parameters by solution method and grown crystals have been subjected to various studies like XRD studies, FTIR, optical, thermal and SHG studies.

  20. Adsorption of L-Alanine on Cu(111) Studied by Scanning Tunnelling Microscopy

    Institute of Scientific and Technical Information of China (English)

    GE Si-Ping; L(U) Chao; ZHAO Ru-Guang

    2006-01-01

    The adsorption of L-alanine on Cu(111)surface is studied by means of scanning tunnelling microscopy under ultra-high Vacuum conditions.The results show that the adsorbates are chemisorbed on the surface,and can form a two-dimensional gas phase,chain phase and solid phase,depending on deposition rate and amount.The adsorbed molecules can be imaged as individual protrusions and parallel chains in gas and chain phases respectively.It is also found that alanine can form(2×2)superstructure on Cu(111)and copper step facet to directions in solid phase.On the basis of our scanning tunnelling microscopic images,a model js proposed for the Cu(111)(2×2)-alanine superstructure.In the model,we point out the close link between -direction hydrogen bond chains with the same direction copper step faceting.

  1. Sensitivity of alanine dosimeters with gadolinium exposed to 6 MV photons at clinical doses.

    Science.gov (United States)

    Marrale, M; Longo, A; Spanò, M; Bartolotta, A; D'Oca, M C; Brai, M

    2011-12-01

    In this study we analyzed the ESR signal of alanine dosimeters with gadolinium exposed to 6 MV linear accelerator photons. We observed that the addition of gadolinium brings about an improvement in the sensitivity to photons because of its high atomic number. The experimental data indicated that the addition of gadolinium increases the sensitivity of the alanine to 6 MV photons. This enhancement was better observed at high gadolinium concentrations for which the tissue equivalence is heavily reduced. However, information about the irradiation setup and of the radiation beam features allows one to correct for this difference. Monte Carlo simulations were carried out to obtain information on the expected effect of the addition of gadolinium on the dose absorbed by the alanine molecules inside the pellets. These results are compared with the experimental values, and the agreement is discussed.

  2. Radiation chemistry of L-Alanine: application to EPR dosimetry (1)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M. J.; Jeo, Y. H.; Ha, Y. K.; Park, Y. S.; Choi, I. G. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    High energy ionizing radiation leaves stable radicals to certain organic materials, such as alanine and tartrate. Electron Paramagnetic Resonance (EPR) spectroscopy is a powerful tool for the identification and quantification of these radiation-induced radicals. An EPR method has been applied to study the radical characteristics of L-alanine after gamma radiation dose in the range of {approx}mGy to 60 kGy. The free radicals induced by gamma radiation were fairly stable, and EPR intensity, radical concentration, was proportional to the absorbed dose up to 60 kGy. From the results of our EPR measurements, it can be concluded that an alanine/EPR method is a useful technique for gamma radiation dosimetry from very low to high dose range.

  3. The background of the total synthesis of yeast alanine transfer RNA

    Institute of Scientific and Technical Information of China (English)

    QI GuoRong

    2010-01-01

    @@ The research findings concerning the total synthesis of yeast alanine transfer RNA (yeast alanine tRNA) were successively published in Chinese Science Bulletin (1982) and Science in China (1983) [1].The research work started in 1968 and was finished in November 1981.It was the first artificial synthesis of a nucleic acid molecule, which followed the first artificial synthesis of protein, crystalline bovine insulin, in China in 1965, both scientific milestones occurring in China.The composition, sequence and biological functions of the synthesized nucleic acid were identical to those of the natural yeast alanine tRNA.The research lasted for 13 years.From 1982 to 1984, one of the investigators in charge of the research Prof.

  4. Probing the Catalytic Charge-Relay System in Alanine Racemase with Genetically Encoded Histidine Mimetics.

    Science.gov (United States)

    Sharma, Vangmayee; Wang, Yane-Shih; Liu, Wenshe R

    2016-12-16

    Histidine is a unique amino acid with an imidazole side chain in which both of the nitrogen atoms are capable of serving as a proton donor and proton acceptor in hydrogen bonding interactions. In order to probe the functional role of histidine involved in hydrogen bonding networks, fine-tuning the hydrogen bonding potential of the imidazole side chain is required but not feasible through traditional mutagenesis methods. Here, we show that two close mimetics of histidine, 3-methyl-histidine and thiazole alanine, can be genetically encoded using engineered pyrrolysine incorporation machinery. Replacement of the three histidine residues predicted to be involved in an extended charge-relay system in alanine racemase with 3-methyl-histidine or thiazole alanine shows a dramatic loss in the enzyme's catalytic efficiency, implying the role of this extended charge-relay system in activating the active site residue Y265, a general acid/base catalyst in the enzyme.

  5. The effect of β-alanine supplementation on cycling time trials of different length.

    Science.gov (United States)

    Bellinger, Phillip M; Minahan, Clare L

    2016-10-01

    The varying results reported in response to β-alanine supplementation may be related to the duration and nature of the exercise protocol employed. We investigated the effects of β-alanine supplementation on a wide range of cycling performance tests in order to produce a clear concise set of criteria for its efficacy. Fourteen trained cyclists (Age = 24.8 ± 6.7 years; VO2max = 65.4 ± 10.2 mL·kg·min(-1)) participated in this placebo-controlled, double-blind study. Prior to supplementation, subjects completed two (familiarization and baseline) supramaximal cycling bouts until exhaustion (120% pre-supplementation VO2max) and two 1-, 4- and 10-km cycling time trial (TT). Subjects then supplemented orally for 4 weeks with 6.4 g/d placebo or β-alanine and repeated the battery of performance tests. Blood lactate was measured pre-exercise, post-exercise and 5  min post-exercise. β-alanine supplementation elicited significant increases in time to exhaustion (TTE) (17.6 ± 11.5 s; p = 0.013, effect compared with placebo) and was likely to be beneficial to 4-km TT performance time (-7.8 ± 8.1 s; 94% likelihood), despite not being statistically different (p = 0.060). Performance times in the 1- and 10-km TT were not affected by treatment. For the highly trained cyclists in the current study, β-alanine supplementation significantly extended supramaximal cycling TTE and may have provided a worthwhile improvement to 4-km TT performance. However, 1- and 10-km cycling TT performance appears to be unaffected by β-alanine supplementation.

  6. Exchange of aspartate and alanine. Mechanism for development of a proton-motive force in bacteria.

    Science.gov (United States)

    Abe, K; Hayashi, H; Maloney, P C; Malone, P C

    1996-02-09

    We examined the idea that aspartate metabolism by Lactobacillus subsp. M3 is organized as a proton-motive metabolic cycle by using reconstitution to monitor the activity of the carrier, termed AspT, expected to carry out the electrogenic exchange of precursor (aspartate) and product (alanine). Membranes of Lactobacillus subsp. M3 were extracted with 1.25% octyl glucoside in the presence of 0. 4% Escherichia coli phospholipid and 20% glycerol. The extracts were then used to prepare proteoliposomes loaded with either aspartate or alanine. Aspartate-loaded proteoliposomes accumulated external [3H]aspartate by exchange with internal substrate; this homologous self-exchange (Kt = 0.4 mm) was insensitive to potassium or proton ionophores and was unaffected by the presence or absence of Na+, K+, or Mg2+. Alanine-loaded proteoliposomes also took up [3H]aspartate in a heterologous antiport reaction that was stimulated or inhibited by an inside-positive or inside-negative membrane potential, respectively. Several lines of evidence suggest that these homologous and heterologous exchange reactions were catalyzed by the same functional unit. Thus, [3H]aspartate taken up by AspT during self-exchange was released by a delayed addition of alanine. In addition, the spontaneous loss of AspT activity that occurs when a detergent extract is held at 37 degrees C prior to reconstitution was prevented by the presence of either aspartate (KD(aspartate) = 0.3 mm) or alanine (KD(alanine) > or = 10 mm), indicating that both substrates interact directly with AspT. These findings are consistent with operation of a proton-motive metabolic cycle during aspartate metabolism by Lactobacillus subsp. M3.

  7. Relative response of the alanine dosimeter to medium energy x-rays.

    Science.gov (United States)

    Anton, M; Büermann, L

    2015-08-01

    The response of the alanine dosimeter to kilovoltage x-rays with respect to the dose to water was measured, relative to the response to Co-60 radiation.Two series of x-ray qualities were investigated, one ranging from 30 kV to 100 kV tube voltage (TW series), the other one ranging from 70 kV to 280 kV (TH series). Due to the use of the water calorimeter as a primary standard, the uncertainty of the delivered dose is significantly lower than for other published data. The alanine response was measured as described in a previous publication (Anton et al 2013 Phys. Med. Biol. 58 3259-82). The uncertainty component due to the alanine measurement and analysis is ⩽0.4%, the major part of the combined uncertainty of the relative response originates from the uncertainty of the delivered dose. The relative uncertainties of the relative response vary from ⩽2% for the TW series to ⩽1.1% for the TH series.Different from the behaviour of the alanine dosimeter for megavoltage x-rays or electrons, the relative response drops significantly from unity for Co-60 radiation to less than 64% for the TW quality with a tube voltage of 30 kV. In order to reproduce this behaviour through Monte Carlo simulations, not only the ratio of the absorbed dose to alanine to the absorbed dose to water has to be known, but also the intrinsic efficiency, i.e. the dependence of the number of free radicals generated per unit of absorbed dose on the photon energy. This quantity is not yet accessible for the TW series.For a possible use of the alanine dosimeter for kilovoltage x-rays, for example in electronic brachytherapy, users should rely on the measured data for the relative response which have become available with this publication.

  8. The crystal structure of the D-alanine-D-alanine ligase from Acinetobacter baumannii suggests a flexible conformational change in the central domain before nucleotide binding.

    Science.gov (United States)

    Huynh, Kim-Hung; Hong, Myoung-ki; Lee, Clarice; Tran, Huyen-Thi; Lee, Sang Hee; Ahn, Yeh-Jin; Cha, Sun-Shin; Kang, Lin-Woo

    2015-11-01

    Acinetobacter baumannii, which is emerging as a multidrug-resistant nosocomial pathogen, causes a number of diseases, including pneumonia, bacteremia, meningitis, and skin infections. With ATP hydrolysis, the D-alanine-D-alanine ligase (DDL) catalyzes the synthesis of D-alanyl-D-alanine, which is an essential component of bacterial peptidoglycan. In this study, we determined the crystal structure of DDL from A. baumannii (AbDDL) at a resolution of 2.2 Å. The asymmetric unit contained six protomers of AbDDL. Five protomers had a closed conformation in the central domain, while one protomer had an open conformation in the central domain. The central domain with an open conformation did not interact with crystallographic symmetry-related protomers and the conformational change of the central domain was not due to crystal packing. The central domain of AbDDL can have an ensemble of the open and closed conformations before the binding of substrate ATP. The conformational change of the central domain is important for the catalytic activity and the detail information will be useful for the development of inhibitors against AbDDL and putative antibacterial agents against A. baumannii. The AbDDL structure was compared with that of other DDLs that were in complex with potent inhibitors and the catalytic activity of AbDDL was confirmed using enzyme kinetics assays.

  9. Poly[μ3-β-alanine-aqua-μ4-sulfato-dilithium

    OpenAIRE

    M. Daniel Sweetlin; Eapen, Shibu M.; Perumal, S.; S. Ramalingom

    2012-01-01

    The title compound, [Li2(SO4)(C3H7NO2)(H2O)]n, is a coordination polymer in which the β-alanine residues remain in the zwitterionic form. The crystal structure consists of corrugated sheets of [LiO4] and [SO4] tetrahedra parallel to (010) with the β-alanine molecules located between the sheets. The two independent Li+ cations are four-coordinated by O atoms in a distorted tetrahedral geometry. The crystal structure is formed by stacking of alternate organic and inorganic lay...

  10. Poly[μ3-β-alanine-aqua-μ4-sulfato-dilithium

    Directory of Open Access Journals (Sweden)

    M. Daniel Sweetlin

    2012-02-01

    Full Text Available The title compound, [Li2(SO4(C3H7NO2(H2O]n, is a coordination polymer in which the β-alanine residues remain in the zwitterionic form. The crystal structure consists of corrugated sheets of [LiO4] and [SO4] tetrahedra parallel to (010 with the β-alanine molecules located between the sheets. The two independent Li+ cations are four-coordinated by O atoms in a distorted tetrahedral geometry. The crystal structure is formed by stacking of alternate organic and inorganic layers along the a axis. The crystal structure is further stabilized by N—H...O hydrogen bonds.

  11. Poly[μ3-β-alanine-aqua-μ4-sulfato-dilithium

    OpenAIRE

    Sweetlin, M. Daniel; Eapen, Shibu M.; Perumal, S.; S. Ramalingom

    2012-01-01

    The title compound, [Li2(SO4)(C3H7NO2)(H2O)] n , is a coordination polymer in which the β-alanine residues remain in the zwitterionic form. The crystal structure consists of corrugated sheets of [LiO4] and [SO4] tetra­hedra parallel to (010) with the β-alanine mol­ecules located between the sheets. The two independent Li+ cations are four-coordinated by O atoms in a distorted tetra­hedral geometry. The crystal structure is formed by stacking of alternate organic and inorganic layers along the...

  12. Oxidation of phenyl alanine by pyridinium chlorochromate in acidic DMF–water medium: A kinetic study

    Directory of Open Access Journals (Sweden)

    B.L. Hiran

    2016-11-01

    Full Text Available The kinetics of oxidation of phenyl alanine by pyridinium chlorochromate in DMF–water (70:30% mixture in presence of perchloric acid leads to the formation of corresponding aldehyde. The reaction is of first order each in [PCC], [HClO4] and [AA]. Michaelis–Menten type kinetics was observed with phenyl alanine. The reaction rates were determined at different temperatures [25, 30, 35, 40, 45, 50 °C] and the activation parameters were calculated. The reaction does not induce polymerization of acrylonitrile. With an increase in the amount of DMF in its aqueous mixture, the rate increases. A suitable mechanism for the reaction was postulated.

  13. Active Oxygen Radical Scavenging Ability of Water-Soluble β-Alanine C60 Adducts

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Water-soluble β-alanine C60 adducts were synthesized, and the scavenging ability to superoxygen anion radical O2-and hydroxyl radicalOH were studied by autoxidation ofpyrogallol and chemiluminescence, respectively. It was found that β-alanine C60 adducts showed an excellent efficiency in eliminating superoxygen anion radical and hydroxyl radical. The 50% inhibition concentration (IC50) for superoxygen anion radical and hydroxyl radical were 0.15 mg/mL and 0.048 mg/mL, respectively. The difference should be mainly attributed to the different scavenging mechanisms.

  14. Standard Enthalpies of Formation of Solid Complexes of Lanthanide Nitrates with Alanine

    Institute of Scientific and Technical Information of China (English)

    杨旭武; 陈三平; 高胜利; 刘晓华; 史启祯

    2002-01-01

    The combustion energies of fourteen solid complexes of lanthanide nitrate with alanine were determined. The standard enthalpies of combustion, Δc,coor(s)H°, and standard enthalpies of formation, Δf,coor(s)H°, were calculated for these complexes. The relationship of Δc,coor(s)H° and Δf,coor(s)H° with the atomic numbers of the elements in the lanthanide series were examined. The results show that a certain amount of covalence is present in the chemical bond between the lanthanide cations and alanine.

  15. Synthesis, Characterization and Metal Ion Detection of Novel Fluoroionophores Based on Heterocyclic Substituted Alanines

    Directory of Open Access Journals (Sweden)

    M. Manuela M Raposo

    2007-10-01

    Full Text Available The synthesis of new fluorescent probes containing the thiophene andbenzoxazole moieties combined with an alanine residue is described. The resulting highlyfluorescent heterocyclic alanine derivatives respond via a quenching effect, withparamagnetic Cu(II and Ni(II metal ions and with diamagnetic Hg(II, as shown by theabsorption and steady-state fluorescence spectroscopy studies. The formation ofmononuclear or dinuclear metal complexes was postulated based on the presence of thefree carboxylic acid as binding site and also with the interaction with the donor atoms inthe chromophore. Interaction with other important biological metal ions such as Zn(II,Ca(II and Na(I was also explored.

  16. Spectral characterization of a non-centrosymmetric organic compound: D-(-)-alanine

    Science.gov (United States)

    Moovendaran, K.; Martin Britto Dhas, S. A.; Natarajan, S.

    2013-08-01

    The crystal growth of D-(-)-alanine (1), a non-centrosymmetric solid is reported. It was characterized by NMR, infrared, Raman, UV-Vis-NIR and CD spectra. Experimental vibrational frequencies are compared with theoretically calculated values. Second harmonic generation (SHG) and first hyperpolarizability measurements are reported.

  17. Growth and characterization of pure and semiorganic nonlinear optical Lithium Sulphate admixtured l-alanine crystal

    Science.gov (United States)

    Vela, T.; Selvarajan, P.; Freeda, T. H.; Balasubramanian, K.

    2013-04-01

    Lithium sulphate admixtured l-alanine (LSLA) salt was synthesized and the solubility of the commercially available l-alanine and the synthesized LSLA sample was determined in de-ionized water at various temperatures. In accordance with the solubility data, the saturated aqueous solutions of l-alanine and lithium admixtured l-alanine were prepared separately and the single crystals of the samples were grown by the solution method with a slow evaporation technique. Studying single x-ray diffraction shows that pure and LSLA crystal belong to the orthorhombic system with a non-centrosymmetric space group P212121. Using the powder x-ray diffraction study, the crystallinity of the grown crystals is confirmed and the diffraction peaks are indexed. The various functional groups present in the pure and LSLA crystal are elucidated from Fourier transform infrared spectroscopy study. UV-visible transmittance is recorded to study the optical transmittance range for the grown crystals. The powder second harmonic generation test confirms the nonlinear optical property of the grown crystals. From the microhardness test, the hardness of the grown crystals is estimated. The dielectric behaviour, such as the dielectric constant and the loss of the sample, are measured as a function of temperature and frequency. The ac conductivity of the grown crystals is also studied and the activation energy is calculated.

  18. [Temperature-dependent optical activity and birefringence study of D-alanine single crystal].

    Science.gov (United States)

    Li, Zong-Sheng; Gong, Yan; Wang, Wen-Qing; Du, Wei-Min

    2006-02-01

    The measurement of the anisotropy of optical acitivity and birefringence is one of the most important clues to studying physical properties of a biaxial crystal of D-alanine. In order to investigate a second-order phase transition predicted by A. Salam between two states of D-alanine, the behavior of birefringence and optical activity is useful for the phenomenological approach to the transition mechanism. The optical activity as a peculiar quantity can respond to the modulation of the crystal lattice and to the change in the bonding nature of constituent atoms. In the present paper, the authors use the PEM-90 photoelastic modulator to study the conformation change of D-alanine at the temperature ranging from 220 to 290 K. The temperature dependence of I(2f)/I(dc) showed that the conformation of D-alanine molecule in single crystal changed around 250 K. The obtained results provide an obvious evidence of optical rotation phase transition predicted by Salam.

  19. Probing the interaction of the amino acid alanine with the surface of ZnO(1010).

    Science.gov (United States)

    Gao, Y K; Traeger, F; Shekhah, O; Idriss, H; Wöll, C

    2009-10-01

    The adsorption modes and stability of the amino acid alanine (NH(2)-CH(CH(3))-COOH) have been studied on the nonpolar single crystal surface of zinc oxide, ZnO(1010), experimentally by X-ray photoelectron spectroscopy (XPS) and computationally using density functional theory (DFT). Deposition at 200 K was found to lead to the formation of multilayers identified by an XPS N1s peak at 401.7 eV assigned to the NH(3)(+) group, a fingerprint of the zwitterionic structure of alanine in the solid state. Heating to 300 K resulted in the removal of most of the multilayers with the remaining surface coverage estimated to 0.4 with respect to Zn cations. At this temperature most of the alanine molecules are found to be deprotonated (dissociated), yielding a carboxylate species (NH(2)-CH(CH(3))-COO(-) (a) + OH (s); where O is surface oxygen, (a) for adsorbed and (s) for surface species). Further heating of the surface resulted in a gradual decrease of the surface coverage and by 500 K a large fraction of adsorbed alanine molecules have desorbed from the surface. Total energy DFT computations of different adsorbate species identified two stable dissociative adsorption modes: bidentate and monodentate. The bidentate species with adsorption energy of 1.75 eV was found to be more stable than the monodentate species by about 0.7 eV.

  20. Effects of glycine, beta-alanine and diazepam upon morphine-tolerant-dependent mice.

    Science.gov (United States)

    Contreras, E; Tamayo, L

    1980-05-01

    The effects in mice of glycine, beta-alanine and diazepam on the analgesic response to morphine, on the intensity of tolerance and on the physical dependence on the analgesic have been examined. The two amino acids increased the analgesic response to morphine in a dose-related manner. However, both compounds were ineffective in the analgesic test (hot plate) when administered without morphine. Diazepam was ineffective in the analgesic test and it did not alter morphine analgesia, except when administered in a high dose which decreased and analgesic response. Glycine, either in single or repeated doses, did not modify tolerance to morphine, whereas beta-alanine induced a dose-related partial antagonism, which promptly reached a plateau. Diazepam induced a small decrease in the intensity of tolerance to the analgesic. The abstinence syndrome to morphine, induced by naloxone administration to primed mice, was reduced by single doses of glycine or beta-alanine. Diazepam behaved as a weak inhibitor of the abstinence syndrome when administered at a high dose. The potentiation of morphine analgesia and the antagonism of the abstinence syndrome induced by the amino acids may be related to their hyperpolarizing action in the c.n. system. The effects of beta-alanine on morphine tolerance cannot be explained by the same mechanism.

  1. Small-Field Dosimetry in A 6 MV Photon Beam Using Alanine and Liquid Ionisation Chamber

    DEFF Research Database (Denmark)

    Zimmermann, S.; Riis, H. L.; Hjelm-Hansen, M.

    2012-01-01

    Purpose/Objective: Dosimetry of small field sizes in MV photon beams is an increasingly important subject, and a generally accepted guideline for clinical measurements is still lacking. The present comparative study was carried out to further investigate the use of alanine and the PTW microLion i......, and this may explain part of the measured deviations. A practical difference between the two systems was that the alanine measurements were much more time consuming than the liquid ionization chamber measurements.......Lion ionisation chamber for small-field dosimetry in liquid water. Materials and Methods: The measurements were carried out on a Siemens Primus 58 leaves MLC. The alanine dosimeters were cylindric Ø4.9 mm × 3.0 mm and density of 1.2 g/cm3. The alanine dosimeters were placed on the top of a solid water stick of Ø4...... of each field and depth. This dose maximum was measured for each field using a Scanditronix Wellhöfer photon field diode. The same measurements were carried out using a liquid ionchamber, PTW microLion, irradiated by 500 MU. The output of the accelerator was controlled by a PTW semiflex ion chamber...

  2. High-pressure X-ray diffraction of L-ALANINE crystal

    DEFF Research Database (Denmark)

    Olsen, J.S.; Gerward, Leif; Souza, A.G.

    2006-01-01

    L-ALANINE has been studied by X-ray diffraction at ambient temperature and pressure up to 10.3 GPa. The material is found to transform to a tetragonal structure between 2 and 3 GPa. and to a monoclinic structure between 8 and 10 GPa. The experimental bulk modulus is 25(5) GPa for the orthorhombic...

  3. Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I

    Directory of Open Access Journals (Sweden)

    Angel L. Pey

    2013-01-01

    Full Text Available Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis.

  4. On the fragmentation of biomolecules: fragmentation of alanine dipeptide along the polypeptide chain

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander; Solov'yov, Andrey;

    2006-01-01

    The interaction potential between amino acids in alanine dipeptide has been studied for the first time taking into account exact molecular geometry. Ab initio calculation has been performed in the framework of density functional theory taking into account all electrons in the system. The fragment...

  5. Positron and electron scattering by glycine and alanine: Shape resonances and methylation effect

    Science.gov (United States)

    Nunes, Fernanda B.; Bettega, Márcio H. F.; Sanchez, Sergio d'Almeida

    2016-12-01

    We report integral cross sections (ICSs) for both positron and electron scattering by glycine and alanine amino acids. These molecules differ only by a methyl group. We computed the scattering cross sections using the Schwinger multichannel method for both glycine and alanine in different levels of approximation for both projectiles. The alanine ICSs are greater in magnitude than the glycine ICSs for both positron and electron scattering, probably due to the larger size of the molecule. In electron scattering calculations, we found two resonances for each molecule. Glycine presents one at 1.8 eV, and another centered at around 8.5 eV, in the static-exchange plus polarization (SEP) approximation. The ICS for alanine shows one resonance at 2.5 eV and another at around 9.5 eV, also in SEP approximation. The results are in good agreement with most of the data present in the literature. The comparison of the electron scattering ICSs for both molecules indicates that the methylation of glycine destabilizes the resonances, shifting them to higher energies.

  6. Investigation on physical properties of L-alanine: An effect of Methylene blue dye

    Science.gov (United States)

    Shkir, Mohd.; Yahia, I. S.; Al-Qahtani, A. M. A.; Ganesh, V.; AlFaify, S.

    2017-03-01

    In the present investigation, a bulk size (35 mm × 25 mm × 15 mm) single crystal of 0.1 wt% Methylene blue dye (MLB) added L-alanine is grown at room temperature using solution technique for the first time. The L-alanine crystals with higher concentrations of dye (0.5 and 1 wt%) were also grown. Solubility study was performed at different temperatures. Structural, vibrational and good quality was inveterate by powder XRD, FT-Raman and SEM analyses. High transmittance in dyed crystals was confirmed. The presence of MLB dye was confirmed by an absorption band centered at 650 nm. Optical band gap was calculated for pure and dyed L-alanine crystals and found to be 5.45 and 4.49 eV respectively. Photoluminescence intensity of UV-A emission band centered at 332 nm was found to be enhanced due to the presence of dye. The dielectric measurement was done in the wide frequency range. Furthermore, the third order nonlinear optical parameters are enhanced in dyed L-alanine crystals determined by Z-scan technique.

  7. A gene duplication led to specialized gamma-aminobutyrate and beta-alanine aminotransferase in yeast

    DEFF Research Database (Denmark)

    Andersen, Gorm; Andersen, Birgit; Dobritzsch, D.

    2007-01-01

    In humans, beta-alanine (BAL) and the neurotransmitter gamma-aminobutyrate (GABA) are transaminated by a single aminotransferase enzyme. Apparently, yeast originally also had a single enzyme, but the corresponding gene was duplicated in the Saccharomyces kluyveri lineage. SkUGA1 encodes a homologue...

  8. Liver alanine aminotransferase, insulin resistance and endothelial dysfunction in normotriglyceridaemic subjects with type 2 diabetes mellitus

    NARCIS (Netherlands)

    Schindhelm, RK; Diamant, M; Bakker, SJL; van Dijk, RAJM; Scheffer, PG; Teerlink, T; Kostense, PJ; Heine, RJ

    2005-01-01

    Background Plasma levels of liver transaminases, including alanine aminotransferase (ALT), are elevated in most cases of nonalcoholic fatty liver disease (NAFLD). Elevated ALT levels are associated with insulin resistance, and subjects with NAFLD have features of the metabolic syndrome that confer h

  9. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Jessen, Holly Jean; Liao, Hans H; Gort, Steven John; Selifonova, Olga V

    2014-11-18

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  10. Fragmentation of alpha- and beta-alanine molecules by ions at Bragg-peak energies

    NARCIS (Netherlands)

    Bari, S.; Sobocinski, P.; Postma, J.; Alvarado, F.; Hoekstra, R.; Bernigaud, V.; Manil, B.; Rangama, J.; Huber, B.; Schlathoelter, T.

    2008-01-01

    The interaction of keV He(+), He(2+), and O(5+) ions with isolated alpha and beta isomers of the amino acid alanine was studied by means of high resolution coincidence time-of-flight mass spectrometry. We observed a strong isomer dependence of characteristic fragmentation channels which manifests in

  11. Polymerisation of Beta-alanine through catalytic ester-amide exchange

    NARCIS (Netherlands)

    Steunenberg, P.; Könst, P.M.; Scott, E.L.; Franssen, M.C.R.; Zuilhof, H.; Sanders, J.P.M.

    2013-01-01

    Herein we present the use of group (IV) metal alkoxides as catalysts for the polymerisation of esters of p-alanine and its derivatives. The influence of different group (IV) metal alkoxides, different esters, temperature and solvents on the polymerisation are investigated. The order in which the gro

  12. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Jessen, Holly Jean [Chanhassen, MN; Liao, Hans H [Eden Prairie, MN; Gort, Steven John [Apple Valley, MN; Selifonova, Olga V [Plymouth, MN

    2011-10-04

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  13. Isomeric effects in ion-induced fragmentation of alpha- and beta-alanine

    NARCIS (Netherlands)

    Sobocinski, P.; Bari, S.; Postma, J.; Alvarado, F.; Hoekstra, R.; Manil, B.; Rangama, J.; Bernigaud, V.; Huber, B. A.; Schlatholter, T.; McGuigan, KG; Tokesi, K; Sulik, B

    2008-01-01

    We have investigated the dissociation of alpha- and beta- alanine following impact of slow multicharged ions, namely He(+), He(2+), O(5+) and Xe(20+) at 10 keV per charge unit. The collision products were analyzed using a reflectron-type time-of-flight mass spectrometer. In general, for a given proj

  14. Inhibiting Inosine Hydrolase and Alanine Racemase to Enhance the Germination of Bacillus anthracis Sterne Spores: Potential Spore Decontamination Strategies

    Science.gov (United States)

    2015-06-19

    2015): << Inhibiting inosine hydrolase and alanine racemase to enhance the germination of Bacillus anthracis Sterne spores: potential spore...inosine hydrolase and alanine racemase to enhance the germination of Bacillus anthracis Sterne spores potential spore decontamination strategies 5a...EASIER, SAFER, and CHEAPER Inducing spore germination should make resulting bacteria much more susceptible to decontamination methods and will be

  15. Effects of endogenous D-alanine synthesis and autoinhibition of Bacillus anthracis germination on in vitro and in vivo infections.

    Science.gov (United States)

    McKevitt, Matthew T; Bryant, Katie M; Shakir, Salika M; Larabee, Jason L; Blanke, Steven R; Lovchik, Julie; Lyons, C Rick; Ballard, Jimmy D

    2007-12-01

    Bacillus anthracis transitions from a dormant spore to a vegetative bacillus through a series of structural and biochemical changes collectively referred to as germination. The timing of germination is important during early steps in infection and may determine if B. anthracis survives or succumbs to responsive macrophages. In the current study experiments determined the contribution of endogenous D-alanine production to the efficiency and timing of B. anthracis spore germination under in vitro and in vivo conditions. Racemase-mediated production of endogenous D-alanine by B. anthracis altered the kinetics for initiation of germination over a range of spore densities and exhibited a threshold effect wherein small changes in spore number resulted in major changes in germination efficiency. This threshold effect correlated with D-alanine production, was prevented by an alanine racemase inhibitor, and required L-alanine. Interestingly, endogenous production of inhibitory levels of D-alanine was detected under experimental conditions that did not support germination and in a germination-deficient mutant of B. anthracis. Racemase-dependent production of D-alanine enhanced survival of B. anthracis during interaction with murine macrophages, suggesting a role for inhibition of germination during interaction with these cells. Finally, in vivo experiments revealed an approximately twofold decrease in the 50% lethal dose of B. anthracis spores administered in the presence of D-alanine, indicating that rates of germination may be directly influenced by the levels of this amino acid during early stages of disease.

  16. Biochemical and structural characterization of alanine racemase from Bacillus anthracis (Ames

    Directory of Open Access Journals (Sweden)

    Hill Ryan E

    2009-08-01

    Full Text Available Abstract Background Bacillus anthracis is the causative agent of anthrax and a potential bioterrorism threat. Here we report the biochemical and structural characterization of B. anthracis (Ames alanine racemase (AlrBax, an essential enzyme in prokaryotes and a target for antimicrobial drug development. We also compare the native AlrBax structure to a recently reported structure of the same enzyme obtained through reductive lysine methylation. Results B. anthracis has two open reading frames encoding for putative alanine racemases. We show that only one, dal1, is able to complement a D-alanine auxotrophic strain of E. coli. Purified Dal1, which we term AlrBax, is shown to be a dimer in solution by dynamic light scattering and has a Vmax for racemization (L- to D-alanine of 101 U/mg. The crystal structure of unmodified AlrBax is reported here to 1.95 Å resolution. Despite the overall similarity of the fold to other alanine racemases, AlrBax makes use of a chloride ion to position key active site residues for catalysis, a feature not yet observed for this enzyme in other species. Crystal contacts are more extensive in the methylated structure compared to the unmethylated structure. Conclusion The chloride ion in AlrBax is functioning effectively as a carbamylated lysine making it an integral and unique part of this structure. Despite differences in space group and crystal form, the two AlrBax structures are very similar, supporting the case that reductive methylation is a valid rescue strategy for proteins recalcitrant to crystallization, and does not, in this case, result in artifacts in the tertiary structure.

  17. Structural and functional characterization of the alanine racemase from Streptomyces coelicolor A3(2).

    Science.gov (United States)

    Tassoni, Raffaella; van der Aart, Lizah T; Ubbink, Marcellus; van Wezel, Gilles P; Pannu, Navraj S

    2017-01-29

    The conversion of l-alanine (L-Ala) into d-alanine (D-Ala) in bacteria is performed by pyridoxal phosphate-dependent enzymes called alanine racemases. D-Ala is an essential component of the bacterial peptidoglycan and hence required for survival. The Gram-positive bacterium Streptomyces coelicolor has at least one alanine racemase encoded by alr. Here, we describe an alr deletion mutant of S. coelicolor which depends on D-Ala for growth and shows increased sensitivity to the antibiotic d-cycloserine (DCS). The crystal structure of the alanine racemase (Alr) was solved with and without the inhibitors DCS or propionate, at 1.64 Å and 1.51 Å resolution, respectively. The crystal structures revealed that Alr is a homodimer with residues from both monomers contributing to the active site. The dimeric state of the enzyme in solution was confirmed by gel filtration chromatography, with and without L-Ala or d-cycloserine. The activity of the enzyme was 66 ± 3 U mg(-1) for the racemization of L- to D-Ala, and 104 ± 7 U mg(-1) for the opposite direction. Comparison of Alr from S. coelicolor with orthologous enzymes from other bacteria, including the closely related d-cycloserine-resistant Alr from S. lavendulae, strongly suggests that structural features such as the hinge angle or the surface area between the monomers do not contribute to d-cycloserine resistance, and the molecular basis for resistance therefore remains elusive.

  18. Structural features and kinetic characterization of alanine racemase from Staphylococcus aureus (Mu50).

    Science.gov (United States)

    Scaletti, Emma R; Luckner, Sylvia R; Krause, Kurt L

    2012-01-01

    Staphylococcus aureus is an opportunistic Gram-positive bacterium which causes a wide variety of diseases ranging from minor skin infections to potentially fatal conditions such as pneumonia, meningitis and septicaemia. The pathogen is a leading cause of nosocomial acquired infections, a problem that is exacerbated by the existence of methicillin- and glycopeptide antibiotic-resistant strains which can be challenging to treat. Alanine racemase (Alr) is a pyridoxal-5'-phosphate-dependent enzyme which catalyzes reversible racemization between enantiomers of alanine. As D-alanine is an essential component of the bacterial cell-wall peptidoglycan, inhibition of Alr is lethal to prokaryotes. Additionally, while ubiquitous amongst bacteria, this enzyme is absent in humans and most eukaryotes, making it an excellent antibiotic drug target. The crystal structure of S. aureus alanine racemase (Alr(Sas)), the sequence of which corresponds to that from the highly antibiotic-resistant Mu50 strain, has been solved to 2.15 Å resolution. Comparison of the Alr(Sas) structure with those of various alanine racemases demonstrates a conserved overall fold, with the enzyme sharing most similarity to those from other Gram-positive bacteria. Structural examination indicates that the active-site binding pocket, dimer interface and active-site entryway of the enzyme are potential targets for structure-aided inhibitor design. Kinetic constants were calculated in this study and are reported here. The potential for a disulfide bond in this structure is noted. This structural and biochemical information provides a template for future structure-based drug-development efforts targeting Alr(Sas).

  19. Role of Alanine Dehydrogenase of Mycobacterium tuberculosis during Recovery from Hypoxic Nonreplicating Persistence.

    Directory of Open Access Journals (Sweden)

    Michelle M Giffin

    Full Text Available Mycobacterium tuberculosis can maintain a nonreplicating persistent state in the host for decades, but must maintain the ability to efficiently reactivate and produce active disease to survive and spread in a population. Among the enzymes expressed during this dormancy is alanine dehydrogenase, which converts pyruvate to alanine, and glyoxylate to glycine concurrent with the oxidation of NADH to NAD. It is involved in the metabolic remodeling of M. tuberculosis through its possible interactions with both the glyoxylate and methylcitrate cycle. Both mRNA levels and enzymatic activities of isocitrate lyase, the first enzyme of the glyoxylate cycle, and alanine dehydrogenase increased during entry into nonreplicating persistence, while the gene and activity for the second enzyme of the glyoxylate cycle, malate synthase were not. This could suggest a shift in carbon flow away from the glyoxylate cycle and instead through alanine dehydrogenase. Expression of ald was also induced in vitro by other persistence-inducing stresses such as nitric oxide, and was expressed at high levels in vivo during the initial lung infection in mice. Enzyme activity was maintained during extended hypoxia even after transcription levels decreased. An ald knockout mutant of M. tuberculosis showed no reduction in anaerobic survival in vitro, but resulted in a significant lag in the resumption of growth after reoxygenation. During reactivation the ald mutant had an altered NADH/NAD ratio, and alanine dehydrogenase is proposed to maintain the optimal NADH/NAD ratio during anaerobiosis in preparation of eventual regrowth, and during the initial response during reoxygenation.

  20. Glutamate Racemase Is the Primary Target of β-Chloro-d-Alanine in Mycobacterium tuberculosis

    Science.gov (United States)

    Rodenburg, Anne; Khoury, Hania; de Chiara, Cesira; Howell, Steve; Snijders, Ambrosius P.

    2016-01-01

    The increasing global prevalence of drug resistance among many leading human pathogens necessitates both the development of antibiotics with novel mechanisms of action and a better understanding of the physiological activities of preexisting clinically effective drugs. Inhibition of peptidoglycan (PG) biosynthesis and cross-linking has traditionally enjoyed immense success as an antibiotic target in multiple bacterial pathogens, except in Mycobacterium tuberculosis, where it has so far been underexploited. d-Cycloserine, a clinically approved antituberculosis therapeutic, inhibits enzymes within the d-alanine subbranch of the PG-biosynthetic pathway and has been a focus in our laboratory for understanding peptidoglycan biosynthesis inhibition and for drug development in studies of M. tuberculosis. During our studies on alternative inhibitors of the d-alanine pathway, we discovered that the canonical alanine racemase (Alr) inhibitor β-chloro–d-alanine (BCDA) is a very poor inhibitor of recombinant M. tuberculosis Alr, despite having potent antituberculosis activity. Through a combination of enzymology, microbiology, metabolomics, and proteomics, we show here that BCDA does not inhibit the d-alanine pathway in intact cells, consistent with its poor in vitro activity, and that it is instead a mechanism-based inactivator of glutamate racemase (MurI), an upstream enzyme in the same early stage of PG biosynthesis. This is the first report to our knowledge of inhibition of MurI in M. tuberculosis and thus provides a valuable tool for studying this essential and enigmatic enzyme and a starting point for future MurI-targeted antibacterial development. PMID:27480853

  1. K-band EPR dosimetry: small-field beam profile determination with miniature alanine dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Felipe [Departmento de Fisica e Matematica, FFCLRP-Universidade de Sao Paulo, Av. Bandeirantes, 3900, 14040-901, Ribeirao Preto-SP (Brazil); Department of Radiological Health, Caja de Seguro Social, Panama City (Panama); Department of Physics, Faculty of Natural and Exact Sciences and Technology, University of Panama, Panama City (Panama); Graeff, Carlos F.O. [Departmento de Fisica e Matematica, FFCLRP-Universidade de Sao Paulo, Av. Bandeirantes, 3900, 14040-901, Ribeirao Preto-SP (Brazil); Baffa, Oswaldo [Departmento de Fisica e Matematica, FFCLRP-Universidade de Sao Paulo, Av. Bandeirantes, 3900, 14040-901, Ribeirao Preto-SP (Brazil)

    2005-02-01

    The use of small-size alanine dosimeters presents a challenge because the signal intensity is less than the spectrometer sensitivity. K-band (24 GHz) EPR spectrometer seems to be a good compromise between size and sensitivity of the sample. Miniature alanine pellets were evaluated for small-field radiation dosimetry. Dosimeters of DL-alanine/PVC with dimensions of 1.5 mm diameter and 2.5 mm length with 5 mg mass were developed. These dosimeters were irradiated with 10 MV X-rays in the dose range 0.05-60 Gy and the first harmonic (1 h) spectra were recorded. Microwave power, frequency and amplitude of modulation were optimized to obtain the best signal-to-noise ratio (S/N). For beam profile determination, a group of 25 dosimeters were placed in an acrylic device with dimensions of (7.5x2.5x1) cm{sup 3} and irradiated with a (3x3) cm{sup 2} 10 MV X-rays beam field size. The dose at the central region of the beam was 20 Gy at a depth of 2.2 cm (build up for acrylic). The acrylic device was oriented perpendicular to the beam axis and to the gantry rotation axis. For the purposes of comparison of the spatial resolution, the beam profile was also determined with a radiographic film and 2 mm aperture optical densitometer; in this case the dose was 1 cGy. The results showed a similar spatial resolution for both types of dosimeters. The dispersion in dose reading was larger for alanine in comparison with the film, but alanine dosimeters can be read faster and more directly than film over a wide dose range.

  2. The alanine detector in BNCT dosimetry: Dose response in thermal and epithermal neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, T., E-mail: schmito@uni-mainz.de [Institute for nuclear chemistry, Johannes Gutenberg-University, Mainz D-55128 (Germany); Bassler, N. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus C, Aarhus 8000 (Denmark); Blaickner, M. [AIT Austrian Institute of Technology GmbH, Vienna A-1220 (Austria); Ziegner, M. [AIT Austrian Institute of Technology GmbH, Vienna A-1220, Austria and TU Wien, Vienna University of Technology, Vienna A-1020 (Austria); Hsiao, M. C. [Insitute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Liu, Y. H. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Koivunoro, H. [Department of Physics, University of Helsinki, POB 64, FI-00014, Finland and HUS Medical Imaging Center, Helsinki University Central Hospital, FI-00029 HUS (Finland); Auterinen, I.; Serén, T.; Kotiluoto, P. [VTT Technical Research Centre of Finland, Espoo (Finland); Palmans, H. [National Physical Laboratory, Acoustics and Ionising Radiation Division, Teddington TW11 0LW, United Kingdom and Medical Physics Group, EBG MedAustron GmbH, Wiener Neustadt A-2700 (Austria); Sharpe, P. [National Physical Laboratory, Acoustics and Ionising Radiation Division, Teddington TW11 0LW (United Kingdom); Langguth, P. [Department of Pharmacy and Toxicology, University of Mainz, Mainz D-55128 (Germany); Hampel, G. [Institut für Kernchemie, Johannes Gutenberg-Universität, Mainz D-55128 (Germany)

    2015-01-15

    Purpose: The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Methods: Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a {sup 60}Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes FLUKA and MCNP. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen and Olsen alanine response model. Results: The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. Conclusions: The

  3. Mutation in a D-alanine-D-alanine ligase of Azospirillum brasilense Cd results in an overproduction of exopolysaccharides and a decreased tolerance to saline stress.

    Science.gov (United States)

    Jofré, Edgardo; Fischer, Sonia; Príncipe, Analía; Castro, Marina; Ferrari, Walter; Lagares, Antonio; Mori, Gladys

    2009-01-01

    Bacteria of the genus Azospirillum are free-living nitrogen-fixing, rhizobacteria that are found in close association with plant roots, where they exert beneficial effects on plant growth and yield in many crops of agronomic importance. Unlike other bacteria, little is known about the genetics and biochemistry of exopolysaccharides in Azospirillum brasilense. In an attempt to characterize genes associated with exopolysaccharides production, we generated an A. brasilense Cd Tn5 mutant that showed exopolysaccharides overproduction, decreased tolerance to saline conditions, altered cell morphology, and increased sensitivity to detergents. Genetic characterization showed that the Tn5 was inserted within a ddlB gene encoding for a d-alanine-d-alanine ligase, and located upstream of the ftsQAZ gene cluster responsible for cell division in different bacteria. Heterologous complementation of the ddlB Tn5 mutant restored the exopolysaccharides production to wild-type levels and the ability to grow in the presence of detergents, but not the morphology and growth characteristics of the wild-type bacteria, suggesting a polar effect of Tn5 on the fts genes. This result and the construction of a nonpolar ddlB mutant provide solid evidence of the presence of transcriptional coupling between a gene associated with peptidoglycan biosynthesis and the fts genes required to control cell division.

  4. New classes of alanine racemase inhibitors identified by high-throughput screening show antimicrobial activity against Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Karen G Anthony

    Full Text Available BACKGROUND: In an effort to discover new drugs to treat tuberculosis (TB we chose alanine racemase as the target of our drug discovery efforts. In Mycobacterium tuberculosis, the causative agent of TB, alanine racemase plays an essential role in cell wall synthesis as it racemizes L-alanine into D-alanine, a key building block in the biosynthesis of peptidoglycan. Good antimicrobial effects have been achieved by inhibition of this enzyme with suicide substrates, but the clinical utility of this class of inhibitors is limited due to their lack of target specificity and toxicity. Therefore, inhibitors that are not substrate analogs and that act through different mechanisms of enzyme inhibition are necessary for therapeutic development for this drug target. METHODOLOGY/PRINCIPAL FINDINGS: To obtain non-substrate alanine racemase inhibitors, we developed a high-throughput screening platform and screened 53,000 small molecule compounds for enzyme-specific inhibitors. We examined the 'hits' for structural novelty, antimicrobial activity against M. tuberculosis, general cellular cytotoxicity, and mechanism of enzyme inhibition. We identified seventeen novel non-substrate alanine racemase inhibitors that are structurally different than any currently known enzyme inhibitors. Seven of these are active against M. tuberculosis and minimally cytotoxic against mammalian cells. CONCLUSIONS/SIGNIFICANCE: This study highlights the feasibility of obtaining novel alanine racemase inhibitor lead compounds by high-throughput screening for development of new anti-TB agents.

  5. Chiral effects on helicity studied via the energy landscape of short (D, L)-alanine peptides.

    Science.gov (United States)

    Neelamraju, Sridhar; Oakley, Mark T; Johnston, Roy L

    2015-10-28

    The homochirality of natural amino acids facilitates the formation of regular secondary structures such as α-helices and β-sheets. Here, we study the relationship between chirality and backbone structure for the example of hexa-alanine. The most stable stereoisomers are identified through global optimisation. Further, the energy landscape, a database of connected low-energy local minima and transition points, is constructed for various neutral and zwitterionic stereoisomers of hexa-alanine. Three order parameters for partial helicity are applied and metric disconnectivity graphs are presented with partial helicity as a metric. We also apply the Zimm-Bragg model to derive average partial helicities for Ace-(L-Ala)6-NHMe, Ace-(D-Ala-L-Ala)3-NHMe, and Ace-(L-Ala)3-(D-Ala)3-NHMe from the database of local minima and compare with previous studies.

  6. An Optical Overview of Poly[-L-alanine--nitrato-sodium(I] Crystals

    Directory of Open Access Journals (Sweden)

    E. Gallegos-Loya

    2012-01-01

    Full Text Available Single crystals of the semiorganic materials, L-alanine sodium nitrate (LASN and D-alanine sodium nitrate (DASN, were grown from an aqueous solution by slow-evaporation technique. X-ray diffraction (XRD studies were carried for the doped grown crystals. The absorption of these grown crystals was analyzed using UV-Vis-NIR studies, and it was found that these crystals possess minimum absorption from 200 to 1100 nm. An infrared (FTIR spectrum of single crystal has been measured in the 4000–400 cm-1 range. The assignment of the observed vibrational modes to corresponding symmetry type has been performed. A thermogravimetric study was carried out to determine the thermal properties of the grown crystal. The efficiency of second harmonic generation was obtained by a variant of the Kurtz-Perry method.

  7. Membrane topology of the electrogenic aspartate-alanine antiporter AspT of Tetragenococcus halophilus.

    Science.gov (United States)

    Nanatani, Kei; Ohonishi, Fumito; Yoneyama, Hiroshi; Nakajima, Tasuku; Abe, Keietsu

    2005-03-04

    AspT is an electrogenic aspartate:alanine exchange protein that represents the vectorial component of a proton-motive metabolic cycle found in some strains of Tetragenococcus halophilus. AspT is the sole member of a new family, the Aspartate: Alanine Exchanger (AAE) family, in secondary transporters, according to the computational classification proposed by Saier et al. (http://www.biology.ucsd.edu/~msaier/transport/). We analyzed the topology of AspT biochemically, by using fusion methods in combination with alkaline phosphatase or beta-lactamase. These results suggested that AspT has a unique topology; 8 TMS, a large cytoplasmic loop (183 amino acids) between TMS5 and TMS6, and N- and C-termini that both face the periplasm. These results demonstrated a unique 2D-structure of AspT as the novel AAE family.

  8. Unusual hydroxyl migration in the fragmentation of β-alanine dication in the gas phase.

    Science.gov (United States)

    Piekarski, Dariusz Grzegorz; Delaunay, Rudy; Maclot, Sylvain; Adoui, Lamri; Martín, Fernando; Alcamí, Manuel; Huber, Bernd A; Rousseau, Patrick; Domaracka, Alicja; Díaz-Tendero, Sergio

    2015-07-14

    We present a combined experimental and theoretical study of the fragmentation of doubly positively charged β-alanine molecules in the gas phase. The dissociation of the produced dicationic molecules, induced by low-energy ion collisions, is analysed by coincidence mass spectrometric techniques; the coupling with ab initio molecular dynamics simulations allows rationalisation of the experimental observations. The present strategy gives deeper insights into the chemical mechanisms of multiply charged amino acids in the gas phase. In the case of the β-alanine dication, in addition to the expected Coulomb explosion and hydrogen migration processes, we have found evidence of hydroxyl-group migration, which leads to unusual fragmentation products, such as hydroxymethyl cation, and is necessary to explain some of the observed dominant channels.

  9. The behaviour of alanine dosimeters at temperatures between 100 and 300 K

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, P.H.G. [National Physical Laboratory, Teddington TW11 0LW (United Kingdom)], E-mail: peter.sharpe@npl.co.uk; Sephton, J.P.; Gouldstone, C.A. [National Physical Laboratory, Teddington TW11 0LW (United Kingdom)

    2009-07-15

    A cryostat has been constructed to enable irradiations in a MDS Nordion Gammacell 220 irradiator to be carried out at selected temperatures between 100 and 300 K. The principle of operation and the performance of this cryostat are described and results are given of a study into the behaviour of alanine dosimeters at cryogenic temperatures. This work extends previously published data to the region between solid CO{sub 2} and liquid N{sub 2} temperatures and has demonstrated complex dose-dependent behaviour. A sharp discontinuity in the effect of temperature on alanine dosimeter response has been found in the region between 150 and 180 K, with no further influence of irradiation temperature on response observed below this point.

  10. The behaviour of alanine dosimeters at temperatures between 100 and 300 K

    Science.gov (United States)

    Sharpe, P. H. G.; Sephton, J. P.; Gouldstone, C. A.

    2009-07-01

    A cryostat has been constructed to enable irradiations in a MDS Nordion Gammacell 220 irradiator to be carried out at selected temperatures between 100 and 300 K. The principle of operation and the performance of this cryostat are described and results are given of a study into the behaviour of alanine dosimeters at cryogenic temperatures. This work extends previously published data to the region between solid CO 2 and liquid N 2 temperatures and has demonstrated complex dose-dependent behaviour. A sharp discontinuity in the effect of temperature on alanine dosimeter response has been found in the region between 150 and 180 K, with no further influence of irradiation temperature on response observed below this point.

  11. The effect of irradiation temperatures between ambient and 80 deg. C on the response of alanine dosimeters

    DEFF Research Database (Denmark)

    Sharpe, P.H.G.; Miller, Arne; Sephton, J.P.;

    2009-01-01

    Published data on the effect of irradiation temperature on the response of alanine dosimeters does not extend to the temperatures that may be experienced in high-dose industrial irradiations, particularly in the case of electron beams. We describe here results of the irradiation of alanine...... begins to deviate significantly from linearity and shows marked dose dependence. The effect of this behaviour under conditions typically experienced in industrial processing is evaluated and recommendations made concerning the use of alanine dosimeters at high doses and temperatures....

  12. Structure and vibrational spectra of L-alanine L-alaninium picrate monohydrate

    Science.gov (United States)

    Ghazaryan, V. V.; Fleck, M.; Petrosyan, A. M.

    2012-05-01

    Preparation, crystal and molecular structure as well as vibrational spectra of the crystal L-alanine L-alaninium picrate monohydrate are described. The title crystal is monoclinic, space group P21. The asymmetric unit contains one dimeric (L-Ala⋯L-Ala+) cation, one picrate anion and a water molecule. The O⋯O distance in the dimeric cation is equal to 2.553(2) Å. The IR and Raman spectra are interpreted based on the structure.

  13. [Alanine dehydrogenase of the cyanobacterium Plectonema boryanum in the early period of cyanophage LPP-3 development].

    Science.gov (United States)

    Perepelitsa, S I; Koltukova, N V; Mendzhul, M I

    1995-01-01

    It has been studied how reproduction of LPP-3 in Plectonema boryanum cells influences the alanine dehydrogenase activity. It has been found that immediately after the virus adsorption the enzyme activity falls by 50% and the anabolic reaction is blocked. Physicochemical properties of the enzyme vary as well. An infected cell has one isoenzyme-octamer with pl 9.1-9.2, pH-optimum by action 9-10, molecular weight about 27 kDa.

  14. Alanine aminotransferase is an inadequate surrogate marker for detecting lamivudine resistance

    Institute of Scientific and Technical Information of China (English)

    Lee; Guan; Lim; Myat; Oo; Aung; Bee; Leng; Seet; Cindy; Tan; Yock; Young; Dan; Yin; Mei; Lee; Dede; Selamat; Sutedja; Mark; Fernandes; Guan; Huei; Lee; Evelyn; Koay; Seng; Gee; Lim

    2010-01-01

    AIM: To investigate the accuracy of serum alanine aminotransferase (ALT) in diagnosing lamivudine resistance and factors that contributed to abnormal serum ALT.METHODS: This was a retrospective study of chronic hepatitis B patients on lamivudine therapy who were followed for 3-mo with liver function tests and hepatitis B virus (HBV) DNA measurement. Lamivudine resistance was defined as HBV DNA ≥ 1 log from nadir on at least 2 occasions, confirmed by genotyping. Serum ALT levels in patients with lamivudine r...

  15. A COMPARATIVE STUDY ON THE ACTIVITY OF ALANIN-AMINOTRANSFERASE IN HYPOPHTHALMICHTHYS MOLITRIX AND ARISTICHTHYS NOBILIS

    Directory of Open Access Journals (Sweden)

    Gabriela Vasile

    2006-08-01

    Full Text Available The present paper represents a comparative study on the activity of one aminotransferase - alaninaminotransferase, in the digestive tube of Hypophthalmichthys molitrix (silver carp and Aristichthys nobilis (bighead carp. The enzymatic activity has been determined colorimetrically, with 2, 4 - dinitrophenyl hydrazine, the results obtained being expressed as UE / g / min. It was observed that, comparatively with the alanin-aminotransferase activity recorded in silver carp, in the case of bighead carp, the values recorded are much lower.

  16. Electronic structure and first hyperpolarizability of poly(2-L-alanine-3-sodium nitrate (I)) crystals

    Indian Academy of Sciences (India)

    A Duarte Moller

    2014-10-01

    Poly(2-L-alanine-3-sodium nitrate (I)), -LASN, crystals have been grown by slow evaporation at room temperature. The nominal size of the crystals obtained by the method was of 500 nm. The UV–Vis spectrum shows a wide range, where absorption is lacking around 532 nm, which is required in order to have the second harmonic emission, when an incident radiation of 1064 nm strikes on the crystal. This guarantees the possible use of the crystal in visible light applications. The transparent nature of the crystal in the visible and infrared regions within the transmission spectrum confirms the nonlinear optical properties of the crystal. Additionally, Fourier transform infrared spectroscopy displays its functional groups which correspond to the poly(2-L-alanine-3-sodium nitrate (I)), where the presence of nitrates in the lattice generally can be identified by their characteristic signature within the 1660–1625, 1300–1255, 870–833 and 763–690 cm-1 range. Single crystal diffraction was carried out in order to determine atomic structure and lattice parameter. Structural parameters were = 5.388(9) Å, = 9.315(15) Å and = 13.63(2) Å. The structure of poly(2-Lalanine-3-sodium nitrate (I)) shown by single crystal diffraction shows an asymmetric unit consisting of one sodium and one nitrate ion and one L-alanine molecule. The coordination geometry around the sodium atom was trigonal bipyramidal, with three bidentate nitrate anions coordinating through their oxygen atoms and two L-alanine molecules, each coordinating through one carboxyl oxygen atom. Electronic structure was obtained by using the Becke–Lee–Yang–Part and Hartree–Fock approximations with hybrid exchangecorrelation three-parameter functional and G-311**G() basis set. Theoretical and experimental results were compared and discussed as having an excellent agreement among them.

  17. Densities and solubilities of Glycylglycine and Glycyl-L-Alanine in Aqueous Electrolyte Solutions

    DEFF Research Database (Denmark)

    Breil, Martin Peter; Mollerup, Jørgen; Rudolph, E. Susanne J.

    2004-01-01

    is 1.74 and 4.78 mol/kg of water, respectively. The solubility of glycylglycine in salt solutions of NaCl, Na2SO4, and (NH4)(2)SO4 show a moderate salting-in effect. The solubility of glycyl-L-alanine show a minor or no salting-in effect at low salt concentrations and a moderate salting-out effect...

  18. Uracil and beta-alanine degradation in Saccharomyces Kluyveri - discovery of a novel catabolic pathway

    DEFF Research Database (Denmark)

    Andersen, Gorm

    2006-01-01

    ’en i gær og de genetiske forudsætninger for uracil og beta-alanine (BAL) katabolisme i S. kluyveri undersøgt. Evnen til at bruge uracil, dihydrouracil (DHU), beta-ureidopropionate (BUP) og BAL som nitrogenkilde blev studeret i 38 gær arter. Disse var udvalgt, så de dækkede “Saccharomyces komplekset...

  19. β-alanine supplementation improves isometric endurance of the knee extensor muscles

    Directory of Open Access Journals (Sweden)

    Sale Craig

    2012-06-01

    Full Text Available Abstract Background We examined the effect of four weeks of β-alanine supplementation on isometric endurance of the knee extensors at 45% maximal voluntary isometric contraction (MVIC. Methods Thirteen males (age 23 ± 6 y; height 1.80 ± 0.05 m; body mass 81.0 ± 10.5 kg, matched for pre-supplementation isometric endurance, were allocated to either a placebo (n = 6 or β-alanine (n = 7; 6.4 g·d-1 over 4 weeks supplementation group. Participants completed an isometric knee extension test (IKET to fatigue, at an intensity of 45% MVIC, before and after supplementation. In addition, two habituation tests were completed in the week prior to the pre-supplementation test and a further practice test was completed in the week prior to the post-supplementation test. MVIC force, IKET hold-time, and impulse generated were recorded. Results IKET hold-time increased by 9.7 ± 9.4 s (13.2% and impulse by 3.7 ± 1.3 kN·s-1 (13.9% following β-alanine supplementation. These changes were significantly greater than those in the placebo group (IKET: t(11 = 2.9, p ≤0.05; impulse: t(11 = 3.1, p ≤ 0.05. There were no significant changes in MVIC force in either group. Conclusion Four weeks of β-alanine supplementation at 6.4 g·d-1 improved endurance capacity of the knee extensors at 45% MVIC, which most likely results from improved pH regulation within the muscle cell as a result of elevated muscle carnosine levels.

  20. Surface chemistry of alanine on Cu{111}: Adsorption geometry and temperature dependence

    Science.gov (United States)

    Baldanza, Silvia; Cornish, Alix; Nicklin, Richard E. J.; Zheleva, Zhasmina V.; Held, Georg

    2014-11-01

    Adsorption of L-alanine on the Cu{111} single crystal surface was investigated as a model system for interactions between small chiral modifier molecules and close-packed metal surfaces. Synchrotron-based X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy are used to determine the chemical state, bond coordination and out-of-plane orientation of the molecule on the surface. Alanine adsorbs in its anionic form at room temperature, whilst at low temperature the overlayer consists of anionic and zwitterionic molecules. NEXAFS spectra exhibit a strong angular dependence of the π* resonance associated with the carboxylate group, which allows determining the tilt angle of this group with respect to the surface plane (48° ± 2°) at room temperature. Low-energy electron diffraction (LEED) shows a p(2√{ 13} × 2√{ 13}) R 13 ° superstructure with only one domain, which breaks the mirror symmetry of the substrate and, thus, induces global chirality to the surface. Temperature-programmed XPS (TP-XPS) and temperature-programmed desorption (TPD) experiments indicate that the zwitterionic form converts into the anionic species (alaninate) at 293 K. The latter desorbs/decomposes between 435 K and 445 K.

  1. Paradox of mistranslation of serine for alanine caused by AlaRS recognition dilemma.

    Science.gov (United States)

    Guo, Min; Chong, Yeeting E; Shapiro, Ryan; Beebe, Kirk; Yang, Xiang-Lei; Schimmel, Paul

    2009-12-10

    Mistranslation arising from confusion of serine for alanine by alanyl-tRNA synthetases (AlaRSs) has profound functional consequences. Throughout evolution, two editing checkpoints prevent disease-causing mistranslation from confusing glycine or serine for alanine at the active site of AlaRS. In both bacteria and mice, Ser poses a bigger challenge than Gly. One checkpoint is the AlaRS editing centre, and the other is from widely distributed AlaXps-free-standing, genome-encoded editing proteins that clear Ser-tRNA(Ala). The paradox of misincorporating both a smaller (glycine) and a larger (serine) amino acid suggests a deep conflict for nature-designed AlaRS. Here we show the chemical basis for this conflict. Nine crystal structures, together with kinetic and mutational analysis, provided snapshots of adenylate formation for each amino acid. An inherent dilemma is posed by constraints of a structural design that pins down the alpha-amino group of the bound amino acid by using an acidic residue. This design, dating back more than 3 billion years, creates a serendipitous interaction with the serine OH that is difficult to avoid. Apparently because no better architecture for the recognition of alanine could be found, the serine misactivation problem was solved through free-standing AlaXps, which appeared contemporaneously with early AlaRSs. The results reveal unconventional problems and solutions arising from the historical design of the protein synthesis machinery.

  2. Qualitative analysis of collective mode frequency shifts in L-alanine using terahertz spectroscopy.

    Science.gov (United States)

    Taulbee, Anita R; Heuser, Justin A; Spendel, Wolfgang U; Pacey, Gilbert E

    2009-04-01

    We have observed collective mode frequency shifts in deuterium-substituted L-alanine, three of which have previously only been calculated. Terahertz (THz) absorbance spectra were acquired at room temperature in the spectral range of 66-90 cm(-1), or 2.0-2.7 THz, for L-alanine (L-Ala) and four L-Ala compounds in which hydrogen atoms (atomic mass = 1 amu) were substituted with deuterium atoms (atomic mass = 2 amu): L-Ala-2-d, L-Ala-3,3,3-d(3), L-Ala-2,3,3,3-d(4), and L-Ala-d(7). The absorbance maxima of two L-Ala collective modes in this spectral range were recorded for multiple spectral measurements of each compound, and the magnitude of each collective mode frequency shift due to increased mass of these specific atoms was evaluated for statistical significance. Calculations were performed which predict the THz absorbance frequencies based on the estimated reduced mass of the modes. The shifts in absorbance maxima were correlated with the location(s) of the substituted deuterium atom(s) in the L-alanine molecule, and the atoms contributing to the absorbing delocalized mode in the crystal structure were deduced using statistics described herein. The statistical analyses presented also indicate that the precision of the method allows reproducible frequency shifts as small as 1 cm(-1) or 0.03 THz to be observed and that these shifts are not random error in the measurement.

  3. Identification and expression analyses of the alanine aminotransferase (AlaAT) gene family in poplar seedlings

    Science.gov (United States)

    Xu, Zhiru; Ma, Jing; Qu, Chunpu; Hu, Yanbo; Hao, Bingqing; Sun, Yan; Liu, Zhongye; Yang, Han; Yang, Chengjun; Wang, Hongwei; Li, Ying; Liu, Guanjun

    2017-01-01

    Alanine aminotransferase (AlaAT, E.C.2.6.1.2) catalyzes the reversible conversion of pyruvate and glutamate to alanine and α-oxoglutarate. The AlaAT gene family has been well studied in some herbaceous plants, but has not been well characterized in woody plants. In this study, we identified four alanine aminotransferase homologues in Populus trichocarpa, which could be classified into two subgroups, A and B. AlaAT3 and AlaAT4 in subgroup A encode AlaAT, while AlaAT1 and AlaAT2 in subgroup B encode glutamate:glyoxylate aminotransferase (GGAT), which catalyzes the reaction of glutamate and glyoxylate to α-oxoglutarate and glycine. Four AlaAT genes were cloned from P. simonii × P. nigra. PnAlaAT1 and PnAlaAT2 were expressed predominantly in leaves and induced by exogenous nitrogen and exhibited a diurnal fluctuation in leaves, but was inhibited in roots. PnAlaAT3 and PnAlaAT4 were mainly expressed in roots, stems and leaves, and was induced by exogenous nitrogen. The expression of PnAlaAT3 gene could be regulated by glutamine or its related metabolites in roots. Our results suggest that PnAlaAT3 gene may play an important role in nitrogen metabolism and is regulated by glutamine or its related metabolites in the roots of P. simonii × P. nigra. PMID:28378825

  4. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    Science.gov (United States)

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well.

  5. Structural, spectral, thermal, dielectric, mechanical and optical properties of urea L-alanine acetate single crystals

    Science.gov (United States)

    Jaikumar, D.; Kalainathan, S.; Bhagavannarayana, G.

    2010-05-01

    A new organic nonlinear optical crystal, urea L-alanine acetate (ULAA) has been grown by solution growth using slow cooling technique with the vision to improve the properties of the L-alanine crystals. Urea and L-alanine material were mixed in the molar ratio 1:4. Solubility and metastable zone width were determined. Single crystal XRD analyses revealed that the crystal lattice of ULAA is orthorhombic system, primitive lattice with cell parameters a=5.7971 Å, b=6.0391 Å, c=12.3276 Å with space group P2 12 12 1 (D 24). High-resolution X-ray diffraction (HR-XRD) analysis was carried out to study their crystalline perfection. FTIR spectrum was recorded to identify the presence of functional groups and molecular structure was confirmed by 1H NMR spectrum. From the mass spectrum, the ratio of compound formation of ULAA was analyzed. Thermal strength of the grown crystal has been studied using thermo-gravimetric (TG) and differential thermal analysis (DTA). Dielectric measurements reveal that the grown crystals have very low dielectric loss. The mechanical behavior was studied by Vickers microhardness test. The grown crystals were found to be transparent in the entire visible region. Preliminary measurement using Kurtz powder technique with Nd-YAG laser light of wavelength 1064 nm indicates that their second harmonic generation (SHG) efficiency is roughly equal to that of pure KDP.

  6. Effect of dipeptide of glutamine and alanine on severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    YANG De-lin; XU Jun-fa

    2007-01-01

    Objective: To determine the effect of dipeptide of glutamine and alanine on patients with severe traumatic brain injury. Methods: A total of 46 patients (31 males and 15 females, aged 7-68 years, (47±9.6) years on average) with severe traumatic brain injury were randomized into two groups: Group G (n=23) and Group C (n=23). The patients in Group G received nutritional remedy with the dipeptide of glutamine and alanine, whereas the patients in Group C received routine nutritional therapy only. GCS changes, the length of stay in the neurosurgical intensive care unit (NICU), the mortality,the count of lymphocytes, related complications including lung infection and hemorrhage of alimentary tracts, etc, were examined and recorded. Results: The fatality rate and the length of stay in NICU in Group G was lower than these in Group C (P<0.05), but no obvious difference was found in GCS changes of the patients between the two groups (P>0.05). The patients with lung infection and alimentary tract hemorrhage in Group G were less than those in Group C (P<0.05). The count of lymphocytes in Group G was more than that in Group C (P<0.05), but no difference was found in other nutritional data. Conclusions: Dipeptide of glutamine and alanine can increase the resisting stress and anti-infection ability of patients with severe traumatic brain injury, which can also lower the mortality and shorten the NICU stay.

  7. Beta-alanine-hydrochloride (2:1) crystal: structure, 13C NMR and vibrational properties, protonation character.

    Science.gov (United States)

    Godzisz, D; Ilczyszyn, M; Ciunik, Z

    2003-01-15

    The crystal structure of beta-alanine-hydrochloride (2:1) complex (2A-HCl) has been determined by X-ray diffraction method at 298 and 100 K as monoclinic, space group C2/c, Z=4. The crystal comprises chloride anions and protonated beta-alanine dimers: two beta-alanine zwitterions are joined by strong, symmetric (Ci) hydrogen bond with the O...O distance of 2.473 A at room temperature. Powder FT-IR and FT-Raman as well as solid state 13C NMR spectra provide insights into the solid structure of this complex, character of its hydrogen bonds and the beta-alanine protonation.

  8. Feasibility on using composite gel-alanine dosimetry on the validation of a multiple brain metastasis radiosurgery VMAT technique

    Science.gov (United States)

    Pavoni, J. F.; Neves-Junior, W. F. P.; Silveira, M. A.; Ramos, P. A. M. M.; Haddad, C. M. K.; Baffa, O.

    2015-01-01

    This work presents an end-to-end test using a composite Gel-Alanine phantom, in order to validate 3-dimensionally the dose distribution delivered by a single isocenter VMAT technique on the simultaneous treatment of multiple brain metastases. The results obtained with the gel and alanine dosimeters are consistent with the expected by the treatment planning system, showing the potential of this multidosimetric approach and validating dosimetrically the multiple brain metastases treatment using VMAT.

  9. Assessment of Metabolic Changes in Mycobacterium smegmatis Wild-Type and alr Mutant Strains: Evidence of a New Pathway of d-Alanine Biosynthesis.

    Science.gov (United States)

    Marshall, Darrell D; Halouska, Steven; Zinniel, Denise K; Fenton, Robert J; Kenealy, Katie; Chahal, Harpreet K; Rathnaiah, Govardhan; Barletta, Raúl G; Powers, Robert

    2017-03-03

    In mycobacteria, d-alanine is an essential precursor for peptidoglycan biosynthesis. The only confirmed enzymatic pathway to form d-alanine is through the racemization of l-alanine by alanine racemase (Alr, EC 5.1.1.1). Nevertheless, the essentiality of Alr in Mycobacterium tuberculosis and Mycobacterium smegmatis for cell survivability in the absence of d-alanine has been a point of controversy with contradictory results reported in the literature. To address this issue, we examined the effects of alr inactivation on the cellular metabolism of M. smegmatis. The M. smegmatis alr insertion mutant TAM23 exhibited essentially identical growth to wild-type mc(2)155 in the absence of d-alanine. NMR metabolomics revealed drastically distinct phenotypes between mc(2)155 and TAM23. A metabolic switch was observed for TAM23 as a function of supplemented d-alanine. In the absence of d-alanine, the metabolic response directed carbon through an unidentified transaminase to provide the essential d-alanine required for survival. The process is reversed when d-alanine is available, in which the d-alanine is directed to peptidoglycan biosynthesis. Our results provide further support for the hypothesis that Alr is not an essential function of M. smegmatis and that specific Alr inhibitors will have no bactericidal action.

  10. The crystal structure of alanine racemase from Streptococcus pneumoniae, a target for structure-based drug design

    Directory of Open Access Journals (Sweden)

    Davlieva Milya

    2011-05-01

    Full Text Available Abstract Background Streptococcus pneumoniae is a globally important pathogen. The Gram-positive diplococcus is a leading cause of pneumonia, otitis media, bacteremia, and meningitis, and antibiotic resistant strains have become increasingly common over recent years.Alanine racemase is a ubiquitous enzyme among bacteria and provides the essential cell wall precursor, D-alanine. Since it is absent in humans, this enzyme is an attractive target for the development of drugs against S. pneumoniae and other bacterial pathogens. Results Here we report the crystal structure of alanine racemase from S. pneumoniae (AlrSP. Crystals diffracted to a resolution of 2.0 Å and belong to the space group P3121 with the unit cell parameters a = b = 119.97 Å, c = 118.10 Å, α = β = 90° and γ = 120°. Structural comparisons show that AlrSP shares both an overall fold and key active site residues with other bacterial alanine racemases. The active site cavity is similar to other Gram positive alanine racemases, featuring a restricted but conserved entryway. Conclusions We have solved the structure of AlrSP, an essential step towards the development of an accurate pharmacophore model of the enzyme, and an important contribution towards our on-going alanine racemase structure-based drug design project. We have identified three regions on the enzyme that could be targeted for inhibitor design, the active site, the dimer interface, and the active site entryway.

  11. Microhydration of Alanine in Gas Phase Studied by Quantum Chemical Method and ABEEMσπ/MM Fluctuating Charge Model

    Institute of Scientific and Technical Information of China (English)

    LU Li-nan; LIU Cui; GONG Li-dong

    2013-01-01

    A fluctuating charge interaction potential function for alanine-water was constructed in the spirit of newly developed ABEEMσπ/MM(atom-bond electronegativity equalization method at the σπ level fused into molecular mechanics).The properties of gaseous neutral alanine-(H2O)n(n=1-7) clusters were systematically investigated by quantum mechanics(QM) and the constructed ABEEMσπ/MM potential,such as conformations,hydrogen bonds (H-bonds),interaction energies,charge distributions,and so on.The results of ABEEMσπ/MM model are in fair agreement with those of QM and available experimental data.For isolated alanine,compared with those of experi-mental structure,the average absolute deviations(AAD) of bond length and bond angle are 0.002 nm and 1.4°,respectively.For alanine-water clusters,the AAD of interaction energies and H-bond lengths are only 3.77 kJ/mol and 0.012 nm,respectively,compared to the results of MP2/aug-cc-pVDZ//MP2/6-311+G** method.The ABEEMσπ charges fluctuate with the changing conformation of the system,and can accurately and reasonably reflect the interpolarization between water and alanine.The presented alanine-water potential function may provide a basis for further simulations on related aqueous solutions of biomolecules.

  12. Combined effect of amino and carboxyl group in α-alanine on seeded precipitation of sodium aluminate solution

    Institute of Scientific and Technical Information of China (English)

    L(U) Bao-lin; CHEN Qi-yuan; YIN Zhou-lan; HU Hui-ping

    2009-01-01

    α-alanine was adopted as a new additive to elucidate the seeded precipitation mechanism of sodium aluminate solution. α-alanine has the inhibitory effect at the initial period of reaction, but the favorable effect in subsequent reaction. The combined effect of amino and carboxyl group in α-alanine was confirmed by investigating the effect of propionic acid, ethamine and the mixture of propionic acid and ethamine (mole ratio 1:1) on the precipitation of sodium aluminate solution, respectively. The inhibitory effect derives from the adsorption of amino or carboxyl group in α-alanine on the active surface sites of gibbsite, which was confirmed by the alleviating inhibitory effects of propionic acid, ethamine and α-alanine due to the double crystal seed mass. The semi-quantitative IR spectrum analysis of the relative concentrations of Al2O(OH)62- with the band at about 550 cm-1 and polynuclear aluminate ion with the bands at about 880 cm-1 and 635 cm-1, indicates that the dynamic balance among some aluminate species present in sodium aluminate solution is broken due to the addition of α-alanine, thus resulting in the change of the seeded precipitation ratio of sodium aluminate solution.

  13. Alanine scan of core positions in ubiquitin reveals links between dynamics, stability, and function.

    Science.gov (United States)

    Lee, Shirley Y; Pullen, Lester; Virgil, Daniel J; Castañeda, Carlos A; Abeykoon, Dulith; Bolon, Daniel N A; Fushman, David

    2014-04-03

    Mutations at solvent-inaccessible core positions in proteins can impact function through many biophysical mechanisms including alterations to thermodynamic stability and protein dynamics. As these properties of proteins are difficult to investigate, the impacts of core mutations on protein function are poorly understood for most systems. Here, we determined the effects of alanine mutations at all 15 core positions in ubiquitin on function in yeast. The majority (13 of 15) of alanine substitutions supported yeast growth as the sole ubiquitin. Both the two null mutants (I30A and L43A) were less stable to temperature-induced unfolding in vitro than wild type (WT) but were well folded at physiological temperatures. Heteronuclear NMR studies indicated that the L43A mutation reduces temperature stability while retaining a ground-state structure similar to WT. This structure enables L43A to bind to common ubiquitin receptors in vitro. Many of the core alanine ubiquitin mutants, including one of the null variants (I30A), exhibited an increased accumulation of high-molecular-weight species, suggesting that these mutants caused a defect in the processing of ubiquitin-substrate conjugates. In contrast, L43A exhibited a unique accumulation pattern with reduced levels of high-molecular-weight species and undetectable levels of free ubiquitin. When conjugation to other proteins was blocked, L43A ubiquitin accumulated as free ubiquitin in yeast. Based on these findings, we speculate that ubiquitin's stability to unfolding may be required for efficient recycling during proteasome-mediated substrate degradation.

  14. Structural and biochemical analyses of alanine racemase from the multidrug-resistant Clostridium difficile strain 630.

    Science.gov (United States)

    Asojo, Oluwatoyin A; Nelson, Sarah K; Mootien, Sara; Lee, Yashang; Rezende, Wanderson C; Hyman, Daniel A; Matsumoto, Monica M; Reiling, Scott; Kelleher, Alan; Ledizet, Michel; Koski, Raymond A; Anthony, Karen G

    2014-07-01

    Clostridium difficile, a Gram-positive, spore-forming anaerobic bacterium, is the leading cause of infectious diarrhea among hospitalized patients. C. difficile is frequently associated with antibiotic treatment, and causes diseases ranging from antibiotic-associated diarrhea to life-threatening pseudomembranous colitis. The severity of C. difficile infections is exacerbated by the emergence of hypervirulent and multidrug-resistant strains, which are difficult to treat and are often associated with increased mortality rates. Alanine racemase (Alr) is a pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes the reversible racemization of L- and D-alanine. Since D-alanine is an essential component of the bacterial cell-wall peptidoglycan, and there are no known Alr homologs in humans, this enzyme is being tested as an antibiotic target. Cycloserine is an antibiotic that inhibits Alr. In this study, the catalytic properties and crystal structures of recombinant Alr from the virulent and multidrug-resistant C. difficile strain 630 are presented. Three crystal structures of C. difficile Alr (CdAlr), corresponding to the complex with PLP, the complex with cycloserine and a K271T mutant form of the enzyme with bound PLP, are presented. The structures are prototypical Alr homodimers with two active sites in which the cofactor PLP and cycloserine are localized. Kinetic analyses reveal that the K271T mutant CdAlr has the highest catalytic constants reported to date for any Alr. Additional studies are needed to identify the basis for the high catalytic activity. The structural and activity data presented are first steps towards using CdAlr for the development of structure-based therapeutics for C. difficile infections.

  15. Concerted modulation of alanine and glutamate metabolism in young Medicago truncatula seedlings under hypoxic stress.

    Science.gov (United States)

    Limami, Anis M; Glévarec, Gaëlle; Ricoult, Claudie; Cliquet, Jean-Bernard; Planchet, Elisabeth

    2008-01-01

    The modulation of primary nitrogen metabolism by hypoxic stress was studied in young Medicago truncatula seedlings. Hypoxic seedlings were characterized by the up-regulation of glutamate dehydrogenase 1 (GDH1) and mitochondrial alanine aminotransferase (mAlaAT), and down-regulation of glutamine synthetase 1b (GS1b), NADH-glutamate synthase (NADH-GOGAT), glutamate dehydrogenase 3 (GDH3), and isocitrate dehydrogenase (ICDH) gene expression. Hypoxic stress severely inhibited GS activity and stimulated NADH-GOGAT activity. GDH activity was lower in hypoxic seedlings than in the control, however, under either normoxia or hypoxia, the in vivo activity was directed towards glutamate deamination. (15)NH(4) labelling showed for the first time that the adaptive reaction of the plant to hypoxia consisted of a concerted modulation of nitrogen flux through the pathways of both alanine and glutamate synthesis. In hypoxic seedlings, newly synthesized (15)N-alanine increased and accumulated as the major amino acid, asparagine synthesis was inhibited, while (15)N-glutamate was synthesized at a similar rate to that in the control. A discrepancy between the up-regulation of GDH1 expression and the down-regulation of GDH activity by hypoxic stress highlighted for the first time the complex regulation of this enzyme by hypoxia. Higher rates of glycolysis and ethanol fermentation are known to cause the fast depletion of sugar stores and carbon stress. It is proposed that the expression of GDH1 was stimulated by hypoxia-induced carbon stress, while the enzyme protein might be involved during post-hypoxic stress contributing to the regeneration of 2-oxoglutarate via the GDH shunt.

  16. Study of pyruvate kinase activity in human astrocytomas - Alanine-inhibition test revisted

    Directory of Open Access Journals (Sweden)

    Javalkar V

    2009-01-01

    Full Text Available Background: Recent studies have confirmed that alterations in the isoenzyme of pyruvate kinase (PK provide tumor cells with selective growth advantage. Aims: Our aim was to establish the mean activity of the enzyme PK in human astrocytomas and to look for any trends in the activity with relation to histological grade. Materials and Methods: The PK (EC 2.7.1.40 activity was measured in the tumor homogenate by spectrophotometric rate determination. ΔAbsorbance at 340 nm (A 340nm per minute was obtained using the maximal linear rate for both the test and the blank. Enzyme activity was estimated in the presence and absence of amino acid alanine. Results: The mean PK level in astrocytomas was 3.5 ± 2.0 mmol/min/mg protein, which was significantly higher (24%; P < 0.001 when compared to 2.8 ± 0.3 mmol/min/mg protein in control brain. Highest PK activity was noted in grade 2 astrocytomas. In controls there was no change in PK activity in the presence of alanine. In grade 2 astrocytomas there was 7% decrease in mean PK activity in the presence of alanine, this difference in grade 3 astrocytomas was 33% and in grade 4 astrocytomas it was 61%. As the tumors were becoming malignant there was a graded increase in the levels of PK inhibition. Conclusions: Mean PK activity was significantly higher in astrocytomas. There was a graded increase in level of PK inhibition as the tumors were becoming more malignant.

  17. Tetrakis-μ-l-alanine-κ8O:O′-bis[tetraaquaterbium(III] hexaperchlorate

    Directory of Open Access Journals (Sweden)

    Musa E. Mohamed

    2010-02-01

    Full Text Available The asymmetric unit of the title compound, [Tb2(C3H7NO24(H2O8](ClO46, contains a dinuclear cation and six perchlorate anions, one of which is disordered. In the cation, the four l-alanine molecules are present in their zwitterionic form and bridge two Tb3+ ions through their carboxylate O atoms. Each Tb atom is also coordinated by four water molecules in a square-antiprismatic geometry. In the crystal structure, the cations and anions are held together via intermolecular O—H...O and N—H...O hydrogen bonds.

  18. Growth and Characterization of Pure and Doped L-Alanine Tartrate Single Crystals

    OpenAIRE

    K. Rajesh; B. Milton Boaz; P. Praveen Kumar

    2013-01-01

    Single crystals of pure and Lanthanum doped L-Alanine Tartrate were grown by slow evaporation method. The cell parameters were determined using single crystal X-ray diffraction method. To improve the physical properties of the LAT crystal, Lanthanum dopant was added by 2 mol%. ICP studies confirm the presence of Lanthanum in the grown LAT crystal. Transparency range of the crystal was determined using UV-VIS-NIR spectrophotometer. The functional groups of pure and doped LAT crystals were a...

  19. Conserved aspartic acid 233 and alanine 231 are not required for poliovirus polymerase function in replicons

    Directory of Open Access Journals (Sweden)

    Freistadt Marion S

    2007-03-01

    Full Text Available Abstract Nucleic acid polymerases have similar structures and motifs. The function of an aspartic acid (conserved in all classes of nucleic acid polymerases in motif A remains poorly understood in RNA-dependent RNA polymerases. We mutated this residue to alanine in a poliovirus replicon. The resulting mutant could still replicate, although at a reduced level. In addition, mutation A231C (also in motif A yielded high levels of replication. Taken together these results show that poliovirus polymerase conserved residues D233 and A231 are not essential to poliovirus replicon function.

  20. Conserved aspartic acid 233 and alanine 231 are not required for poliovirus polymerase function in replicons

    Science.gov (United States)

    Freistadt, Marion S; Eberle, Karen E

    2007-01-01

    Nucleic acid polymerases have similar structures and motifs. The function of an aspartic acid (conserved in all classes of nucleic acid polymerases) in motif A remains poorly understood in RNA-dependent RNA polymerases. We mutated this residue to alanine in a poliovirus replicon. The resulting mutant could still replicate, although at a reduced level. In addition, mutation A231C (also in motif A) yielded high levels of replication. Taken together these results show that poliovirus polymerase conserved residues D233 and A231 are not essential to poliovirus replicon function. PMID:17352827

  1. Propylthiouracyl-induced severe liver toxicity: An indication for alanine aminotransferase monitoring?

    Institute of Scientific and Technical Information of China (English)

    M Benyounes; C Sempoux; C Daumerie; J Rahier; AP Geubel

    2006-01-01

    Propylthiouracyl (PTU)-related liver toxicity is likely to occur in about 1% of treated patients. In case of acute or subacute hepatitis, liver failure may occur in about one third. We report two further cases of PTU-induced subacute hepatitis, in whom the delay between occurrence of liver damage after the initiation of treatment, the underestimation of its severity and the delayed withdrawal of the drug were all likely responsible for liver failure.The high incidence of liver toxicity related to PTU, its potential severity and delayed occurrence after initiation of treatment are in favor of monthly alanine aminotransferase monitoring, at least during the first six months of therapy.

  2. Design of Deinococcus radiodurans thioredoxin reductase with altered thioredoxin specificity using computational alanine mutagenesis.

    Science.gov (United States)

    Obiero, Josiah; Sanders, David A R

    2011-06-01

    In this study, the X-ray crystal structure of the complex between Escherichia coli thioredoxin reductase (EC TrxR) and its substrate thioredoxin (Trx) was used as a guide to design a Deinococcus radiodurans TrxR (DR TrxR) mutant with altered Trx specificity. Previous studies have shown that TrxRs have higher affinity for cognate Trxs (same species) than that for Trxs from different species. Computational alanine scanning mutagenesis and visual inspection of the EC TrxR-Trx interface suggested that only four residues (F81, R130, F141, and F142) account for the majority of the EC TrxR-Trx interface stability. Individual replacement of equivalent residues in DR TrxR (M84, K137, F148, and F149) with alanine resulted in drastic changes in binding affinity, confirming that the four residues account for most of TrxR-Trx interface stability. When M84 and K137 were changed to match equivalent EC TrxR residues (K137R and M84F), the DR TrxR substrate specificity was altered from its own Trx to that of EC Trx. The results suggest that a small subset of the TrxR-Trx interface residues is responsible for the majority of Trx binding affinity and species-specific recognition.

  3. Role of tRNAPro in pretransfer editing of alanine by prolyl-tRNA synthetase

    Directory of Open Access Journals (Sweden)

    Boyarshin K. S.

    2013-09-01

    Full Text Available Aim. To characterize the process of tRNA-dependent pretransfer edi- ting of alanine by prolyl-tRNA synthetase of bacteria Enterococcus faecalis (ProRSEf. Methods. Velocity of the editing processes in vitro was determined by ATP hydrolysis by ProRSEf. Pretransfer and posttransfer editing were experimentally separated by site-directed mutagenesis. Results. tRNA-dependent pretransfer editing is characterized by three-fold larger velocity then tRNA-independent editing. Effectivity of the process depends on the presence of 2'-hydroxyle group of A76 tRNAPro. In the absence of tRNAPro selective release of alanyl-AMP occurs simultaneously with tRNA-independent pretransfer editing. Released alanyl-AMP can be re-bound and hydrolyzed. Conclusions. tRNA-dependent pretransfer editing of alanine by ProRSEf is the catalytic mechanism, mediated by 2'-hydroxyl group of A76 tRNAPro. In the absence of tRNAPro tRNA-independent pretransfer editing and selective release of alanyl-AMP occur.

  4. Advancements in accuracy of the alanine dosimetry system. Part 2. The influence of the irradiation temperature

    Science.gov (United States)

    Nagy, Vitaly; Puhl, James M.; Desrosiers, Marc F.

    2000-01-01

    Systematic measurements of the temperature coefficient for alanine electron paramagnetic resonance (EPR) response have been performed for irradiation in the temperature range (10-50)°C and in the absorbed dose range (1-100) kGy at the dose rate 9.5 kGy/h. During the 60Co rad -ray irradiation, rad - L-alanine dosimeters were kept in a sealed aluminum holder that provided an effective heat exchange with the temperature-controlled environment. The time between the irradiation and signal measurements was standardized, and a reference sample fixed in the resonant cavity was used to correct the signals for small variations in the spectrometer sensitivity. The temperature coefficient for each dose was determined from approximately 30 experimental points processed by the weighted least-squares technique after the necessary statistical tests were done. The temperature coefficients thus determined were considerably lower than previously reported. The dose dependence of the temperature coefficient features a minimum at (20-30) kGy (about 0.135%/K) with higher values at 1 kGy (0.17%/K) and at 100 kGy ((0.175-0.19) %/K). With the exception of very high doses, no significant distinction was found between the temperature coefficients of Bruker and NIST dosimeters, which differ in shape and binder content.

  5. A single glycine-alanine exchange directs ligand specificity of the elephant progestin receptor.

    Directory of Open Access Journals (Sweden)

    Michael Wierer

    Full Text Available The primary gestagen of elephants is 5α-dihydroprogesterone (DHP, which is unlike all other mammals studied until now. The level of DHP in elephants equals that of progesterone in other mammals, and elephants are able to bind DHP with similar affinity to progesterone indicating a unique ligand-binding specificity of the elephant progestin receptor (PR. Using site-directed mutagenesis in combination with in vitro binding studies we here report that this change in specificity is due to a single glycine to alanine exchange at position 722 (G722A of PR, which specifically increases DHP affinity while not affecting binding of progesterone. By conducting molecular dynamics simulations comparing human and elephant PR ligand-binding domains (LBD, we observed that the alanine methyl group at position 722 is able to push the DHP A-ring into a position similar to progesterone. In the human PR, the DHP A-ring position is twisted towards helix 3 of PR thereby disturbing the hydrogen bond pattern around the C3-keto group, resulting in a lower binding affinity. Furthermore, we observed that the elephant PR ligand-binding pocket is more rigid than the human analogue, which probably explains the higher affinity towards both progesterone and DHP. Interestingly, the G722A substitution is not elephant-specific, rather it is also present in five independent lineages of mammalian evolution, suggesting a special role of the substitution for the development of distinct mammalian gestagen systems.

  6. Ibalizumab-human CD4 receptor interaction: computational alanine scanning molecular dynamics studies.

    Science.gov (United States)

    Su, Zhi-Yuan

    2014-01-01

    Antibody drugs are used in the treatment of many chronic diseases. Recently, however, patients and doctors have encountered problems with drug resistance, and improving the affinity of antibody drugs has therefore become a pressing issue. Ibalizumab is a humanized monoclonal antibody that binds human CD4, the primary receptor for human immunodeficiency virus type 1 (HIV-1). In this study, we sought to identify the key residues of the complementaritydetermining regions (CDRs) of ibalizumab. Virtual alanine mutations (complementarity-determining regions of ibalizumab) were also studied using solvated interaction energies derived from molecular dynamics and the explicit water model. Using 1,000 nanosecond molecular dynamic simulations, we identified six residues: Tyr50 [HCDR2], Tyr53 [HCDR3], Asp58 [HCDR2], Glu95 [HCDR2], and Arg95 [LCDR3]. The Robetta alanine-scanning mutagenesis method and crystallographic information were used to verify our simulations. Our simulated binding affinity of -17.33 kcal/mol is close to the experimentally determined value of -16.48 kcal/mol. Our findings may be useful for protein engineering the structure of the ibalizumab-human CD4 receptor complex. Moreover, the six residues that we identified may play a significant role in the development of bioactive antibody analogues.

  7. Characterization and biocompatibility of organogels based on L-alanine for parenteral drug delivery implants.

    Science.gov (United States)

    Motulsky, Aude; Lafleur, Michel; Couffin-Hoarau, Anne-Claude; Hoarau, Didier; Boury, Frank; Benoit, Jean-Pierre; Leroux, Jean-Christophe

    2005-11-01

    The development of simple and efficient drug delivery systems for the sustained release of peptides/proteins and low molecular weight hydrophilic molecules is an ongoing challenge. The purpose of this work was to prepare and characterize novel biodegradable in situ-forming implants obtained via the self-assembly of L-alanine derivatives in pharmaceutical oils. Six different amphiphilic organogelators based on L-alanine were synthesized. These derivatives could successfully gel various vegetable and synthetic oils approved for parenteral administration. Gelation was thermoreversible, and phase transition temperatures depended on gelator structure, concentration and solvent. Hydrogen bonds and van der Waals interactions were shown to be the main forces implicated in network formation. Selected formulations were then injected subcutaneously in rats for preliminary assessment of biocompatibility. Histopathological analysis of the surrounding tissues revealed mild, chronic inflammation and an overall good biocompatibility profile of the implants over the 8 wk evaluation period. This study demonstrates that in situ-forming organogels represent a potentially promising platform for sustained drug delivery.

  8. A better parameter in predicting insulin resistance: Obesity plus elevated alanine aminotransferase

    Institute of Scientific and Technical Information of China (English)

    Ping-Hao Chen; Jong-Dar Chen; Yu-Cheng Lin

    2009-01-01

    AIM: To investigate the association of obesity and elevated alanine aminotransferase with insulin resistance and compare these factors with metabolic syndrome.METHODS: We enrolled a total of 1308 male workers aged from 22 to 63 years. Data was extracted from the workers’ periodic health check-ups in hospitals. All cases were from the community of northern Taiwan.This was a cross-sectional observational study from July to September in 2004. We grouped all cases into four groups, based on the quartile of homeostasis model assessment. The top fourth quartile group was defined as the group with insulin resistance. We performed multivariate logistic regression analysis for the odds ratio of the risk factors for insulin resistance.RESULTS: Compared with metabolic syndrome, the coexistence of both factors had a 4.3-fold (95% CI: 2.7-6.8) increased risk, which was more than metabolic syndrome with a 3.6-fold (95% CI: 2.6-5.0) increased risk. The two factors had a synergistic effect. The synergistic index of obesity and elevated alanine aminotransferase (ALT) was 2.1 (95% CI: 1.01-4.3).CONCLUSION: Obesity and elevated ALT are associatedwith insulin resistance. The effects are synergistic.Coexistence of them is better than metabolic syndrome in predicting insulin resistance.

  9. Polarizable Simulations with Second order Interaction Model (POSSIM) force field: Developing parameters for alanine peptides and protein backbone

    Science.gov (United States)

    Ponomarev, Sergei Y.; Kaminski, George A.

    2011-01-01

    A previously introduced POSSIM (POlarizable Simulations with Second order Interaction Model) force field has been extended to include parameters for alanine peptides and protein backbones. New features were introduced into the fitting protocol, as compared to the previous generation of the polarizable force field for proteins. A reduced amount of quantum mechanical data was employed in fitting the electrostatic parameters. Transferability of the electrostatics between our recently developed NMA model and the protein backbone was confirmed. Binding energy and geometry for complexes of alanine dipeptide with a water molecule were estimated and found in a good agreement with high-level quantum mechanical results (for example, the intermolecular distances agreeing within ca. 0.06Å). Following the previously devised procedure, we calculated average errors in alanine di- and tetra-peptide conformational energies and backbone angles and found the agreement to be adequate (for example, the alanine tetrapeptide extended-globular conformational energy gap was calculated to be 3.09 kcal/mol quantim mechanically and 3.14 kcal/mol with the POSSIM force field). However, we have now also included simulation of a simple alpha-helix in both gas-phase and water as the ultimate test of the backbone conformational behavior. The resulting alanine and protein backbone force field is currently being employed in further development of the POSSIM fast polarizable force field for proteins. PMID:21743799

  10. Topology of AspT, the Aspartate:Alanine Antiporter of Tetragenococcus halophilus, Determined by Site-Directed Fluorescence Labeling▿ †

    OpenAIRE

    Nanatani, Kei; Fujiki, Takashi; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko; Umeyama, Hideaki; Ye, Liwen; Wang, Xicheng; Nakajima, Tasuku; Uchida, Takafumi; Maloney, Peter C.; Abe, Keietsu

    2007-01-01

    The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of l-aspartate (Asp) with release of l-alanine (Ala) and CO2. The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an l-aspartate-β-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter cla...

  11. Beta-alanine-oxalic acid (1:1) hemihydrate crystal: structure, 13C NMR and vibrational properties, protonation character.

    Science.gov (United States)

    Godzisz, D; Ilczyszyn, M; Ilczyszyn, M M

    2003-03-01

    The crystal structure of beta-alanine-oxalic acid (1:1) hemihydrate complex has been reinvestigated by X-ray diffraction method at 293 K. Formation of monoclinic crystal system belonging to C2/c space group and consisting of semi-oxalate chains, diprotonated beta-alanine dimers and water molecules bonded to both these units is confirmed. New results are obtained for distances in the carboxylic groups and hydrogen bonds. These structural observations are used for protonation degree monitoring on the carboxylic oxygen atoms. They are in accordance with our vibrational study. The 13C NMR spectra provide insights into the solid structure of this complex, character of its hydrogen bonds and the beta-alanine protonation.

  12. Global Transcriptional and Physiological Responses of Saccharomyces cerevisiae to Ammonium, L-Alanine, or L-Glutamine Limitation

    DEFF Research Database (Denmark)

    Usaite, Renata; Patil, Kiran Raosaheb; Grotkjær, Thomas;

    2006-01-01

    The yeast Saccharomyces cerevisiae encounters a range of nitrogen sources at various concentrations in its environment. The impact of these two parameters on transcription and metabolism was studied by growing S. cerevisiae in chemostat cultures with L-glutamine, L-alanine, or L-ammonium in limit......The yeast Saccharomyces cerevisiae encounters a range of nitrogen sources at various concentrations in its environment. The impact of these two parameters on transcription and metabolism was studied by growing S. cerevisiae in chemostat cultures with L-glutamine, L-alanine, or L...... activity in L-alanine-limited cells. The changes in these cells were found to be focused around pyruvate, acetyl coenzyme A, glyoxylate, and alpha-ketoglutarate via increased levels of ALT1, DAL7, PYC1, GDH2, and ADH5 and decreased levels of GDH3, CIT2, and ACS1 transcripts. The transcript profiles were...

  13. Adaptive regulation of taurine and beta-alanine uptake in a human kidney cell line from the proximal tubule

    DEFF Research Database (Denmark)

    Jessen, H; Jacobsen, Christian

    1997-01-01

    homeostasis occurs predominantly via changes in the activity of the high-affinity taurine transport system by alterations in the uptake capacity and with an unaffected half-saturation constant. An adaptive response was not observed for the structurally related beta-alanine. 3. Only colchicine, which......), mimicking the effects of diacylglycerol, induced inhibition of both beta-alanine and taurine uptake. By contrast, the Ca2(+)-ionophore A23187, mimicking the effects of IP3, only stimulated the uptake of taurine but not the influx of beta-alanine. However, the effect of PMA down-regulation and A23187 up......1. The underlying mechanisms involved in the adaptive regulation of beta-amino acid uptake in the human proximal tubule were examined by use of an immortalized human embryonic kidney epithelial cell line (IHKE). 2. The results indicated that the adaptive response to maintain whole-body taurine...

  14. Plasmid-encoded asp operon confers a proton motive metabolic cycle catalyzed by an aspartate-alanine exchange reaction.

    Science.gov (United States)

    Abe, Keietsu; Ohnishi, Fumito; Yagi, Kyoko; Nakajima, Tasuku; Higuchi, Takeshi; Sano, Motoaki; Machida, Masayuki; Sarker, Rafiquel I; Maloney, Peter C

    2002-06-01

    Tetragenococcus halophila D10 catalyzes the decarboxylation of L-aspartate with nearly stoichiometric release of L-alanine and CO(2). This trait is encoded on a 25-kb plasmid, pD1. We found in this plasmid a putative asp operon consisting of two genes, which we designated aspD and aspT, encoding an L-aspartate-beta-decarboxylase (AspD) and an aspartate-alanine antiporter (AspT), respectively, and determined the nucleotide sequences. The sequence analysis revealed that the genes of the asp operon in pD1 were in the following order: promoter --> aspD --> aspT. The deduced amino acid sequence of AspD showed similarity to the sequences of two known L-aspartate-beta-decarboxylases from Pseudomonas dacunhae and Alcaligenes faecalis. Hydropathy analyses suggested that the aspT gene product encodes a hydrophobic protein with multiple membrane-spanning regions. The operon was subcloned into the Escherichia coli expression vector pTrc99A, and the two genes were cotranscribed in the resulting plasmid, pTrcAsp. Expression of the asp operon in E. coli coincided with appearance of the capacity to catalyze the decarboxylation of aspartate to alanine. Histidine-tagged AspD (AspDHis) was also expressed in E. coli and purified from cell extracts. The purified AspDHis clearly exhibited activity of L-aspartate-beta-decarboxylase. Recombinant AspT was solubilized from E. coli membranes and reconstituted in proteoliposomes. The reconstituted AspT catalyzed self-exchange of aspartate and electrogenic heterologous exchange of aspartate with alanine. Thus, the asp operon confers a proton motive metabolic cycle consisting of the electrogenic aspartate-alanine antiporter and the aspartate decarboxylase, which keeps intracellular levels of alanine, the countersubstrate for aspartate, high.

  15. Kinetics and Mechanism of Oxidation of Leucine and Alanine by Ag(III Complex in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    Changying Song

    2008-01-01

    Full Text Available Kinetics and mechanism of oxidation of leucine and alanine by Ag(III complex were studied spectrophotometrically in alkaline medium at constant ion strength. The reaction was in first order with respect to Ag(III complex and amino acids (leucine, alanine. The second-order rate constant, k−, decreased with the increasing in [OH−] and [IO4−]. A plausible mechanism was proposed from the kinetics study, and the rate equations derived from mechanism can explain all experimental phenomena. The activation parameters were calculated at 298.2 K.

  16. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Cavaignac, A.L.O. [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Lima, R.J.C., E-mail: ricardo.lima.ufma@gmail.com [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Façanha Filho, P.F. [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Moreno, A.J.D. [Coordenação de Ciências Naturais, Universidade Federal do Maranhão, Bacabal, MA 65700-000 (Brazil); Freire, P.T.C. [Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE 60455-760 (Brazil)

    2016-03-01

    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  17. Plasmid-Encoded asp Operon Confers a Proton Motive Metabolic Cycle Catalyzed by an Aspartate-Alanine Exchange Reaction

    OpenAIRE

    Abe, Keietsu; Ohnishi, Fumito; Yagi, Kyoko; Nakajima, Tasuku; Higuchi, Takeshi; Sano, Motoaki; Machida, Masayuki; Sarker, Rafiquel I.; Maloney, Peter C.

    2002-01-01

    Tetragenococcus halophila D10 catalyzes the decarboxylation of l-aspartate with nearly stoichiometric release of l-alanine and CO2. This trait is encoded on a 25-kb plasmid, pD1. We found in this plasmid a putative asp operon consisting of two genes, which we designated aspD and aspT, encoding an l-aspartate-β-decarboxylase (AspD) and an aspartate-alanine antiporter (AspT), respectively, and determined the nucleotide sequences. The sequence analysis revealed that the genes of the asp operon i...

  18. A Thermochemical Study of the Reaction of Lanthanum Nitrate with Alanine

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The standard molar reaction enthalpy of the solid-solid coordination reaction La(NO3)3 ·6H2O (s) +4Ala(s) (Ala is Alanine)=La(NO3)3 · (Ala)4 · H2O(s) + 5H2O(1) was studied byusing classical solution calorimetry. The molar dissolution enthalpies of the reactants and theproduct of the solid-solid coordination reaction in 2 mol/L HCl were measured by using anisoperibol calorimeter. From the results and other auxiliary quantities, the standard molar formation enthalpy of [La (NO3)3 · (Ala)4 · H2O, s, 298. 15 K] has been determined to be△fHm [La(NO3)3 · (Ala)4 · H2O, s, 298. 15 K]=-3 864. 248 kJ/mol.

  19. Growth and Characterization of Pure and Doped L-Alanine Tartrate Single Crystals

    Directory of Open Access Journals (Sweden)

    K. Rajesh

    2013-01-01

    Full Text Available Single crystals of pure and Lanthanum doped L-Alanine Tartrate were grown by slow evaporation method. The cell parameters were determined using single crystal X-ray diffraction method. To improve the physical properties of the LAT crystal, Lanthanum dopant was added by 2 mol%. ICP studies confirm the presence of Lanthanum in the grown LAT crystal. Transparency range of the crystal was determined using UV-VIS-NIR spectrophotometer. The functional groups of pure and doped LAT crystals were analyzed by FT-IR spectroscopy. Using Vickers microhardness tester, mechanical strength of the material was found. Dielectric studies of pure and doped LAT single crystals were carried out. The doped LAT crystal is found to have efficiency higher than that of pure LAT crystal.

  20. Growth, Structural And Optical Studies On Bis L-alanine Lithium Chloride (BLALC) Single Crystal

    Science.gov (United States)

    Rose, A. S. J. Lucia; Selvarajan, P.; Perumal, S.

    2011-10-01

    Bis L-alanine Lithium Chloride (BLALC) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 15 x 9 x 4 mm3 have been obtained in 28 days. The grown crystals were colourless and transparent. Single crystal X-ray diffraction (XRD) study showed that BLALC belongs to orthorhombic system with a non-centro-symmetric space group P212121. The crystallinity of BLALC crystal was confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. The functional groups of the grown crystals have been identified by FTIR studies. UV-visible transmittance spectrum was recorded to study the optical transparency of BLALC crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique.

  1. Experimental and DFT computational studies of L-alanine cadmium chloride crystals

    Science.gov (United States)

    Ignatius, I. Cicili; Dheivamalar, S.; Kirubavathi, K.; Selvaraju, K.

    2016-05-01

    In this work, we report the combined experimental and theoretical study on molecular structure and vibrational spectra of nonlinear optical crystal L-alanine cadmium chloride (LACC). The single X-ray diffraction studies have revealed that the compound crystallizes in monoclinic system C2 space group with cell parameters a = 16.270, b = 7.358, c = 7.887 and Z = 4. FTIR and Raman spectra of the nonlinear optical materials LACC have been recorded and analyzed. The optimized geometric bond length and bond angles are obtained with the help of density functional theory (DFT) (B3LYP) calculation. The optimized geometric bond lengths and bond angles obtained by using DFT show good agreement with the experimental data. Using the natural bond orbital analysis the electronic effect and hydrogen bonding were confirmed. The HOMO-LUMO energy gap and the first order hyperpolarizability were calculated and it supports the nonlinear optical activity of LACC crystal.

  2. Multiple adaptive losses of alanine-glyoxylate aminotransferase mitochondrial targeting in fruit-eating bats.

    Science.gov (United States)

    Liu, Yang; Xu, Huihui; Yuan, Xinpu; Rossiter, Stephen J; Zhang, Shuyi

    2012-06-01

    The enzyme alanine-glyoxylate aminotransferase 1 (AGT) functions to detoxify glyoxylate before it is converted into harmful oxalate. In mammals, mitochondrial targeting of AGT in carnivorous species versus peroxisomal targeting in herbivores is controlled by two signal peptides that correspond to these respective organelles. Differential expression of the mitochondrial targeting sequence (MTS) is considered an adaptation to diet-specific subcellular localization of glyoxylate precursors. Bats are an excellent group in which to study adaptive changes in dietary enzymes; they show unparalleled mammalian dietary diversification as well as independent origins of carnivory, frugivory, and nectarivory. We studied the AGT gene in bats and other mammals with diverse diets and found that the MTS has been lost in unrelated lineages of frugivorous bats. Conversely, species exhibiting piscivory, carnivory, insectivory, and sanguinivory possessed intact MTSs. Detected positive selection in the AGT of ancestral fruit bats further supports adaptations related to evolutionary changes in diet.

  3. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy

    DEFF Research Database (Denmark)

    Ableitinger, Alexander; Vatnitsky, Stanislav; Herrmann, Rochus

    2013-01-01

    verification aimed at measuring a dose of 10 Gy homogeneously delivered to a virtual-target volume of 8 × 8 × 12 cm3. In order to interpret the readout of the irradiated alanine dosimeters additional Monte Carlo simulations were performed to calculate the energy dependent detector response of the particle......Background and purpose In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic...... chain of radiation delivery. An end-to-end procedure was designed and tested in both scanned proton and carbon ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. The developed procedure is focused only on physical dose delivery and the validation...

  4. Assessment of an alanine EPR dosimetry technique with enhanced precision and accuracy

    CERN Document Server

    Hayes, R B; Wieser, A; Romanyukha, A A; Hardy, B L; Barrus, J K

    2000-01-01

    Dose reconstruction in the course of a series of blind tests demonstrated that an accuracy of 10 mGy for low doses and 1% for high doses can be achieved using EPR spectroscopy. This was accomplished using a combination of methodologies including polynomial filtration of the EPR spectrum, dosimeter rotation during scanning, use of an EPR standard fixed into the resonator and subtraction of all nonradiogenic signals. Doses were reconstructed over the range of 0.01-1000 Gy using this compound spectral EPR analysis. This EPR technique, being equally applicable to fractionated doses (such as those delivered during multiple radiotherapy treatments), was verified to exhibit dose reciprocity. Irradiated alanine dosimeters which were stored exhibited compound spectral EPR signal fading of ca 3% over 9 months. All error estimates given in this paper are given at the 1 standard deviation level and unless otherwise specified do not account for uncertainties in source calibration.

  5. Excitatory amino acid b-N-methylamino-L-alanine is a putative environmental neurotoxin

    Directory of Open Access Journals (Sweden)

    VLADIMIR NEDELJKOV

    2011-04-01

    Full Text Available The amino acid b-N-methylamino-L-alanine (L-BMAA has been associated with the amyotrophic lateral sclerosis/parkinsonism-dementia complex in three distinct western Pacific populations. The putative neurotoxin is produced by cyanobacteria, which live symbiotically in the roots of cycad trees. L-BMAA was thought to be a threat only to those few populations whose diet and medicines rely heavily on cycad seeds. However, the recent discovery that cyanobacteria from diverse terrestrial, freshwater, and saltwater ecosystems around the world produce the toxin requires a reassessment of whether it poses a larger health threat. Therefore, it is proposed that monitoring L-BMAA levels in cyanobacteria-contaminated water supplies might be prudent.

  6. Ste20-related proline/alanine-rich kinase: A novel regulator of intestinal inflammation

    Institute of Scientific and Technical Information of China (English)

    Yutao Yan; Didier Merlin

    2008-01-01

    Recently, inflammatory bowel disease (IBD) has been the subject of considerable research, with increasing attention being paid to the loss of intestinal epithelial cell barrier function as a mechanism of pathogenesis. Ste20-related proline/alanine-rich kinase (SPAK) is involved in regulating barrier function. SPAK is known to interact with inflammation-related kinases (such as p38, JNK, NKCC1, PKCθ, WNK and MLCK), and with transcription factor AP-1, resulting in diverse biological phenomena, including cell differentiation, cell transformation and proliferation, cytoskeleton rearrangement, and regulation of chloride transport. This review examines the involvement of Ste20-like kinases and downstream mitogen-activated protein kinases (MAPKs) pathways in the pathogenesis and control of intestinal inflammation. The primary focus will be on the molecular features of intestinal inflammation, with an emphasis on the interaction between SPAK and other molecules, and the effect of these interactions on homeostatic maintenance, cell volume regulation and increased cell permeability in intestinal inflammation.

  7. Formation Equilibria of Ternary Metal Complexes with Citric Acid and Glutamine (Alanine) in Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    王进平; 牛春吉; 杨魁跃; 倪嘉缵

    2004-01-01

    The species and their formation constants in the ternary systems were obtained by the Scogs2 software from potentiometric titration data. The Comics software was used to calculate the distribution of species in the ternary systems. MLXH, MLXH2 and MLXH3 are the common species in these systems. The coordination behaviors of the rare earths are very similar and their stability is closely matched. The ternary rare earth complexes are more stable than the corresponding ternary complexes of calcium. The ternary zinc complex with glutamine as the secondary ligand is more stable than the corresponding complexes of rare earths, but the ternary complex with alanine as the secondary ligand shows an inverse trend. The distributions of species in the ternary systems vary with pH changing. A prediction can be made that exogenous rare earths can affect the species of Ca and Zn in human body.

  8. Eight-alanine duplication in homeobox D13 in a Chinese family with synpolydactyly.

    Science.gov (United States)

    Xin, Qian; Li, Lin; Li, Jiangxia; Qiu, Rongfang; Guo, Chenhong; Gong, Yaoqin; Liu, Qiji

    2012-05-10

    Human synpolydactyly (SPD), belonging to syndactyly (SD) II, is an inherited autosomal-dominant limb malformation characterized by SD of finger 3 or 4 or toe 4 or 5, usually with digit duplication. Previous studies have demonstrated that homeobox protein D13 (HOXD13) is responsible for this Mendelian disorder. In this paper, we report on a family with SPD - 7 members show typical SPD malformations. We used PCR and Sanger sequencing of DNA from peripheral blood samples and found an 8-Ala expansion in exon 1 of HOXD13 by mutation detection; this variant was absent in unaffected members and in 50 unaffected non-related subjects. This study further confirmed the correlation between SPD and alanine expansion in HOXD13.

  9. Yeast beta-alanine synthase shares a structural scaffold and origin with dizinc-dependent exopeptidases

    DEFF Research Database (Denmark)

    Lundgren, S.; Gojkovic, Zoran; Piskur, Jure

    2003-01-01

    beta-Alanine synthase (betaAS) is the final enzyme of the reductive pyrimidine catabolic pathway, which is responsible for the breakdown of pyrimidine bases, including several anticancer drugs. In eukaryotes, betaASs belong to two subfamilies, which exhibit a low degree of sequence similarity. We...... determined the structure of betaAS from Saccharomyces kluyveri to a resolution of 2.7 Angstrom. The subunit of the homodimeric enzyme consists of two domains: a larger catalytic domain with a dizinc metal center, which represents the active site of betaAS, and a smaller domain mediating the majority...... of the intersubunit contacts. Both domains exhibit a mixed alpha/beta-topology. Surprisingly, the observed high structural homology to a family of dizinc-dependent exopeptidases suggests that these two enzyme groups have a common origin. Alterations in the ligand composition of the metal-binding site can be explained...

  10. Alanine and proline content modulate global sensitivity to discrete perturbations in disordered proteins.

    Science.gov (United States)

    Perez, Romel B; Tischer, Alexander; Auton, Matthew; Whitten, Steven T

    2014-12-01

    Molecular transduction of biological signals is understood primarily in terms of the cooperative structural transitions of protein macromolecules, providing a mechanism through which discrete local structure perturbations affect global macromolecular properties. The recognition that proteins lacking tertiary stability, commonly referred to as intrinsically disordered proteins (IDPs), mediate key signaling pathways suggests that protein structures without cooperative intramolecular interactions may also have the ability to couple local and global structure changes. Presented here are results from experiments that measured and tested the ability of disordered proteins to couple local changes in structure to global changes in structure. Using the intrinsically disordered N-terminal region of the p53 protein as an experimental model, a set of proline (PRO) and alanine (ALA) to glycine (GLY) substitution variants were designed to modulate backbone conformational propensities without introducing non-native intramolecular interactions. The hydrodynamic radius (R(h)) was used to monitor changes in global structure. Circular dichroism spectroscopy showed that the GLY substitutions decreased polyproline II (PP(II)) propensities relative to the wild type, as expected, and fluorescence methods indicated that substitution-induced changes in R(h) were not associated with folding. The experiments showed that changes in local PP(II) structure cause changes in R(h) that are variable and that depend on the intrinsic chain propensities of PRO and ALA residues, demonstrating a mechanism for coupling local and global structure changes. Molecular simulations that model our results were used to extend the analysis to other proteins and illustrate the generality of the observed PRO and alanine effects on the structures of IDPs.

  11. Synthesis of {sup 15}N isotope labeled alanine; Sintese da alanina enriquecida com {sup 15}N

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Sant' Ana, Carlos Roberto; Tagliassachi, Romulo Barbieri; Maximo, Everaldo; Prestes, Clelber Vieira [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Dept. de Isotopos Estaveis]. E-mail: crolivei@cena.usp.br

    2005-07-01

    The application of light chemical elements and their stable isotopes in biological studies have been increased over the last years. The use of {sup 15}N labeled amino acids is an important tool for elucidation of peptides structures. This paper describe a method for the synthesis of {sup 15}N isotope labeled alanine at lower costs than international ones, as well as the details of the recovery system of the nitrogen residues. In the present work an amination of {alpha}-haloacids, with the bromopropionic carboxylic acid and labeled aqua ammonia ({sup 15}NH{sub 3} aq) was carried out. In order to avoid eventually losses of {sup 15}NH{sub 3}, special cares were adopted, since the production cost is high. Although the acquisition cost of the {sup 13}N (radioactive) labeled compounds is lower, the obtained stable tracer will allow the accomplishment of important studies of the nitrogen cycling in living things, less occupational and environment hazards, and the time limitation problems in field studies. The tests took place in triplicates with NH{sub 3} (aq) being employed. With the establishment of the system for {sup 15}NH{sub 3} recovery, an average of 94 % of the ammonia employed in the synthesis process was recovered. The purity of the amino acid was state determined by TLC (Thin Layer Chromatography) and HPLC (High-Performance Liquid Chromatography) with a fluorescence detector. The Rf and the retention time of the synthesized sample were similar the sigma standard. Finally, regarding the established conditions, it was possible to obtain the alanine with a production cost about 40 % lower than the international price. (author)

  12. Alanine mutagenesis of the primary antigenic escape residue cluster, c1, of apical membrane antigen 1.

    Science.gov (United States)

    Dutta, Sheetij; Dlugosz, Lisa S; Clayton, Joshua W; Pool, Christopher D; Haynes, J David; Gasser, Robert A; Batchelor, Adrian H

    2010-02-01

    Antibodies against apical membrane antigen 1 (AMA1) inhibit invasion of Plasmodium merozoites into red cells, and a large number of single nucleotide polymorphisms on AMA1 allow the parasite to escape inhibitory antibodies. The availability of a crystal structure makes it possible to test protein engineering strategies to develop a monovalent broadly reactive vaccine. Previously, we showed that a linear stretch of polymorphic residues (amino acids 187 to 207), localized within the C1 cluster on domain 1, conferred the highest level of escape from inhibitory antibodies, and these were termed antigenic escape residues (AER). Here we test the hypothesis that immunodampening the C1 AER will divert the immune system toward more conserved regions. We substituted seven C1 AER of the FVO strain Plasmodium falciparum AMA1 with alanine residues (ALA). The resulting ALA protein was less immunogenic than the native protein in rabbits. Anti-ALA antibodies contained a higher proportion of cross-reactive domain 2 and domain 3 antibodies and had higher avidity than anti-FVO. No overall enhancement of cross-reactive inhibitory activity was observed when anti-FVO and anti-ALA sera were compared for their ability to inhibit invasion. Alanine mutations at the C1 AER had shifted the immune response toward cross-strain-reactive epitopes that were noninhibitory, refuting the hypothesis but confirming the importance of the C1 cluster as an inhibitory epitope. We further demonstrate that naturally occurring polymorphisms that fall within the C1 cluster can predict escape from cross-strain invasion inhibition, reinforcing the importance of the C1 cluster genotype for antigenic categorization and allelic shift analyses in future phase 2b trials.

  13. Engineering of alanine dehydrogenase from Bacillus subtilis for novel cofactor specificity.

    Science.gov (United States)

    Lerchner, Alexandra; Jarasch, Alexander; Skerra, Arne

    2016-09-01

    The l-alanine dehydrogenase of Bacillus subtilis (BasAlaDH), which is strictly dependent on NADH as redox cofactor, efficiently catalyzes the reductive amination of pyruvate to l-alanine using ammonia as amino group donor. To enable application of BasAlaDH as regenerating enzyme in coupled reactions with NADPH-dependent alcohol dehydrogenases, we alterated its cofactor specificity from NADH to NADPH via protein engineering. By introducing two amino acid exchanges, D196A and L197R, high catalytic efficiency for NADPH was achieved, with kcat /KM  = 54.1 µM(-1)  Min(-1) (KM  = 32 ± 3 µM; kcat  = 1,730 ± 39 Min(-1) ), almost the same as the wild-type enzyme for NADH (kcat /KM  = 59.9 µM(-1)  Min(-1) ; KM  = 14 ± 2 µM; kcat  = 838 ± 21 Min(-1) ). Conversely, recognition of NADH was much diminished in the mutated enzyme (kcat /KM  = 3 µM(-1)  Min(-1) ). BasAlaDH(D196A/L197R) was applied in a coupled oxidation/transamination reaction of the chiral dicyclic dialcohol isosorbide to its diamines, catalyzed by Ralstonia sp. alcohol dehydrogenase and Paracoccus denitrificans ω-aminotransferase, thus allowing recycling of the two cosubstrates NADP(+) and l-Ala. An excellent cofactor regeneration with recycling factors of 33 for NADP(+) and 13 for l-Ala was observed with the engineered BasAlaDH in a small-scale biocatalysis experiment. This opens a biocatalytic route to novel building blocks for industrial high-performance polymers.

  14. Chiral selectivity of amino acid adsorption on chiral surfaces—The case of alanine on Pt

    Energy Technology Data Exchange (ETDEWEB)

    Franke, J.-H.; Kosov, D. S. [Department of Physics, Campus Plaine - CP 231, Université Libre de Bruxelles, 1050 Brussels (Belgium)

    2015-02-07

    We study the binding pattern of the amino acid alanine on the naturally chiral Pt surfaces Pt(531), Pt(321), and Pt(643). These surfaces are all vicinal to the (111) direction but have different local environments of their kink sites and are thus a model for realistic roughened Pt surfaces. Alanine has only a single methyl group attached to its chiral center, which makes the number of possible binding conformations computationally tractable. Additionally, only the amine and carboxyl group are expected to interact strongly with the Pt substrate. On Pt(531), we study the molecule in its pristine as well as its deprotonated form and find that the deprotonated one is more stable by 0.47 eV. Therefore, we study the molecule in its deprotonated form on Pt(321) and Pt(643). As expected, the oxygen and nitrogen atoms of the deprotonated molecule provide a local binding “tripod” and the most stable adsorption configurations optimize the interaction of this “tripod” with undercoordinated surface atoms. However, the interaction of the methyl group plays an important role: it induces significant chiral selectivity of about 60 meV on all surfaces. Hereby, the L-enantiomer adsorbs preferentially to the Pt(321){sup S} and Pt(643){sup S} surfaces, while the D-enantiomer is more stable on Pt(531){sup S}. The binding energies increase with increasing surface density of kink sites, i.e., they are largest for Pt(531){sup S} and smallest for Pt(643){sup S}.

  15. GMXPBSA 2.0: A GROMACS tool to perform MM/PBSA and computational alanine scanning

    Science.gov (United States)

    Paissoni, C.; Spiliotopoulos, D.; Musco, G.; Spitaleri, A.

    2014-11-01

    GMXPBSA 2.0 is a user-friendly suite of Bash/Perl scripts for streamlining MM/PBSA calculations on structural ensembles derived from GROMACS trajectories, to automatically calculate binding free energies for protein-protein or ligand-protein complexes. GMXPBSA 2.0 is flexible and can easily be customized to specific needs. Additionally, it performs computational alanine scanning (CAS) to study the effects of ligand and/or receptor alanine mutations on the free energy of binding. Calculations require only for protein-protein or protein-ligand MD simulations. GMXPBSA 2.0 performs different comparative analysis, including a posteriori generation of alanine mutants of the wild-type complex, calculation of the binding free energy values of the mutant complexes and comparison of the results with the wild-type system. Moreover, it compares the binding free energy of different complexes trajectories, allowing the study the effects of non-alanine mutations, post-translational modifications or unnatural amino acids on the binding free energy of the system under investigation. Finally, it can calculate and rank relative affinity to the same receptor utilizing MD simulations of proteins in complex with different ligands. In order to dissect the different MM/PBSA energy contributions, including molecular mechanic (MM), electrostatic contribution to solvation (PB) and nonpolar contribution to solvation (SA), the tool combines two freely available programs: the MD simulations software GROMACS and the Poisson-Boltzmann equation solver APBS. All the calculations can be performed in single or distributed automatic fashion on a cluster facility in order to increase the calculation by dividing frames across the available processors. The program is freely available under the GPL license. Catalogue identifier: AETQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETQ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing

  16. Synthesis and characterization of gold/alanine nanocomposites with potential properties for medical application as radiation sensors.

    Science.gov (United States)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D; Nicolucci, Patricia; Baffa, Oswaldo

    2012-11-01

    Radiation dose assessment is essential for several medical treatments and diagnostic procedures. In this context, nanotechnology has been used in the development of improved radiation sensors, with higher sensitivity as well as smaller sizes and energy dependence. This paper deals with the synthesis and characterization of gold/alanine nanocomposites with varying mass percentage of gold, for application as radiation sensors. Alanine is an excellent stabilizing agent for gold nanoparticles because the size of the nanoparticles does not augment with increasing mass percentage of gold, as evidenced by UV-vis spectroscopy, dynamic light scattering, and transmission electron microscopy. X-ray diffraction patterns suggest that the alanine crystalline orientation undergoes alterations upon the addition of gold nanoparticles. Fourier transform infrared spectroscopy indicates that there is interaction between the gold nanoparticles and the amine group of the alanine molecules, which may be the reason for the enhanced stability of the nanocomposite. The application of the nanocomposites as radiation detectors was evaluated by the electron spin resonance technique. The sensitivity is improved almost 3 times in the case of the nanocomposite containing 3% (w/w) gold, so it can be easily tuned by changing the amount of gold nanoparticles in the nanocomposites, without the size of the nanoparticles influencing the radiation absorption. In conclusion, the featured properties, such as homogeneity, nanoparticle size stability, and enhanced sensitivity, make these nanocomposites potential candidates for the construction of small-sized radiation sensors with tunable sensitivity for application in several medical procedures.

  17. Crystal and molecular structure of N-(4-nitrophenyl)-β-alanine--its vibrational spectra and theoretical calculations.

    Science.gov (United States)

    Marchewka, M K; Drozd, M; Janczak, J

    2011-08-15

    The N-(4-nitrophenyl)-β-alanine in crystalline form directly by the addition of 4-nitroaniline to the acrylic acid in aqueous solution has been obtained. The title β-alanine derivative crystallizes in the P2(1)/c space group of monoclinic system with four molecules per unit cell. The X-ray geometry of β-alanine derivative molecule has been compared with those obtained by molecular orbital calculations corresponding to the gas phase. In the crystal the molecules related by an inversion center interact via symmetrically equivalent O-H···O hydrogen bonds with O···O distance of 2.656(2) Å forming a dimeric structure. The dimers of β-alanine derivative weakly interact via N-H···O hydrogen bonds between the H atom of β-amine groups and one of O atom of nitro groups. The room temperature powder vibrational (infrared and Raman) measurements are in accordance with the X-ray analysis. In aqueous solution of 4-nitroaniline and acrylic acid, the double CC bond of vinyl group of acrylic acid breaks as result of 4-nitroaniline addition.

  18. Expression, crystallization and preliminary X-ray crystallographic analysis of alanine racemase from Acinetobacter baumannii OXA-23.

    Science.gov (United States)

    Nguyen, Dinh-Duc; Ngo, Ho-Phuong-Thuy; Hong, Myoung-ki; Pham, Tan-Viet; Lee, Jung Hun; Lee, Jae Jin; Kwon, Dae Beom; Lee, Sang Hee; Kang, Lin-Woo

    2013-09-01

    Acinetobacter baumannii has received much attention owing to its exceptional ability to develop resistance to currently available antibiotics. Alanine racemase (ALR) catalyzes the racemization of L-alanine to D-alanine with pyridoxal 5'-phosphate (PLP) as a cofactor. The D-alanine product is an essential component of the bacterial cell wall and ALR is a potential target for the development of novel antibacterial drugs. The alr gene from A. baumannii was cloned and the protein (AbALR) was expressed, purified and crystallized. The AbALR crystal diffracted to 2.3 Å resolution and belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 55.1, b = 85.0, c = 167.7 Å. Two protomers were present in the asymmetric unit, with a corresponding V(M) value of 2.3 Å(3) Da(-1) and a solvent content of 47.5%.

  19. Increased alanine aminotransferase levels and associated characteristics among newly diagnosed type 2 diabetes patients: Results from the DD2 study

    DEFF Research Database (Denmark)

    Mor, Anil; Thomsen, Reimar W.; Rungby, Jørgen

    Objectives: Elevated levels of serum alanine aminotransferase (ALAT) have been linked with non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), insulin resistance and the metabolic syndrome in type 2 diabetes (T2D) patients. We examined ALAT levels in newly diagnosed T2D...

  20. Preparation and Bioavailability Analysis of Ferrous Bis Alanine Chelate as a New Micronutrient for Treatment of Iron Deficiency Anemia

    Science.gov (United States)

    Zargaran, Marzieh; Saadat, Ebrahim; Dinarvand, Rassoul; Sharifzadeh, Mohammad; Dorkoosh, Farid

    2016-01-01

    Purpose: One of the most nutritional disorders around the world is iron deficiency. A novel iron compound was synthesized by chelating ferrous ions with alanine for prevention and treatment of iron deficiency anemia. Methods: The newly synthesized compound was characterized both qualitatively and quantitatively by Fourier Transform Infrared (FT-IR) spectroscopy. The bioavailability of newly synthesized iron micronutrient was evaluated in four groups of Wistar rats. The group I was a negative control group and the other three groups received three different iron formulations. After 14 days, the blood samples were taken and analyzed accordingly. Results: Calculations showed that more than 91.8% of iron was incorporated in the chelate formulation. In vivo studies showed that serum iron, total iron binding capacity and hemoglobin concentrations were significantly increased in group IV, which received ferrous bis alanine chelate compared with the negative control group (p<0.05) and also group II, which received ferrous sulfate.7H2O (p<0.05). It indicates that the new formulation considerably improves the blood iron status compared with the conventional iron compounds. There were no significant differences (p<0.05) in the serum iron between group IV and group III, which received ferrous bis glycine. Conclusion: The results showed better bioavailability of ferrous bis alanine as a new micronutrient for treatment of iron deficiency anemia in comparison with ferrous sulfate. Ferrous bis alanine could be considered as a suitable supplement for prevention and treatment of iron deficiency anemia. PMID:27766225

  1. Selection and characterization of conditionally active promotors in Lactobacillus plantarum, using alanine racemase as a promotor probe

    NARCIS (Netherlands)

    Bron, P.A.; Hoffer, S.M.; Swam, van I.I.; Vos, de W.M.; Kleerebezem, M.

    2004-01-01

    This paper describes the use of the alr gene, encoding alanine racemase, as a promoter-screening tool for the identification of conditional promoters in Lactobacillus plantarum. Random fragments of the L. plantarum WCFS1 genome were cloned upstream of the promoterless alr gene of Lactococcus lactis

  2. Effects of β-alanine administration on selected parameters of oxidative stress and phosphoryltransfer network in cerebral cortex and cerebellum of rats

    NARCIS (Netherlands)

    Gemelli, Tanise; de Andrade, Rodrigo Binkowski; Rojas, Denise Bertin; Bonorino, Nariélle Ferner; Mazzola, Priscila Nicolao; Tortorelli, Lucas Silva; Funchal, Cláudia; Filho, Carlos Severo Dutra; Wannmacher, Clovis Milton Duval

    2013-01-01

    β-Alanine is a β-amino acid derivative of the degradation of pyrimidine uracil and precursor of the oxidative substrate acetyl-coenzyme A (acetyl-CoA). The accumulation of β-alanine occurs in β-alaninemia, an inborn error of metabolism. Patients with β-alaninemia may develop neurological abnormaliti

  3. Developing a dosimetry system with alanine at University of Santiago de Compostela; Desarrollo de un sistema de dosimetria con alamina en la Universidad de Santiago de Compostela

    Energy Technology Data Exchange (ETDEWEB)

    Gago Arias, M. A.; Gomez Rodriguez, F.; Gonzalez Castano, D. M.; Peteiro Vilaseco, E.; Lodeiro Remesar, C.

    2013-07-01

    This paper presents the studies realized for the calibration, absorbed dose in water, the signal of Electron Paramagnetic Resonance of dosimeters of alanine, necessary step for the implementation of a service of dosimetry with alanine, traced to the secondary pattern of the Radio physics laboratory (RPL), and linked to the service of resonance Para Magnetic of the University of Santiago de Compostela. (Author)

  4. De Novo Alanine Synthesis by Bacteroids of Mesorhizobium loti Is Not Required for Nitrogen Transfer in the Determinate Nodules of Lotus corniculatus

    OpenAIRE

    Kumar, Shalini; Bourdès, Alexandre; Poole, Philip

    2005-01-01

    Deletion of both alanine dehydrogenase genes (aldA) in Mesorhizobium loti resulted in the loss of AldA enzyme activity from cultured bacteria and bacteroids but had no effect on the symbiotic performance of Lotus corniculatus plants. Thus, neither indeterminate pea nodules nor determinate L. corniculatus nodules export alanine as the sole nitrogen secretion product.

  5. De novo alanine synthesis by bacteroids of Mesorhizobium loti is not required for nitrogen transfer in the determinate nodules of Lotus corniculatus.

    Science.gov (United States)

    Kumar, Shalini; Bourdès, Alexandre; Poole, Philip

    2005-08-01

    Deletion of both alanine dehydrogenase genes (aldA) in Mesorhizobium loti resulted in the loss of AldA enzyme activity from cultured bacteria and bacteroids but had no effect on the symbiotic performance of Lotus corniculatus plants. Thus, neither indeterminate pea nodules nor determinate L. corniculatus nodules export alanine as the sole nitrogen secretion product.

  6. Proliferation and function of microbodies in the nematophagous fungus Arthrobotrys oligospora during growth on oleic acid or D-alanine as the sole carbon source

    NARCIS (Netherlands)

    Dijksterhuis, Jan; Harder, Willem; Veenhuis, Marten

    1993-01-01

    The nematophagous fungus Arthrobotrys oligospora is able to grow on oleic acid or D-alanine as the sole carbon source. During growth on oleic acid, activities of enzymes of the beta-oxidation pathway, but not catalase, were induced. In the presence of D-alanine, both D-amino acid oxidase and catalas

  7. Experimental determination of the energy response of alanine pellets in the high dose rate 192Ir spectrum

    Science.gov (United States)

    Schaeken, B.; Cuypers, R.; Goossens, J.; Van den Weyngaert, D.; Verellen, D.

    2011-10-01

    An experimental determination of the energy correction factor for alanine/paraffin pellets in the 192Ir spectrum at varying distances from the source is presented. Alanine dosimeters were irradiated in water under full scatter conditions with a high dose rate (HDR) 192Ir source (Flexisource), using a dedicated holder. Up to six line sources (catheters) fit in a regular pattern at fixed radial distances from the holder axis, the alanine detector being placed at the centre of the holder. The HDR source was stepping every 0.5 cm within a trocar needle within ± 3.0 cm around the medial plane through the detector in order to achieve dose homogeneity within the detector volume. The energy correction factor of alanine/paraffin pellets in 192Ir relative to 60Co was experimentally determined as the inverse ratio of the dose to water measured in water around the 192Ir source to the dose to water calculated in water using the TG-43 formalism. The pellets were read out with a Bruker EMXmicro spectrometer (X-band). The amplitude of the central line in the alanine absorption spectrum from pellets irradiated within the 192Ir spectrum was directly compared with the amplitude from 60Co-irradiated pellets. The energy correction factors of Harwell pellets irradiated in the 192Ir spectrum are 1.029 ± 0.02, 1.027 ± 0.02 and 1.045 ± 0.02 at a mean weighted source-detector distance of 2.0, 2.9 and 5.3 cm, respectively. The experimentally obtained values for the energy response are 1.3% lower compared to the theoretical values for radial distances smaller than 3 cm.

  8. Metabolic consequences of β-alanine supplementation during exhaustive supramaximal cycling and 4000-m time-trial performance.

    Science.gov (United States)

    Bellinger, Phillip M; Minahan, Clare L

    2016-08-01

    The present study investigated the effects of β-alanine supplementation on the resultant blood acidosis, lactate accumulation, and energy provision during supramaximal-intensity cycling, as well as the aerobic and anaerobic contribution to power output during a 4000-m cycling time trial (TT). Seventeen trained cyclists (maximal oxygen uptake = 4.47 ± 0.55 L·min(-1)) were administered 6.4 g of β-alanine (n = 9) or placebo (n = 8) daily for 4 weeks. Participants performed a supramaximal cycling test to exhaustion (equivalent to 120% maximal oxygen uptake) before (PreExh) and after (PostExh) the 4-week supplementation period, as well as an additional postsupplementation supramaximal cycling test identical in duration and power output to PreExh (PostMatch). Anaerobic capacity was quantified and blood pH, lactate, and bicarbonate concentrations were measured pre-, immediately post-, and 5 min postexercise. Subjects also performed a 4000-m cycling TT before and after supplementation while the aerobic and anaerobic contributions to power output were quantified. β-Alanine supplementation increased time to exhaustion (+12.8 ± 8.2 s; P = 0.041) and anaerobic capacity (+1.1 ± 0.7 kJ; P = 0.048) in PostExh compared with PreExh. Performance time in the 4000-m TT was reduced following β-alanine supplementation (-6.3 ± 4.6 s; P = 0.034) and the mean anaerobic power output was likely to be greater (+6.2 ± 4.5 W; P = 0.035). β-Alanine supplementation increased time to exhaustion concomitant with an augmented anaerobic capacity during supramaximal intensity cycling, which was also mirrored by a meaningful increase in the anaerobic contribution to power output during a 4000-m cycling TT, resulting in an enhanced overall performance.

  9. Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study.

    Directory of Open Access Journals (Sweden)

    Marina Yazigi Solis

    Full Text Available Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d(-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1 and on cognitive function before and after exercise in trained cyclists (Study 2.In Study 1, seven healthy vegetarians (3 women and 4 men and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation, with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task being performed before and after exercise on each occasion.In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99 or omnivores (p = 0.27; nor was there any effect when data from both groups were pooled (p = 0.19. Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27. In study 2, exercise improved cognitive function across all tests (P 0.05 of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise.28 d of beta-alanine supplementation at 6.4 g d(-1 appeared not to influence brain homocarnosine/carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists.

  10. Reconfiguration of N Metabolism upon Hypoxia Stress and Recovery: Roles of Alanine Aminotransferase (AlaAT) and Glutamate Dehydrogenase (GDH)

    Science.gov (United States)

    Diab, Houssein; Limami, Anis M.

    2016-01-01

    In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other abiotic stresses (e.g., cold, high temperature, drought and saline stress), received little interest from the scientific community and less financial support from stakeholders. Accordingly, breeding programs should be developed and agronomical practices should be adapted in order to save plants’ growth and yield—even under conditions of low oxygen availability (e.g., submergence and waterlogging). The prerequisite to the success of such breeding programs and changes in agronomical practices is a good knowledge of how plants adapt to low oxygen stress at the cellular and the whole plant level. In the present paper, we summarized the recent knowledge on metabolic adjustment in general under low oxygen stress and highlighted thereafter the major changes pertaining to the reconfiguration of amino acids syntheses. We propose a model showing (i) how pyruvate derived from active glycolysis upon hypoxia is competitively used by the alanine aminotransferase/glutamate synthase cycle, leading to alanine accumulation and NAD+ regeneration. Carbon is then saved in a nitrogen store instead of being lost through ethanol fermentative pathway. (ii) During the post-hypoxia recovery period, the alanine aminotransferase/glutamate dehydrogenase cycle mobilizes this carbon from alanine store. Pyruvate produced by the reverse reaction of alanine aminotransferase is funneled to the TCA cycle, while deaminating glutamate dehydrogenase regenerates, reducing equivalent (NADH) and 2-oxoglutarate to maintain the cycle function. PMID:27258319

  11. Reconfiguration of N Metabolism upon Hypoxia Stress and Recovery: Roles of Alanine Aminotransferase (AlaAT and Glutamate Dehydrogenase (GDH

    Directory of Open Access Journals (Sweden)

    Houssein Diab

    2016-05-01

    Full Text Available In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other abiotic stresses (e.g., cold, high temperature, drought and saline stress, received little interest from the scientific community and less financial support from stakeholders. Accordingly, breeding programs should be developed and agronomical practices should be adapted in order to save plants’ growth and yield—even under conditions of low oxygen availability (e.g., submergence and waterlogging. The prerequisite to the success of such breeding programs and changes in agronomical practices is a good knowledge of how plants adapt to low oxygen stress at the cellular and the whole plant level. In the present paper, we summarized the recent knowledge on metabolic adjustment in general under low oxygen stress and highlighted thereafter the major changes pertaining to the reconfiguration of amino acids syntheses. We propose a model showing (i how pyruvate derived from active glycolysis upon hypoxia is competitively used by the alanine aminotransferase/glutamate synthase cycle, leading to alanine accumulation and NAD+ regeneration. Carbon is then saved in a nitrogen store instead of being lost through ethanol fermentative pathway. (ii During the post-hypoxia recovery period, the alanine aminotransferase/glutamate dehydrogenase cycle mobilizes this carbon from alanine store. Pyruvate produced by the reverse reaction of alanine aminotransferase is funneled to the TCA cycle, while deaminating glutamate dehydrogenase regenerates, reducing equivalent (NADH and 2-oxoglutarate to maintain the cycle function.

  12. Dependence of the enthalpies of alanyl-alanine dissolution on the composition of mixed water + acetone and water + DMSO solvents at 298.15 K

    Science.gov (United States)

    Smirnov, V. I.; Badelin, V. G.

    2015-08-01

    The enthalpies of dissolution of two dipeptides, DL-α-alanyl-β-alanine and β-alanyl-β-alanine, in mixed solvents H2O + acetone (AC) and H2O + dimethyl sulfoxide (DMSO) are measured via calorimetry at an organic component concentration of x 2 = 0-0.25 mole fraction at 298.15 K. The standard enthalpies of dissolution (Δsol H po) and the transfer (Δtr H po) of dipeptides from water to the mixed solvent and the enthalpic coefficients of pairwise interactions ( h xy ) with AC and DMSO molecules are calculated from these data. The effect the composition of aqueous organic mixtures has on the enthalpy characteristics of the dissolution of DL-α-alanyl-β-alanine and β-alanyl-β-alanine is considered. A comparative analysis of h xy values is performed for alanine dipeptides in the investigated mixed solvents.

  13. Synthesis and characterization of new polyamides derived from alanine and valine derivatives

    Directory of Open Access Journals (Sweden)

    El-Faham Ayman

    2012-11-01

    Full Text Available Abstract Background Many efforts have been recently devoted to design, investigate and synthesize biocompatible, biodegradable polymers for applications in medicine for either the fabrication of biodegradable devices or as drug delivery systems. Many of them consist of condensation of polymers having incorporated peptide linkages susceptible to enzymatic cleavage. Polyamides (PAs containing α-amino acid residues such as L-leucine, L-alanine and L-phenylalanine have been reported as biodegradable materials. Furthermore, polyamides (PAs derived from C10 and C14 dicarboxylic acids and amide-diamines derived from 1,6-hexanediamine or 1,12-dodecanediamine and L-phenylalanine, L-valyl-L-phenylalanine or L-phenylalanyl-L-valine residues have been reported as biocompatible polymers. We have previously described the synthesis and thermal properties of a new type of polyamides-containing amino acids based on eight new symmetric meta-oriented protected diamines derived from coupling of amino acids namely; Fomc-glycine, Fmoc-alanine, Fomc-valine and Fomc-leucine with m-phenylene diamine or 2,6-diaminopyridine. Results revealed that incorporation of pyridine onto the polymeric backbone of all series decreases the thermal stability. Here we describe another family of polyamides based on benzene dicarboxylic acid, pyridine dicarboxylic acid, and α-amino acid linked to benzidine and 4,4′-oxydianiline to study the effect of the dicarboxylic acid as well as the amino acids on the nature and thermal stability of the polymers. Results We report here the preparation of a new type of polyamides based on benzene dicarboxylic acid, pyridine dicarboxylic acid, and α-amino acid linked to benzidine and 4,4′-oxydianiline to study the effect of the dicarboxylic acid as well as the amino acids on the nature and thermal stability of polymers. The thermal properties of the polymers were evaluated by different techniques. Results revealed that structure-thermal property

  14. Assessing functional diversity in the soybean β-substituted alanine synthase enzyme family.

    Science.gov (United States)

    Yi, Hankuil; Jez, Joseph M

    2012-11-01

    In plants, proteins of the β-substituted alanine synthase (BSAS) enzyme family perform a diverse range of reactions, including formation of cysteine from O-acetylserine and sulfide, detoxification of cyanide by its addition to cysteine, the breakdown of cysteine into pyruvate, ammonia, and sulfide, and the synthesis of S-sulfocysteine. With the completed genome sequence of soybean (Glycine max (L.) Merr. cv. Williams 82), the functional diversity of the BSAS in this highly duplicated plant species was examined to determine whether soybean BSAS enzymes catalyze the various reactions connected to cysteine metabolism. The 16 soybean BSAS can be grouped into clades that are similar to those observed in Arabidopsis. Biochemical analysis of soybean BSAS proteins demonstrate that enzymes of clades I and III function as O-acetylserine sulfhydrylases for cysteine synthesis, clade II encodes cysteine desulfhydrase activity, and that clade V proteins function as β-cyanoalanine synthase for cyanide detoxification. Although clade IV is similar to Arabidopsis S-sulfocysteine synthase, this activity was not detected in the soybean homolog. Overall, our results show that bioinformatics approach provides a useful method to assess the biochemical properties of BSAS enzymes in plant species.

  15. Effect of radiation quality on radical formation in ion-irradiated solid alanine

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Hitoshi; Ichikawa, Tsuneki; Yoshida, Hiroshi [Hokkaido Univ., Sapporo (Japan); Namba, Hideki; Taguchi, Mitsumasa; Kojima, Takuji

    1997-03-01

    Radical formation in solid alanine irradiated with H{sup +} and He{sup +} ions of 0.5-3.0 MeV and with heavy ions of hundreds of MeV was examined by the ESR method. Radical yield is constant below a critical fluence, and the yield decreases above the fluence. The critical fluence for the H{sup +} and He{sup +} ions is about 10{sup 12} ions cm{sup -2}, while the critical fluence for the heavy ions is 10{sup 10}-10{sup 11} ions cm{sup -2}. G-value of the radical formation (radicals per 100 eV absorbed dose) is obtained from the constant yield at the low fluences. The G-value depends on the radiation quality. This dependence is ascribed to the difference of local dose in the ion tracks. The fluence-yield curves were simulated with a model assuming cylindrical shape of ion tracks and dose-yield relationship for {gamma}-irradiation. This model well explains the fluence-yield curves for the ion irradiations. (author)

  16. Alanine scanning mutagenesis of anti-TRAP (AT) reveals residues involved in binding to TRAP.

    Science.gov (United States)

    Chen, Yanling; Gollnick, Paul

    2008-04-11

    The trp RNA-binding attenuation protein (TRAP) regulates expression of the tryptophan biosynthetic (trp) genes in response to changes in intracellular levels of free l-tryptophan in many Gram-positive bacteria. When activated by binding tryptophan, TRAP binds to the mRNAs of several genes involved in tryptophan metabolism, and down-regulates transcription or translation of these genes. Anti-TRAP (AT) is an antagonist of TRAP that binds to tryptophan-activated TRAP and prevents it from binding to its RNA targets, and thereby up-regulates trp gene expression. The crystal structure shows that AT is a cone-shaped trimer (AT(3)) with the N-terminal residues of the three subunits assembled at the apex of the cone and that these trimers can further assemble into a dodecameric (AT(12)) structure. Using alanine-scanning mutagenesis we found four residues, all located on the "top" region of AT(3), that are essential for binding to TRAP. Fluorescent labeling experiments further suggest that the top region of AT is in close juxtaposition to TRAP in the AT-TRAP complex. In vivo studies confirmed the importance of these residues on the top of AT in regulating TRAP mediated gene regulation.

  17. Laser trapping dynamics of L-alanine depending on the laser polarization

    Science.gov (United States)

    Yuyama, Ken-ichi; Ishiguro, Kei; Sugiyama, Teruki; Masuhara, Hiroshi

    2012-10-01

    We successfully demonstrate crystallization and crystal rotation of L-alanine in D2O solution using a focused laser beam of 1064 nm with right- or left-handed circularly polarization. Upon focusing each laser beam into a solution/air interface of the solution thin film, one single crystal is generally formed from the focal spot. The necessary time for the crystallization is systematically examined against polarization and power of the trapping laser. The significant difference in the average time is observed between two polarization directions at a relatively high laser power, where the left-handed circularly polarized laser takes 3 times longer than the right-handed one. On the other hand, the prepared crystal is stably trapped and rotated at the focal point by circularly polarized lasers after the crystallization, and the rotation direction is completely controlled by the polarization of the trapping laser. The mechanisms for the crystallization and the crystal rotation are discussed in terms of trapping force and rotation torque of circularly polarized lasers acting on the liquid-like clusters and its bulk crystal, respectively.

  18. Growth, structural, vibrational, optical, laser and dielectric aspects of L-alanine alaninium nitrate single crystal

    Science.gov (United States)

    Caroline, M. Lydia; Prakash, M.; Geetha, D.; Vasudevan, S.

    2011-09-01

    Bulk single crystals of L-alanine alaninium nitrate [abbreviated as LAAN], an intriguing material for frequency conversion has been grown from its aqueous solution by both slow solvent evaporation and by slow cooling techniques. The optimized pH value to grow good quality LAAN single crystal was found to be 2.5. The grown crystals were subjected to single crystal X-ray diffraction studies to determine the unit cell dimensions and morphology. Vibrational frequencies of the grown crystals by Fourier transform infrared spectroscopic technique were investigated. Also, the presence of hydrogen and carbon atoms in the grown sample was confirmed using proton and carbon NMR analyses. The dielectric constant and dielectric loss measurements of the as grown crystal at different temperatures and frequencies of the applied field are measured and reported. LAAN has good optical transmission in the entire visible region with cutoff wavelength within the UV region confirms its suitability for device fabrications. The existence of second harmonic generation signals was observed using Nd:YAG laser with fundamental wavelength of 1064 nm. Its Laser Damage Threshold (LDT) was measured and also tested by using a Q-switched Nd:YAG laser and the value of LDT of LAAN is 17.76 GW/cm 2 respectively, is found to be better than certain organic and semiorganic materials.

  19. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    Science.gov (United States)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  20. Predicting three-dimensional conformations of peptides constructed of only glycine, alanine, aspartic acid, and valine.

    Science.gov (United States)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  1. Thermodynamic and spectroscopic studies of alanine and phenylalanine in aqueous β-cyclodextrin solutions

    Directory of Open Access Journals (Sweden)

    Anwar Ali

    2017-01-01

    Full Text Available Ultrasonic speed, u and density, ρ have been measured for dl-alanine (Ala and l-phenylalanine (Phe in aqueous β-cyclodextrin (β-CD at 298.15, 303.15, 308.15, and 313.15 K. The complexation of Ala and Phe with β-CD has been studied by means of UV–vis and thermodynamic (ultrasonic speed and density studies. Using the measured ultrasonic speed and density data the apparent molar compressibility (κS,φ, apparent molar volume (Vφ, limiting apparent molar compressibility (κS,φ0, limiting apparent molar volume (Vφ0, their constants (SK and Sv, and hydration number (nH have been obtained. The positive values of transfer properties at infinite dilution for Ala and Phe in β-CD is the outcome of the balance between released water molecules from β-CD cavity and hydrophobic groups of Ala and Phe that enter into the macrocycle β-CD cavity. The experimental results have also been discussed on the basis of UV–vis absorbance. The results indicate the formation of a more stable host–guest complex between Phe-β-CD than between Ala-β-CD.

  2. Analysis of the enzymatic properties of a broad family of alanine aminotransferases.

    Directory of Open Access Journals (Sweden)

    Chandra H McAllister

    Full Text Available Alanine aminotransferase (AlaAT has been studied in a variety of organisms due to the involvement of this enzyme in mammalian processes such as non-alcoholic hepatocellular damage, and in plant processes such as C4 photosynthesis, post-hypoxic stress response and nitrogen use efficiency. To date, very few studies have made direct comparisons of AlaAT enzymes and fewer still have made direct comparisons of this enzyme across a broad spectrum of organisms. In this study we present a direct kinetic comparison of glutamate:pyruvate aminotransferase (GPAT activity for seven AlaATs and two glutamate:glyoxylate aminotransferases (GGAT, measuring the K(M values for the enzymes analyzed. We also demonstrate that recombinant expression of AlaAT enzymes in Eschericia coli results in differences in bacterial growth inhibition, supporting previous reports of AlaAT possessing bactericidal properties, attributed to lipopolysaccharide endotoxin recognition and binding. A probable lipopolysaccharide binding region within the AlaAT enzymes, homologous to a region of a lipopolysaccharide binding protein (LBP in humans, was also identified in this study. The AlaAT enzyme differences identified here indicate that AlaAT homologues have differentiated significantly and the roles these homologues play in vivo may also have diverged significantly. Specifically, the differing kinetics of AlaAT enzymes and how this may alter the nitrogen use efficiency in plants is discussed.

  3. Growth and characterization of L-alanine cadmium bromide a semiorganic nonlinear optical crystals

    Science.gov (United States)

    Ilayabarathi, P.; Chandrasekaran, J.

    2012-10-01

    A new semiorganic nonlinear optical crystal, L-alanine cadmium bromide (LACB) was grown from aqueous solution by slow solvent evaporation method at room temperature. As grown crystals were characterized for its spectral, thermal, linear and second order nonlinear optical properties. LACB crystallizes in orthorhombic system and unit cell parameters a = 5.771(2) Å, b = 6.014(4) Å, c = 12.298(2) Å, α = β = γ = 90° and volume = 426.8(3) Å3. The mode of vibrations of different molecular groups present in the crystal was identified by FTIR study. The grown crystals were found to be transparent in the entire visible region. The thermal strength and the decomposition of the grown crystals were studied using TG/DTA and DSC analysis. Dielectric measurement revealed that the crystals had very low dielectric constant at higher frequency in room temperature. The mechanical behavior was studied by Vicker's microhardness tester. The grown crystal has negative photoconductivity nature. The fluorescence spectrum of the crystal was recorded and its optical band gap is about 3.356 eV. The NLO property of crystal using modified Kurtz-Perry powder technique with Nd:YAG laser light of wavelength 1064 nm indicated that their second harmonic generation (SHG) efficiency was half that of pure KDP.

  4. Optical, thermal and magnetic studies of pure and cobalt chloride doped L-alanine cadmium chloride

    Science.gov (United States)

    Benila, B. S.; Bright, K. C.; Delphine, S. Mary; Shabu, R.

    2017-03-01

    Single crystals of L-alanine cadmium chloride (LACC) and cobalt chloride (Co2+) doped LACC have been grown by the slow evaporation solution growth technique. The grown crystals were subjected to various characterizations such as powder XRD, SXRD, FTIR, UV-vis, EDAX, TG/DTA, VSM, Dielectric and Second Harmonic Generation (SHG) measurements. The lattice parameters of the grown crystals were determined by single crystal X-ray analysis. EDAX analysis confirms the presence of Co2+ ion in the host material. The functional group and optical behavior of the crystals were identified from FTIR and UV-vis spectrum analysis. Electrical parameters such as dielectric constant, dielectric loss have been studied. The thermal stability of the compound was found out using TGA/DTA analysis. Second Harmonic Generation of the samples was confirmed by Kurtz-Perry powder technique. Magnetic properties of the crystals studied by VSM were also reported. The encouraging results show that the cobalt chloride doped LACC crystals have greater potential applications in optical devices.

  5. A Micro-Platinum Wire Biosensor for Fast and Selective Detection of Alanine Aminotransferase

    Directory of Open Access Journals (Sweden)

    Tran Nguyen Thanh Thuy

    2016-05-01

    Full Text Available In this study, a miniaturized biosensor based on permselective polymer layers (overoxidized polypyrrole (Ppy and Nafion® modified and enzyme (glutamate oxidase (GlutOx immobilized micro-platinum wire electrode for the detection of alanine aminotransferase (ALT was fabricated. The proposed ALT biosensor was measured electrochemically by constant potential amperometry at +0.7 V vs. Ag/AgCl. The ALT biosensor provides fast response time (~5 s and superior selectivity towards ALT against both negatively and positively charged species (e.g., ascorbic acid (AA and dopamine (DA, respectively. The detection range of the ALT biosensor is found to be 10–900 U/L which covers the range of normal ALT levels presented in the serum and the detection limit and sensitivity are found to be 8.48 U/L and 0.059 nA/(U/L·mm2 (N = 10, respectively. We also found that one-day storage of the ALT biosensor at −20 °C right after the sensor being fabricated can enhance the sensor sensitivity (1.74 times higher than that of the sensor stored at 4 °C. The ALT biosensor is stable after eight weeks of storage at −20 °C. The sensor was tested in spiked ALT samples (ALT activities: 20, 200, 400, and 900 U/L and reasonable recoveries (70%~107% were obtained.

  6. Cycas micronesica (Cycadales) plants devoid of endophytic cyanobacteria increase in beta-methylamino-L-alanine.

    Science.gov (United States)

    Marler, Thomas E; Snyder, Laura R; Shaw, Christopher A

    2010-09-15

    Cycads are among the most ancient of extant Spermatophytes, and are known for their pharmacologically active compounds. beta-methylamino-l-alanine (BMAA) is one metabolite that been implicated as causal of human neurodegenerative diseases in Guam. We grew Cycas micronesica seedlings without endophytic cyanobacteria symbiosis, and quantified initial and ending BMAA in various plant tissues. BMAA increased 79% during nine months of seedling growth, and root tissue contained 75% of the ultimate BMAA pool. Endophytic cyanobacteria symbionts were not the source of BMAA increase in these seedlings, which contradicts previously reported claims that biosynthesis of this toxin by cyanobacteria initiates its accumulation in the Guam environment. The preferential loading of root tissue with BMAA does not support earlier reports that this toxin serves a defensive role against herbivory of leaf or seed tissues. The long history of conflicting results in Guam's cycad toxin research continues, and recent developments underscore the sense of urgency in continued research as this endangered cycad population approaches extirpation from the island.

  7. The cyanobacteria derived toxin Beta-N-methylamino-L-alanine and amyotrophic lateral sclerosis.

    Science.gov (United States)

    Banack, Sandra Anne; Caller, Tracie A; Stommel, Elijah W

    2010-12-01

    There is mounting evidence to suggest that environmental factors play a major role in the development of neurodegenerative diseases like ALS (Amyotrophic Lateral Sclerosis). The non-protein amino acid beta-N-methylamino-L-alanine (BMAA) was first associated with the high incidence of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) in Guam, and has been implicated as a potential environmental factor in ALS, Alzheimer's disease, and other neurodegenerative diseases. BMAA has a number of toxic effects on motor neurons including direct agonist action on NMDA and AMPA receptors, induction of oxidative stress, and depletion of glutathione. As a non-protein amino acid, there is also the strong possibility that BMAA could cause intraneuronal protein misfolding, the hallmark of neurodegeneration. While an animal model for BMAA-induced ALS is lacking, there is substantial evidence to support a link between this toxin and ALS. The ramifications of discovering an environmental trigger for ALS are enormous. In this article, we discuss the history, ecology, pharmacology and clinical ramifications of this ubiquitous, cyanobacteria-derived toxin.

  8. Membrane topology of aspartate:alanine antiporter AspT from Comamonas testosteroni.

    Science.gov (United States)

    Fujiki, Takashi; Nanatani, Kei; Nishitani, Kei; Yagi, Kyoko; Ohnishi, Fumito; Yoneyama, Hiroshi; Uchida, Takafumi; Nakajima, Tasuku; Abea, Keietsu

    2007-01-01

    We cloned the aspT gene encoding the L-aspartate:L-alanine antiporter AspTCt in Comamonas testosteroni genomic DNA. Analysis of the nucleotide sequence revealed that C. testosteroni has an asp operon containing aspT upstream of the l-aspartate 4-decarboxylase gene, and that the gene order of the asp operon of C. testosteroni is the inverse of that of Tetragenococcus halophilus. We used proteoliposomes to confirm the transport processes of AspTCt. To elucidate the two-dimensional structure of AspTCt, we analysed its membrane topology by means of alkaline phosphatase (PhoA) and beta-lactamase (BlaM) fusion methods. The fusion analyses revealed that AspTCt has seven transmembrane segments (TMs), a large cytoplasmic loop containing approximately 200 amino acid residues between TM4 and TM5, a cytoplasmic N-terminus, and a periplasmic C-terminus. These results suggest that the orientation of the N-terminus of AspTCt differs from that of tetragenococcal AspT, even though these two AspT orthologues catalyse the same transport reactions.

  9. Healthy ranges of serum alanine aminotransferase levels in Tranian blood donors

    Institute of Scientific and Technical Information of China (English)

    Mehdi Mohamadnejad; Akram Pourshams; Reza Malekzadeh; Ashraf Mohamadkhani; Afsaneh Rajabiani; Ali Ali Asgari; Seyed Meysam Alimohamadi; Hadi Razjooyan; Mamar-Abadi

    2003-01-01

    AIM:The healthy ranges for serum alanine aminotransferase (ALT) levels are less well studied. The aim of this study was to define the upper limit of normal (ULN) for serum ALT levels, and to assess factors associated with serum ALT activity in apparently healthy blood donors.METHODS: A total of 1 939 blood donors were included.ALT measurements were performed for all cases using the same laboratory method. Healthy ranges for ALT levels were computed from the population at the lowest risk for liver disease. Univariate and multivariate analyses were performed to evaluate associations between clinical factors and ALT levels.RESULTS: Serum ALT activity was independently associated with body mass index (BMI) and male gender, but not associated with age. Association of ALT with BMI was more prominent in males than in females. Upper limit of normal for non-overweight women (BMI of less than 25) was 34 U/L,and for non-overweight men was 40 U/L.CONCLUSION: Serum ALT is strongly associated with sex and BMI. The normal range of ALT should be defined for male and female separately.

  10. Sequential micellar electrokinetic chromatography analysis of racemization reaction of alanine enantiomers.

    Science.gov (United States)

    Fu, Rao; Liu, Lina; Guo, Yingna; Guo, Liping; Yang, Li

    2014-02-28

    A novel method for online monitoring racemization reaction of alanine (Ala) enantiomers was developed, by combining sequential sample injection and micellar electrokinetic chromatography (MEKC) technique. Various conditions were investigated to optimize the sequential injection, Ala derivatization and MEKC chiral separation of d-/l-Ala. High reproducibility of the sequential MEKC analysis was demonstrated by analyzing the standard Ala samples, with relative standard deviation values (n=20) of 1.35%, 1.98%, and 1.09% for peak height, peak area and migration time, respectively. Ala racemization was automatically monitored every 40s from the beginning to the end of the reaction, by simultaneous detection of the consumption of the substrate enantiomer and the formation of the product enantiomer. The Michaelis constants of the racemization reaction were obtained by the sequential MEKC method, and were in good agreement with those obtained by traditional off-line enzyme assay. Our study indicated that the present sequential MEKC method can perform fast, efficient, accurate and reproducible analysis of racemization reaction of amino acids, which is of great importance for the determination of the activity of racemase and thus understanding its metabolic functions.

  11. The non-protein amino acid β-N-methylamino-L-alanine in Portuguese cyanobacterial isolates.

    Science.gov (United States)

    Cervantes Cianca, Rosa C; Baptista, Mafalda S; Lopes, Viviana R; Vasconcelos, Vitor M

    2012-06-01

    The tailor made amino acid β-N-methyl-amino-L-alanine (BMAA) is a neurotoxin produced by cyanobacteria. It has been associated with certain forms of progressive neurodegenerative disease, including sporadic Amyotrophic Lateral Sclerosis and Alzheimer's disease. Some different reports of BMAA in cyanobacterial blooms from lakes, reservoirs, and other water resources have been made by different investigators. We here report the detection of BMAA of both free and protein-bound produced by cyanobacteria, belonging to the Chroococcales, Oscillatoriales and Nostocales ordered. We use a rapid and sensitive HPLC-FD method that utilizes methanol elution and the Waters AQC Tag chemistry. On other hand, we have used three different assay procedures for BMAA extraction from cyanobacteria: Trichloroacetic acid (TCA), Methanol/Acetone and hydrochloric acid (HCl). All assays let successfully detect BMAA in all cyanobacteria samples analyzed. Nevertheless, with TCA and HCl extraction procedures the highest BMAA values, for free as well as protein-bound BMAA were detected. BMAA content could not be related to the taxonomy of the isolates or to their geographical origin, and no correlation between free and protein-bound BMAA concentrations were observed within or between taxonomic groups. These data offer confirmation of the taxonomic and geographic ubiquity of BMAA from naturally occurring populations of cyanobacteria, for the first time reported for estuaries.

  12. The Cyanobacteria Derived Toxin Beta-N-Methylamino-L-Alanine and Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Elijah W. Stommel

    2010-12-01

    Full Text Available There is mounting evidence to suggest that environmental factors play a major role in the development of neurodegenerative diseases like ALS (Amyotrophic Lateral Sclerosis. The non-protein amino acid beta-N-methylamino-L-alanine (BMAA was first associated with the high incidence of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC in Guam, and has been implicated as a potential environmental factor in ALS, Alzheimer’s disease, and other neurodegenerative diseases. BMAA has a number of toxic effects on motor neurons including direct agonist action on NMDA and AMPA receptors, induction of oxidative stress, and depletion of glutathione. As a non-protein amino acid, there is also the strong possibility that BMAA could cause intraneuronal protein misfolding, the hallmark of neurodegeneration. While an animal model for BMAA-induced ALS is lacking, there is substantial evidence to support a link between this toxin and ALS. The ramifications of discovering an environmental trigger for ALS are enormous. In this article, we discuss the history, ecology, pharmacology and clinical ramifications of this ubiquitous, cyanobacteria-derived toxin.

  13. Chiral recognition of alanine across modified carbon electrodes with 3,4-dihydroxyphenylalanine

    Energy Technology Data Exchange (ETDEWEB)

    Bustos, E. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700 Pedro Escobedo, Queretaro (Mexico); Chemistry Department, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico)], E-mail: ebustos@cideteq.mx; Godinez, Luis A. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700 Pedro Escobedo, Queretaro (Mexico); Rangel-Reyes, G.; Juaristi, E. [Chemistry Department, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico)

    2009-11-01

    3,4-Dihydroxyphenylalanine (DOPA) was covalently grafted onto a glassy carbon electrode (GCE) by the formation of an amine cation radical in the electro-oxidation of the amino-containing compound. Cyclic voltammetric experiments proved that the DOPA was formed on the GCE as a monolayer. Its electron transfer over the GCE surface at different pH values was studied by cyclic voltammetry. Changes in solution pH resulted in the variation of the charge state of the terminal group and the surface pK{sub a} was estimated on the basis of these results. Because of electrostatic interactions between the negatively charged groups on the electrode surface and the alanine (Ala) in solution, the modified electrode was used as an enantioselective sensor. The peak current for D(+) or L(-)DOPA over the modified electrode decreased as a result of the chiral recognition across the blocking interaction with the respective enantiomer of L(-) or D(+)Ala. The recognition was verified with the protection of L(-)DOPA with a Fmoc group.

  14. Clinical significance of serum alanine aminotransferase and lifestyle intervention in children with nonalcoholic fatty liver disease

    Science.gov (United States)

    Kwon, Kyoung Ah; Chun, Peter

    2016-01-01

    Purpose This study aimed to investigate the clinical significance of serum alanine aminotransferase (ALT) levels in children with nonalcoholic fatty liver disease (NAFLD) and the effect of lifestyle intervention on NAFLD. Methods The clinical data of 86 children diagnosed with NAFLD were reviewed retrospectively. Forty-six patients belonged to the elevated ALT group and 40 to the normal ALT group. The clinical parameters of patients with NAFLD were also compared based on the status of ALT levels after lifestyle intervention. Results Patients with elevated ALT had significantly higher body mass index (BMI) scores than those with normal ALT (P<0.05). Of all the patients with elevated ALT, 89% exhibited moderate or severe degree of fatty change in the liver on ultrasonographic examination, whereas most patients with normal ALT exhibited mild or moderate degree changes. Liver biopsy was performed in 15 children with elevated ALT and all showed mild histological changes. Of all patients with elevated ALT, 49% achieved normal ALT levels after lifestyle intervention. Those with more severe histological changes tended to have continuously increasing ALT levels. There was no correlation between the normalization of posttreatment ALT level and BMI, as well as ultrasonographic findings at diagnosis. Conclusion ALT elevation in NAFLD is highly associated with higher BMI scores and more severe degree of fatty changes on ultrasonographic examination. Lifestyle intervention can significantly improve ALT in children with NAFLD. The degree of histologic changes appears to be a predictor of the treatment response to NAFLD.

  15. Oligomerization of Glycine and Alanine Catalyzed by Iron Oxides: Implications for Prebiotic Chemistry

    Science.gov (United States)

    Shanker, Uma; Bhushan, Brij; Bhattacharjee, G.; Kamaluddin

    2012-02-01

    Iron oxide minerals are probable constituents of the sediments present in geothermal regions of the primitive earth. They might have adsorbed different organic monomers (amino acids, nucleotides etc.) and catalyzed polymerization processes leading to the formation of the first living cell. In the present work we tested the catalytic activity of three forms of iron oxides (Goethite, Akaganeite and Hematite) in the intermolecular condensation of each of the amino acids glycine and L-alanine. The effect of zinc oxide and titanium dioxide on the oligomerization has also been studied. Oligomerization studies were performed for 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The products formed were characterized by HPLC and ESI-MS techniques. All three forms of iron oxides catalyzed peptide bond formation (23.2% of gly2 and 10.65% of ala2). The reaction was monitored every 7 days. Formation of peptides was observed to start after 7 days at 50°C. Maximum yield of peptides was found after 35 days at 90°C. Reaction at 120°C favors formation of diketopiperazine derivatives. It is also important to note that after 35 days of reaction, goethite produced dimer and trimer with the highest yield among the oxides tested. We suggest that the activity of goethite could probably be due to its high surface area and surface acidity.

  16. Cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) in shark fins.

    Science.gov (United States)

    Mondo, Kiyo; Hammerschlag, Neil; Basile, Margaret; Pablo, John; Banack, Sandra A; Mash, Deborah C

    2012-02-01

    Sharks are among the most threatened groups of marine species. Populations are declining globally to support the growing demand for shark fin soup. Sharks are known to bioaccumulate toxins that may pose health risks to consumers of shark products. The feeding habits of sharks are varied, including fish, mammals, crustaceans and plankton. The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) has been detected in species of free-living marine cyanobacteria and may bioaccumulate in the marine food web. In this study, we sampled fin clips from seven different species of sharks in South Florida to survey the occurrence of BMAA using HPLC-FD and Triple Quadrupole LC/MS/MS methods. BMAA was detected in the fins of all species examined with concentrations ranging from 144 to 1836 ng/mg wet weight. Since BMAA has been linked to neurodegenerative diseases, these results may have important relevance to human health. We suggest that consumption of shark fins may increase the risk for human exposure to the cyanobacterial neurotoxin BMAA.

  17. Effects of Four Weeks of β-Alanine Supplementation on Repeated Sprint Ability in Water Polo Players

    Science.gov (United States)

    Brisola, Gabriel Motta Pinheiro; Artioli, Guilherme Giannini; Papoti, Marcelo; Zagatto, Alessandro Moura

    2016-01-01

    The purpose of this study was to investigate the effect of four weeks of β-alanine supplementation on repeated sprint ability in water polo players. Twenty-two male water polo players participated in the study, divided randomly into two homogeneous groups (placebo and β-alanine groups). The study design was double-blind, parallel and placebo controlled. Before and after the supplementation period (28 days), the athletes performed two specific repeated sprint ability tests interspaced by a 30-minute swimming test. Participants received 4.8g∙day-1 of the supplement (dextrose or β-alanine) on the first 10 days and 6.4g∙day-1 on the final 18 days. There was no significant group-time interaction for any variable. The qualitative inference for substantial changes demonstrated a likely beneficial effect in the β-alanine group (β-alanine vs placebo) for mean time (6.6±0.4s vs 6.7±0.4s; 81% likely beneficial), worst time (6.9±0.5s vs 7.1±0.5s; 78% likely beneficial) and total time (39.3±2.5s vs 40.4±2.5s; 81% likely beneficial) in the first repeated sprint ability set and for worst time (7.2±0.6s vs 7.5±0.6s; 57% possible beneficial) in the second repeated sprint ability set. Further, was found substantial change for total time for both repeated sprint ability tests (80.8±5.7s vs 83.4±5.6s; 52% possible beneficial). To conclude, four weeks of β-alanine supplementation had a likely beneficial effect in the first set of repeated sprint ability tests and a possible beneficial effect for worst time in the second set performed in a specific protocol in water polo players. PMID:27930743

  18. BarR, an Lrp-type transcription factor in Sulfolobus acidocaldarius, regulates an aminotransferase gene in a β-alanine responsive manner.

    Science.gov (United States)

    Liu, Han; Orell, Alvaro; Maes, Dominique; van Wolferen, Marleen; Lindås, Ann-Christin; Bernander, Rolf; Albers, Sonja-Verena; Charlier, Daniel; Peeters, Eveline

    2014-05-01

    In archaea, nothing is known about the β-alanine degradation pathway or its regulation. In this work, we identify and characterize BarR, a novel Lrp-like transcription factor and the first one that has a non-proteinogenic amino acid ligand. BarR is conserved in Sulfolobus acidocaldarius and Sulfolobus tokodaii and is located in a divergent operon with a gene predicted to encode β-alanine aminotransferase. Deletion of barR resulted in a reduced exponential growth rate in the presence of β-alanine. Furthermore, qRT-PCR and promoter activity assays demonstrated that BarR activates the expression of the adjacent aminotransferase gene, but only upon β-alanine supplementation. In contrast, auto-activation proved to be β-alanine independent. Heterologously produced BarR is an octamer in solution and forms a single complex by interacting with multiple sites in the 170 bp long intergenic region separating the divergently transcribed genes. In vitro, DNA binding is specifically responsive to β-alanine and site-mutant analyses indicated that β-alanine directly interacts with the ligand-binding pocket. Altogether, this work contributes to the growing body of evidence that in archaea, Lrp-like transcription factors have physiological roles that go beyond the regulation of α-amino acid metabolism.

  19. Crystal Engineering of l-Alanine with l-Leucine Additive using Metal-Assisted and Microwave-Accelerated Evaporative Crystallization.

    Science.gov (United States)

    Mojibola, Adeolu; Dongmo-Momo, Gilles; Mohammed, Muzaffer; Aslan, Kadir

    2014-05-07

    In this work, we demonstrated that the change in the morphology of l-alanine crystals can be controlled with the addition of l-leucine using the metal-assisted and microwave accelerated evaporative crystallization (MA-MAEC) technique. Crystallization experiments, where an increasing stoichiometric amount of l-leucine is added to initial l-alanine solutions, were carried out on circular poly(methyl methacrylate) (PMMA) disks modified with a 21-well capacity silicon isolator and silver nanoparticle films using microwave heating (MA-MAEC) and at room temperature (control experiments). The use of the MA-MAEC technique afforded for the growth of l-alanine crystals with different morphologies up to ∼10-fold faster than those grown at room temperature. In addition, the length of l-alanine crystals was systematically increased from ∼380 to ∼2000 μm using the MA-MAEC technique. Optical microscope images revealed that the shape of l-alanine crystals was changed from tetragonal shape (without l-leucine additive) to more elongated and wire-like structures with the addition of the l-leucine additive. Further characterization of l-alanine crystals was undertaken by Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy and powder X-ray diffraction (PXRD) measurements. In order to elucidate the growth mechanism of l-alanine crystals, theoretical simulations of l-alanine's morphology with and without l-leucine additive were carried out using Materials Studio software in conjunction with our experimental data. Theoretical simulations revealed that the growth of l-alanine's {011} and {120} crystal faces were inhibited due to the incorporation of l-leucine into these crystal faces in selected positions.

  20. An optical overview of poly[μ(2)-L-alanine-μ(3)-nitrato-sodium(I)] crystals.

    Science.gov (United States)

    Gallegos-Loya, E; Orrantia-Borunda, E; Duarte-Moller, A

    2012-01-01

    Single crystals of the semiorganic materials, L-alanine sodium nitrate (LASN) and D-alanine sodium nitrate (DASN), were grown from an aqueous solution by slow-evaporation technique. X-ray diffraction (XRD) studies were carried for the doped grown crystals. The absorption of these grown crystals was analyzed using UV-Vis-NIR studies, and it was found that these crystals possess minimum absorption from 200 to 1100 nm. An infrared (FTIR) spectrum of single crystal has been measured in the 4000-400 cm(-1) range. The assignment of the observed vibrational modes to corresponding symmetry type has been performed. A thermogravimetric study was carried out to determine the thermal properties of the grown crystal. The efficiency of second harmonic generation was obtained by a variant of the Kurtz-Perry method.

  1. Molecular dynamics of glycine ions in alanine doped TGS single crystal as probed by polarized laser raman spectroscopy

    Science.gov (United States)

    Bajpai, P. K.; Verma, A. L.

    2012-10-01

    Polarized Raman spectra of pure and alanine doped tri-glycine sulfate (TGS) single crystals at 12 K in different scattering geometries are analyzed. Sub species modes due to three crystallographically distinguishable glycine ions G (I), G (II) and G (III) are assigned. It is observed that alanine doping does not change the crystalline field and acts as local perturbation only. The major changes due to doping are observed in the relative intensities of different modes; most of the modes associated with G (I) and SO42- ions show reversal behavior in relative intensity at high doping concentration. The observed spectral changes are analyzed in terms of reorientation of G (I) ions with sub species modes of G (II)/ G (III) following the reorientation due to complex hydrogen bonding network.

  2. The temperature-dependent single-crystal Raman spectroscopy of a model dipeptide: L-Alanyl-L-alanine

    Science.gov (United States)

    Silva, J. G.; Arruda, L. M.; Pinheiro, G. S.; Lima, C. L.; Melo, F. E. A.; Ayala, A. P.; Filho, J. Mendes; Freire, P. T. C.

    2015-09-01

    A single-crystal of peptide L-alanyl-L-alanine (C6H12N2O3) was studied by Raman spectroscopy at low-temperature, and a tentative assignment of the normal modes was given. Evidence of a second order structural phase transition was found through Raman spectroscopy between the temperatures of 80 K and 60 K. Group theory considerations suggest that the transition leads the sample from the tetragonal to a monoclinic structure. Additionally, our study suggests that the mechanism for the structural phase transition is governed by the occupation of non-equivalent C1 local symmetry sites by the CH3 molecular groups. Analysis based on group theory suggests L-alanyl-L-alanine presents C2 symmetry at low temperatures.

  3. A systems biology approach to understanding elevated serum alanine transaminase levels in a clinical trial with ximelagatran.

    Science.gov (United States)

    Andersson, Ulf; Lindberg, Johan; Wang, Shunghuang; Balasubramanian, Raji; Marcusson-Ståhl, Maritha; Hannula, Mira; Zeng, Chenhui; Juhasz, Peter J; Kolmert, Johan; Bäckström, Jonas; Nord, Lars; Nilsson, Kerstin; Martin, Steve; Glinghammar, Björn; Cederbrant, Karin; Schuppe-Koistinen, Ina

    2009-12-01

    Ximelagatran was developed for the prevention and treatment of thromboembolic conditions. However, in long-term clinical trials with ximelagatran, the liver injury marker, alanine aminotransferase (ALT) increased in some patients. Analysis of plasma samples from 134 patients was carried out using proteomic and metabolomic platforms, with the aim of finding predictive biomarkers to explain the ALT elevation. Analytes that were changed after ximelagatran treatment included 3-hydroxybutyrate, pyruvic acid, CSF1R, Gc-globulin, L-glutamine, protein S and alanine, etc. Two of these analytes (pyruvic acid and CSF1R) were studied further in human cell cultures in vitro with ximelagatran. A systems biology approach applied in this study proved to be successful in generating new hypotheses for an unknown mechanism of toxicity.

  4. R76 in transmembrane domain 3 of the aspartate:alanine transporter AspT is involved in substrate transport.

    Science.gov (United States)

    Suzuki, Satomi; Nanatani, Kei; Abe, Keietsu

    2016-01-01

    The L-aspartate:L-alanine antiporter of Tetragenococcus halophilus (AspT) possesses an arginine residue (R76) within the GxxxG motif in the central part of transmembrane domain 3 (TM3)-a residue that has been estimated to transport function. In this study, we carried out amino acid substitutions of R76 and used proteoliposome reconstitution for analyzing the transport function of each substitution. Both l-aspartate and l-alanine transport assays showed that R76K has higher activity than the AspT-WT (R76), whereas R76D and R76E have lower activity than the AspT-WT. These results suggest that R76 is involved in AspT substrate transport.

  5. Removing of Cu (II) Ion from Polluted Water: Determination of Precipitation Limit of Cu (II) Ion with β-Alanin

    OpenAIRE

    , H Koraqi; , E Behrami; , A Lajqi

    2016-01-01

    The goal of this research was to investigate the condition for removing of Cu (II) ion from water. Through precipitation method with β-Alanin as the ligand.Is this study we examined the precipitation of Cu(II) ion in water solutions of Cu(NO3)2xH2O (1x10-3 mol L-1) with β-Alanin (1x10-3molL-1,1x10-4molL-1,1x10-5 molL-1,1x10-6molL-1) in constant ionic strength of 0,1 molL-1 NaClO4.We have determined the concentration region at which Cu(II) ion start to precipitate. From precipitation diagrams ...

  6. β-alanine spectrophotometric determination in reaction with sodium salt of 1,2-naphthoquinone-4-sulfonic acid

    Directory of Open Access Journals (Sweden)

    K. P. Portna

    2015-02-01

    Full Text Available Aim. The new spectrophotometric method for the quantitative determination of β-alanine in pharmaceutical formulations has been developed. Methods and results. This method is based on the measurement of aqueous β-alanine solutions absorption at 470 nm. The proposed method is actual according to the validation requirements of Ukrainian Pharmacopeia. The analytical method was optimized and validated by establishing the linearity (the correlation coefficient r = 1,000, precision (RSD% = 0,806, n = 9 and the accuracy ( = 100,8 %. Conclusion. According to the experimental data, the technique can be correctly reproduced and it is suitable for using in laboratories of the State Inspection for Quality Control of Medicines and QCD of the chemical-pharmaceutical enterprises.

  7. Preliminary evaluation of second harmonic direct detection scheme for low-dose range in alanine/EPR dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Felipe [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto, SP (Brazil); Departamento de Fisica, Facultad de Ciencias Naturales, Exactas y Tecnologia, Universidad de Panama (Panama); Departamento de Salud Radiologica, Caja de Seguro Social (Panama); Graeff, Carlos F.O.; Baffa, Oswaldo [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto, SP (Brazil)]. E-mail: baffa@ffclrp.usp.br

    2002-04-21

    The usefulness of a direct detection scheme of the second harmonic (2h) overmodulated signal from irradiated alanine in EPR dosimetry was studied. For this purpose, a group of DL-alanine/paraffin cylindrical pellets was produced. The dosimeters were irradiated with a {sup 60}Co radiotherapy gamma source with doses of 0.05, 0.1, 0.5, 1 and 5 Gy. The EPR measurements were carried out in a VARIAN-E4 spectrometer operating in X-band with optimized parameters to obtain highest amplitude signals of both harmonics. The 2h signal was detected directly at twice the modulation frequency. In preliminary results, the 2h showed some advantages over the 1h such as better resolution for doses below 1 Gy, better repeatability results and better linear behaviour in the dose range indicated. (author)

  8. Transferability of ASTM/NIST alanine-polyethylene recipe at ISS. American Society for Testing and Materials/National Institute for Standards and Technology. Istituto Superiore de Sanita

    Science.gov (United States)

    De Angelis C; Fattibene; Onori; Petetti; Bartolotta; Sansone Santamaria A

    2000-05-01

    Alanine-polyethylene solid state dosimeters were prepared at Istituto Superiore di Sanita (ISS) following the recipe proposed by National Institute of Standards and Technology (NIST) with the goal of testing its transferability. Dosimeters were prepared using 95% alanine and 5% polyethylene, by weight. They are rugged and of increased sensitivity, repeatability and reproducibility as respect to the ISS alanine-paraffin pellets. Reproducibility of about 1% was obtained at 10 Gy and at 3 Gy if one single pellet or a stack of five dosimeters were used, respectively.

  9. Growth, spectral and crystallization perfection studies of semi organic non linear optical crystal - L-alanine lithium chloride

    Science.gov (United States)

    Redrothu, Hanumantharao; Kalainathan, S.; Bhagavannarayana, G.

    2012-06-01

    Single crystals of L-alanine lithium chloride single crystals were successfully grown using slow evaporation solution growth technique at constant temperature (303K). The formation of the new crystal has been confirmed by single-crystal X-ray diffraction, FT-IR studies. The crystalline perfection was analyzed by high-resolution X-ray diffraction (HRXRD) rocking curve measurements. The powder second harmonic generation (SHG) has been confirmed by Nd: YAG laser. The results have been discussed in detail.

  10. Exercise but not (-)-Epigallocatechin-3-gallate or β-Alanine enhances physical fitness, brain plasticity, and behavioral performance in mice

    OpenAIRE

    Bhattacharya, Tushar K.; Pence, Brandt D.; Ossyra, Jessica M.; Gibbons, Trisha E.; Perez, Samuel; McCusker, Robert H.; Kelley, Keith W.; Johnson, Rodney W; Woods, Jeffrey A.; Rhodes, Justin S.

    2015-01-01

    Nutrition and physical exercise can enhance cognitive function but the specific combinations of dietary bioactives that maximize pro-cognitive effects are not known nor are the contributing neurobiological mechanisms. Epigallocatechin-3-gallate (EGCG) is a flavonoid constituent of many plants with high levels found in green tea. EGCG has anti-inflammatory and anti-oxidant properties and is known to cross the blood brain barrier where it can affect brain chemistry and physiology. β-alanine (B-...

  11. Structural and Functional Variation within the Alanine-Rich Repetitive Domain of Streptococcal Antigen I/II

    OpenAIRE

    Demuth, Donald R; Irvine, Douglas C.

    2002-01-01

    Members of the antigen I/II family of cell surface proteins are highly conserved, multifunctional adhesins that mediate interactions of oral streptococci with other oral bacteria, with cell matrix proteins (e.g., type I collagen), and with salivary glycoproteins, e.g., gp340. The interaction of gp340 (formerly designated salivary agglutinin) with Streptococcus mutans requires an alanine-rich repetitive domain (A region) of antigen I/II that is highly conserved in all members of this family of...

  12. Combinatorial Alanine Substitution Enables Rapid Optimization of Cytochrome P450BM3 for Selective Hydroxylation of Large Substrates

    KAUST Repository

    Lewis, Jared C.

    2010-11-24

    Made for each other: Combinatorial alanine substitution of active site residues in a thermostable cytochrome P450BM3 variant was used to generate an enzyme that is active with large substrates. Selective hydroxylation of methoxymethylated monosaccharides, alkaloids, and steroids was thus made possible (see Scheme). This approach could be useful for improving the activity of enzymes that show only limited activity with larger substrates. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effects of Endogenous d-Alanine Synthesis and Autoinhibition of Bacillus anthracis Germination on In Vitro and In Vivo Infections▿

    OpenAIRE

    McKevitt, Matthew T.; Bryant, Katie M.; Shakir, Salika M.; Larabee, Jason L.; Blanke, Steven R.; Lovchik, Julie; Lyons, C. Rick; Ballard, Jimmy D.

    2007-01-01

    Bacillus anthracis transitions from a dormant spore to a vegetative bacillus through a series of structural and biochemical changes collectively referred to as germination. The timing of germination is important during early steps in infection and may determine if B. anthracis survives or succumbs to responsive macrophages. In the current study experiments determined the contribution of endogenous d-alanine production to the efficiency and timing of B. anthracis spore germination under in vit...

  14. Theoretical and experimental radiation effectiveness of the free radical dosimeter alanine to irradiation with heavy charged particles

    DEFF Research Database (Denmark)

    Hansen, Jørgen-Walther; Olsen, K. J.

    1985-01-01

    Dose-response characteristics have been measured for the crystalline amino acid L-.alpha.-alanine irradiated with ion beams of 6 and 16 MeV protons, 20 MeV .alpha. particles, 21 MeV7Li ions, 64 MeV16O ions, and 80 MeV32S ions. The experimental radiation effectiveness (RE) with reference to low-LE...

  15. Maghemite and poly-DL-alanine based core–shell multifunctional nanohybrids for environmental protection and biomedicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Covaliu, Cristina Ileana, E-mail: cristina_covaliu@yahoo.com [University Politehnica of Bucharest, Faculty of Biotechnical Systems Engineering, Bucharest (Romania); Paraschiv, Gigel; Biriş, Sorin-Ştefan [University Politehnica of Bucharest, Faculty of Biotechnical Systems Engineering, Bucharest (Romania); Jitaru, Ioana; Vasile, Eugeniu [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Bucharest (Romania); Diamandescu, Lucian [National Institute of Materials Physics, Bucharest (Romania); Velickovic, Tanja Cirkovic; Krstic, Maja [University of Belgrade, Faculty of Chemistry, Belgrade (Serbia); Ionita, Valentin [University Politehnica of Bucharest, Faculty of Electrical Engineering, Bucharest (Romania); Iovu, Horia [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Bucharest (Romania); Matei, Ecaterina [University Politehnica of Bucharest, Faculty of Materials Science and Engineering, Bucharest (Romania)

    2013-11-15

    This paper deals with the synthesis of two nanohybrid materials based on maghemite (γ-Fe{sub 2}O{sub 3}) and poly-DL-alanine using a two-step procedure consisting of maghemite nanoparticles synthesis by microemulsion method and nanohybrids obtaining by coating of maghemite nanoparticles with poly-DL-alanine biopolymer in two different molar ratios (H1:5 and H1:15). The maghemite and their corresponding nanohybrids were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoemission spectroscopy, Mössbauer spectroscopy, Transmission electron microscopy, High resolution transmission electron microscopy with selected area electron diffraction and Atomic absorption spectroscopy. The two nanohybrids under the investigation have the average particle sizes of 22 nm and 23 nm. The Fourier transform infrared spectroscopy spectra and X-ray photoemission spectroscopy data indicate the existence of some interactions between the maghemite nanoparticles and poly-DL-alanine shell. The saturation magnetization values for maghemite and the two nanohybrids determined by a Vibrating Sample Magnetometer correspond to a typical superparamagnetic behavior suitable for applying in biomedical field. Also, with respect of biomedical application the biological activity of maghemite and its corresponding nanohybrids was investigated on healthy human cells (PBMC) and cancerous cells (HeLa). Furthermore, in order to support the multifunctionality of the γ-Fe{sub 2}O{sub 3} sample and nanohybrids we also investigated their wastewater treatment properties by measuring the removal efficiency of heavy metal Cd (II) ions.

  16. Molecular requirements for peroxisomal targeting of alanine-glyoxylate aminotransferase as an essential determinant in primary hyperoxaluria type 1.

    Directory of Open Access Journals (Sweden)

    Krisztián Fodor

    Full Text Available Alanine-glyoxylate aminotransferase is a peroxisomal enzyme, of which various missense mutations lead to irreversible kidney damage via primary hyperoxaluria type 1, in part caused by improper peroxisomal targeting. To unravel the molecular mechanism of its recognition by the peroxisomal receptor Pex5p, we have determined the crystal structure of the respective cargo-receptor complex. It shows an extensive protein/protein interface, with contributions from residues of the peroxisomal targeting signal 1 and additional loops of the C-terminal domain of the cargo. Sequence segments that are crucial for receptor recognition and hydrophobic core interactions within alanine-glyoxylate aminotransferase are overlapping, explaining why receptor recognition highly depends on a properly folded protein. We subsequently characterized several enzyme variants in vitro and in vivo and show that even minor protein fold perturbations are sufficient to impair Pex5p receptor recognition. We discuss how the knowledge of the molecular parameters for alanine-glyoxylate aminotransferase required for peroxisomal translocation could become useful for improved hyperoxaluria type 1 treatment.

  17. Solution-reaction Calorimetric Study of Coordination Compounds of Rare Earth Perchlorates with Alanine and Imidazole

    Institute of Scientific and Technical Information of China (English)

    ZHAO, Yan-Ru(赵艳茹); HOU, An-Xin(侯安新); DONG, Jia-Xin(董家新); ZHAO, Shun-Sheng(赵顺省); LIU, Yi(刘义); QU, Song-Sheng(屈松生)

    2004-01-01

    Two coordination compounds of rare earth perchlorates with alanine and imidazole, [RE(Ala)n(Im)(H2O)](ClO4)3(s) (RE=La, n=3; RE=Nd, n=2), have been prepared and characterized. The standard molar enthalpies of reaction for the following two reactions, LaCL·7H2O(s)+3Ala(s)+Im(s)+3NaClO4(s)=[La(Ala).(Im)(H2O)]-(ClO4)3(s)+3NaCl(s)+6H2O(I)(1)and NdCl3·6H2O(s)+2Ala(s)+2Ala(s)+Im(s)+3NaClO4(s)=[Nd(Ala)2(Im)(H2O)]-(ClO4)3(s)+3NaCl(s)+5H2O(l) (2), were determined by solution-reaction calorimetry, at T=298.15 K, as 36.168 ±0.642kJ·mol-1 and 48.590±0.934kJ·mol-1 respectively. From the results and other auxiliary quantities, the standard molar enthalpies of formation of [La(Ala)3(Im)(H2O)](ClO4)3(s) and [Nd(Ala)2(Im)(H2O)] (ClO4)3(s) were derived,△fH(-)m{[La(Ala).(Im)(H2O)](ClO4)3,s}=(-2984.8±1.0)kJ·mol-1 and △fH(-)m{[Nd(Ala).(Im)(H2O)]-(ClO4)3,s}=(-2387.8±0.8)kJ·mol-1, respectively.

  18. Electrostatic study of Alanine mutational effects on transcription: application to GATA-3:DNA interaction complex.

    Science.gov (United States)

    El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges

    2015-01-01

    Protein-DNA interaction is of fundamental importance in molecular biology, playing roles in functions as diverse as DNA transcription, DNA structure formation, and DNA repair. Protein-DNA association is also important in medicine; understanding Protein-DNA binding kinetics can assist in identifying disease root causes which can contribute to drug development. In this perspective, this work focuses on the transcription process by the GATA Transcription Factor (TF). GATA TF binds to DNA promoter region represented by `G,A,T,A' nucleotides sequence, and initiates transcription of target genes. When proper regulation fails due to some mutations on the GATA TF protein sequence or on the DNA promoter sequence (weak promoter), deregulation of the target genes might lead to various disorders. In this study, we aim to understand the electrostatic mechanism behind GATA TF and DNA promoter interactions, in order to predict Protein-DNA binding in the presence of mutations, while elaborating on non-covalent binding kinetics. To generate a family of mutants for the GATA:DNA complex, we replaced every charged amino acid, one at a time, with a neutral amino acid like Alanine (Ala). We then applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations, for each mutation. These calculations delineate the contribution to binding from each Ala-replaced amino acid in the GATA:DNA interaction. After analyzing the obtained data in view of a two-step model, we are able to identify potential key amino acids in binding. Finally, we applied the model to GATA-3:DNA (crystal structure with PDB-ID: 3DFV) binding complex and validated it against experimental results from the literature.

  19. Persistent alanine aminotransferase elevation among the general Iranian population: Prevalence and causes

    Institute of Scientific and Technical Information of China (English)

    Raika Jamali; Mohammad Reza Deyhim; Houri Rezvan; Akram Pourshams; Mahmoodreza Khonsari; Shahin Merat; Masoud Khoshnia; Elham Jafari; Alireza Bahram Kalhori; Hassan Abolghasemi; Sedighe Amini; Mahtab Maghsoudlu

    2008-01-01

    AIM: To determine the prevalence and causes of persistently elevated alanine aminotransferase (ALT)levels among the general population in northern Iran.METHODS: A total of 2292 (1376 female, aged 18-75year), were selected by systematic clustered random sampling from the cities and villages of Gonbad and Kalaleh in Golestan Province and invited to participate in the study. A comprehensive history regarding alcohol drinking and medication was taken. Body mass index (BMI), viral markers and ALT levels were measured. If ALT level was ≥ 40 U/L, it was rechecked twice within 6 mo. Those with ≥ 2 times elevation of ALT were considered as having persistently elevated ALT level.Non-alcoholic fatty liver disease (NAFLD) was diagnosed based on evidence of fatty liver upon sonography and excluding other etiology.RESULTS: A total of 2049 (1351 female) patients participated in the study, 162 (7.9%) had elevated ALT level at the first measurement. Persistently elevated ALT level was detected in 64 (3.1%) participants, with 51 (79.6%) with no obvious etiology, six (9.3%) with Hepatitis B, four (6.2%) with Hepatitis C virus (HCV)infection and three (4.6%) with alcoholic hepatitis.The prevalence of NAFLD and alcoholic hepatitis was 2.04% (42 patients) and 0.1% (three), respectively.There was correlation between NAFLD and male gender,overweight, diabetes and living in an urban area [odds ratio = 3.03 (95% CI: 1.6-5.72), 4.21 (95% CI:1.83-9.68), 2.86 (95% CI: 1.05-7.79) and 2.04 (95% CI:1.00-4.16) respectively].CONCLUSION: NAFLD is the most common cause of persistently elevated serum ALT level among the general population of Iran.

  20. Muscle carnosine loading by beta-alanine supplementation is more pronounced in trained vs. untrained muscles.

    Science.gov (United States)

    Bex, T; Chung, W; Baguet, A; Stegen, S; Stautemas, J; Achten, E; Derave, W

    2014-01-15

    Carnosine occurs in high concentrations in human skeletal muscle and assists working capacity during high-intensity exercise. Chronic beta-alanine (BA) supplementation has consistently been shown to augment muscle carnosine concentration, but the effect of training on the carnosine loading efficiency is poorly understood. The aim of the present study was to compare muscle carnosine loading between trained and untrained arm and leg muscles. In a first study (n = 17), reliability of carnosine quantification by proton magnetic resonance spectroscopy ((1)H-MRS) was evaluated in deltoid and triceps brachii muscles. In a second study, participants (n = 35; 10 nonathletes, 10 cyclists, 10 swimmers, and 5 kayakers) were supplemented with 6.4 g/day of slow-release BA for 23 days. Carnosine content was evaluated in soleus, gastrocnemius medialis, and deltoid muscles by (1)H-MRS. All the results are reported as arbitrary units. In the nonathletes, BA supplementation increased carnosine content by 47% in the arm and 33% in the leg muscles (not significant). In kayakers, the increase was more pronounced in arm (deltoid) vs. leg (soleus + gastrocnemius) muscles (0.089 vs. 0.049), whereas the reverse pattern was observed in cyclists (0.065 vs. 0.084). Swimmers had significantly higher increase in carnosine in both deltoid (0.107 vs. 0.065) and gastrocnemius muscle (0.082 vs. 0.051) compared with nonathletes. We showed that 1) carnosine content can be reliably measured by (1)H-MRS in deltoid muscle, 2) carnosine loading is equally effective in arm vs. leg muscles of nonathletes, and 3) carnosine loading is more pronounced in trained vs. untrained muscles.

  1. Kinetics of interaction of the myristoylated alanine-rich C kinase substrate, membranes, and calmodulin.

    Science.gov (United States)

    Arbuzova, A; Wang, J; Murray, D; Jacob, J; Cafiso, D S; McLaughlin, S

    1997-10-24

    Membrane binding of the myristoylated alanine-rich C kinase substrate (MARCKS) requires both its myristate chain and basic "effector" region. Previous studies with a peptide corresponding to the effector region, MARCKS-(151-175), showed that the 13 basic residues interact electrostatically with acidic lipids and that the 5 hydrophobic phenylalanine residues penetrate the polar head group region of the bilayer. Here we describe the kinetics of the membrane binding of fluorescent (acrylodan-labeled) peptides measured with a stopped-flow technique. Even though the peptide penetrates the polar head group region, the association of MARCKS-(151-175) with membranes is extremely rapid; association occurs with a diffusion-limited association rate constant. For example, kon = 10(11) M-1 s-1 for the peptide binding to 100-nm diameter phospholipid vesicles. As expected theoretically, kon is independent of factors that affect the molar partition coefficient, such as the mole fraction of acidic lipid in the vesicle and the salt concentration. The dissociation rate constant (koff) is approximately 10 s-1 (lifetime = 0.1 s) for vesicles with 10% acidic lipid in 100 mM KCl. Ca2+-calmodulin (Ca2+.CaM) decreases markedly the lifetime of the peptide on vesicles, e.g. from 0.1 to 0.01 s in the presence of 5 micrM Ca2+.CaM. Our results suggest that Ca2+.CaM collides with the membrane-bound MARCKS-(151-175) peptide and pulls the peptide off rapidly. We discuss the biological implications of this switch mechanism, speculating that an increase in the level of Ca2+-calmodulin could rapidly release phosphatidylinositol 4, 5-bisphosphate that previous work has suggested is sequestered in lateral domains formed by MARCKS and MARCKS-(151-175).

  2. A community-based epidemiological study of elevated serum alanine aminotransferase levels in Kinmen, Taiwan

    Institute of Scientific and Technical Information of China (English)

    Chi-Ming Liu; Tao-Hsin Tung; Jorn-Hon Liu; Victor Tze-Kai Chen; Ching-Heng Lin; Chung-Te Hsu; Pesus Chou

    2005-01-01

    AIM: To explore any gender-related differences in prevalence of and condition-associated factors related to an elevated serum alanine aminotransferase (ALT) level amongst residents of Kinmen, Taiwan.METHODS: A total of 11 898 of a potential 20 112 regional residents aged 30 years or more completed a related questionnaire that was carried out by the Yang-Ming Crusade between 1991 and 1994 inclusively, with blood samples being collected by public nurses. The overall questionnaire response rate was 59.3% (52.4% for males and 66.0% for females).RESULTS: The prevalence of an elevated serum ALT level for this sub-population was found to be 7,2%, the prevalence revealing a statistically significant decrease with increasing population age (P<0.0001). Males exhibited a greater prevalence of elevated serum ALT level than did females (9.4% vs 5.3%, P<0.0001). Using multiple logistic regression analysis, in addition to male gender, a younger age, greater waist circumference,presence of type-2 diabetes and hyperuricemia were the significant factors associated with an elevated serum ALT level for both males and females. Gender-related differences as regards associated factors were also revealed. For males, obesity was significantly related to an elevated serum ALT level (OR = 1.28, 95%CI: 1.00-1.66)but this was not so for females (OR = 1.09, 95%CI:0.84-1.42). Hypertriglyceridemia (OR = 1.80, 95%CI:1.36-2.39) and hyperuricemia (OR = 1.61, 95%CI:1.03-2.52) were significantly related to elevated serum ALT levels only for females.CONCLUSION: Several gender-related differences were noted pertaining to the prevalence of and relationship between obesity, hypertriglyceridemia and hyperuricemia and elevated serum ALT level in the present study.(c)2005 The WJG Press and Elsevier Ihc. All rights reserved.

  3. Serum γ-glutamyltransferase, alanine aminotransferase, and aspartate aminotransferase activity in Iranian healthy blood donor men

    Institute of Scientific and Technical Information of China (English)

    Hossein Khedmat; Nasrin Zarei; Farahnaz Fallahian; Hassan Abolghasemi; Bashir Hajibeigi; Zohre Attarchi; Farshid Alaeddini; Mohammad Taghi Holisaz; Masoumeh Pourali; Shahin Sharifi

    2007-01-01

    AIM: To determine serum γ-glutamyltransferase (GGT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activity, and to assess their correlation with demographic and clinical findings in healthy blood donors.METHODS: This cross-sectional study was performed in 934 male blood donors, aged 18 to 68 years, who consecutively attended Tehran blood transfusion service in 2006. All participants were seronegative for HBV or HCV infections, non alcohol users, and all underwent a standard interview and anthropometric tests. Clinical and biochemical parameters including AST, ALT, and GGT activities were determined. Patients taking drugs known to cause hepatic fat deposition were excluded. For AST, ALT, and GGT variables, we used 33.33 and 66.66 percentiles, so that each of them was divided into three tertiles.RESULTS: Mean AST, ALT, and GGT activities were 25.26 ± 12.58 U/L (normal range 5-35 U/L), 33.13 ± 22.98 (normal range 5-35 U/L), and 25.11 ± 18.32 (normal range 6-37 U/L), respectively. By univariate analyses, there were significant associations between increasing AST, ALT, or GGT tertiles and age, body weight, body mass index, and waist and hip circumferences (P < 0.05). By multiple linear regression analyses, ALT was found to be positively correlated with dyslipidemia (B = 6.988, P = 0.038), whereas ALT and AST were negatively correlated with age. AST, ALT, and GGT levels had positive correlation with family history of liver disease (B = 15.763, P < 0.001), (B = 32.345, P < 0.001), (B =24.415, P < 0.001), respectively.CONCLUSION: Although we did not determine the cutoffs of the upper normal limits for AST, ALT, and GGT levels, we would suggest screening asymptomatic patients with dyslipidemia and also subjects with a family history of liver disease.

  4. Ir-192 HDR transit dose and radial dose function determination using alanine/EPR dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Calcina, Carmen S Guzman [Departamento de FIsica e Matematica, FFCLRP, Universidade de Sao Paulo, Av Bandeirantes 3900, 14040-901, Ribeirao Preto, SP (Brazil); Almeida, Adelaide de [Departamento de FIsica e Matematica, FFCLRP, Universidade de Sao Paulo, Av Bandeirantes 3900, 14040-901, Ribeirao Preto, SP (Brazil); Rocha, Jose R Oliveira [Setor de FIsica Medica-CEB-UNICAMP e Setor de Radioterapia-CAISM-UNICAMP (Brazil); Abrego, Felipe Chen [Departamento de FIsica e Matematica, FFCLRP, Universidade de Sao Paulo, Av Bandeirantes 3900, 14040-901, Ribeirao Preto, SP (Brazil); Baffa, Oswaldo [Departamento de FIsica e Matematica, FFCLRP, Universidade de Sao Paulo, Av Bandeirantes 3900, 14040-901, Ribeirao Preto, SP (Brazil)

    2005-03-21

    Source positioning close to the tumour in high dose rate (HDR) brachytherapy is not instantaneous. An increment of dose will be delivered during the movement of the source in the trajectory to its static position. This increment is the transit dose, often not taken into account in brachytherapeutic treatment planning. The transit dose depends on the prescribed dose, number of treatment fractions, velocity and activity of the source. Combining all these factors, the transit dose can be 5% higher than the prescribed absorbed dose value (Sang-Hyun and Muller-Runkel, 1994 Phys. Med. Biol. 39 1181-8, Nath et al 1995 Med. Phys. 22 209-34). However, it cannot exceed this percentage (Nath et al 1995). In this work, we use the alanine-EPR (electron paramagnetic resonance) dosimetric system using analysis of the first derivative of the signal. The transit dose was evaluated for an HDR system and is consistent with that already presented for TLD dosimeters (Bastin et al 1993 Int. J. Radiat. Oncol. Biol. Phys. 26 695-702). Also using the same dosimetric system, the radial dose function, used to evaluate the geometric dose degradation around the source, was determined and its behaviour agrees better with those obtained by Monte Carlo simulations (Nath et al 1995, Williamson and Nath 1991 Med. Phys. 18 434-48, Ballester et al 1997 Med. Phys. 24 1221-8, Ballester et al 2001 Phys. Med. Biol. 46 N79-90) than with TLD measurements (Nath et al 1990 Med. Phys. 17 1032-40)

  5. Environmental neurotoxins β-N-methylamino-l-alanine (BMAA) and mercury in shark cartilage dietary supplements.

    Science.gov (United States)

    Mondo, Kiyo; Broc Glover, W; Murch, Susan J; Liu, Guangliang; Cai, Yong; Davis, David A; Mash, Deborah C

    2014-08-01

    Shark cartilage products are marketed as dietary supplements with claimed health benefits for animal and human use. Shark fin and cartilage products sold as extracts, dry powders and in capsules are marketed based on traditional Chinese medicine claims that it nourishes the blood, enhances appetite, and energizes multiple internal organs. Shark cartilage contains a mixture of chondroitin and glucosamine, a popular nutritional supplement ingested to improve cartilage function. Sharks are long-lived apex predators, that bioaccumulate environmental marine toxins and methylmercury from dietary exposures. We recently reported detection of the cyanobacterial toxin β-N-methylamino-l-alanine (BMAA) in the fins of seven different species of sharks from South Florida coastal waters. Since BMAA has been linked to degenerative brain diseases, the consumption of shark products may pose a human risk for BMAA exposures. In this report, we tested sixteen commercial shark cartilage supplements for BMAA by high performance liquid chromatography (HPLC-FD) with fluorescence detection and ultra performance liquid chromatography/mass spectrometry/mass spectrometry (UPLC-MS/MS). Total mercury (Hg) levels were measured in the same shark cartilage products by cold vapor atomic fluorescence spectrometry (CVAFS). We report here that BMAA was detected in fifteen out of sixteen products with concentrations ranging from 86 to 265μg/g (dry weight). All of the shark fin products contained low concentrations of Hg. While Hg contamination is a known risk, the results of the present study demonstrate that shark cartilage products also may contain the neurotoxin BMAA. Although the neurotoxic potential of dietary exposure to BMAA is currently unknown, the results demonstrate that shark cartilage products may contain two environmental neurotoxins that have synergistic toxicities.

  6. Effect of Beta alanine and sodium bicarbonate supplementation on repeated-sprint performance.

    Science.gov (United States)

    Ducker, Kagan J; Dawson, Brian; Wallman, Karen E

    2013-12-01

    This study aimed to investigate if combining beta alanine (BA) and sodium bicarbonate (NaHCO3) supplementation could lead to enhanced repeated-sprint performance in team-sport athletes, beyond what is possible with either supplement alone. Participants (n = 24) completed duplicate trials of a repeated-sprint test (3 sets; 6 × 20 m departing every 25 seconds, 4 minutes active recovery between sets) and were then allocated into 4 groups as follows: BA only (n = 6; 28 days BA, acute sodium chloride placebo); NaHCO3 only (n = 6; 28 days glucose placebo, acute NaHCO3); BA/NaHCO3 (n = 6; 28 days BA, acute NaHCO3); placebo only (n = 6; 28 days glucose placebo, acute sodium chloride placebo), then completed duplicate trials postsupplementation. Sodium bicarbonate alone resulted in moderate effect size (d = 0.40-0.71) and "likely" and "very likely" benefit for overall total sprint times (TST) and for each individual set and for first sprint (sets 2 and 3) and best sprint time (sets 2 and 3). Combining BA and NaHCO3 resulted in "possible" to "likely" benefits for overall TST and for sets 2 and 3. First sprint (set 3) and best sprint time (sets 2 and 3) also showed "likely" benefit after this trial. The BA and placebo groups showed no differences in performance after supplementation. In conclusion, these results indicate that supplementation with acute NaHCO3 improved repeated-sprint performance more than either a combination of NaHCO3 and BA or BA alone.

  7. Alanine aminotransferase and risk of the metabolic syndrome: a linear dose-response relationship.

    Directory of Open Access Journals (Sweden)

    Setor K Kunutsor

    Full Text Available BACKGROUND: Elevated baseline circulating alanine aminotransferase (ALT level has been demonstrated to be associated with an increased risk of the metabolic syndrome (MetS, but the nature of the dose-response relationship is uncertain. METHODS: We performed a systematic review and meta-analysis of published prospective cohort studies to characterize in detail the nature of the dose-response relationship between baseline ALT level and risk of incident MetS in the general population. Relevant studies were identified in a literature search of MEDLINE, EMBASE, and Web of Science up to December 2013. Prospective studies in which investigators reported relative risks (RRs of MetS for 3 or more categories of ALT levels were eligible. A potential nonlinear relationship between ALT levels and MetS was examined using restricted cubic splines. RESULTS: Of the 489 studies reviewed, relevant data were available on 29,815 non-overlapping participants comprising 2,125 incident MetS events from five prospective cohort studies. There was evidence of a linear association (P for nonlinearity=0.38 between ALT level and risk of MetS, characterised by a graded increase in MetS risk at ALT levels 6-40 U/L. The risk of MetS increased by 14% for every 5 U/L increment in circulating ALT level (95% CI: 12-17%. Evidence was lacking of heterogeneity and publication bias among the contributing studies. CONCLUSIONS: Baseline ALT level is associated with risk of the MetS in a linear dose-response manner. Studies are needed to determine whether the association represents a causal relationship.

  8. Alanine and aspartate aminotransferase and glutamine-cycling pathway: Their roles in pathogenesis of metabolic syndrome

    Institute of Scientific and Technical Information of China (English)

    Silvia Sookoian; Carlos J Pirola

    2012-01-01

    Although new research technologies are constantly used to look either for genes or biomarkers in the prediction of metabolic syndrome (MS),the pathogenesis and pathophysiology of this complex disease remains a major challenge.Interestingly,Cheng et al recently investigated possible pathways underlying MS by high-throughput metabolite profiling in two large and well characterized community-based cohorts.The authors explored by liquid chromatography and mass spectrometry the plasma concentrations of 45distinct metabolites and examined their relation to cardiometabolic risk,and observed that metabolic risk factors such as obesity,insulin resistance (IR),high blood pressure,and dyslipidemia were associated with several metabolites,including branched-chain amino acids,other hydrophobic amino acids,tryptophan breakdown products,and nucleotide metabolites.In addition,the authors found a significant association of IR traits with glutamine,glutamate and the glutamineto-glutamate ratio.These data provide new insight into the pathogenesis of MS-associated phenotypes and introduce a crucial role of glutamine-cycling pathway as prominently involved in the development of metabolic risk.We consider that the hypothesis about the role of abnormal glutamate metabolism in the pathogenesis of the MS is certainly challenging and suggests the critical role of the liver in the global metabolic modulation as glutamate metabolism is linked with aminotransferase reactions.We discuss here the critical role of the "liver metabolism" in the pathogenesis of the MS and IR,and postulate that before fatty liver develops,abnormal levels of liver enzymes,such as alanine and aspartate aminotransferases might reflect high levels of hepatic transamination of amino acids in the liver.

  9. Acute β-N-Methylamino-L-alanine Toxicity in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Maitham Ahmed Al-Sammak

    2015-01-01

    Full Text Available The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA is considered to be an “excitotoxin,” and its suggested mechanism of action is killing neurons. Long-term exposure to L-BMAA is believed to lead to neurodegenerative diseases including Parkinson’s and Alzheimer’s diseases and amyotrophic lateral sclerosis (Lou Gehrig’s disease. Objectives of this study were to determine the presumptive median lethal dose (LD50, the Lowest-Observed-Adverse-Effect Level (LOAEL, and histopathologic lesions caused by the naturally occurring BMAA isomer, L-BMAA, in mice. Seventy NIH Swiss Outbred mice (35 male and 35 female were used. Treatment group mice were injected intraperitoneally with 0.03, 0.3, 1, 2, and 3 mg/g body weight L-BMAA, respectively, and control mice were sham-injected. The presumptive LD50 of L-BMAA was 3 mg/g BW and the LOAEL was 2 mg/g BW. There were no histopathologic lesions in brain, liver, heart, kidney, lung, or spleen in any of the mice during the 14-day study. L-BMAA was detected in brains and livers in all of treated mice but not in control mice. Males injected with 0.03 mg/g BW, 0.3 mg/g BW, and 3.0 mg/g BW L-BMAA showed consistently higher concentrations (P < 0.01 in brain and liver samples as compared to females in those respective groups.

  10. Inhibition of glutamine synthesis induces glutamate dehydrogenase-dependent ammonia fixation into alanine in co-cultures of astrocytes and neurons

    DEFF Research Database (Denmark)

    Dadsetan, Sherry; Bak, Lasse Kristoffer; Sørensen, Michael

    2011-01-01

    It has been previously demonstrated that ammonia exposure of neurons and astrocytes in co-culture leads to net synthesis not only of glutamine but also of alanine. The latter process involves the concerted action of glutamate dehydrogenase (GDH) and alanine aminotransferase (ALAT). In the present...... study it was investigated if the glutamine synthetase (GS) inhibitor methionine sulfoximine (MSO) would enhance alanine synthesis by blocking the GS-dependent ammonia scavenging process. Hence, co-cultures of neurons and astrocytes were incubated for 2.5h with [U-(13)C]glucose to monitor de novo...... synthesis of alanine and glutamine in the absence and presence of 5.0 mM NH(4)Cl and 10 mM MSO. Ammonia exposure led to increased incorporation of label but not to a significant increase in the amount of these amino acids. However, in the presence of MSO, glutamine synthesis was blocked and synthesis...

  11. Expression of the alaE gene is positively regulated by the global regulator Lrp in response to intracellular accumulation of l-alanine in Escherichia coli.

    Science.gov (United States)

    Ihara, Kohei; Sato, Kazuki; Hori, Hatsuhiro; Makino, Yumiko; Shigenobu, Shuji; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2017-04-01

    The alaE gene in Escherichia coli encodes an l-alanine exporter that catalyzes the active export of l-alanine using proton electrochemical potential. In our previous study, alaE expression was shown to increase in the presence of l-alanyl-l-alanine (Ala-Ala). In this study, the global regulator leucine-responsive regulatory protein (Lrp) was identified as an activator of the alaE gene. A promoter less β-galactosidase gene was fused to an alaE upstream region (240 nucleotides). Cells that were lacZ-deficient and harbored this reporter plasmid showed significant induction of β-galactosidase activity (approximately 17-fold) in the presence of 6 mM l-alanine, l-leucine, and Ala-Ala. However, a reporter plasmid possessing a smaller alaE upstream region (180 nucleotides) yielded transformants with strikingly low enzyme activity under the same conditions. In contrast, lrp-deficient cells showed almost no β-galactosidase induction, indicating that Lrp positively regulates alaE expression. We next performed an electrophoretic mobility shift assay (EMSA) and a DNase I footprinting assay using purified hexahistidine-tagged Lrp (Lrp-His). Consequently, we found that Lrp-His binds to the alaE upstream region spanning nucleotide -161 to -83 with a physiologically relevant affinity (apparent KD, 288.7 ± 83.8 nM). Furthermore, the binding affinity of Lrp-His toward its cis-element was increased by l-alanine and l-leucine, but not by Ala-Ala and d-alanine. Based on these results, we concluded that the gene expression of the alaE is regulated by Lrp in response to intracellular levels of l-alanine, which eventually leads to intracellular homeostasis of l-alanine concentrations.

  12. Crystal Engineering of l-Alanine with l-Leucine Additive using Metal-Assisted and Microwave-Accelerated Evaporative Crystallization

    OpenAIRE

    Mojibola, Adeolu; Dongmo-Momo, Gilles; Mohammed, Muzaffer; Aslan, Kadir

    2014-01-01

    In this work, we demonstrated that the change in the morphology of l-alanine crystals can be controlled with the addition of l-leucine using the metal-assisted and microwave accelerated evaporative crystallization (MA-MAEC) technique. Crystallization experiments, where an increasing stoichiometric amount of l-leucine is added to initial l-alanine solutions, were carried out on circular poly(methyl methacrylate) (PMMA) disks modified with a 21-well capacity silicon isolator and silver nanopart...

  13. A theoretical study of the XP and NEXAFS spectra of alanine: gas phase molecule, crystal, and adsorbate at the ZnO(10 ̅10) surface.

    Science.gov (United States)

    Gao, You Kun; Traeger, Franziska; Kotsis, Konstantinos; Staemmler, Volker

    2011-06-14

    The adsorption of alanine on the mixed-terminated ZnO(10 ̅10) surface is studied by means of quantum-chemical ab initio calculations. Using a finite cluster model and the adsorption geometry as obtained both by periodic CPMD and embedded cluster calculations, the C1s, N1s and O1s X-ray photoelectron spectra (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectra are calculated for single alanine molecules on ZnO(10 ̅10). These spectra are compared with the spectra calculated for alanine in the gas phase and in its crystalline form and with experimental XPS and NEXAFS data for the isolated alanine molecule and for alanine adsorbed on ZnO(10 ̅10) at multilayer and monolayer coverage. The excellent agreement between the experimental and calculated XP and NEXAFS spectra confirms the calculated adsorption geometry: A single alanine molecule is bound to ZnO(10 ̅10) in a dissociated bidentate form with the two O atoms of the acid group bound to two Zn atoms of the surface and the proton transferred to one O atom of the surface. Other possible structures, such as adsorption of alanine in one of its neutral or zwitterionic forms in which the proton of the -COOH group remains at this group or is transferred to the amino group, can be excluded since they would give rise to quite different XP spectra. In the multilayer coverage regime, on the other hand, alanine is in its crystalline form as is also shown by the analysis of the XP spectra.

  14. Β-alanine and l-histidine transport across the inner blood-retinal barrier: potential involvement in L-carnosine supply.

    Science.gov (United States)

    Usui, Takuya; Kubo, Yoshiyuki; Akanuma, Shin-Ichi; Hosoya, Ken-Ichi

    2013-08-01

    The supply of L-carnosine, a bioactive dipeptide of β-alanine and l-histidine, to the retina across the blood-retinal barrier (BRB) was studied. The in vivo and in vitro studies revealed low uptake activities for [(3)H]Gly-Sar, a representative dipeptide, suggesting that l-carnosine transport plays only a minor role at the BRB. The in vivo study using rats showed approximately 18- and 23-fold greater retinal uptake indexes (RUI) for [(3)H]β-alanine and [(3)H]l-histidine compared with that of a paracellular marker, respectively. The RUI of [(3)H]β-alanine was taurine- and γ-aminobutyric acid-sensitive, and the in vitro uptake by TR-iBRB2 cells showed time- concentration- and temperature-dependent [(3)H]β-alanine uptake, suggesting that a carrier-mediated process was involved in β-alanine transport across the inner BRB. [(3)H]β-Alanine uptake was inhibited by taurine and β-guanidinopropionic acid, suggesting that taurine transporter (TAUT/SLC6A6) is responsible for the influx transport of β-alanine across the inner BRB. Regarding l-histidine, the l-leucine-sensitive RUI of [(3)H]l-histidine was identified, and the in vitro [(3)H]l-histidine uptake by TR-iBRB2 cells suggested that a carrier-mediated process was involved in l-histidine transport across the inner BRB. The inhibition profile suggested that L-type amino acid transporter (LAT1/SLC7A5) is responsible for the influx transport of l-histidine across the inner BRB. These results show that the influx transports of β-alanine and l-histidine across the inner BRB is carried out by TAUT and LAT1, respectively, suggesting that the retinal l-carnosine is supplied by enzymatic synthesis from two kinds of amino acids transported across the inner BRB.

  15. Crystal Structure of a Thermostable Alanine Racemase from Thermoanaerobacter tengcongensis MB4 Reveals the Role of Gln360 in Substrate Selection.

    Science.gov (United States)

    Sun, Xiaoliang; He, Guangzheng; Wang, Xiaoyan; Xu, Shujing; Ju, Jiansong; Xu, Xiaoling

    2015-01-01

    Pyridoxal 5'-phosphate (PLP) dependent alanine racemase catalyzes racemization of L-Ala to D-Ala, a key component of the peptidoglycan network in bacterial cell wall. It has been extensively studied as an important antimicrobial drug target due to its restriction in eukaryotes. However, many marketed alanine racemase inhibitors also act on eukaryotic PLP-dependent enzymes and cause side effects. A thermostable alanine racemase (AlrTt) from Thermoanaerobacter tengcongensis MB4 contains an evolutionarily non-conserved residue Gln360 in inner layer of the substrate entryway, which is supposed to be a key determinant in substrate specificity. Here we determined the crystal structure of AlrTt in complex with L-Ala at 2.7 Å resolution, and investigated the role of Gln360 by saturation mutagenesis and kinetic analysis. Compared to typical bacterial alanine racemase, presence of Gln360 and conformational changes of active site residues disrupted the hydrogen bonding interactions necessary for proper PLP immobilization, and decreased both the substrate affinity and turnover number of AlrTt. However, it could be complemented by introduction of hydrophobic amino acids at Gln360, through steric blocking and interactions with a hydrophobic patch near active site pocket. These observations explained the low racemase activity of AlrTt, revealed the essential role of Gln360 in substrate selection, and its preference for hydrophobic amino acids especially Tyr in bacterial alanine racemization. Our work will contribute new insights into the alanine racemization mechanism for antimicrobial drug development.

  16. Crystal Structure of a Thermostable Alanine Racemase from Thermoanaerobacter tengcongensis MB4 Reveals the Role of Gln360 in Substrate Selection.

    Directory of Open Access Journals (Sweden)

    Xiaoliang Sun

    Full Text Available Pyridoxal 5'-phosphate (PLP dependent alanine racemase catalyzes racemization of L-Ala to D-Ala, a key component of the peptidoglycan network in bacterial cell wall. It has been extensively studied as an important antimicrobial drug target due to its restriction in eukaryotes. However, many marketed alanine racemase inhibitors also act on eukaryotic PLP-dependent enzymes and cause side effects. A thermostable alanine racemase (AlrTt from Thermoanaerobacter tengcongensis MB4 contains an evolutionarily non-conserved residue Gln360 in inner layer of the substrate entryway, which is supposed to be a key determinant in substrate specificity. Here we determined the crystal structure of AlrTt in complex with L-Ala at 2.7 Å resolution, and investigated the role of Gln360 by saturation mutagenesis and kinetic analysis. Compared to typical bacterial alanine racemase, presence of Gln360 and conformational changes of active site residues disrupted the hydrogen bonding interactions necessary for proper PLP immobilization, and decreased both the substrate affinity and turnover number of AlrTt. However, it could be complemented by introduction of hydrophobic amino acids at Gln360, through steric blocking and interactions with a hydrophobic patch near active site pocket. These observations explained the low racemase activity of AlrTt, revealed the essential role of Gln360 in substrate selection, and its preference for hydrophobic amino acids especially Tyr in bacterial alanine racemization. Our work will contribute new insights into the alanine racemization mechanism for antimicrobial drug development.

  17. Inhibition of glutamine synthesis induces glutamate dehydrogenase-dependent ammonia fixation into alanine in co-cultures of astrocytes and neurons.

    Science.gov (United States)

    Dadsetan, Sherry; Bak, Lasse K; Sørensen, Michael; Keiding, Susanne; Vilstrup, Hendrik; Ott, Peter; Leke, Renata; Schousboe, Arne; Waagepetersen, Helle S

    2011-09-01

    It has been previously demonstrated that ammonia exposure of neurons and astrocytes in co-culture leads to net synthesis not only of glutamine but also of alanine. The latter process involves the concerted action of glutamate dehydrogenase (GDH) and alanine aminotransferase (ALAT). In the present study it was investigated if the glutamine synthetase (GS) inhibitor methionine sulfoximine (MSO) would enhance alanine synthesis by blocking the GS-dependent ammonia scavenging process. Hence, co-cultures of neurons and astrocytes were incubated for 2.5h with [U-(13)C]glucose to monitor de novo synthesis of alanine and glutamine in the absence and presence of 5.0 mM NH(4)Cl and 10 mM MSO. Ammonia exposure led to increased incorporation of label but not to a significant increase in the amount of these amino acids. However, in the presence of MSO, glutamine synthesis was blocked and synthesis of alanine increased leading to an elevated content intra- as well as extracellularly of this amino acid. Treatment with MSO led to a dramatic decrease in glutamine content and increased the intracellular contents of glutamate and aspartate. The large increase in alanine during exposure to MSO underlines the importance of the GDH and ALAT biosynthetic pathway for ammonia fixation, and it points to the use of a GS inhibitor to ameliorate the brain toxicity and edema induced by hyperammonemia, events likely related to glutamine synthesis.

  18. Dependence of enthalpies of dissolution of {beta}-alanyl-{beta}-alanine on the composition of (water + alcohol) mixtures at 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Valeriy I., E-mail: vis@isc-ras.ru [Laboratory of Thermodynamics of Non-electrolytes Solutions and Biologically Active Substances, Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Street, 153045 Ivanovo (Russian Federation); Badelin, Valentin G. [Laboratory of Thermodynamics of Non-electrolytes Solutions and Biologically Active Substances, Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Street, 153045 Ivanovo (Russian Federation)

    2011-09-20

    Highlights: {center_dot} Enthalpies of dissolution of {beta}-alanyl-{beta}-alanine are measured in aqueous methanol, ethanol, 1-propanol and 2-propanol by calorimetry. {center_dot} Standard values of dissolution and transfer enthalpies of {beta}-alanyl-{beta}-alanine and enthalpy coefficients of pair-wise interactions are calculated. {center_dot} Dependences of the thermodynamic characteristics of dissolution of {beta}-alanyl-{beta}-alanine on the composition of (water + alcohol) mixtures are determined. - Abstract: The dissolution enthalpies of {beta}-alanyl-{beta}-alanine in aqueous methanol, ethanol, 1-propanol and 2-propanol solutions with an alcohol content up to 0.4 mole fractions have been measured calorimetrically at T = 298.15 K. The standard enthalpies of dissolution, {Delta}{sub sol}H{sup o} and transfer, {Delta}{sub tr}H{sup o}, of {beta}-alanyl-{beta}-alanine from water into mixed solvents and the enthalpy coefficients of pair-wise interactions, h{sub xy}, of {beta}-alanyl-{beta}-alanine with alcohol solvent molecules have been calculated. The results are discussed in terms of solute-solute and solute-solvent interactions.

  19. Relationship between alanine aminotransferase levels and metabolic syndrome in nonalcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    Zhou-wen CHEN; Li-ying CHEN; Hong-lei DAI; Jian-hua CHEN; Li-zheng FANG

    2008-01-01

    Objective:To investigate the relationship between alanine aminotransferase (ALT)levels and metabolic syndrome (MS)in nonalcoholic fatty liver disease(NAFLD).Methods:A total of 26527 subjects who received medical health checkup in our hospital from January 2005 to July 2007 were enrolled in the study.The diagnosis of fatty liver was based on ultrasound imaging.MS Was defined according to the criteria of the Adult Treatment Panel Ⅲ.ALT,triglyceride(TG),high density lipoprotein cholesterol(HDL-c),fasting plasma glucose(FPG),height,weight,waist circumference(WC),systolic blood pressure (SBP)and diastolic blood pressure(DBP)were measured in each subject to analyze the relationship between MS and ALT activity.Results:(1)The prevalence of NAFLD in men(30.94%)was significantly higher than that in women(15.65%);(2)The incidence of MS in NAFLD(33.83%)was significantly greater than that in non-NAFLD(10.62%);(3)Of the 6470 subjects with NAFLD,in the age-adjusted partial correlation analysis,there were statistically significant correlations between the ALT levels and most metabolic risk factors in each sex(P<0.01),except that ALT levels had no correlation with HDL-c in women.Moreover,in the multiple stepwise regression analysis,SBP lost its significance,and WC,body mass index(BMI),age,DBP,TG and FPG were independently associated with ALT levels in both sexes (P<0.05).HDL-c remained significant and was independently related to ALT leveis in men;(4)ALT levels were significantly higher in subjects with MS compared to those without MS(P<0.001).Mean ALT levels increased with the number of MS cornponents in each sex (P.<0.05 for trend).Conelusion:We found a strong relationship between ALT leveIs and MS in NAFLD and revealed that the cluster of MS components might be the predictor for ALT elevations.

  20. Irradiation dose control of chicken meat processing with alanine/ESR dosimetric system

    Energy Technology Data Exchange (ETDEWEB)

    Miyagusku, L. [Centro de Tecnologia de Carnes, Instituto de Tecnologia de Alimentos. Av. Brasil, 2880 13074-001 Campinas, SP (Brazil); Chen, F. [Departmento de Fisica e Matematica, FFCLRP - Universidade de Sao Paulo, 14040-901, Ribeirao Preto - SP (Brazil); Kuaye, A. [Departamento de Tecnologia de Alimentos, Universidade de Campinas, Campinas - SP (Brazil); Castilho, C.J.C. [Departamento de Agroindustria, ESALQ, Piracicaba - SP (Brazil); Baffa, O. [Departmento de Fisica e Matematica, FFCLRP - Universidade de Sao Paulo, 14040-901, Ribeirao Preto - SP (Brazil)], E-mail: baffa@ffclrp.usp.br

    2007-07-15

    Irradiation of foodstuff is a well-known food preservation technique. In Brazil spices are already irradiated for sanitary and preservation reasons. Chicken meat is an important commodity; Brazil is the second largest world producer and the largest world exporter. The shelf-life of chicken meat is limited by the presence of micro-organisms and enzyme activity and together with other preservation techniques irradiation seems to be an attractive option. In this study the dose delivered to frozen chicken cuts was measured and compared with the prescribed value. Chicken breast cuts were analyzed for 39 days for their microbiological activity, chemical and organoleptic properties. Cylindrical dosimeters were prepared using the weight composition of 80% of DL-alanine (Sigma Co), used without any further treatment except drying, and 20% of paraffin. The dosimeters having 4.7 mm diameter and 12 mm length were inserted in a build-up cap. Dosimeters were placed inside cardboard boxes containing frozen chicken breast cuts, packed in styrofoam trays wrapped with plastic film. The boxes were irradiated in an industrial {sup 60}Co irradiator (Nordion JS 7500) with a dose rate of 4 kGy/h. First derivative ESR signals were obtained in a VARIAN E-4 spectrometer operating at X-band ({nu}{approx}9GHz) and equipped with a rectangular cavity (TE-102, model E-231). The cavity was constantly purged with dry nitrogen and modulated at 100 KHz with 0.5 mT peak to peak. A calibration curve was made for a few dosimeters from the same batch and used to obtain the dose from the ESR signal intensity. A batch of six boxes was irradiated at each experiment with prescribed doses of 1.5, 3.0 and 7.0 kGy. Considering that the larger the radiation dose the greater is the probability of finding a product with its sensorial characteristics altered (odor of burned meat), we conclude that a dose of 3 kGy would be more adequate, taking into account the microbiological and sensorial aspects.

  1. Topology of AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, determined by site-directed fluorescence labeling.

    Science.gov (United States)

    Nanatani, Kei; Fujiki, Takashi; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko; Umeyama, Hideaki; Ye, Liwen; Wang, Xicheng; Nakajima, Tasuku; Uchida, Takafumi; Maloney, Peter C; Abe, Keietsu

    2007-10-01

    The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of L-aspartate (Asp) with release of L-alanine (Ala) and CO(2). The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an L-aspartate-beta-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter classification no. 2.A.81) of transporters. In this study, we were interested in the relationship between the structure and function of AspT and thus analyzed the topology by means of the substituted-cysteine accessibility method using the impermeant, fluorescent, thiol-specific probe Oregon Green 488 maleimide (OGM) and the impermeant, nonfluorescent, thiol-specific probe [2-(trimethylammonium)ethyl]methanethiosulfonate bromide. We generated 23 single-cysteine variants from a six-histidine-tagged cysteineless AspT template. A cysteine position was assigned an external location if the corresponding single-cysteine variant reacted with OGM added to intact cells, and a position was assigned an internal location if OGM labeling required cell lysis. The topology analyses revealed that AspT has a unique topology; the protein has 10 transmembrane helices (TMs), a large hydrophilic cytoplasmic loop (about 180 amino acids) between TM5 and TM6, N and C termini that face the periplasm, and a positively charged residue (arginine 76) within TM3. Moreover, the three-dimensional structure constructed by means of the full automatic modeling system indicates that the large hydrophilic cytoplasmic loop of AspT possesses a TrkA_C domain and a TrkA_C-like domain and that the three-dimensional structures of these domains are similar to each other even though their amino acid sequences show low similarity.

  2. Characterization of serine hydroxymethyltransferase GlyA as a potential source of D-alanine in Chlamydia pneumoniae

    Directory of Open Access Journals (Sweden)

    Stefania eDe Benedetti

    2014-02-01

    Full Text Available For intracellular Chlamydiaceae, there is no need to withstand osmotic challenges, and a functional cell wall has not been detected in these pathogens so far. Nevertheless, penicillin inhibits cell division in Chlamydiaceae resulting in enlarged aberrant bodies, a phenomenon known as chlamydial anomaly.D-alanine is a unique and essential component in the biosynthesis of bacterial cell walls. In free-living bacteria like Escherichia coli, penicillin-binding proteins such as monofunctional transpeptidases PBP2 and PBP3, the putative targets of penicillin in Chlamydiaceae, cross-link adjacent peptidoglycan strands via meso-diaminopimelic acid and D-Ala-D-Ala moieties of pentapeptide side chains. In the absence of genes coding for alanine racemase Alr and DadX homologs, the source of D-Ala and thus the presence of substrates for PBP2 and PBP3 activity in Chlamydiaceae has puzzled researchers for years. Interestingly, Chlamydiaceae genomes encode GlyA, a serine hydroxymethyltransferase that has been shown to exhibit slow racemization of D- and L- alanine as a side reaction in E. coli. We show that GlyA from Chlamydia pneumoniae can serve as a source of D-Ala. GlyA partially reversed the D-Ala auxotrophic phenotype of an E. coli racemase double mutant. Moreover, purified chlamydial GlyA had racemase activity on L-Ala in vitro and was inhibited by D-cycloserine, identifying GlyA, besides D-Ala ligase MurC/Ddl, as an additional target of this competitive inhibitor in Chlamydiaceae. Proof of D-Ala biosynthesis in Chlamydiaceae helps to clarify the structure of cell wall precursor lipid II and the role of chlamydial penicillin-binding proteins in the development of non-dividing aberrant chlamydial bodies and persistence in the presence of penicillin.

  3. Growth, spectroscopic, dielectric and nonlinear optical studies of semi organic nonlinear optical crystal - L-Alanine lithium chloride

    Science.gov (United States)

    Hanumantharao, Redrothu; Kalainathan, S.

    2012-02-01

    A new and efficient semi organic nonlinear optical crystal (NLO) from the amino acid family L-alanine lithium chloride (LAL) has been grown by slow evaporation technique from aqueous solution. The functional groups were identified from NMR spectral studies. Mass spectral analysis shows the molecular ion mass. Dielectric studies has been done for the grown crystal and relative SHG efficiency is measured by Kurtz and Perry method and found to about 0.43 times that of standard potassium dihydrogen phosphate (KDP) crystals. The compound crystallized in non-centrosymmetric space group Pna21. The results have been discussed in detail.

  4. Growth, spectroscopic, dielectric and nonlinear optical studies of semi organic nonlinear optical crystal--L-alanine lithium chloride.

    Science.gov (United States)

    Hanumantharao, Redrothu; Kalainathan, S

    2012-02-01

    A new and efficient semi organic nonlinear optical crystal (NLO) from the amino acid family L-alanine lithium chloride (LAL) has been grown by slow evaporation technique from aqueous solution. The functional groups were identified from NMR spectral studies. Mass spectral analysis shows the molecular ion mass. Dielectric studies has been done for the grown crystal and relative SHG efficiency is measured by Kurtz and Perry method and found to about 0.43 times that of standard potassium dihydrogen phosphate (KDP) crystals. The compound crystallized in non-centrosymmetric space group Pna21. The results have been discussed in detail.

  5. N-[(2S-4-Chloro-2-(l-menthyloxy-5-oxo-2,5-dihydro-3-furyl]-l-alanine

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2009-05-01

    Full Text Available The title compound, C17H26ClNO5, was prepared via a tandem asymmetric Michael addition–elimination reaction of (5S-3,4-dichloro-5-(l-menthyloxyfuran-2(5H-one and l-alanine in the presence of potassium hydroxide. The five-membered furanone ring is approximately planar while the six-membered menthyloxy ring adopts a chair conformation. The crystal packing is stabilized by intermolecular O—H...O and N—H...O hydrogen bonds.

  6. Synthesis, growth and optical properties of an efficient nonlinear optical single crystal: L-alanine DL-malic acid

    Science.gov (United States)

    Kirubagaran, R.; Madhavan, J.

    2015-02-01

    Single crystals of L-alanine DL-malic acid (LADLMA) have been grown from aqueous solution by slow-cooling technique. Powder X-ray diffraction studies reveal the structure of the crystal to be orthorhombic. The nonlinear optical conversion efficiency test was carried out for the grown crystals using the Kurtz powder technique. The third order nonlinear refractive index and the nonlinear absorption coefficient where evaluated by Z-scan measurements. As the material have a negative refractive index it could be used in the protection of optical sensors such as night vision devices.

  7. Gamma/neutron dose evaluation using Fricke gel and alanine gel dosimeters to be applied in boron neutron capture therapy.

    Science.gov (United States)

    Mangueira, T F; Silva, C F; Coelho, P R P; Campos, L L

    2010-01-01

    Gel dosimetry has been studied mainly for medical applications. The radiation induced ferric ions concentration can be measured by different techniques to be related with the absorbed dose. Aiming to assess gamma/thermal neutrons dose from research reactors, Fricke gel and alanine gel solutions produced at IPEN using 300 bloom gelatin were mixed with Na(2)B(4)O(7) salt, and the mixtures were irradiated at the beam hole #3 of the IEA-R1 research reactor, (BH#3) adapted to BNCT studies, and the dose-response was evaluated using spectrophotometry technique.

  8. Dose Determination using alanine detectors in a Mixed Neutron and Gamma Field for Boron Neutron Capture Therapy of Liver Malignancies

    DEFF Research Database (Denmark)

    Schmitz, T.; Blaickner, M.; Ziegner, M.

    2011-01-01

    be suitable for measurements in mixed neutron and gamma fields. Materials and Methods Two experiments have been carried out in the thermal column of the TRIGA Mark II reactor at the University of Mainz. Alanine dosimeters have been irradiated in a phantom and in liver tissue. Results For the interpretation......, in combination with flux measurements and Monte Carlo calculations with FLUKA, suggest that it is possible to establish a system for monitoring the dose in a mixed neutron and gamma field for BNCT and other applications in radiotherapy....

  9. Hamiltonian replica-permutation method and its applications to an alanine dipeptide and amyloid-β(29-42) peptides.

    Science.gov (United States)

    Itoh, Satoru G; Okumura, Hisashi

    2013-11-05

    We propose the Hamiltonian replica-permutation method (RPM) (or multidimensional RPM) for molecular dynamics and Monte Carlo simulations, in which parameters in the Hamiltonian are permuted among more than two replicas with the Suwa-Todo algorithm. We apply the Coulomb RPM, which is one of realization of the Hamiltonian RPM, to an alanine dipeptide and to two amyloid-β(29-42) molecules. The Hamiltonian RPM realizes more efficient sampling than the Hamiltonian replica-exchange method. We illustrate the protein misfolding funnel of amyloid-β(29-42) and reveal its dimerization pathways.

  10. Photophysical properties of 3-[2-(N-phenylcarbazolyl)benzoxazol-5-yl]alanine derivatives--experimental and theoretical studies.

    Science.gov (United States)

    Guzow, Katarzyna; Czerwińska, Marlena; Ceszlak, Agnieszka; Kozarzewska, Marta; Szabelski, Mariusz; Czaplewski, Cezary; Łukaszewicz, Anna; Kubicki, Aleksander A; Wiczk, Wiesław

    2013-02-01

    Solvatochromic probes are often used in biophysical studies to obtain information about polarity of the microenvironment. As there is not much natural fluorophores with such properties, there is still need for new synthetic compounds such as 3-(2-benzoxazol-5-yl)alanine derivatives. Among this group of non-proteinogenic fluorescent amino acids especially interesting are 3-[2-(4-aminophenyl)benzoxazol-5-yl]alanine derivatives whose solvatochromism depends on the substituents on the nitrogen atom, as revealed by our recent studies. To expand them we synthesized two new derivatives with an N-phenylcarbazole moiety in position 2 of the benzoxazole ring and studied their photophysical properties in solvents of different polarity and ability to form hydrogen bonds using absorption and steady-state and time-resolved fluorescence spectroscopy. Applying single parameter and multi-linear correlations with different solvent parameters, the excited state dipole moments were determined as well as the influence of solvent parameters on each photophysical property was estimated. Moreover, the geometry of compounds and vertical absorption transition were theoretically calculated (DFT and TD DFT methods). It was found that the place of substitution of the N-phenylcarbazole part by the benzoxazole unit determines the character of the electron transition (π-π* or ICT) and thereby the spectral and photophysical properties of the compounds studied.

  11. Response of L-alanine and 2-methylalanine minidosimeters for K-Band (24 GHz) EPR dosimetry

    Science.gov (United States)

    Chen, F.; Graeff, C. F. O.; Baffa, O.

    2007-11-01

    Minidosimeters of L-alanine and 2-methylalanine (2MA) were prepared and tested as potential candidates for small radiation field dosimetry. To quantify the free radicals created by radiation a K-Band (24 GHz) EPR spectrometer was used. X-rays provided by a 6 MV clinical linear accelerator were used to irradiate the minidosimeters in the dose range of 0.5-30 Gy. The dose-response curves for both radiation sensitive materials displayed a good linear behavior in the dose range indicated with 2MA being more radiation sensitive than L-alanine. Moreover, 2MA showed a smaller LLD (lower limit detection) value. The proposed system minidosimeter/K-Band spectrometer was able to detect 10 Gy EPR spectra with good signal-to-noise ratio (S/N). The overall uncertainty indicates that this system shows a good performance for the detection of dose values of 20 Gy and above, which are dose values typically used in radiosurgery treatments.

  12. Enantiomeric pair of copper(II) polypyridyl-alanine complexes: Effect of chirality on their interaction with biomolecules.

    Science.gov (United States)

    Ng, Chew Hee; Chan, Cheang Wei; Lai, Jing Wei; Ooi, Ing Hong; Chong, Kok Vei; Maah, Mohd Jamil; Seng, Hoi Ling

    2016-07-01

    Like chiral organic drugs, the chemical and biological properties of metal complexes can be dependent on chirality. Two pairs of [Cu(phen)(ala)(H2O)]X·xH2O (phen=1.10-phenanthroline: X=NO3(-); ala: l-alanine (l-ala), 1 and d-alanine (d-ala) 2; and (X=Cl(-); ala: l-ala, 3 and d-ala, 4) complex salts (x=number of lattice water molecules) have been synthesized and characterized. The crystal structure of 3 has been determined. The same pair of enantiomeric species, viz. [Cu(phen)(l-ala)(H2O)](+) and [Cu(phen)(d-ala)(H2O)](+), have been identified to be present in the aqueous solutions of both 1 and 3, and in those of both 2 and 4 respectively. Both 3 and 4 bind more strongly to ds(AT)6 than ds(CG)6. There is no or insignificant effect of the chirality of 3 and 4 on the production of hydroxyl radicals, binding to deoxyribonucleic acid from calf thymus (CT-DNA), ds(CG)6, G-quadruplex and 17-base pair duplex, and inhibition of both topoisomerase I and proteasome. Among the three proteasome proteolytic sites, the trypsin-like site is inhibited most strongly by these complexes. However, the chirality of 3 and 4 does affect the number of restriction enzymes inhibited, and their binding constants towards ds(AT)6 and serum albumin.

  13. Solvation and hydrogen bonding in alanine- and glycine-containing dipeptides probed using solution- and solid-state NMR spectroscopy.

    Science.gov (United States)

    Bhate, Manasi P; Woodard, Jaie C; Mehta, Manish A

    2009-07-15

    The NMR chemical shift is a sensitive reporter of peptide secondary structure and its solvation environment, and it is potentially rich with information about both backbone dihedral angles and hydrogen bonding. We report results from solution- and solid-state (13)C and (15)N NMR studies of four zwitterionic model dipeptides, L-alanyl-L-alanine, L-alanyl-glycine, glycyl-L-alanine, and glycyl-glycine, in which we attempt to isolate structural and environmental contributions to the chemical shift. We have mapped hydrogen-bonding patterns in the crystalline states of these dipeptides using the published crystal structures and correlated them with (13)C and (15)N magic angle spinning chemical shift data. To aid in the interpretation of the solvated chemical shifts, we performed ab initio quantum chemical calculations to determine the low-energy conformers and their chemical shifts. Assuming low energy barriers to interconversion between thermally accessible conformers, we compare the Boltzmann-averaged chemical shifts with the experimentally determined solvated-state shifts. The results allow us to correlate the observed differences in chemical shifts between the crystalline and solvated states to changes in conformation and hydrogen bonding that occur upon solvation.

  14. Synthesis, crystal growth and spectroscopic investigation of novel metal organic crystal: β-Alanine cadmium bromide monohydrate (β-ACBM)

    Science.gov (United States)

    Renugadevi, R.; Kesavasamy, R.

    2014-07-01

    β-Alanine cadmium bromide monohydrate (β-ACBM), a new metal organic crystal has been grown from aqueous solution by slow evaporation technique. The grown crystals have been subjected to single crystal X-ray diffraction analysis to determine the crystal structure. The β-ACBM crystallized in monoclinic system with space group P21/c. The presence of protons and carbons in the β-alanine cadmium bromide monohydrate was confirmed by 1H and 13C nuclear magnetic resonance spectral analysis. The mode of vibration of different molecular groups present in β-ACBM was identified by FT-IR spectral analysis. Transparency of crystals in UV-Vis-NIR region has also been studied. The thermal characteristics of as-grown crystals were analyzed using thermo gravimetric and differential thermal analyses. The magnetic property of the grown crystal was investigated using Vibrating Sample Magnetometer (VSM) at ambient temperature. The mechanical stability of β-ACBM was evaluated by Vickers microhardness measurement.

  15. Domain Motions and Functionally-Key Residues of l-Alanine Dehydrogenase Revealed by an Elastic Network Model

    Directory of Open Access Journals (Sweden)

    Xing-Yuan Li

    2015-12-01

    Full Text Available Mycobacterium tuberculosis l-alanine dehydrogenase (l-MtAlaDH plays an important role in catalyzing l-alanine to ammonia and pyruvate, which has been considered to be a potential target for tuberculosis treatment. In the present work, the functional domain motions encoded in the structure of l-MtAlaDH were investigated by using the Gaussian network model (GNM and the anisotropy network model (ANM. The slowest modes for the open-apo and closed-holo structures of the enzyme show that the domain motions have a common hinge axis centered in residues Met133 and Met301. Accompanying the conformational transition, both the 1,4-dihydronicotinamide adenine dinucleotide (NAD-binding domain (NBD and the substrate-binding domain (SBD move in a highly coupled way. The first three slowest modes of ANM exhibit the open-closed, rotation and twist motions of l-MtAlaDH, respectively. The calculation of the fast modes reveals the residues responsible for the stability of the protein, and some of them are involved in the interaction with the ligand. Then, the functionally-important residues relevant to the binding of the ligand were identified by using a thermodynamic method. Our computational results are consistent with the experimental data, which will help us to understand the physical mechanism for the function of l-MtAlaDH.

  16. ABS-Scan: In silico alanine scanning mutagenesis for binding site residues in protein-ligand complex.

    Science.gov (United States)

    Anand, Praveen; Nagarajan, Deepesh; Mukherjee, Sumanta; Chandra, Nagasuma

    2014-01-01

    Most physiological processes in living systems are fundamentally regulated by protein-ligand interactions. Understanding the process of ligand recognition by proteins is a vital activity in molecular biology and biochemistry. It is well known that the residues present at the binding site of the protein form pockets that provide a conducive environment for recognition of specific ligands. In many cases, the boundaries of these sites are not well defined. Here, we provide a web-server to systematically evaluate important residues in the binding site of the protein that contribute towards the ligand recognition through in silico alanine-scanning mutagenesis experiments. Each of the residues present at the binding site is computationally mutated to alanine. The ligand interaction energy is computed for each mutant and the corresponding ΔΔG values are calculated by comparing it to the wild type protein, thus evaluating individual residue contributions towards ligand interaction. The server will thus provide a ranked list of residues to the user in order to obtain loss-of-function mutations. This web-tool can be freely accessed through the following address: http://proline.biochem.iisc.ernet.in/abscan/.

  17. Deracemization of Racemic Amino Acids Using (R)- and (S)-Alanine Racemase Chiral Analogues as Chiral Converters

    Energy Technology Data Exchange (ETDEWEB)

    Paik, Manjeong [Sunchon National Univ., Suncheon (Korea, Republic of); Jeon, So Hee; Lee, Wonjae [Chosun Univ., Gwangju (Korea, Republic of); Kang, Jong Seong [Chungnam National Univ., Daejeon (Korea, Republic of); Kim, Kwan Mook [Ewha Womans Univ., Seoul (Korea, Republic of)

    2014-07-15

    Our findings show that both (R)- and (S)-ARCA can be practical chiral converters for L- and D-amino acids, respectively, in the deracemization of racemic amino acids. The overall stereoselectivities of both chiral converters are generally greater than 90%. In addition, we developed chiral and achiral HPLC methods for the analysis of stereoselectivity determination. This chromatographic method proved much more accurate and convenient at determining both enantiomer and diastereomer purity than did those previously reported. Deracemization is the stereoselective process of converting a racemate into either a pure enantiomer or a mixture in which one enantiomer is present in excess.1 Previous studies have shown that (S)-alanine racemase chiral analogue (ARCA) [(S)-2-hydroxy-2'-(3-phenyluryl-benzyl)-1,1'-binaphthyl-3-carboxaldehyde], developed as a chiral convertor compound that imitates the function of alanine racemase, plays an essential role in the stereoselective conversion of amino acid. Since (S)-ARCA showed a higher stability with D-amino acids than with L-amino acids, several L-amino acids were preferentially converted to D-amino acids via (S)-ARCA/D-amino acid imine diastereomer formation. For the deracemization process undertaken in this study, we utilized both (R)-ARCA and (S)-ARCA as chiral converters, which were expected to generate L- and D-amino acids, respectively, from the starting racemic mixtures.

  18. A comparative study of MP2, B3LYP, RHF and SCC-DFTB force fields in predicting the vibrational spectra of N-acetyl-L-alanine-N'-methyl amide: VA and VCD spectra

    DEFF Research Database (Denmark)

    Bohr, Henrik; Jalkanen, Karl J.; Elstner, M.;

    1999-01-01

    spectroscopic probes which can be used to identify specific secondary structural elements in peptides, polypeptides and proteins. In this work we present our comparative analysis of the MP2, B3LYP, RHF and SCC-DFTB quantum force fields to predict the vibrational absorption (VA) and vibrational circular......Recently we have looked for spectroscopic probes for secondary structural elements in the vibrational spectra of N-acetyl-L-alanine N'-methyl amide (NALANMA), L-alanine (LA), N-acetyl-L-alanyl-L-alanine N'-methyl amide (NALALANMA) and L-alanyl-L-alanine (LALA). Our goal has been to identify...

  19. Tissue interfaces dosimetry in small field radiotherapy with alanine/EPR mini dosimeters and Monte Carlo-Penelope simulation

    Energy Technology Data Exchange (ETDEWEB)

    Vega R, J. L.; Nicolucci, P.; Baffa, O. [Universidade de Sao Paulo, FFCLRP, Departamento de Fisica, Av. Bandeirantes 3900, Bairro Monte Alegre, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Chen, F. [Universidade Federale do ABC, CCNH, Rua Santa Adelia 166, Bangu, 09210-170 Santo Andre, Sao Paulo (Brazil); Apaza V, D. G., E-mail: josevegaramirez@yahoo.es [Universidad Nacional de San Agustin de Arequipa, Departamento de Fisica, Arequipa (Peru)

    2014-08-15

    The dosimetry system based on alanine mini dosimeters plus K-Band EPR spectrometer was tested in the tissue-interface dosimetry through the percentage depth-dose (Pdd) determination for 3 x 3 cm{sup 2} and 1 x 1 cm{sup 2} radiation fields sizes. The alanine mini dosimeters were produced by mechanical pressure from a mixture of 95% L-alanine and 5% polyvinyl alcohol (Pva) acting as binder. Nominal dimensions of these mini dosimeters were 1 mm diameter and 3 mm length as well as 3 - 4 mg mass. The EPR spectra of the mini dosimeters were registered using a K-Band (24 GHz) EPR spectrometer. The mini dosimeters were placed in a nonhomogeneous phantom and irradiated with 20 Gy in a 6 MV PRIMUS Siemens linear accelerator, with a source-to-surface distance of 100 cm using the small fields previously mentioned. The cylindrical non-homogeneous phantom was comprised of several disk-shaped plates of different materials in the sequence acrylic-bone cork-bone-acrylic, with dimensions 15 cm diameter and 1 cm thick. The plates were placed in descending order, starting from top with four acrylic plates followed by two bone plates plus eight cork plates plus two bone plates and finally, four acrylic plates (4-2-8-2-4). Pdd curves from the treatment planning system and from Monte Carlo simulation with Penelope code were determined. Mini dosimeters Pdd results show good agreement with Penelope, better than 95% for the cork homogeneous region and 97.7% in the bone heterogeneous region. In the first interface region, between acrylic and bone, it can see a dose increment of 0.6% for mini dosimeters compared to Penelope. At the second interface, between bone and cork, there is 9.1% of dose increment for mini dosimeter relative to Penelope. For the third (cork-bone) and fourth (bone-acrylic) interfaces, the dose increment for mini dosimeters compared to Penelope was 4.1% both. (Author)

  20. Alanine-EPR dosimetry for measurements of ionizing radiation absorbed doses in the range 0.5-10 kGy

    CERN Document Server

    Peimel-Stuglik, Z

    2001-01-01

    The usefulness of two, easy accessible alanine dosimeters (ALANPOL from IChTJ and foil dosimeter from Gamma Service, Radeberg, Germany) to radiation dose measurement in the range of 0.5-10 kGy, were investigated. In both cases, the result of the test was positive. The foil dosemeter from Gamma Service is recommended for dose distribution measurements in fantoms or products, ALANPOL - for routine measurements. The EPR-alanine method based on the described dosimeters can be successfully used, among others, in the technology of radiation protection of food.

  1. Domain structure and properties of triglycine sulfate crystals with profile D, L-α- and L-α-alanine-doped layers

    Science.gov (United States)

    Tolstikhina, A. L.; Belugina, N. V.; Gainutdinov, R. V.; Ivanova, E. S.; Lashkova, A. K.; Shut, V. N.; Kashevich, I. F.; Mozzharov, S. E.

    2016-11-01

    A complex investigation of the domain structure and dielectric properties of triglycine sulfate (TGS) crystals containing profile layers doped with D, L-α-alanine (DLATGS) and L-α-alanine (LATGS) impurities is carried out. The images of the DLATGS and LATGS layers and ferroelectric domains are obtained by piezoelectric force microscopy; the parameters of the domain structure and the degree of unipolarity are determined. It is established that DLATGS layers are multidomain and LATGS stripes are mainly single-domain. The experimental data on the macroscopic dielectric properties of the crystals are compared with the results of a microscopic analysis of the domain structure.

  2. Betaine: New Oxidant in the Stickland Reaction and Methanogenesis from Betaine and l-Alanine by a Clostridium sporogenes-Methanosarcina barkeri Coculture

    OpenAIRE

    Naumann, Evelyn; Hippe, Hans; Gottschalk, Gerhard

    1983-01-01

    Growing and nongrowing cells of Clostridium sporogenes fermented betaine with l-alanine, l-valine, l-leucine, and l-isoleucine as electron donors in a coupled oxidation-reduction reaction (Stickland reaction). For the substrate combinations betaine and l-alanine and betaine and l-valine balance studies were performed; the results were in agreement with the following fermentation equation: 1 R- CH(NH2)-COOH + 2 betaine + 2 H2O → 1 R-COOH + 1 CO2 + 1 NH3 + 2 trimethylamine + 2 acetate. Growth a...

  3. Averaged electron collision cross sections for thermal mixtures of $\\alpha$-Alanine conformers in the gas phase

    CERN Document Server

    Fujimoto, Milton M; Tennyson, Jonathan

    2016-01-01

    A theoretical study of elastic electron collisions with 9 conformers of the gas-phase amino acid $\\alpha$-alanine (CH$_3$CH(NH$_2$)COOH) is performed. The eigenphase sums, resonance features, differential and integral cross sections are computed for each individual conformer. Resonance positions for the low-energy $\\pi^*$ shape resonance are found to vary from 2.6 eV to 3.1 eV and the resonance widths from 0.3 eV to 0.5 eV. Averaged cross sections for thermal mixtures of the 9 conformers are presented. Both theoretical and experimental population ratios are considered. Thermally-averaged cross sections obtained using the best theoretical estimates give reasonable agreement with the observed thermal cross sections. Excited conformers IIA and IIB make a large contribution to this average due to their large permanent dipole moments.

  4. X-ray structural analysis of the photolysis products of glycinate and. beta. -alaninate cobalt(III) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Polynova, T.N.; Chuklanova, E.B.; Kramarenko, F.G.; Porai-Koshits, M.A.; Poznyak, A.L.; Pavlovskii, V.I.; Stel-mashok, V.E.

    1987-04-01

    The authors were recently able to isolate in crystalline form the intermediate products in the photolysis of various mixed glycinate Co(III) complexes, and have also lately isolated the intermediate products of the photolysis of analogous complexes containing longer chain anions, such as of amino-3-propionate and amino-4-butyrate. In order to determine the structures of these products it is necessary to analyze them by x-ray crystallography. In this paper they describe the structures of two compounds which contain cationic complexes isolated from UV irradiation (lambda = 254 nm) of aqueous solutions of (Coen/sub 2/(..beta..-ala))/sup 2 +/ and Codipy/sub 2/(gly))/sup 2 +/, respectively (en = ethylenediamine, dipy = 2,2'-dipyridine, gly = glycinate, and ..beta..-ala = alaninate). In both cases, the coordinates of all of the atoms, including hydrogen atoms, were determined.

  5. [Arginine, octopine and alanine during the tonic and phasic contraction of the anterior byssus retractor muscle of Mytilus edulis].

    Science.gov (United States)

    Devroede, J; Baguet, F

    1982-01-01

    In this work, we compare the energetic cost of tonic and phasic contractions of the anterior byssus retractor muscle (ABRM) of Mytilus edulis. The muscle is stimulated by six different stimulation methods and frozen when it reaches its maximal isometric response. Tonic and phasic tension developments are of similar amplitude and cause a hydrolysis of the same amount of phosphoarginine corresponding to 0.64 mumole per g of muscle and per kg/cm2 of tension (Fig. 1). As compared with the results reported in the literature the values are in good agreement with the biochemical and respiratory measurements, but they are 10 times higher than those measured by the heat production. The total arginine, octopine and alanine contents of those muscles frozen at the peak of contraction are not significantly different from those measured on the resting muscle. On the other hand, these metabolites may show seasonal variations.

  6. X-ray diffraction and Raman study of DL-alanine at high pressure: revision of phase transitions.

    Science.gov (United States)

    Tumanov, Nikolay A; Boldyreva, Elena V

    2012-08-01

    The effect of pressure on DL-alanine has been studied by X-ray powder diffraction (up to 8.3 GPa), single-crystal X-ray diffraction and Raman spectroscopy (up to ~6 GPa). No structural phase transitions have been observed. At ~1.5-2 GPa, cell parameters b and c become accidentally equal to each other, but the space-group symmetry does not change. There is no phase transition between 1.7 and 2.3 GPa, contrary to what has been reported earlier [Belo et al. (2010). Vibr. Spectrosc. 54, 107-111]. The presence of the second phase transition, which was claimed to appear within the pressure range from 6.0 to 7.3 GPa (Belo et al., 2010), is also argued. The changes in the Raman spectra have been shown to be continuous in all the pressure ranges studied.

  7. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes

    DEFF Research Database (Denmark)

    Vozarova, Barbora; Stefan, Norbert; Lindsay, Robert S

    2002-01-01

    with prospective changes in liver or whole-body insulin sensitivity and/or insulin secretion and whether these elevated enzymes predict the development of type 2 diabetes in Pima Indians. We measured ALT, AST, and GGT in 451 nondiabetic (75-g oral glucose tolerance test) Pima Indians (aged 30 +/- 6 years, body fat......It has been proposed that liver dysfunction may contribute to the development of type 2 diabetes. The aim of the present study was to examine whether elevated hepatic enzymes (alanine aminotransferase [ALT], aspartate aminotransferase [AST], or gamma -glutamyltranspeptidase [GGT]) are associated...... were available. At baseline, ALT, AST, and GGT were related to percent body fat (r = 0.16, 0.17, and 0.11, respectively), M (r = -0.32, - 0.28, and -0.24), and HGO (r = 0.27, 0.12, and 0.14; all P fat, M, and AIR, higher ALT...

  8. β-methylamino-L-alanine (BMAA) is not found in the brains of patients with confirmed Alzheimer’s disease

    Science.gov (United States)

    Meneely, Julie P.; Chevallier, Olivier P.; Graham, Stewart; Greer, Brett; Green, Brian D.; Elliott, Christopher T.

    2016-11-01

    Controversy surrounds the proposed hypothesis that exposure to β-methylamino-L-alanine (BMAA) could play a role in various neurodegenerative conditions including Alzheimer’s disease (AD). Here we present the results of the most comprehensive scientific study on BMAA detection ever undertaken on brain samples from patients pathologically confirmed to have suffered from AD, and those from healthy volunteers. Following the full validation of a highly accurate and sensitive mass spectrometric method, no trace of BMAA was detected in the diseased brain or in the control specimens. This contradicts the findings of other reports and calls into question the significance of this compound in neurodegenerative disease. We have attempted to explain the potential causes of misidentification of BMAA in these studies.

  9. First principles DFT study of weak C-H…O bonds in crystalline amino acids under pressure-alanine

    Science.gov (United States)

    Ramaniah, Lavanya M.; Kamal, C.; Sikka, S. K.

    2013-02-01

    Many crystalline solids containing C-H…O hydrogen bonds display blue shifting of the C-H stretching frequency under pressure. No agreed explanation is available for this. Here, we use first principles density functional theory, to determine the hydrogen atom positions to understand the cause of this blue shift. No neutron diffraction is feasible due to flux limitations for this purpose. As a first case, we have taken up the study of the amino acid, alanine. We find that the C_H_…O bond in it no longer remain isolated under compression as is case at ambient pressure. The hydrogen atom in the bond has now repulsive contacts with other atoms. This results in contraction of the C-H bond length and consequently to blue shifting as is found experimentally.

  10. Determining Chiral Configuration of Diamines via Contact Angle Measurements on Enantioselective Alanine-Appended Benzene-Tricarboxamide Gelators.

    Science.gov (United States)

    Jung, Sung Ho; Kim, Ka Young; Ahn, Ahreum; Choi, Myong Yong; Jaworski, Justyn; Jung, Jong Hwa

    2016-06-08

    Spectroscopic techniques exist that may discern between enantiomers and assess chiral purity. A nonspectroscopic approach that may be directly observed could provide numerous benefits. Using chiral alanine-appended benzene-tricarboxamide gelators, we reveal a methanol gel system that is capable of providing visual discrimination between enantiomers of various diamines. Specifically, gelation is induced by supramolecular nanofiber assembly resulting from interaction between a chiral gelator and a diamine of opposing chirality (i.e., a heterochiral system). Upon further implementing the chiral gelator in electrospun fibers as solid state films, we revealed enantioselective surface wetting properties that allowed for determining chirality through contact angle measurements. While these two approaches of observable gelation and surface wetting offer nonspectroscopic approaches, we also find that the supramolecular nanofiber assembly was able to enhance the induced circular dichroism signal resulting from addition of chiral diamines, allowing precise quantification of their enantiomeric purity.

  11. Environmental modulation of microcystin and β-N-methylamino-L-alanine as a function of nitrogen availability.

    Science.gov (United States)

    Scott, L L; Downing, S; Phelan, R R; Downing, T G

    2014-09-01

    The most significant modulators of the cyanotoxins microcystin and β-N-methylamino-L-alanine in laboratory cyanobacterial cultures are the concentration of growth-medium combined nitrogen and nitrogen uptake rate. The lack of field studies that support these observations led us to investigate the cellular content of these cyanotoxins in cyanobacterial bloom material isolated from a freshwater impoundment and to compare these to the combined nitrogen availability. We established that these toxins typically occur in an inverse relationship in nature and that their presence is mainly dependent on the environmental combined nitrogen concentration, with cellular microcystin present at exogenous combined nitrogen concentrations of 29 μM and higher and cellular BMAA correlating negatively with exogenous nitrogen at concentrations below 40 μM. Furthermore, opposing nutrient and light gradients that form in dense cyanobacterial blooms may result in both microcystin and BMAA being present at a single sampling site.

  12. Effect of streptococcal preparation (picibanil on the postoperative rise in serum alanine aminotransferase activity in patients with urogenital cancer.

    Directory of Open Access Journals (Sweden)

    Taketa,Kazuhisa

    1980-12-01

    Full Text Available The effect of Picibanil, a streptococcal agent, on the development of liver injury after operations for urogenital cancer was studied retrospectively in the light of serum alanine aminotransferase (ALT activity. The series comprised 32 cases receiving Picibanil and 33 controls with otherwise comparable clinical backgrounds. Picibanil reduced the incidence of postoperative ALT rise over 50 U/l within 6 weeks but increased it thereafter. The increase in ALT activity after 6 weeks was relatively small and was seen more often in patients given blood transfusions. It was interpreted as retardation and suppression of ALT rise and as being related to the induction of interferon or to immunopotentiation. Other antihepatotoxic effects of Picibanil, due to its antioxidant activity, for example, may also account for the prevention of the early postoperative rise in ALT activity.

  13. Crystallization and preliminary X-ray analysis of beta-alanine synthase from the yeast Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Dobritzsch, D.; Gojkovic, Zoran; Andersen, Birgit

    2003-01-01

    In eukaryotes and some bacteria, the third step of reductive pyrimidine catabolism is catalyzed by beta-alanine synthase (EC 3.5.1.6). Crystals of the recombinant enzyme from the yeast Saccharomyces kluyveri were obtained using sodium citrate as a precipitant. The crystals belong to space group P2......(1) (unit-cell parameters a=117.2, b=77.1, c=225.5 Angstrom, beta=95.0degrees) and contain four homodimers per asymmetric unit. Data were collected to 2.7 Angstrom resolution. Introduction of heavy atoms into the crystal lattice induced a different set of unit-cell parameters (a=61.0, b=77.9, c=110.......1 Angstrom, beta=97.2degrees) in the same space group P2(1), with only one homodimer per asymmetric unit....

  14. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine

    DEFF Research Database (Denmark)

    Borodina, Irina; Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg

    2015-01-01

    Microbial fermentation of renewable feedstocks into plastic monomers can decrease our fossil dependence and reduce global CO2 emissions. 3-Hydroxypropionic acid (3HP) is a potential chemical building block for sustainable production of superabsorbent polymers and acrylic plastics. With the object......Microbial fermentation of renewable feedstocks into plastic monomers can decrease our fossil dependence and reduce global CO2 emissions. 3-Hydroxypropionic acid (3HP) is a potential chemical building block for sustainable production of superabsorbent polymers and acrylic plastics....... With the objective of developing Saccharomyces cerevisiae as an efficient cell factory for highlevel production of 3HP, we identified the ß-alanine biosynthetic route as the most economically attractive according to the metabolic modeling. We engineered and optimized a synthetic pathway for de novo biosynthesis of ß...

  15. D-Alanine-Controlled Transient Intestinal Mono-Colonization with Non-Laboratory-Adapted Commensal E. coli Strain HS.

    Directory of Open Access Journals (Sweden)

    Miguelangel Cuenca

    Full Text Available Soon after birth the mammalian gut microbiota forms a permanent and collectively highly resilient consortium. There is currently no robust method for re-deriving an already microbially colonized individual again-germ-free. We previously developed the in vivo growth-incompetent E. coli K-12 strain HA107 that is auxotrophic for the peptidoglycan components D-alanine (D-Ala and meso-diaminopimelic acid (Dap and can be used to transiently associate germ-free animals with live bacteria, without permanent loss of germ-free status. Here we describe the translation of this experimental model from the laboratory-adapted E. coli K-12 prototype to the better gut-adapted commensal strain E. coli HS. In this genetic background it was necessary to complete the D-Ala auxotrophy phenotype by additional knockout of the hypothetical third alanine racemase metC. Cells of the resulting fully auxotrophic strain assembled a peptidoglycan cell wall of normal composition, as long as provided with D-Ala and Dap in the medium, but could not proliferate a single time after D-Ala/Dap removal. Yet, unsupplemented bacteria remained active and were able to complete their cell cycle with fully sustained motility until immediately before autolytic death. Also in vivo, the transiently colonizing bacteria retained their ability to stimulate a live-bacteria-specific intestinal Immunoglobulin (IgA response. Full D-Ala auxotrophy enabled rapid recovery to again-germ-free status. E. coli HS has emerged from human studies and genomic analyses as a paradigm of benign intestinal commensal E. coli strains. Its reversibly colonizing derivative may provide a versatile research tool for mucosal bacterial conditioning or compound delivery without permanent colonization.

  16. Molecular dynamics simulations of mutated Mycobacterium tuberculosis L-alanine dehydrogenase to illuminate the role of key residues.

    Science.gov (United States)

    Ling, Baoping; Bi, Siwei; Sun, Min; Jing, Zhihong; Li, Xiaoping; Zhang, Rui

    2014-05-01

    L-Alanine dehydrogenase from Mycobacterium tuberculosis (L-MtAlaDH) catalyzes the NADH-dependent interconversion of l-alanine and pyruvate, and it is considered to be a potential target for the treatment of tuberculosis. The experiment has verified that amino acid replacement of the conserved active-site residues which have strong stability and no great changes in biological evolutionary process, such as His96 and Asp270, could lead to inactive mutants [Ågren et al., J. Mol. Biol. 377 (2008) 1161-1173]. However, the role of these conserved residues in catalytic reaction still remains unclear. Based on the crystal structures, a series of mutant structures were constructed to investigate the role of the conserved residues in enzymatic reaction by using molecular dynamics simulations. The results show that whatever the conserved residues were mutated, the protein can still convert its conformation from open state to closed state as long as NADH is present in active site. Asp270 maintains the stability of nicotinamide ring and ribose of NADH through hydrogen bond interactions, and His96 is helpful to convert the protein conformation by interactions with Gln271, whereas, they would lead to the structural rearrangement in active site and lose the catalytic activity when they were mutated. Additionally, we deduce that Met301 plays a major role in catalytic reaction due to fixing the nicotinamide ring of NADH to prevent its rotation, and we propose that Met301 would be mutated to the hydrophobic residue with large steric hindrance in side chain to test the activity of the protein in future experiment.

  17. Absolute calibration of the Gamma Knife{sup ®} Perfexion™ and delivered dose verification using EPR/alanine dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hornbeck, Amaury, E-mail: amauryhornbeck@gmail.com, E-mail: tristan.garcia@cea.fr; Garcia, Tristan, E-mail: amauryhornbeck@gmail.com, E-mail: tristan.garcia@cea.fr [CEA, LIST, Laboratoire National Henri Becquerel, 91191 Gif-sur-Yvette Cedex (France); Cuttat, Marguerite; Jenny, Catherine [Radiotherapy Department, Medical Physics Unit, University Hospital Pitié-Salpêtrière, 75013 Paris (France)

    2014-06-15

    Purpose: Elekta Leksell Gamma Knife{sup ®} (LGK) is a radiotherapy beam machine whose features are not compliant with the international calibration protocols for radiotherapy. In this scope, the Laboratoire National Henri Becquerel and the Pitié-Salpêtrière Hospital decided to conceive a new LKG dose calibration method and to compare it with the currently used one. Furthermore, the accuracy of the dose delivered by the LGK machine was checked using an “end-to-end” test. This study also aims to compare doses delivered by the two latest software versions of the Gammaplan treatment planning system (TPS). Methods: The dosimetric method chosen is the electron paramagnetic resonance (EPR) of alanine. Dose rate (calibration) verification was done without TPS using a spherical phantom. Absolute calibration was done with factors calculated by Monte Carlo simulation (MCNP-X). For “end-to-end” test, irradiations in an anthropomorphic head phantom, close to real treatment conditions, are done using the TPS in order to verify the delivered dose. Results: The comparison of the currently used calibration method with the new one revealed a deviation of +0.8% between the dose rates measured by ion chamber and EPR/alanine. For simple fields configuration (less than 16 mm diameter), the “end-to-end” tests showed out average deviations of −1.7% and −0.9% between the measured dose and the calculated dose by Gammaplan v9 and v10, respectively. Conclusions: This paper shows there is a good agreement between the new calibration method and the currently used one. There is also a good agreement between the calculated and delivered doses especially for Gammaplan v10.

  18. Effect of heavy metals (Cu, Cd and Pb) on aspartate and alanine aminotransferase in Ruditapes philippinarum (Mollusca: Bivalvia)

    Energy Technology Data Exchange (ETDEWEB)

    Blasco, J.; Puppo, J. [Instituto de Ciencias Marinas de Andalucia, Campus Univ. Rio S. Pedro, 11510 Puerto Real, Cadiz (Spain)

    1999-02-01

    The accumulation of cadmium, copper and lead and their effects on aspartate and alanine aminotransferases in digestive gland, gills, foot and soft body in the clam Ruditapes philippinarum were examined. The animals were exposed to different concentrations: Cd (200-600 {mu}g{center_dot}l{sup -1}), Pb (350-700 {mu}g{center_dot}l{sup -1}) and Cu (10-20 {mu}g{center_dot}l{sup -1}) for 7 days. The highest concentrations were found in digestive gland for cadmium and copper, and in gills for lead, and the lowest values were observed in the foot. Aspartate aminotransferase activity (AST), in general, was not inhibited by cadmium, lead or copper during the exposure. Only in clams exposed to cadmium (600 {mu}g{center_dot}l{sup -1}, 7 days) and copper (20 {mu}g{center_dot}l{sup -1}, 5 days) were observed significant differences (P<0.05) in foot and gills, respectively, with respect to control. In the case of alanine aminotransferase activity (ALT), significant differences were observed for cadmium and lead in treated animals with respect to control. With regard to copper, a decrease in ALT was observed in gills and foot exposed to 20 {mu}g{center_dot}l{sup -1}. A significant correlation (P<0.05) was observed between ALT and metal accumulation for cadmium, copper and lead in gills. In the case of soft body, only cadmium and lead showed a significant correlation. In summary, R. philippinarum can be considered a bioindicator species for cadmium and lead accumulation and ALT could be useful as biomarker of sublethal stress for these metals in soft tissues and gills. Only gills can be considered an adequate target tissue for copper. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. D-Alanine-Controlled Transient Intestinal Mono-Colonization with Non-Laboratory-Adapted Commensal E. coli Strain HS.

    Science.gov (United States)

    Cuenca, Miguelangel; Pfister, Simona P; Buschor, Stefanie; Bayramova, Firuza; Hernandez, Sara B; Cava, Felipe; Kuru, Erkin; Van Nieuwenhze, Michael S; Brun, Yves V; Coelho, Fernanda M; Hapfelmeier, Siegfried

    2016-01-01

    Soon after birth the mammalian gut microbiota forms a permanent and collectively highly resilient consortium. There is currently no robust method for re-deriving an already microbially colonized individual again-germ-free. We previously developed the in vivo growth-incompetent E. coli K-12 strain HA107 that is auxotrophic for the peptidoglycan components D-alanine (D-Ala) and meso-diaminopimelic acid (Dap) and can be used to transiently associate germ-free animals with live bacteria, without permanent loss of germ-free status. Here we describe the translation of this experimental model from the laboratory-adapted E. coli K-12 prototype to the better gut-adapted commensal strain E. coli HS. In this genetic background it was necessary to complete the D-Ala auxotrophy phenotype by additional knockout of the hypothetical third alanine racemase metC. Cells of the resulting fully auxotrophic strain assembled a peptidoglycan cell wall of normal composition, as long as provided with D-Ala and Dap in the medium, but could not proliferate a single time after D-Ala/Dap removal. Yet, unsupplemented bacteria remained active and were able to complete their cell cycle with fully sustained motility until immediately before autolytic death. Also in vivo, the transiently colonizing bacteria retained their ability to stimulate a live-bacteria-specific intestinal Immunoglobulin (Ig)A response. Full D-Ala auxotrophy enabled rapid recovery to again-germ-free status. E. coli HS has emerged from human studies and genomic analyses as a paradigm of benign intestinal commensal E. coli strains. Its reversibly colonizing derivative may provide a versatile research tool for mucosal bacterial conditioning or compound delivery without permanent colonization.

  20. Peroxisomal alanine: glyoxylate aminotransferase AGT1 is indispensable for appressorium function of the rice blast pathogen, Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Vijai Bhadauria

    Full Text Available The role of β-oxidation and the glyoxylate cycle in fungal pathogenesis is well documented. However, an ambiguity still remains over their interaction in peroxisomes to facilitate fungal pathogenicity and virulence. In this report, we characterize a gene encoding an alanine, glyoxylate aminotransferase 1 (AGT1 in Magnaporthe oryzae, the causative agent of rice blast disease, and demonstrate that AGT1 is required for pathogenicity of M. oryzae. Targeted deletion of AGT1 resulted in the failure of penetration via appressoria; therefore, mutants lacking the gene were unable to induce blast symptoms on the hosts rice and barley. This penetration failure may be associated with a disruption in lipid mobilization during conidial germination as turgor generation in the appressorium requires mobilization of lipid reserves from the conidium. Analysis of enhanced green fluorescent protein expression using the transcriptional and translational fusion with the AGT1 promoter and open reading frame, respectively, revealed that AGT1 expressed constitutively in all in vitro grown cell types and during in planta colonization, and localized in peroxisomes. Peroxisomal localization was further confirmed by colocalization with red fluorescent protein fused with the peroxisomal targeting signal 1. Surprisingly, conidia produced by the Δagt1 mutant were unable to form appressoria on artificial inductive surfaces, even after prolonged incubation. When supplemented with nicotinamide adenine dinucleotide (NAD(++pyruvate, appressorium formation was restored on an artificial inductive surface. Taken together, our data indicate that AGT1-dependent pyruvate formation by transferring an amino group of alanine to glyoxylate, an intermediate of the glyoxylate cycle is required for lipid mobilization and utilization. This pyruvate can be converted to non-fermentable carbon sources, which may require reoxidation of NADH generated by the β-oxidation of fatty acids to NAD(+ in

  1. Structural implications of a G170R mutation of alanine:glyoxylate aminotransferase that is associated with peroxisome-to-mitochondrion mistargeting

    OpenAIRE

    Djordjevic, Snezana; Zhang, Xiaoxuan; Bartlam, Mark; Ye, Sheng; Rao, Zihe; Danpure, Christopher J

    2010-01-01

    The crystal structure of the G170R mutant form of human alanine:glyoxylate aminotransferase has been determined at 2.6 Å resolution. This mutation is associated with enzyme mistargeting in the hereditary kidney-stone disease primary hyperoxaluria type 1.

  2. Crystal structure of an extensively simplified variant of bovine pancreatic trypsin inhibitor in which over one-third of the residues are alanines.

    Science.gov (United States)

    Islam, Mohammad Monirul; Sohya, Shihori; Noguchi, Keiichi; Yohda, Masafumi; Kuroda, Yutaka

    2008-10-07

    We report the high-resolution crystal structures of an extensively simplified variant of bovine pancreatic trypsin inhibitor containing 20 alanines (BPTI-20st) and a reference single-disulfide-bonded variant (BPTI-[5,55]st) at, respectively, 1.39 and 1.09 A resolutions. The sequence was simplified based on the results of an alanine scanning experiment, as reported previously. The effects of the multiple alanine substitutions on the overall backbone structure were surprisingly small (C(alpha) atom RMSD of 0.53 A) being limited to small local structural perturbations. Both BPTI variants retained a wild-type level of trypsin inhibitory activity. The side-chain configurations of residues buried in the hydrophobic cores (alanine replacements nor the removal of the disulfide bonds affected their precise placements. However, the side chains of three partially buried residues (Q31, R20, and to some extent Y21) and several unburied residues rearranged into alternative dense-packing structures, suggesting some plasticity in their shape complementarity. These results indicate that a protein sequence simplified over its entire length can retain its densely packed, native side-chain structure, and suggest that both the design and fold recognition of natively folded proteins may be easier than previously thought.

  3. Crystal structures of yeast beta-alanine synthase complexes reveal the mode of substrate binding and large scale domain closure movements.

    Science.gov (United States)

    Lundgren, Stina; Andersen, Birgit; Piskur, Jure; Dobritzsch, Doreen

    2007-12-07

    Beta-alanine synthase is the final enzyme of the reductive pyrimidine catabolic pathway, which is responsible for the breakdown of uracil and thymine in higher organisms. The fold of the homodimeric enzyme from the yeast Saccharomyces kluyveri identifies it as a member of the AcyI/M20 family of metallopeptidases. Its subunit consists of a catalytic domain harboring a di-zinc center and a smaller dimerization domain. The present site-directed mutagenesis studies identify Glu(159) and Arg(322) as crucial for catalysis and His(262) and His(397) as functionally important but not essential. We determined the crystal structures of wild-type beta-alanine synthase in complex with the reaction product beta-alanine, and of the mutant E159A with the substrate N-carbamyl-beta-alanine, revealing the closed state of a dimeric AcyI/M20 metallopeptidase-like enzyme. Subunit closure is achieved by a approximately 30 degrees rigid body domain rotation, which completes the active site by integration of substrate binding residues that belong to the dimerization domain of the same or the partner subunit. Substrate binding is achieved via a salt bridge, a number of hydrogen bonds, and coordination to one of the zinc ions of the di-metal center.

  4. Synthesis, morphology and properties of segmented poly(ether ester amide)s comprising uniform glycine or β-alanine extended bisoxalamide hard segments

    NARCIS (Netherlands)

    Sijbrandi, N.J.; Kimenai, A.J.; Mes, E.P.C.; Broos, R.; Bar, G.; Rosenthal, M.; Odarchenko, Y.; Ivanov, D.A.; Feijen, J.; Dijkstra, P.J.

    2012-01-01

    Segmented poly(ether ester amide)s comprising glycine or β-alanine extended bisoxalamide hard segments are highly phase separated thermoplastic elastomers with a broad temperature independent rubber plateau. These materials with molecular weights, Mn, exceeding 30 × 103 g mol−1 are conveniently prep

  5. Comparative acute effects of l-carnitine and dl-carnitine on hepatic catabolism of l-alanine and l-glutamine in rats

    Institute of Scientific and Technical Information of China (English)

    Gisele LOPES; Vilma A F G GAZOLA; Sharize B GALENDE; Wilson ALVES-DO-PRADO; Rui CURI; Roberto B BAZOTTE

    2004-01-01

    AIM: To compare the acute effects of l-carnitine (LCT) and dl-camitine (DLC) on hepatic catabolism of l-alanine andl-glutamine in rats. METHODS: Livers from 24 h fasted and fed rats were perfused in situ. The substrates l-alanine (5 mmol/L) and l-glutamine (5 mmol/L) were employed. The gluconeogenic and ureogenic activity was measured as the difference between the rates of glucose and urea released during and before the infusion of l-glutamine or l-alanine. RESULTS: LCT (60 μmol/L) but not DLC (60 μmol/L and 120 μmol/L) increased the production of glucose and urea froml-glutamine. However, neither LCT (60 μmol/L and 120 μmol/L) nor DLC (60 μmol/L and 240 μmol/L) showed any significant effect on hepatic glucose and urea production froml-alanine.CONCLUSION: The results showed a different acute effect of LCT and DLC on the activation of hepatic gluconeogenesis and ureagenesis promoted byl-glutamine, reinforcing the idea that DLC could not replace LCT.

  6. ENERGETICS OF ALANINE, LYSINE, AND PROLINE TRANSPORT IN CYTOPLASMIC MEMBRANES OF THE POLYPHOSPHATE-ACCUMULATING ACINETOBACTER-JOHNSONII STRAIN 210A

    NARCIS (Netherlands)

    VANVEEN, HW; ABEE, T; KLEEFSMAN, AWF; MELGERS, B; KORTSTEE, GJJ; KONINGS, WN; ZEHNDER, AJB

    1994-01-01

    Amino acid transport in right-side-out membrane vesicles of Acinetobacter johnsonii 210A was studied. L-Alanine, L-lysine, and L-proline were actively transported when a proton motive force of -76 mV tvas generated by the oxidation of glucose via the membrane-bound glucose dehydrogenase. Kinetic ana

  7. Inhibition of Rhizomucor miehei and Candida rugosa lipases by D-glucose in esterification between L-alanine and D-glucose.

    Science.gov (United States)

    Somashekar, Bhandya R; Lohith, Kenchaiah; Manohar, Balaraman; Divakar, Soundar

    2007-02-01

    A detailed kinetic study of the esterification of D-glucose with L-alanine catalyzed by lipases from Rhizomucor miehei (RML) and Candida rugosa (CRL) showed that both lipases follow the Ping-Pong Bi-Bi mechanism, in which L-alanine and D-glucose bind in subsequent steps releasing water and L-alanyl-D-glucose, with competitive substrate inhibition by D-glucose at higher concentrations leading to the formation of dead-end lipase.D-glucose complexes. An attempt to obtain the best fit of this kinetic model through curve fitting yielded good approximates of the apparent values of four important kinetic parameters: for RML-k(cat)=0.29+/-0.028x10(-3) M h(-1) mg(-1), K(m L-alanine)= 4.9+/-0.51x10(-3) M, K(m D-glucose)=0.21+/-0.018x10(-3) M, and K(i D-glucose)=1.76+/-0.19x10(-3) M; for CRL-k(cat)= 0.75+/-0.08x10(-3) M h(-1) mg(-1), K(m L-alanine)=56.2+/-5.7x10(-3) M, K(m D-glucose)=16.2+/-1.8x10(-3) M, and K(i D-glucose) =21.0+/-1.9x10(-3) M.

  8. Low normal thyroid function attenuates serum alanine aminotransferase elevations in the context of metabolic syndrome and insulin resistance in white people

    NARCIS (Netherlands)

    Dullaart, Robin P. F.; van den Berg, Eline H.; van der Klauw, Melanie; Blokzijl, Hans

    2014-01-01

    Objectives: Thyroid hormones play a key role in hepatic lipid metabolism. Although hypothyroidismis associated with increased prevalence of non-alcoholic fatty liver disease (NAFLD), the relationship of NAFLD with low normal thyroid function is unclear. We tested the association of serum alanine tra

  9. Protolytic properties and complexation of DL-alpha-alanine and DL-alpha-valine and their dipeptides in aqueous and micellar solutions of surfactants

    NARCIS (Netherlands)

    Chernyshova, O. S.; Boychenko, Oleksandr; Abdulrahman, H.; Loginova, L. P.

    2013-01-01

    In this work we investigated the effect of the micellar media of anionic (sodium dodecylsulfate, SDS), cationic (cetylpiridinium chloride, CPC) and non-ionic (Brij-35) surfactants on the protolytic properties of amino acids DL-alpha-alanine, DL-alpha-valine and dipeptides L-alpha-alanyl-L-alpha-alan

  10. Cellular and Physiological Effects of Dietary Supplementation with β-Hydroxy-β-Methylbutyrate (HMB and β-Alanine in Late Middle-Aged Mice.

    Directory of Open Access Journals (Sweden)

    Julian Vallejo

    Full Text Available There is growing evidence that severe decline of skeletal muscle mass and function with age may be mitigated by exercise and dietary supplementation with protein and amino acid ingredient technologies. The purposes of this study were to examine the effects of the leucine catabolite, beta-hydroxy-beta-methylbutyrate (HMB, in C2C12 myoblasts and myotubes, and to investigate the effects of dietary supplementation with HMB, the amino acid β-alanine and the combination thereof, on muscle contractility in a preclinical model of pre-sarcopenia. In C2C12 myotubes, HMB enhanced sarcoplasmic reticulum (SR calcium release beyond vehicle control in the presence of all SR agonists tested (KCl, P<0.01; caffeine, P = 0.03; ionomycin, P = 0.03. HMB also improved C2C12 myoblast viability (25 μM HMB, P = 0.03 and increased proliferation (25 μM HMB, P = 0.04; 125 μM HMB, P<0.01. Furthermore, an ex vivo muscle contractility study was performed on EDL and soleus muscle from 19 month old, male C57BL/6nTac mice. For 8 weeks, mice were fed control AIN-93M diet, diet with HMB, diet with β-alanine, or diet with HMB and β-alanine. In β-alanine fed mice, EDL muscle showed a 7% increase in maximum absolute force compared to the control diet (202 ± 3vs. 188± 5 mN, P = 0.02. At submaximal frequency of stimulation (20 Hz, EDL from mice fed HMB plus β-alanine showed an 11% increase in absolute force (88.6 ± 2.2 vs. 79.8 ± 2.4 mN, P = 0.025 and a 13% increase in specific force (12.2 ± 0.4 vs. 10.8 ± 0.4 N/cm2, P = 0.021. Also in EDL muscle, β-alanine increased the rate of force development at all frequencies tested (P<0.025, while HMB reduced the time to reach peak contractile force (TTP, with a significant effect at 80 Hz (P = 0.0156. In soleus muscle, all experimental diets were associated with a decrease in TTP, compared to control diet. Our findings highlight beneficial effects of HMB and β-alanine supplementation on skeletal muscle function in aging mice.

  11. Assessing microbial utilization of free versus sorbed Alanine by using position-specific 13C labeling and 13C-PLFA analysis

    Science.gov (United States)

    Herschbach, Jennifer; Apostel, Carolin; Spielvogel, Sandra; Kuzyakov, Yakov; Dippold, Michaela

    2016-04-01

    Microbial utilization is a key transformation process of soil organic matter (SOM). Sorption of low molecular weight organic substances (LMWOS) to soil mineral surfaces blocks or delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil science, combined with 13C-phospholipid fatty acid (PLFA) analysis, to assess microbial utilization of sorbed and non-sorbed Alanine in soil. Alanine has various functional groups enabling different sorption mechanisms via its positive charge (e.g. to clay minerals by cation exchange), as well as via its negative charge (e.g. to iron oxides by ligand exchange). To assess changes in the transformation pathways caused by sorption, we added uniformly and position-specifically 13C and 14C labeled Alanine to the Ap of a loamy Luvisol in a short-term (10 days) incubation experiment. To allow for sorption of the tracer solution to an aliquot of this soil, microbial activity was minimized in this subsample by sterilizing the soil by γ-radiation. After shaking, the remaining solutions were filtered and the non-sorbed Alanine was removed with Millipore water and then added to non-sterilized soil. For the free Alanine treatment, solutions with Alanine of similar amount and isotopic composition were prepared, added to the soil and incubated as well. The respired CO2 was trapped in NaOH and its 14C-activity was determined at increasing times intervals. Microbial utilization of Alanine's individual C positions was evaluated in distinct microbial groups classified by 13C-PLFA analysis. Sorption to soil minerals delayed respiration to CO2 and reduced initial respiration rate by 80%. Irrespective of sorption, the highest amount was respired from the carboxylic position (C-1), whereas the amino-bound (C-2) and the methylic position (C-3) were preferentially incorporated into PLFA of microorganisms due to the

  12. Self-Assembly, Supramolecular Organization, and Phase Behavior of L-Alanine Alkyl Esters (n = 9-18) and Characterization of Equimolar L-Alanine Lauryl Ester/Lauryl Sulfate Catanionic Complex.

    Science.gov (United States)

    Sivaramakrishna, D; Swamy, Musti J

    2015-09-08

    A homologous series of l-alanine alkyl ester hydrochlorides (AEs) bearing 9-18 C atoms in the alkyl chain have been synthesized and characterized with respect to self-assembly, supramolecular structure, and phase transitions. The CMCs of AEs bearing 11-18 C atoms were found to range between 0.1 and 10 mM. Differential scanning calorimetric (DSC) studies showed that the transition temperatures (Tt), enthalpies (ΔHt) and entropies (ΔSt) of AEs in the dry state exhibit odd-even alternation, with the odd-chain-length compounds having higher Tt values, but the even-chain-length homologues showing higher values of ΔHt and ΔSt. In DSC measurements on hydrated samples, carried out at pH 5.0 and pH 10.0 (where they exist in cationic and neutral forms, respectively), compounds with 13-18 C atoms in the alkyl chain showed sharp gel-to-liquid crystalline phase transitions, and odd-even alternation was not seen in the thermodynamic parameters. The molecular structure, packing properties, and intermolecular interactions of AEs with 9 and 10 C atoms in the alkyl chain were determined by single crystal X-ray diffraction, which showed that the alkyl chains are packed in a tilted interdigitated bilayer format. d-Spacings obtained from powder X-ray diffraction studies exhibited a linear dependence on the alkyl chain length, suggesting that the other AEs also adopt an interdigitated bilayer structure. Turbidimetric, fluorescence spectroscopic, and isothermal titration calorimetric (ITC) studies established that in aqueous dispersions l-alanine lauryl ester hydrochloride (ALE·HCl) and sodium dodecyl sulfate (SDS) form an equimolar complex. Transmission electron microscopic and DSC studies indicate that the complex exists as unilamellar liposomes, which exhibit a sharp phase transition at ∼39 °C. The aggregates were disrupted at high pH, suggesting that the catanionic complex would be useful to develop a base-labile drug delivery system. ITC studies indicated that ALE·HCl forms

  13. Structural analysis and mutant growth properties reveal distinctive enzymatic and cellular roles for the three major L-alanine transaminases of Escherichia coli.

    Science.gov (United States)

    Peña-Soler, Esther; Fernandez, Francisco J; López-Estepa, Miguel; Garces, Fernando; Richardson, Andrew J; Quintana, Juan F; Rudd, Kenneth E; Coll, Miquel; Vega, M Cristina

    2014-01-01

    In order to maintain proper cellular function, the metabolism of the bacterial microbiota presents several mechanisms oriented to keep a correctly balanced amino acid pool. Central components of these mechanisms are enzymes with alanine transaminase activity, pyridoxal 5'-phosphate-dependent enzymes that interconvert alanine and pyruvate, thereby allowing the precise control of alanine and glutamate concentrations, two of the most abundant amino acids in the cellular amino acid pool. Here we report the 2.11-Å crystal structure of full-length AlaA from the model organism Escherichia coli, a major bacterial alanine aminotransferase, and compare its overall structure and active site composition with detailed atomic models of two other bacterial enzymes capable of catalyzing this reaction in vivo, AlaC and valine-pyruvate aminotransferase (AvtA). Apart from a narrow entry channel to the active site, a feature of this new crystal structure is the role of an active site loop that closes in upon binding of substrate-mimicking molecules, and which has only been previously reported in a plant enzyme. Comparison of the available structures indicates that beyond superficial differences, alanine aminotransferases of diverse phylogenetic origins share a universal reaction mechanism that depends on an array of highly conserved amino acid residues and is similarly regulated by various unrelated motifs. Despite this unifying mechanism and regulation, growth competition experiments demonstrate that AlaA, AlaC and AvtA are not freely exchangeable in vivo, suggesting that their functional repertoire is not completely redundant thus providing an explanation for their independent evolutionary conservation.

  14. Structural analysis and mutant growth properties reveal distinctive enzymatic and cellular roles for the three major L-alanine transaminases of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Esther Peña-Soler

    Full Text Available In order to maintain proper cellular function, the metabolism of the bacterial microbiota presents several mechanisms oriented to keep a correctly balanced amino acid pool. Central components of these mechanisms are enzymes with alanine transaminase activity, pyridoxal 5'-phosphate-dependent enzymes that interconvert alanine and pyruvate, thereby allowing the precise control of alanine and glutamate concentrations, two of the most abundant amino acids in the cellular amino acid pool. Here we report the 2.11-Å crystal structure of full-length AlaA from the model organism Escherichia coli, a major bacterial alanine aminotransferase, and compare its overall structure and active site composition with detailed atomic models of two other bacterial enzymes capable of catalyzing this reaction in vivo, AlaC and valine-pyruvate aminotransferase (AvtA. Apart from a narrow entry channel to the active site, a feature of this new crystal structure is the role of an active site loop that closes in upon binding of substrate-mimicking molecules, and which has only been previously reported in a plant enzyme. Comparison of the available structures indicates that beyond superficial differences, alanine aminotransferases of diverse phylogenetic origins share a universal reaction mechanism that depends on an array of highly conserved amino acid residues and is similarly regulated by various unrelated motifs. Despite this unifying mechanism and regulation, growth competition experiments demonstrate that AlaA, AlaC and AvtA are not freely exchangeable in vivo, suggesting that their functional repertoire is not completely redundant thus providing an explanation for their independent evolutionary conservation.

  15. Structural Analysis and Mutant Growth Properties Reveal Distinctive Enzymatic and Cellular Roles for the Three Major L-Alanine Transaminases of Escherichia coli

    Science.gov (United States)

    López-Estepa, Miguel; Garces, Fernando; Richardson, Andrew J.; Quintana, Juan F.; Rudd, Kenneth E.; Coll, Miquel; Vega, M. Cristina

    2014-01-01

    In order to maintain proper cellular function, the metabolism of the bacterial microbiota presents several mechanisms oriented to keep a correctly balanced amino acid pool. Central components of these mechanisms are enzymes with alanine transaminase activity, pyridoxal 5′-phosphate-dependent enzymes that interconvert alanine and pyruvate, thereby allowing the precise control of alanine and glutamate concentrations, two of the most abundant amino acids in the cellular amino acid pool. Here we report the 2.11-Å crystal structure of full-length AlaA from the model organism Escherichia coli, a major bacterial alanine aminotransferase, and compare its overall structure and active site composition with detailed atomic models of two other bacterial enzymes capable of catalyzing this reaction in vivo, AlaC and valine-pyruvate aminotransferase (AvtA). Apart from a narrow entry channel to the active site, a feature of this new crystal structure is the role of an active site loop that closes in upon binding of substrate-mimicking molecules, and which has only been previously reported in a plant enzyme. Comparison of the available structures indicates that beyond superficial differences, alanine aminotransferases of diverse phylogenetic origins share a universal reaction mechanism that depends on an array of highly conserved amino acid residues and is similarly regulated by various unrelated motifs. Despite this unifying mechanism and regulation, growth competition experiments demonstrate that AlaA, AlaC and AvtA are not freely exchangeable in vivo, suggesting that their functional repertoire is not completely redundant thus providing an explanation for their independent evolutionary conservation. PMID:25014014

  16. Preparation of alanine and tyrosine functionalized graphene oxide nanoflakes and their modified carbon paste electrodes for the determination of dopamine

    Science.gov (United States)

    Kumar, Mohan; Swamy, B. E. Kumara; Asif, M. H. Mohammed; Viswanath, C. C.

    2017-03-01

    Herein, established the synthesis of graphene oxide (GO) by Hummers Method with addition of KMnO4 followed by thermal heating at 80 °C. The obtained GO was further functionalized by alanine and tyrosine. The prepared GO, alanine functionalized GO nanoflakes (AGONF) and tyrosine functionalized GO nanoflakes (TGONF) were characterized by spectroscopic technique using energy-dispersive spectroscopy (EDS), quantitatively by scanning electron microscopy (SEM) and structural studies along with interlayer distance verified through X-ray diffraction technique. Afterwards, the prepared AGONF and TGONF were used as the modifier for the carbon paste electrode (CPE). The electrochemical behavior of the AGONF and TGONF modified carbon paste electrodes (MCPEs) towards dopamine (DA) in phosphate buffer solution (PBS) were examined by cyclic voltammetric (CV) technique and the obtained consequences showed good electrocatalytic activity of MCPEs by increasing the redox peak current with a lower potential difference compared to the bare CPE (BCPE). The AGONF and TGONF MCPEs were further used for the optimization studies. From the pH studies, it was found that the equal number of proton and electron transfer reaction involved in both the modified electrodes. The scan rate studies demonstrate the adsorption controlled electrode process at AGONF MCPE and diffusion controlled at TGONF MCPE. The oxidation peak current increased linearly with two concentration interval of DA at a range of 2-7 μM and 10-30 μM in presence of PBS (pH 7.4) at MCPEs and the limit of detection (LOD) were found to be 0.84 μM and 0.96 μM for first interval DA concentration range (2-7 μM) at AGONF and TGONF MCPE. The stability, repeatability and reproducibility of functionalized GO nanoflakes MCPEs at DA were studied and established excellent characteristics. The newly developed functionalized GO nanoflake electrodes were successfully tested in DA injection sample. Furthermore the functionalized GO and

  17. Hubungan Kadar Trigliserida dan Kolesterol-HDL Terhadap Kadar Alanine Aminotransferase pada Pasien Non Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Bayu Gemilang

    2016-01-01

    Full Text Available AbstrakTrigliserida dan Kolesterol HDL (c-HDL merupakan beberapa dari komponen Sindroma Metabolik (SM. SM dipercaya merupakan faktor utama penyebab Non Alcoholic Fatty Liver Disease (NAFLD. NAFLD merupakan penyakit hati kronik yang nantinya dapat menyebabkan fibrosis sel-sel hepar dan juga keganasan. NAFLD tidak menunjukkan manifestasi klinis yang khas, sehingga diperlukan pemeriksaan penunjang seperti pemeriksaan enzim hati untuk menegakkan diagnosis. Alanine Aminotransferase (ALT menjadi pilihan sebagai marker pada penyakit NAFLD. Tujuan penelitian ini adalah menentukan hubungan antara trigliserida dan c-HDL dengan ALT pada penderita NAFLD. Ini merupakan penelitian analitik deskriptif dengan desain retrospektif menggunakan data pasien NAFLD di instalasi rekam medik RSUP dr.M.Djamil Padang. Sampel penelitian ini adalah 51 pasien NAFLD. Hasil penelitian didapatkan dari uji korelasi pearson terdapat derajat hubungan yang kuat (r=0,512 dan hubungan yang bermakna (p<0,001 antara kadar trigliserida dengan kadar ALT serum dan derajat hubungan yang sedang (r=0,26 dan hubungan yang tidak bermakna (p=0,065 antara c-HDL dengan ALT serum. Kesimpulan penelitian ini adalah kadar ALT berhubungan dengan kadar trigliserida pada penderita NAFLD, namun tidak dengan c-HDLKata kunci: NAFLD, trigliserida, HDL, ALT, sindroma metabolik AbstractTriglyceride and HDL Cholesterol (HDL-C are some of the Metabolic Syndrome (MS components. MS is believed as the main factor for the Non Alcoholic Fatty Liver Disease (NAFLD. NAFLD is a chronic liver disease, which later can cause hepatocyte fibrosis and also malignancy. NAFLD does not show a typical clinical appearance, so it is important to do workups such as liver enzyme test to make the diagnosis. Alanine Aminotransferase (ALT is considered as the marker of NAFLD.The objective of this study was to determine the relationship between triglycerides and HDL-C to ALT level in NAFLD patients.This  was a descriptive analytical

  18. 19F-{ 1H} Nuclear Overhauser Effect and Proton Decoupling of 5-Fluorouracil and α-Fluoro-β-Alanine

    Science.gov (United States)

    Krems, B.; Bachert, P.; Zabel, H. J.; Lorenz, W. J.

    19F-{ 1H} magnetic double-resonance experiments were performed on model solutions of the antitumor drug 5-fluorouracil (5-FU) and of α-fluoro-β-alanine (FBAL) in order to improve 19F NMR sensitivity for the application in pharmacokinetic studies in vivo. Upon driving the proton spins into saturation, a fluorine signal enhancement (nuclear Overhauser effect) was observed on the order of the theoretical NOE maximum γ H/2γ F, = 53% for purely dipolar coupled 19F- 1H spin systems in extreme narrowing. The dependence of the effect on proton excitation frequency and temporal parameters was measured and cross-relaxation rate constants of 0.07 s -1 (5-FU) and 0.19 s -1 (FBAL) were determined. Irradiation of the proton spin system by a broad pulse during the 19F signal detection period removed FBAL multiplet splittings completely and narrowed the linewidth of this resonance band by a factor of six, Application of proton presaturation in the 19F NMR examination of a patient undergoing 5-FU chemotherapy enhanced the signal-to-noise ratio of the major 5-FU catabolite FBAL detected noninvasively in the liver.

  19. Syntheses and crystal structures of rare earth (Nd, Gd) 1-D chain complexes with N-p-tolylsulfonyl-β-alanine

    Institute of Scientific and Technical Information of China (English)

    MA Lufang; LI Xiaodong; WANG Liya; LIANG Fupei; ZHANG Manbo; YU Kaibei

    2005-01-01

    Two rare earth complexes of Ts-β-AlaH with the formula of [Ln2(H2O)4(Ts-β-AlaH)6]n·4nH2O (where Ln =Nd(1), Gd(2); Ts-β-AlaH = N-p-tolylsulfonyl-β-Alanine) have been synthesized and characterized by elemental analysis, IR,and X-ray diffraction. The results show that the two complexes are isostructural. They crystallize in a monoclinic system with P21/n space group. Crystal data for 1: a = 0.95149(19) nm, b = 1.9012(4) nm, c = 2.2863(5) nm, β= 100.37(3)°, Z = 4,Dc = 1.509 mg/cm3, F(000) = 1880, R1 = 0.0560, wR2 = 0.1564 [Ⅰ> 2σ(Ⅰ)]; for 2: a = 0.9495(2) nm, b = 1.9037(4) nm, c =2.2987(5) nm, β= 99.87(3)°, Z = 4, Dc= 1.541 mg/cm3, F(000) = 1916, R1 = 0.0515, wR2= 0.1566 [Ⅰ>2σ (Ⅰ)]. The two complexes are one-dimensional chains and the coordination number of the Nd3+ or Gd 3+ ion is nine.

  20. Influence of L-alanine doping on crystalline perfection, SHG efficiency, optical and mechanical properties of KDP single crystals

    Science.gov (United States)

    Shakir, Mohd.; Ganesh, V.; Riscob, B.; Maurya, K. K.; Wahab, M. A.; Bhagavannarayana, G.; Kishan Rao, K.

    2011-09-01

    Pure and L-alanine (LA) doped single crystals of potassium dihydrogen orthophosphate (KDP) were grown by slow evaporation solution technique (SEST) in aqueous solution at ambient temperature. Powder X-ray diffraction study was done to confirm the crystal system and lattice parameters of KDP. No additional phases were observed at all doping concentrations (1-7.5 mol%), which was further confirmed by FT-Raman spectroscopy analysis. The influence of LA doping on the crystalline perfection was assessed by high-resolution X-ray diffractometry (HRXRD) analysis. HRXRD studies revealed that the grown crystals could accommodate LA at the interstitial positions in the crystalline matrix of KDP up to some critical concentration without any deterioration in the crystalline perfection. Above this concentration, very low angle structural grain boundaries were developed and it seems that the excess LA above the critical concentration was segregated along the grain boundaries. The SHG efficiency was measured using the Kurtz powder technique. The relative SHG efficiency of the crystals was found to be increased with doping concentration up to 5 mol% and above this it decreases. Optical transmission study also revealed the same behavior with enhancement up to 5 mol% concentration and later decreased. The hardness values were found to be increased by increasing the doping concentration.

  1. Growth, structural, spectral, mechanical, thermal and dielectric characterization of phosphoric acid admixtured L-alanine (PLA) single crystals

    Science.gov (United States)

    Rose, A. S. J. Lucia; Selvarajan, P.; Perumal, S.

    2011-10-01

    Phosphoric acid admixtured L-alanine (PLA) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 18 mm × 12 mm × 8 mm have been obtained in 28 days. The grown crystals were colorless and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV-visible transmittance spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied.

  2. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA) and Its Carbamate Adducts at Physiological Conditions

    Science.gov (United States)

    Zimmerman, David; Goto, Joy J.; Krishnan, Viswanathan V

    2016-01-01

    Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) is associated with β-methylamino-L-alanine (BMAA), a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY). The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin. PMID:27513925

  3. Perspective of future drugs targeting sterile 20/SPS1-related proline/alanine-rich kinase for blood pressure control

    Institute of Scientific and Technical Information of China (English)

    Gen-Min; Lin; Pang-Yen; Liu; Ching-Fen; Wu; Wen-Been; Wang; Chih-Lu; Han

    2015-01-01

    According to a genome-wide association study,intronic SNPs within the human sterile 20/SPS1-related proline/alanine-rich kinase(SPAK) gene was linked to 20% of the general population and may be associated with elevated blood pressure. As cell volume changes,mammalian SPAK kinases respond to phosphorylate and regulate cation-coupled chloride co-transporter activity. To our knowledge,phosphorylation of upstream with-no-lysine(K)(WNK) kinases would activate SPAK kinases. The activation of WNK-OSR1/SPAK cascade on the kidneys and aortic tissue is related to the development of hypertension. Several regulators of the WNK pathway such as the Kelch kinase protein 3-Cullin 3 E3 ligase,hyperinsulinemia,and low potassium intake to mediate hypertension have been identified. In addition,the SPAK kinases may affect the action of renin-angiotensin-aldosterone system on blood pressure as well. In 2010,two SPAK knock-in and knock-out mouse models have clarified the pathogenesis of lowering blood pressure by influencing the receptors on the kidneys and aortic smooth muscle. More recently,two novel SPAK inhibitors for mice,Stock 1S-14279 and Closantel were discovered in 2014. Targeting of SPAK seems to be promising for future antihypertensive therapy. Therefore we raised some viewpoints for the issue for the antihypertensive therapy on the SPAK(gene or kinase).

  4. Formation of Diastereoisomeric Piperazine-2,5-dione from dl-Alanine in the Presence of Olivine and Water

    Science.gov (United States)

    Fuchida, Shigeshi; Naraoka, Hiroshi; Masuda, Harue

    2017-03-01

    dl-Alanine (Ala) was heated with/without powdered olivine and water at 120 °C for 8 days to investigate the formation of the diastereoisomers of piperazine-2,5-dione (diketopiperazine, DKP). When only dl-Ala was heated with a small amount of water, 3.0 % of dl-Ala changed to cis- and trans-DKP after 8 days. DKPs were not detected after heating when no water was added. The presence of a small amount of water is important factor controlling peptide production rates under thermal conditions. When DL-Ala was heated with olivine powder for 8 days, the yields of cis- and trans-DKP were 6.8 and 4.9 %, respectively. The high yield of cis-DKP compared with trans-DKP was attributed to greater thermal stability of cis-DKP. After heating for 8 days, the diastereoisomeric excess of cis-DKP without olivine was 7.3 %, whereas a much higher value of 16.3 % was obtained in the presence of olivine. Taken together, these results show that olivine is not only an efficient catalyst for the formation of DKPs but that it also play a significant role in determining the diastereoisomer selectivity of these cyclic dipeptides.

  5. Scratching below the surface: wound healing and alanine mutagenesis provide unique insights into interactions between eristostatin, platelets and melanoma cells.

    Science.gov (United States)

    McLane, Mary Ann; Zhang, Xiaoming; Tian, Jing; Zelinskas, Claire; Srivastava, Apoorva; Hensley, Brett; Paquette-Straub, Carrie

    2005-01-01

    To study the molecular mechanism of the disintegrin eristostatin, cellular functional studies were performed using ten recombinant alanine mutants. ADP-induced platelet aggregation revealed critical contributions of seven residues within the 'RGD loop' (R24, R27, G28, N31) and C-terminus (W47, N48, G49) of this disintegrin. Using an in vitro scratch wound healing assay, four human melanoma cell lines yielded similar results when exposed to wildtype eristostatin. All eristostatin-treated cells healed less of the wounded area than control conditions. This phenomenon was reproduced when using fibronectin as the matrix. C8161 cells showed significant delay in wound closure with the N-terminal mutant P4A but not with R24A or G28A. Evidence from our laboratory and others suggests neither alpha IIb, alpha 4 nor alpha 5 integrins are directly involved in eristostatin's interactions. Eristostatin did not affect the number of melanoma cells in culture after 24 h or the development of apoptosis. However, phosphorylation studies performed after these melanoma cells were exposed to eristostatin revealed changes in several tyrosine phosphorylated molecules.

  6. The cyanobacterial amino acid β-N-methylamino-l-alanine perturbs the intermediary metabolism in neonatal rats.

    Science.gov (United States)

    Engskog, Mikael K R; Karlsson, Oskar; Haglöf, Jakob; Elmsjö, Albert; Brittebo, Eva; Arvidsson, Torbjörn; Pettersson, Curt

    2013-10-01

    The neurotoxic amino acid β-N-methylamino-l-alanine (BMAA) is produced by most cyanobacteria. BMAA is considered as a potential health threat because of its putative role in neurodegenerative diseases. We have previously observed cognitive disturbances and morphological brain changes in adult rodents exposed to BMAA during the development. The aim of this study was to characterize changes of major intermediary metabolites in serum following neonatal exposure to BMAA using a non-targeted metabolomic approach. NMR spectroscopy was used to obtain serum metabolic profiles from neonatal rats exposed to BMAA (40, 150, 460mg/kg) or vehicle on postnatal days 9-10. Multivariate data analysis of binned NMR data indicated metabolic pattern differences between the different treatment groups. In particular five metabolites, d-glucose, lactate, 3-hydroxybutyrate, creatine and acetate, were changed in serum of BMAA-treated neonatal rats. These metabolites are associated with changes in energy metabolism and amino acid metabolism. Further statistical analysis disclosed that all the identified serum metabolites in the lowest dose group were significantly (pmodel used in this study is so far the only animal model that displays significant biochemical and behavioral effects after a low short-term dose of BMAA. The demonstrated perturbation of intermediary metabolism may contribute to BMAA-induced developmental changes that result in long-term effects on adult brain function.

  7. Study of the chemical evolution and spectral signatures of some interstellar precursor molecules of adenine, glycine alanine

    CERN Document Server

    Majumdar, Liton; Chakrabarti, Sandip K; Chakrabarti, Sonali; 10.1016/j.newast.2012.09.002

    2012-01-01

    We carry out a quantum chemical calculation to obtain the infrared and electronic absorption spectra of several complex molecules of the interstellar medium (ISM). These molecules are the precursors of adenine, glycine & alanine. They could be produced in the gas phase as well as in the ice phase. We carried out a hydro-chemical simulation to predict the abundances of these species in the gas as well as in the ice phase. Gas and grains are assumed to be interacting through the accretion of various species from the gas phase on to the grain surface and desorption (thermal evaporation and photo-evaporation) from the grain surface to the gas phase. Depending on the physical properties of the cloud, the calculated abundances varies. The influence of ice on vibrational frequencies of different pre-biotic molecules was obtained using Polarizable Continuum Model (PCM) model with the integral equation formalism variant (IEFPCM) as default SCRF method with a dielectric constant of 78.5. Time dependent density func...

  8. New Typical Vector of Neurotoxin β-N-Methylamino-l-Alanine (BMAA in the Marine Benthic Ecosystem

    Directory of Open Access Journals (Sweden)

    Aifeng Li

    2016-11-01

    Full Text Available The neurotoxin β-N-methylamino-l-alanine (BMAA has been identified as an environmental factor triggering neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS and Alzheimer’s disease (AD. We investigated the possible vectors of BMAA and its isomers 2,4-diaminobutyric acid (DAB and N-2(aminoethylglycine (AEG in marine mollusks collected from the Chinese coast. Sixty-eight samples of marine mollusks were collected along the Chinese coast in 2016, and were analyzed by an HILIC-MS/MS (hydrophilic interaction liquid chromatography with tandem quadrupole mass spectrometer method without derivatization. BMAA was detected in a total of five samples from three species: Neverita didyma, Solen strictus, and Mytilus coruscus. The top three concentrations of free-form BMAA (0.99~3.97 μg·g−1 wet weight were detected in N. didyma. DAB was universally detected in most of the mollusk samples (53/68 with no species-specific or regional differences (0.051~2.65 μg·g−1 wet weight. No AEG was detected in any mollusk samples tested here. The results indicate that the gastropod N. didyma might be an important vector of the neurotoxin BMAA in the Chinese marine ecosystem. The neurotoxin DAB was universally present in marine bivalve and gastropod mollusks. Since N. didyma is consumed by humans, we suggest that the origin and risk of BMAA and DAB toxins in the marine ecosystem should be further investigated in the future.

  9. Restricted diversity of antigen binding residues of antibodies revealed by computational alanine scanning of 227 antibody-antigen complexes.

    Science.gov (United States)

    Robin, Gautier; Sato, Yoshiteru; Desplancq, Dominique; Rochel, Natacha; Weiss, Etienne; Martineau, Pierre

    2014-11-11

    Antibody molecules are able to recognize any antigen with high affinity and specificity. To get insight into the molecular diversity at the source of this functional diversity, we compiled and analyzed a non-redundant aligned collection of 227 structures of antibody-antigen complexes. Free energy of binding of all the residue side chains was quantified by computational alanine scanning, allowing the first large-scale quantitative description of antibody paratopes. This demonstrated that as few as 8 residues among 30 key positions are sufficient to explain 80% of the binding free energy in most complexes. At these positions, the residue distribution is not only different from that of other surface residues but also dependent on the role played by the side chain in the interaction, residues participating in the binding energy being mainly aromatic residues, and Gly or Ser otherwise. To question the generality of these binding characteristics, we isolated an antibody fragment by phage display using a biased synthetic repertoire with only two diversified complementarity-determining regions and solved its structure in complex with its antigen. Despite this restricted diversity, the structure demonstrated that all complementarity-determining regions were involved in the interaction with the antigen and that the rules derived from the natural antibody repertoire apply to this synthetic binder, thus demonstrating the robustness and universality of our results.

  10. Estimating kinetic rates from accelerated molecular dynamics simulations: Alanine dipeptide in explicit solvent as a case study

    Science.gov (United States)

    de Oliveira, César Augusto F.; Hamelberg, Donald; McCammon, J. Andrew

    2007-11-01

    Molecular dynamics (MD) simulation is the standard computational technique used to obtain information on the time evolution of the conformations of proteins and many other molecular systems. However, for most biological systems of interest, the time scale for slow conformational transitions is still inaccessible to standard MD simulations. Several sampling methods have been proposed to address this issue, including the accelerated molecular dynamics method. In this work, we study the extent of sampling of the phi/psi space of alanine dipeptide in explicit water using accelerated molecular dynamics and present a framework to recover the correct kinetic rate constant for the helix to beta-strand transition. We show that the accelerated MD can drastically enhance the sampling of the phi/psi conformational phase space when compared to normal MD. In addition, the free energy density plots of the phi/psi space show that all minima regions are accurately sampled and the canonical distribution is recovered. Moreover, the kinetic rate constant for the helix to beta-strand transition is accurately estimated from these simulations by relating the diffusion coefficient to the local energetic roughness of the energy landscape. Surprisingly, even for such a low barrier transition, it is difficult to obtain enough transitions to accurately estimate the rate constant when one uses normal MD.

  11. Modifiable clinical and lifestyle factors are associated with elevated alanine aminotransferase levels in newly diagnosed type 2 diabetes patients

    DEFF Research Database (Denmark)

    Mor, Anil; Svensson, Elisabeth; Rungby, Jørgen;

    2014-01-01

    />21 drinks per week for women/men) (aPR: 1.60, 95% CI: 1.03-2.50), and in those with no regular physical activity (aPR: 1.42, 95% CI: 1.04-1.93). Obesity and metabolic syndrome per se showed no association with elevated ALT when adjusted for other markers, whereas we found positive associations of ALT...... aminotransferase (ALT) levels as a marker of NAFLD in new T2DM patients. METHODS: Alanine aminotransferase levels were measured in 1026 incident T2DM patients enrolled in the nationwide Danish Centre for Strategic Research in Type 2 Diabetes (DD2) cohort. We examined prevalence of elevated ALT (>38 IU/L for women...... and >50 IU/L for men) and calculated prevalence ratios associated with clinical and lifestyle factors using Poisson regression. We examined the association with other biomarkers by linear regression. RESULTS: The median value of ALT was 24 IU/L (interquartile range: 18-32 IU/L) in women and 30 IU...

  12. Effects of Beta-Alanine on Muscle Carnosine and Exercise Performance: A Review of the Current Literature

    Directory of Open Access Journals (Sweden)

    Matthew Cooke

    2010-01-01

    Full Text Available Muscle carnosine has been reported to serve as a physiological buffer, possess antioxidant properties, influence enzyme regulation, and affect sarcoplasmic reticulum calcium regulation.Beta-alanine (β-ALA is a non-essential amino acid. β-ALA supplementation (e.g., 2–6 grams/day has been shown to increase carnosine concentrations in skeletal muscle by 20–80%.Several studies have reported that β-ALA supplementation can increase high-intensity intermittent exercise performance and/or training adaptations. Although the specific mechanism remains to be determined, the ergogenicity of β-ALA has been most commonly attributed to an increased muscle buffering capacity.More recently, researchers have investigated the effects of co-ingesting β-ALA with creatine monohydrate to determine whether there may be synergistic and/or additive benefits. This paper overviews the theoretical rationale and potential ergogenic value of β-ALA supplementation with or without creatine as well as provides future research recommendations.

  13. The cyanobacterial neurotoxin β-N-methylamino-l-alanine (BMAA) induces neuronal and behavioral changes in honeybees.

    Science.gov (United States)

    Okle, Oliver; Rath, Lisa; Galizia, C Giovanni; Dietrich, Daniel R

    2013-07-01

    The cyanobacterially produced neurotoxin beta-N-methylamino-l-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using (14)C-BMAA we demonstrated that BMAA is biologically available to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca(2+) homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA.

  14. Immobilization of Aspergillus Oryzae Mycelium Pellets and Its Application in the Resolution of D, L-Alanine

    Institute of Scientific and Technical Information of China (English)

    WANG Yan; ZHU Nuaigong; ZHANG Fengbao; WANG Shulan; CAI Wangfeng; ZHANG Xubin

    2006-01-01

    Aspergillus oryzae 3042 mycelium pellets were immobilized by crosslinking method with reagents of gelatin and formaldehyde. An orthogonal design table was used to determine the optimal immobilization conditions. The L-aminoacylase activity of immobilized mycelium pellets under optiand the activity retention rate was 83%. The properties of the immobilized preparation were studied. Compared with free pellets, the appropriate pH of reaction system changed from 7.0 to 8.0, temperature changed from 52 ℃ to 63 ℃, and the ranges of the optimum reaction conditions were all improved. The effect of Co2+ on immobilized mycelium pellets was investigated and the favorable concentration was determined. When the immobilized preparation was used for the resolution of D, L-alanine in a packed bed reactor with 10 mm in diameter, 200 mm in height, the operational stabili ty was increased, and the half-life period was 53 d. Thermal stability analysis shows that the immobilized pellets were more stable than the free pellets.

  15. Formation of Diastereoisomeric Piperazine-2,5-dione from uc(dl)-Alanine in the Presence of Olivine and Water

    Science.gov (United States)

    Fuchida, Shigeshi; Naraoka, Hiroshi; Masuda, Harue

    2016-04-01

    uc(dl)-Alanine (Ala) was heated with/without powdered olivine and water at 120 °C for 8 days to investigate the formation of the diastereoisomers of piperazine-2,5-dione (diketopiperazine, DKP). When only uc(dl)-Ala was heated with a small amount of water, 3.0 % of uc(dl)-Ala changed to cis- and trans-DKP after 8 days. DKPs were not detected after heating when no water was added. The presence of a small amount of water is important factor controlling peptide production rates under thermal conditions. When DL-Ala was heated with olivine powder for 8 days, the yields of cis- and trans-DKP were 6.8 and 4.9 %, respectively. The high yield of cis-DKP compared with trans-DKP was attributed to greater thermal stability of cis-DKP. After heating for 8 days, the diastereoisomeric excess of cis-DKP without olivine was 7.3 %, whereas a much higher value of 16.3 % was obtained in the presence of olivine. Taken together, these results show that olivine is not only an efficient catalyst for the formation of DKPs but that it also play a significant role in determining the diastereoisomer selectivity of these cyclic dipeptides.

  16. In Silico Screening, Alanine Mutation, and DFT Approaches for Identification of NS2B/NS3 Protease Inhibitors

    Directory of Open Access Journals (Sweden)

    R. Balajee

    2016-01-01

    Full Text Available To identify the ligand that binds to a target protein with high affinity is a nontrivial task in computer-assisted approaches. Antiviral drugs have been identified for NS2B/NS3 protease enzyme on the mechanism to cleave the viral protein using the computational tools. The consequence of the molecular docking, free energy calculations, and simulation protocols explores the better ligand. It provides in-depth structural insights with the catalytic triad of His51, Asp75, Ser135, and Gly133. The MD simulation was employed here to predict the stability of the complex. The alanine mutation has been performed and its stability was monitored by using the molecular dynamics simulation. The minimal RMSD value suggests that the derived complexes are close to equilibrium. The DFT outcome reveals that the HOMO-LUMO gap of Ligand19 is 2.86 kcal/mol. Among the considered ligands, Ligand19 shows the lowest gap and it is suggested that the HOMO of Ligand19 may transfer the electrons to the LUMO in the active regions. The calculated binding energy of Ligand19 using the DFT method is in good agreement with the docking studies. The pharmacological activity of ligand was performed and satisfies Lipinski rule of 5. Moreover, the computational results are compared with the available IC50 values of experimental results.

  17. Using Position-Specific 13C and 14C Labeling and 13C-PLFA Analysis to Assess Microbial Transformations of Free Versus Sorbed Alanine

    Science.gov (United States)

    Apostel, C.; Herschbach, J.; Bore, E. K.; Kuzyakov, Y.; Dippold, M. A.

    2015-12-01

    Sorption of charged or partially charged low molecular weight organic substances (LMWOS) to soil mineral surfaces delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil sciences, to compare the transformation mechanisms of sorbed and non-sorbed alanine in soil. Alanine as an amino acid links C- and N-cycles in soil and therefore is a model substance for the pool of LMWOS. To assess transformations of sorbed alanine, we added position-specific and uniformly 13C and 14C labeled alanine tracer to soil that had previously been sterilized by γ-radiation. The labeled soil was added to non-sterilized soil from the same site and incubated. Soil labeled with the same tracers without previous sorption was prepared and incubated as well. We captured the respired CO2 and determined its 14C-activity at increasing time intervals. The incorporation of 14C into microbial biomass was determined by chloroform fumigation extraction (CFE), and utilization of individual C positions by distinct microbial groups was evaluated by 13C-phospholipid fatty acid analysis (PLFA). A dual peak in the respired CO2 revealed two sorption mechanisms. To compare the fate of individual C atoms independent of their concentration and pool size in soil, we applied the divergence index (DI). The DI reveals the convergent or divergent behavior of C from individual molecule positions during microbial utilization. Alanine C-1 position was mainly oxidized to CO2, while its C-2 and C-3 were preferentially incorporated in microbial biomass and PLFA. This indicates that sorption by the COOH group does not protect this group from preferential oxidation. Microbial metabolism was determinative for the preferential oxidation of individual molecule positions. The use of position-specific labeling revealed mechanisms and kinetics of microbial utilization of sorbed and non

  18. Study by ESR of free radicals created by irradiation in some organic substances. Application for dosimetry of the measure of free radicals produced in alanine; Etude par RPE des radicaux libres crees sous irradiation dans certaines substances organiques. Application en dosimetrie de la mesure des radicaux libres crees dans l'alanine

    Energy Technology Data Exchange (ETDEWEB)

    Descours, S.; Assayrenc, J.; Bermann, F.; Couderc, B.; Choudens, H. de; Delard, R.; Rassat, A.; Servoz-Gavin, P. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1970-07-01

    This report complete the results obtained with free radicals created in glycine. The nature and number of these radicals produced by irradiation in cysteine and glutathion have been investigated free radicals generated in alanine have specially been studied. A linear law exists in a large scale of doses between the number of radicals and the absorbed dose. This property in connection with the high stability of these radicals is very interesting for an use of this amino-acid in dosimetry field. The background of non irradiated alanine is a limit for the best sensibility. With 1 g of alanine in powder, it is possible to make {gamma} measurements between 5 rads and 5. 10{sup 6} rads. For neutrons, the radicals production yield is lower than for {gamma}. By adding paraffin, it is possible to get a larger yield and to realize compacts dosimeters easier for use than alanine in powder. By adjunction of a higher Z constituent (Ca or Ba for example), it would be possible to improve the yield of the dosimeter for {gamma} energy less than 70 keV. (authors) [French] Ce rapport complete les resultats donnes par ailleurs sur les radicaux libres crees dans la glycine. La nature et le nombre de radicaux crees sous irradiation dans la cysteine et le glutathion ont ete determines. On a etudie plus particulierement les radicaux crees dans l'alanine. Une relation lineaire existe sur une grande gamme de doses absorbees entre le nombre de radicaux crees et la dose absorbee, ceci joint a la grande stabilite de ces radicaux, conduit a une utilisation tres interessante de ces acides amines en tant que dosimetre. La predose de l'alanine non irradiee limite la sensibilite minimum. Quoi qu'il en soit avec 1 g d'alanine en poudre il est possible d'effectuer en {gamma} des mesures entre 5 rads et 5.10{sup 6} rads. En neutrons le rendement radicalaire est plus faible qu'en {gamma}, l'adjonction de paraffine permet de remonter le rendement et de realiser des

  19. Strong water-mediated friction asymmetry and surface dynamics of zwitterionic solids at ambient conditions: L-alanine as a case study

    Science.gov (United States)

    Segura, J. J.; Verdaguer, A.; Garzón, L.; Barrena, E.; Ocal, C.; Fraxedas, J.

    2011-03-01

    Water molecules strongly interact with freshly cleaved (011) surfaces of L-alanine single crystals at low relative humidity (below 10%) promoting diffusion of L-alanine molecules. Species mobility is enhanced above ˜40% leading to the formation of two-dimensional islands with long-range order through Ostwald ripening. Scanning force microscopy experiments reveal that both, islands and terraces, are identical in nature (composition and crystallographic structure) but a relevant friction asymmetry appearing upon water-surface interaction evidences that orientation dependent properties exist between them at the molecular level. We interpret this observation as due to water incorporation in the topmost surface crystal structure. Eventually, for high humidity values, surface dissolution and roughening occur.

  20. Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine

    DEFF Research Database (Denmark)

    Leke, Renata; Bak, Lasse Kristoffer; Anker, Malene

    2011-01-01

    in a mouse neuronal-astrocytic co-culture model of the GABAergic system. We found that 5 mM ammonium chloride affected energy metabolism by increasing the neuronal TCA cycle activity and switching the astrocytic TCA cycle toward synthesis of substrate for glutamine synthesis. Furthermore, ammonia exposure...... enhanced the synthesis and release of alanine. Collectively, our results demonstrate that (1) formation of glutamine is seminal for detoxification of ammonia; (2) neuronal oxidative metabolism is increased in the presence of ammonia; and (3) synthesis and release of alanine is likely to be important......Cerebral hyperammonemia is believed to play a pivotal role in the development of hepatic encephalopathy (HE), a debilitating condition arising due to acute or chronic liver disease. In the brain, ammonia is thought to be detoxified via the activity of glutamine synthetase, an astrocytic enzyme...

  1. Living Polymerization of N -Substituted β-Alanine N -Carboxyanhydrides: Kinetic Investigations and Preparation of an Amphiphilic Block Copoly-β-Peptoid

    KAUST Repository

    Grossmann, Arlett

    2012-07-03

    Poly(α-peptoid)s (N-substituted polyglycines) are interesting peptidomimetic biomaterials that have been discussed for many applications. Poly(β-peptoid)s (N-substituted poly-β-alanines), although equally intriguing, have received much less attention. Here we present results that suggest that while N-substituted β-alanine N-carboxyanhydrides can undergo a living nucleophilic ring-opening polymerization, the solubility of poly(β-peptoid)s can be very poor, which contributes to the limited accessibility using other synthetic approaches. The living character of the polymerization was utilized for the preparation of the first polymerized amphiphilic block copoly-β-peptoid. Our results may open a new route towards highly defined functional poly(β-peptoid)s which could represent biomaterials. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. In vivo dosimetry in the urethra using alanine/ESR during (192)Ir HDR brachytherapy of prostate cancer--a phantom study.

    Science.gov (United States)

    Anton, Mathias; Wagner, Daniela; Selbach, Hans-Joachim; Hackel, Thomas; Hermann, Robert Michael; Hess, Clemens Friedrich; Vorwerk, Hilke

    2009-05-07

    A phantom study for dosimetry in the urethra using alanine/ESR during (192)Ir HDR brachytherapy of prostate cancer is presented. The measurement method of the secondary standard of the Physikalisch-Technische Bundesanstalt had to be slightly modified in order to be able to measure inside a Foley catheter. The absorbed dose to water response of the alanine dosimetry system to (192)Ir was determined with a reproducibility of 1.8% relative to (60)Co. The resulting uncertainty for measurements inside the urethra was estimated to be 3.6%, excluding the uncertainty of the dose rate constant Lambda. The applied dose calculated by a treatment planning system is compared to the measured dose for a small series of (192)Ir HDR irradiations in a gel phantom. The differences between the measured and applied dose are well within the limits of uncertainty. Therefore, the method is considered to be suitable for measurements in vivo.

  3. In vivo dosimetry in the urethra using alanine/ESR during 192Ir HDR brachytherapy of prostate cancer—a phantom study

    Science.gov (United States)

    Anton, Mathias; Wagner, Daniela; Selbach, Hans-Joachim; Hackel, Thomas; Hermann, Robert Michael; Hess, Clemens Friedrich; Vorwerk, Hilke

    2009-05-01

    A phantom study for dosimetry in the urethra using alanine/ESR during 192Ir HDR brachytherapy of prostate cancer is presented. The measurement method of the secondary standard of the Physikalisch-Technische Bundesanstalt had to be slightly modified in order to be able to measure inside a Foley catheter. The absorbed dose to water response of the alanine dosimetry system to 192Ir was determined with a reproducibility of 1.8% relative to 60Co. The resulting uncertainty for measurements inside the urethra was estimated to be 3.6%, excluding the uncertainty of the dose rate constant Λ. The applied dose calculated by a treatment planning system is compared to the measured dose for a small series of 192Ir HDR irradiations in a gel phantom. The differences between the measured and applied dose are well within the limits of uncertainty. Therefore, the method is considered to be suitable for measurements in vivo.

  4. In vivo dosimetry in the urethra using alanine/ESR during {sup 192}Ir HDR brachytherapy of prostate cancer-a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Anton, Mathias; Selbach, Hans-Joachim; Hackel, Thomas [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Wagner, Daniela; Hess, Clemens Friedrich; Vorwerk, Hilke [Department of Radiotherapy and Radiooncology, University Hospital Goettingen, Goettingen (Germany); Hermann, Robert Michael [Zentrum fuer Strahlentherapie und Radioonkologie, Bremen (Germany)], E-mail: mathias.anton@ptb.de

    2009-05-07

    A phantom study for dosimetry in the urethra using alanine/ESR during {sup 192}Ir HDR brachytherapy of prostate cancer is presented. The measurement method of the secondary standard of the Physikalisch-Technische Bundesanstalt had to be slightly modified in order to be able to measure inside a Foley catheter. The absorbed dose to water response of the alanine dosimetry system to {sup 192}Ir was determined with a reproducibility of 1.8% relative to {sup 60}Co. The resulting uncertainty for measurements inside the urethra was estimated to be 3.6%, excluding the uncertainty of the dose rate constant {lambda}. The applied dose calculated by a treatment planning system is compared to the measured dose for a small series of {sup 192}Ir HDR irradiations in a gel phantom. The differences between the measured and applied dose are well within the limits of uncertainty. Therefore, the method is considered to be suitable for measurements in vivo.

  5. Excess of L-alanine in amino acids synthesized in a plasma torch generated by a hypervelocity meteorite impact reproduced in the laboratory

    Science.gov (United States)

    Managadze, George G.; Engel, Michael H.; Getty, Stephanie; Wurz, Peter; Brinckerhoff, William B.; Shokolov, Anatoly G.; Sholin, Gennady V.; Terent'ev, Sergey A.; Chumikov, Alexander E.; Skalkin, Alexander S.; Blank, Vladimir D.; Prokhorov, Vyacheslav M.; Managadze, Nina G.; Luchnikov, Konstantin A.

    2016-10-01

    We present a laboratory reproduction of hypervelocity impacts of a carbon containing meteorite on a mineral substance representative of planetary surfaces. The physical conditions of the resulting impact plasma torch provide favorable conditions for abiogenic synthesis of protein amino acids: We identified glycine and alanine, and in smaller quantities serine, in the produced material. Moreover, we observe breaking of alanine mirror symmetry with L excess, which coincides with the bioorganic world. Therefore the selection of L-amino acids for the formation of proteins for living matter could have been the result from plasma processes occurring during the impact meteorites on the surface. This indicates that the plasma torch from meteorite impacts could play an important role in the formation of biomolecular homochirality. Thus, meteorite impacts possibly were the initial stage of this process and promoted conditions for the emergence of a living matter.

  6. Polarised Raman and infrared spectral analysis of L-alanine oxalate (C5H9NO6)--a non-linear optical single crystal.

    Science.gov (United States)

    Krishnakumar, V; Nagalakshmi, R

    2006-06-01

    L-alanine oxalate (C5H9NO6), a promising material for effective frequency conversion, was grown by standard slow evaporation technique. Solubility studies were carried out at different temperatures. Unambiguous assignments of fundamental modes of various molecular groups were made from the recorded infrared and polarised Raman spectra. The non-linear optical property has been confirmed from the optical transmission and fluorescence spectra.

  7. Transferability and reproducibility in electron-density studies--bond-topological and atomic properties of tripeptides of the type L-alanyl-X-L-alanine.

    Science.gov (United States)

    Grabowsky, Simon; Kalinowski, Roman; Weber, Manuela; Förster, Diana; Paulmann, Carsten; Luger, Peter

    2009-08-01

    In the last decade three different data bank approaches have been developed that are intended to make electron-density examinations of large biologically important molecules possible. They rely on Bader's concept of transferability of submolecular fragments with retention of their electronic properties. Therefore, elaborate studies on the quantification of transferability in experiment and theory are still very important. Tripeptides of the type L-alanyl-X-L-alanine (X being any of the 20 naturally encoded amino acids) serve as a model case between amino acids and proteins. The two experimental electron-density determinations (L-alanyl-L-histidinyl-L-alanine and L-alanyl-L-phenylalanyl-L-alanine, highly resolved synchrotron X-ray diffraction data sets) performed in this study and theoretical calculations on all 20 different L-alanyl-X-L-alanine molecules contribute to a better estimation of transferability in the peptide case. As a measure of reproducibility and transferability, standard deviations from averaging over bond-topological and atomic properties of atoms or bonds that are considered equal in their chemical environments were calculated. This way, transferability and reproducibility indices were introduced. It can be shown that experimental transferability indices generally slightly exceed experimental reproducibility indices and that these larger deviations can be attributed to chemical effects such as changes in the geometry (bond lengths and angles), the polarization pattern and the neighboring sphere due to crystal packing. These effects can partly be separated from each other and quantified with the help of gas-phase calculations at optimized and experimental geometries. Thus, the degree of transferability can be quantified in very narrow limits taking into account experimental errors and chemical effects.

  8. E. coli histidine triad nucleotide binding protein 1 (ecHinT) is a catalytic regulator of D-alanine dehydrogenase (DadA) activity in vivo.

    Science.gov (United States)

    Bardaweel, Sanaa; Ghosh, Brahma; Chou, Tsui-Fen; Sadowsky, Michael J; Wagner, Carston R

    2011-01-01

    Histidine triad nucleotide binding proteins (Hints) are highly conserved members of the histidine triad (HIT) protein superfamily. Hints comprise the most ancient branch of this superfamily and can be found in Archaea, Bacteria, and Eukaryota. Prokaryotic genomes, including a wide diversity of both gram-negative and gram-positive bacteria, typically have one Hint gene encoded by hinT (ycfF in E. coli). Despite their ubiquity, the foundational reason for the wide-spread conservation of Hints across all kingdoms of life remains a mystery. In this study, we used a combination of phenotypic screening and complementation analyses with wild-type and hinT knock-out Escherichia coli strains to show that catalytically active ecHinT is required in E. coli for growth on D-alanine as a sole carbon source. We demonstrate that the expression of catalytically active ecHinT is essential for the activity of the enzyme D-alanine dehydrogenase (DadA) (equivalent to D-amino acid oxidase in eukaryotes), a necessary component of the D-alanine catabolic pathway. Site-directed mutagenesis studies revealed that catalytically active C-terminal mutants of ecHinT are unable to activate DadA activity. In addition, we have designed and synthesized the first cell-permeable inhibitor of ecHinT and demonstrated that the wild-type E. coli treated with the inhibitor exhibited the same phenotype observed for the hinT knock-out strain. These results reveal that the catalytic activity and structure of ecHinT is essential for DadA function and therefore alanine metabolism in E. coli. Moreover, they provide the first biochemical evidence linking the catalytic activity of this ubiquitous protein to the biological function of Hints in Escherichia coli.

  9. E. coli histidine triad nucleotide binding protein 1 (ecHinT is a catalytic regulator of D-alanine dehydrogenase (DadA activity in vivo.

    Directory of Open Access Journals (Sweden)

    Sanaa Bardaweel

    Full Text Available Histidine triad nucleotide binding proteins (Hints are highly conserved members of the histidine triad (HIT protein superfamily. Hints comprise the most ancient branch of this superfamily and can be found in Archaea, Bacteria, and Eukaryota. Prokaryotic genomes, including a wide diversity of both gram-negative and gram-positive bacteria, typically have one Hint gene encoded by hinT (ycfF in E. coli. Despite their ubiquity, the foundational reason for the wide-spread conservation of Hints across all kingdoms of life remains a mystery. In this study, we used a combination of phenotypic screening and complementation analyses with wild-type and hinT knock-out Escherichia coli strains to show that catalytically active ecHinT is required in E. coli for growth on D-alanine as a sole carbon source. We demonstrate that the expression of catalytically active ecHinT is essential for the activity of the enzyme D-alanine dehydrogenase (DadA (equivalent to D-amino acid oxidase in eukaryotes, a necessary component of the D-alanine catabolic pathway. Site-directed mutagenesis studies revealed that catalytically active C-terminal mutants of ecHinT are unable to activate DadA activity. In addition, we have designed and synthesized the first cell-permeable inhibitor of ecHinT and demonstrated that the wild-type E. coli treated with the inhibitor exhibited the same phenotype observed for the hinT knock-out strain. These results reveal that the catalytic activity and structure of ecHinT is essential for DadA function and therefore alanine metabolism in E. coli. Moreover, they provide the first biochemical evidence linking the catalytic activity of this ubiquitous protein to the biological function of Hints in Escherichia coli.

  10. Crystal structure of N-(tert-but-oxy-carbon-yl)phenyl-alanylde-hydro-alanine isopropyl ester (Boc-Phe-ΔAla-OiPr).

    Science.gov (United States)

    Lenartowicz, Paweł; Makowski, Maciej; Zarychta, Bartosz; Ejsmont, Krzysztof

    2014-12-01

    In the title compound, the de-hydro-dipeptide (Boc-Phe-ΔAla-OiPr, C20H28N2O5), the mol-ecule has a trans conformation of the N-methyl-amide group. The geometry of the de-hydro-alanine moiety is to some extent different from those usually found in simple peptides, indicating conjugation between the H2C=C group and the peptide bond. The bond angles around de-hydro-alanine have unusually high values due to the steric hindrance, the same inter-action influencing the slight distortion from planarity of the de-hydro-alanine. The mol-ecule is stabilized by intra-molecular inter-actions between the isopropyl group and the N atoms of the peptide main chain. In the crystal, an N-H⋯O hydrogen bond links the mol-ecules into ribbons, giving a herringbone head-to-head packing arrangement extending along the [100] direction. In the stacks, the mol-ecules are linked by weak C-H⋯O hydrogen-bonding associations.

  11. Amino acids (L-arginine and L-alanine) passivated CdS nanoparticles: Synthesis of spherical hierarchical structure and nonlinear optical properties

    Science.gov (United States)

    Talwatkar, S. S.; Tamgadge, Y. S.; Sunatkari, A. L.; Gambhire, A. B.; Muley, G. G.

    2014-12-01

    CdS nanoparticles (NPs) passivated with amino acids (L-alanine and L-arginine) having spherical hierarchical morphology were synthesized by room temperature wet chemical method. Synthesized NPs were characterized by ultraviolet-visible (UV-vis) spectroscopy to study the variation of band gaps with concentration of surface modifying agents. Increase in band gap has been observed with the increase in concentration of surface modifying agents and was found more prominent for CdS NPs passivated with L-alanine. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis were carried out for the study of crystal structure and morphology of CdS NPs. The average particle size of CdS NPs calculated from Debye-Scherer formula was found to less than 5 nm and agrees well with those determined from UV-vis spectra and TEM data. Fourier transform infrared (FT-IR) spectroscopy was performed to know the functional groups of the grown NPs. Peaks in FT-IR spectra indicate the formation of CdS NPs and capping with L-alanine and L-arginine. Photoluminescence spectra of these NPs were also studied. Finally, colloidal solution of CdS-PVAc was subjected to Z-scan experiment under low power cw laser illumination to characterize them for third order nonlinear optical properties. CdS-PVAc colloidal solution shows enhanced nonlinear absorption due to RSA and weak FCA on account of two photon absorption processes triggered by thermal effect.

  12. Determination of isodose curves in Radiotherapy using an Alanine/ESR dosemeter; Determinacion de curvas de isodosis en Radioterapia usando un dosimetro de Alanina/ESR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F.; Baffa, O.; Graeff, C.F.O. [Departamento de Fisica e Matematica. Universidade de Sao Paulo FFCLRP. 14040-901 Ribeirao Preto-SP (Brazil)

    1998-12-31

    It was studied the possible use of an Alanine/ESR dosemeter in the isodose curves mapping in normal treatments of Radiotherapy. It was manufactured a lot of 150 dosemeters with base in a mixture of D-L Alanine dust (80 %) and paraffin (20 %). Each dosemeter has 4.7 mm diameter and 12 mm length. A group of 100 dosemeters of the lot were arranged inside 50 holes of the slice 25 of the phantom Rando Man. The phantom irradiation was realized in two opposed projections (AP and PA) in Co-60 equipment. A group of 15 dosemeters was take of the same lot for obtaining the calibration curve in a 1-20 Gy range. After irradiation the signal of each dosemeter was measured in an ESR spectrometer operating in the X-band ({approx} 9.5 GHz) and the wideness of Alanine ESR spectra central line was correlated with the radiation dose. The wideness dose calibration curve resulted linear with a correlation coefficient 0.9996. The isodose curves obtained show a profile enough similar at comparing with the theoretical curves. (Author)

  13. The effect of beta-alanine supplementation on neuromuscular fatigue in elderly (55–92 Years: a double-blind randomized study

    Directory of Open Access Journals (Sweden)

    Cramer Joel T

    2008-11-01

    Full Text Available Abstract Background Ageing is associated with a significant reduction in skeletal muscle carnosine which has been linked with a reduction in the buffering capacity of muscle and in theory, may increase the rate of fatigue during exercise. Supplementing beta-alanine has been shown to significantly increase skeletal muscle carnosine. The purpose of this study, therefore, was to examine the effects of ninety days of beta-alanine supplementation on the physical working capacity at the fatigue threshold (PWCFT in elderly men and women. Methods Using a double-blind placebo controlled design, twenty-six men (n = 9 and women (n = 17 (age ± SD = 72.8 ± 11.1 yrs were randomly assigned to either beta-alanine (BA: 800 mg × 3 per day; n = 12; CarnoSyn™ or Placebo (PL; n = 14 group. Before (pre and after (post the supplementation period, participants performed a discontinuous cycle ergometry test to determine the PWCFT. Results Significant increases in PWCFT (28.6% from pre- to post-supplementation were found for the BA treatment group (p Conclusion We suggest that BA supplementation, by improving intracellular pH control, improves muscle endurance in the elderly. This, we believe, could have importance in the prevention of falls, and the maintenance of health and independent living in elderly men and women.

  14. Growth of transplastomic cells expressing D-amino acid oxidase in chloroplasts is tolerant to D-alanine and inhibited by D-valine.

    Science.gov (United States)

    Gisby, Martin F; Mudd, Elisabeth A; Day, Anil

    2012-12-01

    Dual-conditional positive/negative selection markers are versatile genetic tools for manipulating genomes. Plastid genomes are relatively small and conserved DNA molecules that can be manipulated precisely by homologous recombination. High-yield expression of recombinant products and maternal inheritance of plastid-encoded traits make plastids attractive sites for modification. Here, we describe the cloning and expression of a dao gene encoding D-amino acid oxidase from Schizosaccharomyces pombe in tobacco (Nicotiana tabacum) plastids. The results provide genetic evidence for the uptake of D-amino acids into plastids, which contain a target that is inhibited by D-alanine. Importantly, this nonantibiotic-based selection system allows the use of cheap and widely available D-amino acids, which are relatively nontoxic to animals and microbes, to either select against (D-valine) or for (D-alanine) cells containing transgenic plastids. Positive/negative selection with d-amino acids was effective in vitro and against transplastomic seedlings grown in soil. The dual functionality of dao is highly suited to the polyploid plastid compartment, where it can be used to provide tolerance against potential D-alanine-based herbicides, control the timing of recombination events such as marker excision, influence the segregation of transgenic plastid genomes, identify loci affecting dao function in mutant screens, and develop D-valine-based methods to manage the spread of transgenic plastids tagged with dao.

  15. Detection of Hepatitis C virus RNA in peripheral blood mononuclear cells of patients with abnormal alanine transaminase in Ahvaz

    Directory of Open Access Journals (Sweden)

    M Makvandi

    2014-01-01

    Full Text Available Purpose: Hepatitis C virus (HCV is an important agent for chronic and acute hepatitis. Occult hepatitis C remains a major health problem worldwide. Patients with chronic occult HCV may progress to cirrhosis and hepatocellular carcinoma. The aim of this study was to determine prevalence of occult hepatitis C by IS-PCR-ISH (in situ PCR in situ hybridisation in the patients with abnormal ALT. Materials and Methods: The blood samples were taken from 53 patients including 17 females (32.1% and 36 (67.9% males who had abnormal alanine transaminase (ALT for more than 1 year. The mean ALT and aspartate transaminase (AST level were 41.02 ± 9.3 and 24.17 ± 7.3, respectively. The patients′ age were between 4 and 70-years old with mean age 38 ± 13. All the patients were negative for HCV antibody, HCV RNA and HBs Ag. The peripheral blood mononuclear cells (PBMC were separated with ficoll gradient from each blood sample, then the cells were fixed on slides by cold acetone and followed by IS-PCR-ISH for HCV RNA detection. Results: Seventeen (32% patients including 6 (11.3% females and 11 (20.7% males showed positive results for HCV RNA by in situ-PCR in situ hybridisation. Ten (18.8% positive cases were between 20 and 40-years old and 6 (11.3% positive patients were between 40 and 60 years old. Ten (19.6% patients who were positive for IS-PCR-ISH also had positive anti-HBc IgG and 7 (13.2% patients were negative for HBc-IgG. Conclusion: In the present study high rate of 32% occult hepatitis C were found among the patients with elevated ALT.

  16. Unique food-entrained circadian rhythm in cysteine414-alanine mutant mCRY1 transgenic mice.

    Science.gov (United States)

    Okano, Satoshi; Yasui, Akira; Hayasaka, Kiyoshi; Nakajima, Osamu

    Food availability is a potent environmental cue that directs circadian locomotor activity in rodents. Daily scheduled restricted feeding (RF), in which the food available time is restricted for several hours each day, elicits anticipatory activity. This food-anticipatory activity (FAA) is controlled by a food-entrainable oscillator (FEO) that is distinct from the suprachiasmatic nucleus (SCN), the master pacemaker in mammals. In an earlier report, we described generation of transgenic (Tg) mice ubiquitously overexpressing cysteine414-alanine mutant mCRY1. The Tg mice displayed long locomotor free-running periods (approximately 28 h) with rhythm splitting. Furthermore, their locomotor activity immediately re-adjusted to the advance of light-dark cycles (LD), suggesting some disorder in the coupling of SCN neurons. The present study examined the restricted feeding cycle (RF)-induced entrainment of locomotor activity in Tg mice in various light conditions. In LD, wild-type controls showed both FAA and LD-entrained activities. In Tg mice, almost all activity was eventually consolidated to a single bout before the feeding time. The result suggests a possibility that in Tg mice the feeding cycle dominates the LD cycle as an entrainment agent. In constant darkness (DD), wild-type mice exhibited robust free-run activity and FAA during RF. For Tg mice, only the rhythm entrained to RF was observed in DD. Furthermore, after returning to free feeding, the free-run started from the RF-entrained phase. These results suggest that the SCN of Tg mice is entrainable to RF and that the mCRY1 mutation alters the sensitivity of SCN to the cycle of nonphotic zeitgebers.

  17. β-Alanine Supplementation Does Not Augment the Skeletal Muscle Adaptive Response to 6 Weeks of Sprint Interval Training.

    Science.gov (United States)

    Cochran, Andrew J R; Percival, Michael E; Thompson, Sara; Gillen, Jenna B; MacInnis, Martin J; Potter, Murray A; Tarnopolsky, Mark A; Gibala, Martin J

    2015-12-01

    Sprint interval training (SIT), repeated bouts of high-intensity exercise, improves skeletal muscle oxidative capacity and exercise performance. β-alanine (β-ALA) supplementation has been shown to enhance exercise performance, which led us to hypothesize that chronic β-ALA supplementation would augment work capacity during SIT and augment training-induced adaptations in skeletal muscle and performance. Twenty-four active but untrained men (23 ± 2 yr; VO2peak = 50 ± 6 mL · kg(-1) · min(-1)) ingested 3.2 g/day of β-ALA or a placebo (PLA) for a total of 10 weeks (n = 12 per group). Following 4 weeks of baseline supplementation, participants completed a 6-week SIT intervention. Each of 3 weekly sessions consisted of 4-6 Wingate tests, i.e., 30-s bouts of maximal cycling, interspersed with 4 min of recovery. Before and after the 6-week SIT program, participants completed a 250-kJ time trial and a repeated sprint test. Biopsies (v. lateralis) revealed that skeletal muscle carnosine content increased by 33% and 52%, respectively, after 4 and 10 weeks of β-ALA supplementation, but was unchanged in PLA. Total work performed during each training session was similar across treatments. SIT increased markers of mitochondrial content, including cytochome c oxidase (40%) and β-hydroxyacyl-CoA dehydrogenase maximal activities (19%), as well as VO2peak (9%), repeated-sprint capacity (5%), and 250-kJ time trial performance (13%), but there were no differences between treatments for any measure (p .05, interaction effects). The training stimulus may have overwhelmed any potential influence of β-ALA, or the supplementation protocol was insufficient to alter the variables to a detectable extent.

  18. Diet and the frequency of the alanine:glyoxylate aminotransferase Pro11Leu polymorphism in different human populations.

    Science.gov (United States)

    Caldwell, Elizabeth F; Mayor, Lianne R; Thomas, Mark G; Danpure, Christopher J

    2004-11-01

    The intermediary metabolic enzyme alanine:glyoxylate aminotransferase (AGT) contains a Pro11Leu polymorphism that decreases its catalytic activity by a factor of three and causes a small proportion to be mistargeted from its normal intracellular location in the peroxisomes to the mitochondria. These changes are predicted to have significant effects on the synthesis and excretion of the metabolic end-product oxalate and the deposition of insoluble calcium oxalate in the kidney and urinary tract. Based on the evolution of AGT targeting in mammals, we have previously hypothesised that this polymorphism would be advantageous for individuals who have a meat-rich diet, but disadvantageous for those who do not. If true, the frequency distribution of Pro11Leu in different extant human populations should have been shaped by their dietary history so that it should be more common in populations with predominantly meat-eating ancestral diets than it is in populations in which the ancestral diets were predominantly vegetarian. In the present study, we have determined frequency of Pro11Leu in 11 different human populations with divergent ancestral dietary lifestyles. We show that the Pro11Leu allelic frequency varies widely from 27.9% in the Saami, a population with a very meat-rich ancestral diet, to 2.3% in Chinese, who are likely to have had a more mixed ancestral diet. FST analysis shows that the differences in Pro11Leu frequency between some populations (particularly Saami vs Chinese) was very high when compared with neutral loci, suggesting that its frequency might have been shaped by dietary selection pressure.

  19. The ergogenic effect of beta-alanine combined with sodium bicarbonate on high-intensity swimming performance.

    Science.gov (United States)

    Painelli, Vitor de Salles; Roschel, Hamilton; Jesus, Flávia de; Sale, Craig; Harris, Roger Charles; Solis, Marina Yázigi; Benatti, Fabiana Braga; Gualano, Bruno; Lancha, Antonio Herbert; Artioli, Guilherme Giannini

    2013-05-01

    We investigated the effect of beta-alanine (BA) alone (study A) and in combination with sodium bicarbonate (SB) (study B) on 100- and 200-m swimming performance. In study A, 16 swimmers were assigned to receive either BA (3.2 g·day(-1) for 1 week and 6.4 g·day(-1) for 4 weeks) or placebo (PL; dextrose). At baseline and after 5 weeks of supplementation, 100- and 200-m races were completed. In study B, 14 were assigned to receive either BA (3.2 g·day(-1) for 1 week and 6.4 g·day(-1) for 3 weeks) or PL. Time trials were performed once before and twice after supplementation (with PL and SB), in a crossover fashion, providing 4 conditions: PL-PL, PL-SB, BA-PL, and BA-SB. In study A, BA supplementation improved 100- and 200-m time-trial performance by 2.1% (p = 0.029) and 2.0% (p = 0.0008), respectively. In study B, 200-m time-trial performance improved in all conditions, compared with presupplementation, except the PL-PL condition (PL-SB, +2.3%; BA-PL, +1.5%; BA-SB, +2.13% (p supplementation. The probability of BA having a positive effect was 65.2%; when SB was added to BA, the probability was 71.8%. BA and SB supplementation improved 100- and 200-m swimming performance. The coingestion of BA and SB induced a further nonsignificant improvement in performance.

  20. Population-based Risk Factors for Elevated Alanine Aminotransferase in a South Texas Mexican–American Population

    Science.gov (United States)

    Qu, Hui-Qi; Li, Quan; Grove, Megan L.; Lu, Yang; Pan, Jen-Jung; Rentfro, Anne R.; Bickel, Perry E.; Fallon, Michael B.; Hanis, Craig L.; Boerwinkle, Eric; McCormick, Joseph B.; Fisher-Hoch, Susan P.

    2013-01-01

    Background and Aims Elevated alanine aminotransferase (ALT >40 IU/mL) is a marker of liver injury but provides little insight into etiology. We aimed to identify and stratify risk factors associated with elevated ALT in a randomly selected population with a high prevalence of elevated ALT (39%), obesity (49%) and diabetes (30%). Methods Two machine learning methods, the support vector machine (SVM) and Bayesian logistic regression (BLR), were used to capture risk factors in a community cohort of 1532 adults from the Cameron County Hispanic Cohort (CCHC). A total of 28 predictor variables were used in the prediction models. The recently identified genetic marker rs738409 on the PNPLA3 gene was genotyped using the Sequenom iPLEX assay. Results The four major risk factors for elevated ALT were fasting plasma insulin level and insulin resistance, increased BMI and total body weight, plasma triglycerides and non-HDL cholesterol, and diastolic hypertension. In spite of the highly significant association of rs738409 in females, the role of rs738409 in the prediction model is minimal, compared to other epidemiological risk factors. Age and drug and alcohol consumption were not independent determinants of elevated ALT in this analysis. Conclusions The risk factors most strongly associated with elevated ALT in this population are components of the metabolic syndrome and point to nonalcoholic fatty liver disease (NAFLD). This population-based model identifies the likely cause of liver disease without the requirement of individual pathological diagnosis of liver diseases. Use of such a model can greatly contribute to a population-based approach to prevention of liver disease. PMID:22959976

  1. Association of Alanine Aminotransferase Levels (ALT with the Hepatic Insulin Resistance Index (HIRI: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Gómez-Sámano Miguel

    2012-09-01

    Full Text Available Abstract Background The association between serum alanine aminotransferase (ALT levels and hepatic insulin resistance (IR has been evaluated with the hyperinsulinemic-euglycemic clamp. However, there is no information about the association of ALT with the Hepatic Insulin Resistance Index (HIRI. The aim of this study was to evaluate the association between serum ALT levels and HIRI in subjects with differing degrees of impaired glucose metabolism. Methods This cross-sectional study included subjects that had an indication for testing for type 2 diabetes mellitus (T2DM with an oral glucose tolerance test (OGTT. Clinical and biochemical evaluations were carried out including serum ALT level quantification. HIRI was calculated for each participant. Correlation analyses and lineal regression models were used to evaluate the association between ALT levels and HIRI. Results A total of 324 subjects (37.6% male were included. The mean age was 40.4 ± 14.3 years and the mean body mass index (BMI was 32.0 ± 7.3 kg/m2. Individuals were divided into 1 of 5 groups: without metabolic abnormalities (n = 113, 34.8%; with the metabolic syndrome (MetS, n = 179, 55.2%, impaired fasting glucose (IFG, n = 85, 26.2%; impaired glucose tolerance (IGT, n = 91, 28.0%, and T2DM (n = 23, 7.0%. The ALT (p  Conclusions ALT levels are independently associated with HIRI in subjects with the MetS, IFG, IGT, and T2DM. The ALT value in these subjects may be an indirect parameter to evaluate hepatic IR.

  2. The cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) induces neuronal and behavioral changes in honeybees

    Energy Technology Data Exchange (ETDEWEB)

    Okle, Oliver, E-mail: oliver.okle@uni-konstanz.de [Human and Environmental Toxicology, University of Konstanz, Jacob-Burckhardt-Strasse 25, 78457 Konstanz (Germany); Rath, Lisa; Galizia, C. Giovanni [Zoology and Neurobiology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz (Germany); Dietrich, Daniel R., E-mail: daniel.dietrich@uni-konstanz.de [Human and Environmental Toxicology, University of Konstanz, Jacob-Burckhardt-Strasse 25, 78457 Konstanz (Germany)

    2013-07-01

    The cyanobacterially produced neurotoxin beta-N-methylamino-L-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using {sup 14}C-BMAA we demonstrated that BMAA is biologically available to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca{sup 2+} homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA. - Highlights: • Investigating of neurotoxic effects of BMAA in honeybees • BMAA impairs ALS markers (ROS, Ca{sup 2+}, learning, memory, odor) in bees. • A method for the observation of ROS development in living bees brain was established. • Honeybees are a suitable model to explore neurodegenerative processes. • Neurotoxic BMAA can be spread in bee populations by trophallaxis.

  3. The Effect of Multilayer Gold Nanoparticles on the Electrochemical Response of Ammonium Ion Biosensor Based on Alanine Dehydrogenase Enzyme

    Directory of Open Access Journals (Sweden)

    Tan Ling Ling

    2011-01-01

    Full Text Available The use of multilayer of gold nanoparticles (AuNPs attached on gold electrode surface via thiol chemistry to fabricate an ammonium (NH4+ ion biosensor based on alanine dehydrogenase (AlaDH was investigated. The approach of the study was based on construction of biosensor by direct deposition of AuNPs and 1,8-octanedithiol (C8-DT onto the gold electrode surface. For the immobilisation of enzyme, 2-mercaptoethanol (2BME was first covalently attached to AlaDH via esther bonding and then followed by chemically attached the 2BME-modified AlaDH (2BME-AlaDH moiety onto the AuNPs electrode via the exposed thiol group of 2BME. The resulting biosensor response was examined by means of amperometry for the quantification of NH4+ ion. In the absence of enzyme attachment, the use of three layers of AuNPs was found to improve the electrochemistry of the gold electrode when compared with no AuNPs was coated. However, when more than three layers of AuNPs were coated, the electrode response deteriorated due to excessive deposition of C8-DT. When AlaDH was incoporated into the AuNPs modified electrode, a linear response to NH4+ ion over the concentration range of 0.1–0.5 mM with a detection limit of 0.01 mM was obtained. In the absence of AuNPs, the NH4+ ion biosensor did not exhibit any good linear response range although the current response was observed to be higher. This work demonstrated that the incorporation of AuNPs could lead to the detection of higher NH4+ ion concentration without the need of dilution for high NH4+ ion concentration samples with a rapid response time of <1 min.

  4. Comparison of Therapeutic Response and Clinical Outcome between HCV Patients with Normal and Abnormal Alanine Transaminase Levels.

    Directory of Open Access Journals (Sweden)

    Cheng-Kung Wu

    Full Text Available Patients with chronic hepatitic C (HCV infection and normal serum alanine transaminase (ALT levels were considered to have mild disease. In Taiwan, these patients were not suggested for interferon (IFN based therapies. The aim of study is to compare therapeutic outcomes between HCV patients with normal and elevated ALT levels.We conducted a retrospective study on 3241 HCV patients treated by IFN based therapies. Patients with normal ALT levels were classified as group A (n = 186 while those with elevated ALT levels were group B (n = 3055.At baseline, incidence of diabetes mellitus, low platelet counts and cirrhosis were significantly higher in group B patients. The sustained virologic response (SVR rate was comparable between the 2 groups (65.3% vs. 65.3%, P = .993. But significantly higher incidence of HCC development after HCV treatment was observed in group B (7.4% vs. 3.2%, P = .032. No significant differences with respect to the outcome of liver decompensation, spontaneous bacterial peritonitis, and mortality were noted between 2 groups. Multivariate analysis showed younger age, female gender, non-HCV genotype 1, lower viral load, higher platelet counts and non-cirrhosis were favorable factors for achieving SVR, rather than ALT levels. Further analysis revealed older age, cirrhosis, lower platelet levels and non- peg-interferon treatment are risk factors of HCC development.HCV patients with normal ALT levels had similar response to antiviral therapy and low rate of HCC development after therapy. Antiviral therapies begun at early course of HCV infection may be beneficial to prevent disease progression.

  5. Calculation and Comparison of Energy Interaction and Intensity Parameters for the Interaction of Nd(III with DL-Valine, DL-Alanine and β-Alanine in Presence and Absence of Ca2+/Zn2+ in Aqueous and Different Aquated Organic Solvents Using 4f-4f Transition Spectra as Probe

    Directory of Open Access Journals (Sweden)

    H. Debecca Devi

    2009-01-01

    Full Text Available Absorption difference and comparative absorption spectrophotometric studies involving 4f-4f transitions of Nd(III and different amino acids: DL-valine, DL-alanine, and β-alanine in presence and absence of Ca(II and Zn(II in aqueous and different aquated organic solvents have been carried out. Variations in the spectral energy parameters: Slater-Condon (FK factor, Racah (EK, Lande factor (ξ4f, nephelauxetic ratio (β, bonding (b1/2, percentage covalency (δ are calculated to explore the mode of interaction of Nd(III with different amino acids: DL-valine, DL-alanine, and β-alanine. The values of experimentally calculated oscillator strength (P and computed values of Judd-Ofelt electric dipole intensity parameters, Tλ (λ = 2,4,6, are also determined for different 4f-4f transitions. The variation in the values of P and Tλ parameters explicitly shows the relative sensitivities of the 4f-4f transitions as well as the specific correlation between relative intensities, ligand structures, and nature of Nd(III-ligand interaction.

  6. ALT (Alanine Aminotransferase) Test

    Science.gov (United States)

    Advertisement Proceeds from website advertising help sustain Lab Tests Online. AACC is a not-for-profit organization and does not endorse non-AACC products and services. Advertising & Sponsorship: Policy | Opportunities ...

  7. The snakehead Channa asiatica accumulates alanine during aerial exposure, but is incapable of sustaining locomotory activities on land through partial amino acid catabolism.

    Science.gov (United States)

    Chew, Shit F; Wong, Mei Y; Tam, Wai L; Ip, Yuen K

    2003-02-01

    The freshwater snakehead Channa asiatica is an obligatory air-breather that resides in slow-flowing streams and in crevices near riverbanks in Southern China. In its natural habitat, it may encounter bouts of aerial exposure during the dry seasons. In the laboratory, the ammonia excretion rate of C. asiatica exposed to terrestrial conditions in a 12 h:12 h dark:light regime was one quarter that of the submerged control. Consequently, the ammonia contents in the muscle, liver and plasma increased significantly, and C. asiatica was able to tolerate quite high levels of ammonia in its tissues. Urea was not the major product of ammonia detoxification in C. asiatica, which apparently did not possess a functioning ornithine urea cycle. Rather, alanine increased fourfold to 12.6 micromol g(-1) in the muscle after 48 h of aerial exposure. This is the highest level known in adult teleosts exposed to air or an ammonia-loading situation. The accumulated alanine could account for 70% of the deficit in ammonia excretion during this period, indicating that partial amino acid catabolism had occurred. This would allow the utilization of certain amino acids as energy sources and, at the same time, maintain the new steady state levels of ammonia in various tissues, preventing them from rising further. There was a reduction in the aminating activity of glutamate dehydrogenase from the muscle and liver of specimens exposed to terrestrial conditions. Such a phenomenon has not been reported before and could, presumably, facilitate the entry of alpha-ketoglutarate into the Krebs cycle instead of its amination to glutamate, as has been suggested elsewhere. However, in contrast to mudskippers, C. asiatica was apparently unable to reduce the rates of proteolysis and amino acid catabolism, because the reduction in nitrogenous excretion during 48 h of aerial exposure was completely balanced by nitrogenous accumulation in the body. Alanine accumulation also occurred in specimens exposed to

  8. Effects of β-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial

    Directory of Open Access Journals (Sweden)

    Beck Travis W

    2009-02-01

    Full Text Available Abstract Background Intermittent bouts of high-intensity exercise result in diminished stores of energy substrates, followed by an accumulation of metabolites, promoting chronic physiological adaptations. In addition, β-alanine has been accepted has an effective physiological hydrogen ion (H+ buffer. Concurrent high-intensity interval training (HIIT and β-alanine supplementation may result in greater adaptations than HIIT alone. The purpose of the current study was to evaluate the effects of combining β-alanine supplementation with high-intensity interval training (HIIT on endurance performance and aerobic metabolism in recreationally active college-aged men. Methods Forty-six men (Age: 22.2 ± 2.7 yrs; Ht: 178.1 ± 7.4 cm; Wt: 78.7 ± 11.9; VO2peak: 3.3 ± 0.59 l·min-1 were assessed for peak O2 utilization (VO2peak, time to fatigue (VO2TTE, ventilatory threshold (VT, and total work done at 110% of pre-training VO2peak (TWD. In a double-blind fashion, all subjects were randomly assigned into one either a placebo (PL – 16.5 g dextrose powder per packet; n = 18 or β-alanine (BA – 1.5 g β-alanine plus 15 g dextrose powder per packet; n = 18 group. All subjects supplemented four times per day (total of 6 g/day for the first 21-days, followed by two times per day (3 g/day for the subsequent 21 days, and engaged in a total of six weeks of HIIT training consisting of 5–6 bouts of a 2:1 minute cycling work to rest ratio. Results Significant improvements in VO2peak, VO2TTE, and TWD after three weeks of training were displayed (p 2peak, VO2TTE, TWD and lean body mass were only significant for the BA group after the second three weeks of training. Conclusion The use of HIIT to induce significant aerobic improvements is effective and efficient. Chronic BA supplementation may further enhance HIIT, improving endurance performance and lean body mass.

  9. Trihalomethane exposure and biomonitoring for the liver injury indicator, alanine aminotransferase, in the United States population (NHANES 1999–2006)

    Science.gov (United States)

    Burch, James B.; Everson, Todd M.; Seth, Ratanesh K.; Wirth, Michael D.; Chatterjee, Saurabh

    2015-01-01

    Exposure to trihalomethanes (or THMs: chloroform, bromoform, bromodichloromethane, and dibromochloromethane [DBCM]) formed via drinking water disinfection has been associated with adverse reproductive outcomes and cancers of the digestive or genitourinary organs. However, few studies have examined potential associations between THMs and liver injury in humans, even though experimental studies suggest that these agents exert hepatotoxic effects, particularly among obese individuals. This study examined participants in the National Health and Nutrition Examination Survey (1999–2006, N = 2781) to test the hypothesis that THMs are associated with liver injury as assessed by alanine aminotransferase (ALT) activity in circulation. Effect modification by body mass index (BMI) or alcohol consumption also was examined. Associations between blood THM concentrations and ALT activity were assessed using unconditional multiple logistic regression to calculate prevalence odds ratios (ORs) with 95% confidence intervals (CIs) for exposure among cases with elevated ALT activity (men: >40 IU/L, women: >30 IU/L) relative to those with normal ALT, after adjustment for variables that may confound the relationship between ALT and THMs. Compared to controls, cases were 1.35 times more likely (95% CI: 1.02, 1.79) to have circulating DBCM concentrations exceeding median values in the population. There was little evidence for effect modification by BMI, although the association varied by alcohol consumption. Among non-drinkers, cases were more likely than controls to be exposed to DBCM (OR: 3.30, 95% CI: 1.37–7.90), bromoform (OR: 2.88, 95% CI: 1.21–6.81), or brominated THMs (OR: 4.00, 95% CI: 1.31–12.1), but no association was observed among participants with low, or moderate to heavy alcohol consumption. Total THM levels exceeding benchmark exposure limits continue to be reported both in the United States and globally. Results from this study suggest a need for further

  10. Exercise but not (-)-epigallocatechin-3-gallate or β-alanine enhances physical fitness, brain plasticity, and behavioral performance in mice.

    Science.gov (United States)

    Bhattacharya, Tushar K; Pence, Brandt D; Ossyra, Jessica M; Gibbons, Trisha E; Perez, Samuel; McCusker, Robert H; Kelley, Keith W; Johnson, Rodney W; Woods, Jeffrey A; Rhodes, Justin S

    2015-06-01

    Nutrition and physical exercise can enhance cognitive function but the specific combinations of dietary bioactives that maximize pro-cognitive effects are not known nor are the contributing neurobiological mechanisms. Epigallocatechin-3-gallate (EGCG) is a flavonoid constituent of many plants with high levels found in green tea. EGCG has anti-inflammatory and anti-oxidant properties and is known to cross the blood brain barrier where it can affect brain chemistry and physiology. β-Alanine (B-ALA) is a naturally occurring β-amino acid that could increase cognitive functioning by increasing levels of exercise via increased capacity of skeletal muscle, by crossing the blood brain barrier and acting as a neurotransmitter, or by free radical scavenging in muscle and brain after conversion into carnosine. The objective of this study was to determine the effects of EGCG (~250mg/kg/day), B-ALA (~550mg/kg/day), and their combination with voluntary wheel running exercise on the following outcome measures: body composition, time to fatigue, production of new cells in the granule layer of the dentate gyrus of the hippocampus as a marker for neuronal plasticity, and behavioral performance on the contextual and cued fear conditioning tasks, as measures of associative learning and memory. Young adult male BALB/cJ mice approximately 2months old were randomized into 8 groups varying the nutritional supplement in their diet and access to running wheels over a 39day study period. Running increased food intake, decreased fat mass, increased time to exhaustive fatigue, increased numbers of new cells in the granule layer of the hippocampus, and enhanced retrieval of both contextual and cued fear memories. The diets had no effect on their own or in combination with exercise on any of the fitness, plasticity, and behavioral outcome measures other than B-ALA decreased percent body fat whereas EGCG increased lean body mass slightly. Results suggest that, in young adult BALB/cJ mice, a 39

  11. Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise.

    Science.gov (United States)

    Raizel, Raquel; Leite, Jaqueline Santos Moreira; Hypólito, Thaís Menezes; Coqueiro, Audrey Yule; Newsholme, Philip; Cruzat, Vinicius Fernandes; Tirapegui, Julio

    2016-08-01

    We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1β, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (Pl-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1β, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation.

  12. Residues Asp164 and Glu165 at the substrate entryway function potently in substrate orientation of alanine racemase from E. coli: Enzymatic characterization with crystal structure analysis.

    Science.gov (United States)

    Wu, Dalei; Hu, Tiancen; Zhang, Liang; Chen, Jing; Du, Jiamu; Ding, Jianping; Jiang, Hualiang; Shen, Xu

    2008-06-01

    Alanine racemase (Alr) is an important enzyme that catalyzes the interconversion of L-alanine and D-alanine, an essential building block in the peptidoglycan biosynthesis. For the small size of the Alr active site, its conserved substrate entryway has been proposed as a potential choice for drug design. In this work, we fully analyzed the crystal structures of the native, the D-cycloserine-bound, and four mutants (P219A, E221A, E221K, and E221P) of biosynthetic Alr from Escherichia coli (EcAlr) and studied the potential roles in substrate orientation for the key residues involved in the substrate entryway in conjunction with the enzymatic assays. Structurally, it was discovered that EcAlr is similar to the Pseudomonas aeruginosa catabolic Alr in both overall and active site geometries. Mutation of the conserved negatively charged residue aspartate 164 or glutamate 165 at the substrate entryway could obviously reduce the binding affinity of enzyme against the substrate and decrease the turnover numbers in both D- to L-Ala and L- to D-Ala directions, especially when mutated to lysine with the opposite charge. However, mutation of Pro219 or Glu221 had only negligible or a small influence on the enzymatic activity. Together with the enzymatic and structural investigation results, we thus proposed that the negatively charged residues Asp164 and Glu165 around the substrate entryway play an important role in substrate orientation with cooperation of the positively charged Arg280 and Arg300 on the opposite monomer. Our findings are expected to provide some useful structural information for inhibitor design targeting the substrate entryway of Alr.

  13. The enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure.

    Science.gov (United States)

    Duff, Stephen M G; Rydel, Timothy J; McClerren, Amanda L; Zhang, Wenlan; Li, Jimmy Y; Sturman, Eric J; Halls, Coralie; Chen, Songyang; Zeng, Jiamin; Peng, Jiexin; Kretzler, Crystal N; Evdokimov, Artem

    2012-12-01

    In this paper we describe the expression, purification, kinetics and biophysical characterization of alanine aminotransferase (AlaAT) from the barley plant (Hordeum vulgare). This dimeric PLP-dependent enzyme is a pivotal element of several key metabolic pathways from nitrogen assimilation to carbon metabolism, and its introduction into transgenic plants results in increased yield. The enzyme exhibits a bi-bi ping-pong reaction mechanism with a K(m) for alanine, 2-oxoglutarate, glutamate and pyruvate of 3.8, 0.3, 0.8 and 0.2 mM, respectively. Barley AlaAT catalyzes the forward (alanine-forming) reaction with a k(cat) of 25.6 s(-1), the reverse (glutamate-forming) reaction with k(cat) of 12.1 s(-1) and an equilibrium constant of ~0.5. The enzyme is also able to utilize aspartate and oxaloacetate with ~10% efficiency as compared to the native substrates, which makes it much more specific than related bacterial/archaeal enzymes (that also have lower K(m) values). We have crystallized barley AlaAT in complex with PLP and l-cycloserine and solved the structure of this complex at 2.7 Å resolution. This is the first example of a plant AlaAT structure, and it reveals a canonical aminotransferase fold similar to structures of the Thermotoga maritima, Pyrococcus furiosus, and human enzymes. This structure bridges our structural understanding of AlaAT mechanism between three kingdoms of life and allows us to shed some light on the specifics of the catalysis performed by these proteins.

  14. Topology of AspT, the Aspartate:Alanine Antiporter of Tetragenococcus halophilus, Determined by Site-Directed Fluorescence Labeling▿ †

    Science.gov (United States)

    Nanatani, Kei; Fujiki, Takashi; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko; Umeyama, Hideaki; Ye, Liwen; Wang, Xicheng; Nakajima, Tasuku; Uchida, Takafumi; Maloney, Peter C.; Abe, Keietsu

    2007-01-01

    The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of l-aspartate (Asp) with release of l-alanine (Ala) and CO2. The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an l-aspartate-β-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter classification no. 2.A.81) of transporters. In this study, we were interested in the relationship between the structure and function of AspT and thus analyzed the topology by means of the substituted-cysteine accessibility method using the impermeant, fluorescent, thiol-specific probe Oregon Green 488 maleimide (OGM) and the impermeant, nonfluorescent, thiol-specific probe [2-(trimethylammonium)ethyl]methanethiosulfonate bromide. We generated 23 single-cysteine variants from a six-histidine-tagged cysteineless AspT template. A cysteine position was assigned an external location if the corresponding single-cysteine variant reacted with OGM added to intact cells, and a position was assigned an internal location if OGM labeling required cell lysis. The topology analyses revealed that AspT has a unique topology; the protein has 10 transmembrane helices (TMs), a large hydrophilic cytoplasmic loop (about 180 amino acids) between TM5 and TM6, N and C termini that face the periplasm, and a positively charged residue (arginine 76) within TM3. Moreover, the three-dimensional structure constructed by means of the full automatic modeling system indicates that the large hydrophilic cytoplasmic loop of AspT possesses a TrkA_C domain and a TrkA_C-like domain and that the three-dimensional structures of these domains are similar to each other even though their amino acid sequences show low similarity. PMID:17660287

  15. Review of the dose-to-water energy dependence of alanine and lithium formate EPR dosimeters and LiF TL-dosimeters - Comparison with Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Waldeland, Einar, E-mail: einar.waldeland@oslo-universitetssykehus.no [Department of Medical Physics, Oslo University Hospital, Norwegian Radium Hospital, P.O. Box 4953 Nydalen, N-0424 Oslo (Norway); Department of Physics, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway); Malinen, Eirik [Department of Medical Physics, Oslo University Hospital, The Norwegian Radium Hospital, P.O. Box 4953 Nydalen, N-0424 Oslo (Norway); Department of Physics, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway)

    2011-09-15

    The dose-to-water energy dependence may be defined as the dosimeter reading per absorbed dose to water for a given radiation beam relative to that for {sup 60}Co {gamma} rays. The purpose of this work was to review the literature on the dose-to-water energy dependence of lithium formate and alanine EPR dosimeters and LiF:Mg,Ti TL-dosimeters for clinical beam qualities and to compare the findings with Monte Carlo simulations. Monte Carlo simulations of the energy dependence of lithium formate and alanine EPR dosimeters and LiF:Mg,Ti TL-dosimeters were performed using the EGSnrc code. The following common clinical radiation qualities were applied: 4-24 MV photons, 4-20 MeV electrons, 50-200 kV{sub p} X-rays, {sup 192}Ir {gamma} rays, and {sup 60}Co {gamma} rays as the reference. All dosimeter materials showed measured and Monte Carlo simulated energy responses around unity for MV photons, electrons and {sup 192}Ir {gamma} rays, except LiF TL-dosimeters which showed an average underresponse of approximately 3% for electrons. For medium energy X-rays (50-200 kV{sub p}), LiF displayed an increasing overresponse with decreasing energy to a maximum of about 40% for 50 kV{sub p} X-rays. The two EPR dosimeter materials showed decreasing energy response with decreasing X-ray energy, but lithium formate was less dependent on energy than alanine. Comparisons between Monte Carlo simulations and measurements revealed some deviations for medium energy X-rays, which may be due to LET-effects caused by low energy electrons. In conclusion, lithium formate is the dosimeter material with the lowest energy dependence over a wide range of clinically relevant radiation qualities, which clearly is advantageous for accurate dosimetry.

  16. The effect of 100 MeV oxygen ion on electrical and optical properties of nonlinear optical l-alanine sodium nitrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ahlam, M. A.; Prakash, A. P. Gnana [Department of Studies in Physics, University of Mysore, Mysore-570 006, Karnataka (India)

    2012-06-05

    Single crystals of nonlinear optical (NLO) L-alanine Sodium Nitrate (LASN) were grown by slow evaporation method. The grown crystals were irradiated by 100 MeV oxygen ions with the cumulative doses of 1Mrad, 6 Mrad and 10 Mrad. The dielectric properties, differential scanning calorimetry (DSC) and second harmonic generation (SHG) of the crystals were studied before and after irradiation. The dielectric constant was found to increase after irradiation. The DSC reveals that the melting point remains unaffected due to irradiation. The SHG efficiency of LASN was found to decrease with increase in radiation dose.

  17. The effect of 100 MeV oxygen ion on electrical and optical properties of nonlinear optical l-alanine sodium nitrate single crystals

    Science.gov (United States)

    Ahlam, M. A.; Prakash, A. P. Gnana

    2012-06-01

    Single crystals of nonlinear optical (NLO) L-alanine Sodium Nitrate (LASN) were grown by slow evaporation method. The grown crystals were irradiated by 100 MeV oxygen ions with the cumulative doses of 1Mrad, 6 Mrad and 10 Mrad. The dielectric properties, differential scanning calorimetry (DSC) and second harmonic generation (SHG) of the crystals were studied before and after irradiation. The dielectric constant was found to increase after irradiation. The DSC reveals that the melting point remains unaffected due to irradiation. The SHG efficiency of LASN was found to decrease with increase in radiation dose.

  18. Investigation of the nitrogen hyperfine coupling of the second stable radical in γ-irradiated L-alanine crystals by 2D-HYSCORE spectroscopy

    Science.gov (United States)

    Maltar-Strmečki, Nadica; Rakvin, Boris

    2012-09-01

    The second stable radical, NH3+C(CH3)COO, R2, in the γ-irradiated single crystal of L-alanine and its fully 15N-enriched analogue were studied by an advanced pulsed EPR technique, 2D-HYSCORE (two-dimensional hyperfine sublevel correlation) spectroscopy at 200 K. The nitrogen hyperfine coupling tensor of the R2 radical was determined from the HYSCORE data and provides new experimental data for improved characterization of the R2 radical in the crystal lattice. The results obtained complement the experimental proton data available for the R2 radical and could lead to increased accuracy and reliability of EPR spectrum simulations.

  19. Towards Biocontained Cell Factories: An Evolutionarily Adapted Escherichia coli Strain Produces a New-to-nature Bioactive Lantibiotic Containing Thienopyrrole-Alanine

    OpenAIRE

    Anja Kuthning; Patrick Durkin; Stefan Oehm; Michael G. Hoesl; Nediljko Budisa; Süssmuth, Roderich D.

    2016-01-01

    Genetic code engineering that enables reassignment of genetic codons to non-canonical amino acids (ncAAs) is a powerful strategy for enhancing ribosomally synthesized peptides and proteins with functions not commonly found in Nature. Here we report the expression of a ribosomally synthesized and post-translationally modified peptide (RiPP), the 32-mer lantibiotic lichenicidin with a canonical tryptophan (Trp) residue replaced by the ncAA L-β-(thieno[3,2-b]pyrrolyl)alanine ([3,2]Tpa) which doe...

  20. Oral nutritional supplement fortified with beta-alanine improves physical working capacity in older adults: a randomized, placebo-controlled study.

    Science.gov (United States)

    McCormack, William P; Stout, Jeffrey R; Emerson, Nadia S; Scanlon, Tyler C; Warren, Ashlee M; Wells, Adam J; Gonzalez, Adam M; Mangine, Gerald T; Robinson, Edward H; Fragala, Maren S; Hoffman, Jay R

    2013-09-01

    This study examined the effects of an oral nutritional supplement fortified with two different doses of beta-alanine on body composition, muscle function and physical capacity in older adults. Using a double-blind placebo controlled design, 60 men and women (age ± SD = 70.7 ± 6.2 yrs) were randomly assigned to one of three treatment groups: 1) oral nutritional supplement (ONS; n = 20) (8 oz; 230 kcal; 12 g PRO; 31 g CHO; 6 g FAT), 2) ONS plus 800 mg beta-alanine (ONS800; n = 19), and 3) ONS plus 1200 mg beta-alanine (ONS1200; n = 21). Treatments were consumed twice per day for 12 weeks. At pre- and post-supplementation period, participants performed a discontinuous, submaximal cycle ergometry test to determine physical working capacity at fatigue threshold (PWCFT). Fat mass, total body and arm lean soft tissue mass (ALSTM) were measured with DEXA while muscle strength was assessed with handgrip dynamometry (GRIP) and 30-s sit-to-stand (STS) was used to measure lower body functionality. Muscle quality (MQ) was calculated with GRIPmax and DEXA derived ALSTM [GRIP (kg)·ALSTM (kg)(-1)]. Two-way analysis of variance was used to compare pre- to post-supplementation measures and group differences. There were 16 dropouts over the duration of the study. Final group sizes were ONS = 16 (m = 11, w = 5), ONS800 = 15 (m = 5, w = 10), and ONS1200 = 13 (m = 6, w = 7). No significant changes were observed for body composition or GRIP values pre to post. Significant increases in PW(CFT) were seen in ONS1200 (13.6%) and ONS800 (17.8%) pre- to post-supplementation (p 0.05) in change scores were found between ONS and ONS800. ONS fortified with beta-alanine may improve physical working capacity, muscle quality and function in older men and women. These findings could have importance in the perception of frailty, and the maintenance of health and independent living in older adults.

  1. Endothelial Proliferation and Increased Blood - Brain Barrier Permeability in the Basal Ganglia in a Rat Model of 3,4-Dihydrozyphenyl-L-Alanine-Induced Dyskinesia

    DEFF Research Database (Denmark)

    Westin, Jenny E.; Lindgren, Hanna S.; Gardi, Jonathan Eyal

    2006-01-01

    3,4-Dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesia is associated with molecular and synaptic plasticity in the basal ganglia, but the occurrence of structural remodeling through cell genesis has not been explored. In this study, rats with 6-hydroxydopamine lesions received injections of th...... of angiogenesis and blood-brain barrier dysfunction in an experimental model of L-DOPA-induced dyskinesia. These microvascular changes are likely to affect the kinetics of L-DOPA entry into the brain, favoring the occurrence of motor complications....

  2. The effect of ammonium ions on the activity of glutamate dehydrogenase, alanine aminotransferase and aspartate aminotransferase in Cucumis sativus L. seedlings

    Directory of Open Access Journals (Sweden)

    Genowefa Kubiak-Dobosz

    2014-02-01

    Full Text Available Changes in the activity of glutamate dehydrogenase (GDH, alanine aminotransferase (GPT and aspartate aminotransferase (GOT were studied in various organs of Cucumis sativus L. seedlings in relation to the uptake of mineral nitrogen (in form of N03- or NH4+ from the medium. Activity of GDH, GPT, and GOT was higher in young leaves and roots of cucumber seedlings if the plants developed- in an ammonium medium. No similar changes of aminotransferases activity were noted in the cotyledons. Factors affecting varying effect of ammonium ions upon GPT and GOT activity are discussed for particular organs of cucumber seedlings.

  3. Measurement of Liquid Diffusion Coefficients of Aqueous Solutions of Glycine, L-Alanine, L-Valine and L-Isoleucine by Holographic Interferometry

    Institute of Scientific and Technical Information of China (English)

    赵长伟; 李继定; 马沛生; 夏淑倩

    2005-01-01

    The diffusion coefficients of aqueous solutions ofglycine, L-alanine, L-valine and L-isoleucine at 298.15 K were determined by holographic interferometry with accuracy and promptness while without disturbance. The density and viscosity of these solutions were also determined. According to original Gordon model, a model for correlating the diffusion coefficients of amino acids in aqueous solutions was developed and applied. The results showed that this model provided significant convenience in correlation of diffusion coefficients for amino acids system.

  4. Atomic Structures of the Amino Acids, Glycine, Alanine and Serine and Their Tripeptide, with Bond Lengths as Sums of Atomic Covalent Radii

    CERN Document Server

    Heyrovska, Raji

    2008-01-01

    Recently, the bond lengths of the molecular components of nucleic acids and of caffeine and related molecules were shown to be sums of the appropriate covalent radii of the adjacent atoms. Thus, each atom was shown to have its specific contribution to the bond length. This enabled establishing their atomic structures for the first time. In this work, the known bond lengths for amino acids and the peptide bond are similarly shown to be sums of the atomic covalent radii. Based on this result, the atomic structures of glycine, alanine and serine and their tripeptide have been presented.

  5. Correlation of hepatitis C RNA and serum alanine aminotransferase in hepatitis B and C seronegative healthy blood donors

    Directory of Open Access Journals (Sweden)

    Ali Natasha

    2010-07-01

    Full Text Available Introduction: Historically, serum alanine transaminase (ALT has been used as a surrogate marker in the detection of hepatitis viruses in blood donors. With the availability of newer sensitive technologies for the detection of seroconversion, the value of ALT becomes questionable but continues to be used for this purpose with subsequent discarding of ALT elevated blood units. Objective: The present study aims to evaluate the significance and cost effectiveness of ALT as a surrogate marker for hepatitis C virus infection in healthy asymptomatic blood donors who were serologically negative. Materials and Methods: The study was conducted at clinical laboratory of a tertiary care hospital for a period of one year from November 2006 to October 2007. All donors were screened serologically for hepatitis B, C and HIV I and II, syphilis and malaria and those tested positive were excluded from further evaluation. Gender-wise reference ranges and minimal and markedly raised results for ALT (described respectively as one and two folds increase above reference range were defined and, accordingly, donors were grouped into three. Two hundred seronegative blood donors were randomly selected from all three groups of ALT results and tested for hepatitis C nucleic acid through Amplicor; HCV RNA test. The cost of discarding an ALT -only elevated blood unit was also assessed. During the study period, 25117 subjects donated blood. Eight hundred and Results: seventy two donors (3.4% were positive for one or more serological tests. ALT of all donors ranged from 0-1501 U/L (Mean ± SD; 33.4 ± 25.45U/L. The donors seronegative for all disease markers were 24245 (96.6%. Of these, 21164 (87.2% donors had their ALT within reference range while 2874 (11.8% and 207 (0.8% of donors had minimal and markedly elevated results. Thus, 621 blood bags (red cells, platelets and plasma costing $ 39200.0 were discarded based on ALT results alone. Of 200 seronegative donors evaluated

  6. Direct detection of second harmonic and its use in alanine/EPR dosimetry; Deteccao direta do segundo harmonico e seu uso na dosimetria alanina/RPE

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F.; Guzman, C.S.; Graeff, C.F.O.; Baffa, O. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica]. E-mail: chen@dfm.ffclrp.usp.br

    2001-07-01

    In this work, the possible use of the second harmonic EPR signal from irradiated alanine for low radiation dose ({approx}1 Gy) was explored, aiming applications to HDR brachytherapy and teletherapy. The second harmonic signal was directly detected after overmodulation. A batch of DL-alanine/paraffin small cylindrical pellets was made. A VARIAN E-4 X-Band EPR spectrometer with optimized operation parameters like microwave power and modulation amplitude to obtain a signal with the highest amplitude was used. The modulation frequency and modulation amplitude were 100 kHz and 1.25 mT (to overmodulate the signal) respectively. The second harmonic signal was directly detected at twice the modulation frequency. One group of dosimeters was irradiated with a {sup 192} Ir brachytherapy source and the other in a 10 MeV X-rays linear accelerator, both group at a dose range: 0.5 - 15 Gy. The second harmonic signal showed better resolution than the first harmonic one making possible a more easy localization of the signal. Moreover, for both types of radiation, the dose-response curve showed a good linear behavior for the dose range indicated. (author)

  7. Methionine uptake in Corynebacterium glutamicum by MetQNI and by MetPS, a novel methionine and alanine importer of the NSS neurotransmitter transporter family.

    Science.gov (United States)

    Trötschel, Christian; Follmann, Martin; Nettekoven, Jeannine A; Mohrbach, Tobias; Forrest, Lucy R; Burkovski, Andreas; Marin, Kay; Krämer, Reinhard

    2008-12-02

    The soil bacterium Corynebacterium glutamicum is a model organism in amino acid biotechnology. Here we present the identification of two different L-methionine uptake systems including the first characterization of a bacterial secondary methionine carrier. The primary carrier MetQNI is a high affinity ABC-type transporter specific for l-methionine. Its expression is under the control of the transcription factor McbR, the global regulator of sulfur metabolism in C. glutamicum. Besides MetQNI, a novel secondary methionine uptake system of the NSS (neurotransmitter:sodium symporter) family was identified and named MetP. The MetP system is characterized by a lower affinity for methionine and uses Na(+) ions for energetic coupling. It is also the main alanine transporter in C. glutamicum and is expressed constitutively. These observations are consistent with models of methionine, alanine, and leucine bound to MetP, derived from the X-ray crystal structure of the LeuT transporter from Aquifex aeolicus. Complementation studies show that MetP consists of two components, a large subunit with 12 predicted transmembrane segments and, surprisingly, an additional subunit with one predicted transmembrane segment only. Thus, this new member of the NSS transporter family adds a novel feature to this class of carriers, namely, the functional dependence on an additional small subunit.

  8. Identification of novel inhibitors against Mycobacterium tuberculosis L-alanine dehydrogenase (MTB-AlaDH) through structure-based virtual screening.

    Science.gov (United States)

    Saxena, Shalini; Devi, Parthiban Brindha; Soni, Vijay; Yogeeswari, Perumal; Sriram, Dharmarajan

    2014-02-01

    Mycobacterium tuberculosis (MTB) the etiological agent of tuberculosis (TB) survives in the human host for decades evading the immune system in a latent or persistent state. The Rv2780 (ald) gene that codes for L-alanine dehydrogenase (L-AlaDH) enzyme catalyzes reversible oxidative deamination of L-alanine to pyruvate and is overexpressed under hypoxic and nutrient starvation conditions in MTB. At present, as there is no suitable drug available to treat dormant tuberculosis; it is essential to identify drug candidates that could potentially treat dormant TB. Availability of crystal structure of MTB L-AlaDH bound with co-factor NAD+ facilitated us to employ structure-based virtual screening approach to obtain new hits from a commercial library of Asinex database using energy-optimized pharmacophore modeling. The resulting pharmacophore consisted of three hydrogen bond donor sites (D) and two hydrogen bond acceptor sites (A). The database compounds with a fitness score more than 1.0 were further subjected to Glide high-throughput virtual screening and docking. Thus, we report the identification of best five hits based on structure-based design and their in vitro enzymatic inhibition studies revealed IC₅₀ values in the range of 35-80 μM.

  9. Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine.

    Science.gov (United States)

    Leke, Renata; Bak, Lasse K; Anker, Malene; Melø, Torun M; Sørensen, Michael; Keiding, Susanne; Vilstrup, Hendrik; Ott, Peter; Portela, Luis V; Sonnewald, Ursula; Schousboe, Arne; Waagepetersen, Helle S

    2011-04-01

    Cerebral hyperammonemia is believed to play a pivotal role in the development of hepatic encephalopathy (HE), a debilitating condition arising due to acute or chronic liver disease. In the brain, ammonia is thought to be detoxified via the activity of glutamine synthetase, an astrocytic enzyme. Moreover, it has been suggested that cerebral tricarboxylic acid (TCA) cycle metabolism is inhibited and glycolysis enhanced during hyperammonemia. The aim of this study was to characterize the ammonia-detoxifying mechanisms as well as the effects of ammonia on energy-generating metabolic pathways in a mouse neuronal-astrocytic co-culture model of the GABAergic system. We found that 5 mM ammonium chloride affected energy metabolism by increasing the neuronal TCA cycle activity and switching the astrocytic TCA cycle toward synthesis of substrate for glutamine synthesis. Furthermore, ammonia exposure enhanced the synthesis and release of alanine. Collectively, our results demonstrate that (1) formation of glutamine is seminal for detoxification of ammonia; (2) neuronal oxidative metabolism is increased in the presence of ammonia; and (3) synthesis and release of alanine is likely to be important for ammonia detoxification as a supplement to formation of glutamine.

  10. Differential scanning calorimetric and powder X-ray diffraction studies on a homologous series of -acyl-L-alanine esters with matched chains ( = 9-18)

    Indian Academy of Sciences (India)

    D Sivaramakrishna; Musti J Swamy

    2015-09-01

    A homologous series of two chain derivatives of L-alanine, namely -acyl L-alanine alkyl esters (NAAEs), bearing matched, saturated, acyl and alkyl chains ( = 9-18) have been synthesized. The thermotropic phase transitions and supramolecular structure of NAAEs were investigated by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). Results obtained from DSC studies indicate that the transition temperatures (t), enthalpies ( t) and entropies ( t) exhibit odd-even alternation with compounds bearing odd acyl and alkyl chains showing higher values of t, t and t as compared to NAAEs with even acyl and alkyl chains. However, the transition enthalpies and entropies of the odd- and even chain length series independently exhibit a linear dependence on the chain length. The -spacings obtained from PXRD increase linearly with chain length with an increment of 1.76 Å/CH2, suggesting that NAAEs adopt either a tilted bilayer structure or a bent structure. The present results provide a thermodynamic and structural basis for investigating the interaction of NAAEs with other membrane lipids, which in turn can shed light in understanding how they can enhance the transdermal permeability of stratum corneum.

  11. First report on the efficacy of l-alanine-based in situ-forming implants for the long-term parenteral delivery of drugs.

    Science.gov (United States)

    Plourde, François; Motulsky, Aude; Couffin-Hoarau, Anne-Claude; Hoarau, Didier; Ong, Huy; Leroux, Jean-Christophe

    2005-11-28

    The recent advent of biotechnologies has led to the development of labile macromolecular therapeutic agents that require complex formulations for their efficient administration. This work reports a novel concept for the systemic, sustained delivery of such agents. The proposed approach is based on the spontaneous self-assembly of low-molecular weight amphiphilic amino acid derivatives in a hydrophobic pharmaceutical vehicle. The injectable, in situ-forming organogels were obtained by mixing N-stearoyl l-alanine (m)ethyl esters with a vegetable oil and a biocompatible hydrophilic solvent. The gels' in vivo-delivering properties were evaluated in rats with leuprolide, a luteinizing hormone-releasing hormone agonist used in prostate cancer, endometriosis and precocious puberty treatment. Following subcutaneous injection, the gels degraded and gradually released leuprolide for 14 to 25 days. Drug release was accompanied by sustained castration lasting up to 50 days, as assessed by testosterone levels. This study demonstrates that in situ-forming implants based on l-alanine derivatives represent a novel injectable platform for the controlled delivery of hydrophilic compounds, which is simpler than currently available implant and microsphere technologies.

  12. Alanine-scanning mutagenesis of the epsilon subunit of the F1-F0 ATP synthase from Escherichia coli reveals two classes of mutants.

    Science.gov (United States)

    Xiong, H; Vik, S B

    1995-10-06

    Alanine-scanning mutagenesis was applied to the epsilon subunit of the F1-F0 ATP synthase from E. coli. Nineteen amino acid residues were changed to alanine, either singly or in pairs, between residues 10 and 93. All mutants, when expressed in the epsilon deletion strain XH1, were able to grow on succinate minimal medium. Membranes were prepared from all mutants and assayed for ATP-driven proton translocation, ATP hydrolysis +/- lauryldiethylamine oxide, and sensitivity of ATPase activity to N,N'-dicyclohexylcarbodiimide (DCCD). Most of the mutants fell into 2 distinct classes. The first group had inhibited ATPase activity, with near normal levels of membrane-bound F1, but decreased sensitivity to DCCD. The second group had stimulated ATPase activity, with a reduced level of membrane-bound F1, but normal sensitivity to DCCD. Membranes from all mutants were further characterized by immunoblotting using 2 monoclonal antibodies. A model for the secondary structure of epsilon and its role in the function of the ATP synthase has been developed. Some residues are important for the binding of epsilon to F1 and therefore for inhibition. Other residues, from Glu-59 through Glu-70, are important for the release of inhibition by epsilon that is part of the normal enzyme cycle.

  13. Alanine zipper-like coiled-coil domains are necessary for homotypic dimerization of plant GAGA-factors in the nucleus and nucleolus.

    Directory of Open Access Journals (Sweden)

    Dierk Wanke

    Full Text Available GAGA-motif binding proteins control transcriptional activation or repression of homeotic genes. Interestingly, there are no sequence similarities between animal and plant proteins. Plant BBR/BPC-proteins can be classified into two distinct groups: Previous studies have elaborated on group I members only and so little is known about group II proteins. Here, we focused on the initial characterization of AtBPC6, a group II protein from Arabidopsis thaliana. Comparison of orthologous BBR/BPC sequences disclosed two conserved signatures besides the DNA binding domain. A first peptide signature is essential and sufficient to target AtBPC6-GFP to the nucleus and nucleolus. A second domain is predicted to form a zipper-like coiled-coil structure. This novel type of domain is similar to Leucine zippers, but contains invariant alanine residues with a heptad spacing of 7 amino acids. By yeast-2-hybrid and BiFC-assays we could show that this Alanine zipper domain is essential for homotypic dimerization of group II proteins in vivo. Interhelical salt bridges and charge-stabilized hydrogen bonds between acidic and basic residues of the two monomers are predicted to form an interaction domain, which does not follow the classical knobs-into-holes zipper model. FRET-FLIM analysis of GFP/RFP-hybrid fusion proteins validates the formation of parallel dimers in planta. Sequence comparison uncovered that this type of domain is not restricted to BBR/BPC proteins, but is found in all kingdoms.

  14. Alanine scanning of cucumber mosaic virus (CMV 2b protein identifies different positions for cell-to-cell movement and gene silencing suppressor activity.

    Directory of Open Access Journals (Sweden)

    Katalin Nemes

    Full Text Available The multifunctional 2b protein of CMV has a role in the long distance and local movement of the virus, in symptom formation, in evasion of defense mediated by salicylic acid as well as in suppression of RNA silencing. The role of conserved amino acid sequence domains were analyzed previously in the protein function, but comprehensive analysis of this protein was not carried out until recently. We have analyzed all over the 2b protein by alanine scanning mutagenesis changing three consecutive amino acids (aa to alanine. We have identified eight aa triplets as key determinants of the 2b protein function in virus infection. Four of them (KKQ/22-24/AAA, QNR/31-33/AAA, RER/34-36/AAA, SPS/40-42/AAA overlap with previously determined regions indispensable in gene silencing suppressor function. We have identified two additional triplets necessary for the suppressor function of the 2b protein (LPF/55-57/AAA, NVE/10-12/AAA, and two other positions were required for cell-to-cell movement of the virus (MEL/1-3/AAA, RHV/70-72/AAA, which are not essential for suppressor activity.

  15. Dosimetric evaluation of spectrophotometric response of alanine gel solution for gamma, photons, electrons and thermal neutrons radiations; Avaliacao dosimetrica da resposta espectrofotometrica da solucao gel de alanina para radiacao gama, de fotons, de eletrons e de neutrons termicos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cleber Feijo

    2009-07-01

    Alanine Gel Dosimeter is a new gel material developed at IPEN that presents significant improvement on Alanine system developed by Costa. The DL-Alanine (C{sub 3}H{sub 7}NO{sub 2}) is an amino acid tissue equivalent that improves the production of ferric ions in the solution. This work aims to analyse the main dosimetric characteristics this new gel material for future application to measure dose distribution. The performance of Alanine gel solution was evaluated to gamma, photons, electrons and thermal neutrons radiations using the spectrophotometry technique. According to the obtained results for the different studied radiation types, the reproducibility intra-batches and inter-batches is better than 4% and 5%, respectively. The dose response presents a linear behavior in the studied dose range. The response dependence as a function of dose rate and incident energy is better 2% and 3%, respectively. The lower detectable dose is 0.1 Gy. The obtained results indicate that the Alanine gel dosimeter presents good performance and can be useful as an alternative dosimeter in the radiotherapy area, using MRI technique for tridimensional dose distribution evaluation. (author)

  16. Optical signal response pf the alanine gel solution for photons and electrons clinical beams;Resposta espectrofotometrica da solucao gel de alanina para feixes clinicos de fotons e eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cleber Feijo; Campos, Leticia Lucente [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    Alanine gel dosimeter is a new gel material developed at IPEN that presents significant improvement on previous alanine systems developed by Costa (1994). The measure technique is based on the transformation of ferrous ions (Fe{sup 2+}) in ferric ions (Fe{sup 3+}) after irradiation. The DL-Alanine (C{sub 3}H{sub 7}NO{sub 2}) is an aminoacid tissue equivalent that improves the production of ferric ions in the solution. This work aims to study the comparison of optical signal response of the alanine gel solution for photons and electrons clinical beams. It was observed that the calibration factor can be considered independent of quality of the radiation for photons and electrons clinical beams. Therefore, it can be used the same calibration factor for evaluating the absorbed dose in photons and electrons fields in the energy of 6 MeV. Alanine Gel Dosimeter presents good performance and can be useful as alternative dosimeter in the radiotherapy area using MRI technique for 3D dose distribution evaluation. (author)

  17. L-alanine detector characterization for dosimetry of small fields in SBRT with VMAT techniques; Caracterizacao do detector de L-alanina para dosimetria de campos pequenos em SBRT com a tecnica de VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Mazaro, Sarah J.; Peres, Leonardo [Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ (Brazil); Baffa, Oswaldo, E-mail: sarahmazaro@yahoo.com.br [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Departamento de Fisica

    2016-07-01

    New radiotherapy treatment techniques have some problems such as: the dosimetric and geometric of the beam and small fields. Determination of the prescribed dose on the target volume in small fields is hampered due to lack of lateral electronic equilibrium and steep dose gradient along the edges of fields. The choice of radiation better detector becomes important in the dosimetry of small fields. Alanine detector has been shown to be a good choice for measurements of high doses of radiation in small fields. This study aims to characterize the L-alanine detector through the dosimetric tests for SBRT in VMAT techniques. L-alanine response showed a strong linear correlation with the dose (R ² = 0.9865), with significant angles and dose rate dependencies (14%) and (15%) respectively, and minor with the small field size (maximum 4% deviation). (author)

  18. Interaction of L-alanyl-L-valine and L-valyl-L-alanine with organic vapors: thermal stability of clathrates, sorption capacity and the change in the morphology of dipeptide films.

    Science.gov (United States)

    Ziganshin, Marat A; Gubina, Nadezhda S; Gerasimov, Alexander V; Gorbatchuk, Valery V; Ziganshina, Sufia A; Chuklanov, Anton P; Bukharaev, Anastas A

    2015-08-21

    The strong effect of the amino acid sequence in L-alanyl-L-valine and L-valyl-L-alanine on their sorption properties toward organic compounds and water, and the thermal stability of the inclusion compounds of these dipeptides have been found. Generally, L-valyl-L-alanine has a greater sorption capacity for the studied compounds, but the thermal stability of the L-alanyl-L-valine clathrates is higher. Unusual selectivity of L-valyl-L-alanine for vapors of few chloroalkanes was observed. The correlation between the change in the surface morphology of thin film of dipeptides and stoichiometry of their clathrates with organic compounds was found. This discovery may be used to predict the influence of vapors on the morphology of films of short-chain oligopeptides.

  19. EURAMET.RI(I)-S7 comparison of alanine dosimetry systems for absorbed dose to water measurements in gamma- and x-radiation at radiotherapy levels

    Science.gov (United States)

    Garcia, Tristan; Anton, Mathias; Sharpe, Peter

    2012-01-01

    The National Physical Laboratory (NPL), the Physikalisch-Technische Bundesanstalt (PTB) and the Laboratoire National Henri Becquerel (LNE-LNHB) are involved in the European project 'External Beam Cancer Therapy', a project of the European Metrology Research Programme. Within this project, the electron paramagnetic resonance (EPR)/alanine dosimetric method has been chosen for performing measurements in small fields such as those used in IMRT (intensity modulated radiation therapy). In this context, these three National Metrology Institutes (NMI) wished to compare the result of their alanine dosimetric systems (detector, modus operandi etc) at radiotherapy dose levels to check their consistency. This EURAMET.RI(I)-S7 comparison has been performed with the support of the Bureau International des Poids et Mesures (BIPM) which collected and distributed the results as a neutral organization, to ensure the comparison was 'blind'. Irradiations have been made under reference conditions by each laboratory in a 60Co beam and in an accelerator beam (10 MV or 12 MV) in a water phantom of 30 cm × 30 cm × 30 cm in a square field of 10 cm × 10 cm at the reference depth. Irradiations have been performed at known values of absorbed dose to water (Dw) within 10% of nominal doses of 5 Gy and 10 Gy, i.e. between 4.5 Gy and 5.5 Gy and between 9 Gy and 11 Gy, respectively. Each participant read out their dosimeters and assessed the doses using their own protocol (calibration curve, positioning device etc) as this comparison aims at comparing the complete dosimetric process. The results demonstrate the effectiveness of the EPR/alanine dosimetry systems operated by National Metrology Institutes as a method of assuring therapy level doses with the accuracy required. The maximum deviation in the ratio of measured to applied dose is less than 1%. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key

  20. Structure, supramolecular organization and phase behavior of N-acyl-β-alanines: Structural homologues of mammalian brain constituents N-acylglycine and N-acyl-GABA.

    Science.gov (United States)

    Sivaramakrishna, D; Swamy, Musti J

    2016-12-01

    N-Acyl-β-alanines (NABAs) are structural homologues of N-acylglycines (NAGs) and N-acyl-γ-aminobutyric acids (NAGABAs), and achiral isomers of N-acylalanines, which are all present in mammalian brain and other tissues and modulate activity of biological receptors with various functions. In the present study, we synthesized and characterized a homologous series of NABAs bearing saturated acyl chains (n=8-20) and investigated their supramolecular organization and thermotropic phase behavior. In differential scanning calorimetric (DSC) studies, most of the NABAs gave one or two minor transitions before the main chain-melting phase transition in the dry state as well as upon hydration with water, but gave only a single transition when hydrated with buffer (pH7.6). Transition enthalpies (ΔHt) and entropies (ΔSt), obtained from the DSC studies showed linear dependence on the chain length in the dry state and upon hydration with buffer, whereas odd-even alteration was observed when hydrated with water. The crystal structures of N-lauroyl-β-alanine (NLBA) and N-myristoyl-β-alanine (NMBA) were solved in monoclinic system in the P21/c space group. Both NLBA and NMBA were packed in tilted bilayers with head-to-head (and tail-to-tail) arrangement with tilt angles of 33.28° and 34.42°, respectively. Strong hydrogen bonding interactions between COOH groups of the molecules from opposite leaflets as well as NH⋯O hydrogen bonds between the amide groups from adjacent molecules in the same leaflet as well as dispersion interactions between the acyl chains stabilize the bilayer structure. The d-spacings calculated from powder X-ray diffraction studies showed odd-even alteration with odd-chain length compounds exhibiting higher values as compared to the even-chain length ones and the tilt angles calculated from the PXRD data are higher for the even chain NABAs. These observations are relevant to developing structure-activity relationships for these amphiphiles and understand

  1. Structural and Functional Importance of Transmembrane Domain 3 (TM3) in the Aspartate:Alanine Antiporter AspT: Topology and Function of the Residues of TM3 and Oligomerization of AspT▿

    OpenAIRE

    Nanatani, Kei; Maloney, Peter C.; Abe, Keietsu

    2009-01-01

    AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, a membrane protein of 543 amino acids with 10 putative transmembrane (TM) helices, is the prototype of the aspartate:alanine exchanger (AAE) family of transporters. Because TM3 (isoleucine 64 to methionine 85) has many amino acid residues that are conserved among members of the AAE family and because TM3 contains two charged residues and four polar residues, it is thought to be located near (or to form part of) the substrat...

  2. Enhancement in second harmonic generation efficiency, laser damage threshold and optical transparency of Mn 2+ doped L-alanine crystals: A correlation with crystalline perfection

    Science.gov (United States)

    Kushwaha, S. K.; Rathee, S. P.; Maurya, K. K.; Bhagavannarayana, G.

    2011-08-01

    Effect on crystalline perfection, second harmonic generation (SHG) efficiency, laser damage threshold (LDT) and optical transparency due to Mn 2+ doping in L-alanine crystals has been investigated. The crystalline perfection of pure and doped crystals was evaluated by high-resolution X-ray diffractometry, which revealed the improvement in the crystalline perfection at low and moderate doping concentrations. At moderate and high concentrations, the Mn 2+ ions were found to be incorporated predominantly at the interstitial sites of the crystalline matrix. The actual incorporated amount of dopants in the crystals was analyzed by atomic absorption spectroscopy. The optical transparency, SHG efficiency, and laser damage threshold of the grown crystals with different concentrations of Mn 2+ were investigated. From these studies it is revealed that Mn 2+ doping lead to a considerable enhancement in the measured nonlinear optical properties with a correlation on crystalline perfection.

  3. Effect of gamma irradiation on the activity of alanine and aspartate transaminases in subcellular fractions of the brain and heart in white rats

    Energy Technology Data Exchange (ETDEWEB)

    Plenin, A.E.

    1973-01-01

    In experiments on rats, the activity of alanine (I) and aspartate transaminases (II) was studied in homogenates and subcellular fractions of the brain and myocardium under normal conditions and for 30 days after ..gamma.. irradiation at 40 rads. The activity of II in brain homogenates increased 1 hour after irradiation but decreased by 20 percent on day 3; it decreased again on days 7 and 15. The activity of brain I increased after 1 hour and 3 days but then returned to normal. The activity of I in heart homogenates increased in all the periods after irradiation. The subcellular fractions exhibited phase changes in the activity of the enzymes. These changes were different in nature from those observed after X and ..gamma.. irradiation at the same dose.

  4. Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice.

    Science.gov (United States)

    Collins, L Vincent; Kristian, Sascha A; Weidenmaier, Christopher; Faigle, Marion; Van Kessel, Kok P M; Van Strijp, Jos A G; Götz, Friedrich; Neumeister, Birgid; Peschel, Andreas

    2002-07-15

    Staphylococcus aureus is resistant to alpha-defensins, antimicrobial peptides that play an important role in oxygen-independent killing of human neutrophils. The dlt operon mediates d-alanine incorporation into teichoic acids in the staphylococcal cell envelope and is a determinant of defensin resistance. By using S. aureus wild-type (WT) and Dlt- bacteria, the relative contributions of oxygen-dependent and -independent antimicrobial phagocyte components were analyzed. The Dlt- strain was efficiently killed by human neutrophils even in the absence of a functional respiratory burst, whereas the killing of the WT organism was strongly diminished when the respiratory burst was inhibited. Human monocytes, which do not produce defensins, inactivated the WT and Dlt- bacteria with similar efficiencies. In addition, mice injected with the Dlt- strain had significantly lower rates of sepsis and septic arthritis and fewer bacteria in the kidneys, compared with mice infected with the WT strain.

  5. Glucose-stimulated prehepatic insulin secretion is associated with circulating alanine, triglyceride, glucagon, lactate and TNF-alpha in patients with HIV-lipodystrophy

    DEFF Research Database (Denmark)

    Haugaard, S B; Andersen, O; Pedersen, S B

    2006-01-01

    technique. The disposition index (Di=ISREG0-10 min x SIRd) was calculated to estimate the beta-cell response relative to insulin sensitivity. RESULTS: FISR was increased by 69% (P... and ISREG0-10 min. Increased concentrations of the nonglucose insulin secretagogues triglyceride (+124%), alanine (+35%) and glucagon (+88%), and also lactate (+96%) and tumour necrosis factor (TNF)-alpha (+62%) were observed in the 10 LIPO patients with aberrations in FISR and ISREG0-10 min compared...... with the remaining HIV-infected patients (all Palanine, glucagon, lactate and TNF-alpha may be associated with alterations in the first-phase prehepatic insulin secretion response to intravenous glucose in normoglycaemic lipodystrophic HIV-infected patients....

  6. Glucose-stimulated prehepatic insulin secretion is associated with circulating alanine, triglyceride, glucagons, lactate and TNF-alfa in patients with HIV-lipodystrophy

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Pedersen, SB

    2006-01-01

    technique. The disposition index (Di=ISREG0-10 min x SIRd) was calculated to estimate the beta-cell response relative to insulin sensitivity. RESULTS: FISR was increased by 69% (P... and ISREG0-10 min. Increased concentrations of the nonglucose insulin secretagogues triglyceride (+124%), alanine (+35%) and glucagon (+88%), and also lactate (+96%) and tumour necrosis factor (TNF)-alpha (+62%) were observed in the 10 LIPO patients with aberrations in FISR and ISREG0-10 min compared...... with the remaining HIV-infected patients (all Palanine, glucagon, lactate and TNF-alpha may be associated with alterations in the first-phase prehepatic insulin secretion response to intravenous glucose in normoglycaemic lipodystrophic HIV-infected patients....

  7. Crystal structure of the S187F variant of human liver alanine: glyoxylate [corrected] aminotransferase associated with primary hyperoxaluria type I and its functional implications.

    Science.gov (United States)

    Oppici, Elisa; Fodor, Krisztian; Paiardini, Alessandro; Williams, Chris; Voltattorni, Carla Borri; Wilmanns, Matthias; Cellini, Barbara

    2013-08-01

    The substitution of Ser187, a residue located far from the active site of human liver peroxisomal alanine:glyoxylate aminotransferase (AGT), by Phe gives rise to a variant associated with primary hyperoxaluria type I. Unexpectedly, previous studies revealed that the recombinant form of S187F exhibits a remarkable loss of catalytic activity, an increased pyridoxal 5'-phosphate (PLP) binding affinity and a different coenzyme binding mode compared with normal AGT. To shed light on the structural elements responsible for these defects, we solved the crystal structure of the variant to a resolution of 2.9 Å. Although the overall conformation of the variant is similar to that of normal AGT, we noticed: (i) a displacement of the PLP-binding Lys209 and Val185, located on the re and si side of PLP, respectively, and (ii) slight conformational changes of other active site residues, in particular Trp108, the base stacking residue with the pyridine cofactor moiety. This active site perturbation results in a mispositioning of the AGT-pyridoxamine 5'-phosphate (PMP) complex and of the external aldimine, as predicted by molecular modeling studies. Taken together, both predicted and observed movements caused by the S187F mutation are consistent with the following functional properties of the variant: (i) a 300- to 500-fold decrease in both the rate constant of L-alanine half-transamination and the kcat of the overall transamination, (ii) a different PMP binding mode and affinity, and (iii) a different microenvironment of the external aldimine. Proposals for the treatment of patients bearing S187F mutation are discussed on the basis of these results.

  8. Thermodynamics of the ternary systems: (water + glycine, L-alanine and L-serine + di-ammonium hydrogen citrate) from volumetric, compressibility, and (vapour + liquid) equilibria measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat, E-mail: rahsadeghi@yahoo.co [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Gholamireza, Afsaneh [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2011-02-15

    The apparent molar volumes and isentropic compressibility of glycine, L-alanine and L-serine in water and in aqueous solutions of (0.500 and 1.00) mol . kg{sup -1} di-ammonium hydrogen citrate {l_brace}(NH{sub 4}){sub 2}HCit{r_brace} and those of (NH{sub 4}){sub 2}HCit in water have been obtained over the (288.15 to 313.15) K temperature range at 5 K intervals at atmospheric pressure from measurements of density and ultrasonic velocity. The apparent molar volume and isentropic compressibility values at infinite dilution of the investigated amino acids have been obtained and their variations with temperature and their transfer properties from water to aqueous solutions of (NH{sub 4}){sub 2}HCit have also been obtained. The results have been interpreted in terms of the hydration of the amino acids. In the second part of this work, water activity measurements by the isopiestic method have been carried out on the aqueous solutions of {l_brace}glycine + (NH{sub 4}){sub 2}HCit{r_brace}, {l_brace}alanine + (NH{sub 4}){sub 2}HCit{r_brace}, and {l_brace}serine + (NH{sub 4}){sub 2}HCit{r_brace} at T = 298.15 K at atmospheric pressure. From these measurements, values of vapour pressure, osmotic coefficient, activity coefficient and Gibbs free energy were obtained. The effect of the type of amino acids on the (vapour + liquid) equilibrium of the systems investigated has been studied. The experimental water activities have been correlated successfully with the segment-based local composition Wilson model. Furthermore, the thermodynamic behaviour of the ternary solutions investigated has been studied by using the semi-ideal hydration model and the linear concentration relations have been tested by comparing with the isopiestic measurements for the studied systems at T = 298.15 K.

  9. Dosimetry for small fields in stereotactic radiosurgery using gafchromic MD-V2-55 film, TLD-100 and alanine dosimeters.

    Directory of Open Access Journals (Sweden)

    Guerda Massillon-J L

    Full Text Available This work investigated the suitability of passive dosimeters for reference dosimetry in small fields with acceptable accuracy. Absorbed dose to water rate was determined in nine small radiation fields with diameters between 4 and 35 mm in a Leksell Gamma Knife (LGK and a modified linear accelerator (linac for stereotactic radiosurgery treatments. Measurements were made using Gafchromic film (MD-V2-55, alanine and thermoluminescent (TLD-100 dosimeters and compared with conventional dosimetry systems. Detectors were calibrated in terms of absorbed dose to water in (60Co gamma-ray and 6 MV x-ray reference (10×10 cm(2 fields using an ionization chamber calibrated at a standards laboratory. Absorbed dose to water rate computed with MD-V2-55 was higher than that obtained with the others dosimeters, possibly due to a smaller volume averaging effect. Ratio between the dose-rates determined with each dosimeter and those obtained with the film was evaluated for both treatment modalities. For the LGK, the ratio decreased as the dosimeter size increased and remained constant for collimator diameters larger than 8 mm. The same behaviour was observed for the linac and the ratio increased with field size, independent of the dosimeter used. These behaviours could be explained as an averaging volume effect due to dose gradient and lack of electronic equilibrium. Evaluation of the output factors for the LGK collimators indicated that, even when agreement was observed between Monte Carlo simulation and measurements with different dosimeters, this does not warrant that the absorbed dose to water rate in the field was properly known and thus, investigation of the reference dosimetry should be an important issue. These results indicated that alanine dosimeter provides a high degree of accuracy but cannot be used in fields smaller than 20 mm diameter. Gafchromic film can be considered as a suitable methodology for reference dosimetry. TLD dosimeters are not

  10. Dosimetry in non-homogeneous media with alanine/EPR mini dosemeters and simulation with PENELOPE Monte Carlo code;Dosimetria em meios nao-homogeneos com minidosimetros de alanina/EPR e simulacao Monte Carlo com o codigo PENELOPE

    Energy Technology Data Exchange (ETDEWEB)

    Vega Ramirez, J.L.; Chen, F.; Nicolucci, P.; Baffa, O. [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2009-07-01

    The dosimetric system of L-alanine mini dosimeter and K-Band EPR spectrometer was tested for the dosimetry in non-homogeneous media through the determination of the Percentage Depth Dose (PDD) curve for a small radiation field. The alanine mini dosimeters were produced by mechanical pressure of a mixture of L-alanine (95%) and PVA (5%) to nominal dimensions of 1 mm diameter and 3 mm length and 3 - 4 mg. For detecting the EPR signal of the mini dosimeters irradiated to 25 Gy, a K-Band (24 GHz) spectrometer was used. The dosimeters were irradiated in a {sup 60}Co radiotherapy unit using 80 cm source skin distance and field sizes of 2.5 x 2.5 cm{sup 2}. The inhomogeneous phantom consisted of acrylic and cork sheets of 30 x 30 x 1 cm{sup 3}; six cork sheets were sandwiched between five and nine acrylic sheets, which were placed at the top and bottom regions respectively. PDD curves with radiographic film and PENELOPE simulation were also determined. The PDD results for alanine mini dosimeters agreed better than 5.9% with film and PENELOPE. (author)

  11. Determination of the neurotoxins BMAA (ß-N-methylamino-L-alanine) and DAB (a-,¿-diaminobutyric acid) by LC-MSMS in Dutch urban waters with cyanobacterial blooms

    NARCIS (Netherlands)

    Faassen, E.J.; Gillissen, F.; Zweers, H.; Lürling, M.F.L.L.W.

    2009-01-01

    We aimed to determine concentrations of the neurotoxic amino acids ß-N-methylamino-L-alanine (BMAA) and -,¿-diaminobutyric acid (DAB) in mixed species scum material from Dutch urban waters that suffer from cyanobacterial blooms. BMAA and DAB were analysed in scum material without derivatization by L

  12. Scientific Opinion on the substantiation of a health claim related to beta-alanine and increase in physical performance during short-duration, high-intensity exercise pursuant to Article 13(5 of Regulation (EC No 1924/2006

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA

    2014-07-01

    Full Text Available Following an application from Natural Alternative International, Inc. (NAI, submitted pursuant to Article 13(5 of Regulation (EC No 1924/2006 via the Competent Authority of the United Kingdom, the Panel on Dietetic Products, Nutrition and Allergies (NDA was asked to deliver an opinion on the scientific substantiation of a health claim related to beta-alanine and increase in physical performance during short-duration, high-intensity exercise. The food constituent that is the subject of the claim is beta-alanine, which is sufficiently characterised. The Panel considers that an increase in physical performance during short-duration, high-intensity exercise is a beneficial physiological effect. In weighing the evidence the Panel took into account that only one out of 11 pertinent human intervention studies (including 14 pertinent outcomes from which conclusions could be drawn showed an effect of beta-alanine on physical performance during short-duration, high intensity exercise. The Panel concludes that a cause and effect relationship has not been established between the consumption of beta-alanine and an increase in physical performance during short-duration, high intensity exercise.

  13. 磷酰化对丙氨酸与溶菌酶相互作用的影响%The Effect of Phosphoryl Oxygen on the Intermolecular Action of Alanine and Lysozyme

    Institute of Scientific and Technical Information of China (English)

    方美娟; 骆书娜; 王河清; 刘万云; 赵玉芬

    2005-01-01

    It was found that N-diisopropyloxyphosphoryl alanine (DIPP-Ala) could form adduct with hen egg white lysozyme (HEWL) as shown in electrospray ionization mass spectroscopy (ESI-MS), but the non-phosphorylated alanine couldn't. The capability for formation of DIPP-Ala dimmer was more stronger than that of alanine. It suggested that a specific non-covalent complex was formed in the solution phase and could be transferred to the gas phase via electrospray ionization (ESI). The results implied that phosphorylated alanine possessed relatively stronger affinities for protein and formed non-covalent complexes with protein more easily than alanine. Using Tripos force field, molecular mechanics calculation on DIPP-Ala dimmer showed that such non-covalent adduct formation was due to the intermolecular hydrogen bond.%在电喷雾离子阱质谱图中发现丙氨酸不能和溶菌酶形成二聚体,而磷酰化丙氨酸(DIPP-Ala)能和溶菌酶形成二聚体.进一步研究发现丙氨酸及其他氨基酸磷酰化后,自身形成二聚能力大大增强.在Silicon Graplics图形工作站上采用SYBYL 6.8软件,利用Tripos力场和分子力学方法研究了DIPP-Ala最低能量构象,并用分子对接(DOCK)研究了二聚体的形成.结果说明磷氧双键的存在增强了分子间的相互作用.

  14. Unique Aspects of Cryptochrome in Chronobiology and Metabolism, Pancreatic β-Cell Dysfunction, and Regeneration: Research into Cysteine414-Alanine Mutant CRY1.

    Science.gov (United States)

    Okano, Satoshi

    2016-01-01

    Cryptochrome proteins (CRYs), which can bind noncovalently to cofactor (chromophore) flavin adenine dinucleotide (FAD), occur widely among organisms. CRYs play indispensable roles in the generation of circadian rhythm in mammals. Transgenic mice (Tg mice), ubiquitously expressing mouse CRY1 having a mutation in which cysteine414 (the zinc-binding site of CRY1) being replaced with alanine, display unique phenotypes in their circadian rhythms. Moreover, male Tg mice exhibit symptoms of diabetes characterized by beta-cell dysfunction, resembling human maturity onset diabetes of the young (MODY). The lowered proliferation of β-cells is a primary cause of age-dependent β-cell loss. Furthermore, unusually enlarged duct-like structures developed prominently in the Tg mice pancreases. The duct-like structures contained insulin-positive cells, suggesting neogenesis of β-cells in the Tg mice. This review, based mainly on the author's investigation of the unique features of Tg mice, presents reported results and recent findings related to molecular processes associated with mammalian cryptochromes, especially their involvement in the regulation of metabolism. New information is described with emphasis on the aspects of islet architecture, pancreatic β-cell dysfunction, and regeneration.

  15. Importance of Hydrophilic Hydration and Intramolecular Interactions in the Thermodynamics of Helix-Coil Transition and Helix-Helix Assembly in a Deca-Alanine Peptide.

    Science.gov (United States)

    Tomar, Dheeraj S; Weber, Valéry; Pettitt, B Montgomery; Asthagiri, D

    2016-01-14

    For a model deca-alanine peptide the cavity (ideal hydrophobic) contribution to hydration favors the helix state over extended states and the paired helix bundle in the assembly of two helices. The energetic contributions of attractive protein-solvent interactions are separated into quasi-chemical components consisting of a short-range part arising from interactions with solvent in the first hydration shell and the remaining long-range part that is well described by a Gaussian. In the helix-coil transition, short-range attractive protein-solvent interactions outweigh hydrophobic hydration and favor the extended coil states. Analysis of enthalpic effects shows that it is the favorable hydration of the peptide backbone that favors the unfolded state. Protein intramolecular interactions favor the helix state and are decisive in favoring folding. In the pairing of two helices, the cavity contribution outweighs the short-range attractive protein-water interactions. However, long-range, protein-solvent attractive interactions can either enhance or reverse this trend depending on the mutual orientation of the helices. In helix-helix assembly, change in enthalpy arising from change in attractive protein-solvent interactions favors disassembly. In helix pairing as well, favorable protein intramolecular interactions are found to be as important as hydration effects. Overall, hydrophilic protein-solvent interactions and protein intramolecular interactions are found to play a significant role in the thermodynamics of folding and assembly in the system studied.

  16. RAPID SYNTHESIS OF NOVEL OPTICALLY ACTIVE POLY(AMIDE-IMIDE)S DERIVED FROM N,N'-(PYROMELLITOYL)-BIS-L-ALANINE DIACID CHLORIDE AND HYDANTOIN DERIVATIVES UNDER MICROWAVE IRRADIATION

    Institute of Scientific and Technical Information of China (English)

    Khalil Faghihi; Azizollah Mirsamie

    2005-01-01

    Eight novel poly(amide-imide)s were synthesized under microwave irradiation by using a domestic microwave oven from the polycondensation reactions of N,N'-(pyromellitoyl)-bis-L-alanine diacid chloride (1) with eight different derivatives of hydantoin compounds (2a-h) in the presence of a small amount of a polar organic medium such as o-cresol.The polycondensation proceeded rapidly, compared with the conventional solution polycondensation and was completed within 8-10 min, producing a series of new poly(amide-imide)s (3a-h) with inherent viscosities about 0.35-0.68 dL/g in high yields. The obtained PAIs (3a-h) were fully characterized by means of FT-IR spectroscopy, elemental analyses, inherent viscosity (ηinh), solubility and specific rotation measurements. All of the resulting polymers show optical rotation and are optically active. Thermal properties of the poly(amide-imide)s were investigated by using thermal gravimetric analysis(TGA).

  17. Insertion of beta-alanine in model peptides for copper binding to His96 and His111 of the human prion protein.

    Science.gov (United States)

    Rivillas-Acevedo, Lina; Maciel-Barón, Luis; García, Javier E; Juaristi, Eusebio; Quintanar, Liliana

    2013-09-01

    The prion protein coordinates copper with high affinity in the regions encompassing residues 92-99 (GGGTHSQW) and 106-115 (KTNMKHMAGA). Cu(II) binding to these sites involves the coordination of the His96/His111 imidazole ring and backbone deprotonated amides that precede the His residue. Such a coordination arrangement involves the formation of hexa- and penta-membered cycles that provide further stabilization of the metal-peptide complex. The purpose of the present study is to introduce a methylene group in the peptide backbone, to evaluate the impact of increasing the size of these cycles in Cu(II) binding. Thus, a β-alanine residue was inserted at different positions preceding the His residue in these prion fragments, and their Cu(II) coordination properties were assessed by UV-Visible absorption, circular dichroism, and electron paramagnetic resonance. Spectroscopic data show that the insertion of a methylene group leads to a completely different Cu(II) coordination that involves the His96/His111 imidazole ring and nitrogen or oxygen atoms provided by the peptide backbone towards the C-terminal. This study clearly shows that two main factors determine the nature of Cu(II)-peptide complexes involving an anchoring His residue and deprotonated amides from the backbone chain: i) the stabilization of Cu(II)-peptide complexes due to the formation of cyclic structures (i.e. chelate effect) and ii) the nature of the residues associated to the deprotonated amide groups that participate in metal ion coordination.

  18. Effect of L-alanine, Mn(II) and glycine dopants on the structural, crystalline perfection, second harmonic generation (SHG), dielectric and mechanical properties of BTCA single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, V. [Department of Physics, Ganapathy Engineering College, Warangal 506005 (India); Bhaskar Rao, T.; Kishan Rao, K. [Department of Physics, Kakatiya University, Warangal 506009 India (India); Bhagavannarayana, G. [CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Shkir, Mohd, E-mail: shkirphysics@gmail.com [Department. of Physics, Atma Ram Sanatan Dharma (ARSD) College, University of Delhi, New Delhi 110021 (India) and CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India)

    2012-11-15

    Bis thiourea cadmium acetate (BTCA) single crystals were grown at room temperature with different dopants by aqueous solution technique. The crystal system of the grown crystals with all the dopants was confirmed by powder X-ray diffraction study which confirms that there is no extra phase due to doping of L-alanine (LA), Mn(II) and glycine (Gly). It was further confirmed by FT-IR as well as FT-Raman spectroscopy analysis. The effect of LA, Mn(II) and Gly doping on the crystalline perfection was assessed by high-resolution X-ray diffractometry (HRXRD) analysis which revealed that the grown crystals with Gly doping are more perfect in comparison of other dopants. The SHG efficiency was measured using the Kurtz powder technique and shows that the grown crystals with Gly doping are more efficient in comparison of other dopants which is in tune with crystalline perfection. The low values of dielectric constant and loss also revealed that the grown crystals are defect free. The hardness values were found to be increased by increasing the doping concentration. -- Highlights: Black-Right-Pointing-Pointer The strong effect on crystalline perfection was found in BTCA crystals due to glycine doping. Black-Right-Pointing-Pointer The SHG efficiency was found to be higher in case of glycine doped BTCA crystals. Black-Right-Pointing-Pointer The hardness value was found to be increase with doping.

  19. Crystal growth and structural investigation of a new metal-organic crystal: β-alanine cadmium bromide monohydrate (β-ACBM)

    Science.gov (United States)

    Renugadevi, R.; Kesavasamy, R.

    2014-09-01

    A new metal-organic crystal, β-alanine cadmium bromide monohydrate (β-ACBM) has been grown from aqueous solution by slow evaporation technique. The grown crystals have been subjected to single crystal X-ray diffraction to determine the crystal structure. The β-ACBM crystallized in monoclinic system, which belongs to the space group P21/c with a = 8.6734(6) Å, b = 13.9451(8) Å, c = 7.6801(5) Å, β = 103.713(2)o, volume = 902.44(10) Å3, Z = 4, calculated density = 2.792 Mg/m3, F(000) = 704, absorption coefficient = 11.231 mm-1, the final R = 0.0252 and wR2 = 0.0601 for 2065 observed reflections [I > 2sigma(I)]. FT-IR spectroscopy analysis was carried out in order to identify the functional groups of the title compound. The presence of proton and carbon in the β-ACBM was confirmed by 1H and 13C nuclear magnetic resonance spectral analysis. The UV-Vis-NIR transmittance spectrum has been recorded for the grown β-ACBM crystal. The refractive index of β-ACBM crystal was determined by Brewster's angle method using He-Ne laser.

  20. Determination of the neurotoxin BMAA (beta-N-methylamino-L-alanine) in cycad seed and cyanobacteria by LC-MS/MS (liquid chromatography tandem mass spectrometry).

    Science.gov (United States)

    Rosén, Johan; Hellenäs, Karl-Erik

    2008-12-01

    A highly specific method for the analysis of beta-N-methylamino-L-alanine (BMAA) by LC-MS/MS (liquid chromatography tandem mass spectrometry) has been developed and applied for cycad seeds and cyanobacteria. BMAA was analysed as a free fraction or as total BMAA after acidic hydrolysis to release any protein-bound BMAA. Deuterium labelled BMAA was synthesised and used as internal standard. The method comprises HILIC (hydrophilic interaction chromatography) and positive electrospray ionisation of the native compound, i.e. no derivatisation was used. For safe identification five specific product ions (m/z 102, 88, 76, 73 and 44), all derived from a precursor ion of m/z 119 and originating from different parts of the molecule, were detected (typical relative abundance 100%, 16%, 14%, 12% and 22% respectively). Cyanobacteria or muscle tissue was spiked with BMAA (10 to 1000 microg g(-1)) to validate the method (accuracy 95% to 109%, relative standard deviation 1% to 6%). The detection limit for free and total BMAA in tissue was cycad seeds, whereas previously reported findings of BMAA in samples of cyanobacteria could not be confirmed. Instead, the presence of alpha-,gamma-diamino butyric acid (DAB), an isomer of BMAA, was confirmed in one sample. The possible implications of this finding are discussed.

  1. Insight into structure-function relationship in phenol-soluble modulins using an alanine screen of the phenol-soluble modulin (PSM) α3 peptide.

    Science.gov (United States)

    Cheung, Gordon Y C; Kretschmer, Dorothee; Queck, Shu Y; Joo, Hwang-Soo; Wang, Rong; Duong, Anthony C; Nguyen, Thuan H; Bach, Thanh-Huy L; Porter, Adeline R; DeLeo, Frank R; Peschel, Andreas; Otto, Michael

    2014-01-01

    Phenol-soluble modulins (PSMs) are a family of peptides with multiple functions in staphylococcal pathogenesis. To gain insight into the structural features affecting PSM functions, we analyzed an alanine substitution library of PSMα3, a strongly cytolytic and proinflammatory PSM of Staphylococcus aureus with a significant contribution to S. aureus virulence. Lysine residues were essential for both receptor-dependent proinflammatory and receptor-independent cytolytic activities. Both phenotypes also required additional structural features, with the C terminus being crucial for receptor activation. Biofilm formation was affected mostly by hydrophobic amino acid positions, suggesting that the capacity to disrupt hydrophobic interactions is responsible for the effect of PSMs on biofilm structure. Antimicrobial activity, absent from natural PSMα3, could be created by the exchange of large hydrophobic side chains, indicating that PSMα3 has evolved to exhibit cytolytic rather than antimicrobial activity. In addition to gaining insight into the structure-function relationship in PSMs, our study identifies nontoxic PSMα3 derivatives for active vaccination strategies and lays the foundation for future efforts aimed to understand the biological role of PSM recognition by innate host defense.

  2. Involvement of myristoylated alanine-rich C kinase substrate phosphorylation and translocation in cholecystokinin-induced amylase release in rat pancreatic acini.

    Science.gov (United States)

    Satoh, Keitaro; Narita, Takanori; Katsumata-Kato, Osamu; Sugiya, Hiroshi; Seo, Yoshiteru

    2016-03-15

    Cholecystokinin (CCK) is a gastrointestinal hormone that induces exocytotic amylase release in pancreatic acinar cells. The activation of protein kinase C (PKC) is involved in the CCK-induced pancreatic amylase release. Myristoylated alanine-rich C kinase substrate (MARCKS) is a ubiquitously expressed substrate of PKC. MARCKS has been implicated in membrane trafficking in several cell types. The phosphorylation of MARCKS by PKC results in the translocation of MARCKS from the membrane to the cytosol. Here, we studied the involvement of MARCKS in the CCK-induced amylase release in rat pancreatic acini. Employing Western blotting, we detected MARCKS protein in the rat pancreatic acini. CCK induced MARCKS phosphorylation. A PKC-δ inhibitor, rottlerin, inhibited the CCK-induced MARCKS phosphorylation and amylase release. In the translocation assay, we also observed CCK-induced PKC-δ activation. An immunohistochemistry study showed that CCK induced MARCKS translocation from the membrane to the cytosol. When acini were lysed by a detergent, Triton X-100, CCK partially induced displacement of the MARCKS from the GM1a-rich detergent-resistant membrane fractions (DRMs) in which Syntaxin2 is distributed. A MARCKS-related peptide inhibited the CCK-induced amylase release. These findings suggest that MARCKS phosphorylation by PKC-δ and then MARCKS translocation from the GM1a-rich DRMs to the cytosol are involved in the CCK-induced amylase release in pancreatic acinar cells.

  3. Transport of L-glutamine, L-alanine, L-arginine and L-histidine by the neuron-specific Slc38a8 (SNAT8) in CNS.

    Science.gov (United States)

    Hägglund, Maria G A; Hellsten, Sofie V; Bagchi, Sonchita; Philippot, Gaëtan; Löfqvist, Erik; Nilsson, Victor C O; Almkvist, Ingrid; Karlsson, Edvin; Sreedharan, Smitha; Tafreshiha, Atieh; Fredriksson, Robert

    2015-03-27

    Glutamine transporters are important for regulating levels of glutamate and GABA in the brain. To date, six members of the SLC38 family (SNATs) have been characterized and functionally subdivided them into System A (SNAT1, SNAT2 and SNAT4) and System N (SNAT3, SNAT5 and SNAT7). Here we present the first functional characterization of SLC38A8, one of the previous orphan transporters from the family, and we suggest that the encoded protein should be named SNAT8 to adhere with the SNAT nomenclature. We show that SLC38A8 has preference for transporting L-glutamine, L-alanine, L-arginine, L-histidine and L-aspartate using a Na+-dependent transport mechanism and that the functional characteristics of SNAT8 have highest similarity to the known System A transporters. We also provide a comprehensive central nervous system expression profile in mouse brain for the Slc38a8 gene and the SNAT8 protein. We show that Slc38a8 (SNAT8) is expressed in all neurons, both excitatory and inhibitory, in mouse brain using in situ hybridization and immunohistochemistry. Furthermore, proximity ligation assay shows highly similar subcellular expression of SNAT7 and SNAT8. In conclusion, the neuronal SLC38A8 has a broad amino acid transport profile and is the first identified neuronal System A transporter. This suggests a key role of SNAT8 in the glutamine/glutamate (GABA) cycle in the brain.

  4. Risk factors associated with hepatitis B or C markers or elevated alanine aminotransferase level among blood donors on a tropical island: the Guadeloupe experience.

    Science.gov (United States)

    Fest, T; Viel, J F; Agis, F; Coffe, C; Dupond, J L; Hervé, P

    1992-10-01

    Donated blood is currently screened for hepatitis B surface antigen (HBsAg), antibody to hepatitis B core antigen (anti-HBc), antibody to hepatitis C virus (anti-HCV), and alanine aminotransferase (ALT) levels to prevent posttransfusion hepatitis. A prospective study of 2368 blood donors was carried out in Guadeloupe (French West Indies) with a view to determining the risk factors associated with serologic abnormalities. Blood donors included in the study had to complete a questionnaire. Statistical analysis was performed on the data thus obtained: 571 donations (24%) were positive for at least one of the four analyzed markers. The results were that 3.2 percent were positive for HBsAg, 22 percent for anti-HBc, and 0.8 percent for anti-HCV, and 1.4 percent had ALT > or = 45 IU per L. A good correlation was found between anti-HCV and elevated ALT. Transfusion history and two socioeconomic categories (working class, military personnel) were found to be risk factors. Other risk factors were lifelong residence in Guadeloupe (with risk increasing with the number of years), birthplace and current residence in the southern part of the island, and the existence of gastrointestinal discomfort unrelated to viral hepatitis (odds ratio = 2.98). The results of this study illustrate the difficulty of implementing a preventive policy against posttransfusion hepatitis in a tropical area. The unique epidemiologic situation of Guadeloupe as regards hepatitis B virus has led to more restrictive criteria for the acceptance of blood donors.

  5. Environmental neurotoxin interaction with proteins: Dose-dependent increase of free and protein-associated BMAA (β-N-methylamino-L-alanine) in neonatal rat brain.

    Science.gov (United States)

    Karlsson, Oskar; Jiang, Liying; Ersson, Lisa; Malmström, Tim; Ilag, Leopold L; Brittebo, Eva B

    2015-01-01

    β-Methylamino-L-alanine (BMAA) is implicated in the aetiology of neurodegenerative disorders. Neonatal exposure to BMAA induces cognitive impairments and progressive neurodegenerative changes including intracellular fibril formation in the hippocampus of adult rats. It is unclear why the neonatal hippocampus is especially vulnerable and the critical cellular perturbations preceding BMAA-induced toxicity remains to be elucidated. The aim of this study was to compare the level of free and protein-associated BMAA in neonatal rat brain and peripheral tissues after different exposures to BMAA. Ultra-high performance liquid chromatography-tandem mass spectrometry analysis revealed that BMAA passed the neonatal blood-brain barrier and was distributed to all studied brain areas. BMAA was also associated to proteins in the brain, especially in the hippocampus. The level in the brain was, however, considerably lower compared to the liver that is not a target organ for BMAA. In contrast to the liver there was a significantly increased level of protein-association of BMAA in the hippocampus and other brain areas following repeated administration suggesting that the degradation of BMAA-associated proteins may be lower in neonatal brain than in the liver. Additional evidence is needed in support of a role for protein misincorporation in the neonatal hippocampus for long-term effects of BMAA.

  6. MODE OF ACTION OF LANTANA CAMARA EXTRACTS ON ENZYMES ASPARTATE AMINO TRANSFERASE AND ALANINE AMINO TRANSFERASE ACTIVITY IN TARGET AND NONTARGET ORGANISMS

    Directory of Open Access Journals (Sweden)

    DIVYA RAJAN

    2013-01-01

    Full Text Available The plant Lantana camara on the basis of study conducted found to show effective larvicidal activity. The presentstudy deals with the mode of action of Lantana camara extract on enzymes, Aspartate Amino Transferase andAlanine Amino Transferase activity in target and non-target organisms. The major transaminase system of the bodysuch as AsAT and AlAT were significantly inhibited by the plant extract. A significant decrease in the activity ofabove two enzyme systems were observed from the fourth h of incubation onwards. The transaminase system ofmosquito larvae was more sensitive to Lantana camara extract than that of vertebrate system such as Anabastestudineus and Rana hexadactyla which are the non-target organisms seen in the aquatic habitat. The majortransaminase systems of the body such as AsAT and AlAT were inhibited in a dose dependent manner under bothinvitro and invivo conditions. The change of pH from alkaline (normal larvae to acidic (intoxicated larvae, mayalso be sufficient for inhibiting or blocking most of the enzymatic reactions leading to the death of the organisms.The results of this experiment indicated that the shrub Lantana camara could be studied further in detail and itsbenificial effects to the control of vector bron diseases could be utilised for healthy environments

  7. Pore Diameter Dependence and Segmental Dynamics of Poly-Z-L-lysine and Poly-L-alanine Confined in 1D Nanocylindrical Geometry

    Science.gov (United States)

    Tuncel, Eylul; Suzuki, Yasuhito; Iossifidis, Agathaggelos; Steinhart, Martin; Butt, Hans-Jurgen; Floudas, George; Duran, Hatice

    Structure formation, thermodynamic stability, phase and dynamic behaviors of polypeptides are strongly affected by confinement. Since understanding the changes in these behaviors will allow their rational design as functional devices with tunable properties, herein we investigated Poly-Z-L-lysine (PZLL) and Poly-L-alanine (PAla) homopolypeptides confined in nanoporous alumina containing aligned cylindrical nanopores as a function of pore size by differential scanning calorimetry (DSC), Fourier Transform Infrared Spectroscopy, Solid-state NMR, X-ray diffraction, Dielectric spectroscopy(DS). Bulk PZLL exhibits a glass transition temperature (Tg) at about 301K while PZLL nanorods showed slightly lower Tg (294K). The dynamic investigation by DS also revealed a decrease (4K) in Tg between bulk and PZLL nanorods. DS is a very sensitive probe of the local and global secondary structure relaxation through the large dipole to study effect of confinement. The results revealed that the local segmental dynamics, associated with broken hydrogen bonds, and segmental dynamics speed-up on confinement.

  8. Alanine/RPE dosimetry in the process of blood irradiation; Dosimetria alanina/RPE en el proceso de irradiacion de sangre

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F.; Covas, D.T.; Baffa, O. [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto-SP (Brazil)

    2000-07-01

    A set of eighty dosemeters approximately of Dl- alanine was proportioned to the Hemo center of Hospital das Clinicas of Medicine Faculty at Ribeirao Preto (HC-FRMP) in the Sao Paulo University, with the purpose to realize a quality control of the radiation dose supplied to blood bags. These dosemeters were divided in eight groups and irradiated for a two months period.The dosemeters were adhered to the bags and arranged inside of an acrylic box filled water with dimensions: (40x40x20) cm{sup 3}. The box irradiation was made using two fields parallel-opposed of (40x40) cm{sup 2} at 80 cm distance source-surface, in the Radiotherapy Service of HC-FMRP, with a {sup 60} Co teletherapy unit. The irradiation time was sufficient to supply a dose of 20 Gy approximately in the box center. The RPE measures were realized in a Varian E-4 spectrometer operating in X-band. For the total of dosemeters and for the irradiation volume, the minimum and maximum doses were of 14 Gy and 23 Gy respectively. The mean dose was (18{+-}2) Gy (1 {sigma}), and the variability coefficient 11 %. Around 5 % of the bags received a dose under of the recommended limit by the Brazilian legislation and as consequence, the exposure time was increased. (Author)

  9. Model Studies on the Antioxidative Effect of Polyphenols in Thermally Treated D-Glucose/L-Alanine Solutions with Added Metal Ions.

    Science.gov (United States)

    Wilker, Daniel; Heinrich, Anna B; Kroh, Lothar W

    2015-12-30

    The influence of different polyphenolic compounds (PPs) on the Maillard reaction in a d-glucose/l-alanine model system with or without metal ions was studied under various reaction conditions. At temperatures up to 100 °C the PPs showed pro-oxidative effects due to their reducing effects on metal ions. This can be explained by a combined redox cycling mechanism of metals and PPs that promotes oxidation in the Maillard reaction. The antioxidative capacities of the PPs were measured with three different assays and correlated directly with their pro-oxidative effects on d-glucosone formation. The degree of the pro-oxidative effect depended not only on the PPs' reducing potential and their antioxidative ability but also on their concentration, the temperature, and the pH value of the model system. At low pH values and temperatures, the PPs were more stable and therefore showed an increased pro-oxidative tendency. In contrast, some of the used PPs were almost completely degraded at temperatures of 130 °C, and the formed polymers were able to complex metal ions. In the absence of these catalyzing ions, the oxidation ratio of d-glucose to d-glucosone was decreased.

  10. The antioxidant effects of vitamin C on liver enzymes: aspartate aminotransferase, alanine aminotranferease, alkaline phosphatase and gamma-glutamyltransferase activities in rats under Paraquat insult

    Directory of Open Access Journals (Sweden)

    Benjamin Nnamdi Okolonkwo

    2013-06-01

    Full Text Available Paraquat (PQ is a bipyridylium herbicide; applied around trees in orchards and between crop rows to control broad-leaved and grassy weeds. Its oxidation results in the formation of superoxides which causes damage to cellular components. In this study, we determined the antioxidant effect vitamin C has on the liver enzymes [aspartate aminotransferase (SGOT, alanine aminotranferease (SGPT, alkaline phosphatase (ALP, and gamma-glutamyltransferase (GGT] of rats under this toxic insult. Male rats in groups (A, B, C and D were intraperitoneally injected with different sublethal increasing doses (0, 0.02, 0.04 and 0.06 g/kg body weigh of PQ respectively on monthly basis. Subsequently, the subgroups (A2, B2, C2 and D2 were given orally, 200 mg/L vitamin C, while the subgroups A1, B1, C1, and D1, received only water. Four animals per subgroup were decapitated on monthly basis and blood samples taken for enzyme assay. The parameters studied were - SGOT, SGPT, ALP and GGT - liver enzymes. The dose and time dependent PQ toxicity effect resulted in highly elevated Liver enzymes activities. The subgroups on vitamin C had significantly lower enzyme activities when compared to the same subgroups on only PQ insult. But the values were high when compared to the control subgroups (A1 and A2. These results were indication that vitamin C when given at moderate doses and maintained for a longer period could be a life saving adjunct to toxic insult.

  11. Role of hydration and intramolecular interactions in the helix-coil transition and helix-helix assembly in a deca-alanine peptide

    CERN Document Server

    Tomar, Dheeraj S; Pettitt, B M; Asthagiri, D

    2015-01-01

    For a model deca-alanine peptide the cavity (ideal hydrophobic) contribution to hydration favors the helix state in the coil-to-helix transition and the paired helix bundle in the assembly of two helices. The energetic contributions of attractive protein-solvent interactions are separated into a short-range part arising from interactions with solvent in the first hydration shell and the remaining long-range part. In the helix-coil transition, short-range attractive protein-solvent interactions outweigh hydrophobic hydration and favor the unfolded coil states. Analysis of enthalpic effects shows that it is the favorable hydration of the peptide backbone that favors the unfolded state. Protein intramolecular interactions favor the helix state and are decisive in folding. In the pairing of two helices, the cavity contribution outweighs short-range attractive protein-water interactions. However, long-range, protein-solvent attractive interactions can either enhance or reverse this trend depending on the mutual or...

  12. A structural insight into the P1S1 binding mode of diaminoethylphosphonic and phosphinic acids, selective inhibitors of alanine aminopeptidases

    Energy Technology Data Exchange (ETDEWEB)

    Węglarz-Tomczak, Ewelina; Berlicki, Łukasz; Pawełczak, Małgorzata; Nocek, Bogusław; Joachimiak, Andrzej; Mucha, Artur

    2016-07-01

    N0 -substituted 1,2-diaminoethylphosphonic acids and 1,2-diaminoethylphosphinic dipeptides were explored to unveil the structural context of the unexpected selectivity of these inhibitors of M1 alanine aminopeptidases (APNs) versus M17 leucine aminopeptidase (LAP). The diaminophosphonic acids were obtained via aziridines in an improved synthetic procedure that was further expanded for the phosphinic pseudodipeptide system. The inhibitory activity, measured for three M1 and one M17 metalloaminopeptidases of different sources (bacterial, human and porcine), revealed several potent compounds (e.g., Ki ¼ 65 nM of 1u for HsAPN). Two structures of an M1 representative (APN from Neisseria meningitidis) in complex with N-benzyl-1,2-diaminoethylphosphonic acid and N-cyclohexyl-1,2- diaminoethylphosphonic acid were determined by the X-ray crystallography. The analysis of these structures and the models of the phosphonic acid complexes of the human ortholog provided an insight into the role of the additional amino group and the hydrophobic substituents of the ligands within the S1 active site region.

  13. Beta-N-Methylamino-l-Alanine: LC-MS/MS Optimization, Screening of Cyanobacterial Strains and Occurrence in Shellfish from Thau, a French Mediterranean Lagoon

    Directory of Open Access Journals (Sweden)

    Damien Réveillon

    2014-11-01

    Full Text Available β-N-methylamino-l-alanine (BMAA is a neurotoxic non-protein amino acid suggested to be involved in neurodegenerative diseases. It was reported to be produced by cyanobacteria, but also found in edible aquatic organisms, thus raising concern of a widespread human exposure. However, the chemical analysis of BMAA and its isomers are controversial, mainly due to the lack of selectivity of the analytical methods. Using factorial design, we have optimized the chromatographic separation of underivatized analogues by a hydrophilic interaction chromatography coupled to tandem mass spectrometry (HILIC-MS/MS method. A combination of an effective solid phase extraction (SPE clean-up, appropriate chromatographic resolution and the use of specific mass spectral transitions allowed for the development of a highly selective and sensitive analytical procedure to identify and quantify BMAA and its isomers (in both free and total form in cyanobacteria and mollusk matrices (LOQ of 0.225 and 0.15 µg/g dry weight, respectively. Ten species of cyanobacteria (six are reported to be BMAA producers were screened with this method, and neither free nor bound BMAA could be found, while both free and bound DAB were present in almost all samples. Mussels and oysters collected in 2009 in the Thau Lagoon, France, were also screened, and bound BMAA and its two isomers, DAB and AEG, were observed in all samples (from 0.6 to 14.4 µg/g DW, while only several samples contained quantifiable free BMAA.

  14. Glycerophosphoglycerol, Beta-Alanine, and Pantothenic Acid as Metabolic Companions of Glycolytic Activity and Cell Migration in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Antje Hutschenreuther

    2013-11-01

    Full Text Available In cancer research, cell lines are used to explore the molecular basis of the disease as a substitute to tissue biopsies. Breast cancer in particular is a very heterogeneous type of cancer, and different subgroups of cell lines have been established according to their genomic profiles and tumor characteristics. We applied GCMS metabolite profiling to five selected breast cancer cell lines and found this heterogeneity reflected on the metabolite level as well. Metabolite profiles of MCF-7 cells belonging to the luminal gene cluster proved to be more different from those of the basal A cell line JIMT-1 and the basal B cell lines MDA-MB-231, MDA-MB-435, and MDA-MB-436 with only slight differences in the intracellular metabolite pattern. Lactate release into the cultivation medium as an indicator of glycolytic activity was correlated to the metabolite profiles and physiological characteristics of each cell line. In conclusion, pantothenic acid, beta-alanine and glycerophosphoglycerol appeared to be related to the glycolytic activity designated through high lactate release. Other physiological parameters coinciding with glycolytic activity were high glyoxalase 1 (Glo1 and lactate dehydrogenase (LDH enzyme activity as well as cell migration as an additional important characteristic contributing to the aggressiveness of tumor cells. Metabolite profiles of the cell lines are comparatively discussed with respect to known biomarkers of cancer progression.

  15. Unique Aspects of Cryptochrome in Chronobiology and Metabolism, Pancreatic β-Cell Dysfunction, and Regeneration: Research into Cysteine414-Alanine Mutant CRY1

    Directory of Open Access Journals (Sweden)

    Satoshi Okano

    2016-01-01

    Full Text Available Cryptochrome proteins (CRYs, which can bind noncovalently to cofactor (chromophore flavin adenine dinucleotide (FAD, occur widely among organisms. CRYs play indispensable roles in the generation of circadian rhythm in mammals. Transgenic mice (Tg mice, ubiquitously expressing mouse CRY1 having a mutation in which cysteine414 (the zinc-binding site of CRY1 being replaced with alanine, display unique phenotypes in their circadian rhythms. Moreover, male Tg mice exhibit symptoms of diabetes characterized by beta-cell dysfunction, resembling human maturity onset diabetes of the young (MODY. The lowered proliferation of β-cells is a primary cause of age-dependent β-cell loss. Furthermore, unusually enlarged duct-like structures developed prominently in the Tg mice pancreases. The duct-like structures contained insulin-positive cells, suggesting neogenesis of β-cells in the Tg mice. This review, based mainly on the author’s investigation of the unique features of Tg mice, presents reported results and recent findings related to molecular processes associated with mammalian cryptochromes, especially their involvement in the regulation of metabolism. New information is described with emphasis on the aspects of islet architecture, pancreatic β-cell dysfunction, and regeneration.

  16. Integrated Application of Quality-by-Design Principles to Drug Product Development: A Case Study of Brivanib Alaninate Film-Coated Tablets.

    Science.gov (United States)

    Badawy, Sherif I F; Narang, Ajit S; LaMarche, Keirnan R; Subramanian, Ganeshkumar A; Varia, Sailesh A; Lin, Judy; Stevens, Tim; Shah, Pankaj A

    2016-01-01

    Modern drug product development is expected to follow quality-by-design (QbD) paradigm. At the same time, although there are several issue-specific examples in the literature that demonstrate the application of QbD principles, a holistic demonstration of the application of QbD principles to drug product development and control strategy, is lacking. This article provides an integrated case study on the systematic application of QbD to product development and demonstrates the implementation of QbD concepts in the different aspects of product and process design for brivanib alaninate film-coated tablets. Using a risk-based approach, the strategy for development entailed identification of product critical quality attributes (CQAs), assessment of risks to the CQAs, and performing experiments to understand and mitigate identified risks. Quality risk assessments and design of experiments were performed to understand the quality of the input raw materials required for a robust formulation and the impact of manufacturing process parameters on CQAs. In addition to the material property and process parameter controls, the proposed control strategy includes use of process analytical technology and conventional analytical tests to control in-process material attributes and ensure quality of the final product.

  17. Unique Aspects of Cryptochrome in Chronobiology and Metabolism, Pancreatic β-Cell Dysfunction, and Regeneration: Research into Cysteine414-Alanine Mutant CRY1

    Science.gov (United States)

    2016-01-01

    Cryptochrome proteins (CRYs), which can bind noncovalently to cofactor (chromophore) flavin adenine dinucleotide (FAD), occur widely among organisms. CRYs play indispensable roles in the generation of circadian rhythm in mammals. Transgenic mice (Tg mice), ubiquitously expressing mouse CRY1 having a mutation in which cysteine414 (the zinc-binding site of CRY1) being replaced with alanine, display unique phenotypes in their circadian rhythms. Moreover, male Tg mice exhibit symptoms of diabetes characterized by beta-cell dysfunction, resembling human maturity onset diabetes of the young (MODY). The lowered proliferation of β-cells is a primary cause of age-dependent β-cell loss. Furthermore, unusually enlarged duct-like structures developed prominently in the Tg mice pancreases. The duct-like structures contained insulin-positive cells, suggesting neogenesis of β-cells in the Tg mice. This review, based mainly on the author's investigation of the unique features of Tg mice, presents reported results and recent findings related to molecular processes associated with mammalian cryptochromes, especially their involvement in the regulation of metabolism. New information is described with emphasis on the aspects of islet architecture, pancreatic β-cell dysfunction, and regeneration. PMID:28105441

  18. Role of H{sub 2}O{sub 2} on the kinetics of low-affinity high-capacity Na{sup +}-dependent alanine transport in SHR proximal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Vanda; Pinho, Maria Joao [Institute of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-319 Porto (Portugal); Jose, Pedro A. [Center for Molecular Physiology Research, Children' s National Medical Center, Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC (United States); Soares-da-Silva, Patricio, E-mail: pss@med.up.pt [Institute of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-319 Porto (Portugal)

    2010-07-30

    Research highlights: {yields} H{sub 2}O{sub 2} in excess is required for the presence of a low-affinity high-capacity component for the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake in SHR PTE cells only. {yields} It is suggested that Na{sup +} binding in renal ASCT2 may be regulated by ROS in SHR PTE cells. -- Abstract: The presence of high and low sodium affinity states for the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake in immortalized renal proximal tubular epithelial (PTE) cells was previously reported (Am. J. Physiol. 293 (2007) R538-R547). This study evaluated the role of H{sub 2}O{sub 2} on the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake of ASCT2 in immortalized renal PTE cells from Wistar Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). Na{sup +} dependence of [{sup 14}C]-L-alanine uptake was investigated replacing NaCl with an equimolar concentration of choline chloride in vehicle- and apocynin-treated cells. Na{sup +} removal from the uptake solution abolished transport activity in both WKY and SHR PTE cells. Decreases in H{sub 2}O{sub 2} levels in the extracellular medium significantly reduced Na{sup +}-K{sub m} and V{sub max} values of the low-affinity high-capacity component in SHR PTE cells, with no effect on the high-affinity low-capacity state of the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake. After removal of apocynin from the culture medium, H{sub 2}O{sub 2} levels returned to basal values within 1 to 3 h in both WKY and SHR PTE cells and these were found stable for the next 24 h. Under these experimental conditions, the Na{sup +}-K{sub m} and V{sub max} of the high-affinity low-capacity state were unaffected and the low-affinity high-capacity component remained significantly decreased 1 day but not 4 days after apocynin removal. In conclusion, H{sub 2}O{sub 2} in excess is required for the presence of a low-affinity high-capacity component for the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake in SHR PTE cells only

  19. Utilization of ALANPOL dosemeter composed by alanine and polyethylene for determination of doses in industrial effluents; Utilizacao do dosimetro ALANPOL composto por alanina e polietileno para determinacao de doses em efluentes industriais

    Energy Technology Data Exchange (ETDEWEB)

    Rela, Carolina S.; Sampa, Maria Helena de O.; Napolitano, Celia M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: csrela@ipen.br; Pontuschka, Walter M. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    2005-07-01

    A study of traceability and accuracy was performed with the dosimetry system ALANPOL developed by IVHTJ/ Poland that uses alanine as a dosimeter and EPR as the read out system. The dosimeter ALANPOL is a polymer compound that aggregates alanine. The dosimeter has the outside diameter 3 mm, and the length of 25,4 mm (1 inch). In order to use this dosimeter for monitoring the existing real time calorimetry dosimeter system set up in a electron beam waste treatment plant. Electron beam and gamma irradiation experiments with ALANPOL was carried out under demineralized water and industrial effluent. The result show that in the dose range of 1-40 kGy the ALANPOL dosimeter system is suitable underwater monitoring for absorbed dose and can be applied for the evaluation of the on line calorimetry dosimeter system. (author)

  20. Uncertainties associated to the using of alanine/EPR for the dose interval in the radiotherapy; Incertezas associadas na utilizacao da alanina/RPE para o intervalo de dose da radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues Junior, O.; Campos, L. L. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2004-07-01

    The High Doses Laboratory of IPEN is developing a dosimetric system for high doses based on Electron Paramagnetic Resonance (EPR) of free radical radiation induced on alanine. The objective of this work is to present the efforts towards to improve the measure accuracy for doses in the range between 1-10 Gy. This system could be used as reference by radiotherapy services, as much in the quality control of the equipment, as for routine accompaniment of more complex handling where the total doses can reach some grays. The main problem for routine implantation is the calibration and the traceability of the system and many errors sources affects the accuracy of the measurements. In this work are discussed same aspects related on the uncertainty evaluation associated with high dose measurement using alanine and EPR. (author)

  1. A reference dosimetric system for dose interval of radiotherapy based on alanine/RPE; Um sistema dosimetrico de referencia para o intervalo de doses da radioterapia baseado na alanina/RPE

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues Junior, Orlando; Galante, Ocimar L.; Campos, Leticia L. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: rodrijr@net.ipen.br

    2001-07-01

    This work describes the development of a reference dosimetric system based on alanine/EPR for radiotherapy dose levels. Currently the IPEN is concluding a similar system for the dose range used for irradiation of products, 10-10{sup 5} Gy. The objective of this work is to present the efforts towards to improve the measure accuracy for doses in the range between 1-10 Gy. This system could be used as reference by radiotherapy services, as much in the quality control of the equipment, as for routine accompaniment of more complex handling where the total doses can reach some grays. The system uses alanine as detector and electronic paramagnetic resonance - EPR as measure technique. To reach accuracy better than 5% mathematical studies on the best optimization of the EPR spectrometer parameters and methods for the handling of the EPR sign are discussed. (author)

  2. Physiological and biochemical effects of morphactin IT 3233 on callus and tumour tissues of Nicotiana tabacum L. cultured in vitro III. Transamination processes catalysed by aminotransferase L-alanine: 2-oxoglutarate

    Directory of Open Access Journals (Sweden)

    Z. Chirek

    2015-01-01

    Full Text Available An active alanine transaminase was found both in callus and tumour tissues of tobacco. The enzyme is more active in the latter tissue, and the reaction balance is strongly shifted towards alanine production, while in callus tissue towards glutamic acid formation. Morphactin applied to the tissue cultures stimulates markedly the enzyme activity only in callus. A negative correlation was observed between the intensity of transamination processes and enhanced synthesis of proteins in the tissues studied. Morphactin disturbs nitrogen metabolism in the callus tissue. Tumour tissue is more resistant to the action of this substance. The different hormonal activities in these tissues may be the cause of the different effects of morphactin.

  3. Solid-state conformation of copolymers of ß-benzyl-L-aspartate with L-alanine, L-leucine, L-valine, γ-benzyl-L-glutamate, or ε-carbobenzoxy-L-lysine

    NARCIS (Netherlands)

    Sederel, Willem L.; Bantjes, Adriaan; Feijen, Jan; Anderson, James M.

    1980-01-01

    The solid-state conformation of copolymers of ß-benzyl-L-aspartate [L-Asp(OBzl)] with L-leucine (L-Leu), L-alanine (L-Ala), L-valine (L-Val), γ-benzyl-L-glutamate [L-Glu(OBzl)], or ε-carbobenzoxy-L-lysine (Cbz-L-Lys) has been studied by ir spectroscopy and circular dichroism (CD). The ir spectra in

  4. Synthesis and Characterization of Pyrrolyl Alanine and Its Hyperchromic Effect on Laba Garlic Pigments%吡咯基丙氨酸的合成表征及对腊八蒜的增色作用

    Institute of Scientific and Technical Information of China (English)

    王丹; 胡小松; 赵广华

    2011-01-01

    Pyrrolyl alanine,which can increase the shelf life of Laba garlic and maintain its green color,was synthesized by Paal-Knorr method and characterized by mass spectroscopy,infrared spectroscopy and 1H NMR spectroscopy.The hyperchromic effect of pyrrolyl alanine on Laba garlic pigments was also explored.The results showed that the addition of pyrrolyl alanine at the dose of 5.0 mmol/L prolonged the formation of green pigments in Laba garlic and as a result,the commodity character of Laba garlic could be maintained for 45 days at least.Moreover,the formation of green pigments still exhibited an upward trend after 45-day storage.Therefore,pyrrolyl alanine has an obvious hyperchromic effect on Laba garlic pigments.%为延长腊八蒜的货架期,使其长时间维持绿色,实验采用Paal-Knorr方法体外合成色素形成关键物质吡咯基丙氨酸,研究其对腊八蒜色素形成的影响,并通过质谱、红外图谱、核磁共振光谱表征其结构。结果表明:加入5.0mmol/L的吡咯基丙氨酸能够延长腊八蒜绿色素的生成,维持其商品性状至少45d,且此时色素的形成仍呈上升趋势,吡咯基丙氨酸对腊八蒜具有增色作用。

  5. Analysis of β-N-methylamino-L-alanine (BMAA) in spirulina-containing supplements by liquid chromatography-tandem mass spectrometry

    Science.gov (United States)

    2014-01-01

    Over the last decade the amino acid beta-N-methylamino-L-alanine (BMAA) has come under intense scrutiny. International laboratory and epidemiological research continues to support the hypothesis that environmental exposure to BMAA (e.g., through dietary practices, water supply) can promote the risk of various neurodegenerative diseases. A wide variety of cyanobacteria spp. have previously been reported to produce BMAA, with production levels dependent upon species, strain and environmental conditions. Since spirulina (Arthrospira spp.) is a member of the cyanobacteria phylum frequently consumed via dietary supplements, the presence of BMAA in such products may have public health implications. In the current work, we have analyzed ten spirulina-containing samples for the presence of BMAA; six pure spirulina samples from two separate raw materials suppliers, and four commercially-available multi-ingredient products containing 1.45 g of spirulina per 8.5 g serving. Because of controversy surrounding the measurement of BMAA, we have used two complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods: one based on reversed phase LC (RPLC) with derivatization and the other based on hydrophilic interaction LC (HILIC). Potential matrix effects were corrected for by internal standardization using a stable isotope labeled BMAA standard. BMAA was not detected at low limits of detection (80 ng/g dry weight) in any of these product samples. Although these results are reassuring, BMAA analyses should be conducted on a wider sample selection and, perhaps, as part of ongoing spirulina production quality control testing and specifications. PMID:25120905

  6. Higher Ratio of Serum Alpha-Fetoprotein Could Predict Outcomes in Patients with Hepatitis B Virus-Associated Hepatocellular Carcinoma and Normal Alanine Aminotransferase.

    Directory of Open Access Journals (Sweden)

    Young-Il Kim

    Full Text Available The role of serum alpha-fetoprotein (AFP levels in the surveillance and diagnosis of hepatocellular carcinoma (HCC is controversial. The aim of this study was to investigate the value of serially measured serum AFP levels in HCC progression or recurrence after initial treatment.A total of 722 consecutive patients newly diagnosed with HCC and treated at the National Cancer Center, Korea, between January 2004 and December 2009 were enrolled. The AFP ratios between 4-8 weeks post-treatment and those at the time of HCC progression or recurrence were obtained. Multivariate logistic regression analysis was performed to correlate the post-treatment AFP ratios with the presence of HCC progression or recurrence.The etiology of HCC was related to chronic hepatitis B virus (HBV infection in 562 patients (77.8%, chronic hepatitis C virus (HCV infection in 74 (10.2%, and non-viral cause in 86 (11.9%. There was a significant decrease in serum AFP levels from the baseline to 4 to 8 weeks after treatment (median AFP, 319.6 ng/mL vs. 49.6 ng/mL; p 1.0 was an independently associated with HCC progression or recurrence. Among the different causes of HCC analyzed, this association was significant only for HCC related to chronic hepatitis B (p< 0.001 and non-viral causes (p<0.05, and limited only to patients who had normal alanine aminotransferase (ALT levels.Serial measurements of serum AFP ratios could be helpful in detecting progression or recurrence in treated patients with HBV-HCC and normal ALT.

  7. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution.

    Directory of Open Access Journals (Sweden)

    Amanda Tse

    Full Text Available Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib and promiscuous (Bosutinib, Dasatinib kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations

  8. Effect of pH, urea, peptide length, and neighboring amino acids on alanine alpha-proton random coil chemical shifts.

    Science.gov (United States)

    Carlisle, Elizabeth A; Holder, Jessica L; Maranda, Abby M; de Alwis, Adamberage R; Selkie, Ellen L; McKay, Sonya L

    2007-01-01

    Accurate random coil alpha-proton chemical shift values are essential for precise protein structure analysis using chemical shift index (CSI) calculations. The current study determines the chemical shift effects of pH, urea, peptide length and neighboring amino acids on the alpha-proton of Ala using model peptides of the general sequence GnXaaAYaaGn, where Xaa and Yaa are Leu, Val, Phe, Tyr, His, Trp or Pro, and n = 1-3. Changes in pH (2-6), urea (0-1M), and peptide length (n = 1-3) had no effect on Ala alpha-proton chemical shifts. Denaturing concentrations of urea (8M) caused significant downfield shifts (0.10 +/- 0.01 ppm) relative to an external DSS reference. Neighboring aliphatic residues (Leu, Val) had no effect, whereas aromatic amino acids (Phe, Tyr, His and Trp) and Pro caused significant shifts in the alanine alpha-proton, with the extent of the shifts dependent on the nature and position of the amino acid. Smaller aromatic residues (Phe, Tyr, His) caused larger shift effects when present in the C-terminal position (approximately 0.10 vs. 0.05 ppm N-terminal), and the larger aromatic tryptophan caused greater effects in the N-terminal position (0.15 ppm vs. 0.10 C-terminal). Proline affected both significant upfield (0.06 ppm, N-terminal) and downfield (0.25 ppm, C-terminal) chemical shifts. These new Ala correction factors detail the magnitude and range of variation in environmental chemical shift effects, in addition to providing insight into the molecular level interactions that govern protein folding.

  9. Alanine-glyoxylate aminotransferase 2 (AGXT2) polymorphisms have considerable impact on methylarginine and β-aminoisobutyrate metabolism in healthy volunteers.

    Science.gov (United States)

    Kittel, Anja; Müller, Fabian; König, Jörg; Mieth, Maren; Sticht, Heinrich; Zolk, Oliver; Kralj, Ana; Heinrich, Markus R; Fromm, Martin F; Maas, Renke

    2014-01-01

    Elevated plasma concentrations of asymmetric (ADMA) and symmetric (SDMA) dimethylarginine have repeatedly been linked to adverse clinical outcomes. Both methylarginines are substrates of alanine-glyoxylate aminotransferase 2 (AGXT2). It was the aim of the present study to simultaneously investigate the functional relevance and relative contributions of common AGXT2 single nucleotide polymorphisms (SNPs) to plasma and urinary concentrations of methylarginines as well as β-aminoisobutyrate (BAIB), a prototypic substrate of AGXT2. In a cohort of 400 healthy volunteers ADMA, SDMA and BAIB concentrations were determined in plasma and urine using HPLC-MS/MS and were related to the coding AGXT2 SNPs rs37369 (p.Val140Ile) and rs16899974 (p.Val498Leu). Volunteers heterozygous or homozygous for the AGXT2 SNP rs37369 had higher SDMA plasma concentrations by 5% and 20% (p = 0.002) as well as higher BAIB concentrations by 54% and 146%, respectively, in plasma and 237% and 1661%, respectively, in urine (both pimpact of the amino acid exchange p.Val140Ile, we established human embryonic kidney cell lines stably overexpressing wild-type or mutant (p.Val140Ile) AGXT2 protein and assessed enzyme activity using BAIB and stable-isotope labeled [²H₆]-SDMA as substrate. In vitro, the amino acid exchange of the mutant protein resulted in a significantly lower enzyme activity compared to wild-type AGXT2 (p<0.05). In silico modeling of the SNPs indicated reduced enzyme stability and substrate binding. In conclusion, SNPs of AGXT2 affect plasma as well as urinary BAIB and SDMA concentrations linking methylarginine metabolism to the common genetic trait of hyper-β-aminoisobutyric aciduria.

  10. Insight into the intermolecular recognition mechanism between Keap1 and IKKβ combining homology modelling, protein-protein docking, molecular dynamics simulations and virtual alanine mutation.

    Directory of Open Access Journals (Sweden)

    Zheng-Yu Jiang

    Full Text Available Degradation of certain proteins through the ubiquitin-proteasome pathway is a common strategy taken by the key modulators responsible for stress responses. Kelch-like ECH-associated protein-1(Keap1, a substrate adaptor component of the Cullin3 (Cul3-based ubiquitin E3 ligase complex, mediates the ubiquitination of two key modulators, NF-E2-related factor 2 (Nrf2 and IκB kinase β (IKKβ, which are involved in the redox control of gene transcription. However, compared to the Keap1-Nrf2 protein-protein interaction (PPI, the intermolecular recognition mechanism of Keap1 and IKKβ has been poorly investigated. In order to explore the binding pattern between Keap1 and IKKβ, the PPI model of Keap1 and IKKβ was investigated. The structure of human IKKβ was constructed by means of the homology modeling method and using reported crystal structure of Xenopus laevis IKKβ as the template. A protein-protein docking method was applied to develop the Keap1-IKKβ complex model. After the refinement and visual analysis of docked proteins, the chosen pose was further optimized through molecular dynamics simulations. The resulting structure was utilized to conduct the virtual alanine mutation for the exploration of hot-spots significant for the intermolecular interaction. Overall, our results provided structural insights into the PPI model of Keap1-IKKβ and suggest that the substrate specificity of Keap1 depend on the interaction with the key tyrosines, namely Tyr525, Tyr574 and Tyr334. The study presented in the current project may be useful to design molecules that selectively modulate Keap1. The selective recognition mechanism of Keap1 with IKKβ or Nrf2 will be helpful to further know the crosstalk between NF-κB and Nrf2 signaling.

  11. Phase matching, X-Ray topography, optical and thermal analysis of L-alanine cadmium chloride monohydrate: a nonlinear optical material

    Science.gov (United States)

    Krishna, Anuj; Vijayan, N.; Riscob, B.; Gour, B. S.; Haranath, D.; Philip, J.; Verma, S.; Jayalakshmy, M. S.; Bhagavannarayana, G.; Halder, S. K.

    2014-03-01

    A potential semiorganic nonlinear optical material, L-alanine cadmium chloride monohydrate has been successfully synthesised and single crystals have been grown by slow evaporation solution growth technique at room temperature by using double distilled water as the solvent. The lattice dimensions of the grown crystal have been analysed by adopting powder X-ray diffraction technique and found that it crystallised in monoclinic system with space group C2. The crystalline perfection of the as-grown crystal has been assessed by high resolution X-ray diffraction and X-ray topography techniques and observed that the quality of the grown specimen is reasonably good. Its optical properties were examined by UV-Vis and photoluminescence techniques and found that there is no absorption in the entire visible range. Its functional groups were identified from FT-Raman and observed that there is no incorporation of other impurities during crystallisation. Its relative second harmonic generation efficiency has been tested with different particle size by Kurtz powder technique and found that within the coherence length the title compound is phase matchable. Its various thermal properties like thermal conductivity, specific heat, thermal effusivity, etc. have been evaluated by photopyroelectric technique and compared with other organic and inorganic materials. To confirm its piezoelectric response, its piezoelectric charge coefficient was measured using piezometer and found low. Its optical homogeneity as well as birefringence measurement of the grown specimen has been carried out by interferometric technique. The surface defects of the grown LACCM single crystal were analysed with etching at room temperature using water as an etchant.

  12. Insight into the intermolecular recognition mechanism between Keap1 and IKKβ combining homology modelling, protein-protein docking, molecular dynamics simulations and virtual alanine mutation.

    Science.gov (United States)

    Jiang, Zheng-Yu; Chu, Hong-Xi; Xi, Mei-Yang; Yang, Ting-Ting; Jia, Jian-Min; Huang, Jing-Jie; Guo, Xiao-Ke; Zhang, Xiao-Jin; You, Qi-Dong; Sun, Hao-Peng

    2013-01-01

    Degradation of certain proteins through the ubiquitin-proteasome pathway is a common strategy taken by the key modulators responsible for stress responses. Kelch-like ECH-associated protein-1(Keap1), a substrate adaptor component of the Cullin3 (Cul3)-based ubiquitin E3 ligase complex, mediates the ubiquitination of two key modulators, NF-E2-related factor 2 (Nrf2) and IκB kinase β (IKKβ), which are involved in the redox control of gene transcription. However, compared to the Keap1-Nrf2 protein-protein interaction (PPI), the intermolecular recognition mechanism of Keap1 and IKKβ has been poorly investigated. In order to explore the binding pattern between Keap1 and IKKβ, the PPI model of Keap1 and IKKβ was investigated. The structure of human IKKβ was constructed by means of the homology modeling method and using reported crystal structure of Xenopus laevis IKKβ as the template. A protein-protein docking method was applied to develop the Keap1-IKKβ complex model. After the refinement and visual analysis of docked proteins, the chosen pose was further optimized through molecular dynamics simulations. The resulting structure was utilized to conduct the virtual alanine mutation for the exploration of hot-spots significant for the intermolecular interaction. Overall, our results provided structural insights into the PPI model of Keap1-IKKβ and suggest that the substrate specificity of Keap1 depend on the interaction with the key tyrosines, namely Tyr525, Tyr574 and Tyr334. The study presented in the current project may be useful to design molecules that selectively modulate Keap1. The selective recognition mechanism of Keap1 with IKKβ or Nrf2 will be helpful to further know the crosstalk between NF-κB and Nrf2 signaling.

  13. Metabotropic glutamate receptor 1 mediates the electrophysiological and toxic actions of the cycad derivative beta-N-Methylamino-L-alanine on substantia nigra pars compacta DAergic neurons.

    Science.gov (United States)

    Cucchiaroni, Maria Letizia; Viscomi, Maria Teresa; Bernardi, Giorgio; Molinari, Marco; Guatteo, Ezia; Mercuri, Nicola B

    2010-04-14

    Amyotrophic lateral sclerosis-Parkinson dementia complex (ALS-PDC) is a neurodegenerative disease with ALS, parkinsonism, and Alzheimer's symptoms that is prevalent in the Guam population. beta-N-Methylamino alanine (BMAA) has been proposed as the toxic agent damaging several neuronal types in ALS-PDC, including substantia nigra pars compacta dopaminergic (SNpc DAergic) neurons. BMAA is a mixed glutamate receptor agonist, but the specific pathways activated in DAergic neurons are not yet known. We combined electrophysiology, microfluorometry, and confocal microscopy analysis to monitor membrane potential/current, cytosolic calcium concentration ([Ca(2+)](i)) changes, cytochrome-c (cyt-c) immunoreactivity, and reactive oxygen species (ROS) production induced by BMAA. Rapid toxin applications caused reversible membrane depolarization/inward current and increase of firing rate and [Ca(2+)](i) in DAergic neurons. The inward current (I(BMAA)) was mainly mediated by activation of metabotropic glutamate receptor 1 (mGluR1), coupled to transient receptor potential (TRP) channels, and to a lesser extent, AMPA receptors. Indeed, mGluR1 (CPCCOEt) and TRP channels (SKF 96365; Ruthenium Red) antagonists reduced I(BMAA), and a small component of I(BMAA) was reduced by the AMPA receptor antagonist CNQX. Calcium accumulation was mediated by mGluR1 but not by AMPA receptors. Application of a low concentration of NMDA potentiated the BMAA-mediated calcium increase. Prolonged exposure to BMAA caused significant modifications of membrane properties, calcium overload, cell shrinkage, massive cyt-c release into the cytosol and ROS production. In SNpc GABAergic neurons, BMAA activated only AMPA receptors. Our study identifies the mGluR1-activated mechanism induced by BMAA that may cause the neuronal degeneration and parkinsonian symptoms seen in ALS-PDC. Moreover, environmental exposure to BMAA might possibly also contribute to idiopathic PD.

  14. The cycad neurotoxic amino acid, beta-N-methylamino-L-alanine (BMAA), elevates intracellular calcium levels in dissociated rat brain cells.

    Science.gov (United States)

    Brownson, Delia M; Mabry, Tom J; Leslie, Steven W

    2002-10-01

    Seeds of the Guam cycad Cycas micronesica K.D. Hill (Cycadaceae), which contain ss-methylamino-L-alanine (BMAA), have been implicated in the etiology of the devastating neurodisease ALS-PDC that is found among the native Chamorros on Guam. The disease also occurs in the native populations on Irian Jaya and the Kii Peninsula of Japan, and in all three areas the cycad seeds are used either dietarily or medically. ALS-PDC is a complex of amyotrophic lateral sclerosis and parkinsonism dementia complex with additional symptoms of Alzheimer's. It is well known that Ca(2+) elevations in brain cells can lead to cell death and neurodiseases. Therefore, we evaluated the ability of the cycad toxin BMAA to elevate the intracellular calcium concentration ([Ca(2+)](i)) in dissociated newborn rat brain cells loaded with fura-2 dye. BMAA produced an increase in intracellular calcium levels in a concentration-dependent manner. The increases were dependent not only on extracellular calcium concentrations, but also significantly on the presence of bicarbonate ion. Increasing concentrations of sodium bicarbonate resulted in a potentiation of the BMAA-induced [Ca(2+)](i) elevation. The bicarbonate dependence did not result from the increased sodium concentration or alkalinization of the buffer. Our results support the hypothesis that the neurotoxicity of BMAA is due to an excitotoxic mechanism, involving elevated intracellular calcium levels and bicarbonate. Furthermore, since BMAA alone produced no increase in Ca(2+) levels, these results suggest the involvement of a product of BMAA and CO(2), namely a beta-carbamate, which has a structure similar to other excitatory amino acids (EAA) such as glutamate; thus, the causative agent for ALS-PDC on Guam and elsewhere may be the beta-carbamate of BMAA. These findings support the theory that some forms of other neurodiseases may also involve environmental toxins.

  15. Phase matching, X-Ray topography, optical and thermal analysis of L-alanine cadmium chloride monohydrate: a nonlinear optical material

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, Anuj; Vijayan, N.; Haranath, D.; Bhagavannarayana, G.; Halder, S.K. [CSIR - National Physical Laboratory, New Delhi (India); Riscob, B. [CSIR - National Physical Laboratory, New Delhi (India); Institute of Plasma Research, Bhat, Gandhinagar (India); Gour, B.S. [Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal (India); Philip, J.; Jayalakshmy, M.S. [Cochin University of Science and Technology, Cochin (India); Verma, S. [Raja Ramanna Centre for Advanced Technology, Laser Materials Development and Devices Division, Indore (India)

    2014-03-15

    A potential semiorganic nonlinear optical material, L-alanine cadmium chloride monohydrate has been successfully synthesised and single crystals have been grown by slow evaporation solution growth technique at room temperature by using double distilled water as the solvent. The lattice dimensions of the grown crystal have been analysed by adopting powder X-ray diffraction technique and found that it crystallised in monoclinic system with space group C2. The crystalline perfection of the as-grown crystal has been assessed by high resolution X-ray diffraction and X-ray topography techniques and observed that the quality of the grown specimen is reasonably good. Its optical properties were examined by UV-Vis and photoluminescence techniques and found that there is no absorption in the entire visible range. Its functional groups were identified from FT-Raman and observed that there is no incorporation of other impurities during crystallisation. Its relative second harmonic generation efficiency has been tested with different particle size by Kurtz powder technique and found that within the coherence length the title compound is phase matchable. Its various thermal properties like thermal conductivity, specific heat, thermal effusivity, etc. have been evaluated by photopyroelectric technique and compared with other organic and inorganic materials. To confirm its piezoelectric response, its piezoelectric charge coefficient was measured using piezometer and found low. Its optical homogeneity as well as birefringence measurement of the grown specimen has been carried out by interferometric technique. The surface defects of the grown LACCM single crystal were analysed with etching at room temperature using water as an etchant. (orig.)

  16. β-N-Methylamino-L-alanine exposure alters defense against oxidative stress in aquatic plants Lomariopsis lineata, Fontinalis antipyretica, Riccia fluitans and Taxiphyllum barbieri.

    Science.gov (United States)

    Contardo-Jara, Valeska; Funke, Marc Sebastian; Peuthert, Anja; Pflugmacher, Stephan

    2013-02-01

    Four different aquatic plants, the Pteridophyte Lomariopsis lineata and the Bryophytes Fontinalis antipyretica, Riccia fluitans and Taxiphyllum barbieri, were tested for their capacity to absorb the neurotoxin β-N-Methylamino-L-alanine (BMAA) from water and thus their possible applicability in a "Green Liver System". After exposure to 10 and 100 μg L(-1) BMAA for 1, 3, 7 and 14 days exposure concentration of medium and tissue were analyzed by LC-MS/MS. The amount removed by the plants within only 1 day was equal to the biological degradation of 14 days. Comparing the "BMAA-removal" capacity of the 4 tested aquatic plants R. fluitans, L. lineata and T. barbieri turned out to be most effective in cleaning the water from this cyanobacterial toxin by up to 97% within 14 days. Activity of the antioxidant enzymes peroxidase (POD) and catalase (CAT), as well as biotransformation enzyme glutathione S-transferase (GST) was compared between exposed and control plants to determine possible harmful effects induced by BMAA. Whereas the Bryophytes displayed increased POD activity and subsequent adaptation when exposed to the lower concentration, as well as partly inhibited antioxidant response at the higher applied BMAA concentration, the Pteridophyte L. lineata reacted with increased POD activity during the whole experiment and increased GST activity after longer exposure for 14 days. To give a recommendation of the suitability of an aquatic plant to be used for sustainable phytoremediation of contaminated water, testing of removal capacity of specific contaminants as well as studying general physiological parameters giving hint on survivability in such environments has to be combined.

  17. Synthesis, CMC Determination, Antimicrobial Activity and Nucleic Acid Binding of A Surfactant Copper(II) Complex Containing Phenanthroline and Alanine Schiff-Base.

    Science.gov (United States)

    Nagaraj, Karuppiah; Sakthinathan, Subramanian; Arunachalam, Sankaralingam

    2014-03-01

    A new water-soluble surfactant copper(II) complex [Cu(sal-ala)(phen)(DA)] (sal-ala = salicylalanine, phen = 1,10-phenanthroline, DA = dodecylamine), has been synthesized and characterized by physico-chemical and spectroscopic methods. The critical micelle concentration (CMC) values of this surfactant-copper(II) complex in aqueous solution were obtained from conductance measurements. Specific conductivity data (at 303, 308, 313. 318 and 323 K) served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔG(0)m, ΔH(0)m and ΔS(0)m). The interaction of this complex with nucleic acids (DNA and RNA) has been explored by using electronic absorption spectral titration, competitive binding experiment, cyclic voltammetry, circular dichroism (CD) spectra, and viscosity measurements. Electronic absorption studies have revealed that the complex can bind to nucleic acids by the intercalative binding mode which has been verified by viscosity measurements. The DNA binding constants have also been calculated (Kb = 1.2 × 10(5) M(-1) for DNA and Kb = 1.6 × 10(5) M(-1) for RNA). Competitive binding study with ethidium bromide (EB) showed that the complex exhibits the ability to displace the DNA-bound-EB indicating that the complex binds to DNA in strong competition with EB for the intercalative binding site. The presence of hydrophobic ligands, alanine Schiff-base, phenanthroline and long aliphatic chain amine in the complex were responsible for this strong intercalative binding. The surfactant-copper (II) complex was screened for its antibacterial and antifungal activities against various microorganisms. The results were compared with the standard drugs, amikacin(antibacterial) and ketokonazole(antifungal).

  18. Polyethylene glycol–polylactic acid nanoparticles modified with cysteine–arginine–glutamic acid–lysine–alanine fibrin-homing peptide for glioblastoma therapy by enhanced retention effect

    Directory of Open Access Journals (Sweden)

    Wu J

    2014-11-01

    Full Text Available Junzhu Wu,1,2,* Jingjing Zhao,1,3,* Bo Zhang,1 Yong Qian,1 Huile Gao,1 Yuan Yu,1 Yan Wei,1 Zhi Yang,1 Xinguo Jiang,1 Zhiqing Pang1 1Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 2School of Pharmacy, Dali University, Xiaguan, 3School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China *These authors contributed equally to this work Abstract: For a nanoparticulate drug-delivery system, crucial challenges in brain-glioblastoma therapy are its poor penetration and retention in the glioblastoma parenchyma. As a prevailing component in the extracellular matrix of many solid tumors, fibrin plays a critical role in the maintenance of glioblastoma morphology and glioblastoma cell differentiation and proliferation. We developed a new drug-delivery system by conjugating polyethylene glycol–polylactic acid nanoparticles (NPs with cysteine–arginine–glutamic acid–lysine–alanine (CREKA; TNPs, a peptide with special affinity for fibrin, to mediate glioblastoma-homing and prolong NP retention at the tumor site. In vitro binding tests indicated that CREKA significantly enhanced specific binding of NPs with fibrin. In vivo fluorescence imaging of glioblastoma-bearing nude mice, ex vivo brain imaging, and glioblastoma distribution demonstrated that TNPs had higher accumulation and longer retention in the glioblastoma site over unmodified NPs. Furthermore, pharmacodynamic results showed that paclitaxel-loaded TNPs significantly prolonged the median survival time of intracranial U87 glioblastoma-bearing nude mice compared with controls, Taxol, and NPs. These findings suggested that TNPs were able to target the glioblastoma and enhance retention, which is a valuable strategy for tumor therapy. Keywords: CREKA peptide, nanoparticles, retention effect, paclitaxel, glioblastoma

  19. Structural and thermal characterization of ternary complexes of piroxicam and alanine with transition metals: Uranyl binary and ternary complexes of piroxicam. Spectroscopic characterization and properties of metal complexes

    Science.gov (United States)

    Mohamed, Gehad G.

    2005-12-01

    Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO 2(II) complexes with piroxicam (Pir) drug (H 2L 1) and dl-alanine (Ala) (HL 2) and also the binary UO 2(II) complex with Pir were studied. The structures of the complexes were elucidated using elemental, IR, molar conductance, magnetic moment, diffused reflectance and thermal analyses. The UO 2(II) binary complex was isolated in 1:2 ratio with the formula [UO 2(H 2L) 2](NO 3) 2. The ternary complexes were isolated in 1:1:1 (M:H 2L 1:L 2) ratios. The solid complexes were isolated in the general formulae [M(H 2L)(L 2)(Cl) n(H 2O) m]· yH 2O (M = Fe(III) ( n = 2, m = 0, y = 1), Co(II) ( n = 1, m = 1, y = 2) and Ni(II) ( n = 1, m = 1, y = 0)); [M(H 2L)(L 2)](X) z· yH 2O (M = Cu(II) (X = AcO, z = 1, y = 0), Zn(II) (X = AcO, z = 1, y = 3) and UO 2(II) (X = NO 3, z = 1, y = 2)). Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data show that the complexes have octahedral geometry except Cu(II) and Zn(II) complexes have tetrahedral structures. The thermal decomposition of the complexes was discussed in relation to structure, and the thermodynamic parameters of the decomposition stages were evaluated.

  20. Misfolding caused by the pathogenic mutation G47R on the minor allele of alanine:glyoxylate aminotransferase and chaperoning activity of pyridoxine.

    Science.gov (United States)

    Montioli, Riccardo; Oppici, Elisa; Dindo, Mirco; Roncador, Alessandro; Gotte, Giovanni; Cellini, Barbara; Borri Voltattorni, Carla

    2015-10-01

    Liver peroxisomal alanine:glyoxylate aminotransferase (AGT), a pyridoxal 5'-phosphate (PLP) enzyme, exists as two polymorphic forms, the major (AGT-Ma) and the minor (AGT-Mi) haplotype. Deficit of AGT causes Primary Hyperoxaluria Type 1 (PH1), an autosomal recessive rare disease. Although ~one-third of the 79 disease-causing missense mutations segregates on AGT-Mi, only few of them are well characterized. Here for the first time the molecular and cellular defects of G47R-Mi are reported. When expressed in Escherichia coli, the recombinant purified G47R-Mi variant exhibits only a 2.5-fold reduction of its kcat, and its apo form displays a remarkably decreased PLP binding affinity, increased dimer-monomer equilibrium dissociation constant value, susceptibility to thermal denaturation and to N-terminal region proteolytic cleavage, and aggregation propensity. When stably expressed in a mammalian cell line, we found ~95% of the intact form of the variant in the insoluble fraction, and proteolyzed (within the N-terminal region) and aggregated forms both in the soluble and insoluble fractions. Moreover, the intact and nicked forms have a peroxisomal and a mitochondrial localization, respectively. Unlike what already seen for G41R-Mi, exposure of G47R-Mi expressing cells to pyridoxine (PN) remarkably increases the expression level and the specific activity in a dose-dependent manner, reroutes all the protein to peroxisomes, and rescues its functionality. Although the mechanism of the different effect of PN on the variants G47R-Mi and G41R-Mi remains elusive, the chaperoning activity of PN may be of value in the therapy of patients bearing the G47R mutation.

  1. Uranyl binary and ternary chelates of tenoxicam. Synthesis, spectroscopic and thermal characterization of ternary chelates of tenoxicam and alanine with transition metals

    Science.gov (United States)

    El-Gamel, Nadia E. A.

    2007-11-01

    Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO 2(II) chelates with tenoxicam (Ten) drug (H 2L 1) and dl-alanine (Ala) (HL 2) and also the binary UO 2(II) chelate with Ten were studied. The structures of the chelates were elucidated using elemental, molar conductance, magnetic moment, IR, diffused reflectance and thermal analyses. UO 2(II) binary chelate was isolated in 1:2 ratio with the formula [UO 2(H 2L) 2](NO 3) 2. The ternary chelates were isolated in 1:1:1 (M:H 2L 1:L 2) ratios and have the general formulae [M(H 2L 1)(L 2)(Cl) n(H 2O) m]· yH 2O (M = Fe(III) ( n = 2, m = 0, y = 2), Co(II) ( n = 1, m = 1, y = 2) and Ni(II) ( n = 1, m = 1, y = 3)); [M(H 2L 1)(L 2)](X) z· yH 2O (M = Cu(II) (X = AcO, z = 1, y = 0), Zn(II) (X = AcO, z = 1, y = 3) and UO 2(II) (X = NO 3, z = 1, y = 2)). IR spectra reveal that Ten behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data confirm that all the chelates have octahedral geometry except Cu(II) and Zn(II) chelates have tetrahedral structures. Thermal decomposition of the chelates was discussed in relation to structure and different thermodynamic parameters of the decomposition stages were evaluated.

  2. β-Alanine does not act through branched-chain amino acid catabolism in carp, a species with low muscular carnosine storage.

    Science.gov (United States)

    Geda, F; Declercq, A; Decostere, A; Lauwaerts, A; Wuyts, B; Derave, W; Janssens, G P J

    2015-02-01

    This study was executed to investigate the effect of dietary β-alanine (BA) on amino acid (AA) metabolism and voluntary feed intake in carp (Cyprinus carpio) at mildly elevated temperature to exert AA catabolism. Twenty-four fish in 12 aquaria were randomly assigned to either a control diet or the same diet with 500 mg BA/kg. A 14-day period at an ideal temperature (23 °C) was followed by 15 days at chronic mildly elevated temperature (27 °C). After the 15 days, all fish were euthanised for muscle analysis on histidine-containing dipeptides (HCD), whole blood on free AA and carnitine esters. The carnosine and anserine analysis indicated that all analyses were below the detection limit of 5 µmol/L, confirming that carp belongs to a species that does not store HCD. The increases in free AA concentrations due to BA supplementation failed to reach the level of significance. The effects of dietary BA on selected whole blood carnitine esters and their ratios were also not significant. The supplementation of BA tended to increase body weight gain (P = 0.081) and feed intake (P = 0.092). The lack of differences in the selected nutrient metabolites in combination with tendencies of improved growth performance warrants further investigation to unravel the mechanism of BA affecting feed intake. This first trial on the effect of BA supplementation on AA catabolism showed that its metabolic effect in carp at chronic mildly elevated temperature was very limited. Further studies need to evaluate which conditions are able to exert an effect of BA on AA metabolism.

  3. Analysis of the contribution of the hinge region of human neutrophil collagenase (HNC, MMP-8) to stability and collagenolytic activity by alanine scanning mutagenesis.

    Science.gov (United States)

    Knäuper, V; Docherty, A J; Smith, B; Tschesche, H; Murphy, G

    1997-03-17

    Analysis of the hinge region of neutrophil collagenase by alanine scanning mutagenesis revealed that this sequence motif has a pronounced effect on the stability and collagenolytic activity of the active enzyme. The mutagenesis of the amino acid residues in the P1' position of the two autoproteolytically cleaved peptide bonds (Leu243 and Ile248) to Ala showed that the mutant enzymes were more resistant to autoproteolysis. However, these mutants were not completely stable and autoproteolysis occurred mainly at the Ala239-Ile240 peptide bond and the half-life of the active enzyme was increased by 50%. In contrast, mutagenesis of Pro247 --> Ala (P1 of the minor cleavage site Pro247-Ile248) lead to increased susceptibility of the enzyme to autoproteolysis. However, when the other P1 position Gly242 was altered to Ala no effect on stability was observed. The analysis of the ability of the mutant active enzymes to hydrolyse 14C-type I collagen was assessed and our results demonstrate that the hinge sequence motif of neutrophil collagenase is important for collagenolytic activity. The alteration of the Gly242-Leu-Ser-Ser-Asn-Pro-Ile-Gln-Pro247 sequence motif to Gly242-Ala-Ala-Ala-Ala-Pro-Ala-Ala-Pro247 showed that the collagenolytic activity was reduced by 68.4%. In addition, mutagenesis of the downstream sequence motif Pro247-Thr-Gly-Pro-Ser-Thr-Pro-Lys-Pro258 to Pro247-Ala-Ala-Pro-Ala-Ala-Pro-Ala-Pro258 had an even more marked effect on the collagenolytic activity, which was reduced by 87.4%. When the Pro residues in the hinge motif (Pro247, Pro250, Pro253 and Pro256) were altered to Ala the collagenolytic activity dropped to 1.5% of the value observed for wild-type enzyme.

  4. Near-IR laser generation of a high-energy conformer of L-alanine and the mechanism of its decay in a low-temperature nitrogen matrix.

    Science.gov (United States)

    Nunes, Cláudio M; Lapinski, Leszek; Fausto, Rui; Reva, Igor

    2013-03-28

    Monomers of L-alanine (ALA) were isolated in cryogenic nitrogen matrices at 14 K. Two conformers were identified for the compound trapped from the gas-phase into the solid nitrogen environment. The potential energy surface (PES) of ALA was theoretically calculated at the MP2 and QCISD levels. Twelve minima were located on this PES. Seven low-energy conformers fall within the 0-10 kJ mol(-1) range and should be appreciably populated in the equilibrium gas phase prior to deposition. Observation of only two forms in the matrices is explained in terms of calculated barriers to conformational rearrangements. All conformers with the O=C-O-H moiety in the cis orientation are separated by low barriers and collapse to the most stable form I during deposition of the matrix onto the low-temperature substrate. The second observed form II has the O=C-O-H group in the trans orientation. The remaining trans forms have very high relative energies (between 24 and 30 kJ mol(-1)) and are not populated. The high-energy trans form VI, that differs from I only by rotation of the OH group, was found to be separated from other conformers by barriers that are high enough to open a perspective for its stabilization in a matrix. The form VI was photoproduced in situ by narrow-band near-infrared irradiation of the samples at 6935-6910 cm(-1), where the first overtone of the OH stretching vibration in form I appears. The photogenerated form VI decays in N2 matrices back to conformer I with a characteristic decay time of ∼15 min. The mechanism of the VI → I relaxation is rationalized in terms of the proton tunneling.

  5. Effect of beta-alanine supplementation on the onset of blood lactate accumulation (OBLA during treadmill running: Pre/post 2 treatment experimental design

    Directory of Open Access Journals (Sweden)

    Misic Mark

    2010-05-01

    Full Text Available Abstract Background β-Alanine (βA has been shown to improve performance during cycling. This study was the first to examine the effects of βA supplementation on the onset of blood lactate accumulation (OBLA during incremental treadmill running. Methods Seventeen recreationally-active men (mean ± SE 24.9 ± 4.7 yrs, 180.6 ± 8.9 cm, 79.25 ± 9.0 kg participated in this randomized, double-blind, placebo-controlled pre/post test 2-treatment experimental design. Subjects participated in two incremental treadmill tests before and after 28 days of supplementation with either βA (6.0 g·d-1(βA, n = 8 or an equivalent dose of Maltodextrin as the Placebo (PL, n = 9. Heart rate, percent heart rate maximum (%HRmax, %VO2max@OBLA (4.0 mmol.L-1 blood lactate concentration and VO2max (L.min-1 were determined for each treadmill test. Friedman test was used to determine within group differences; and Mann-Whitney was used to determine between group differences for pre and post values (p Results The βA group experienced a significant rightward shift in HR@OBLA beats.min-1 (p 2max@OBLA increased (p 2max (L.min-1 decreased (p Conclusions βA supplementation for 28 days enhanced sub-maximal endurance performance by delaying OBLA. However, βA supplemented individuals had a reduced aerobic capacity as evidenced by the decrease in VO2max values post supplementation.

  6. Peginterferon alfa-2a is associated with elevations in alanine aminotransferase at the end of treatment in chronic hepatitis C patients with sustained virologic response.

    Directory of Open Access Journals (Sweden)

    Chih-Wei Tseng

    Full Text Available The purpose of this study was to investigate the incidence and demographic/clinical factors of alanine aminotransferase (ALT abnormalities at the end of treatment (EOT in chronic hepatitis C (CHC patients with sustained virologic response (SVR.Seven hundred naïve CHC patients who underwent combination treatment between January 2003 and December 2010 were included in the study. The patients with SVR and serum ALT>upper limit of normal (ULN at the EOT were further analyzed. The effects of clinical characteristics, treatment regimen, and virologic variables were evaluated by logistic regression. Of the 700 included patients, 488 (69.7% achieved an SVR after treatment, and 235 (33.6% had serum ALT levels>ULN at the EOT. Of those 488 patients, 137 (28.1% had abnormal ALT values at the EOT. A multivariate analysis showed that the occurrence of ALT abnormalities at the EOT was significantly associated with pegylated interferon (PEG-IFN alfa-2a (odds ratio [OR], 2.24; 95% confidence interval [CI], 1.45-3.45; P<0.001, baseline fatty liver (OR, 1.76; 95% CI, 1.16-2.76; P = 0.007, and baseline liver cirrhosis (OR, 2.35; 95% CI, 1.35-4.09; P = 0.002.Use of PEG-IFN-alfa-2a, fatty liver, and cirrhosis are important factors associated with EOT-ALT abnormality in CHC patients receiving combination therapy that achieve an SVR. PEG-IFN-alfa-2a-related EOT-ALT elevation will become normal at the end of follow-up, but fatty liver and cirrhosis-related ALT elevation will not be resolved.

  7. Postoperative day one serum alanine amino-transferase does not predict patient morbidity and mortality after elective liver resection in non-cirrhotic patients

    Institute of Scientific and Technical Information of China (English)

    RickY Harminder Bhogal; Amit Nair; Davide Papis; Zaed Hamady; Jawad Ahmad; For Tai Lam; Saboor Khan; Gabriele Marangoni

    2016-01-01

    Serum aminotransferases have been used as sur-rogate markers for liver ischemia-reperfusion injury that fol-lows liver surgery. Some studies have suggested that rises in serum alanine aminotransferase (ALT) correlate with patient outcome after liver resection. We assessed whether postopera-tive day 1 (POD 1) ALT could be used to predict patient mor-bidity and mortality following liver resection. We reviewed our prospectively held database and included consecutive adult patients undergoing elective liver resection in our in-stitution between January 2013 and December 2014. Primary outcome assessed was correlation of POD 1 ALT with patient’s morbidity and mortality. We also assessed whether concurrent radiofrequency ablation, neoadjuvant chemotherapy and use of the Pringle maneuver signiifcantly affected the level of POD 1 ALT. A total of 110 liver resections were included in the study. The overall in-hospital patient morbidity and mortality were 31.8% and 0.9%, respectively. The median level of POD 1 ALT was 275 IU/L. No correlation was found between POD 1 serum ALT levels and patient morbidity after elective liver resection, whilst correlation with mortality was not possible because of the low number of mortalities. Patients undergoing concur-rent radiofrequency ablation were noted to have an increased level of POD 1 serum ALT but not those given neoadjuvant chemotherapy and those in whom the Pringle maneuver was used. Our study demonstrates POD 1 serum ALT does not cor-relate with patient morbidity after elective liver resection.

  8. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on the substantiation of a health claim related to beta-alanine and increase in physical performance during short-duration, high-intensity exercise pursuant to Article 13(5) of Regulation (EC

    DEFF Research Database (Denmark)

    Tetens, Inge

    on the scientific substantiation of a health claim related to beta-alanine and increase in physical performance during short-duration, high-intensity exercise. The food constituent that is the subject of the claim is beta-alanine, which is sufficiently characterised. The Panel considers that an increase in physical...... performance during short-duration, high-intensity exercise is a beneficial physiological effect. In weighing the evidence the Panel took into account that only one out of 11 pertinent human intervention studies (including 14 pertinent outcomes) from which conclusions could be drawn showed an effect of beta-alanine...... on physical performance during short-duration, high intensity exercise. The Panel concludes that a cause and effect relationship has not been established between the consumption of beta-alanine and an increase in physical performance during short-duration, high intensity exercise....

  9. Performance of an Optimized Paper-Based Test for Rapid Visual Measurement of Alanine Aminotransferase (ALT in Fingerstick and Venipuncture Samples.

    Directory of Open Access Journals (Sweden)

    Sidhartha Jain

    Full Text Available A paper-based, multiplexed, microfluidic assay has been developed to visually measure alanine aminotransferase (ALT in a fingerstick sample, generating rapid, semi-quantitative results. Prior studies indicated a need for improved accuracy; the device was subsequently optimized using an FDA-approved automated platform (Abaxis Piccolo Xpress as a comparator. Here, we evaluated the performance of the optimized paper test for measurement of ALT in fingerstick blood and serum, as compared to Abaxis and Roche/Hitachi platforms. To evaluate feasibility of remote results interpretation, we also compared reading cell phone camera images of completed tests to reading the device in real time.96 ambulatory patients with varied baseline ALT concentration underwent fingerstick testing using the paper device; cell phone images of completed devices were taken and texted to a blinded off-site reader. Venipuncture serum was obtained from 93/96 participants for routine clinical testing (Roche/Hitachi; subsequently, 88/93 serum samples were captured and applied to paper and Abaxis platforms. Paper test and reference standard results were compared by Bland-Altman analysis.For serum, there was excellent agreement between paper test and Abaxis results, with negligible bias (+4.5 U/L. Abaxis results were systematically 8.6% lower than Roche/Hitachi results. ALT values in fingerstick samples tested on paper were systematically lower than values in paired serum tested on paper (bias -23.6 U/L or Abaxis (bias -18.4 U/L; a correction factor was developed for the paper device to match fingerstick blood to serum. Visual reads of cell phone images closely matched reads made in real time (bias +5.5 U/L.The paper ALT test is highly accurate for serum testing, matching the reference method against which it was optimized better than the reference methods matched each other. A systematic difference exists between ALT values in fingerstick and paired serum samples, and can be

  10. Alanine-glyoxylate aminotransferase 2 (AGXT2 polymorphisms have considerable impact on methylarginine and β-aminoisobutyrate metabolism in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Anja Kittel

    Full Text Available Elevated plasma concentrations of asymmetric (ADMA and symmetric (SDMA dimethylarginine have repeatedly been linked to adverse clinical outcomes. Both methylarginines are substrates of alanine-glyoxylate aminotransferase 2 (AGXT2. It was the aim of the present study to simultaneously investigate the functional relevance and relative contributions of common AGXT2 single nucleotide polymorphisms (SNPs to plasma and urinary concentrations of methylarginines as well as β-aminoisobutyrate (BAIB, a prototypic substrate of AGXT2. In a cohort of 400 healthy volunteers ADMA, SDMA and BAIB concentrations were determined in plasma and urine using HPLC-MS/MS and were related to the coding AGXT2 SNPs rs37369 (p.Val140Ile and rs16899974 (p.Val498Leu. Volunteers heterozygous or homozygous for the AGXT2 SNP rs37369 had higher SDMA plasma concentrations by 5% and 20% (p = 0.002 as well as higher BAIB concentrations by 54% and 146%, respectively, in plasma and 237% and 1661%, respectively, in urine (both p<0.001. ADMA concentrations were not affected by both SNPs. A haplotype analysis revealed that the second investigated AGXT2 SNP rs16899974, which was not significantly linked to the other AGXT2 SNP, further aggravates the effect of rs37369 with respect to BAIB concentrations in plasma and urine. To investigate the impact of the amino acid exchange p.Val140Ile, we established human embryonic kidney cell lines stably overexpressing wild-type or mutant (p.Val140Ile AGXT2 protein and assessed enzyme activity using BAIB and stable-isotope labeled [²H₆]-SDMA as substrate. In vitro, the amino acid exchange of the mutant protein resulted in a significantly lower enzyme activity compared to wild-type AGXT2 (p<0.05. In silico modeling of the SNPs indicated reduced enzyme stability and substrate binding. In conclusion, SNPs of AGXT2 affect plasma as well as urinary BAIB and SDMA concentrations linking methylarginine metabolism to the common genetic trait of hyper

  11. Effect of Capreolus capreolus and Sus scrofa excreta on alanine aminotransferase activity in Glechoma hederacea leaves in conditions of Cd pollution

    Directory of Open Access Journals (Sweden)

    O. M. Vasilyuk

    2015-06-01

    Full Text Available The paper reflects the analysis of Cd impact on the total activity (nM pyruvic acid/ml s of alanine aminotransferase (ALT, EC 2.6.1.2 nitrogen metabolism and the content (mg/ml of water-soluble protein fraction (albumin in Glechoma hederacea L. leaves subject, which dominated in the research area (natural floodplain oak with Stellaria holostea L.. Cd was introduced in the form of salts Cd(NO32 in the concentrations of 0.25, 1.25 and 2.50 g/m2, equivalent to Cd in 1, 5 and 10 doses of MAC. The content of doses of MAC of Cd (5 mg/kg soil was taken into account during introduction. We observed the inhibition of the activity of ALT 3–4 times (with adding the Cd salts at a dose of 1 and 5 МAС compared to controls (area without pollution of Cd and excreta of mammals. This stress reaction took place in the protein complex as well. Thus, albumin content was equal to 72% and 80% (with Cd 1 and 5 MAC compared to control (the area without pollution and excretory functions of mammals. It proved nonspecific response to stress. Using excreta of Capreolus capreolus L. and Sus scrofa L. shows the reduction of Cd effects and increasing the metabolic activity of ALT by 41% and 105%, respectively (with adding of Cd 1 MAC compared to control (pollution by Cd at a dose 1 MAC. The effect of Cd 5 MAC is offset (only with the introduction of C. capreolus excreta compared to control (pollution by Cd at a dose 5 MAC. Normalization of the albumin content (with adding of Cd 1 and 5 MAC compared to control (сontrol of Cd at a dose 1 MAC and сontrol of Cd at a dose 5 MAC with using of excreta of C. capreolus was observed. In conditions of Cd at a doze 10 MAC the ALT activity was reduced 2 times with the introduction of excreta of C. capreolus as S. scrofa compared to control (Cd at a dose 10 MAC. The introduction of excreta of S. scrofa compared with C. capreolus restored the albumin content by 10% to the control. Thus, the feasibility of using different biological

  12. Un-catalyzed peptide bond formation between two monomers of glycine, alanine, serine, threonine, and aspartic acid in gas phase: a density functional theory study

    Science.gov (United States)

    Bhunia, Snehasis; Singh, Ajeet; Ojha, Animesh K.

    2016-05-01

    In the present report, un-catalyzed peptide bond formation between two monomers of glycine (Gly), alanine (Ala), serine (Ser), threonine (Thr), and aspartic acid (Asp) has been investigated in gas phase via two steps reaction mechanism and concerted mechanism at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. The peptide bond is formed through a nucleophilic reaction via transition states, TS1 and TS2 in stepwise mechanism. The TS1 reveals formation of a new C-N bond while TS2 illustrate the formation of C=O bond. In case of concerted mechanism, C-N bond is formed by a single four-centre transition state (TS3). The energy barrier is used to explain the involvement of energy at each step of the reaction. The energy barrier (20-48 kcal/mol) is required for the transformation of reactant state R1 to TS1 state and intermediate state I1 to TS2 state. The large value of energy barrier is explained in terms of distortion and interaction energies for stepwise mechanism. The energy barrier of TS3 in concerted mechanism is very close to the energy barrier of the first transition state (TS1) of the stepwise mechanism for the formation of Gly-Gly and Ala-Ala di- peptide. However, in case of Ser-Ser, Thr-Thr and Asp-Asp di-peptide, the energy barrier of TS3 is relatively high than that of the energy barrier of TS1 calculated at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. In both the mechanisms, the value of energy barrier calculated at B3LYP/6-31G(d,p) level of theory is greater than that of the value calculated at M062X/6-31G(d,p) level of theory.

  13. 假坚强芽孢杆菌丙氨酸脱氢酶的原核表达纯化与结晶%Prokaryotic Expression,Purification and Crystallization of Alanine Dehydrogenase in Bacillus pseudofirmus

    Institute of Scientific and Technical Information of China (English)

    唐昭娜; 张翠英; 胡平雄; 易秋分; 杨江丽; 董辉

    2015-01-01

    丙氨酸脱氢酶(alanine dehydrogenase,Ald)是一种NAD+依赖性的氨基酸脱氢酶,能可逆地催化丙氨酸氧化脱氨生成丙酮酸和氨.实验以假坚强芽孢杆菌的丙氨酸脱氢酶为研究对象,将目的基因克隆到 pET-22,b(+)原核表达载体上,并在大肠杆菌中完成蛋白的高效表达.通过镍离子亲和层析、离子交换层析和凝胶过滤层析等纯化方法,得到了高纯度的目的蛋白.利用气相扩散法对目的蛋白进行结晶,最终得到分辨率为0.31,nm的蛋白晶体.%Alanine dehydrogenase(Ald)is a NAD+-dependent amino acid dehydrogenase. It catalyzes the reversible oxida-tive deamination of L-alanine to pyruvate and ammonia. An Ald gene from Bacillus pseudofirmus was cloned into the pro-karyotic expression vector pET-22,b(+)and the Ald protein was overexpressed inEscherichia coli. The Ald protein was purified by Ni2+-chelating affinity chromatography,anion-exchange chromatography and gel filtration chromatography. Crystals were grown with the vapour-diffusion method and diffracted to 0.31,nm resolution.

  14. β-丙氨酸的生理功能及其在动物生产中的应用%Physiological Function and Its Application in Animal Feeding of β-Alanine

    Institute of Scientific and Technical Information of China (English)

    齐博; 武书庚; 王晶; 齐广海; 张海军

    2016-01-01

    β-alanine, a precursor involved in the formation of carnosine and anserine but not involved in the bi-osynthesis of protein, has been widely used as a nutritional supplement to strength muscle endurance in sport medicine field nowadays. It is reported that β-alanine can increase the growth performance, improve the meat quality through regulating the growth rate of muscle and content of muscle-derived active peptide. This paper reviewed the source and metabolism, physiological functions and the application in animal feeding ofβ-alanine in order to provide theoretical basis for its regulation of animal nutrition and application in animal feeding field.%β-丙氨酸是一种不参与蛋白质合成的氨基酸,为肌肽、鹅肌肽等肌源活性肽合成的前体物,作为增强肌肉耐力的运动营养补充剂已经广泛应用于临床营养。研究表明,β-丙氨酸可提高动物生产性能,调控肌肉生长和肌源活性肽含量,改善肉品质量。本文旨在对β-丙氨酸的来源和代谢、生理功能及其在动物生产领域的应用进行综述,为β-丙氨酸在动物营养调控和生产实践中的应用提供理论依据。

  15. Dosimetry for electron Intra-Operative RadioTherapy: Comparison of output factors obtained through alanine/EPR pellets, ionization chamber and Monte Carlo-GEANT4 simulations for IORT mobile dedicate accelerator

    Science.gov (United States)

    Marrale, Maurizio; Longo, Anna; Russo, Giorgio; Casarino, Carlo; Candiano, Giuliana; Gallo, Salvatore; Carlino, Antonio; Brai, Maria

    2015-09-01

    In this work a comparison between the response of alanine and Markus ionization chamber was carried out for measurements of the output factors (OF) of electron beams produced by a linear accelerator used for Intra-Operative Radiation Therapy (IORT). Output factors (OF) for conventional high-energy electron beams are normally measured using ionization chamber according to international dosimetry protocols. However, the electron beams used in IORT have characteristics of dose per pulse, energy spectrum and angular distribution quite different from beams usually used in external radiotherapy, so the direct application of international dosimetry protocols may introduce additional uncertainties in dosimetric determinations. The high dose per pulse could lead to an inaccuracy in dose measurements with ionization chamber, due to overestimation of ks recombination factor. Furthermore, the electron fields obtained with IORT-dedicated applicators have a wider energy spectrum and a wider angular distribution than the conventional fields, due to the presence of electrons scattered by the applicator's wall. For this reason, a dosimetry system should be characterized by a minimum dependence from the beam energy and from angle of incidence of electrons. This become particularly critical for small and bevelled applicators. All of these reasons lead to investigate the use of detectors different from the ionization chamber for measuring the OFs. Furthermore, the complete characterization of the radiation field could be accomplished also by the use of Monte Carlo simulations which allows to obtain detailed information on dose distributions. In this work we compare the output factors obtained by means of alanine dosimeters and Markus ionization chamber. The comparison is completed by the Monte Carlo calculations of OFs determined through the use of the Geant4 application "iort _ therapy" . The results are characterized by a good agreement of response of alanine pellets and Markus

  16. Normal growth kinetics of L-alanine doped ZTS crystals and chemical etching studies%L-丙氨酸掺杂下ZTS晶体法向生长动力学及化学侵蚀研究

    Institute of Scientific and Technical Information of China (English)

    曹亚超; 李明伟; 潘翠连; 朱廷霞; 尹华伟; 程旻

    2014-01-01

    通过对 L-丙氨酸掺杂下 ZTS(100)、(010)及(001)面法向生长速度的研究发现,各晶面法向生长速度随过饱和度的增加而线性增加;随掺杂浓度的增加,(100)面的法向生长速度先增大后减小,而(010)及(001)面的法向生长速度先减小,接着增大,然后又减小。分析表明(100)面以位错生长机制为主,(010)及(001)面以连续生长机制为主。利用光学显微镜在侵蚀后的(100)面观察到矩形位错蚀坑,蚀坑密度为33~308 mm-2;掺杂浓度为1%(摩尔分数)时,蚀坑密度最小。%Via studying the normal growth rates of the (100),(010)and (001)faces of ZTS crystal under differ-ent doping concentrations of L-alanine,we found that the normal growth rate of ZTS crystal increased linearly with the increase of supersaturation.With increase of doping concentration,L-alanine addition led to an initial increase and then a decrease of the normal growth rate of the (100)face.However,L-alanine doping led to a de-crease first,followed by an increase and then a decrease again of the normal growth rates of the (0 1 0 )and (001)faces.The growth of (100)face was featured mainly by the dislocation mechanism,and the growth of (010)and (001)faces are,however,featured by the continuous growth model as supported by the experimental results.Well-defined dislocation pits of rectangular shape were observed on the chemical etching (100)face of ZTS crystal by using optical microscopy.The dislocation density of (100)face was 33-308 mm-2 .Study results indicated that dislocation density could be minimized when L-alanine concentration was set at 1 mol%.

  17. Heterocycles 36. Single-Walled Carbon Nanotubes-Bound N,N-Diethyl Ethanolamine as Mild and Efficient Racemisation Agent in the Enzymatic DKR of 2-Arylthiazol-4-yl-alanines

    Directory of Open Access Journals (Sweden)

    Denisa Leonte

    2015-12-01

    Full Text Available In this paper we describe the chemoenzymatic synthesis of enantiopure l-2-arylthiazol-4-yl alanines starting from their racemic N-acetyl derivatives; by combining the lipase-catalysed dynamic kinetic resolution of oxazol-5(4H-ones with a chemical and an enzymatic enantioselective hydrolytic step affording the desired products in good yields (74%–78% and high enantiopurities (ee > 99%. The developed procedure exploits the utility of the single-walled carbon nanotubes-bound diethylaminoethanol as mild and efficient racemisation agent for the dynamic kinetic resolution of the corresponding oxazolones.

  18. Associations of White Blood Cell Count,Alanine Aminotransferase,and Aspartate Aminotransferase in the First Trimester withGestational Diabetes Mellitus.

    Science.gov (United States)

    2016-06-10

    Objective To explore the associations of white blood cell (WBC) count,alanine aminotransferase (ALT),and aspartate aminotransferase(AST) in the first trimester of pregnancy with gestational diabetes mellitus (GDM). Methods Totally 725 GDM women and 935 women who remained euglycemic throughout pregnancy were enrolled in this study. Pre-pregnancy weight/height were recorded. WBC,ALT,and AST levels were detected between 8 and 12 weeks of pregnancy.At 24 to 28 weeks of pregnancy,the glucose and insulin levels were measured. The WBC,ALT,and AST levels were compared between two groups,and the associations of WBC,ALT,and AST levels with the blood glucose and insulin levels were retrospectively analyzed. Meanwhile,the potential associations of those factors with the occurrence of GDM were analzyed. Results WBC count [9.41(8.15,10.84)?10(9)/L vs. 9.04 (7.64,10.37)?10(9)/L,P=1.0?10(-5)] and ALT levels [18.00(12.00,30.00)U/L vs. 16.00 (11.00,26.00)U/L,P=0.004] in the first trimester of pregnancy were significantly increased in GDM subjects than in normal glucose tolerance(NGT)subjects;however,the AST level showed no significant difference between these two groups [41.00 (26.00,43.00)U/L vs. 41.00 (23.00,43.00)U/L,P=0.588]. Logistic regression analysis illustrated that elevated WBC count was an independent risk factor for GDM after adjustment for age,pre-pregnancy body mass index,blood pressure,and family history of diabetes(OR=1.119,P=0.001). The ROC curve revealed that threshold of WBC count was 7.965?10(9)/L(AUC=0.566,P=1?10(-5)),which had a sensitivity of 79.4% and a specificity of 31.3%. Multivariate linear regression analysis showed that homeostasis model assessment of insulin resistance was positively correlated with WBC count(B=0.051,P=0.022,R(2)=0.083);1-hour blood glucose after oral 50 grams of sugar (B=0.044,P=0.001,R(2)=0.044) and fasting plasma true insulin(B=0.214,P=0.032,R(2)=0.066) were positively correlated with WBC count;1-hour true insulin after 100 grams

  19. Quantum Yields of Decomposition and Homo-Dimerization of Solid L-Alanine Induced by 7.2 eV Vacuum Ultraviolet Light Irradiation: An Estimate of the Half-Life of L-Alanine on the Surface of Space Objects

    Science.gov (United States)

    Izumi, Yudai; Nakagawa, Kazumichi

    2011-08-01

    One of the leading hypotheses regarding the origin of prebiotic molecules on primitive Earth is that they formed from inorganic molecules in extraterrestrial environments and were delivered by meteorites, space dust and comets. To evaluate the availability of extraterrestrial amino acids, it is necessary to examine their decomposition and oligomerization rates as induced by extraterrestrial energy sources, such as vacuum ultraviolet (VUV) and X-ray photons and high energy particles. This paper reports the quantum yields of decomposition ((8.2 ± 0.7) × 10-2 photon-1) and homo-dimerization ((1.2 ± 0.3) × 10-3 photon-1) and decomposition of the dimer (0.24 ± 0.06 photon-1) of solid l-alanine (Ala) induced by VUV light with an energy of 7.2 eV. Using these quantum yields, the half-life of l-Ala on the surface of a space object in the present earth orbit was estimated to be about 52 days, even when only photons with an energy of 7.2 eV emitted from the present Sun were considered. The actual half-life of solid l-Ala on the surface of a space object orbit around the present day Earth would certainly be much shorter than our estimate, because of the added effect of photons and particles of other energies. Thus, we propose that l-Ala needs to be shielded from solar VUV in protected environments, such as the interior of a meteorite, within a time scale of days after synthesis to ensure its arrival on the primitive Earth.

  20. ANALISIS ENZIM ALANIN AMINO TRANSFERASE (ALAT, ASPARTAT AMINO TRANSFERASE (ASAT, UREA DARAH, DAN HISTOPATOLOGIS HATI DAN GINJAL TIKUS PUTIH GALUR Sprague-Dawley SETELAH PEMBERIAN ANGKAK [The Effects of Angkak Administration in Sprague-Dawley White Rats on Alanine Amino Transferase (ALAT and Aspartic Amino Transferase (ASAT Enzyme, Blood Urea, and Liver and Kidney Histopathology Test

    Directory of Open Access Journals (Sweden)

    HASIM DANURI

    2009-06-01

    Full Text Available Acute toxicity of angkak had been tested on 2 months aged male Sprague-Dawley white rats. Twenty five rats were divided into 5 groups; control, 2.5 g/kg body weight (bw, 5 g/kg bw, 10 g/kg bw and 15 g/kg bw, and each group was administered by angkak in water orally. The toxic effect of angkak to liver and kidney were tested by biochemical analysis for the activity of enzyme alanin amino transferase (ALAT/ EC 2.6.1.2, enzyme aspartate amino transferase (ASAT/ EC 2.6.1.1 and the level of urea in blood at one day before (H-1 and after (H+1 the treatment, as well as 6 days after the treatment (H+6. The mortality rate and clinical symptoms were observed after 24 hours until 6 days after treatment. The rats were necropsied to observe the lesion of liver and kidney both macroscopically and microscopically.The result shows that all rats still survived since 24 hours to 6 days after the test. During the treatment with ad libitum rat chow contained 18% protein, the body weight of the rats were unsignificantly increased (P>0.05. There were no changed of the appetite, eyes condition, fur, and behaviour of the rats. However, the feces of the rats which were treated with angkak are reddish. The activity of ALAT, ASAT enzyme as well as the urea level in blood were significantly increased as shown on H+1 compared to H-1 within all treatment groups, after that there were no significant changes in those parameter on H+6 compared to H+1. The histopathological result due to angkak on kidney shows less lesions and these lesions were reversible.