WorldWideScience

Sample records for alamos plutonium facility

  1. Facility model for the Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    The Los Alamos Plutonium Facility contains more than sixty unit processes and handles a large variety of nuclear materials, including many forms of plutonium-bearing scrap. The management of the Plutonium Facility is supporting the development of a computer model of the facility as a means of effectively integrating the large amount of information required for material control, process planning, and facility development. The model is designed to provide a flexible, easily maintainable facility description that allows the faciltiy to be represented at any desired level of detail within a single modeling framework, and to do this using a model program and data files that can be read and understood by a technically qualified person without modeling experience. These characteristics were achieved by structuring the model so that all facility data is contained in data files, formulating the model in a simulation language that provides a flexible set of data structures and permits a near-English-language syntax, and using a description for unit processes that can represent either a true unit process or a major subsection of the facility. Use of the model is illustrated by applying it to two configurations of a fictitious nuclear material processing line

  2. Upgrade of the Los Alamos Plutonium Facility control system

    International Nuclear Information System (INIS)

    After 20 yrs service, the Los Alamos Plutonium Facility is undergoing an upgrade to its aging Facility Control System. The new system design includes a network of redundantly-paired programmable logic controllers that will interface with about 2200 field data points. The data communications network that has been designed includes a redundant, self-healing fiber optic data highway as well as a fiber optic ethernet. Commercially available human-machine interface software running on a UNIX-based system displays facility subsystem status operator X-terminals. Project design features, methods, costs, and schedule are discussed

  3. Los Alamos Plutonium Facility newly generated TRU waste certification

    International Nuclear Information System (INIS)

    This paper presents an overview of the activities being planned and implemented to certify newly generated contact handled transuranic (TRU) waste produced by Los Alamos National Laboratory's (LANL's) Plutonium Facility. Certifying waste at the point of generation is the most important cost and labor saving step in the WIPP certification process. The pedigree of a waste item is best known by the originator of the waste and frees a site from expensive characterization activities such as those associated with legacy waste. Through a cooperative agreement with LANLs Waste Management Facility and under the umbrella of LANLs WIPP-related certification and quality assurance documents, the Plutonium Facility will be certifying its own newly generated waste. Some of the challenges faced by the Plutonium Facility in preparing to certify TRU waste include the modification and addition of procedures to meet WIPP requirements, standardizing packaging for TRU waste, collecting processing documentation from operations which produce TRU waste, and developing ways to modify waste streams which are not certifiable in their present form

  4. Los Alamos DP West Plutonium Facility decontamination project, 1978-1981

    International Nuclear Information System (INIS)

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation

  5. Los Alamos plutonium facility applied systems integration project status report for period ending August 31, 1981

    International Nuclear Information System (INIS)

    The conceptual design of an on-line, near-real-time nondestructive assay instrumentation network for the Los Alamos Plutonium Facility is complete. Analysis of instrument history data indicates that the instrument certification procedures need improvement. Analysis of exhaust filter data has led to the derivation of a buildup prediction equation that is a function of throughput. This suggests that development of a generalized model is possible. A number of routine reports are now available from the Plutonium Facility/Los Alamos Safeguards System including inventories and active reports

  6. Los Alamos plutonium facility applied systems integration project status report for period ending August 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Shirk, D.G.; Bearse, R.C.; Marshall, R.S.; Baker, A.L.; Thomas, C.C. Jr.

    1982-02-01

    The conceptual design of an on-line, near-real-time nondestructive assay instrumentation network for the Los Alamos Plutonium Facility is complete. Analysis of instrument history data indicates that the instrument certification procedures need improvement. Analysis of exhaust filter data has led to the derivation of a buildup prediction equation that is a function of throughput. This suggests that development of a generalized model is possible. A number of routine reports are now available from the Plutonium Facility/Los Alamos Safeguards System including inventories and active reports.

  7. Review of operating experience at the Los Alamos Plutonium Electrorefining Facility, 1963-1977

    International Nuclear Information System (INIS)

    This report reviews the operation of the Los Alamos Plutonium Electrorefining Plant at Technical Area 21 for the period 1964 through 1977. During that period, approximately 1568 kg of plutonium metal, > 99.95% pure, was produced in 653 runs from 1930 kg of metal fabrication scrap, 99% pure. General considerations of the electrorefining process and facility operation and recommendations for further improvement of the process are discussed

  8. Training and exercises of the Emergency Response Team at the Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory Plutonium Facility has an active Emergency Response Team. The Emergency Response Team is composed of members of the operating and support groups within the Plutonium Facility. In addition to their initial indoctrination, the members are trained and certified in first-aid, CPR, fire and rescue, and the use of self-contained-breathing-apparatus. Training exercises, drills, are conducted once a month. The drills consist of scenarios which require the Emergency Response Team to apply CPR and/or first aid. The drills are performed in the Plutonium Facility, they are video taped, then reviewed and critiqued by site personnel. Through training and effective drills and the Emergency Response Team can efficiently respond to any credible accident which may occur at the Plutonium Facility. 3 tabs

  9. Actinide isotopic analysis system for Los Alamos Plutonium-Handling Facility

    International Nuclear Information System (INIS)

    This paper reports that inventory measurement of a sample's total plutonium and other actinides content by non-destructive assay is an important component of safeguarding special nuclear material. Gamma-ray spectromety measurements of relative isotopic abundances, coupled with a calorimetry measurement, can determine sample SNM content for inventory measurement. The Actinide Isotopic Analysis System (AIAS) is a newly developed two-detector gamma-ray spectrometry-based system that will determine isotopic ratios of Pu and U, Np, and Am abundances relative to plutonium for the Nuclear Material Storage Facility at Los Alamos National Laboratory. spectral analysis is performed using Multiple Group analysis (MGA) program or a customized version of the Group Analysis (GRPANL) computer program. The system can measure samples containing reactor grade plutonium, weapons grade plutonium, and plutonium enriched in either 238Pu or 242Pu (>50%). Software that controls the system is driven by a user-friendly menu of options

  10. Inventory difference analysis at Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    The authors have developed a prototype computer program that reads directly the inventory entries from a Microsoft Access data base. Based on historical data, the program then displays temporal trends and constructs a library of rules that encapsulates the system behavior. The following analysis of inventory data is illustrated by using a combination of realistic and simulated facility examples. Potential payoffs of this methodology include a reduction in time and resources needed to perform statistical tests and broad applicability to Department of Energy needs--for example, treaty verification

  11. Large Volume Calorimeter Comparison Measurement Results Collected at the Los Alamos National Laboratory Plutonium Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, D. S. (David S.)

    2005-01-01

    A calorimeter capable of measuring the power output from special nuclear material in 208-liter (55-gal) shipping or storatge containers was designed and fabricated at Los Alamos National Laboratory (LANL). This high-sensitivity, large-volume calorimeter (LVC) provides a reliable NDA method to measure many difficult-to-assay forms of plutonium and tritium more accurately. The entire calorimeter is 104 cm wide x 157 cm deep x 196 cm high in the closed position. The LVC also requires space for a standard electronics rack. A standard 208-1 drum with a 60-cm-diameter retaining ring with bolt will fit into the LVC measurement chamber. With careful positioning, cylindrical items up to 66 cm in diameter and 100 cm tall can be assayed in the LVC. The LVC was used to measure numerous plutonium-bearing items in 208-1 drums at the Los Alamos Plutonium Facility. Measurement results from real waste drums that were previously assayed using multiple NDA systems are compared with the LVC results. The calorimeter previously performed well under laboratory conditions using Pu-238 heat standards. The in-plant instrument performance is compared with the laboratory performance. Assay times, precision, measurement threshold, and operability of the LVC are also presented.

  12. Large Volume Calorimeter Comparison Measurement Results Collected at the Los Alamos National Laboratory Plutonium Facility

    International Nuclear Information System (INIS)

    A calorimeter capable of measuring the power output from special nuclear material in 208-liter (55-gal) shipping or storatge containers was designed and fabricated at Los Alamos National Laboratory (LANL). This high-sensitivity, large-volume calorimeter (LVC) provides a reliable NDA method to measure many difficult-to-assay forms of plutonium and tritium more accurately. The entire calorimeter is 104 cm wide x 157 cm deep x 196 cm high in the closed position. The LVC also requires space for a standard electronics rack. A standard 208-1 drum with a 60-cm-diameter retaining ring with bolt will fit into the LVC measurement chamber. With careful positioning, cylindrical items up to 66 cm in diameter and 100 cm tall can be assayed in the LVC. The LVC was used to measure numerous plutonium-bearing items in 208-1 drums at the Los Alamos Plutonium Facility. Measurement results from real waste drums that were previously assayed using multiple NDA systems are compared with the LVC results. The calorimeter previously performed well under laboratory conditions using Pu-238 heat standards. The in-plant instrument performance is compared with the laboratory performance. Assay times, precision, measurement threshold, and operability of the LVC are also presented.

  13. Los Alamos Plutonium Facility newly generated tru waste certification. Final revised version 3/97

    International Nuclear Information System (INIS)

    This paper presents an overview of the activities being planned and implemented to certify newly generated contact handled transuranic (TRU) waste produced by Los Alamos National Laboratory's (LANL's) Plutonium Facility. Certifying waste at the point of generation is the most important cost and labor saving step in the WIPP certification process. The pedigree of a waste item is best known by the originator of the waste and frees a site from many of the expensive characterization activities associated with legacy waste. Through a cooperative agreement with LANLs Waste Management Facility and under the umbrella of LANLs WIPP-related certification and quality assurance documents, the Plutonium Facility will be certifying most of its own newly generated waste. Some of the challenges faced by the Plutonium Facility in preparing to certify TRU waste include the modification and addition of procedures to meet WIPP requirements, standardizing packaging for TRU waste, collecting processing documentation from operations which produce TRU waste, and developing ways to modify waste streams which are not certifiable in their present form

  14. Implementation of the DYMAC system at the new Los Alamos Plutonium Processing Facility. Phase II report

    Energy Technology Data Exchange (ETDEWEB)

    Malanify, J.J.; Amsden, D.C.

    1982-08-01

    The DYnamic Materials ACcountability System - called DYMAC - performs accountability functions at the new Los Alamos Plutonium Processing Facility where it began operation when the facility opened in January 1978. A demonstration program, DYMAC was designed to collect and assess inventory information for safeguards purposes. It accomplishes 75% of its design goals. DYMAC collects information about the physical inventory through deployment of nondestructive assay instrumentation and video terminals throughout the facility. The information resides in a minicomputer where it can be immediately sorted and displayed on the video terminals or produced in printed form. Although the capability now exists to assess the collected data, this portion of the program is not yet implemented. DYMAC in its present form is an excellent tool for process and quality control. The facility operator relies on it exclusively for keeping track of the inventory and for complying with accountability requirements of the US Department of Energy.

  15. Implementation of the DYMAC system at the new Los Alamos Plutonium Processing Facility. Phase II report

    International Nuclear Information System (INIS)

    The DYnamic Materials ACcountability System - called DYMAC - performs accountability functions at the new Los Alamos Plutonium Processing Facility where it began operation when the facility opened in January 1978. A demonstration program, DYMAC was designed to collect and assess inventory information for safeguards purposes. It accomplishes 75% of its design goals. DYMAC collects information about the physical inventory through deployment of nondestructive assay instrumentation and video terminals throughout the facility. The information resides in a minicomputer where it can be immediately sorted and displayed on the video terminals or produced in printed form. Although the capability now exists to assess the collected data, this portion of the program is not yet implemented. DYMAC in its present form is an excellent tool for process and quality control. The facility operator relies on it exclusively for keeping track of the inventory and for complying with accountability requirements of the US Department of Energy

  16. Containers for short-term storage of nuclear materials at the Los Alamos plutonium facility

    International Nuclear Information System (INIS)

    The Los Alamos Plutonium Facility for the past 18 yr has stored nuclear samples for archiving and in support of nuclear materials research and processing programs. In the past several years, a small number of storage containers have been found in a deteriorated condition. A failed plutonium container can cause personnel contamination exposure and expensive physical area decontamination. Containers are stored in a physically secure radiation area vault, making close inspection costly in the form of personnel radiation exposure and work time. A moderate number of these containers are used in support of plutonium processing and must withstand daily handling abuse. A 2-yr evaluation of failed containers and those that have shown no deterioration has been conducted. Based on that study, a program was established to formalize our packing methods and materials and standardize the size and shape of containers that are used for short-term use. A standardized set of containers was designed, evaluated, tested, and procured for use in the facility. This paper reviews our vault storage problems, shows some failed containers, and presents our planned solutions to provide safe and secure containment of nuclear materials

  17. Success in behaviour-based safety at Los Alamos National Laboratory's plutonium facility

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory's (LANL's) Plutonium Facility is responsible for a wide variety of actinide processing operations in support of the United States Department of Energy's (DOE's) stockpile stewardship of the nation's nuclear arsenal. Both engineered and administrative controls are used to mitigate hazards inherent in these activities. Nuclear facilities have engineered safety systems that are extensively evaluated and documented, and are monitored regularly for operability and performance. Personnel undergo comprehensive training, including annual recertification of their operations. They must thoroughly understand the hazards involved in their work and the controls that are in place to mitigate those hazards. A series of hazard-control plans and work instructions are used to define and authorize the work that is done. Primary hazards associated with chemicals and radioactive materials are well controlled with minimal risk to the workforce and public. The majority of injuries are physical or ergonomic in nature. In an effort to increase safety awareness and to decrease accidents and incidents, a program focusing on the identification and elimination of unsafe behaviours was initiated. Workers are trained on how to conduct safety observations and given guidance on specific behaviours to note. Observations are structured to have minimal impact upon workload and are shared by the entire workforce. This program has effectively decreased a low accident rate and will make long-term sustainability possible. (author)

  18. Success in behaviour-based safety at Los Alamos National Laboratory's plutonium facility

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory's (LANL's) Plutonium Facility is responsible for a wide variety of actinide processing operations in support of the United States Department of Energy's (DOE's) stockpile stewardship of the nation's nuclear arsenal. Both engineered and administrative controls are used to mitigate hazards inherent in these activities. Nuclear facilities have engineered safety systems that are extensively evaluated and documented, and are monitored regularly for operability and performance. Personnel undergo comprehensive training, including annual recertification of their operations. They must thoroughly understand the hazards involved in their work and the controls that are in place to mitigate those hazards. A series of hazard-control plans and work instructions are used to define and authorize the work that is done. Primary hazards associated with chemicals and radioactive materials are well controlled with minimal risk to the workforce and public. The majority of injuries are physical or ergonomic in nature. In an effort to increase safety awareness and to decrease accidents and incidents, a program focusing on the identification and elimination of unsafe behaviours was initiated. Workers are trained on how to conduct safety observations and given guidance on specific behaviours to note. Observations are structured to have minimal impact upon workload and are shared by the entire work force. This program has effectively decreased a low accident rate and will make long-term sustainability possible. (author)

  19. Hazards and accident analyses, an integrated approach, for the Plutonium Facility at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    This paper describes an integrated approach to perform hazards and accident analyses for the Plutonium Facility at Los Alamos National Laboratory. A comprehensive hazards analysis methodology was developed that extends the scope of the preliminary/process hazard analysis methods described in the AIChE Guidelines for Hazard Evaluations. Results fro the semi-quantitative approach constitute a full spectrum of hazards. For each accident scenario identified, there is a binning assigned for the event likelihood and consequence severity. In addition, each accident scenario is analyzed for four possible sectors (workers, on-site personnel, public, and environment). A screening process was developed to link the hazard analysis to the accident analysis. Specifically the 840 accident scenarios were screened down to about 15 accident scenarios for a more through deterministic analysis to define the operational safety envelope. The mechanics of the screening process in the selection of final scenarios for each representative accident category, i.e., fire, explosion, criticality, and spill, is described

  20. Development of the Los Alamos National Laboratory Plutonium Facility decontamination room

    International Nuclear Information System (INIS)

    For several years the Health Protection Group attempted to remedy the problem of a facility to adequately handle personnel plutonium contamination incidents. Through the efforts of our Quality Circle a presentation was made to management, which immediately appropriated space and funds for the construction of a complete decontamination facility. 9 refs

  1. Extrinsic and intrinsic complexities of the Los Alamos Plutonium Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bearse, R.C.; Longmire, V.L.; Roberts, N.J.

    1985-01-01

    Analysis of the data obtained in one year of plutonium accounting at Los Alamos reveals significant complexity. Much of this complexity arises from the complexity of the processes themselves. Additional complexity is induced by errors in the data entry process. It is important to note that there is no evidence that this complexity is adversely affecting the accounting in the plant. We have been analyzing transaction data from fiscal year 1983 processing. This study involved 62,595 transactions. The data have been analyzed using the relational database program INGRES on a VAX 11/780 computer. This software allows easy manipulation of the original data and subsets drawn from it. We have been attempting for several years to understand the global features of the TA-55 accounting data. This project has underscored several of the system's complexities. Examples that will be reported here include audit trails, lot-name multiplicity, etc.

  2. Automation of process accountability flow diagrams at Los Alamos National Laboratory's Plutonium Facility

    International Nuclear Information System (INIS)

    Many industrial processes (including reprocessing activities; nuclear fuel fabrication; and material storage, measurement and transfer) make use of process flow diagrams. These flows can be used for material accountancy and for data analysis. At Los Alamos National Laboratory (LANL), the Technical Area (TA)-55 Plutonium Facility is home to various research and development activities involving the use of special nuclear material (SNM). A facility conducting research and development (R and D) activities using SNM must satisfy material accountability guidelines. All processes involving SNM or tritium processing, at LANL, require a process accountability flow diagram (PAFD). At LANL a technique was developed to generate PAFDs that can be coupled to a relational database for use in material accountancy. These techniques could also be used for propagation of variance, measurement control, and inventory difference analysis. The PAFD is a graphical representation of the material flow during a specific process. PAFDs are currently stored as PowerPoint files. In the PowerPoint format, the data captured by the PAFD are not easily accessible. Converting the PAFDs to an accessible electronic format is desirable for several reasons. Any program will be able to access the data contained in the PAFD. For the PAFD data to be useful in applications such as an expert system for data checking, SNM accountability, inventory difference evaluation, measurement control, and other kinds of analysis, it is necessary to interface directly with the information contained within the PAFD. The PAFDs can be approved and distributed electronically, eliminating the paper copies of the PAFDs and ensuring that material handlers have the current PAFDs. Modifications to the PAFDs are often global. Storing the data in an accessible format would eliminate the need to manually update each of the PAFDs when a global change has occurred. The goal was to determine a software package that would store the

  3. Recent developments in the Los Alamos National Laboratory Plutonium Facility Waste Tracking System-automated data collection pilot project

    International Nuclear Information System (INIS)

    The waste management and environmental compliance group (NMT-7) at the Los Alamos National Laboratory has initiated a pilot project for demonstrating the feasibility and utility of automated data collection as a solution for tracking waste containers at the Los Alamos National Laboratory Plutonium Facility. This project, the Los Alamos Waste Tracking System (LAWTS), tracks waste containers during their lifecycle at the facility. LAWTS is a two-tiered system consisting of a server/workstation database and reporting engine and a hand-held data terminal-based client program for collecting data directly from tracked containers. New containers may be added to the system from either the client unit or from the server database. Once containers are in the system, they can be tracked through one of three primary transactions: Move, Inventory, and Shipment. Because LAWTS is a pilot project, it also serves as a learning experience for all parties involved. This paper will discuss many of the lessons learned in implementing a data collection system in the restricted environment. Specifically, the authors will discuss issues related to working with the PPT 4640 terminal system as the data collection unit. They will discuss problems with form factor (size, usability, etc.) as well as technical problems with wireless radio frequency functions. They will also discuss complications that arose from outdoor use of the terminal (barcode scanning failures, screen readability problems). The paper will conclude with a series of recommendations for proceeding with LAWTS based on experience to date

  4. Human factors aspects of the major upgrade to control systems at the Los Alamos National Laboratory Plutonium Facility

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, J. [Brookhaven National Lab., Upton, NY (United States); Pope, N. [Los Alamos National Lab., NM (United States)

    1997-06-01

    The Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL) has been in operation for over 15 years. It handles projects such as: stockpile maintenance, surveillance, and dismantlement; pit rebuild; plutonium power source fabrication for long duration spacecraft missions (e.g., Cassini); nuclear materials technology research; nuclear materials storage; and remediation of nuclear waste. The Operations Center of TA-55 is the nerve center of the facility where operators are on duty around the clock and monitor several thousand data points using the Facility Control System (FCS). The FCS monitors, displays, alarms, and provides some limited control of the following systems; HVAC, fire detection and suppression, radiation detection, electrical, and other miscellaneous systems. The FCS was originally based on late 1970s digital technology, which is not longer supported by the vendors. Additionally, the equipment failure rates increased notably in the 1990s. Thus, plans were put into place to upgrade and replace the FCS hardware, software, and display components with modernized equipment. The process was complicated by the facts that: the facility was operational and could not be totally closed for the modifications; complete documentation was not available for the existing system; the Safety Analyses for the facility were in the process of being upgraded at the same time; and of course limited time and budgets. This paper will discuss the human factors aspects of the design, installation, and testing of the new FCS within the above noted constraints. Particular items to be discussed include the functional requirements definition, operating experience review, screen designs, test program, operator training, and phased activation of the new circuits in an operational facility.

  5. Human factors aspects of the major upgrade to control systems at the Los Alamos National Laboratory Plutonium Facility

    International Nuclear Information System (INIS)

    The Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL) has been in operation for over 15 years. It handles projects such as: stockpile maintenance, surveillance, and dismantlement; pit rebuild; plutonium power source fabrication for long duration spacecraft missions (e.g., Cassini); nuclear materials technology research; nuclear materials storage; and remediation of nuclear waste. The Operations Center of TA-55 is the nerve center of the facility where operators are on duty around the clock and monitor several thousand data points using the Facility Control System (FCS). The FCS monitors, displays, alarms, and provides some limited control of the following systems; HVAC, fire detection and suppression, radiation detection, electrical, and other miscellaneous systems. The FCS was originally based on late 1970s digital technology, which is not longer supported by the vendors. Additionally, the equipment failure rates increased notably in the 1990s. Thus, plans were put into place to upgrade and replace the FCS hardware, software, and display components with modernized equipment. The process was complicated by the facts that: the facility was operational and could not be totally closed for the modifications; complete documentation was not available for the existing system; the Safety Analyses for the facility were in the process of being upgraded at the same time; and of course limited time and budgets. This paper will discuss the human factors aspects of the design, installation, and testing of the new FCS within the above noted constraints. Particular items to be discussed include the functional requirements definition, operating experience review, screen designs, test program, operator training, and phased activation of the new circuits in an operational facility

  6. The impact of two Department of Energy orders on the design and cost of select plutonium facilities at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory (LANL) is a research and development facility in northern New Mexico, owned by the federal government and operated for the US Department of Energy (DOE) by the University of California (UC). LANL conducts research and experiments in many arenas including plutonium. Its plutonium facilities are required to meet the facility design and safety criteria of applicable DOE orders as specified in the UC contract. Although DOE 420.1, Facility Safety, superseded DOE 6430.1A, General Design Criteria, the UC contract requires LANL to adhere to DOE 6430.1A, Division 13 in its special nuclear facilities. A comparison of costs and savings relative to installation of double-wall piping at two LANL plutonium facilities is demonstrated. DOE 6430.1A is prescriptive in its design criteria whereas DOE 420.1 is a performance-based directive. The differences in these orders impact time and design costs in nuclear construction projects. LANL's approach to integrated quality and conduct of operations for design, needs to be re-evaluated. In conclusion, there is a need for highly-technical, knowledgeable people and an integrated, quality/conduct of operations-based approach to assure that nuclear facilities are designed and constructed in a safe and cost-effective manner

  7. Implementing waste minimization at an active plutonium processing facility: Successes and progress at technical area (TA) -55 of the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory has ongoing national security missions that necessitate increased plutonium processing. The bulk of this activity occurs at Technical Area -55 (TA-55), the nations only operable plutonium facility. TA-55 has developed and demonstrated a number of technologies that significantly minimize waste generation in plutonium processing (supercritical CO2, Mg(OH)2 precipitation, supercritical H2O oxidation, WAND), disposition of excess fissile materials (hydride-dehydride, electrolytic decontamination), disposition of historical waste inventories (salt distillation), and Decontamination ampersand Decommissioning (D ampersand D) of closed nuclear facilities (electrolytic decontamination). Furthermore, TA-55 is in the process of developing additional waste minimization technologies (molten salt oxidation, nitric acid recycle, americium extraction) that will significantly reduce ongoing waste generation rates and allow volume reduction of existing waste streams. Cost savings from reduction in waste volumes to be managed and disposed far exceed development and deployment costs in every case. Waste minimization is also important because it reduces occupational exposure to ionizing radiation, risks of transportation accidents, and transfer of burdens from current nuclear operations to future generations

  8. Plutonium scrap processing at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    The Los Alamos Scientific Laboratory currently has the newest plutonium handling facility in the nation. Los Alamos has been active in the processing of plutonium almost since the discovery of this man-made element in 1941. One of the functions of the new facility is the processing of plutonium scrap generated at LASL and other sites. The feed for the scrap processing program is extremely varied, and a wide variety of contaminants are often encountered. Depending upon the scrap matrix and contaminants present, the majority of material receives a nitric acid/hydrofluoric acid or nitric acid/calcium fluoride leach. The plutonium nitrate solutions are then loaded onto an anion exchange column charged with DOWEX 1 x 4, 50 to 100 mesh, nitrate form resin. The column is eluted with 0.48 M hydroxyl amine nitrate. The Pu(NO3)3 is then precipitated as plutonium III oxalate which is calcined at 450 to 5000C to yield a purified PuO2 product

  9. In-place testing of multiple stage filter systems without disruption of plant operations in the plutonium facility at Los Alamos

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory Plutonium Facility has a number of multiple-stage air-cleaning systems. These systems operate on a continuous basis and economic considerations require that shutting down of the ventilation systems due to in-place testing be kept to a minimum. Earlier methods of testing multiple-stage filter systems required scheduled shut down of the filter system. Methods such as injecting the test aerosol between the stages have proven costly because of the need to install temporary injection ducts and completely close off the ventilation from the process area. Also, additional personnel were needed to install and move injection and bypass ducts from one system to another. After considering these costly methods, current methods of testing were improved to prevent interruption of plant operations. The modified procedure uses a laser particle size spectrometer that has the capability of counting single particles downstream of two filter stages where decontamination factors of the first stage and overall system effectiveness is established. This procedure is similar to that of Nuclear Standard NEF 3-4IT, ''In-Place Testing of HEPA filter systems by the Single-Particle, Particle-Size Spectrometer Method.'' Decontamination factors of 109 are measured downstream of two stages. Particle size analyses of the challenge and the aerosol penetrating the first and second stages have been established. A cost estimation comparing two test methods show considerable savings in operational costs

  10. Decommissioning the Los Alamos Molten Plutonium Reactor Experiment (LAMPRE I)

    International Nuclear Information System (INIS)

    The Los Alamos Molten Plutonium Reactor Experiment (LAMPRE I) was decommissioned at the Los Alamos National Laboratory, Los Alamos, New Mexico, in 1980. The LAMPRE I was a sodium-cooled reactor built to develop plutonium fuels for fast breeder applications. It was retired in the mid-1960s. This report describes the decommissioning procedures, the health physics programs, the waste management, and the costs for the operation

  11. Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

    2012-04-18

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

  12. Waste minimization at a plutonium processing facility

    International Nuclear Information System (INIS)

    As part of Los Alamos National Laboratory's (LANL) mission to reduce the nuclear danger throughout the world, the plutonium processing facility at LANL maintains expertise and skills in nuclear weapons technologies as well as leadership in all peaceful applications of plutonium technologies, including fuel fabrication for terrestrial and space reactors and heat sources and thermoelectric generators for space missions. Another near-term challenge resulted from two safety assessments performed by the Defense Nuclear Facilities Safety Board and the U.S. Department of Energy during the past two years. These assessments have necessitated the processing and stabilization of plutonium contained in tons of residues so that they can be stored safely for an indefinite period. This report describes waste streams and approaches to waste reduction of plutonium management

  13. Demolition of Building 12, an old plutonium filter facility

    International Nuclear Information System (INIS)

    This report discusses the decommissioning and disposal of a plutonium-contaminated air filter facility that provided ventilation for the main plutonium processing plant at Los Alamos from 1945 until 1973. The health physics, waste management, and environmental aspects of the demolition are also discussed

  14. Assessment of the measurement control program for solution assay instruments at the Los Alamos National Laboratory Plutonium Facility

    International Nuclear Information System (INIS)

    This report documents and reviews the measurement control program (MCP) over a 27-month period for four solution assay instruments (SAIs) Facility. SAI measurement data collected during the period January 1982 through March 1984 were analyzed. The sources of these data included computer listings of measurements emanating from operator entries on computer terminals, logbook entries of measurements transcribed by operators, and computer listings of measurements recorded internally in the instruments. Data were also obtained from control charts that are available as part of the MCP. As a result of our analyses we observed agreement between propagated and historical variances and concluded instruments were functioning properly from a precision aspect. We noticed small, persistent biases indicating slight instrument inaccuracies. We suggest that statistical tests for bias be incorporated in the MCP on a monthly basis and if the instrument bias is significantly greater than zero, the instrument should undergo maintenance. We propose the weekly precision test be replaced by a daily test to provide more timely detection of possible problems. We observed that one instrument showed a trend of increasing bias during the past six months and recommend a randomness test be incorporated to detect trends in a more timely fashion. We detected operator transcription errors during data transmissions and advise direct instrument transmission to the MCP to eliminate these errors. A transmission error rate based on those errors that affected decisions in the MCP was estimated as 1%. 11 refs., 10 figs., 4 tabs

  15. Los Alamos Critical Assemblies Facility

    International Nuclear Information System (INIS)

    The Critical Assemblies Facility of the Los Alamos National Laboratory has been in existence for thirty-five years. In that period, many thousands of measurements have been made on assemblies of 235U, 233U, and 239Pu in various configurations, including the nitrate, sulfate, fluoride, carbide, and oxide chemical compositions and the solid, liquid, and gaseous states. The present complex of eleven operating machines is described, and typical applications are presented

  16. Los Alamos Critical Experiments Facility

    International Nuclear Information System (INIS)

    The Critical Experiments Facility of the Los Alamos National Laboratory has been in existence for 45 years. In that period of time, thousands of measurements have been made on assemblies containing every fissionable material in various configurations that included bare metal and compounds of the nitrate, sulfate, fluoride, carbide, and oxide. Techniques developed or applied include Rossi-α, source-jerk, rod oscillator, and replacement measurements. Many of the original measurements of delay neutrons were performed at the site, and a replica of the Hiroshima weapon was operated at steady state to assist in evaluating the relative biological effectiveness (RBE) of neutrons. Solid, liquid, and gas fissioning systems were run at critical. Operation of this original critical facility has demonstrated the margin of safety that can be obtained through remote operation. Eight accidental excursions have occurred on the site, ranging from 1.5 x 1016 to 1.2 x 1017 fissions, with no significant exposure to personnel or damage to the facility beyond the machines themselves -- and in only one case was the machine damaged beyond further use. The present status of the facility, operating procedures, and complement of machines will be described in the context of programmatic activity. New programs will focus on training, validation of criticality alarm systems, experimental safety assessment of process applications, and dosimetry. Special emphasis will be placed on the incorporation of experience from 45 years of operation into present procedures and programs. 3 refs

  17. Evaluation of the DYMAC demonstration program. Phase III report. [LASL Plutonium Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Malanify, J.J.; Bearse, R.C. (comps.)

    1980-12-31

    An accountancy system based on the Dynamic Materials Accountability (DYMAC) System has been in operation at the Plutonium Processing Facility at the Los Alamos National Laboratory since January 1978. This system, now designated the Plutonium Facility/Los Alamos Safeguards System (PF/LASS), has enhanced nuclear material accountability and process control at the Los Alamos facility. The nondestructive assay instruments and the central computer system are operating accurately and reliably. As anticipated, several uses of the system, notably scrap control and quality control, have developed in addition to safeguards. The successes of this experiment strongly suggest that implementation of DYMAC-based systems should be attempted at other facilities.

  18. LOS ALAMOS: Proposed neutrino facility

    International Nuclear Information System (INIS)

    Neutrinos have always been prominent in the experimental programme at the 800 MeV proton linear accelerator, LAMPF, at Los Alamos National Laboratory. This interest has heightened in anticipation of the proton storage ring (PSR) which is soon to be built. The PSR can operate in a mode which compresses the 750 μs LAMPF beam pulse to 270 ns. Thus high neutrino flux at low duty factor would be available, permitting a great improvement in background rejection from cosmic rays and good time separation of electron neutrinos from muon neutrinos

  19. Los Alamos transuranic waste size reduction facility

    International Nuclear Information System (INIS)

    A transuranic (TRU) Waste Size Reduction Facility (SRF) was designed and constructed at the Los Alamos National Laboratory during the period of 1977 to 1981. This paper summarizes the engineering development, installation, and early test operations of the SRF. The facility incorporates a large stainless steel enclosure fitted with remote handling and cutting equipment to obtain an estimated 4:1 volume reduction of gloveboxes and other bulky metallic wastes

  20. Comparative distribution of plutonium in contaminated ecosystems at Oak Ridge, Tennessee, and Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    The distribution of plutonium was compared in portions of forest ecosystems at Oak Ridge, TN, and Los Alamos, NM, which were contaminated by liquid effluents. Inventories of plutonium in soil at the two sites were generally similar, but a larger fraction of the plutonium was associated with biota at Los Alamos than at Oak Ridge. Most (99.7 to 99.9%) of the plutonium was present in the soil, and very little (0.1 to 0.3%) was in biotic components. Comparative differences in distributions within the two ecosystems appeared to be related to individual contamination histories and greater physical transport of plutonium in soil to biotic surfaces at Los Alamos

  1. Preparation of fused chloride salts for use in pyrochemical plutonium recovery operations at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Fife, K.W.; Bowersox, D.F.; Christensen, D.C.; Williams, J.D.

    1986-07-01

    The Plutonium Metal Technology Group at Los Alamos routinely uses pyrochemical processes to produce and purify plutonium from impure sources. The basic processes (metal production, metal purification, and residue treatment) involve controlling oxidation and reduction reactions between plutonium and its compounds in molten salts. Current production methods are described, as well as traditional approaches and recent developments in the preparation of solvent salts for electrorefining, molten salt extraction, lean metal (pyroredox) purification, and direct oxide reduction.

  2. Preparation of fused chloride salts for use in pyrochemical plutonium recovery operations at Los Alamos

    International Nuclear Information System (INIS)

    The Plutonium Metal Technology Group at Los Alamos routinely uses pyrochemical processes to produce and purify plutonium from impure sources. The basic processes (metal production, metal purification, and residue treatment) involve controlling oxidation and reduction reactions between plutonium and its compounds in molten salts. Current production methods are described, as well as traditional approaches and recent developments in the preparation of solvent salts for electrorefining, molten salt extraction, lean metal (pyroredox) purification, and direct oxide reduction

  3. Los Alamos National Laboratory Facility Review

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-05

    This series of slides depicts the Los Alamos Neutron Science Center (LANSCE). The Center's 800-MeV linac produces H+ and H- beams as well as beams of moderated (cold to 1 MeV) and unmoderated (0.1 to 600 MeV) neutrons. Experimental facilities and their capabilities and characteristics are outlined. Among these are LENZ, SPIDER, and DANCE.

  4. Los Alamos Transuranic Waste Size Reduction Facility

    International Nuclear Information System (INIS)

    The Los Alamos Transuranic (TRU) Waste Size Reduction Facility (SRF) is a production oriented prototype. The facility is operated to remotely cut and repackage TRU contaminated metallic wastes (e.g., glove boxes, ducting and pipes) for eventual disposal at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. The resulting flat sections are packaged into a tested Department of Transportation Type 7A metal container. To date, the facility has successfully processed stainless steel glove boxes (with and without lead shielding construction) and retention tanks. We have found that used glove boxes generate more cutting fumes than do unused glove boxes or metal plates - possibly due to deeply embedded chemical residues from years of service. Water used as a secondary fluid with the plasma arc cutting system significantly reduces visible fume generation during the cutting of used glove boxes and lead-lined glove boxes. 2 figs., 1 tab

  5. 233-S plutonium concentration facility hazards assessment

    International Nuclear Information System (INIS)

    This document establishes the technical basis in support of Emergency Planning activities for the 233-S Plutonium Concentration Facility on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated

  6. Summary of recent studies of soil plutonium in the Los Alamos and Trinity Site environs

    International Nuclear Information System (INIS)

    The first plutonium was sent to the Los Alamos Scientific Laboratory (LASL) in 1944 from the Oak Ridge and Hanford reactors for use in synthesizing the first atomic bomb, which was subsequently detonated at Trinity Site in New Mexico. During the last 32 years the LASL has developed an outstanding capability in many scientific fields required to support research in weapons technology and in other uses of nuclear energy. The fabrication and experimental activities required for this effort have resulted in additions of plutonium in industrial effluents to Los Alamos soils, just as the Trinity soils received fallout plutonium after the 1945 Trinity detonation. Formal radioecology-soils studies relative to soil-actinide relationships has been mainly field-oriented and complements transuranic research dealing with the biota of several study areas. The current soil actinide research performed within three liquid effluent-receiving areas at Los Alamos and along the fallout pathway of Trinity, the first nuclear detonation, are summarized

  7. Decommissioning of the TA-42 plutonium contaminated incinerator facility

    International Nuclear Information System (INIS)

    During 1978, a plutonium (239Pu) contaminated incinerator facility at the Los Alamos National Laboratory, Los Alamos, New Mexico, was decommissioned. The project involved dismantling the facility and burying the debris at an on-site radioactive solid waste disposal/storage area. Contaminated soil from the 5000 m2 area was also buried. The facility was constructed in 1951 to incinerate 239Pu contaminated wastes. It was later used as a decontamination facility. The major features included a 185-m2 floor area control building, incinerator, cyclone dust collector, spray cooler, venturi scrubber, air filter bank, ash separator, and two 140 000-liter ash storage tanks. Six-hundred cubic meters of debris and 1200 m3 of soil contaminated with less than 10 nCi 239Pu per gram of soil were buried at the Laboratory disposal area. Five cubic meters of 239Pu contaminated ash residues containing more than 10 nCi 239Pu per gram of waste were packaged and stored to meet the Department of Energy's 20-year retrievable storage criteria. The operation consumed 80 work days and 5800 manhours at a cost of $150 000. This report presents the details concerning decommissioning procedures, the health physics, the waste management, the environmental surveillance results, and a cost breakdown for the operation

  8. Retention of plutonium (VI) on Los Alamos tuff

    International Nuclear Information System (INIS)

    It would appear that the oxidation state of plutonium has a marked effect on its absorption by rock as well as on its subsequent removal by ground water. This is of particular importance in deep disposal schemes if it is proposed to allow for possible catastrophic intrusion of water. The results obtained in the experiments described above suggest that precautions be taken to ensure that the plutonium is in the (IV) state by use of appropriate reducing agents or incorporation in reducing matrices

  9. Waste minimization and the goal of an environmentally benign plutonium processing facility: A strategic plan

    International Nuclear Information System (INIS)

    To maintain capabilities in nuclear weapons technologies, the Department of Energy (DOE) has to maintain a plutonium processing facility that meets all the current and emerging standards of environmental regulations. A strategic goal to transform the Plutonium Processing Facility at Los Alamos into an environmentally benign operation is identified. A variety of technologies and systems necessary to meet this goal are identified. Two initiatives now in early stages of implementation are described in some detail. A highly motivated and trained work force and a systems approach to waste minimization and pollution prevention are necessary to maintain technical capabilities, to comply with regulations, and to meet the strategic goal

  10. Waste minimization and the goal of an environmentally benign plutonium processing facility: A strategic plan

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S.

    1994-02-01

    To maintain capabilities in nuclear weapons technologies, the Department of Energy (DOE) has to maintain a plutonium processing facility that meets all the current and emerging standards of environmental regulations. A strategic goal to transform the Plutonium Processing Facility at Los Alamos into an environmentally benign operation is identified. A variety of technologies and systems necessary to meet this goal are identified. Two initiatives now in early stages of implementation are described in some detail. A highly motivated and trained work force and a systems approach to waste minimization and pollution prevention are necessary to maintain technical capabilities, to comply with regulations, and to meet the strategic goal.

  11. Guide to good practices at plutonium facilities

    International Nuclear Information System (INIS)

    This manual establishes guidelines and principles for use in setting up a sound radiation protection program for work with plutonium. The guidance presented is based on the experiences of Energy Research and Development Administration (ERDA) contractors and those portions of private industry concerned with the operation of plutonium facilities, specifically with the fabrication of mixed oxide reactor fuel. The manual is directed primarily to those facilities which have as their sole purpose the handling of large quantities of plutonium for military or industrial uses. It is not intended for use by facilities engaged in reactor or chemical separation operations nor for partial or occasional use by analytical laboratories; while these facilities would find the manual beneficial, it would be incomplete for their needs. The manual addresses good practices that should be observed by management, staff and designers, since the benefits of a good radiation protection program are the result of their joint efforts. Methods for the diagnostic evaluation of internally deposited Pu are included

  12. Guide to good practices at plutonium facilities

    Energy Technology Data Exchange (ETDEWEB)

    Faust, L.G.; Brackenbush, L.W.; Carter, L.A.; Endres, G.W.R.; Glenn, R.D.; Jech, J.J.; Selby, J.M.; Smith, R.C.; Waite, D.A.; Walsh, W.P.

    1977-09-01

    This manual establishes guidelines and principles for use in setting up a sound radiation protection program for work with plutonium. The guidance presented is based on the experiences of Energy Research and Development Administration (ERDA) contractors and those portions of private industry concerned with the operation of plutonium facilities, specifically with the fabrication of mixed oxide reactor fuel. The manual is directed primarily to those facilities which have as their sole purpose the handling of large quantities of plutonium for military or industrial uses. It is not intended for use by facilities engaged in reactor or chemical separation operations nor for partial or occasional use by analytical laboratories; while these facilities would find the manual beneficial, it would be incomplete for their needs. The manual addresses good practices that should be observed by management, staff and designers, since the benefits of a good radiation protection program are the result of their joint efforts. Methods for the diagnostic evaluation of internally deposited Pu are included.

  13. Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility

    International Nuclear Information System (INIS)

    Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel

  14. Comparative distribution of plutonium in contaminated ecosystems at Oak Ridge, Tennessee and Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Dahlman, R.C.; Garten, C.T. Jr.; Hakonson, T.E.

    1977-04-01

    Most of the plutonium entering aquatic and terrestrial ecosystems of the United States originates from nuclear weapons testing and from the burnup of the SNAP-9A satellite power source (Hanson 1975). But in the future, local ecosystems may receive small quantities of Pu released from nuclear facilities such as those at Oak Ridge, Los Alamos and other sites. The purpose of this paper is to compare and contrast the distribution of Pu in two contaminated ecosystems which are representative of humid and semi-arid environments of the United States. Results summarized in terms of inventories for the respective ecosystems several decades after initial contamination are used to anticipate the longer term (i.e., decades or centuries) behavior of Pu in the environment. One important question is whether the availability of this element to plants and other organisms will change after it is subjected to weathering and ecological processes of the environment. It is pointed out that potential radiological toxicity and long physical half-lives of Pu dictate that its behavior in ecosystems be understood.

  15. Comparative distribution of plutonium in contaminated ecosystems at Oak Ridge, Tennessee and Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Most of the plutonium entering aquatic and terrestrial ecosystems of the United States originates from nuclear weapons testing and from the burnup of the SNAP-9A satellite power source (Hanson 1975). But in the future, local ecosystems may receive small quantities of Pu released from nuclear facilities such as those at Oak Ridge, Los Alamos and other sites. The purpose of this paper is to compare and contrast the distribution of Pu in two contaminated ecosystems which are representative of humid and semi-arid environments of the United States. Results summarized in terms of inventories for the respective ecosystems several decades after initial contamination are used to anticipate the longer term (i.e., decades or centuries) behavior of Pu in the environment. One important question is whether the availability of this element to plants and other organisms will change after it is subjected to weathering and ecological processes of the environment. It is pointed out that potential radiological toxicity and long physical half-lives of Pu dictate that its behavior in ecosystems be understood

  16. Options for converting excess plutonium to feed for the MOX fuel fabrication facility

    Energy Technology Data Exchange (ETDEWEB)

    Watts, Joe A [Los Alamos National Laboratory; Smith, Paul H [Los Alamos National Laboratory; Psaras, John D [Los Alamos National Laboratory; Jarvinen, Gordon D [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory; Joyce, Jr., Edward L [Los Alamos National Laboratory

    2009-01-01

    The storage and safekeeping of excess plutonium in the United States represents a multibillion-dollar lifecycle cost to the taxpayers and poses challenges to National Security and Nuclear Non-Proliferation. Los Alamos National Laboratory is considering options for converting some portion of the 13 metric tons of excess plutonium that was previously destined for long-term waste disposition into feed for the MOX Fuel Fabrication Facility (MFFF). This approach could reduce storage costs and security ri sks, and produce fuel for nuclear energy at the same time. Over the course of 30 years of weapons related plutonium production, Los Alamos has developed a number of flow sheets aimed at separation and purification of plutonium. Flow sheets for converting metal to oxide and for removing chloride and fluoride from plutonium residues have been developed and withstood the test oftime. This presentation will address some potential options for utilizing processes and infrastructure developed by Defense Programs to transform a large variety of highly impure plutonium into feedstock for the MFFF.

  17. Safety principles for plutonium facilities in France

    International Nuclear Information System (INIS)

    Safety problems specific to the use of plutonium arise as a result of the radiotoxicity of the majority of its isotopes and their fissile nature. Measures intended to ensure safety during normal operations are homogeneous with those now adopted in the fuel cycle and particularly in the reprocessing facilities: protection from ionizing radiation by the emplacement of special shields; special attention is paid to protection from neutrons, confinement of radioactive material by the implementation of several containment systems, each comprising one or more barriers, limitation of the production and activity of liquid effluent by decontaminating and recycling fissile material, limitation of the production of solid radioactive waste containing α emitters, limitation of their specific activity, use of appropriate packaging. As far as accident mitigation is concerned, the safety of the facilities is based on the 'defence-in-depth' concept: prevent the occurrence of events which might initiate incidents thorough the high quality of design, construction and control of processes, and to prevent accidents by limiting the probability of their occurring and the vulnerability of installations, as well as limiting consequences by remedial measures. In the case of facilities using plutonium and fissile materials, safety is particularly based on mitigating the risk of criticality. With regard to the other risks, it is essential to avoid initiating events which could lead to the dispersion of fissile material into the facilities and the environment

  18. Transport and deposition of plutonium-contaminated sediments by fluvial processes, Los Alamos Canyon, New Mexico

    International Nuclear Information System (INIS)

    Between 1945 and 1952 the development of nuclear weapons at Los Alamos National Laboratory, New Mexico, resulted in the disposal of plutonium into the alluvium of nearby Acid and (to a lesser degree) DP Canyons. The purpose of this paper is to explore the connection between the disposal sites and the main river, a 20 km link formed by the fluvial system of Acid, Pueblo, DP, and Los Alamos Canyons. Empirical data from 15 yr of annual sediment sampling throughout the canyon system has produced 458 observations of plutonium concentration in fluvial sediments. These data show that, overall, mean plutonium concentrations in fluvial sediment decline from 10,000 fCi/g near the disposal area to 100 fCi/g at the confluence of the canyon system and the Rio Grande. Simulations using a computer model for water, sediment, and plutonium routing in the canyon system show that discharges as large as the 25 yr event would fail to develop enough transport capacity to completely remove the contaminated sediments from Pueblo Canyon. Lesser flows would move some materials to the Rio Grande by remobilization of stored sediments. The simulations also show that the deposits and their contaminants have a predictable geography because they occur where stream power is low, hydraulic resistance is high, and the geologic and/or geomorphic conditions provide enough space for storage. 38 refs., 13 figs., 1 tab

  19. Transuranic (Tru) waste volume reduction operations at a plutonium facility

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, Michael E [Los Alamos National Laboratory; Nixon, Archie E [Los Alamos National Laboratory; Dodge, Robert L [Los Alamos National Laboratory; Fife, Keith W [Los Alamos National Laboratory; Sandoval, Arnold M [Los Alamos National Laboratory; Garcia, Vincent E [Los Alamos National Laboratory

    2010-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos

  20. Transuranic (Tru) waste volume reduction operations at a plutonium facility

    International Nuclear Information System (INIS)

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos National

  1. Transuranic (TRU) waste volume reduction operations at a plutonium facility

    International Nuclear Information System (INIS)

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actinide Processing Group at TA-55 uses one-meter or longer glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glovebox as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste volume generation by almost 2½ times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos

  2. Mortality study of Los Alamos workers with higher exposures to plutonium

    International Nuclear Information System (INIS)

    A group of white male workers with the highest internal depositions of plutonium at the Los Alamos National Laboratory was selected in 1974 for a study of mortality. This group of 224 persons includes all those with an estimated deposition (in 1974) of 10 nanocuries or more of plutonium, principally 239Pu but also in some cases 238Pu. Follow-up of these workers is 100% complete through 1980. Smoking histories were obtained on all persons. Exposure histories for external radiation and plutonium were reviewed for each subject. Standardized mortality ratios (SMR) were calculated using rates for white males in the United States population, adjusted for age and year of death. SMRs are low for all causes of death (56; 95% CI 40, 75) or for all malignant neoplasms (54; 95% CI 23,106). Cancers of interest for plutonium exposures, including cancers of bone, lung, liver, and bone marrow/lymphatic systems, were infrequent or absent. The absence of a detectable excess of cancer deaths is consistent with the low calculated risk to these workers using current radiation risk coefficients. An alternate theory that suggests much higher risk of lung cancer due to synergistic effects of smoking and inhaled insoluble plutonium particles is not supported by this study

  3. Decommissioning and Decontamination Program: Battelle Plutonium Facility, Environmental assessment

    International Nuclear Information System (INIS)

    This assessment describes the decontamination of Battelle-Columbus Plutonium Facility and removal from the site of all material contamination which was associated with or produced by the Plutonium Facility. Useable uncontaminated material will be disposed of by procedures normally employed in scrap declaration and transfer. Contaminated waste will be transported to approved radioactive waste storage sites. 5 refs., 1 fig

  4. Destructive analysis capabilities for plutonium and uranium characterization at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, Lav [Los Alamos National Laboratory; Kuhn, Kevin J [Los Alamos National Laboratory; Drake, Lawrence R [Los Alamos National Laboratory; Decker, Diana L [Los Alamos National Laboratory; Walker, Laurie F [Los Alamos National Laboratory; Colletti, Lisa M [Los Alamos National Laboratory; Spencer, Khalil J [Los Alamos National Laboratory; Peterson, Dominic S [Los Alamos National Laboratory; Herrera, Jaclyn A [Los Alamos National Laboratory; Wong, Amy S [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguards Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.

  5. Destructive analysis capabilities for plutonium and uranium characterization at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguards Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.

  6. The Los Alamos Critical Experiments Facility Program

    International Nuclear Information System (INIS)

    Critical assemblies of precisely known materials and reproducible and easily calculated geometries have been constructed at the Los Alamos National Laboratory since the 1940s. Initially, these assemblies were built to provide information necessary for the nuclear weapons development effort. Subsequently, intensive studies of the assemblies themselves were undertaken to provide a better understanding of the physics of the fission process and other nuclear reactions in the nuclear materials from which these machine were constructed and in other materials irradiated in these assemblies. Some of these assemblies (notably Jezebel, Flattop, Big Ten, and Godiva) have been used as benchmark assemblies to compare the results of experimental measurements and computations of certain nuclear reaction parameters. These comparisons are used to validate both the input nuclear data and the computational methods. In addition to these normally fueled benchmark assemblies, other assembly machines are fueled periodically to provide specific and detailed results for parameter sensitivity studies for a large number of applications. Some of these machines and their applications are described

  7. Ventilation design modifications at Los Alamos Scientific Laboratory major plutonium operational areas

    International Nuclear Information System (INIS)

    Major ventilation design modifications in plutonium operational areas at Los Alamos have occurred during the past two years. An additional stage of HEPA filters has been added to DP West glove-box process exhaust resulting in significant effluent reductions. The additional stage of HEPA filters is unique in that each filter may be individually DOP tested. Radiological filter efficiencies of each process exhaust stage is presented. DP West room air ventilation systems have been modified to incorporate a single stage of HEPA filters in contrast to a previous American Air Filter PL-24 filtration system. Plutonium effluent reductions of 102 to 103 have resulted in these new systems. Modified DOP testing procedures for room air filtration systems are discussed. Major plutonium areas of the CMR Building utilizing Aerosolve 95 process exhaust filtration systems have been upgraded with two stages of HEPA filters. Significant reductions in effluent are evident. A unique method of DOP testing each bank of HEPA filters is discussed. Radiological efficiencies of both single and two-stage filters are discussed. (U.S.)

  8. Intense Neutron Source facility, Los Alamos Scientific Laboratory, Los Alamos, New Mexico. Final Environmental Statement

    International Nuclear Information System (INIS)

    A final environmental statement is presented which was prepared toward compliance with the National Environmental Policy Act and in support of the Energy Research and Development Administration's proposed actions to construct and operate a deuterium-tritium gas target intense neutron source at the Los Alamos Scientific Laboratory (LASL) in Los Alamos, Los Alamos County, New Mexico. The purpose of the proposed facility is to provide an experimental neutron irradiation facility providing a neutronic environment similar to that anticipated in a fusion power reactor. In addition, the facility will provide prototypic testing of tritium pumping, purification, containment, and cleanup systems necessary for future experimental power reactors. The benefits of developing radiation resistant structural materials, insulators, and tritium handling systems suitable for use in fusion reactors would be substantial and far outweigh the nominal environmental impacts associated with construction and operation of this facility. The principal environmental impacts of the proposed facility result from routine construction activities including clearing approximately six acres of land for the building, parking areas and an access road. Liquid waste discharges consist primarily of cooling tower blowdown during operations. Significantly contaminated liquid and solid waste will be disposed at the existing LASL waste disposal area. Very small quantities (less than 100 curies per year) of tritium and traces of other radioactivity will result in site boundary doses not exceeding 5 mrem per year, or less than 5 percent of applicable radiation protection guidelines and less than 5 percent of the natural radiation background from naturally occurring radioactivity. Alternatives considered included abandoning or postponing the project, selecting alternative designs, and selecting alternative locations for the facility

  9. Renovation work at plutonium conversion development facility

    International Nuclear Information System (INIS)

    At Plutonium Conversion Development Facility, we carried out planned stoppage about for 1 year from 1993 to 1994 and did renovation work, mainly renovated Calcination-Reduction Furnace and Evaporator which passed away the life we designed, for continuous stable operation in the future. As for the way of renovation, it wasn't the former one that renovated the whole Glove Box holding equipments. We adopted the way of taking apart the panels from Glove Box and renovated only inside equipments. Because we planned to shorten the work term, cut off the radioactive waste and reduce operator dose. By this work, the material of Calcination-Reduction Furnace was changed, and its efficiency of heating was improved. As a result of that, we got improved properties of Mixed Oxide Powder, extended the life of Calcination-Reduction Furnace, improved corrosion resistance of Evaporator by changing its material, improved the function of operation by adopting automatic operation control and shortened the operating time. On the other hand, the quality of produced radioactive waste became less 27% (150 drums) totally by adopting the way of taking apart the panels from Glove Box than by the former way, and we also got shortening the work term and reducing operator dose. (author)

  10. Metering management at the plutonium research and development facilities

    International Nuclear Information System (INIS)

    Nuclear fuel research laboratory of the Oarai Research Laboratory of the Japan Atomic Energy Research Institute is an R and D facility to treat with plutonium and processes various and versatile type samples in chemical and physical form for use of various experimental researches even though on much small amount. Furthermore, wasted and plutonium samples are often transported to other KMP and MBA such as radioactive waste management facility, nuclear reactor facility and so forth. As this facility is a place to treat plutonium important on the safeguards, it is a facility necessary for detection and allowance actions and for detail managements on the metering management data to report to government and IAEA in each small amount sample and different configuration. In this paper, metering management of internationally regulated matters and metering management system using a work station newly produced in such small scale facility were introduced. (G.K.)

  11. Decommissioning the UHTREX Reactor Facility at Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    The Ultra-High Temperature Reactor Experiment (UHTREX) facility was constructed in the late 1960s to advance high-temperature and gas-cooled reactor technology. The 3-MW reactor was graphite moderated and helium cooled and used 93% enriched uranium as its fuel. The reactor was run for approximately one year and was shut down in February 1970. The decommissioning of the facility involved removing the reactor and its associated components. This document details planning for the decommissioning operations which included characterizing the facility, estimating the costs of decommissioning, preparing environmental documentation, establishing a system to track costs and work progress, and preplanning to correct health and safety concerns in the facility. Work to decommission the facility began in 1988 and was completed in September 1990 at a cost of $2.9 million. The facility was released to Department of Energy for other uses in its Los Alamos program

  12. Seismic qualification of equipment for the TA-55 Plutonium Processing Facility

    International Nuclear Information System (INIS)

    The techniques employed by the Los Alamos Scientific Laboratory (LASL) for the seismic qualification of internal equipment for the TA-55 Plutonium Facility are discussed. The structural analysis of the plutonium building and critical associated structures was performed by the Architect-Engineer (A-E), and the calculations were checked by LASL. The specifications and procedures used by LASL produced dramatic improvement in the responses by qualified vendors to the seismic requirements. There was an increase from about a 20% bid ratio to greater than 90% because prospective vendors could be competitive without having had previous seismic experience with their equipment. The equipment seismic qualification for TA-55 is in compliance with the Code of Federal Regulations, Nuclear Regulatory Commission (NRC) Guides, Energy Research and Development Administration (ERDA) Manual Chapters and Appendices, and Institute of Electrical and Electronic Engineers (IEEE) Standard 344

  13. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Wender, Steve [Los Alamos National Laboratory

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  14. Los Alamos National Laboratory and Lawrence Livermore National Laboratory Plutonium Sustainment Monthly Program Report September 2012

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, Anastasia Dawn [Los Alamos National Laboratory; Storey, Bradford G. [Los Alamos National Laboratory; Bowidowicz, Martin [Los Alamos National Laboratory; Robertson, William G. [Los Alamos National Laboratory; Hobson, Beverly F. [Los Alamos National Laboratory

    2012-10-22

    In March of 2012 the Plutonium Sustainment program at LANL completed or addressed the following high-level activities: (1) Delivered Revision 2 of the Plutonium Sustainment Manufacturing Study, which incorporated changes needed due to the release of the FY2013 President's Budget and the delay in the Chemistry and Metallurgy Research Replacement Nuclear Facility (CMRRNF). (2) W87 pit type development activities completed a detailed process capability review for the flowsheet in preparation for the Engineering Development Unit Build. (3) Completed revising the Laser Beam Welding schedule to address scope and resource changes. (4) Completed machining and inspecting the first set of high-fidelity cold parts on Precitech 2 for Gemini. (5) The Power Supply Assembly Area started floor cutting with a concrete saw and continued legacy equipment decommissioning. There are currently no major issues associated with achieving MRT L2 Milestones 4195-4198 or the relevant PBIs associated with Plutonium Sustainment. There are no budget issues associated with FY12 final budget guidance. Table 1 identifies all Baseline Change Requests (BCRs) that were initiated, in process, or completed during the month. The earned value metrics overall for LANL are within acceptable thresholds, so no high-level recovery plan is required. Each of the 5 major LANL WBS elements is discussed in detail.

  15. Los Alamos National Laboratory and Lawrence Livermore National Laboratory Plutonium Sustainment Monthly Program Report - March 2012

    International Nuclear Information System (INIS)

    In March of 2012 the Plutonium Sustainment program at LANL completed or addressed the following high-level activities: (1) Delivered Revision 2 of the Plutonium Sustainment Manufacturing Study, which incorporated changes needed due to the release of the FY2013 President's Budget and the delay in the Chemistry and Metallurgy Research Replacement Nuclear Facility (CMRRNF). (2) W87 pit type development activities completed a detailed process capability review for the flowsheet in preparation for the Engineering Development Unit Build. (3) Completed revising the Laser Beam Welding schedule to address scope and resource changes. (4) Completed machining and inspecting the first set of high-fidelity cold parts on Precitech 2 for Gemini. (5) The Power Supply Assembly Area started floor cutting with a concrete saw and continued legacy equipment decommissioning. There are currently no major issues associated with achieving MRT L2 Milestones 4195-4198 or the relevant PBIs associated with Plutonium Sustainment. There are no budget issues associated with FY12 final budget guidance. Table 1 identifies all Baseline Change Requests (BCRs) that were initiated, in process, or completed during the month. The earned value metrics overall for LANL are within acceptable thresholds, so no high-level recovery plan is required. Each of the 5 major LANL WBS elements is discussed in detail.

  16. Towards an advanced hadron facility at Los Alamos

    Science.gov (United States)

    Thiessen, Henry A.

    1988-11-01

    In the 1987 AHF Workshop, it was pointed out that activation of the accelerator is a serious problem. At this workshop, it was suggested that a new type of slow extraction system is needed to reduce the activation. We report on the response to this need. The Los Alamos plan is reviewed including as elements the long lead-time R&D in preparation for a 1993 construction start, a menu of accelerator designs, improved losses at injection and extraction time, active participation in the development of PSR, an accelerated hardware R&D program, and close collaboration with TRIUMF. We review progress on magnets and power supplies, on ceramic vacuum chambers, and on ferrite-tuned rf systems. We report on the plan for a joint TRIUMF-Los Alamos main-ring cavity to be tested in PSR in 1989. The problem of beam losses is discussed in detail and a recommendation for a design procedure for the injection system is made. This recommendation includes taking account of single Coulomb scattering, a painting scheme for minimizing foil hits, and a collimator and dump system for containing the expected spills. The slow extraction problem is reviewed and progress on an improved design is discussed. The problem of designing the accelerators for minimum operation and maintenance cost is briefly discussed. The question of the specifications for an advanced hadron facility is raised and it is suggested that the Los Alamos Proposal of a dual energy machine—1.6 GeV and 60 GeV—is a better match to the needs of the science program than the single-energy proposals made elsewhere. It is suggested that design changes need be made in all of the world's hadron facility proposals to prepare for high-intensity operation.

  17. Towards an advanced hadron facility at Los Alamos

    International Nuclear Information System (INIS)

    In the 1987 workshop, it was pointed out that activation of the accelerator is a serious problem. At this workshop, it was suggested that a new type of slow extraction system is needed to reduce the activation. We report on the response to this need. The Los Alamos plan is reviewed including as elements the long lead-time R and D in preparation for a 1993 construction start, a menu of accelerator designs, improved losses at injection and extraction time, active participation in the development of PSR, and accelerated hardware R and D program, and close collaboration with TRIUMF. We review progress on magnets and power supplies, on ceramic vacuum chambers, and on ferrite-turned rf systems. We report on the plan for a joint TRIUMF-Los Alamos main-ring cavity to be tested in PSR in 1989. The problem of beam losses is discussed in detail and a recommendation for a design procedure for the injection system is made. This recommendation includes taking account of single Coulomb scattering, a painting scheme for minimizing foil hits, and a collimator and dump system for containing the expected spills. The slow extraction problem is reviewed and progress on an improved design is discussed. The problem of designing the accelerators for minimum operation and maintenance cost is briefly discussed. The question of the specifications for an advanced hadron facility is raised and it is suggested that the Los Alamos Proposal of a dual energy machine - 1.6 GeV and 60 GeV - is a better match to the needs of the science program than the single-energy proposals made elsewhere. It is suggested that design changes need be made in all of the world's hadron facility proposals to prepare for high-intensity operation

  18. Independent Review of Siesmic Performance Assessments for the Plutonium Facility PF-4

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, Andrew [State Univ. of New York (SUNY), Buffalo, NY (United States); Goen, Lawrence Kenneth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kennedy, Robert [RPK Structural Mechanics, San Diego, CA (United States); McDonald, Brian [Exponent, Los Angeles, CA (United States); Morgan, Troy [Exponent, Los Angeles, CA (United States); Wyllie, Loring [Degenkolb Engineers, San Francisco, CA (United States)

    2015-11-25

    The Plutonium Facility, designated PF-4, is located in Technical Area 55 at the Los Alamos National Laboratory (LANL). The facility is a one-story rectangular structure above a complete basement; the building was constructed of cast-in-place reinforced concrete, with small interior frames of structural steel. The plan dimensions of the building are 265’×284’. The overall height of the building varies between 39’-0” at the north and south ends, and 40’-6” at the center ridge. The programmatic work performed in the building is vital to our national security and its functions and storage purposes are not replicated elsewhere in the United States Department of Energy (DOE).

  19. Materials control and accounting in a plutonium processing facility

    International Nuclear Information System (INIS)

    This chapter discusses materials control and accounting (MC and A) as practiced in currently operating plutonium processing facilities, illustrates application of system analysis techniques, and describes some problems typically encountered in implementation of an effective MC and A system. In addition to the example process, the chapter includes the following topics: accountability measurements, materials balance equation, variance calculations, throughput effects, and unmeasured inventory (holdup)

  20. Passive neutron survey of the 233-S Plutonium Concentration Facility

    International Nuclear Information System (INIS)

    A passive neutron survey was performed at the 233-S Plutonium Concentration Facility (located at the Hanford Site in Richland, Washington) during late 1994 and early 1995. Four areas were surveyed: an abandoned filter box and pipe trench, column laydown trench, load-out hood, and process hood. The primary purpose of the survey was to identify locations that had plutonium to help direct decontamination and decommissioning activities. A secondary purpose of the survey was to determine the quantity of material when its presence was identified

  1. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department's plutonium storage. Volume 2, Appendix B, Part 3: Los Alamos National Laboratory site assessment team report

    International Nuclear Information System (INIS)

    Environmental safety and health (ES and H) vulnerabilities are defined as conditions or weaknesses that may lead to unnecessary or increased radiation exposure of the workers, release of radioactive materials to the environment, or radiation exposure of the public. In response to the initiative by the Secretary of Energy, Los Alamos National Laboratory (LANL) has performed a self assessment of the ES and H vulnerabilities of plutonium inventories at the laboratory. The objective of this site-specific self assessment is to identify and report ES and H vulnerabilities associated with the storage, handling, and processing of plutonium and maintenance of plutonium-contaminated facilities. This self-assessment of ES and H vulnerabilities and validation by a peer group is not another compliance audit or fault-finding exercise. It has a fact finding mission to develop a database of potential environment, safety, and health vulnerabilities that may lead to unnecessary or increased radiation exposure of the workers, release of radioactive materials to the environment, or radiation exposure of the public

  2. Seismic vulnerability study Los Alamos Meson Physics Facility (LAMPF)

    International Nuclear Information System (INIS)

    The Los Alamos Meson Physics Facility (LAMPF), located at TA-53 of Los Alamos National Laboratory (LANL), features an 800 MeV proton accelerator used for nuclear physics and materials science research. As part of the implementation of DOE Order 5480.25 and in preparation for DOE Order 5480.28, a seismic vulnerability study of the structures, systems, and components (SSCs) supporting the beam line from the accelerator building through to the ends of die various beam stops at LAMPF has been performed. The study was accomplished using the SQUG GIP methodology to assess the capability of the various SSCs to resist an evaluation basis earthquake. The evaluation basis earthquake was selected from site specific seismic hazard studies. The goals for the study were as follows: (1) identify SSCs which are vulnerable to seismic loads; and (2) ensure that those SSCs screened during die evaluation met the performance goals required for DOE Order 5480.28. The first goal was obtained by applying the SQUG GIP methodology to those SSCS represented in the experience data base. For those SSCs not represented in the data base, information was gathered and a significant amount of engineering judgment applied to determine whether to screen the SSC or to classify it as an outlier. To assure the performance goals required by DOE Order 5480.28 are met, modifications to the SQUG GIP methodology proposed by Salmon and Kennedy were used. The results of this study ire presented in this paper

  3. A probabilistic risk assessment of the LLNL Plutonium facility's evaluation basis fire operational accident

    International Nuclear Information System (INIS)

    The Lawrence Livermore National Laboratory (LLNL) Plutonium Facility conducts numerous involving plutonium to include device fabrication, development of fabrication techniques, metallurgy research, and laser isotope separation. A Safety Analysis Report (SAR) for the building 332 Plutonium Facility was completed rational safety and acceptable risk to employees, the public, government property, and the environment. This paper outlines the PRA analysis of the Evaluation Basis Fire (EDF) operational accident. The EBF postulates the worst-case programmatic impact event for the Plutonium Facility

  4. The Pajarito Site operating procedures for the Los Alamos Critical Experiments Facility

    International Nuclear Information System (INIS)

    Operating procedures consistent with DOE Order 5480.6, and the American National Standard Safety Guide for the Performance of Critical Experiments are defined for the Los Alamos Critical Experiments Facility (LACEF) of the Los Alamos National Laboratory. These operating procedures supersede and update those previously published in 1983 and apply to any criticality experiment performed at the facility. 11 refs

  5. Dismantlement and decontamination of a plutonium-238 facility at SRS

    International Nuclear Information System (INIS)

    There has been very little, documented decontamination and decommissioning (D ampersand D) experience on which to project cleanup costs and schedules for plutonium facilities at SRS and other DOE sites. A portion of the HB-Line, a plutonium-238 processing facility at SRS, has been undergoing D ampersand D intermittently since 1984. Although this cleanup effort was not originally intended to quantify results, some key data have been project has demonstrated effective methods of accumulated, and the performing D ampersand D work, and has demonstrated cleanup equipment and techniques under conditions of high contamination. Plutonium facilities where D ampersand D is already underway provide an opportunity for' timely field testing of characterization, size reduction, and decontamination techniques. Some data are presented here; however, more specific tests and data may be obtained during the remainder of this project. This project has been recommended as a candidate test facility for a DOE planned ''Integrated D ampersand D Demonstration'' managed by EM-50 to develop and demonstrate technology for D ampersand D and surplus facilities deactivation. Both the remainder of this project and the Integrated D ampersand D Demonstration Program can benefit from a joint effort, and the, overall costs should be reduced

  6. Los Alamos National Laboratory plans for a laboratory microfusion facility

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory is actively participating in the National Laboratory Microfusion Facility (LMF) Scoping Study. We are currently performing a conceptual design study of a krypton-fluoride laser system that appears to meet all of the diver requirements for the LMF. A new theory of amplifier module scaling has been developed recently and it appears that KrF amplifier modules can be scaled up to output energies much larger than thought possible a few years ago. By using these large amplifier modules, the reliability and availability of the system is increased and its cost and complexity is decreased. Final cost figures will be available as soon as the detailed conceptual design is complete

  7. Recent LAMPF [Los Alamos Meson Physics Facility] research using muons

    International Nuclear Information System (INIS)

    In addition to the core programs in nuclear and particle physics, diverse experiments have been carried out that address interdisciplinary and applied topics at the Los Alamos Meson Physics Facility (LAMPF). These include muon-spin-relaxation experiments to study magnetic dynamics in spin glasses and electronic structure in heavy-fermion superconductors; muon channeling experiments to provide information on pion stopping sites in crystals; tomographic density reconstruction studies using proton energy loss; and radiation-effects experiments to explore microstructure evolution and to characterize materials for fusion devices and high-intensity accelerators. Finally, the catalysis of the d-t fusion reaction using negative muons has been extensively investigated with some surprising results including a stronger than linear dependence of the mesomolecular formation rate on target density and the observation of 150 fusions per muon under certain conditions. Recent results in those programs involving pions and muons interacting with matter are discussed

  8. CEA/Valduc Plutonium Recycling Facility Project

    International Nuclear Information System (INIS)

    Pu recycling activities are operated in the 118 facility on Valduc CEA/DAM center. This facility, built in 1963, does not meet modern safety requirements especially for fire and earthquake hazards. The last safety review commission in 2000 gave the authorization to continue recycling operations in the 118 facility until the end of 2010 with the obligation of the achievement, of a safety upgrade program in 2005. At the same time, CEA/DAM has decided to launch the project for the building of a new facility for Pu recycling and legacy residues stabilization. In addition to specific requirements for Pu metal preparation, the processes retained for this facility have to optimize safety, wastes, costs and dosimetry. Moreover, all wastes have to be suitable for discard or of for a safe long term storage in nuclear vault. First conceptual design elements and important basic safety requirements will be presented in this communication. (authors)

  9. Environmental impact statement data report for the surplus plutonium disposition mixed oxide fuel lead assembly fabrication project at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The mixed oxide (MOX) lead assembly (LA) fabrication activities at LANL will primarily take place at the plutonium facility (PF-4), which is located in Technical Area (TA)-55. Air emissions resulting from these activities would contribute to less than 1% of the total air emissions from PF-4, which is an insignificant amount compared with the total amount of air emissions released from the entire laboratory. Furthermore, current MOX fuel fabrication activities at PF-4 also contribute to workers' doses, employment, air emissions, water discharges, and waste generation rates presented in this document. LA fabrication would consequently have even less of an impact than estimated here. Both minority and low-income populations exist in Los Alamos and the surrounding areas, but no additional environmental effects on these populations should occur because there are no significant environmental consequences for LA fabrication. Thus, no environmental justice issues or activities are associated with the site

  10. Seismic safety of the LLL plutonium facility (Building 332)

    International Nuclear Information System (INIS)

    This report states the basis for the Lawrence Livermore Laboratory's assurance to the public that the plutonium operations at the Laboratory pose essentially no risk to anyone's health or safety, either under normal circumstances or in the event of an earthquake or a fire. The report is intended for a general audience, and so for the most part it is not highly technical. It summarizes the steps taken to ensure the seismic safety of the plutonium facility (Bldg. 332). It describes plutonium and its potential hazard and how the facility copes with that hazard. It recounts the geologic investigations and interpretations that led to the design-basis earthquake (DBE) for the Livermore site, and presents a summary analysis of the facility structure in relation to the DBE. An appendix presents a quantitative calculation of the health risk to the public associated with the worst-case hypothetical fire. The document supports the conclusions that the facility will continue to function safely after the maximum earthquake ground motion to which it may be subjected and that there is no evidence of a potential for surface offset under it

  11. Systems work for Plutonium Fuel Production Facility (PFPF) near-real-time accounting

    International Nuclear Information System (INIS)

    A joint effort by the Los Alamos National Laboratory and the Power Reactor and Nuclear Fuel Development Corporation of Japan examines materials accounting for the Plutonium Fuel Production Facility. A unique feature of the systems work is a sophisticated data generator. This software follows individual items throughout the process, creating detailed data files for variance propagation. The data generator deals with user-specified process operations and handles related accounting problems, such as the tracking of individual measurements through numerous blending and splitting procedure, frequent decay correction (important for large inventories), scrap recovery, and automated determination of static inventory. There is no need to rely on simplified assumptions regarding process operation and material measurement. Also, the joint study applies recent theoretical work on stratified inspection of nonhomogeneous inventories and sequential analysis of MUF -- D. 4 refs

  12. Safeguards design strategies: designing and constructing new uranium and plutonium processing facilities in the United States

    International Nuclear Information System (INIS)

    In the United States, the Department of Energy (DOE) is transforming its outdated and oversized complex of aging nuclear material facilities into a smaller, safer, and more secure National Security Enterprise (NSE). Environmental concerns, worker health and safety risks, material security, reducing the role of nuclear weapons in our national security strategy while maintaining the capability for an effective nuclear deterrence by the United States, are influencing this transformation. As part of the nation's Uranium Center of Excellence (UCE), the Uranium Processing Facility (UPF) at the Y-12 National Security Complex in Oak Ridge, Tennessee, will advance the U.S.'s capability to meet all concerns when processing uranium and is located adjacent to the Highly Enriched Uranium Materials Facility (HEUMF), designed for consolidated storage of enriched uranium. The HEUMF became operational in March 2010, and the UPF is currently entering its final design phase. The designs of both facilities are for meeting anticipated security challenges for the 21st century. For plutonium research, development, and manufacturing, the Chemistry and Metallurgy Research Replacement (CMRR) building at the Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico is now under construction. The first phase of the CMRR Project is the design and construction of a Radiological Laboratory/Utility/Office Building. The second phase consists of the design and construction of the Nuclear Facility (NF). The National Nuclear Security Administration (NNSA) selected these two sites as part of the national plan to consolidate nuclear materials, provide for nuclear deterrence, and nonproliferation mission requirements. This work examines these two projects independent approaches to design requirements, and objectives for safeguards, security, and safety (3S) systems as well as the subsequent construction of these modern processing facilities. Emphasis is on the use of Safeguards-by-Design (SBD

  13. The Greening of a Plutonium Facility through Personnel Safety, Operational Efficiency, and Infrastructure Improvements - 12108

    International Nuclear Information System (INIS)

    Chemical and metallurgical operations involving plutonium and other hazardous materials account for most activities performed at the Los Alamos National Laboratory's Plutonium Facility (TA-55). Engineered barriers provide the most effective protection from hazardous materials. These safety features serve to protect workers and provide defense in depth against the hazards associated with operations. Although not designed to specifically meet environmental requirements the safety-based design does meet or exceed the requirements of the environmental regulations enacted during and since its construction. TA-55's Waste Services Group supports this safety methodology by ensuring safe, efficient and compliant management of all radioactive and hazardous wastes generated at the TA-55. A key function of this group is the implementation of measures that lower the overall risk of radiological and hazardous material operations. Processes and procedures that reduce waste generation compared to current, prevalent processes or procedures used for the same purpose are identified. Some of these 'Best Practices' include implementation of a chemical control system, elimination of aerosol cans, reduction in hazardous waste, implementation of zero liquid discharge, and the re-cyclization of nitric acid. P2/WMin opportunities have been implemented in the areas of personnel and facility attributes, environmental compliance, energy conservation, and green focused infrastructure expansion with the overall objective of minimizing raw material and energy consumption and waste generation. This increases technical knowledge and augments operational safety. (authors)

  14. Los Alamos High-Brightness Accelerator FEL (HIBAF) facility

    International Nuclear Information System (INIS)

    This paper reports that the 10-μm Los Alamos free-electron laser (FEL) facility is being upgraded. The conventional electron gun and bunchers have been replaced with a much more compact 6-MeV photoinjector accelerator. By adding existing parts from previous experiments, the primary beam energy will be doubled to 40 MeV. With the existing 1-m wiggler (λw = 2.7 cm) and resonator, the facility can produce photons with wavelengths from 3 to 10 μm when lasing on the fundamental mode and produce photons in the visible spectrum with short-period wigglers or harmonic operation. After installation of a 150 degrees bend, a second wiggler will be added as an amplifier. The installation of laser transport tubes between the accelerator vault and an upstairs laboratory will provide experimenters with a radiation-free environment for experiments. At the time of writing (Jan. 1990), the injector plus one additional tank has been installed and tested with beam to an energy of 17 MeV

  15. In-line monitor of plutonium holdup in glovebox filters

    International Nuclear Information System (INIS)

    An in-line filter holdup monitoring system has been designed and installed in the Los Alamos Scientific Laboratory (LASL) Plutonium Processing Facility to detect plutonium buildup in a glovebox exhaust filter. The filter is located on top of a glovebox in which plutonium and uranium oxide and carbon are blended, milled, and prepared for making advanced fast breeder reactor (FBR) fuel

  16. An autoradiographical method using an imaging plate for the analyses of plutonium contamination in a plutonium handling facility

    International Nuclear Information System (INIS)

    An autoradiographical method using an imaging plate (IP) was developed to analyze plutonium contamination in a plutonium handling facility. The IPs were exposed to ten specimens having a single plutonium particle. Photostimulated luminescence (PSL) images of the specimens were taken using a laser scanning machine. One relatively large spot induced by α-radioactivity from plutonium was observed in each PSL image. The plutonium-induced spots were discriminated by a threshold derived from background and the size of the spot. A good relationship between the PSL intensities of the spots and α-radioactivities measured using a radiation counter was obtained by least-square fitting, taking the fading effect into consideration. This method was applied to workplace monitoring in an actual uranium-plutonium mixed oxide (MOX) fuel fabrication facility. Plutonium contaminations were analyzed in ten other specimens having more than two plutonium spots. The α-radioactivities of plutonium contamination were derived from the PSL images and their relative errors were evaluated from exposure time. (author)

  17. Los Alamos neutron science user facility - control system risk mitigation & updates

    Energy Technology Data Exchange (ETDEWEB)

    Pieck, Martin [Los Alamos National Laboratory

    2011-01-05

    LANSCE User Facility is seeing continuing support and investments. The investment will sustain reliable facility operations well into the next decade. As a result, the LANSCE User Facility will continue to be a premier Neutron Science Facility at the Los Alamos National Laboratory.

  18. The NHMFL Pulsed Field Facility at Los Alamos National Lab

    Science.gov (United States)

    Mielke, Chuck

    2014-03-01

    National user facilities provide scientists and industrial development companies with access to specialized experimental capabilities to enable development of materials and solve long standing technical problems. Magnetic fields have become an indispensable tool for researchers to better understand and manipulate ground states of electronic materials. As magnetic field intensities are increased the quantum nature of these materials become exponentially more likely to be observed and this is but one of the drivers to go further in high magnetic field generation. At the Los Alamos branch of the National High Magnetic Field Laboratory we have significant efforts in extremely high magnetic field generation and experimentation. In direct opposition with our efforts are the tremendous electro-mechanical forces exerted on our magnets and the electromagnetic interference that couples to the sample under study and the diagnostic equipment. Challenges in magnetic field generation and research will be presented. Various methods of pulsed high magnetic field generation and experimentation capabilities will be reviewed, including our recent ``World Record'' for the highest non-destructive magnetic field. NSF-DMR 1157490.

  19. Analysis of the zone approach for plutonium facilities

    International Nuclear Information System (INIS)

    In order to examine the effect of different inspection strategies on inspection effort, an analysis was carried out of the zone approach for the international safeguards verifications of a model nuclear fuel cycle. The fuel cycle includes the fabrication of mixed-oxide fresh fuel for nine light-water reactors and one experimental breeder reactor and the subsequent reprocessing of the spent fuel. There are thus two zones to be considered, a plutonium zone and an irradiated fuel zone. The zone approach entails many fewer verifications of nuclear material flows between different material balance areas (facilities) than the facility-oriented approach, and it requires an annual simultaneous physical inventory verification (PIV) and monthly simultaneous interim inventory verifications for timeliness at all the facilities. Therefore, the zone approach yields snapshots of the disposition of the nuclear materials at the time of the simultaneous inventory verifications, but less verified information than a facility-oriented approach encompassing frequent flow verification

  20. Demolition and removal of plutonium-contaminated facilities at Hanford

    International Nuclear Information System (INIS)

    The successful demolition and cleanup of a plutonium-contaminated facility at the U. S. Energy Research and Development Administration Hanford Plant in Washington State are described. Several new materials, along with special techniques and equipment, were utilized for the containment and control of plutonium contamination during the course of the demolition work. The use of light-capacity fiber-glassed plywood boxes for long-term (20 yr, min) storage of the contaminated materials in underground transuranic waste trenches has led to the development, design, and use of larger capacity, modular, fiber-glassed plywood boxes that are replacing standard carbon steel boxes at less than one-third the cost, and without the potential for early failure from normal soil or atmospheric corrosion

  1. Demolition and removal of plutonium-contaminated facilities at Hanford

    International Nuclear Information System (INIS)

    The successful demolition and cleanup of a plutonium-contaminated facility at the U. S. Energy Research and Development Administration Hanford Plant in Washington State are described. Several new materials, along with special techniques and equipment, were utilized for the containment and control of plutonium contamination during the course of the demolition work. The use of light-capacity fiberglassed plywood boxes for long-term (20-year, minimum) storage of the contaminated materials in underground transuranic waste trenches has led to the development, design and use of larger capacity modular fiberglassed plywood boxes that are replacing standard carbon steel boxes at less than one-third the cost, and without the potential for early failure from normal soil or atmospheric corrosion. (U.S.)

  2. Facility effluent monitoring plan for the plutonium uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  3. Facility effluent monitoring plan for the plutonium uranium extraction facility

    International Nuclear Information System (INIS)

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  4. A probabilistic risk assessment of the LLNL Plutonium Facility's evaluation basis fire operational accident. Revision 1

    International Nuclear Information System (INIS)

    The Lawrence Livermore National Laboratory (LLNL) Plutonium Facility conducts numerous programmatic activities involving plutonium to include device fabrication, development of improved and/or unique fabrication techniques, metallurgy research, and laser isotope separation. A Safety Analysis Report (SAR) for the building 332 Plutonium Facility was completed in July 1994 to address operational safety and acceptable risk to employees, the public, government property, and the environmental. This paper outlines the PRA analysis of the Evaluation Basis Fire (EBF) operational accident. The EBF postulates the worst-case programmatic impact event for the Plutonium Facility

  5. Continuous Material Balance Reconciliation for a Modern Plutonium Processing Facility

    International Nuclear Information System (INIS)

    This paper describes a safeguards approach that can be deployed at any modern plutonium processing facility to increase the level of safeguards assurance and significantly reduce the impact of safeguards on process operations. One of the most perplexing problems facing the designers of plutonium processing facilities is the constraint placed upon the limit of error of the inventory difference (LEID). The current DOE manual constrains the LEID for Category I and II material balance areas to 2 per cent of active inventory up to a Category II quantity of the material being processed. For 239Pu a Category II quantity is two kilograms. Due to the large material throughput anticipated for some of the modern plutonium facilities, the required LEID cannot be achieved reliably during a nominal two month inventory period, even by using state-of-the-science non-destructive assay (NDA) methods. The most cost-effective and least disruptive solution appears to be increasing the frequency of material balance closure and thus reducing the throughput being measured during each inventory period. Current inventory accounting practices and systems can already provide the book inventory values at any point in time. However, closing the material balance with measured values has typically required the process to be cleaned out, and in-process materials packaged and measured. This process requires one to two weeks of facility down time every two months for each inventory, thus significantly reducing productivity. To provide a solution to this problem, a non-traditional approach is proposed that will include using in-line instruments to provide measurement of the process materials on a near real-time basis. A new software component will be developed that will operate with the standard LANMAS application to provide the running material balance reconciliation, including the calculation of the inventory difference and variance propagation. The combined measurement system and software

  6. Plutonium Reclamation Facility incident response project progress report

    International Nuclear Information System (INIS)

    This report provides status of Hanford activities in response to process deficiencies highlighted during and in response to the May 14, 1997, explosion at the Plutonium Reclamation Facility. This report provides specific response to the August 4, 1997, memorandum from the Secretary which requested a progress report, in 120 days, on activities associated with reassessing the known and evaluating new vulnerabilities (chemical and radiological) at facilities that have been shut down, are in standby, are being deactivated or have otherwise changed their conventional mode of operation in the last several years. In addition, this report is intended to provide status on emergency response corrective activities as requested in the memorandum from the Secretary on August 28, 1997. Status is also included for actions requested in the second August 28, 1997, memorandum from the Secretary, regarding timely notification of emergencies

  7. Bidentate organophosphorus extraction of americium and plutonium from Hanford Plutonium Reclamation Facility waste

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W.W.

    1974-09-01

    Applicability of bidentate organiphosphorus reagents to recovery of americium and plutonium from Hanford's Plutonium Reclamation Facility acid (approx. 2M HNO/sub 3/) waste stream (CAW solution) was studied. A solvent extraction process which employs a 30% DHDECMP (dihexyl-N, N-diethylcarbamylmethylene phosphonate)-CCl/sub 4/ extractant was devised and successfully tested in mixer-settler runs with actual CAW solution. Substitution of DHDECMP for DBBP eliminates the need to perform careful neutralization of unbuffered CAW soluton and increases overall americium recovery from the present 60 to 80% level to greater than or equal to 90%. Disadvantages to such substitution include the high cost (approx. $50/liter) of DHDECMP and the need to purify it (by acid (6M HCl) hydrolysis and alkaline washing) from small amounts of an unidentified impurity which prevents stripping of americium with dilute HNO/sub 3/. Distribution data obtained in this study confirm Siddall's earlier contention that bidentate organophosphorus regents can be used to remove actinides from concentrated high-level Purex process acid waste; a conceptual flowsheet for such an extraction process is given.

  8. Progress at LAMPF [Los Alamos Meson Physics Facility], January-December 1987

    International Nuclear Information System (INIS)

    This report is the annual progress report of MP Division of the Los Alamos National Laboratory. Included are brief reports on research done at LAMPF by researchers from other institutions and other Los Alamos Divisions. These reports included the following topics: Nuclear and particle physics; Atomic and molecular physics; Materials science; Radiation-effects studies; Biomedical research and instrumentation; Nuclear chemistry; Radioisotope production and accelerator facilities development and operation

  9. The Los Alamos National Laboratory Weapons Neutron Research Facility

    International Nuclear Information System (INIS)

    The Physical makeup is presented of the Weapons Neutron Research (WNR) facilitiy at the Los Alamos National Laboratory with emphasis on the critical components. The operating experience is discussed including failure modes and their subsequent resolution. The present target-moderator configuration is given and plans for development and improvements. (orig.)

  10. OPEN AIR DEMOLITION OF FACILITIES HIGHLY CONTAMINATED WITH PLUTONIUM

    International Nuclear Information System (INIS)

    The demolition of highly contaminated plutonium buildings usually is a long and expensive process that involves decontaminating the building to near free- release standards and then using conventional methods to remove the structure. It doesn't, however, have to be that way. Fluor has torn down buildings highly contaminated with plutonium without excessive decontamination. By removing the select source term and fixing the remaining contamination on the walls, ceilings, floors, and equipment surfaces; open-air demolition is not only feasible, but it can be done cheaper, better (safer), and faster. Open-air demolition techniques were used to demolish two highly contaminated buildings to slab-on-grade. These facilities on the Department of Energy's Hanford Site were located in, or very near, compounds of operating nuclear facilities that housed hundreds of people working on a daily basis. To keep the facilities operating and the personnel safe, the projects had to be creative in demolishing the structures. Several key techniques were used to control contamination and keep it within the confines of the demolition area: spraying fixatives before demolition; applying fixative and misting with a fine spray of water as the buildings were being taken down; and demolishing the buildings in a controlled and methodical manner. In addition, detailed air-dispersion modeling was done to establish necessary building and meteorological conditions and to confirm the adequacy of the proposed methods. Both demolition projects were accomplished without any spread of contamination outside the modest buffer areas established for contamination control. Furthermore, personnel exposure to radiological and physical hazards was significantly reduced by using heavy equipment rather than ''hands on'' techniques

  11. OPEN AIR DEMOLITION OF FACILITIES HIGHLY CONTAMINATED WITH PLUTONIUM

    Energy Technology Data Exchange (ETDEWEB)

    LLOYD, E.R.

    2007-05-31

    The demolition of highly contaminated plutonium buildings usually is a long and expensive process that involves decontaminating the building to near free- release standards and then using conventional methods to remove the structure. It doesn't, however, have to be that way. Fluor has torn down buildings highly contaminated with plutonium without excessive decontamination. By removing the select source term and fixing the remaining contamination on the walls, ceilings, floors, and equipment surfaces; open-air demolition is not only feasible, but it can be done cheaper, better (safer), and faster. Open-air demolition techniques were used to demolish two highly contaminated buildings to slab-on-grade. These facilities on the Department of Energy's Hanford Site were located in, or very near, compounds of operating nuclear facilities that housed hundreds of people working on a daily basis. To keep the facilities operating and the personnel safe, the projects had to be creative in demolishing the structures. Several key techniques were used to control contamination and keep it within the confines of the demolition area: spraying fixatives before demolition; applying fixative and misting with a fine spray of water as the buildings were being taken down; and demolishing the buildings in a controlled and methodical manner. In addition, detailed air-dispersion modeling was done to establish necessary building and meteorological conditions and to confirm the adequacy of the proposed methods. Both demolition projects were accomplished without any spread of contamination outside the modest buffer areas established for contamination control. Furthermore, personnel exposure to radiological and physical hazards was significantly reduced by using heavy equipment rather than ''hands on'' techniques.

  12. Weapons Engineering Tritium Facility, Building 205, Technical Area 16: Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    The Weapons Engineering Tritium Facility (WETF) was planned by the US Department of Energy (DOE) to retain at Los Alamos National Laboratory the capability of repackaging small quantities of tritium to exacting specifications. Small quantities of tritium are required for energy research and development activities and for research on nuclear weapons test devices carried out as part of the laboratory mission. The WETF is an improved design proposed to replace an aging Los Alamos facility where tritium has been repackaged for many years. This Environmental Assessment evaluates the environmental consequences to be expected from operating the new facility, for which construction was completed in 1984, compared with those from continuing to operate the old facility. The document was prepared for compliance with NEPA. In operation, the WETF will incorporate state-of-the-art systems for containing tritium in glove boxes and capturing any tritium released into the glove box exhaust system and the laboratory atmosphere. Liquid discharges from the WETF would contain less than 1% of the tritium found in effluents from the present facility. Effluent streams would be surface discharges and would not enter the aquifer from which municipal water supplies are drawn. The quantity of solid radioactive waste generated at the WETF would be approximately the same as that generated at the present facility. The risk to the public from normal tritium-packaging operations would be significantly less from the WETF than from the present facility. The proposed action will reduce the adverse environmental impacts caused by tritium repackaging by substantially reducing the amount of tritium that escapes to the environment. 35 refs., 3 figs., 21 tabs

  13. Health physics manual of good practices for plutonium facilities. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Brackenbush, L.W.; Heid, K.R.; Herrington, W.N.; Kenoyer, J.L.; Munson, L.F.; Munson, L.H.; Selby, J.M.; Soldat, K.L.; Stoetzel, G.A.; Traub, R.J.

    1988-05-01

    This manual consists of six sections: Properties of Plutonium, Siting of Plutonium Facilities, Facility Design, Radiation Protection, Emergency Preparedness, and Decontamination and Decommissioning. While not the final authority, the manual is an assemblage of information, rules of thumb, regulations, and good practices to assist those who are intimately involved in plutonium operations. An in-depth understanding of the nuclear, physical, chemical, and biological properties of plutonium is important in establishing a viable radiation protection and control program at a plutonium facility. These properties of plutonium provide the basis and perspective necessary for appreciating the quality of control needed in handling and processing the material. Guidance in selecting the location of a new plutonium facility may not be directly useful to most readers. However, it provides a perspective for the development and implementation of the environmental surveillance program and the in-plant controls required to ensure that the facility is and remains a good neighbor. The criteria, guidance, and good practices for the design of a plutonium facility are also applicable to the operation and modification of existing facilities. The design activity provides many opportunities for implementation of features to promote more effective protection and control. The application of ''as low as reasonably achievable'' (ALARA) principles and optimization analyses are generally most cost-effective during the design phase. 335 refs., 8 figs., 20 tabs.

  14. Frequency Estimates for Aircraft Crashes into Nuclear Facilities at Los Alamos National Laboratory (LANL)

    Energy Technology Data Exchange (ETDEWEB)

    George D. Heindel

    1998-09-01

    In October 1996, the Department of Energy (DOE) issued a new standard for evaluating accidental aircraft crashes into hazardous facilities. This document uses the method prescribed in the new standard to evaluate the likelihood of this type of accident occurring at Los Alamos National Laboratory's nuclear facilities.

  15. Design of an error-free nondestructive plutonium assay facility

    International Nuclear Information System (INIS)

    An automated, at-line nondestructive assay (NDA) laboratory is installed in facilities recently constructed at the Savannah River Plant. The laboratory will enhance nuclear materials accounting in new plutonium scrap and waste recovery facilities. The advantages of at-line NDA operations will not be realized if results are clouded by errors in analytical procedures, sample identification, record keeping, or techniques for extracting samples from process streams. Minimization of such errors has been a primary design objective for the new facility. Concepts for achieving that objective include mechanizing the administrative tasks of scheduling activities in the laboratory, identifying samples, recording and storing assay data, and transmitting results information to process control and materials accounting functions. These concepts have been implemented in an analytical computer system that is programmed to avoid the obvious sources of error encountered in laboratory operations. The laboratory computer exchanges information with process control and materials accounting computers, transmitting results information and obtaining process data and accounting information as required to guide process operations and maintain current records of materials flow through the new facility

  16. Improving aircraft accident forecasting for an integrated plutonium storage facility

    International Nuclear Information System (INIS)

    Aircraft accidents pose a quantifiable threat to facilities used to store and process surplus weapon-grade plutonium. The Department of Energy (DOE) recently published its first aircraft accident analysis guidelines: Accident Analysis for Aircraft Crash into Hazardous Facilities. This document establishes a hierarchy of procedures for estimating the small annual frequency for aircraft accidents that impact Pantex facilities and the even smaller frequency of hazardous material released to the environment. The standard establishes a screening threshold of 10-6 impacts per year; if the initial estimate of impact frequency for a facility is below this level, no further analysis is required. The Pantex Site-Wide Environmental Impact Statement (SWEIS) calculates the aircraft impact frequency to be above this screening level. The DOE Standard encourages more detailed analyses in such cases. This report presents three refinements, namely, removing retired small military aircraft from the accident rate database, correcting the conversion factor from military accident rates (accidents per 100,000 hours) to the rates used in the DOE model (accidents per flight phase), and adjusting the conditional probability of impact for general aviation to more accurately reflect pilot training and local conditions. This report documents a halving of the predicted frequency of an aircraft impact at Pantex and points toward further reductions

  17. Los Alamos racquetball contamination incident

    International Nuclear Information System (INIS)

    Several employees of the Los Alamos Plutonium Facility were found to have low levels of radioactivity on their hands and clothing when they arrived for work one morning. The initial concern was that the stringent contamination or material controls at the facility had failed, and that one or more of the employees had either accidentally or intentionally removed plutonium from the Laboratory premises. Fortunately, however, an investigation revealed that the source of the radioactivity was radon daughters electrostatically collected upon the surface of the racquetball and transferred by physical contact to the employees during an early morning racquetball game. This paper describes the events leading to the discovery of this phenomenon. 1 figure

  18. Decommissioning of surplus facilities at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Decommissioning Buildings 3 and 4 South at Technical Area 21, Los Alamos National Laboratory, involves the decontamination, dismantlement, and demolition of two enriched-uranium processing buildings containing process equipment and ductwork holdup. The Laboratory has adopted two successful management strategies to implement this project: Rather than characterize an entire site, upfront, investigators use the ''observational approach,'' in which they collect only enough data to begin decommissioning activities and then determine appropriate procedures for further characterization as the work progresses. Project leaders augment work packages with task hazard analyses to fully define specific tasks and inform workers of hazards; all daily work activities are governed by specific work procedures and hazard analyses

  19. Benchmark assemblies of the Los Alamos Critical Assemblies Facility

    International Nuclear Information System (INIS)

    Several critical assemblies of precisely known materials composition and easily calculated and reproducible geometries have been constructed at the Los Alamos National Laboratory. Some of these machines, notably Jezebel, Flattop, Big Ten, and Godiva, have been used as benchmark assemblies for the comparison of the results of experimental measurements and computation of certain nuclear reaction parameters. These experiments are used to validate both the input nuclear data and the computational methods. The machines and the applications of these machines for integral nuclear data checks are described

  20. Drawing from experience of safeguarding French plutonium-handling facilities

    International Nuclear Information System (INIS)

    While integrated safeguards is how to strengthen safeguards with a maximum efficiency, the current safeguarding of COGEMA plutonium-handling facilities (La Hague reprocessing plant; Cadarache and MELOX MOX fuel fabrication plants) has already been designed in this very same objective. The first main feed-back is the utmost importance of inspectors which shall be knowledgeable of the plants and well informed on the specificity of those type of plants; this is clearly related to their continuous or nearly continuous presence on the site, allowing an intimate understanding of the facility, and a quick response to would-be anomalies. The second main feedback is the value of the enhanced transparency of the operator, which agrees to supply a lot of daily information on material management and to make accessible to the inspectors some on-line data. Those data shall be treated automatically to help the inspector; but the inspector must then make a judgement and a detailed analysis. Combining these two facts with the 'unannounced factor' in performing controls shall allow to reduce some costly measures such as sample taking or sample analyses. (author)

  1. Soil plutonium and cesium in stream channels and banks of Los Alamos liquid effluent-receiving areas

    International Nuclear Information System (INIS)

    Stream channel sediments and adjacent bank soils found in three intermittent streams used for treated liquid effluent disposal at Los Alamos, New Mexico were sampled to determine the distribution of 238Pu, sup(239,240)Pu and 137Cs. Radionuclide concentrations and inventories were determined as functions of distance downstream from the waste outfall and from the center of the stream channel, soil sampling depth, stream channel-bank physiography, and the waste use history of each disposal area. Radionuclide concentrations in channel sediments were inversely related to distances up to 10 km downstream from the outfalls. For sites receiving appreciable waste effluent additions, contaminant concentrations in bank soils decreased with perpendicular distances greater than 0.38 m from the stream channel, and with stream bank sampling depths greater than 20-40 cm. Concentrations and total inventories of radionuclides in stream bank soils generally decreased as stream bank height increased. Inventory estimates of radionuclides in channel sediments exhibited coefficients of variation that ranged 0.41-2.6, reflecting the large variation in radionuclide concentrations at each site. Several interesting temporal relationships of these radionuclides in intermittent streams were gleaned from the varying waste use histories of the three effluent-receiving areas. Eleven years after liquid wastes were added to one canyon, the major radionuclide inventories were found in the stream bank soils, unlike most of the other currently-used receiving areas. A period of time greater than 6 yr seems to be required before the plutonium in liquid wastes currently added to the canyon is approximately equilibrated with the plutonium in the bank soils. These observations are discussed relative to waste management practices in these southwestern intermittent streams. (author)

  2. Plutonium

    International Nuclear Information System (INIS)

    This report contains with regard to 'plutonium' statements on chemistry, occurrence and reactions in the environment, handling procedures in the nuclear fuel cycle, radiation protection methods, biokinetics, toxicology and medical treatment to make available reliable data for the public discussion on plutonium especially its use in nuclear power plants and its radiological assessment. (orig.)

  3. Safety analysis of the Los Alamos critical experiments facility: burst operation of Skua

    International Nuclear Information System (INIS)

    A detailed consideration of the Skua burst assembly is presented, thereby supplementing the facility safety analysis report covering the operation of other critical assemblies at Los Alamos. As with these assemblies the small fission-product inventory, ambient pressure, and moderate temperatures in Skua are amenable to straightforward measures to ensure the protection of the public

  4. Safety analysis of the Los Alamos critical experiments facility: burst operation of Skua

    International Nuclear Information System (INIS)

    Detailed consideration of the Skua burst assembly is provided, thereby supplementing the facility Safety Analysis Report covering the operation of other critical assemblies at the Los Alamos Scientific Laboratory. As with these assemblies the small fission-product inventory, ambient pressure, and moderate temperatures in Skua are amenable to straightforward measures to ensure the protection of the public

  5. Plutonium in the aquatic environment around the Rocky Flats facility

    International Nuclear Information System (INIS)

    The Rocky Flats Plant of the United States Energy Research and Development Administration has been fabricating and chemically recovering plutonium for over 20 years. During that time, small amounts of plutonium have been released with liquid process and sanitary waste discharges. The liquid waste flows through a series of holding ponds from which it is discharged into a creek that is part of a municipal drinking water supply. The water flows for about 1.5 km between the last holding pond and the municipal drinking water reservoir. In addition, liquid wastes containing high levels of chemical contaminants and plutonium concentrations less than allowable drinking water standards have been discharged to large evaporation ponds. The fate of the plutonium in both the surface and subsurface aquatic environment has been extensively monitored and studied. It has been found that plutonium does not move very far or very rapidly through subsurface water. The majority of the plutonium released through surface water has been contained in the sediments of the plant holding ponds. Small amounts of plutonium have also been found in the sediments of the draining creek and in the sediments of the receiving reservoir. Higher than normal amounts of plutonium were released from the waste treatment plants during times when suspended solids were high. Various biological species have been examined and plutonium concentration factors determined. Considerably less than 1% of the 210 mCi of plutonium released has been detected in biological systems including man. After more than 20 years of large scale operations, no health or environmental hazard has been identified due to the release of small amounts of plutonium. (author)

  6. Decontamination and demolition of a former plutonium processing facility's process exhaust system, firescreen, and filter plenum buildings

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory (LANL) Decommissioning Project has decontaminated, demolished, and decommissioned a process exhaust system, two filter plenum buildings, and a firescreen plenum structure at Technical Area 21 (TA-2 1). The project began in August 1995 and was completed in January 1996. These high-efficiency particulate air (HEPA) filter plenums and associated ventilation ductwork provided process exhaust to fume hoods and glove boxes in TA-21 Buildings 2 through 5 when these buildings were active plutonium and uranium processing and research facilities. This paper summarizes the history of TA-21 plutonium and uranium processing and research activities and provides a detailed discussion of integrated work process controls, characterize-as-you-go methodology, unique engineering controls, decontamination techniques, demolition methodology, waste minimization, and volume reduction. Also presented in detail are the challenges facing the LANL Decommissioning Project to safely and economically decontaminate and demolish surplus facilities and the unique solutions to tough problems. This paper also shows the effectiveness of the integrated work package concept to control work through all phases

  7. Plutonium production story at the Hanford site: processes and facilities history

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S., Westinghouse Hanford

    1996-06-20

    This document tells the history of the actual plutonium production process at the Hanford Site. It contains five major sections: Fuel Fabrication Processes, Irradiation of Nuclear Fuel, Spent Fuel Handling, Radiochemical Reprocessing of Irradiated Fuel, and Plutonium Finishing Operations. Within each section the story of the earliest operations is told, along with changes over time until the end of operations. Chemical and physical processes are described, along with the facilities where these processes were carried out. This document is a processes and facilities history. It does not deal with the waste products of plutonium production.

  8. Hazardous waste treatment facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    To centralize treatment, storage, and staging areas for hazardous wastes, Los Alamos National Laboratory has designed a 12,000-ft2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks, bulking small organic waste volumes, processing scintillation vials, treating reactives such as lithium hydride and pyrophoric uranium, treating contaminated solids such as barium sand, and treating plating wastes. The treated wastes will then be appropriately disposed of. This report describes the integral features of the hazardous waste treatment facility

  9. Safety analysis of the Los Alamos critical experiments facility

    International Nuclear Information System (INIS)

    The safety of Pajarito Site critical assembly operations depends upon protection built into the facility, upon knowledgeable personnel, and upon good practice as defined by operating procedures and experimental plans. Distance, supplemented by shielding in some cases, would protect personnel against an extreme accident generating 1019 fissions. During the facility's 28-year history, the direct cost of criticality accidents has translated to a risk of less than $200 per year

  10. Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Miner, William N

    1964-01-01

    This pamphlet discusses plutonium from discovery to its production, separation, properties, fabrication, handling, and uses, including use as a reactor fuel and use in isotope power generators and neutron sources.

  11. Los Alamos contribution to target diagnostics on the National Ignition Facility

    International Nuclear Information System (INIS)

    The National Ignition Facility (NIF) will have a large suite of sophisticated target diagnostics. This will allow thoroughly diagnosed experiments to be performed both at the ignition and pre-ignition levels. As part of the national effort Los Alamos National Laboratory will design, construct and implement a number of diagnostics for the NIF. This paper describes Los Alamos contributions to the ''phase I diagnostics.'' Phase I represents the most fundamental and basic measurement systems that will form the core for most work on the NIF. The Los Alamos effort falls into four categories: moderate to hard X-ray (time resolved imaging neutron spectroscopy- primarily with neutron time of flight devices; burn diagnostics utilizing gamma ray measurements; testing measurement concepts on the TRIDENT laser system at Los Alamos. Because of the high blast, debris and radiation environment, the design of high resolution X-ray imaging systems present significant challenges. Systems with close target proximity require special protection and methods for such protection is described. The system design specifications based on expected target performance parameters is also described. Diagnosis of nuclear yield and burn will be crucial to the NIF operation. Nuclear reaction diagnosis utilizing both neutron and gamma ray detection is discussed. The Los Alamos TRIDENT laser system will be used extensively for the development of new measurement concepts and diagnostic instrumentation. Some its potential roles in the development of diagnostics for NIF are given

  12. The National High Magnetic Field Laboratory Pulsed-Field Facility at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory (LANL) is the home institution of the National High Magnetic Field Laboratory Pulsed-Field Facility (NHMFL-PFF). NHMFL-PFF is the only pulsed-field facility in the US (among a few worldwide) to host qualified users whilst running a strong in-house science program on high magnetic field research. State-of-the-art experimental capabilities and pulsed magnets are used to examine the frontiers of condensed matter physics at extremes of high magnetic field, low temperature and high pressure. This paper describes current facilities and science and future developments at NHMFL-PFF

  13. Decontamination of Battelle-Columbus' Plutonium Facility. Final report

    International Nuclear Information System (INIS)

    The Plutonium Laboratory, owned and operated by Battelle Memorial Institute's Columbus Division, was located in Battelle's Nuclear Sciences area near West Jefferson, Ohio, approximately 17 miles west of Columbus, Ohio. Originally built in 1960 for plutonium research and processing, the Plutonium Laboratory was enlarged in 1964 and again in 1967. With the termination of the Advanced Fuel Program in March, 1977, the decision was made to decommission the Plutonium Laboratory and to decontaminate the building for unrestricted use. Decontamination procedures began in January, 1978. All items which had come into contact with radioactivity from the plutonium operations were cleaned or disposed of through prescribed channels, maintaining procedures to ensure that D and D operations would pose no risk to the public, the environment, or the workers. The entire program was conducted under the cognizance of DOE's Chicago Operations Office. The building which housed the Plutonium Laboratory has now been decontaminated to levels allowing it to house ordinary laboratory and office operations. A ''Finding of No Significant Impact'' (FNSI) was issued in May, 1980

  14. Technical report for generic site add-on facility for plutonium polishing

    International Nuclear Information System (INIS)

    The purpose of this report is to provide environmental data and reference process information associated with incorporating plutonium polishing steps (dissolution, impurity removal, and conversion to oxide powder) into the genetic-site Mixed-Oxide Fuel Fabrication Facility (MOXFF). The incorporation of the plutonium polishing steps will enable the removal of undesirable impurities, such as gallium and americium, known to be associated with the plutonium. Moreover, unanticipated impurities can be removed, including those that may be contained in (1) poorly characterized feed materials, (2) corrosion products added from processing equipment, and (3) miscellaneous materials contained in scrap recycle streams. These impurities will be removed to the extent necessary to meet plutonium product purity specifications for MOX fuels. Incorporation of the plutonium polishing steps will mean that the Pit Disassembly and Conversion Facility (PDCF) will need to produce a plutonium product that can be dissolved at the MOXFF in nitric acid at a suitable rate (sufficient to meet overall production requirements) with the minimal usage of hydrofluoric acid, and its complexing agent, aluminum nitrate. This function will require that if the PDCF product is plutonium oxide powder, that powder must be produced, stored, and shipped without exceeding a temperature of 600 C

  15. Glovebox dismantling activities and decommissioning plan for plutonium fuel fabrication facility

    International Nuclear Information System (INIS)

    The gloveboxes and process equipment used at plutonium fuel handling facilities have had to be replaced due to deterioration or the need to make changes. So far, their removal and replacement has taken place more than 30 times in Plutonium Fuel Center, Japan Nuclear Cycle Development Institute (JNC). In most recent dismantling activities, we removed four giant gloveboxes (total size, 110 cubic meters) which possessed equipment to recover plutonium from mixed oxide (MOX) fuel scraps. We have implemented a number of procedural improvements in dismantling activities and collected various kinds of data, including type and amount of primary and secondary waste from dismantling, relation between waste volume and work force, etc. Plutonium Fuel Fabricating Facility (PFFF) is one of the three plutonium fuel handling facilities in Plutonium Fuel Center, JNC. Its final mission to produce MOX fuels for the advanced thermal reactor 'Fugen' Nuclear Power Station was successfully finished in 2002. Then, we started preparatory activities to draw up a Deactivation and Decommissioning (DD) plan for this facility and to construct a database with the experimental data of glovebox dismantling activities acquired in the past thirty years. The DD schedule for this facility can be broken down into three phases. Phase 1 (to 2010): Stabilization of all the special nuclear materials in the facility and remove them from the facility. Establish new and effective decontamination and volume reduction technologies in order to improve existing methods. Phase 2 (2010-2015): Applying the above-mentioned technologies to some of the glovebox dismantling activities and confirm their adaptability for the project. Draw up a detailed DD plan which meets to various regulations. Phase 3 (2015-2020): Dismantling of all the remaining gloveboxes in the facility and promote research and development of DD technologies for future projects. Decontamination of inner surfaces of the building in order to reuse the

  16. Los Alamos Meson Physics Facility high-resolution-spectrometer dipole magnets: a summary report

    International Nuclear Information System (INIS)

    This report explains the design, fabrication, measurement, optimization, and installation of two 122 metric ton electromagnets for the High Resolution Proton Spectrometer at the Los Alamos Meson Physics Facility. These two magnets are the principal components of the proton spectrometer, which has an energy resolution of less than or equal to 10-4 FWHM. Many technical problems occurred during fabrication, measurement, and optimization, and the majority have been successfully solved. We hope that this report will help others planning similar projects

  17. Automatic beam position control at Los Alamos Spallation Radiation Effects Facility (LASREF)

    International Nuclear Information System (INIS)

    Historically the Los Alamos Spallation Radiation Effects Facility (LASREF) has used manual methods to control the position of the 800 kW, 800 MeV proton beam on targets. New experiments, however, require more stringent position control more frequently than can be done manually for long periods of time. Data from an existing harp is used to automatically adjust steering magnets to maintain beam position to required tolerances

  18. Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL's current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency's (EPA's) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL's existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility

  19. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department's plutonium storage. Volume II, part 3: Los Alamos National Laboratory working group assessment team report

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory (LANL) was established in 1943 with its sole mission to develop a fission bomb. Since that time, the mission of the Laboratory has expanded to include not only the primary one of nuclear weapon stockpile stewardship, but also one that supports energy, biomedical, environmental, and physical research. As part of the Laboratory's primary and diverse missions, many forms of plutonium materials are used and stored. Over the years of production and use of plutonium at Department of Energy (DOE) sites, some events have occurred that were unexpected and that have resulted in environmental, safety, and/or health concerns. Some of these events have led to improvements that will preclude these concerns from arising again. However, the end of the cold war and the expansion of the Laboratory mission have introduced the possibility of new vulnerabilities

  20. Disposition of PUREX facility tanks D5 and E6 uranium and plutonium solutions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Harty, D.P.

    1993-12-01

    Approximately 9 kilograms of plutonium and 5 metric tons of uranium in a 1 molar nitric acid solution are being stored in two PUREX facility vessels, tanks D5 and E6. The plutonium was accumulated during cleanup activities of the plutonium product area of the PUREX facility. Personnel at PUREX recently completed a formal presentation to the Surplus Materials Peer Panel (SMPP) regarding disposition of the material currently in these tanks. The peer panel is a group of complex-wide experts who have been chartered by EM-64 (Office of Site and Facility Transfer) to provide a third party independent review of disposition decisions. The information presented to the peer panel is provided in the first section of this report. The panel was generally receptive to the information provided at that time and the recommendations which were identified.

  1. Disposition of PUREX facility tanks D5 and E6 uranium and plutonium solutions

    International Nuclear Information System (INIS)

    Approximately 9 kilograms of plutonium and 5 metric tons of uranium in a 1 molar nitric acid solution are being stored in two PUREX facility vessels, tanks D5 and E6. The plutonium was accumulated during cleanup activities of the plutonium product area of the PUREX facility. Personnel at PUREX recently completed a formal presentation to the Surplus Materials Peer Panel (SMPP) regarding disposition of the material currently in these tanks. The peer panel is a group of complex-wide experts who have been chartered by EM-64 (Office of Site and Facility Transfer) to provide a third party independent review of disposition decisions. The information presented to the peer panel is provided in the first section of this report. The panel was generally receptive to the information provided at that time and the recommendations which were identified

  2. A proposal for a Los Alamos international facility for transmutations (LIFT)

    International Nuclear Information System (INIS)

    The major groups engaged in transmutation research are converging towards a common objective and similar technology. It is now possible to envision an international program of research aimed at the destruction of reactor-generated (and other) nuclear waste using a series of multipurpose experimental facilities in the near future. Los Alamos National Laboratory, as the home of the highest power LINAC and a very active transmutation technology project, is the ideal host for the first of such facilities. The next step in the international program (a facility 10 times more powerful, for engineering-scale demonstrations) could be built in Europe, where there is substantial interest in the construction of such a device in the framework of international cooperation. A series of experiments at Las Alamos could explore the key transmutation technologies. Liquid lead loops, a liquid lead spallation target, and a large size liquid lead facility with provision for irradiation, cooling and diagnostics of several types of 'transmutation assemblies', where different transmutation concepts will be tested in different media and environments, from transmutation of fission products to destruction by fission of higher actinides, to other waste management applications. The engineering-scale facility, which will follow the initial testing phase, will extend the best concepts to full scale implementation

  3. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wike, L.D.

    2000-08-17

    A site selection study was conducted to evaluate locations for the proposed Surplus Plutonium Disposition Facilities. Facilities to be located include the Mixed Oxide (MOX) Fuel Fabrication Facility, the Pit Disassembly and Conversion Facility (PDCF), and the Plutonium Immobilization Project (PIP) facility. Objectives of the study include: (1) Confirm that the Department of Energy (DOE) selected locations for the MOX and PDCF were suitable based on selected siting criteria, (2) Recommend a site in the vicinity of F Area that is suitable for the PIP, and (3) Identify alternative suitable sites for one or more of these facilities in the event that further geotechnical characterization or other considerations result in disqualification of a currently proposed site.

  4. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    A site selection study was conducted to evaluate locations for the proposed Surplus Plutonium Disposition Facilities. Facilities to be located include the Mixed Oxide (MOX) Fuel Fabrication Facility, the Pit Disassembly and Conversion Facility (PDCF), and the Plutonium Immobilization Project (PIP) facility. Objectives of the study include: (1) Confirm that the Department of Energy (DOE) selected locations for the MOX and PDCF were suitable based on selected siting criteria, (2) Recommend a site in the vicinity of F Area that is suitable for the PIP, and (3) Identify alternative suitable sites for one or more of these facilities in the event that further geotechnical characterization or other considerations result in disqualification of a currently proposed site

  5. Mortality among plutonium and other workers at a nuclear facility

    International Nuclear Information System (INIS)

    Mortality among plutonium and other nuclear workers has been investigated to assess the effects of exposures to low levels of internal and external radiation. Standarized mortality ratios (SMRs) for white male workers employed at least two years from 1951 through 1977 were significantly lower than expected for all causes, all cancers, cancers of the respiratory system, and lung cancer. Benign neoplasms, all of which were intracranial tumors, were significantly elevated. No bone cancers were discovered and other radiogenic cancers did not differ significantly from expectation. Duration of employment and latency did not affect these results. SMRs for a subcohort of plutonium exposed workers were significantly low for all causes of deaths and all cancers. Estimates of relative risk for workers exposed to 2 or more nCi compared to unexposed workers were not significantly higher or lower than unity. These findings do not support the hypothesis of increased mortality among plutonium and other nuclear workers. The excess for benign and unspecified intracranial tumors is not consistent with previous studies on radiation induced brain tumors in terms of latency and exposure levels

  6. Guide of good practices for occupational radiological protection in plutonium facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This Technical Standard (TS) does not contain any new requirements. Its purpose is to provide guides to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. the technical rationale is given to allow US Department of Energy (DOE) health physicists to adapt the recommendations to similar situations throughout the DOE complex. Generally, DOE contractor health physicists will be responsible to implement radiation protection activities at DOE facilities and DOE health physicists will be responsible for oversight of those activities. This guidance is meant to be useful for both efforts. This TS replaces PNL-6534, Health Physics Manual of Good Practices for Plutonium Facilities, by providing more complete and current information and by emphasizing the situations that are typical of DOE`s current plutonium operations; safe storage, decontamination, and decommissioning (environmental restoration); and weapons disassembly.

  7. Final environmental assessment: TRU waste drum staging building, Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Much of the US Department of Energy's (DOE's) research on plutonium metallurgy and plutonium processing is performed at Los Alamos National Laboratory (LANL), in Los Alamos, New Mexico. LANL's main facility for plutonium research is the Plutonium Facility, also referred to as Technical Area 55 (TA-55). The main laboratory building for plutonium work within the Plutonium Facility (TA-55) is the Plutonium Facility Building 4, or PF-4. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if DOE were to stage sealed containers of transuranic (TRU) and TRU mixed waste in a support building at the Plutonium Facility (TA-55) that is adjacent to PF-4. At present, the waste containers are staged in the basement of PF-4. The proposed project is to convert an existing support structure (Building 185), a prefabricated metal building on a concrete foundation, and operate it as a temporary staging facility for sealed containers of solid TRU and TRU mixed waste. The TRU and TRU mixed wastes would be contained in sealed 55-gallon drums and standard waste boxes as they await approval to be transported to TA-54. The containers would then be transported to a longer term TRU waste storage area at TA-54. The TRU wastes are generated from plutonium operations carried out in PF-4. The drum staging building would also be used to store and prepare for use new, empty TRU waste containers

  8. Sampling and Analysis Plan for the 233-S Plutonium Concentration Facility

    International Nuclear Information System (INIS)

    This Sampling and Analysis Plan (SAP) provides the information and instructions to be used for sampling and analysis activities in the 233-S Plutonium Concentration Facility. The information and instructions herein are separated into three parts and address the Data Quality Objective (DQO) Summary Report, Quality Assurance Project Plan (QAP), and SAP

  9. Incineration technology of plutonium contaminated solid waste generated from MOX fuel fabrication facilities

    International Nuclear Information System (INIS)

    Plutonium-contaminated solid wastes have been generated during MOX fuel fabrication in the Japan Atomic Energy Agency (JAEA). Chlorine contained solid wastes such as PVC bags and chloroprene rubber gloves have been steadily generated because MOX fuel fabrication equipments are installed in glove boxes. Incinerations of chlorinated wastes cause the problems such as corrosion of the equipments and dust load against the exhaust system. The JAEA had designed and manufactured a new type incineration system for chlorine contained wastes and combustible wastes based on past experience gained by the operation of the Plutonium contaminated Waste Treatment Facility (PWTF) to solve the problems. (author)

  10. Present status and future direction of plutonium process chemistry

    International Nuclear Information System (INIS)

    Large-scale plutonium recovery/processing facilities are currently operated at the US Department of Energy Hanford, Los Alamos National Laboratory, Rocky Flats, and Savannah River Sites. This paper presents an overview of plutonium process chemistry used at these sites, with particular emphasis on solution chemistry involved in recovery, purification, and waste treatment operations. By extrapolating from the present system of processes, this paper also attempts to chart the future direction of plutonium process development and operation. Areas where a better understanding of basic plutonium chemistry will contribute to development of improved processing are called out

  11. Improved material accounting for plutonium processing facilities and a /sup 235/U-HTGR fuel fabrication facility

    Energy Technology Data Exchange (ETDEWEB)

    McSweeney, T.I.; Johnston, J.W.; Schneider, R.A.; Granquist, D.P.

    1975-10-01

    This study described the general safeguards characteristics of a material measurement system and then describes typical accounting systems for a fuel reprocessing plant, a plutonium nitrate to oxide conversion facility, a LWR mixed oxide fuel fabrication facility, and a high-enriched uranium HTGR fuels plant. These facilities are commercial size, envisioned to be operating in the mid-1980s. Present facilities tend to have large static inventories of material whereas future facilities will have a high material throughput. Systematic errors will pose the greatest limit on measurement systems in future facilities. Recommendations are given for the licensing review process for material accounting performance, the capability of measurement systems and regulations governing cumulative LEMUF and series of MUFs. Present regulations and the recommendations should result in improved material accounting in future facilities. Improvements specific to a particular facility were also identified. The recommendations should greatly improve the material accounting characteristics of future plutonium and high-enriched uranium processing facilities. Benefits of an improved material accounting system are compared with the costs of the improvements. The requirement for a formal quarterly inventory over the separations area of a reprocessing plant results in an annual lost production cost of $25M. This high penalty prevents reducing the formal inventory requirement from the present semiannual regulatory requirement. In all other cases, the cost-benefit relationship of the improvements is favorable. 8 fig., 53 tables. (DLC)

  12. Removal of plutonium from drinking water by community water treatment facilities

    International Nuclear Information System (INIS)

    Plutonium removal factors (RF) averaged 14 +- 10 during a study of the effectiveness of three drinking-water treatment plants for removing Pu from Savannah River water. Plutonium concentrations between 0.1 and 3.5 femtocurie/l were measured in raw and finished water samples. From 50 to 10,000 liter samples of water were concentrated by ion exchange techniques and processed to determine the concentrations of 239Pu and 240Pu and to derive Pu RF's. The similarity between RF's observed for both Pu and suspended solids suggests a colloidal behavior for Pu. Plutonium RF's may be limited by low-level buildup on the treatment facility filters and subsequent bleeding into finished water, and thus may be higher during abnormal Pu releases to the environment. Flocculation and filtration appear to be the primary factors in the water treatment process contributing to Pu removal. The similarity between the plutonium contents of finished water from treatment facilities upstream and downstream of the Savannah River Plant (SRP) indicates that there is no measurable dose-to-man from SRP Pu releases in the water. The 70-year bone dose commitment to an individual from consumption for one year of 1.65 liters per day of treated Savannah River water, based on the Pu concentrations of finished waters from the three treatment facilities, is 5 x 10-5 em

  13. Dosimetry at the Los Alamos Critical Experiments Facility: Past, present, and future

    International Nuclear Information System (INIS)

    Although the primary reason for the existence of the Los Alamos Critical Experiments Facility is to provide basic data on the physics of systems of fissile material, the physical arrangements and ability to provide sources of radiation have led to applications for all types of radiation dosimetry. In the broad definition of radiation phenomena, the facility has provided sources to evaluate biological effects, radiation shielding and transport, and measurements of basic parameters such as the evaluation of delayed neutron parameters. Within the last 15 years, many of the radiation measurements have been directed to calibration and intercomparison of dosimetry related to nuclear criticality safety. Future plans include (1) the new applications of Godiva IV, a bare-metal pulse assembly, for dosimetry (including an evaluation of neutron and gamma-ray room return); (2) a proposal to relocate the Health Physics Research Reactor from the Oak Ridge National Laboratory to Los Alamos, which will provide the opportunity to continue the application of a primary benchmark source to radiation dosimetry; and (3) a proposal to employ SHEBA, a low-enrichment solution assembly, for accident dosimetry and evaluation

  14. THE DEACTIVATION DECONTAMINATION & DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT (PFP) A FORMER PLUTONIUM PROCESSING FACILITY AT DOE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, S.L.

    2006-02-01

    The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington, DC and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (D&D) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP D&D effort includes descriptions of negotiations with the State of Washington concerning consent

  15. THE DEACTIVATION, DECONTAMINATION AND DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT, A FORMER PLUTONIUM PROCESSING FACILITY AT DOE'S HANFORD SITE

    International Nuclear Information System (INIS)

    The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington,; DC--and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (DandD) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP DandD effort includes descriptions of negotiations with the State of Washington concerning consent

  16. PROJECT EXPERIENCE REPORT DEMOLITION OF HANFORDS 233-S PLUTONIUM CONCENTRATION FACILITY

    International Nuclear Information System (INIS)

    This report provides a summary of the preparation, operations, innovative work practices, and lessons learned associated with demolition of the 2334 Plutonium Concentration Facility. This project represented the first open-air demolition of a highly-contaminated plutonium facility at the Hanford Site. This project may also represent the first plutonium facility in the US. Department of Energy (DOE) complex to have been demolished without first decontaminating surfaces to near ''free release'' standards. Demolition of plutonium contaminated structures, if not properly managed, can subject cleanup personnel and the environment to significant risk. However, with proper sequencing and innovative use of commercially available equipment, materials, and services, this project demonstrated that a plutonium processing facility can be demolished while avoiding the need to perform extensive decontamination or to construct large enclosures. This project utilized an excavator with concrete shears, diamond circular saws, water misting and fogging equipment, commercially available fixatives and dust suppressants, conventional mobile crane and rigging services, and near real-time modeling of meteorological and radiological conditions. Following a significant amount of preparation, actual demolition of the 2333 Facility began in October 2003 and was completed in late April 2004. The knowledge and experience gained on this project are important to the Hanford Site as additional plutonium processing facilities are scheduled for demolition in the near future. Other sites throughout the DOE Complex may also be faced with similar challenges. Numerous innovations and effective work practices were implemented on this project. Accordingly, a series of ''Lessons Learned and Innovative Practices Fact Sheets'' were developed and are included as an appendix to this report. This collection of fact sheets is not intended to capture every innovative work practice and lesson learned, but rather to

  17. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Reneau, S.L.; Raymond, R. Jr. [eds.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  18. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau

  19. MCNPX characterization of the secondary neutron flux at the Los Alamos Isotope Production Facility

    Energy Technology Data Exchange (ETDEWEB)

    Engle, Jonathan W., E-mail: jwengle@lanl.gov; James, Michael R.; Mashnik, Stepan G.; Kelsey, Charles T.; Wolfsberg, Laura E.; Reass, David A.; Connors, Michael A.; Bach, Hong T.; Fassbender, Michael E.; John, Kevin D.; Birnbaum, Eva R.; Nortier, Francois M.

    2014-08-01

    The spallation neutron flux produced from proton irradiation of rubidium chloride and gallium targets at the Los Alamos National Laboratory (LANL) Isotope Production Facility (IPF) was investigated using the activation foil technique and computational simulation. Routine irradiations have been found to produce fluxes as high as 10{sup 12} n cm{sup −2} s{sup −1}, with approximately 50% of the total flux having energy in excess of 1 MeV. Measurements of activation foils are compared with the predicted radionuclide yield using nuclear excitation functions from MCNPX event generators, evaluated nuclear data, and the TALYS nuclear code. Practical application of the secondary neutron flux in the realm of radioisotope production is considered. - Highlights: • MCNPX event generator simulations describe secondary neutron flux at the Los Alamos IPF. • Medium-energy monitor reactions using metal foils experimentally validate MCNPX predictions. • MCNPX is used to examine CEM03.02, Bertini, and TALYS reaction models of medium energy neutron-induced reactions.

  20. Application of PGNAA to plutonium surveillance

    International Nuclear Information System (INIS)

    Prompt gamma-ray neutron activation analysis (PGNAA) is a well-established tool for nondestructive elemental analysis of bulk samples. At Los Alamos National Laboratory we are investigating the use of PGNAA as a diagnostic tool for a number of applications, particularly matrix characterization for nondestructive assay and plutonium surveillance. Surveillance is an essential feature of most plutonium facility operations, including routine material processing and research, short-term storage, and processing operations prior to disposal or long-term storage. The ability to identify and assay specific elements from gamma-ray-produced active neutron interrogation (e.g., by neutron capture, nonelastic scattering, and the decay of activation products) makes PGNAA an ideal tool for surveillance. For example, PGNAA can help confirm item descriptions (for example, plutonium chloride versus plutonium oxide). This feature is particularly important in operations involving poorly characterized legacy materials where the material form could adversely impact plutonium-processing operations

  1. Application of PGNAA to plutonium surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Prettyman, T.H.; Foster, L.A.; Staples, P. [Los Alamos National Lab., NM (United States)

    1997-12-01

    Prompt gamma-ray neutron activation analysis (PGNAA) is a well-established tool for nondestructive elemental analysis of bulk samples. At Los Alamos National Laboratory we are investigating the use of PGNAA as a diagnostic tool for a number of applications, particularly matrix characterization for nondestructive assay and plutonium surveillance. Surveillance is an essential feature of most plutonium facility operations, including routine material processing and research, short-term storage, and processing operations prior to disposal or long-term storage. The ability to identify and assay specific elements from gamma-ray-produced active neutron interrogation (e.g., by neutron capture, nonelastic scattering, and the decay of activation products) makes PGNAA an ideal tool for surveillance. For example, PGNAA can help confirm item descriptions (for example, plutonium chloride versus plutonium oxide). This feature is particularly important in operations involving poorly characterized legacy materials where the material form could adversely impact plutonium-processing operations.

  2. Facility Effluent Monitoring Plan for the Plutonium Finishing Plant (PFP)

    Energy Technology Data Exchange (ETDEWEB)

    FRAZIER, T.P.

    1999-10-01

    A facility effluent monitoring plan is required by the U. S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. To ensure the long-range integrity of the effluent monitoring systems, an update to this facility effluent monitoring plan is required whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document is reviewed annually even if there are no operational changes, and is updated, at a minimum, every 3 years.

  3. Facility Effluent Monitoring Plan for the Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    A facility effluent monitoring plan is required by the U. S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. To ensure the long-range integrity of the effluent monitoring systems, an update to this facility effluent monitoring plan is required whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document is reviewed annually even if there are no operational changes, and is updated, at a minimum, every 3 years

  4. Seismic risk analysis for General Electric Plutonium Facility, Pleasanton, California

    International Nuclear Information System (INIS)

    This report presents the results of a seismic risk analysis that focuses on all possible sources of seismic activity, with the exception of the postulated Verona Fault. The best estimate curve indicates that the Vallecitos facility will experience 30% g with a return period of roughly 130 years and 60% g with a return period of roughly 700 years

  5. Review of epidemiologic studies at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Epidemiologic studies at Los Alamos are directed toward understanding potential health risks associated with activities pertaining to national energy and defense needs. Currently this research focuses on evaluating the effects of plutonium exposure in man. The major programs consist of (1) epidemiologic studies of the incidence of disease and mortality among plutonium and other workers at six Department of Energy (DOE) contractor facilities (Los Alamos, Rocky Flats, Mound, Savannah River, Hanford, and Oak Ridge), and (2) measurement of plutonium and other radionuclides in human tissues. Currently, investigations of mortality for Pantex workers and the surrounding general population are also being conducted for DOE in support of an Environment Impact Statement. This paper places emphasis on the activities of the national epidemiologic study of plutonium workers. The purpose of the plutonium workers study is to: (1) investigate whether adverse health effects are associated with exposures to plutonium, (2) explore whether adverse health effects are associated with exposure to transuranic elements, other radioisotopes, and hazardous substances that are found in nuclear facilities making routine use of plutonium, and (3) to describe in detail the nature of such health effects should they be discovered

  6. Plutonium and uranium emission experience in U.S. nuclear facilities using HEPA filtration

    International Nuclear Information System (INIS)

    The weekly, monthly and yearly emission experience of eleven U.S. nuclear facilities is presented, and reviewed. Each of these facilities uses HEPA filtration to control emissions, the various vent streams using from one to three such filtration systems in series. Available emission records cover from one to five vents at each facility, and cover periods ranging from two to eleven years. The majority of the facilities process plutonium, either exclusively or as mixed oxide, but a few process highly enriched uranium-235, natural uranium and/or thorium. Facilities include fuel fabrication plants, fuel reprocessing plants, and experimental facilities. The emission curves show clearly not only the normal operation of the filter systems, but also the effects of minor leaks, and of major failures, as well as the effects of retention of material in ducts and other passive parts of the filtration systems. An analysis is presented of the operation of such systems in real environments, and the non-Stokes Law behavior of very dense particles is exemplified by experiments done with a non-radoactive tracer, whose crystal is isomorphous with those of plutonium and uranium dioxides, tungsten dioxide

  7. Plutonium reclamation facility (PRF, building 236-Z) layup plan

    International Nuclear Information System (INIS)

    This document reviews each system inside PRF to determine the operation and maintenance requirements necessary to maintain safe and predictable system performance for facility systems needed to remain operational while minimizing the maintenance and surveillance being performed. Also covered are the actions required to place PRF in a safe layup configuration while minimizing hazards and taking into account the need for reactivation of certain equipment when cleanup work commences in the future

  8. Plutonium vulnerability issues in DOE's facility transition and management program

    International Nuclear Information System (INIS)

    The disposition of the large, diverse quantities of surplus nuclear materials existing in the weapons complex and expected to be returned from retired warheads is one of the foremost challenges facing the U.S. Department of Energy (DOE) today. Effective management and stabilization of the nuclear materials discussed in Defense Nuclear Facilities Safety Board Recommendation 94-1 is a subset of this broader nuclear materials disposition issue

  9. Best available technology for the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Midkiff, W.S.; Romero, R.L.; Suazo, I.L.; Garcia, R.; Parsons, R.M.

    1993-10-15

    The existing Los Alamos National Laboratory TA-50 liquid radioactive waste treatment plant RLWP has been in service for over thirty years, during this period many technical, regulatory, and processing changes have occurred. The existing facility can no longer comply with the demands and requirements for continued operation, and would not be able to comply with anticipated stringent future contaminant discharge limitations. Either a major upgrading or replacement of the existing facility is required. In order to assess the most appropriate means of providing an adequate facility to comply with predicted requirements for Ta-50, this Best Available Technology (BAT) Study was conducted to compare feasible technical and economic alternatives in order to define the most favorable technology configuration. This report consists of eleven sections. Section 1 provides a general introduction and background of the TA-50 operations and the basis for this study. Section 2 provides a technical discussion of the unit processes at TA-50 and several other comparable operations at other DOE sites. Section 3 addresses the evaluation and selection of appropriate treatment processes. Section 4 provides an analysis of environmental issues and concerns. Section 5 presents the rationale for the selection of preferred process configurations. Section 6 is the evaluation of operational issues. Section 7 addresses energy and resource use topics. Section 8 provides an economic analysis, and Section 9 summarizes the evaluation and the identification of the BAT. These sections are augmented by appendices. The report identifies the construction of a new radioactive liquid waste treatment facility as the BAT. Based on the information analyzed for this study, this option appears to provide the best combination of environmental compliance, operability, and economic value.

  10. Best available technology for the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    The existing Los Alamos National Laboratory TA-50 liquid radioactive waste treatment plant RLWP has been in service for over thirty years, during this period many technical, regulatory, and processing changes have occurred. The existing facility can no longer comply with the demands and requirements for continued operation, and would not be able to comply with anticipated stringent future contaminant discharge limitations. Either a major upgrading or replacement of the existing facility is required. In order to assess the most appropriate means of providing an adequate facility to comply with predicted requirements for Ta-50, this Best Available Technology (BAT) Study was conducted to compare feasible technical and economic alternatives in order to define the most favorable technology configuration. This report consists of eleven sections. Section 1 provides a general introduction and background of the TA-50 operations and the basis for this study. Section 2 provides a technical discussion of the unit processes at TA-50 and several other comparable operations at other DOE sites. Section 3 addresses the evaluation and selection of appropriate treatment processes. Section 4 provides an analysis of environmental issues and concerns. Section 5 presents the rationale for the selection of preferred process configurations. Section 6 is the evaluation of operational issues. Section 7 addresses energy and resource use topics. Section 8 provides an economic analysis, and Section 9 summarizes the evaluation and the identification of the BAT. These sections are augmented by appendices. The report identifies the construction of a new radioactive liquid waste treatment facility as the BAT. Based on the information analyzed for this study, this option appears to provide the best combination of environmental compliance, operability, and economic value

  11. Research opportunities at the proposed Los Alamos XUV-FEL user facility

    International Nuclear Information System (INIS)

    This paper reports that within the last several years a number of meetings and conferences have addressed the unique scientific opportunities which would result from the development of an RF-linac FEL user facility accessing the XUV and mid-IR spectral regions. The capabilities of a number of linear and nonlinear spectroscopies would be enhanced by one or more features of the FEL output, e.g., its free tunability in these regions, transform-limited linewidth, high peak power and brightness, time structure, and the possibility of multi-color pump-probe experiments utilizing the coordinated output from more than one FEL oscillator. These advances would in turn benefit a variety of scientific areas. In the realm of basic science, experiments or measurements which ether require an FEL or where increased sensitivity would be advantageous can be found in quantum, atomic, cluster, molecular, and condensed matter physics, magnetic materials, surface science and catalysis, non-linear spectroscopy, and biophysics and -chemistry and physics, advanced fabrication processes, medical applications, and others. These applications form the basis for the specifications of the FEL and for the design of the laboratories for the proposed FEL user facility at Los Alamos

  12. Safety of Uranium and Plutonium Mixed Oxide Fuel Fabrication Facilities. Specific Safety Guide

    International Nuclear Information System (INIS)

    This Safety Guide supplements the Safety Requirements publication Safety of Fuel Cycle Facilities and addresses all the stages in the life cycle of MOX fuel fabrication facilities, with emphasis placed on design and operation. It describes the actions, conditions and procedures for meeting safety requirements and deals specifically with the handling, processing and storage of plutonium oxide, depleted, natural or reprocessed uranium oxide or mixed oxide manufactured from the above to be used as a feed material to form MOX fuel rods and assemblies for export and subsequent use in water reactors and fast breeder reactors. The publication is intended to be of use to designers, operating organizations and regulators to ensure the safety of MOX fuel fabrication facilities. Contents: 1. Introduction; 2. General safety recommendations; 3. Site evaluation; 4. Design; 5. Construction; 6. Commissioning; 7. Operation; 8. Decommissioning; Annexes.

  13. Integrated nondestructive assay system for a new plutonium scrap recovery facility

    International Nuclear Information System (INIS)

    A consortium of laboratories is collaborating with the Savannah River Plant to develop an integrated system of state-of-the-art nondestructive assay (NDA) instrumentation to provide nuclear materials accounting and process control information for a new plutonium scrap recovery facility. Individual microcomputer-based instruments report assay results to an Instrument Control Computer (ICC). The ICC, in turn, is part of a larger computer network that includes computers that perform process control and nuclear materials accounting functions. Integrated system design considerations, integral testing, and individual instrument measurement functions are discussed. 3 refs., 3 figs., 1 tab

  14. Upgrading a 1944 plutonium-extraction plant to a modern decontamination facility

    International Nuclear Information System (INIS)

    The Hanford Site, located in south-central Washington State, is currently undergoing extensive modifications as its mission changes from defense material production to one of waste management and environmental restoration. Starting in World War II, Hanford's mission for over four decades was the production of plutonium for defense needs. With the removal of such defense requirements over the last several years, the Hanford Site has refocused its efforts on the issues of cleanup and safety. The T Plant Complex is the first of the existing facilities to begin conversion from the old mission to the new. This conversion process and associated problems are described

  15. A proposal for recirculatory ventilation system for plutonium handling facilities (Paper No. 1.6)

    International Nuclear Information System (INIS)

    Facility ventilation system on once through basis is normally recommended and followed for highly radioactive plutonium laboratories generating particulate matter. However recirculatory ventilation system is economical from the point of view of both capital and operational costs. Further, significant energy saving will also be achieved. The present paper discusses the philosophy related to recirculatory ventilation system from engineering and radiation safety points of view and highlights the modifications required to be made in the once through ventilation system suitable for operation in recirculatory mode. (author). 4 refs., 4 tabs., 3 figs

  16. Additional measurements of the radiation environment at the Los Alamos Spallation Radiation Effects Facility at LAMPF

    International Nuclear Information System (INIS)

    Foil activation dosimetry experiments were conducted in a ''rabbit'' system at the completed Los Alamos Spallation Radiation Effects Facility (LASREF). The ''raffit'' system contains four tubes spaced radially outward 0.12, 0.18, 0.27, and 0.38 meters off beam centerline. Foils were irradiated for 3 to 62 hours to measure the neutron flux and energy spectrum radially from beam centerline, along the beamline, and the effect of the Isotope Production (IP) target loadings on the neutron flux in the neutron irradiation locations. Irradiations showed a decrease in the radial flux by a factor of 6 in 0.15 meters of iron outside the IP targets. An enchancement was seen in the 24-keV energy region outside 0.15 meters. There was little difference in the shape of the spectra outside the IP targets and the beam stop with the exception of the high energy tail (energies above 20 MeV). The decrease in the high energy tail outside the beam stop is due to the degradation of the energy of the proton beam in the IP targets. Irradiations outside the beam stop with zero and eight IP targets gave the same spectral shape with the exception of the high energy tail. The magnitude of the integral flux decreased by a factor of 2 when eight IP targets were present. Irradiations with five ''rabbits'' stacked on top of each other showed no difference in the integral flux below, on and above beam centerline

  17. Measurement and modeling of external radiation during 1985 from LAMPF [Los Alamos Meson Physics Facility] emissions

    International Nuclear Information System (INIS)

    An array of three portable, pressurized ionization chambers (PICs) continued to measure external radiation levels during 1985 caused by radionuclides emitted from the Los Alamos Meson Physics Facility (LAMPF). A Gaussian-type atmospheric dispersion model, using onsite meteorological and stack release data, was tested during this study. A more complex finite model, which takes into account the contribution of radiation at a receptor from different locations of the passing plume, was also tested. Monitoring results indicate that, as in 1984, a persistent wind up the Rio Grande Valley during the evening and early morning hours is largely responsible for causing the highest external radiation levels to occur to the northeast and north-northeast of LAMPF. However, because of increased turbulent mixing during the day, external radiation levels are generally much less during the day than at night. External radiation levels during 1985 show approximately a 75% reduction over 1984 levels. This resulted from a similar percentage reduction in LAMPF emissions caused by newly implemented emission controls. Comparison of predicted and measured daily external radiation levels indicates a high degree of correlation. The model also gives accurate estimates of measured concentrations over longer time periods. Comparison of predicted and measured hourly values indicates that the model generally tends to overpredict during the day and underpredict at night. 9 refs., 14 figs., 13 tabs

  18. Present and future neutrino physics research at the Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    The Los Alamos Meson Physics Facility is currently the site of two neutrino experiments. A measurement of elastic scattering of electron-neutrinos on electrons is providing confirmation of the destructive interference between the weak neutral and charged currents predicted in the standard electroweak theory. A search for the appearance of /bar/ν//sub e/ is being carried out at the LAMPF beam stop, as well. The status of this experiment is described. A major new initiative is being undertaken to measure neutrino-electron scattering in a large water Cerenkov detector. This meaurement will be precise enough to provide, in combination with the meaurements to be performed at the new generation of high-energy electron-positron colliers, the first experimental study of the standard electrowak theory at the level of one-loop radiative corrections. The detector will also be a vehicle for neutrino-oscillation searches, measurement of neutrinos from supernovae, and other fundamental physics. The apparatus will consist of a neutrino production target and shield surrounded by a water Cerenkov detector. The fiducial volume of water will be approximately 7000 tons, viewed by approximately 13000 20 cm diameter photomultiplier tubes. 11 refs., 6 figs

  19. Sampling and Analysis of the Headspace Gas in 3013 Type Plutonium Storage Containers at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Jay M. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Hill, Dallas D. [Los Alamos National Laboratory; Worl, Laura A. [Los Alamos National Laboratory; Veirs, Douglas K. [Los Alamos National Laboratory

    2012-07-11

    Department of Energy (DOE) sites have packaged approximately 5200 3013 containers to date. One of the requirements specified in DOESTD-3013, which specifies requirements for packaging plutonium bearing materials, is that the material be no greater than 0.5 weight percent moisture. The containers are robust, nested, welded vessels. A shelf life surveillance program was established to monitor these cans over their 50 year design life. In the event pressurization is detected by radiography, it will be necessary to obtain a head space gas sample from the pressurized container. This technique is also useful to study the head space gas in cans selected for random destructive evaluation. The atmosphere is sampled and the hydrogen to oxygen ratio is measured to determine the effects of radiolysis on the moisture in the container. A system capable of penetrating all layers of a 3013 container assembly and obtaining a viable sample of the enclosed gas and an estimate of internal pressure was designed.

  20. Rough order of magnitude cost estimate for immobilization of 50 MT of plutonium sharing existing facilities at Hanford with pit disassembly and conversion facility: alternative 11

    International Nuclear Information System (INIS)

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 50 metric tons (nominal) of plutonium as a ceramic in an existing facility at Hanford, the Fuels and Materials Examination Facility (FMEF). The Pit Disassembly and Conversion Facility (PDCF), which is being costed in a separate report by LANL, will also be located in the FMEF in this co-location option

  1. Rough order of magnitude cost estimate for immobilization of 18.2 MT of plutonium sharing existing facilities at Hanford with MOX fuel fabrication facility: alternative 4B

    International Nuclear Information System (INIS)

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 18.2 metric tons (nominal) of plutonium as a ceramic in an existing facility at Hanford, the Fuels and Materials Examination Facility (FMEF). The MOX Fuel Fabrication Facility (MFFF), which is being costed in a separate report, will also be located in the FMEF in this co-location option

  2. Current developments of fuel fabrication technologies at the plutonium fuel production facility, PFPF

    International Nuclear Information System (INIS)

    The Japan Nuclear Cycle Development Institute, JNC, designed, constructed and has operated the Plutonium Fuel Production Facility, PFPF, at the JNC Tokai Works to supply MOX fuels to the proto-type Fast Breeder Reactor, FBR, 'MONJU' and the experimental FBR 'JOYO' with 5 tonMOX/year of fabrication capability. Reduction of personal radiation exposure to a large amount of plutonium is one of the most important subjects in the development of MOX fabrication facility on a large scale. As the solution of this issue, the PFPF has introduced automated and/or remote controlled equipment in conjunction with computer controlled operation scheme. The PFPF started its operation in 1988 with JOYO reload fuel fabrication and has demonstrated MOX fuel fabrication on a large scale through JOYO and MONJU fuel fabrication for this decade. Through these operations, it has become obvious that several numbers of equipment initially installed in the PFPF need improvements in their performance and maintenance for commercial utilization of plutonium in the future. Furthermore, fuel fabrication of low density MOX pellets adopted in the MONJU fuel required a complete inspection because of difficulties in pellet fabrication compared with high density pellet for JOYO. This paper describes new pressing equipment with a powder recovery system, and pellet finishing and inspection equipment which has multiple functions, such as grinding measurements of outer diameter and density, and inspection of appearance to improve efficiency in the pellet finishing and inspection steps. Another development of technology concerning an annular pellet and an innovative process for MOX fuel fabrication are also described in this paper. (author)

  3. Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility

    Energy Technology Data Exchange (ETDEWEB)

    Tingey, Joel M.; Jones, Susan A.

    2005-07-01

    Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at

  4. Final characterization report for the non-process areas of the 233-S Plutonium Concentration Facility

    International Nuclear Information System (INIS)

    This report addresses the 233-S Plutonium Concentration Facility characterization survey data collected from January 21, 1997 through February 3, 1997. The characterization activities evaluated the radiological status and identified the hazardous materials locations. The scope of this report is limited to the nonprocess areas in the facility, which include the special work permit (SWP) change room, toilet, equipment room, electrical cubicle, control room, and pipe gallery. A portion of the roof (excluding the roof over the process hood and viewing room) was also included. Information in this report will be used to identify waste streams, provide specific chemical and radiological data to aid in planning decontamination and demolition activities, and allow proper disposal of the demolition debris, as required by the Comprehensive Environmental Response, Compensation, and Liability Act of 1980

  5. Plutonium immobilization plant using glass in existing facilities at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    DiSabatino, A., LLNL

    1998-06-01

    The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources and, through a glass immobilization process, converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors.

  6. Rough order of magnitude cost estimate for immobilization of 50 MT of plutonium using existing facilities at the Savannah River site: alternative 12B

    International Nuclear Information System (INIS)

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 50 metric tons of plutonium using ceramic in an existing facility (221-F) at an Savannah River Site (SRS)

  7. Rough order of magnitude cost estimate for immobilization of 50MT of plutonium using new facilities at the Savannah River site: alternative 12A

    International Nuclear Information System (INIS)

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 50 metric tons of plutonium using ceramic in a new facility at Savannah River Site (SRS)

  8. Process Testing to Support the Conceptual Design of a Plutonium Vitrification Facility

    International Nuclear Information System (INIS)

    In the aftermath of the Cold War, the United States Department of Energy (DOE) has identified up to 50 metric tonnes of excess plutonium that needs to be dispositioned. The bulk of the material is slated to be blended with uranium and fabricated into a Mixed Oxide (MOX) fuel for subsequent burning in commercial nuclear reactors. Excess plutonium-containing materials that are not suitable for fabrication into MOX fuel will need to be dispositioned via other means. A lanthanide borosilicate (LaBS) glass was identified as a preferred form for the disposition of the impure plutonium-containing feeds. The LaBS glass formulation uses a lanthanide borosilicate frit rather than the alkali borosilicate frit used to vitrify high level waste. The LaBS glass has been shown to be able to accommodate high quantities of fissile material (greater than 10 wt % elemental plutonium) and tolerate the impurities expected in the plutonium feed streams. A conceptual design effort is now underway at the Savannah River Site (SRS) to design a vitrification facility to immobilize the excess Pu feeds that are not slated for disposition via MOX fuel. The conceptual design phase is planned to complete in FY07. A test program was initiated at the Savannah River National Laboratory (SRNL) to provide input data to the conceptual design effort. A major component of this test effort involves vitrification process testing. A cylindrical induction melter (CIM) was developed for the vitrification of actinide feed streams. Due to the high temperatures required to incorporate high plutonium oxide contents into the glass by dissolution and melting, the melter vessel is constructed out of Pt/Rh alloy and can be operated at temperatures up to 1600 deg. C. Additionally, the melter design is compact to facilitate installation in a glovebox (the size of the conceptual facility melter is approximately 6'' in diameter by 18'' tall). The CIM has proven to be a viable means to process the LaBS glass at processing

  9. Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Podlesak, David W [Los Alamos National Laboratory; Steiner, Robert E. [Los Alamos National Laboratory; Burns, Carol J. [Los Alamos National Laboratory; LaMont, Stephen P. [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory

    2012-08-09

    The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities at Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities. Some conclusions are: (1) Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous defense and non-defense programs including safeguards accountancy verification measurements; (2) Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material forensic characterization; (3) Actinide analytical chemistry uses numerous means to validate and independently verify that measurement data quality objectives are met; and (4) Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  10. RCRA facility investigation for the townsite of Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    During World War II, Los Alamos, New Mexico was established as an ideal location for the secrecy and safety needed for the research and development required to design a nuclear fission bomb. Experiments carried out in the 1940s generated both radioactive and hazardous waste constituents on what is presently part of the Los Alamos townsite. Under the RCRA permit issued to Los alamos national Laboratory in 1990, the Laboratory is scheduled for investigation of its solid waste management units (SWMUs). The existing information on levels of radioactivity on the townsite is principally data from soil samples taken during the last site decontamination in 1976, little information on the presence of hazardous constituents exists today. This paper addresses pathway analysis and a preliminary risk assessment for current residents of the Los Alamos townsite. The estimated dose levels, in mrem per year, show that the previously decontaminated SWMU areas on the Los Alamos townsite will not contribute a radiation dose of any concern to the current residents

  11. Customer service model for waste tracking at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The deployment of any new software system in a production facility will always face multiple hurtles in reaching a successful acceptance. However, a new waste tracking system was required at the plutonium processing facility at Los Alamos National Laboratory (LANL) where waste processing must be integrated to handle Special Nuclear Materials tracking requirements. Waste tracking systems can enhance the processing of waste in production facilities when the system is developed with a focus on customer service throughout the project life cycle. In March 2010 Los Alamos National Laboratory Waste Technical Services (WTS) replaced the aging systems and infrastructure that were being used to support the plutonium processing facility. The Waste Technical Services (WTS) Waste Compliance and Tracking System (WCATS) Project Team, using the following customer service model, succeeded in its goal to meet all operational and regulatory requirements, making waste processing in the facility more efficient while partnering with the customer.

  12. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Lohrasbi, J.; Johnson, D.L. [Westinghouse Hanford Co., Richland, WA (United States); De Lorenzo, D.S. [Los Alamos Technical Associates, NM (United States)

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  13. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  14. Equipments removal and renewal at Plutonium Conversion Development Facility. The Secondary removal and renewal program

    International Nuclear Information System (INIS)

    The Plutonium Conversion Development Facility (PCDF) periodically carried out old equipment removal / renewal work for stable operation. The First removal / renewal program was carried out from 1993 to 1994. The Secondary removal / renewal of equipment (filter casings, microwave heating denitration apparatus, blender and glove boxes) was carried out from 1998 to 1999. Two new type air-line suits (double-layered type air-line suits and water flushing-decontamination-type air-line suits) were developed. These air-line suits were used for the Secondary removal / renewal program. The results of using these air-line suits the resistance test of the greenhouse against earthquakes and the contamination behavior of the glove box, which is independent from the ventilation system, are reported in this paper. (author)

  15. Summary of active test of uranium-plutonium co-denitration facility at Rokkasho reprocessing plant

    International Nuclear Information System (INIS)

    The aim of this report is to explain and discuss the active test results in the uranium-plutonium (U-Pu) co-denitration facility. We had previously performed the uranium test with depleted uranium from February of 2005 to January of 2006. Then, the active test has been in progress since March of 2006 toward the start of commercial operation. Plutonium nitrate (PuN) and uranium nitrate hexahydrate (UNH) are mixed at the ratio of approximately 1:1 from the non-proliferation viewpoint. The mixed solution is supplied into the denitration dish inside the denitration oven where the solution is denitrated by microwave heating and converted to MOX powder (PuO2-UO3). After denitration, the powder is converted to the product of MOX powder (PuO2-UO2) through some heating processes and stored in temporary canisters. The powder is transferred to the blender, and then filled into powder cans. 3 powder cans are packed into a canister and transferred to storage in the co-denitrated product powder storage building. Confirmation of the denitration ability of the mixed solution and characteristics of the product powder, (1) Stable and continuous operation in the target period, (2) Characteristics of the product powder, (3) Processing ability at each process, (4) Impurities in the product powder. The test results of the last step of the active test of the U-Pu co-denitration facility are presented; (1) Average throughput in 5 days at A and B lines was more than the target value. (2) Mean particle sizes and specific surface areas in MOX powder were within the standards. (3) Each process indicated good result. (4) Impurities in product powder were less than each limitation. (author)

  16. The Los Alamos National Laboratory Chemistry and Metallurgy Research Facility upgrades project - A model for waste minimization

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Facility, constructed in 1952, is currently undergoing a major, multi-year construction project. Many of the operations required under this project (i.e., design, demolition, decontamination, construction, and waste management) mimic the processes required of a large scale decontamination and decommissioning (D ampersand D) job and are identical to the requirements of any of several upgrades projects anticipated for LANL and other Department of Energy (DOE) sites. For these reasons the CMR Upgrades Project is seen as an ideal model facility - to test the application, and measure the success of - waste minimization techniques which could be brought to bear on any of the similar projects. The purpose of this paper will be to discuss the past, present, and anticipated waste minimization applications at the facility and will focus on the development and execution of the project's open-quotes Waste Minimization/Pollution Prevention Strategic Plan.close quotes

  17. A vision for environmentally conscious plutonium processing

    Energy Technology Data Exchange (ETDEWEB)

    Avens, L.R.; Eller, P.G.; Christensen, D.C. [Los Alamos National Lab., NM (United States). Nuclear Materials Technology Div.; Miller, W.L. [Univ. of Florida, Gainesville, FL (United States). Dept. of Environmental Engineering Sciences

    1998-12-31

    Regardless of individual technical and political opinions about the uses of plutonium, it is virtually certain that plutonium processing will continue on a significant global scale for many decades for the purposes of national defense, nuclear power and remediation. An unavoidable aspect of plutonium processing is that radioactive contaminated gas, liquid, and solid streams are generated. These streams need to be handled in a manner that is not only in full compliance with today`s laws,but also will be considered environmentally and economically responsible now and in the future. In this regard, it is indeed ironic that the multibillion dollar and multidecade radioactive cleanup mortgage that the US Department of Energy (and its Russian counterpart) now owns resulted from waste management practices that were at the time in full legal compliance. The theme of this paper is that recent dramatic advances in actinide science and technology now make it possible to drastically minimize or even eliminate the problematic waste streams of traditional plutonium processing operations. Advanced technology thereby provides the means to avoid passing on to our children and grandchildren significant environmental and economic legacies that traditional processing inevitably produces. This paper will describe such a vision for plutonium processing that could be implemented fully within five years at a facility such as the Los Alamos Plutonium Facility (TA55). As a significant bonus, even on this short time scale, the initial technology investment is handsomely returned in avoided waste management costs.

  18. A vision for environmentally conscious plutonium processing

    International Nuclear Information System (INIS)

    Regardless of individual technical and political opinions about the uses of plutonium, it is virtually certain that plutonium processing will continue on a significant global scale for many decades for the purposes of national defense, nuclear power, and remediation. An unavoidable aspect of plutonium processing is that radioactively contaminated gas, liquid, and solid waste streams are generated. These streams need to be handled in a manner that not only is in full compliance with today's laws but also will be considered environmentally and economically responsible now and in the future. In this regard, it is indeed ironic that the multibillion dollar and multidecade radioactive cleanup mortgage that the US Department of Energy (and its Russian counterpart) now owns resulted from waste management practices that were at the time in full legal compliance. It is now abundantly evident that in the long run, these practices have proven to be neither environmentally nor economically sound. Recent dramatic advances in actinide science and technology now make it possible to drastically minimize or even eliminate the problematic waste streams of traditional plutonium processing operations. Advanced technology thereby provides the means to avoid passing on to children and grandchildren significant environmental and economic legacies that traditional processing inevitably produces. The authors describe such a vision for plutonium processing that could be implemented fully within 5 yr at a facility such as the Los Alamos National Laboratory Plutonium Facility (TA55). As a significant bonus, even on this short timescale, the initial technology investment is handsomely returned in avoided waste management costs

  19. A vision for environmentally conscious plutonium processing

    International Nuclear Information System (INIS)

    Regardless of individual technical and political opinions about the uses of plutonium, it is virtually certain that plutonium processing will continue on a significant global scale for many decades for the purposes of national defense, nuclear power and remediation. An unavoidable aspect of plutonium processing is that radioactive contaminated gas, liquid, and solid streams are generated. These streams need to be handled in a manner that is not only in full compliance with today's laws,but also will be considered environmentally and economically responsible now and in the future. In this regard, it is indeed ironic that the multibillion dollar and multidecade radioactive cleanup mortgage that the US Department of Energy (and its Russian counterpart) now owns resulted from waste management practices that were at the time in full legal compliance. The theme of this paper is that recent dramatic advances in actinide science and technology now make it possible to drastically minimize or even eliminate the problematic waste streams of traditional plutonium processing operations. Advanced technology thereby provides the means to avoid passing on to our children and grandchildren significant environmental and economic legacies that traditional processing inevitably produces. This paper will describe such a vision for plutonium processing that could be implemented fully within five years at a facility such as the Los Alamos Plutonium Facility (TA55). As a significant bonus, even on this short time scale, the initial technology investment is handsomely returned in avoided waste management costs

  20. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    International Nuclear Information System (INIS)

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  1. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  2. Low-level waste drum staging building at Weapons Engineering Tritium Facility, TA-16, Los Alamos National Laboratory, Los Alamos, New Mexico. Environmental Assessment

    International Nuclear Information System (INIS)

    The proposed action is to place a 3 meter (m) by 4.5 m (10 ft x 15 ft) prefabricated storage building (transportainer) adjacent to the existing Weapons Engineering Tritium Facility (WETF) at Technical Area (TA-) 16, Los Alamos National Laboratory (LANL), and to use the building as a staging site for sealed 55 galllon drums of noncompactible waste contaminated with low levels of tritium (LLW). Up to eight drums of waste would be accumulated before the waste is moved by LANL Waste Management personnel to the existing on-site LLW disposal area at TA-54. The drum staging building would be placed on a bermed asphalt pad, near other existing accumulation structures for office trash and compactible LLW. The no-action alternative is to continue storing drums of LLW in the WETF laboratories where they occupy valuable work space, hamper movement of personnel and equipment, and require waste management personnel to enter those laboratories in order to remove filled drums. No new waste would be generated by implementing the proposed action; no changes or increases in WETF operations or waste production rate are anticipated as a result of staging drums of LLW outside the main laboratory building. The site for the LLW drum staging building would not impact any sensitive areas. Tritium emissions from the drums of LLW were included within the source term for normal operations at the WETF; the cumulative impacts would not be increased

  3. Comparison of neutron dose measured by Albedo TLD and etched tracks detector at PNC plutonium fuel facilities

    International Nuclear Information System (INIS)

    Power Reactor and Nuclear Fuel Development Corporation (PNC) has fabricated Plutonium and Uranium Mixed OXide (MOX) fuel for FBR MONJU at Tokai works. In this site, PNC/Panasonic albedo TLDs/1/ are used for personnel neutron monitoring. And a part of workers wore Etched Tracks Detector (ETD) combined with TLD in order to check the accuracy of the neutron dose estimated by albedo TLD. In this paper, the neutron dose measured by TLD and ETD in the routine monitoring is compared at PNC plutonium fuel facilities. (author)

  4. Ecological relationships of plutonium in Southwest ecosystems

    International Nuclear Information System (INIS)

    A comprehensive summary of results was prepared on plutonium distribution and transport in Los Alamos and Trinity Site study areas. Despite differences in ecosystems and plutonium source, there are several similarities in plutonium distribution between Los Alamos and Trinity Site study areas. The soils/sediment component contains virtually all the plutonium inventory, with vegetation and rodents containing less than 0.1% of the total in all cases

  5. Plutonium immobilization plant using glass in new facilities at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    DiSabatino, A.

    1998-06-01

    The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources and, through a glass immobilization process, converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. This immobilization process is shown conceptually in Figure 1-1. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors.

  6. Computerized plutonium laboratory-stack monitoring system

    International Nuclear Information System (INIS)

    The Los Alamos Scientific Laboratory has recently designed and constructed a Plutonium Research and Development Facility to meet design criteria imposed by the United States Energy Research and Development Administration. A primary objective of the design criteria is to assure environmental protection and to reliably monitor plutonium effluent via the ventilation exhaust systems. A state-of-the-art facility exhaust air monitoring system is described which establishes near ideal conditions for evaluating plutonium activity in the stack effluent. Total and static pressure sensing manifolds are incorporated to measure average velocity and integrated total discharge air volume. These data are logged at a computer which receives instrument data through a multiplex scanning system. A multipoint isokinetic sampling assembly with associated instrumentation is described. Continuous air monitors have been designed to sample from the isokinetic sampling assembly and transmit both instantaneous and integrated stack effluent concentration data to the computer and various cathode ray tube displays. The continuous air monitors also serve as room air monitors in the plutonium facility with the primary objective of timely evacuation of personnel if an above tolerance airborne plutonium concentration is detected. Several continuous air monitors are incorporated in the ventilation system to assist in identification of release problem areas

  7. Los Alamos studies of the Nevada test site facilities for the testing of nuclear rockets

    Science.gov (United States)

    Hynes, Michael V.

    1993-01-01

    The topics are presented in viewgraph form and include the following: Nevada test site geographic location; location of NRDA facilities, area 25; assessment program plan; program goal, scope, and process -- the New Nuclear Rocket Program; nuclear rocket engine test facilities; EMAD Facility; summary of final assessment results; ETS-1 Facility; and facilities cost summary.

  8. Evaluation of the seismic integrity of a plutonium-handling facility

    International Nuclear Information System (INIS)

    Many studies have been made by and for the Lawrence Livermore National Laboratory (LLNL) to ensure the seismic safety of its Plutonium Facility (Building 332). These studies have included seismological and geologic field investigations to define the actual seismic hazard existing at the Laboratory site as well as structural studies of the Facility itself. Because the basic seismic design criteria has undergone changes over the years, numerous structural studies and upgrades have been completed. The seismic criteria in use at the LLNL site is reviewed on a continuing basis as new information on the seismicity and geology of the Livermore Valley is obtained. At present, the Laboratory's Earth Sciences Division is conducting a multi-million dollar program to identify and characterize the geologic hazards at the Livermore site, with the primary emphasis on earthquake hazards in the Livermore Valley. This effort is undergoing an independent review by Woodward-Clyde Associates. Additionally, because of increased concerns over the seismic safety of Building 332, the Laboratory has initiated an independent structural review. This review effort will be monitored by the California Seismic Safety Commission to ensure its independence. Both of these studiies are in their early stages and results are not yet available

  9. Automated System Calibration and Verification of the Position Measurements for the Los Alamos Isotope Production Facility and the Switchyard Kicker Facilities

    International Nuclear Information System (INIS)

    The Los Alamos Neutron Science Center (LANSCE) facility at Los Alamos National Laboratory has constructed both an Isotope Production Facility (IPF) and a Switchyard Kicker (XDK) as additions to the H+ and H- accelerator. These additions contain eleven Beam Position Monitors (BPMs) that measure the beam's position throughout the transport. The analog electronics within each processing module determines the beam position using the log-ratio technique. For system reliability, calibrations compensate for various temperature drifts and other imperfections in the processing electronics components. Additionally, verifications are periodically implemented by a PC running a National Instruments LabVIEW virtual instrument (VI) to verify continued system and cable integrity. The VI communicates with the processor cards via a PCI/MXI-3 VXI-crate communication module. Previously, accelerator operators performed BPM system calibrations typically once per day while beam was explicitly turned off. One of this new measurement system's unique achievements is its automated calibration and verification capability. Taking advantage of the pulsed nature of the LANSCE-facility beams, the integrated electronics hardware and VI perform calibration and verification operations between beam pulses without interrupting production beam delivery. The design, construction, and performance results of the automated calibration and verification portion of this position measurement system will be the topic of this paper

  10. Plutonium immobilization plant using ceramic in existing facilities at the Savannah River site

    Energy Technology Data Exchange (ETDEWEB)

    DiSabatino, A., LLNL

    1998-06-01

    The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources, and through a ceramic immobilization process converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. This immobilization process is shown conceptually in Figure 1-1. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors. The ceramic immobilization alternative presented in this report consists of first converting the surplus material to an oxide, followed by incorporating the plutonium oxide into a titanate-based ceramic material that is placed in metal cans.

  11. Plutonium immobilization plant using ceramic in existing facilities at the Savannah River site

    International Nuclear Information System (INIS)

    The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources, and through a ceramic immobilization process converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. This immobilization process is shown conceptually in Figure 1-1. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors. The ceramic immobilization alternative presented in this report consists of first converting the surplus material to an oxide, followed by incorporating the plutonium oxide into a titanate-based ceramic material that is placed in metal cans

  12. Hanford Facility Dangerous Waste Closure Plan - Plutonium Finishing Plant Treatment Unit Glovebox HA-20MB

    International Nuclear Information System (INIS)

    This closure plan describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) glovebox HA-20MB that housed an interim status ''Resource Conservation and Recovery Act'' (RCRA) of 1976 treatment unit. This closure plan is certified and submitted to Ecology for incorporation into the Hanford Facility RCRA Permit (HF RCRA Permit) in accordance with Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement; TPA) Milestone M-83-30 requiring submittal of a certified closure plan for ''glovebox HA-20MB'' by July 31, 2003. Glovebox HA-20MB is located within the 231-5Z Building in the 200 West Area of the Hanford Facility. Currently glovebox HA-20MB is being used for non-RCRA analytical purposes. The schedule of closure activities under this plan supports completion of TPA Milestone M-83-44 to deactivate and prepare for dismantlement the above grade portions of the 234-5Z and ZA, 243-Z, and 291-Z and 291-Z-1 stack buildings by September 30, 2015. Under this closure plan, glovebox HA-20MB will undergo clean closure to the performance standards of Washington Administrative Code (WAC) 173-303-610 with respect to all dangerous waste contamination from glovebox HA-20MB RCRA operations. Because the intention is to clean close the PFP treatment unit, postclosure activities are not applicable to this closure plan. To clean close the unit, it will be demonstrated that dangerous waste has not been left at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or is environmentally impractical, the closure plan will be modified to address required postclosure activities. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. Any information on radionuclides is provided only for general knowledge. Clearance form only sent to

  13. New facility for ion beam materials characterization and modification at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Tesmer, J.R.; Maggiore, C.J.; Parkin, D.M.

    1988-01-01

    The Ion Beam Materials Laboratory (IBML) is a new Los Alamos laboratory devoted to the characterization and modification of the near surfaces of materials. The primary instruments of the IBML are a tandem electrostatic accelerator, a National Electrostatics Corp. Model 9SDH, coupled with a Varian CF-3000 ion implanter. The unique organizational structure of the IBML as well as the operational characteristics of the 9SDH (after approximately 3000 h of operation) and the laboratories' research capabilities will be discussed. Examples of current research results will also be presented. 5 refs., 2 figs.

  14. Explosively driven two-shockwave tools with application to ejecta formation at the Los Alamos National Laboratory Proton Radiography Facility

    Science.gov (United States)

    Buttler, William

    2013-06-01

    We present the development of an explosively driven physics tool to generate two mostly uniaxial shockwaves. The tool is being used to extend single shockwave ejecta models to a subsequent shockwave event separated by a time interval on the order of a few microseconds. We explore the possibility of varying the amplitude of both the first and second shockwaves, and we apply the tool in experimental geometries on Sn with a surface roughness of Ra = 0 . 8 μ m. We then evaluate the tool further at the Los Alamos National Laboratory Proton Radiography (pRad) Facility in an application to Sn with larger scale perturbations of wavelength 550 μ m, and various amplitudes that gave wave-number amplitude products of η0 2 π / λ = { 3 / 4 , 1 / 2 , 1 / 4 , 1 / 8 } , where the perturbation amplitude is η0, and the wave-number k = 2 π / λ . The pRad data and velocimetry imply it should be possible to develop a second shock ejecta model based on unstable Richtmyer-Meshkov physics. In collaboration with David Oro, Fesseha Mariam, Alexander Saunders, Malcolm Andrews, Frank Cherne, James Hammerberg. Robert Hixson, Christopher Morris, Russell Olson, Dean Preston, Joseph Stone, Dale Tupa, and Wendy Vogan-McNeil, Los Alamos National Laboratory,

  15. Interpretation of subcritical measurements with polyethylene reflected plutonium sphere

    International Nuclear Information System (INIS)

    Subcritical noise analysis measurements have been performed with an alpha phase plutonium sphere reflected by polyethylene. These measurements were performed at the Los Alamos Critical Experiment Facility in 2002 to provide an estimate of the subcriticality of the plutonium sphere reflected by polyethylene of varying thickness. This paper provides a description of the measurements and presents the analysis of the measurements. The measured and calculated spectral ratios differ are in good agreement with the ENDF/B-VI nuclear data sets and the 'interpreted' and calculated keff are in good agreement. (author)

  16. Decontamination and decommissioning of the Argonne National Laboratory Building 350 Plutonium Fabrication Facility. Final report

    International Nuclear Information System (INIS)

    In 1973, Argonne National Laboratory began consolidating and upgrading its plutonium-handling operations with the result that the research fuel-fabrication facility located in Building 350 was shut down and declared surplus. Sixteen of the twenty-three gloveboxes which comprised the system were disassembled and relocated for reuse or placed into controlled storage during 1974 but, due to funding constraints, full-scale decommissioning did not start until 1978. Since that time the fourteen remaining contaminated gloveboxes, including all internal and external equipment as well as the associated ventilation systems, have been assayed for radioactive content, dismantled, size reduced to fit acceptable packaging and sent to a US Department of Energy (DOE) transuranic retrievable-storage site or to a DOE low-level nuclear waste burial ground. The project which was completed in 1983, required 5 years to accomplish, 32 man years of effort, produced some 540 m3 (19,000 ft3) of radioactive waste of which 60% was TRU, and cost 2.4 million dollars

  17. Experimental performance evaluation of two stack sampling systems in a plutonium facility

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, J.A.

    1992-04-01

    The evaluation of two routine stack sampling systems at the Z-Plant plutonium facility operated by Rockwell International for USERDA is part of a larger study, sponsored by Rockwell and conducted by Battelle, Pacific Northwest Laboratories, of gaseous effluent sampling systems. The gaseous effluent sampling systems evaluated are located at the main plant ventilation stack (291-Z-1) and at a vessel vent stack (296-Z-3). A preliminary report, which was a paper study issued in April 1976, identified many deficiencies in the existing sampling systems and made recommendations for corrective action. The objectives of this experimental evaluation of those sampling systems were as follows: Characterize the radioactive aerosols in the stack effluents; Develop a tracer aerosol technique for validating particulate effluent sampling system performance; Evaluate the performance of the existing routine sampling systems and their compliance with the sponsor`s criteria; and Recommend corrective action where required. The tracer aerosol approach to sampler evaluation was chosen because the low concentrations of radioactive particulates in the effluents would otherwise require much longer sampling times and thus more time to complete this evaluation. The following report describes the sampling systems that are the subject of this study and then details the experiments performed. The results are then presented and discussed. Much of the raw and finished data are included in the appendices.

  18. Experimental performance evaluation of two stack sampling systems in a plutonium facility

    International Nuclear Information System (INIS)

    The evaluation of two routine stack sampling systems at the Z-Plant plutonium facility operated by Rockwell International for USERDA is part of a larger study, sponsored by Rockwell and conducted by Battelle, Pacific Northwest Laboratories, of gaseous effluent sampling systems. The gaseous effluent sampling systems evaluated are located at the main plant ventilation stack (291-Z-1) and at a vessel vent stack (296-Z-3). A preliminary report, which was a paper study issued in April 1976, identified many deficiencies in the existing sampling systems and made recommendations for corrective action. The objectives of this experimental evaluation of those sampling systems were as follows: Characterize the radioactive aerosols in the stack effluents; Develop a tracer aerosol technique for validating particulate effluent sampling system performance; Evaluate the performance of the existing routine sampling systems and their compliance with the sponsor's criteria; and Recommend corrective action where required. The tracer aerosol approach to sampler evaluation was chosen because the low concentrations of radioactive particulates in the effluents would otherwise require much longer sampling times and thus more time to complete this evaluation. The following report describes the sampling systems that are the subject of this study and then details the experiments performed. The results are then presented and discussed. Much of the raw and finished data are included in the appendices

  19. Potentiality of an accounting system for nuclear materials in the PNC plutonium fuel facilities

    International Nuclear Information System (INIS)

    The accounting system based on data filing and inquiry processing by the use of an optical mark reader (OMR) has been developed and operated satisfactorily for criticality control and accountancy of nuclear materials in the plutonium facilities of the Power Reactor and Nuclear Fuel Development Corporation (PNC). The OMR system has merits, especially compared with an old chit and punch-card system, such as low cost, abundance of the data included on a single sheet, universality of use for all kinds of material transfers, ease of data correction, and a large capacity. The OMR system is applied to the material transfer and also for physical inventory taking. This system, together with the use of an accurate automatic balance equipped at each glove box, which is generally designated as an accounting unit for the criticality control, generated a MUF of 0.43% for a fuel fabrication campaign of 119 assemblies for a fast reactor, which can be decreased further. In relation to the recent safeguarding situation and also to fitting in with an automatic fuel fabrication process, however, a further development of the present system will be necessary in the near future. This future system is discussed with reference to criticism of the current accountancy system by Rosenbaum and others, and its possible framework with the emphasis on the weighing and reading of numbered items is suggested. (author)

  20. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    International Nuclear Information System (INIS)

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D and D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D and D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D and D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980

  1. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and

  2. Rough order of magnitude cost estimate for immobilization of 18.2 MT of plutonium using existing facilities at Hanford: alternatives 4A/8/10

    International Nuclear Information System (INIS)

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 18.2 metric tons (nominal) of plutonium as a ceramic in an existing facility, the Fuels and Materials Examination Facility (FMEF), at Hanford

  3. Nuclear structure studies using the high resolution spectrometer at the Los Alamos Clinton P. Anderson Meson Physics Facility. Progress report

    International Nuclear Information System (INIS)

    The research is concerned with obtaining detailed microscopic nuclear structure information (both ground state and excited state) through analyses of experimental data which have been, and which will be, obtained using the High Resolution Spectrometer (HRS) at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF). Five types of experimental/theoretical studies constitute the present research program: (1) those providing nucleon-nucleon (N-N) data which describe the free N-N interaction at small momentum transfer (the starting point for analyses based on the impulse approximation), (2) those providing data which determine how the nuclear medium modifies the free amplitudes (leading to effective amplitudes for analyses based on the impulse approximation), (3) those which provide data that validate fundamental ideas implicit in the formulation of the microscopic theories, (4) those which provide data to be analyzed to provide detailed nuclear structure information, and (5) those which provide critical evaluations of the formulations of the microscopic theories themselves

  4. Nuclear structure studies using the high resolution spectrometer at the Los Alamos Clinton P. Anderson Meson Physics Facility. Progress report

    International Nuclear Information System (INIS)

    This document constitutes a progress report (1984 to 1985) and renewal proposal for the ongoing medium energy nuclear physics research program. The research efforts were carried out with the High Resolution Spectrometer (HRS) at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) and at Brookhaven National Laboratory. The LAMPF research includes (1) p+ nucleus scattering data for a test of nonrelativistic and relativistic models of medium energy interaction; (2) data for nuclear structure information; (3) proton + nucleon data for the study of the fundamental nucleon-nucleon interaction; and (4) development of the above models. The Brookhaven work is a study of the formation and use of hypernuclei as a tool for nuclear studies. Individual reports are indexed separately

  5. Nuclear structure studies using the High Resolution Spectrometer at the Los Alamos Clinton P. Anderson Meson Physics Facility. Progress report

    International Nuclear Information System (INIS)

    The research described in this document is concerned with obtaining detailed microscopic nuclear structure information (both ground state and excited state) through analysis of experimental data which have been, and which will be, obtained using the High Resolution Spectrometer (HRS) at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF). Three types of experiments and related theoretical work constitute the research programs: (1) those which provide nucleon-nucleon data to determine the key amplitudes required for microscopic analysis of intermediate energy p-nucleus elastic and inelastic scattering data, (2) those which provide data that validate fundamental ideas implicit in the formulation of the microscopic theories, and (3) those which provide data to be analyzed to provide detailed nuclear structure information

  6. A Long-Pulse Spallation Source at Los Alamos: Facility description and preliminary neutronic performance for cold neutrons

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory has discussed installing a new 1-MW spallation neutron target station in an existing building at the end of its 800-MeV proton linear accelerator. Because the accelerator provides pulses of protons each about 1 msec in duration, the new source would be a Long Pulse Spallation Source (LPSS). The facility would employ vertical extraction of moderators and reflectors, and horizontal extraction of the spallation target. An LPSS uses coupled moderators rather than decoupled ones. There are potential gains of about a factor of 6 to 7 in the time-averaged neutron brightness for cold-neutron production from a coupled liquid H2 moderator compared to a decoupled one. However, these gains come at the expense of putting ''tails'' on the neutron pulses. The particulars of the neutron pulses from a moderator (e.g., energy-dependent rise times, peak intensities, pulse widths, and decay constant(s) of the tails) are crucial parameters for designing instruments and estimating their performance at an LPSS. Tungsten is the reference target material. Inconel 718 is the reference target canister and proton beam window material, with Al-6061 being the choice for the liquid H2 moderator canister and vacuum container. A 1-MW LPSS would have world-class neutronic performance. The authors describe the proposed Los Alamos LPSS facility, and show that, for cold neutrons, the calculated time-averaged neutronic performance of a liquid H2 moderator at the 1-MW LPSS is equivalent to about 1/4th the calculated neutronic performance of the best liquid D2 moderator at the Institute Laue-Langevin reactor. They show that the time-averaged moderator neutronic brightness increases as the size of the moderator gets smaller

  7. Los Alamos National Laboratory corregated metal pipe saw facility preliminary safety analysis report. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-09-19

    This Preliminary Safety Analysis Report addresses site assessment, facility design and construction, and design operation of the processing systems in the Corrugated Metal Pipe Saw Facility with respect to normal and abnormal conditions. Potential hazards are identified, credible accidents relative to the operation of the facility and the process systems are analyzed, and the consequences of postulated accidents are presented. The risk associated with normal operations, abnormal operations, and natural phenomena are analyzed. The accident analysis presented shows that the impact of the facility will be acceptable for all foreseeable normal and abnormal conditions of operation. Specifically, under normal conditions the facility will have impacts within the limits posted by applicable DOE guidelines, and in accident conditions the facility will similarly meet or exceed the requirements of all applicable standards. 16 figs., 6 tabs.

  8. The influence of plutonium concentration and solution flow rate on the effective capacity of macroporous anion exchange resin

    International Nuclear Information System (INIS)

    The principal aqueous process used to recover and purify plutonium at the Los Alamos Plutonium Facility is anion exchange in nitric acid. Previous studies with gel-type anion exchange resin have shown an inverse relationship between plutonium concentration in the feed solution and the optimum flow rate for this process. Because gel-type resin has been replaced with macroporous resin at Los Alamos, the relationship between plutonium concentration and solution flow rate was reexamined with the selected Lewatit MP-500-FK resin using solutions of plutonium in nitric acid and in nitric acid with high levels of added nitrate salts. Our results with this resin differ significantly from previous data obtained with gel-type resin. Flow-rate variation from 10 to 80 liters per hour had essentially no effect on the measured quantities of plutonium sorbed by the macroporous resin. However, the effect of plutonium concentration in the feed solutions was pronounced, as feed solutions that contained the highest concentrations of plutonium also produced the highest resin loadings. The most notable effect of high concentrations of dissolved nitrate salts in these solutions was an increased resin capacity for plutonium at low flow rates. 16 refs., 7 figs., 2 tabs

  9. Progress at LAMPF (Los Alamos Meson Physics Facility): Progress report, January-December 1986

    Energy Technology Data Exchange (ETDEWEB)

    Allred, J.C.; Talley, B. (eds.)

    1987-05-01

    Activities at LAMPF during the year of 1986 are summarized, including brief summaries of experiments in nuclear and particle physics, atomic and molecular physics, materials science, radiation-effects studies, biomedical research and instrumentation, nuclear chemistry, radioisotope production, and theory. The status of an advanced hadron facility currently under study is reported, as well as facility development and accelerator operations. (LEW)

  10. Progress at LAMPF [Los Alamos Meson Physics Facility]: Progress report, January-December 1986

    International Nuclear Information System (INIS)

    Activities at LAMPF during the year of 1986 are summarized, including brief summaries of experiments in nuclear and particle physics, atomic and molecular physics, materials science, radiation-effects studies, biomedical research and instrumentation, nuclear chemistry, radioisotope production, and theory. The status of an advanced hadron facility currently under study is reported, as well as facility development and accelerator operations

  11. Experience gained with nuclear material accounting and control in storage facility for plutonium dioxide of SChK radiochemical plant

    International Nuclear Information System (INIS)

    The task for the computerized accounting of containers at the storage with barcoding equipment for inventory taking has been performed at achieve the pre-commissioning phase. This gave the following upgrade: decrease of the time spent by the personnel in storage compartments with plutonium dioxide during inventory taking, this diminishing the dose for personnel; changeover from traditional record book to computerized accounting of nuclear materials at the storage, which will make it possible to include the local workstation of the storage into computer network for nuclear material (NM) accounting at the Radiochemical plant; test and improve technique for the use of barcoding equipment for further introduction at plants and storage facilities of the SChK. Works are underway for further improvement of the NM accounting at the storage for plutonium dioxide

  12. Plan for Developing and Implementing the LLNL Plutonium Facility and Packaging Program

    International Nuclear Information System (INIS)

    The LLNL Plutonium Facility uses glove boxes for performing operations involving special nuclear materials (SNM) that for the most part are not connected to each other. Having standalone glove boxes mandates bag-in and bag-out operations to provide personnel safety in material transfers. The use of inexpensive disposable primary and secondary containers (i.e., food pack and paint cans) decreases operational risks by reducing glove box transfers. Typically, containers consist of produce cans, paint cans, lard cans, and egg cans; however, some cans with bolted flanges have been used for protection from oxidation or to reduce dose to the handler. The lard cans and egg cans are slip lid cans and have predominantly been used for the outermost containment, or secondary can, in the packaging configuration. For non-weapon parts the packaging has generally been, from the inner most container to the outside container as (1) the primary can, (2) a bag-out bag, (3) a poultry bag, and (4) a secondary can. This system has evolved over many years and has proven to be effective. During FY2002 through FY2004, the ''Legacy'' material projects at LLNL inspected, repackaged and processed (if necessary), approximately 1500 items, which translates to at least 3000 containers (primary and secondary). There were no failed containers identified during this repacking campaign; however, a documented technical basis does not exist for LLNL's current packaging system. In addition, this system may not meet drop test criteria. To assure that material is packaged and stored safely and consistently, LLNL is developing criteria for packaging and storage of special nuclear materials, as well as the associated technical basis. This document describes the plan for developing these criteria, technical basis, and implementation of the approved packaging and storage plan

  13. Progress at LAMPF (Los Alamos Meson Physics Facility), January--December 1989

    Energy Technology Data Exchange (ETDEWEB)

    Poelakker, K. (ed.)

    1990-12-01

    This report contains brief papers on research conducted at the lampf facility in the following areas: nuclear and particle physics; astrophysics; atomic and molecular physics; materials science; nuclear chemistry; radiation effects and radioisotope production.

  14. Progress at LAMPF [Los Alamos Meson Physics Facility], January--December 1989

    International Nuclear Information System (INIS)

    This report contains brief papers on research conducted at the lampf facility in the following areas: nuclear and particle physics; astrophysics; atomic and molecular physics; materials science; nuclear chemistry; radiation effects and radioisotope production

  15. Dynamic analysis of nuclear excursions in underground repositories containing plutonium

    International Nuclear Information System (INIS)

    A recent study performed at the Los Alamos National Laboratory postulates that plutonium-239 stored in underground repositories could lead to a nuclear explosion of up to a few hundred gigajoules. The study suggests that plutonium originally contained in glass logs could escape its containment and disperse into the surrounding native rock of the repository. This dispersion would then lead to an autocatalytic process that ultimately would lead to a catastrophic nuclear explosion. A computer model that simulates this autocatalytic process has been developed at the Los Alamos Critical Experiments Facility. The model has been used to determine the fission yield of such an event and the effects of that yield on the repository. The goal of this work is to quantify the consequences of the autocatalytic process, not to determine the probability of such an event occurring

  16. Summary of the Los Alamos Spallation Radiation Effects Facility at LAMPF (LASREF)

    International Nuclear Information System (INIS)

    This paper describes the components and procedures in place at LASREF. It also lists the irradiation experiments performed. Active experiments, major results, and future plans are briefly described. The papers covering theoretical aspects, facility characterization/description and experiments at LASREF are listed

  17. End of an Era for the Los Alamos Critical Experiments Facility: History of critical assemblies and experiments (1946-2004)

    International Nuclear Information System (INIS)

    The Los Alamos Critical Experiments Facility (LACEF) was the last operational, general-purpose, critical-mass laboratory in the United States. The long history of remote operations and large-scale critical-mass experiments at LACEF began in 1948, and it effectively ended in July 8th, 2004, when the last critical experiment was performed on the Planet critical assembly. The experimental activities at the Pajarito Site began in April 1946 as a way to obtain subcritical measurements for weapons safety guidance. A year later, the first Kiva (a concrete-reinforced building) was constructed, and 18 months afterward the first remote critical operation was reported with the Topsy critical assembly. In the early years, the Pajarito Site primarily supported the weapons program; later, for almost 17 years, the neutronics of the Rover nuclear-propulsion program dominated activities at Pajarito Site. More recently, Pajarito Site added some new dimensions to its operations in order to support emergency response, the Nuclear Criticality Safety Program, and radiation-detection development. The long history of critical-assembly measurements and operations is documented in hundreds of peer-reviewed technical papers, laboratory reports, personal files, and video sessions with some of the pioneers. It is the intent of this paper to capture, in one single document, a summary and the highlights of the glorious days of this facility. In essence, this paper is a summary of the programs conducted in the last 58 years and of the numerous critical assemblies and reactors that operated at LACEF. It also provides a list of references to the reader who might want to learn more about this facility's rich history

  18. Assessment of plutonium storage safety issues at Department of Energy facilities

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) mission for utilization and storage of nuclear materials has recently changed as a result of the end of the ''Cold War'' era. Past and current plutonium storage practices largely reflect a temporary, in-process, or in-use storage condition which must now be changed to accommodate longer-term storage. This report summarizes information concerning current plutonium metal and oxide storage practices which was presented at the Office of Defense programs (DP) workshop in Albuquerque, New Mexico on May 26-27, 1993 and contained in responses to questions by DP-62 from the field organizations

  19. Assessment of plutonium storage safety issues at Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Department of Energy (DOE) mission for utilization and storage of nuclear materials has recently changed as a result of the end of the ``Cold War`` era. Past and current plutonium storage practices largely reflect a temporary, in-process, or in-use storage condition which must now be changed to accommodate longer-term storage. This report summarizes information concerning current plutonium metal and oxide storage practices which was presented at the Office of Defense programs (DP) workshop in Albuquerque, New Mexico on May 26-27, 1993 and contained in responses to questions by DP-62 from the field organizations.

  20. Dissolution of aerosol particles collected from nuclear facility plutonium production process

    International Nuclear Information System (INIS)

    A simple, robust analytical chemistry method has been developed to dissolve plutonium containing particles in a complex matrix. The aerosol particles collected on Marple cascade impactor substrates were shown to be dissolved completely with an acid mixture of 12 M HNO3 and 0.1 M HF. A pressurized closed vessel acid digestion technique was utilized to heat the samples at 130 deg C for 16 h to facilitate the digestion. The dissolution efficiency for plutonium particles was 99 %. The resulting particle digestate solution was suitable for trace elemental analysis and isotope composition determination, as well as radiochemistry measurements. (author)

  1. Vitrified magnesia dissolution and its impact on plutonium residue processing

    International Nuclear Information System (INIS)

    Aqueous chloride operations at the Los Alamos Plutonium Facility cannot directly dispose of acidic waste solutions because of compatibility problems with existing disposal lines. Consequently, all hydrochloric acid must be neutralized and filtered prior to exiting the facility. From a waste minimization standpoint, the use of spent magnesia pyrochemical crucibles as the acid neutralization agent is attractive since this process would take a stream destined for transuranic waste and use it as a reagent in routine plutonium residue processing. Since Los Alamos National Laboratory has several years of experience using magnesium hydroxide as a neutralizing agent for waste acid from plutonium processing activities, the use of spent magnesia pyrochemical crucibles appeared to be an attractive extension of this activity. In order to be competitive with magnesium hydroxide, however, size reduction of crucible shards had to be performed effectively within the constraints of glovebox operations, and acid neutralization time using crucible shards had to be comparable to neutralization times observed when using reagent-grade magnesium hydroxide. The study utilized non-plutonium-contaminated crucibles for equipment evaluation and selection and used nonradioactive acid solutions for completing the neutralization experiments. This paper discusses experience in defining appropriate size reduction equipment and presents results from using the magnesia crucibles for hydrochloric acid neutralization, a logical precursor to introduction into glovebox enclosures

  2. Measurement and modeling of gamma-absorbed doses due to atmospheric releases from Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    Short-term gamma-absorbed doses were measured by one high-pressure ionization chamber (HPIC) at an azimuth of 120 from the Los Alamos Meson Physics Facility (LAMPF) stack during the January 1 through February 8 operating cycle. Two HPICs were in the field during the September 8 through December 31 operating cycle, one north and the other north-northeast of the LAMPF stack, but they did not provide reliable data. Meteorological data were also measured at both East Gate and LAMPF. Airborne emission data were taken at the stack. Daily model predictions, based on the integration of modeled 15-min periods, were made for the first LAMPF operating cycle and were compared with the measured data. A comparison of the predicted and measured daily gamma doses due to LAMPF emissions is presented. There is very good correlation between measured and predicted values. During 39-day operating cycles, the model predicted an absorbed dose of 10.3 mrad compared with the 8.8 mrad that was measured, an overprediction of 17%

  3. Developing an expert system to control a beam line at the Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    High energy particle experiments require an accelerator as a source of high energy particles. To increase the productivity of an accelerator facility, we wish to develop an expert system to control beam lines. Expert Systems are a branch of Artificial Intelligence where a computer program performs tasks requiring human expertise. Unlike most expert systems we have a physical model underlying our beam line and this model can be used with the expert system to improve performance. The development of the expert system will lead to an increased understanding of the beam line as well as the possibility of state-of-the-art expert system building

  4. A vision for environmentally conscious plutonium processing

    Energy Technology Data Exchange (ETDEWEB)

    Avens, L.R.; Eller, P.G.; Christensen, D.C. [Los Alamos National Lab., NM (United States); Miller, W.L. [Univ. of Florida, Gainesville, FL (United States)

    1998-12-31

    Regardless of individual technical and political opinions about the uses of plutonium, it is virtually certain that plutonium processing will continue on a significant global scale for many decades for the purposes of national defense, nuclear power, and remediation. An unavoidable aspect of plutonium processing is that radioactively contaminated gas, liquid, and solid waste streams are generated. These streams need to be handled in a manner that not only is in full compliance with today`s laws but also will be considered environmentally and economically responsible now and in the future. In this regard, it is indeed ironic that the multibillion dollar and multidecade radioactive cleanup mortgage that the US Department of Energy (and its Russian counterpart) now owns resulted from waste management practices that were at the time in full legal compliance. It is now abundantly evident that in the long run, these practices have proven to be neither environmentally nor economically sound. Recent dramatic advances in actinide science and technology now make it possible to drastically minimize or even eliminate the problematic waste streams of traditional plutonium processing operations. Advanced technology thereby provides the means to avoid passing on to children and grandchildren significant environmental and economic legacies that traditional processing inevitably produces. The authors describe such a vision for plutonium processing that could be implemented fully within 5 yr at a facility such as the Los Alamos National Laboratory Plutonium Facility (TA55). As a significant bonus, even on this short timescale, the initial technology investment is handsomely returned in avoided waste management costs.

  5. High-Precision Plutonium Isotopic Compositions Measured on Los Alamos National Laboratory’s General’s Tanks Samples: Bearing on Model Ages, Reactor Modelling, and Sources of Material. Further Discussion of Chronometry

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Khalil J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rim, Jung Ho [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Porterfield, Donivan R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roback, Robert Clifford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanley, Floyd E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-29

    In this study, we re-analyzed late-1940’s, Manhattan Project era Plutonium-rich sludge samples recovered from the ''General’s Tanks'' located within the nation’s oldest Plutonium processing facility, Technical Area 21. These samples were initially characterized by lower accuracy, and lower precision mass spectrometric techniques. We report here information that was previously not discernable: the two tanks contain isotopically distinct Pu not only for the major (i.e., 240Pu, 239Pu) but trace (238Pu ,241Pu, 242Pu) isotopes. Revised isotopics slightly changed the calculated 241Am-241Pu model ages and interpretations.

  6. GrayQbTM Single-Faced Version 2 (SF2) Hanford Plutonium Reclamation Facility (PRF) deployment report

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, J. R. [Savannah River Site (SRS), Aiken, SC (United States); Immel, D. M. [Savannah River Site (SRS), Aiken, SC (United States); Serrato, M. G. [Savannah River Site (SRS), Aiken, SC (United States); Dalmaso, M. J. [Savannah River Site (SRS), Aiken, SC (United States); Shull, D. J. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-18

    The Savannah River National Laboratory (SRNL) in partnership with CH2M Plateau Remediation Company (CHPRC) deployed the GrayQbTM SF2 radiation imaging device at the Hanford Plutonium Reclamation Facility (PRF) to assist in the radiological characterization of the canyon. The deployment goal was to locate radiological contamination hot spots in the PRF canyon, where pencil tanks were removed and decontamination/debris removal operations are on-going, to support the CHPRC facility decontamination and decommissioning (D&D) effort. The PRF canyon D&D effort supports completion of the CHPRC Plutonium Finishing Plant Decommissioning Project. The GrayQbTM SF2 (Single Faced Version 2) is a non-destructive examination device developed by SRNL to generate radiation contour maps showing source locations and relative radiological levels present in the area under examination. The Hanford PRF GrayQbTM Deployment was sponsored by CH2M Plateau Remediation Company (CHPRC) through the DOE Richland Operations Office, Inter-Entity Work Order (IEWO), DOE-RL IEWO- M0SR900210.

  7. Validation of the method for determination of plutonium isotopes in urine samples and its application in a nuclear facility at Otwock

    Directory of Open Access Journals (Sweden)

    Rzemek Katarzyna

    2015-03-01

    Full Text Available The studies aimed at determining low activities of alpha radioactive elements are widely recognized as essential for the human health, because of their high radiotoxicity in case of internal contamination. Some groups of workers of nuclear facility at Otwock are potentially exposed to contamination with plutonium isotopes. For this reason, the method for determination of plutonium isotopes has been introduced and validated in Radiation Protection Measurements Laboratory (LPD of the National Centre for Nuclear Research (NCBJ. In this method the plutonium is isolated from a sample by coprecipitation with phosphates and separated on a AG 1-X2 Resin. After electrodeposition, the sample is measured by alpha spectrometry. Validation was performed in order to assess parameters such as: selectivity, accuracy (trueness and precision and linearity of the method. The results of plutonium determination in urine samples of persons potentially exposed to internal contamination are presented in this work.

  8. Development of advanced controlled-potential coulometry system for accountability analysis of plutonium in reprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Kuno, Takehiko; Sato, Soichi; Ikeda, Hisashi [Techinical Service Division, Tokai Reprocessing Center, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works; Holland, Micheal K.; Cordaro, Joseph V. [Westinghouse Savannah River Co., Aiken, SC (United States)

    2000-12-01

    A controlled-potential coulometry system (CPC) has been developed to analyze the accountability of plutonium products at the Tokai Reprocessing Plant (TRP). There has been demand to standardize CPC as highly accurate analysis method because, since 1995, the International organization for Standards (ISO) has been advocating ISO12183. To increase TRP's CPC system efficiency, a high performance potentiostat and a high performance coulometer (the principal measuring instruments used in the CPC system) were designed and constructed in collaboration with Westinghouse Savannah River Company (WSRC). Also, the optimization of the procedure was examined. As a results of these efforts, the latest CPC system (complying with ISO12183) has demonstrated long-term measurement reliability of up to 0.1% for 20 mg of plutonium. (author)

  9. Development of advanced controlled-potential coulometry system for accountability analysis of plutonium in reprocessing facility

    International Nuclear Information System (INIS)

    A controlled-potential coulometry system (CPC) has been developed to analyze the accountability of plutonium products at the Tokai Reprocessing Plant (TRP). There has been demand to standardize CPC as highly accurate analysis method because, since 1995, the International organization for Standards (ISO) has been advocating ISO12183. To increase TRP's CPC system efficiency, a high performance potentiostat and a high performance coulometer (the principal measuring instruments used in the CPC system) were designed and constructed in collaboration with Westinghouse Savannah River Company (WSRC). Also, the optimization of the procedure was examined. As a results of these efforts, the latest CPC system (complying with ISO12183) has demonstrated long-term measurement reliability of up to 0.1% for 20 mg of plutonium. (author)

  10. Rough order of magnitude cost estimate for immobilization of 18.2 MT of plutonium using new facilities at the Savannah River site: alternatives 3A/5A/6A/6B/7A/9A

    International Nuclear Information System (INIS)

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 18.2 metric tons (nominal) of plutonium using ceramic in a new facility at Savannah River Site (SRS)

  11. Aqueous nitrate flowsheet optimization and enhancement using the ATLAS facility

    International Nuclear Information System (INIS)

    The Advanced Testing Line for Actinide Separations (ATLAS) is a pilot plant of all aqueous nitrate plutonium recovery and purification operations within the Los Alamos Plutonium Facility. The main unit operations include dissolution, anion exchange, precipitations, evaporation, calcination, and waste stream polishing. In the current political environment, the emphasis has been redirected from the traditional goal of recovering a pure plutonium product to that of generating ''clean'' effluents while placing the plutonium into a form suitable for long term storage. The ATLAS facility is uniquely suited to fulfill this new role in the development and demonstration of new or revisited technologies. This report summarizes recent work in equipment improvements to the batch dissolver, an evaluation of homogeneous hydroxide precipitations, a demonstration of nitric acid recycle, and the preparation of neptunium and plutonium standards

  12. Addressing concerns related to geologic hazards at the site of the proposed Transuranic Waste Facility , TA-63, Los Alamos National Laboratory: focus on the current Los Alamos Seismic Network earthquake catalog, proximity of identified seismic events to the proposed facility , and evaluation of prev

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Peter M. [Los Alamos National Laboratory; Schultz-Fellenz, Emily S. [Los Alamos National Laboratory; Kelley, Richard E. [Los Alamos National Laboratory

    2012-04-02

    This technical paper presents the most recent and updated catalog of earthquakes measured by the Los Alamos Seismic Network at and around Los Alamos National Laboratory (LANL), with specific focus on the site of the proposed transuranic waste facility (TWF) at Technical Area 63 (TA-63). Any questions about the data presented herein, or about the Los Alamos Seismic Network, should be directed to the authors of this technical paper. LANL and the Los Alamos townsite sit atop the Pajarito Plateau, which is bounded on its western edge by the Pajarito fault system, a 35-mile-long system locally comprised of the down-to-the-east Pajarito fault (the master fault) and subsidiary down-to-the-west Rendija Canyon, Guaje Mountain, and Sawyer Canyon faults (Figure 1). This fault system forms the local active western margin of the Rio Grande rift near Los Alamos, and is potentially seismogenic (e.g., Gardner et al., 2001; Reneau et al., 2002; Lewis et al., 2009). The proposed TWF area at TA-63 is situated on an unnamed mesa in the north-central part of LANL between Twomile Canyon to the south, Ten Site Canyon to the north, and the headwaters of Canada del Buey to the east (Figure 2). The local bedrock is the Quaternary Bandelier Tuff, formed in two eruptive pulses from nearby Valles caldera, the eastern edge of which is located approximately 6.5 miles west-northwest of the technical area. The older member (Otowi Member) of the Bandelier Tuff has been dated at 1.61 Ma (Izett and Obradovich 1994). The younger member (Tshirege Member) of the Bandelier Tuff has been dated at 1.256 Ma (age from Phillips et al. 2007) and is widely exposed as the mesa-forming unit around Los Alamos. Several discrete cooling units comprise the Tshirege Member. Commonly accepted stratigraphic nomenclature for the Tshirege Member is described in detail by Broxton and Reneau (1995), Gardner et al. (2001), and Lewis et al. (2009). The Tshirege Member cooling unit exposed at the surface at TA-63 is Qbt3

  13. Status of decommissioning of the Plutonium Fuel Fabrication Facility and R and Ds of dismantling technologies for gloveboxes

    International Nuclear Information System (INIS)

    The Plutonium Fuel Fabrication Facility (PFFF) of the Plutonium Fuel Development Center in the Nuclear Fuel Cycle Engineering Laboratories of the Japan Atomic Energy Agency is now in its decommissioning phase. In the PFFF, development of MOX fuel fabrication technologies had been conduced through MOX fuel fabrication for reactors. Now, terminated gloveboxes have been dismantled. Gloveboxes to be dismantled are surrounded by a plastic enclosure to prevent from spreading contamination into process room. In this plastic enclosure, dismantling operations for gloveboxes are performed manually by workers, each wearing an air-feed suit. This dismantling methodology is technically well-established and relatively easy to implement. However, the mental and physical loads placed on workers wearing the air-feed suits are intensively high. Therefore, R and Ds on new dismantling technologies including utilization of heavy machines covered with plastic enclosure for anti-contamination have been started to reduce the potential risks associated with workers and decommissioning costs. This paper describes the status of decommissioning of the PFFF and the overview of developed dismantling technologies for α-tight gloveboxes. (author)

  14. An improved, computer-based, on-line gamma monitor for plutonium anion exchange process control

    International Nuclear Information System (INIS)

    An improved, low-cost, computer-based system has replaced a previously developed on-line gamma monitor. Both instruments continuously profile uranium, plutonium, and americium in the nitrate anion exchange process used to recover and purify plutonium at the Los Alamos Plutonium Facility. The latest system incorporates a personal computer that provides full-feature multichannel analyzer (MCA) capabilities by means of a single-slot, plug-in integrated circuit board. In addition to controlling all MCA functions, the computer program continuously corrects for gain shift and performs all other data processing functions. This Plutonium Recovery Operations Gamma Ray Energy Spectrometer System (PROGRESS) provides on-line process operational data essential for efficient operation. By identifying abnormal conditions in real time, it allows operators to take corrective actions promptly. The decision-making capability of the computer will be of increasing value as we implement automated process-control functions in the future. 4 refs., 6 figs

  15. Stop plutonium; Stop plutonium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    This press document aims to inform the public on the hazards bound to the plutonium exploitation in France and especially the plutonium transport. The first part is a technical presentation of the plutonium and the MOX (Mixed Oxide Fuel). The second part presents the installation of the plutonium industry in France. The third part is devoted to the plutonium convoys safety. The highlight is done on the problem of the leak of ''secret'' of such transports. (A.L.B.)

  16. Nuclear accident dosimetry: Los Alamos measurements at the seventeenth nuclear accident dosimetry intercomparison study at the Oak Ridge National Lab., DOSAR Facility, August 1980

    International Nuclear Information System (INIS)

    Teams from various US and foreign organizations participated in the Seventeenth Nuclear Accident Dosimetry Study held at the Oak Ridge National Laboratory's (ORNL) Dosimetry Applications Research (DOSAR) facility August 11 to 15, 1980. Criticality dosimeters were simultaneously exposed to pulses of mixed neutron and gamma radiation from the Health Physics Research Reactor (HPRR). This report summarizes the experimental work conducted by the Los Alamos team. In-air and phantom measurements were conducted by the Los Alamos team using area and personnel dosimeters. Combined blood sodium and sulfur fluence measurements of absorbed dose were also made. In addition, indium foils placed on phantoms were evaluated for the purpose of screening personnel for radiation exposure. All measurements were conducted for unshielded, 5-cm steel and 20-cm concrete shielding configurations. All participant dosimeters were exposed at 3 m from the center of the HPRR core

  17. Dechlorination, dissolution and purification of weapon grade plutonium oxide contaminated with chlorides: tests performed in the CEA Atalante Facility for the aqueous polishing part of MOX Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    During the first two to three years of operation, the MOX Fuel Fabrication Facility (MFFF) designed by Duke Cogema Stone and Webster (DCS) will receive and process low grade plutonium oxide from alternate feedstock (AFS). Some of this feedstock does not meet the specifications of material normally processed by MFFF, high grade plutonium oxide from the Pit Disassembly and Conversion Facility (PDCF). To validate the process selection and design parameters, DCS has requested the CEA (Acronym for French Atomic Energy Commission) to perform laboratory scale active tests using with weapons grade Plutonium oxide contaminated with chloride and other metallic impurities. Dechlorination, silver(II) dissolution and purification active tests have been performed in CEA Atalante Facility at Marcoule France with the same process parameters than the MFFF design parameters. The aim of this paper is to present the feed characteristics, the tests conditions and the tests results. (authors)

  18. Report of an investigation into deterioration of the Plutonium Fuel Form Fabrication Facility (PuFF) at the DOE Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This investigations of the Savannah River Site's Plutonium Fuel Form fabrication facility located in Building 235-F was initiated in April 1991. The purpose of the investigation was to determine whether, as has been alleged, operation of the facility's argon inert gas system was terminated with the knowledge that continued inoperability of the argon system would cause accelerated corrosion damage to the equipment in the plutonium 238 processing cells. The investigation quickly established that the decision to discontinue operation of the argon system, by not repairing it, was merely one of the measures, and not the most important one, which led to the current deteriorated state of the facility. As a result, the scope of the investigation was broadened to more identify and assess those factors which contributed to the facility's current condition. This document discusses the backgrounds, results, and recommendations of this investigation.

  19. Report of an investigation into deterioration of the Plutonium Fuel Form Fabrication Facility (PuFF) at the DOE Savannah River Site

    International Nuclear Information System (INIS)

    This investigations of the Savannah River Site's Plutonium Fuel Form fabrication facility located in Building 235-F was initiated in April 1991. The purpose of the investigation was to determine whether, as has been alleged, operation of the facility's argon inert gas system was terminated with the knowledge that continued inoperability of the argon system would cause accelerated corrosion damage to the equipment in the plutonium 238 processing cells. The investigation quickly established that the decision to discontinue operation of the argon system, by not repairing it, was merely one of the measures, and not the most important one, which led to the current deteriorated state of the facility. As a result, the scope of the investigation was broadened to more identify and assess those factors which contributed to the facility's current condition. This document discusses the backgrounds, results, and recommendations of this investigation

  20. Coordinated safeguards for materials management in a uranium--plutonium nitrate-to-oxide coconversion facility: Coprecal

    International Nuclear Information System (INIS)

    This report describes the conceptual design of an advanced materials-management system for safeguarding special nuclear materials in a uranium--plutonium nitrate-to-oxide coconversion facility based on the Coprecal process. Design concepts are presented for near real-time (dynamic) accountability by forming dynamic materials balances from information provided by chemical and nondestructive analyses and from process-control instrumentation. Modeling and simulation techniques are used to compare the sensitivities of proposed dynamic materials accounting strategies to both abrupt and protracted diversion. The safeguards implications of coconversion as well as some unique features of the reference process are discussed and design criteria are identified to improve the safeguardability of the Coprecal coconversion process

  1. Mission for the study of radiation protection and hygiene for residents around mayak plutonium production facilities in Russia 2000

    International Nuclear Information System (INIS)

    A Mission to St. Petersburg and Chelyabinsk was carried out for the study of radiation protection and hygiene for residents in nuclear contaminated territories around Mayak plutonium production facilities of Russian Federation from Hiroshima between March 30 and May 13, 2000. A Japanese scientist studied this topic and exchanged scientific information with Institute of Radiation Hygiene, Research Institute for Industrial and Marine Medicine and Urals Research Center for Radiation Medicine. Radiological fieldwork was carried our in a settlement along Techa River and in two settlements of Urals Radioactive Trace in collaborations with local scientists, governments, and residents in southern Urals. A general report on the whole mission will be presented in the workshop. (author)

  2. Performance of prototype authentication equipment for A C/S system at the Plutonium Fuel Production Facility

    International Nuclear Information System (INIS)

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) designed an Advanced Containment and Surveillance System (A C/S) for its Plutonium Fuel Production facility at Tokai-Mura, Japan. PNC entered into an agreement with the US Department of Energy (DOE) to have Sandia National Laboratories (SNL) develop options for authenticating the information provided by the A C/S System, as well as to develop PNC-selected hardware for demonstration purposes. The equipment was installed in the early summer of 1989, and has undergone performance evaluation since that time. The key technologies being evaluated include authentication item monitoring, video and digital signal authentication, and event data logging, plus the system integration of these components. A review of the performance of this equipment will be highlighted. 3 refs., 4 figs

  3. Storage for the Fast Flux Test Facility unirradiated fuel in the Plutonium Finishing Plant Complex, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    This Environmental Assessment evaluates the proposed action to relocate and store unirradiated Fast Flux Test Facility fuel in the Plutonium Finishing Plant Complex on the Hanford Site, Richland, Washington. The US Department of Energy has decided to cease fuel fabrication activities in the 308 Building in the 300 Area. This decision was based on a safety concern over the ability of the fuel fabrication portion of the 308 Building to withstand a seismic event. The proposed action to relocate and store the fuel is based on the savings that could be realized by consolidating security costs associated with storage of the fuel. While the 308 Building belowgrade fuel storage areas are not at jeopardy by a seismic event, the US Department of Energy is proposing to cease storage operations along with the related fabrication operations. The US Department of Energy proposes to remove the unirradiated fuel pins and fuel assemblies from the 308 Building and store them in Room 192A, within the 234-5Z Building, a part of the Plutonium Finishing Plant Complex, located in the 200 West Area. Minor modifications to Room 192A would be required to accommodate placement of the fuel. The US Department of Energy estimates that removing all of the fuel from the 308 Building would save $6.5 million annually in security expenditures for the Fast Flux Test Facility. Environmental impacts of construction, relocation, and operation of the proposed action and alternatives were evaluated. This evaluation concluded that the proposed action would have no significant impacts on the human environment

  4. The Challenges of Preserving Historic Resources During the Deactivation and Decommissioning of Highly Contaminated Historically Significant Plutonium Process Facilities

    International Nuclear Information System (INIS)

    The Manhattan Project was initiated to develop nuclear weapons for use in World War II. The Hanford Engineer Works (HEW) was established in eastern Washington State as a production complex for the Manhattan Project. A major product of the HEW was plutonium. The buildings and process equipment used in the early phases of nuclear weapons development are historically significant because of the new and unique work that was performed. When environmental cleanup became Hanford's central mission in 1991, the Department of Energy (DOE) prepared for the deactivation and decommissioning of many of the old process facilities. In many cases, the process facilities were so contaminated, they faced demolition. The National Historic Preservation Act (NHPA) requires federal agencies to evaluate the historic significance of properties under their jurisdiction for eligibility for inclusion in the National Register of Historic Places before altering or demolishing them so that mitigation through documentation of the properties can occur. Specifically, federal agencies are required to evaluate their proposed actions against the effect the actions may have on districts, sites, buildings or structures that are included or eligible for inclusion in the National Register. In an agreement between the DOE's Richland Operations Office (RL), the Washington State Historic Preservation Office (SHPO) and the Advisory Council on Historic Preservation (ACHP), the agencies concurred that the Hanford Site Historic District is eligible for listing on the National Register of Historic Places and that a Site-wide Treatment Plan would streamline compliance with the NHPA while allowing RL to manage the cleanup of the Hanford Site. Currently, many of the old processing buildings at the Plutonium Finishing Plant (PFP) are undergoing deactivation and decommissioning. RL and Fluor Hanford project managers at the PFP are committed to preserving historical artifacts of the plutonium production process. They

  5. Basic design study on plutonium electro-refining facility of oxide fuel pyroelectrochemical reprocessing

    International Nuclear Information System (INIS)

    The test facility basic design, utility necessity and estimation cost of the Oxide Fuel Pyro-process for the use of Chemical Processing Facility (CPF) of JNC have been studied with the information of the previous year concept study and the additional conditions. Drastic down sizing design change or the building reconstruction is necessary to place the Oxide Fuel Pyro-process Facility in the laboratory ''C'', because it is not possible to reserve enough maintenance space and the weight of the facility is over the acceptable limit of the building. A further study such as facility down sizing, apparatus detail design and experiment detail process treatment has to be planned. (author)

  6. EIS Data Call Report: Plutonium immobilization plant using glass in new facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources and, through a glass immobilization process, converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. This immobilization process is shown conceptually in Figure 1-1. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors

  7. Progress on plutonium stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, D. [Defense Nuclear Facilities Safety Board, Washington, DC (United States)

    1996-05-01

    The Defense Nuclear Facilities Safety Board has safety oversight responsibility for most of the facilities where unstable forms of plutonium are being processed and packaged for interim storage. The Board has issued recommendations on plutonium stabilization and has has a considerable influence on DOE`s stabilization schedules and priorities. The Board has not made any recommendations on long-term plutonium disposition, although it may get more involved in the future if DOE develops plans to use defense nuclear facilities for disposition activities.

  8. Characterization of plutonium aerosols from an industrial mixed-oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Samples of the aerosols present in a glove box during a plutonium oxide and uranium oxide powder mixing operation were taken with a small seven-stage cascade impactor to determine the aerodynamic size distribution and concentration and with a Lovelace Aerosol Particle Separator (LAPS) to study the characteristics of the particles with respect to aerodynamic equivalent size. Using alpha spectroscopy, it was found that about 11 percent of the alpha activity of the aerosol was associated with 241Am. The size distributions measured with the cascade impactor had activity median aerodynamic diameters (AMAD) equal to 1.9 +- 0.3 (S.D.) μm and geometric standard deviations (sigma/sub g/) equal to 1.59 +- 0.07 with alpha activity concentrations best expressed as log-normally distributed with median of 45 nCi/l and geometric standard deviation of 1.8. (U.S.)

  9. Developments in the treatment of solid alpha-bearing wastes at the PNC plutonium fuel facilities

    International Nuclear Information System (INIS)

    Some results of experiments done in PNC are presented on volume reduction technics for alpha-bearing wastes. A pilot wood milling machine automatically mills the plywood frames of nipple connected HEPA filters, which result in fine sized wooden chips, two nipples and the filter components. The filter components are melted in an induction furnace to be homogeneous solids. These methods and incineration of wooden chips reduce the stored volume of HEPA filters to 1/50 -- 1/100. PVC and neoprene rubber are decomposed in concentrated sulfuric acid, followed by oxidation with nitric acid. The acid digestion process generates chlorine-rich gas, from which only chlorine is selectively absorbed in water. An alpha-bearing vessel and a glovebox are cut at their installed places without spread of plutonium contamination outside the greenhouses. (auth.)

  10. Program management assessment of Federal Facility Compliance Agreement regarding CAA-40 C.F.R. Part 61, Subpart H at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    An assessment of Los Alamos National Laboratory`s management system related to facility compliance with an element of the Clean Air Act was performed under contract by a team from Northern Arizona University. More specifically, a Federal Facilities Compliance Agreement (FFCA) was established in 1996 to bring the Laboratory into compliance with emissions standards of radionuclides, commonly referred to as Rad/NESHAP. In the fall of 1996, the four-person team of experienced environmental managers evaluated the adequacy of relevant management systems to implement the FFCA provisions. The assessment process utilized multiple procedures including document review, personnel interviews and re-interviews, and facility observations. The management system assessment was completed with a meeting among team members, Laboratory officials and others on November 1, 1996 and preparation of an assessment report.

  11. Program management assessment of Federal Facility Compliance Agreement regarding CAA-40 C.F.R. Part 61, Subpart H at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    An assessment of Los Alamos National Laboratory's management system related to facility compliance with an element of the Clean Air Act was performed under contract by a team from Northern Arizona University. More specifically, a Federal Facilities Compliance Agreement (FFCA) was established in 1996 to bring the Laboratory into compliance with emissions standards of radionuclides, commonly referred to as Rad/NESHAP. In the fall of 1996, the four-person team of experienced environmental managers evaluated the adequacy of relevant management systems to implement the FFCA provisions. The assessment process utilized multiple procedures including document review, personnel interviews and re-interviews, and facility observations. The management system assessment was completed with a meeting among team members, Laboratory officials and others on November 1, 1996 and preparation of an assessment report

  12. Plutonium microstructures. Part 1

    International Nuclear Information System (INIS)

    This report is the first of three parts in which Los Alamos and Lawrence Livermore National Laboratory metallographers exhibit a consolidated set of illustrations of inclusions that are seen in plutonium metal as a consequence of inherent and tramp impurities, alloy additions, and thermal or mechanical treatments. This part includes illustrations of nonmetallic and intermetallic inclusions characteristic of major impurity elements as an aid to identifying unknowns. It also describes historical aspects of the increased purity of laboratory plutonium samples, and it gives the composition of the etchant solutions and describes the etching procedure used in the preparation of each illustrated sample. 25 figures

  13. Nuclear-structure studies using the high-resolution spectrometer at the Los Alamos Clinton P. Anderson Meson Physics Facility. Progress report

    International Nuclear Information System (INIS)

    This document contains a description of the ongoing medium-energy nuclear-physics research program supported by the US Department of Energy with The University of Texas at Austin. A major part of the work is associated with research done using the High Resolution Spectrometer (HRS) at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF); this research focuses on: (1) providing data which test microscopic models of the medium - energy proton + nucleus interaction; (2) providing data which are to be analyzed to provide new nuclear-structure information (both ground state and excited state); and (3) developing and improving the models themselves. Publications are listed

  14. EIS Data Call Report: Plutonium immobilization plant using ceramic in new facilities at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    DiSabatino, A.

    1998-06-01

    The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. This immobilization process is shown conceptually in Figure 1-1. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors. The ceramic immobilization alternative presented in this report consists of first converting the surplus material to an oxide, followed by incorporating the plutonium oxide into a titanate-based ceramic material that is placed in metal cans.

  15. EIS Data Call Report: Plutonium immobilization plant using ceramic in new facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. This immobilization process is shown conceptually in Figure 1-1. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors. The ceramic immobilization alternative presented in this report consists of first converting the surplus material to an oxide, followed by incorporating the plutonium oxide into a titanate-based ceramic material that is placed in metal cans

  16. Plutonium storage criteria

    Energy Technology Data Exchange (ETDEWEB)

    Chung, D. [Scientech, Inc., Germantown, MD (United States); Ascanio, X. [Dept. of Energy, Germantown, MD (United States)

    1996-05-01

    The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less than 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.

  17. Pilot studies to achieve waste minimization and enhance radioactive liquid waste treatment at the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    The Radioactive and Industrial Wastewater Science Group manages and operates the Radioactive Liquid Waste Treatment Facility (RLWTF) at the Los Alamos National Laboratory (LANL). The RLWTF treats low-level radioactive liquid waste generated by research and analytical facilities at approximately 35 technical areas throughout the 43-square-mile site. The RLWTF treats an average of 5.8 million gallons (21.8-million liters) of liquid waste annually. Clarifloculation and filtration is the primary treatment technology used by the RLWTF. This technology has been used since the RLWTF became operable in 1963. Last year the RLWTF achieved an average of 99.7% removal of gross alpha activity in the waste stream. The treatment process requires the addition of chemicals for the flocculation and subsequent precipitation of radionuclides. The resultant sludge generated during this process is solidified in drums and stored or disposed of at LANL

  18. Plutonium fires

    International Nuclear Information System (INIS)

    The author reports an information survey on accidents which occurred when handling plutonium. He first addresses accidents reported in documents. He indicates the circumstances and consequences of these accidents (explosion in glove boxes, fires of plutonium chips, plutonium fire followed by filter destruction, explosion during plutonium chip dissolution followed by chip fire). He describes hazards associated with plutonium fires: atmosphere and surface contamination, criticality. The author gives some advices to avoid plutonium fires. These advices concern electric installations, the use of flammable solvents, general cautions associated with plutonium handling, venting and filtration. He finally describes how to fight plutonium fires, and measures to be taken after the fire (staff contamination control, atmosphere control)

  19. Seismic risk analysis for General Electric Plutonium Facility, Pleasanton, California. Final report, part II

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-27

    This report is the second of a two part study addressing the seismic risk or hazard of the special nuclear materials (SNM) facility of the General Electric Vallecitos Nuclear Center at Pleasanton, California. The Part I companion to this report, dated July 31, 1978, presented the seismic hazard at the site that resulted from exposure to earthquakes on the Calaveras, Hayward, San Andreas and, additionally, from smaller unassociated earthquakes that could not be attributed to these specific faults. However, while this study was in progress, certain additional geologic information became available that could be interpreted in terms of the existance of a nearby fault. Although substantial geologic investigations were subsequently deployed, the existance of this postulated fault, called the Verona Fault, remained very controversial. The purpose of the Part II study was to assume the existance of such a capable fault and, under this assumption, to examine the loads that the fault could impose on the SNM facility. This report first reviews the geologic setting with a focus on specifying sufficient geologic parameters to characterize the postulated fault. The report next presents the methodology used to calculate the vibratory ground motion hazard. Because of the complexity of the fault geometry, a slightly different methodology is used here compared to the Part I report. This section ends with the results of the calculation applied to the SNM facility. Finally, the report presents the methodology and results of the rupture hazard calculation.

  20. Design of the plutonium facility for animal experiments and its management experience

    International Nuclear Information System (INIS)

    Design and radiation control of authors' facility which was made as a nuclear fuel laboratory for animal experiments were described. Before construction, the animals thought to be used were rats, mice, beagle dogs and monkeys. 239Pu and certain other radioisotopes were to be used. At present, 200 dogs and 1800 small animals can be maintained. The points for design were tolerability against quake, reduced-pressure management and permanent storage of waste containing Pu. The facility building composed from 2nd, 4th, and 6th laboratory floors and between them, from the so-called mechanical floors which are spaces for ducts. The latter floors are quite useful. The system for reduced pressure is of 3 patterns of rooms without hood, with ordinary hood and with air-curtain hood. For animal maintenance, there are 3 types of maintenance means: Glove box, hood and ordinary animal room. There are drainage equipment where Pu can be removed by precipitation and charcoal adsorption and incineration equipment which is necessary for reducing the waste volume. In the latter, HEPA filters are finally used for releasing the gas. There is no particular problem in the radiation control. For the personnel control, lung-monitoring is performed before and at the end of personnel registration. Environmental monitoring of Pu is optionally performed. Removal of Pu particles generated in the inhalation experiments could be attained by the use of ULPA and HEPA filters to the level less than 1/1017 times the reference level. Keeping the technology level enough high for facility maintenance and management was considered to be important at present and in future. (K.H.)

  1. Innovations in Los Alamos alpha box design

    International Nuclear Information System (INIS)

    Destructive examinations of irradiated fuel pins containing plutonium fuel must be performed in shielded hot cells with strict provisions for containing the plutonium. Alpha boxes provide containment for the plutonium, toxic fission products, and other hazardous highly radioactive materials. The alpha box contains windows for viewing and a variety of transfer systems specially designed to allow transfers in and out of the alpha box without spread of the hazardous materials that are contained in the box. Alpha boxes have been in use in the Wing 9 hot cells at Los Alamos National Laboratory for more than 20 years. Features of the newly designed alpha boxes are presented

  2. Innovations in Los Alamos alpha box design

    Energy Technology Data Exchange (ETDEWEB)

    Ledbetter, J.M.; Dowler, K.E.; Cook, J.H.

    1985-01-01

    Destructive examinations of irradiated fuel pins containing plutonium fuel must be performed in shielded hot cells with strict provisions for containing the plutonium. Alpha boxes provide containment for the plutonium, toxic fission products, and other hazardous highly radioactive materials. The alpha box contains windows for viewing and a variety of transfer systems specially designed to allow transfers in and out of the alpha box without spread of the hazardous materials that are contained in the box. Alpha boxes have been in use in the Wing 9 hot cells at Los Alamos National Laboratory for more than 20 years. Features of the newly designed alpha boxes are presented.

  3. Nuclear structure studies using the high resolution spectrometer at the Los Alamos Clinton P. Anderson Meson Physics Facility: Progress report, [1986-1987

    International Nuclear Information System (INIS)

    A major part of the work done this past year was associated with research conducted at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS) and the External Proton Beam (EPB). The research focussed on (1) providing p + nucleus data which test nonrelativistic and relativistic models of the medium energy proton + nucleus interaction, (2) providing (p,p) and (p,n) data which are to be analyzed to provide new nuclear structure information (both ground state and excited state), (3) providing nucleon + nucleon data to aid in the systematic study of the fundamental nucleon-nucleon interaction, (4) developing and improving the pA models themselves, and (5) initiating new experimental programs whose goals are to search for new phenomena in nuclear physics

  4. Status of plutonium recycle from mixed oxide fuel fabrication wastes (U,Pu)O2 facility activities

    International Nuclear Information System (INIS)

    Within the specific subject of mixed oxides corresponding to the Fuel Cycle activities performed at CNEA, the recovery of plutonium from wastes originated during tests and pre-fabrication stages is performed. (author)

  5. Stop plutonium

    International Nuclear Information System (INIS)

    This press document aims to inform the public on the hazards bound to the plutonium exploitation in France and especially the plutonium transport. The first part is a technical presentation of the plutonium and the MOX (Mixed Oxide Fuel). The second part presents the installation of the plutonium industry in France. The third part is devoted to the plutonium convoys safety. The highlight is done on the problem of the leak of ''secret'' of such transports. (A.L.B.)

  6. Los Alamos science. Volume 4, No. 7

    International Nuclear Information System (INIS)

    A history of the Los Alamos National Laboratory over its 40 years is presented. The evolution of the laboratory is broken down into the Oppenheimer years, the Bradbury years, the Agnew years and the Kerr years. The weapons program is described including nuclear data, early reactors, computing and computers, plutonium, criticality, weapon design and field testing

  7. Floristic composition and plant succession on near-surface radioactive-waste-disposal facilities in the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, G.D.; Foxx, T.S.

    1982-03-01

    Since 1946, low-level radioactive waste has been buried in shallow landfills within the confines of the Los Alamos National Laboratory. Five of these sites were studied for plant composition and successional patterns by reconnaissance and vegetation mapping. The data show a slow rate of recovery for all sites, regardless of age, in both the pinon-juniper and ponderosa pine communities. The sites are not comparable in succession or composition because of location and previous land use. The two oldest sites have the highest species diversity and the only mature trees. All sites allowed to revegetate naturally tend to be colonized by the same species that originally surrounded the sites. Sites on historic fields are colonized by the old field flora, whereas those in areas disturbed only by grazing are revegetated by the local native flora.

  8. Floristic composition and plant succession on near-surface radioactive-waste-disposal facilities in the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Since 1946, low-level radioactive waste has been buried in shallow landfills within the confines of the Los Alamos National Laboratory. Five of these sites were studied for plant composition and successional patterns by reconnaissance and vegetation mapping. The data show a slow rate of recovery for all sites, regardless of age, in both the pinon-juniper and ponderosa pine communities. The sites are not comparable in succession or composition because of location and previous land use. The two oldest sites have the highest species diversity and the only mature trees. All sites allowed to revegetate naturally tend to be colonized by the same species that originally surrounded the sites. Sites on historic fields are colonized by the old field flora, whereas those in areas disturbed only by grazing are revegetated by the local native flora

  9. Review of the geological and structural setting near the site of the proposed Transuranic Waste Facility (TRUWF) Technical Area 52 (TA-52), Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schultz-Fellenz, Emily S.; Gardner, Jamie N.

    2007-10-01

    Because of Los Alamos National Laboratory’s proximal location to active geologic structures, assessment of seismic hazards, including the potential for seismic surface rupture, must occur before construction of any facilities housing nuclear or other hazardous materials. A transuranic waste facility (TRUWF) planned for construction at Technical Area 52 (TA-52) provides the impetus for this report. Although no single seismic hazards field investigation has focused specifically on TA-52, numerous studies at technical areas surrounding TA-52 have shown no significant, laterally continuous faults exhibiting activity in the last 10 ka within 3,000 ft of the proposed facility. A site-specific field study at the footprint of the proposed TRUWF would not yield further high-precision data on possible Holocene faulting at the site because post-Bandelier Tuff sediments are lacking and the shallowest subunit contacts of the Bandelier Tuff are gradational. Given the distal location of the proposed TRUWF to any mapped structures with demonstrable Holocene displacement, surface rupture potential appears minimal at TA-52.

  10. Plutonium generated by commercial reactors presents danger

    International Nuclear Information System (INIS)

    This article summarizes a 1995 keynote address by Dr. Paul Cunningham, Program Director for Nuclear Materials at Los Alamos National Laboratory which highlights the growing plutonium problem. Plutonium production for weapons use has ceased in the US and the former Soviet Union, but the production in commercial reactors, where it is considered a waste product, continues. The amount of plutonium already existing in spent reactor fuel is 5 times as large as the amount both countries have for their weapons. One solution is to use plutonium to generate power

  11. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

  12. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility

  13. Development of weld closure stations for plutonium long-term storage containers

    International Nuclear Information System (INIS)

    Weld closure stations for plutonium long-term storage containers have been designed, fabricated, and tested for the Advanced Recovery and Integrated Extraction System (ARIES) at the TA-55 Plutonium Facility of the Los Alamos National Laboratory. ARIES is a processing system used for the dismantlement of the plutonium pits from nuclear weapons. ARIES prepares the extracted-plutonium in a form which is compatible with long-term storage and disposition options and meets international inspection requirements. The processed plutonium is delivered to the canning module of the ARIES line, where it is packaged in a stainless steel container. This container is then packaged in a secondary container for long-term storage. Each of the containers is hermetically sealed with a full penetration weld closure that meets the requirements of the ASME Section IX Boiler and Pressure Vessel Code. Welding is performed with a gas tungsten arc process in an inert atmosphere of helium. The encapsulated helium in the nested containers allows for leak testing the weld closure and container. The storage package was designed to meet packaging requirements of DOE Standard 3013-96 for long-term storage of plutonium metal and oxides. Development of the process parameters, weld fixture, weld qualification, and the welding chambers is discussed in this paper

  14. Fine tuning of a measurement control program at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    This paper suggests a revised measurement control program (MCP) for balance at the Los Alamos National Laboratory plutonium facility. The revised MCP is based on an analysis of data taken from June 1981 through August 1983. The most important finding is that significant measurement bias occurs in nearly every balance. An important cause of this bias has been traced to truncation errors, and a detailed discussion of the effects of truncation errors is presented. We also discuss other sources of bias and their resolution, and finally, we suggest methods for determining accuracy, precision, and randomness of measurements of weights and the response to failures of statistical tests

  15. Plutonium Vulnerability Management Plan

    International Nuclear Information System (INIS)

    This Plutonium Vulnerability Management Plan describes the Department of Energy's response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department's Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B

  16. Atmospheric deposition, resuspension and root uptake of plutonium in corn and other grain-producing agroecosystems near a nuclear fuel facility

    International Nuclear Information System (INIS)

    Plutonium released to the environment may contribute to dose to humans through inhalation or ingestion of contaminated foodstuffs. Plutonium contamination of agricultural plants may result from interception and retention of atmospheric deposition, resuspension of Pu-bearing soil particles to plant surfaces, and root uptake and translocation to grain. Plutonium on vegetation surfaces may be transferred to grain surfaces during mechanical harvesting. Data obtained from corn grown near the US Department of Energy's H-Area nuclear fuel chemical separations facility on the Savannah River Site was used to estimated parameters of a simple model of Pu transport in agroecosystems. The parameter estimates for corn were compared to those previously obtained for wheat and soybeans. Despite some differences in parameter estimates among crops, the relative importances of atmospheric deposition, resuspension and root uptake were similar among crops. For even small deposition rates, the relative importances of processes for Pu contamination of corn grain should be: transfer of atmospheric deposition from vegetation surfaces to grain surfaces during combining > resuspension of soil to grain surfaces > root uptake. Approximately 3.9 x 10-5 of a year's atmospheric deposition is transferred to grain. Approximately 6.2 x 10-9 of the Pu inventory in the soil is resuspended to corn grain, and a further 7.3 x 10-10 of the soil inventory is absorbed by roots and translocated to grains

  17. Rough order of magnitude cost estimate for immobilization of 18.2 MT of plutonium using existing facilities at the Savannah River site: alternatives 3B/5B/6C/6D/7B/9B

    International Nuclear Information System (INIS)

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 18.2 metric tons (nominal) of plutonium using ceramic in an existing facility (221-F) at Savannah River Site (SRS)

  18. Accident investigation board report on the May 14, 1997, chemical explosion at the Plutonium Reclamation Facility, Hanford Site,Richland, Washington - final report

    International Nuclear Information System (INIS)

    On May 14, 1997, at 7:53 p.m. (PDT), a chemical explosion occur-red in Tank A- 109 in Room 40 of the Plutonium Reclamation Facility (Facility) located in the 200 West Area of the Hanford Site, approximately 30 miles north of Richland, Washington. The inactive processing Facility is part of the Plutonium Finishing Plant (PFP). On May 16, 1997, Lloyd L. Piper, Deputy Manager, acting for John D. Wagoner, Manager, U.S. Department of Energy (DOE), Richland Operations Office (RL), formally established an Accident Investigation Board (Board) to investigate the explosion in accordance with DOE Order 225. 1, Accident Investigations. The Board commenced its investigation on May 15, 1997, completed the investigation on July 2, 1997, and submitted its findings to the RL Manager on July 26, 1997. The scope of the Board's investigation was to review and analyze the circumstances of the events that led to the explosion; to analyze facts and to determine the causes of the accident; and to develop conclusions and judgments of need that may help prevent a recurrence of the accident. The scope also included the application of lessons learned from similar accidents within DOE. In addition to this detailed report, a companion document has also been prepared that provides a concise summary of the facts and conclusions of this report, with an emphasis on management issues (DOE/RL-97-63)

  19. Accident investigation board report on the May 14, 1997, chemical explosion at the Plutonium Reclamation Facility, Hanford Site,Richland, Washington - final report

    Energy Technology Data Exchange (ETDEWEB)

    Gerton, R.E.

    1997-07-25

    On May 14, 1997, at 7:53 p.m. (PDT), a chemical explosion occur-red in Tank A- 109 in Room 40 of the Plutonium Reclamation Facility (Facility) located in the 200 West Area of the Hanford Site, approximately 30 miles north of Richland, Washington. The inactive processing Facility is part of the Plutonium Finishing Plant (PFP). On May 16, 1997, Lloyd L. Piper, Deputy Manager, acting for John D. Wagoner, Manager, U.S. Department of Energy (DOE), Richland Operations Office (RL), formally established an Accident Investigation Board (Board) to investigate the explosion in accordance with DOE Order 225. 1, Accident Investigations. The Board commenced its investigation on May 15, 1997, completed the investigation on July 2, 1997, and submitted its findings to the RL Manager on July 26, 1997. The scope of the Board`s investigation was to review and analyze the circumstances of the events that led to the explosion; to analyze facts and to determine the causes of the accident; and to develop conclusions and judgments of need that may help prevent a recurrence of the accident. The scope also included the application of lessons learned from similar accidents within DOE. In addition to this detailed report, a companion document has also been prepared that provides a concise summary of the facts and conclusions of this report, with an emphasis on management issues (DOE/RL-97-63).

  20. Nuclear structure studies using the high resolution spectrometer at the Los Alamos Clinton P. Anderson Meson Physics Facility: Annual progress report, [1987-1988

    International Nuclear Information System (INIS)

    This document constitutes the (1987 to 1988) progress report for the ongoing medium energy nuclear physics research program supported by the US Department of Energy with the University of Texas at Austin. A major part of the work has been and will continue to be associated with research done at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS), the External Proton Beam (EPB), and the new Neutron Time of Flight Facility (NTOF). Other research is done at the Fermi National Accelerator Laboratory (FNAL). The research focuses on (1) providing proton + nucleus data which test nonrelativistic and relativistic models of the medium energy proton + nucleus interaction, (2) providing (p,p) and (p,n) data which are to be analyzed to provide new nuclear structure information (both ground state and excited state), (3) providing nucleon + nucleon data to aid in the systematic study of the fundamental nucleon-nucleon interaction, (4) developing and improving the proton + nucleus theoretical models themselves, and (5) initiating new experimental programs whose goals are to search for new phenomena in nuclear physics. 182 refs., 71 figs., 5 tabs

  1. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dion, Heather M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dry, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaMont, Stephen Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Podlesak, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tandon, Lav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-22

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  2. Geomorphology of plutonium in the Northern Rio Grande

    International Nuclear Information System (INIS)

    Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi

  3. Geomorphology of plutonium in the Northern Rio Grande

    Energy Technology Data Exchange (ETDEWEB)

    Graf, W.L. [Arizona Univ., Tempe, AZ (United States). Dept., of Geography

    1993-03-01

    Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

  4. An outline of the intake event at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    On March, 2000, plutonium-238 intake event occurred at the Los Alamos National Laboratory (LANL), USA. The Accident Investigation Board performed the accident investigations in accordance with Department of Energy (DOE) and released the report of the accident on July, 2000. The accident occurred while LANL worker was checking the equipment of glovebox in the Plutonium Processing and Handling Facility of LANL. The lifetime effective dose to the most affected worker was estimated to be as high as 3Sv, and corresponding dose to three other workers probably exceeded their annual exposure level. Since we have many gloveboxes similar to the ones in LANL, and we must improve worker's safety consciousness against glovebox-operation in the future, we have studied this report and compiled as a safety lecture note for the JNC employee. And we compiled to introduce this accident outline to domestic nuclear enterprises and institutes. (author)

  5. Plutonium controversy

    International Nuclear Information System (INIS)

    The toxicity of plutonium is discussed, particularly in relation to controversies surrounding the setting of radiation protection standards. The sources, amounts of, and exposure pathways of plutonium are given and the public risk estimated

  6. Data Mining Techniques to Estimate Plutonium, Initial Enrichment, Burnup, and Cooling Time in Spent Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fugate, Michael Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tobin, Stephen Joesph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-19

    The Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and Arms Control (NPAC), National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE) has sponsored a multi-laboratory, university, international partner collaboration to (1) detect replaced or missing pins from spent fuel assemblies (SFA) to confirm item integrity and deter diversion, (2) determine plutonium mass and related plutonium and uranium fissile mass parameters in SFAs, and (3) verify initial enrichment (IE), burnup (BU), and cooling time (CT) of facility declaration for SFAs. A wide variety of nondestructive assay (NDA) techniques were researched to achieve these goals [Veal, 2010 and Humphrey, 2012]. In addition, the project includes two related activities with facility-specific benefits: (1) determination of heat content and (2) determination of reactivity (multiplication). In this research, a subset of 11 integrated NDA techniques was researched using data mining solutions at Los Alamos National Laboratory (LANL) for their ability to achieve the above goals.

  7. Minimum Analytical Chemistry Requirements for Pit Manufacturing at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Moy, Ming M.; Leasure, Craig S.

    1998-08-01

    Analytical chemistry is one of several capabilities necessary for executing the Stockpile Stewardship and Management Program at Los Alamos National Laboratory (LANL). Analytical chemistry capabilities reside in the Chemistry Metallurgy Research (CMR) Facility and Plutonium Facility (TA-55). These analytical capabilities support plutonium recovery operations, plutonium metallurgy, and waste management. Analytical chemistry capabilities at both nuclear facilities are currently being configured to support pit manufacturing. This document summarizes the minimum analytical chemistry capabilities required to sustain pit manufacturing at LANL. By the year 2004, approximately $16 million will be required to procure analytical instrumentation to support pit manufacturing. In addition, $8.5 million will be required to procure glovebox enclosures. An estimated 50% increase in costs has been included for installation of analytical instruments and glovebox enclosures. However, no general and administrative (G and A) taxes have been included. If an additional 42.5/0 G and A tax were to be incurred, approximately $35 million would be required over the next five years to prepare analytical chemistry to support a 50-pit-per-year manufacturing capability by the year 2004.

  8. Experimental assessment of the thermal performance of storage canister/holding fixture configurations for the Los Alamos Nuclear Materials Storage Facility

    International Nuclear Information System (INIS)

    This report presents experimental results on the thermal performance of various nested canister configurations and canister holding fixtures to be used in the Los Alamos Nuclear Materials Storage Facility. The experiment consisted of placing a heated aluminum billet (to represent heat-generating nuclear material) inside curved- and flat-bottom canisters with and without holding plate fixtures and/or extended fin surfaces. Surface temperatures were measured at several locations on the aluminum billet, inner and outer canisters, and the holding plate fixture to assess the effectiveness of the various configurations in removing and distributing the heat from the aluminum billet. Results indicated that the curved-bottom canisters, with or without holding fixtures, were extremely ineffective in extracting heat from the aluminum billet. The larger thermal contact area provided by the flat-bottom canisters compared with the curved-bottom design, greatly enhanced the heat removal process and lowered the temperature of the aluminum billet considerably. The addition of the fixture plates to the flat-bottom canister geometry greatly enhances the heat removal rates and lowers the canister operating temperatures considerably. The addition of the fixture plates to the flat-bottom canister geometry greatly enhances the heat removal rates and lowers the canister operating temperatures considerably. Finally, the addition of extended fin surfaces to the outer flat-bottom canister positioned on a fixture plate, reduced the canister temperatures still further

  9. The comparative uptake and interaction of several radionuclides in the trophic levels surrounding the Los Alamos Meson Physics Facility (LAMPF) waste water ponds

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, G.H. Jr.

    1989-08-01

    A study was undertaken to examine the uptake, distribution, and interaction of five activation products (Co-57, Be-7, Cs-134, Rb-83, and Mn-54) within the biotic and abiotic components surrounding the waste treatment lagoons of the Los Alamos Meson Physics Facility (LAMPF). The study attempted to ascertain where, and what specific interactions were taking place among the isotopes and the biotic/abiotic components. A statistical approach, utilizing Multivariate Analysis of Variance (MANOVA), was conducted testing the radioisotopic concentrations by (1) the trophic levels (TROPLVL) in each position sampled on the grid, (2) where sampled on the grid (TRAN), (3) where sampled with-in each grid line (PLOT), and (4) the side with which sampled (SIDE). This provided both the dependent and independent variables that would be tested. The Null Hypothesis (Ho) tested the difference in the mean values of the isotopes within/between each of the four independent variables. The Rb-83 statistic indicated an accumulation within the TRAN and PLOT variables within the sampled area. The Co-57 test statistic provided a value which indicated that accumulation of this isotope within TROPLVL was taking place. Mn-54 test values indicated that accumulation was also taking place at the higher trophic levels within the PLOT, TRAN, and SIDE positions. Cs-134 was found to accumulate to third level in this trophic level structure (TROPLVL-(vegetation)), and then decrease from there. The Be-7 component provided no variance from known compartmental transfers. 210 refs., 17 figs., 4 tabs.

  10. The comparative uptake and interaction of several radionuclides in the trophic levels surrounding the Los Alamos Meson Physics Facility (LAMPF) waste water ponds

    International Nuclear Information System (INIS)

    A study was undertaken to examine the uptake, distribution, and interaction of five activation products (Co-57, Be-7, Cs-134, Rb-83, and Mn-54) within the biotic and abiotic components surrounding the waste treatment lagoons of the Los Alamos Meson Physics Facility (LAMPF). The study attempted to ascertain where, and what specific interactions were taking place among the isotopes and the biotic/abiotic components. A statistical approach, utilizing Multivariate Analysis of Variance (MANOVA), was conducted testing the radioisotopic concentrations by (1) the trophic levels (TROPLVL) in each position sampled on the grid, (2) where sampled on the grid (TRAN), (3) where sampled with-in each grid line (PLOT), and (4) the side with which sampled (SIDE). This provided both the dependent and independent variables that would be tested. The Null Hypothesis (Ho) tested the difference in the mean values of the isotopes within/between each of the four independent variables. The Rb-83 statistic indicated an accumulation within the TRAN and PLOT variables within the sampled area. The Co-57 test statistic provided a value which indicated that accumulation of this isotope within TROPLVL was taking place. Mn-54 test values indicated that accumulation was also taking place at the higher trophic levels within the PLOT, TRAN, and SIDE positions. Cs-134 was found to accumulate to third level in this trophic level structure [TROPLVL-(vegetation)], and then decrease from there. The Be-7 component provided no variance from known compartmental transfers. 210 refs., 17 figs., 4 tabs

  11. Plutonium immobilization feed batching system concept report

    International Nuclear Information System (INIS)

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with high level waste glass for permanent storage. Feed batching is one of the first process steps involved with first stage plutonium immobilization. It will blend plutonium oxide powder before it is combined with other materials to make pucks. This report discusses the Plutonium Immobilization feed batching process preliminary concept, batch splitting concepts, and includes a process block diagram, concept descriptions, a preliminary equipment list, and feed batching development areas

  12. Characterization of plutonium-bearing wastes by chemical analysis and analytical electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, R.G. [Los Alamos National Lab., NM (United States); Buck, E.C.; Dietz, N.L.; Bates, J.K.; Van Deventer, E.; Chaiko, D.J. [Argonne National Lab., IL (United States)

    1995-09-01

    This report summarizes the results of characterization studies of plutonium-bearing wastes produced at the US Department of Energy weapons production facilities. Several different solid wastes were characterized, including incinerator ash and ash heels from Rocky Flats Plant and Los Alamos National Laboratory; sand, stag, and crucible waste from Hanford; and LECO crucibles from the Savannah River Site. These materials were characterized by chemical analysis and analytical electron microscopy. The results showed the presence of discrete PuO{sub 2}PuO{sub 2{minus}x}, and Pu{sub 4}O{sub 7} phases, of about 1{mu}m or less in size, in all of the samples examined. In addition, a number of amorphous phases were present that contained plutonium. In all the ash and ash heel samples examined, plutonium phases were found that were completely surrounded by silicate matrices. Consequently, to achieve optimum plutonium recovery in any chemical extraction process, extraction would have to be coupled with ultrafine grinding to average particle sizes of less than 1 {mu}m to liberate the plutonium from the surrounding inert matrix.

  13. Characterization of plutonium-bearing wastes by chemical analysis and analytical electron microscopy

    International Nuclear Information System (INIS)

    This report summarizes the results of characterization studies of plutonium-bearing wastes produced at the US Department of Energy weapons production facilities. Several different solid wastes were characterized, including incinerator ash and ash heels from Rocky Flats Plant and Los Alamos National Laboratory; sand, stag, and crucible waste from Hanford; and LECO crucibles from the Savannah River Site. These materials were characterized by chemical analysis and analytical electron microscopy. The results showed the presence of discrete PuO2PuO2-x, and Pu4O7 phases, of about 1μm or less in size, in all of the samples examined. In addition, a number of amorphous phases were present that contained plutonium. In all the ash and ash heel samples examined, plutonium phases were found that were completely surrounded by silicate matrices. Consequently, to achieve optimum plutonium recovery in any chemical extraction process, extraction would have to be coupled with ultrafine grinding to average particle sizes of less than 1 μm to liberate the plutonium from the surrounding inert matrix

  14. Commissioning and initial operation of the Isotope Production Facility at the Los Alamos Neutron Science Center (LANSCE).

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K. F. (Kenneth F.); Alvestad, H. W. (Henry W.); Barkley, W. C. (Walter C.); Barlow, D. B. (David B.); Barr, D. S. (Dean S.); Bennett, L. S. (Langdon S.); Bitteker, L. J. (Leo J.); Bjorklund, E. A. (Eric A.); Boedeker, W.; Borden, M. J. (Michael J.); Cardon, R.; Carr, G. (Gary); Casados, J. L. (Jeffrey L.); Cohen, Stanley; Cordova, J. F. (Justo J.; Faucett, John Allen,; Fresquez, M. (Matthew); Gallegos, F. R. (Floyd R.); Gilpatrick, J. D. (John Douglas); Gonzales, F. (Fermin); Gorman, F. W. (Frederick W.); Gulley, M. S. (Mark S.); Hall, M. J. (Michael J.); Hayden, D. J. (David J.); Heaton, R. C. (Richard C.); Henderson, D. B. (Dale B.); Ireland, D. B. (David B.); Jacobson, E. G. (Edward G.); Johns, G. D. (Glen D.); Kersteins, D. M. (Debora M.); Maestas, A. J. (Alfred J.); Martinez, A. M. (Alexandra M.); Martinez, D. G. (Derwin G.); Martinez, G.; Martinez, J.; Martinez, M. P. (Martin P.); Merl, R. B. (Robert B.); Merrill, J. B. (John B.); Meyer, B. J. (Bruce J.); Meyer, R., Sr.; Milder, M.; Morgan, E.; Nortier, M.; O' Hara, J. F. (James F.); Olivas, F. R. (Felix R.); Oothoudt, Michael; Pence, T. D. (Tim D.); Perets, Mikhaʾel ben Yosef; Peterson, E.; Pillai, C. (Chandra); Romero, F.; Rose, C.; Rybarcyk, L. J. (Lawrence J.); Sanchez, G. (Gary); Sandoval, J. B. (Jacob B.); Schaller, S. (Stuart); Shelley, F. E. (Fred E.); Shurter, R. B. (Robert B.); Sommer, Walter F.; Stettler, M. W. (Matthew W.); Stockton, J. L. (Jerry L.); Sturrock, J. C. (James C.); Tomei, T. L. (Tony L.); Valdez, F.; Vigil, V. P. (Victor P.); Walstrom, P. L. (Peter L.); Wanco, P. M. (Peter M.); Wilmarth, J.

    2004-01-01

    The recently completed 100-MeV H{sup +} Isotope Production Facility (IPF) at the LANSCE will provide radioisotopes for medical research and diagnosis, for basic research and for commercial use. A change to the LANSCE accelerator facility allowed for the installation of the IPF. Three components make up the LANSCE accelerator: an injector that accelerates the H{sup +} beam to 750-KeV, a drift-tube linac (DTL) that increases the beam energy to 100-MeV, and a side-coupled cavity linac (SCCL) that accelerates the beam to 800-MeV. The transition region, a space between the DTL and the SCCL, was modified to permit the insertion of a kicker magnet (23{sup o} kick angle) for the purpose of extracting a portion of the 100-MeV H{sup +} beam. A new beam line was installed to transport the extracted H{sup +} beam to the radioisotope production target chamber. This paper will describe the commissioning and initial operating experiences of IPF.

  15. Commissioning and initial operation of the Isotope Production Facility at the Los Alamos Neutron Science Center (LANSCE)

    International Nuclear Information System (INIS)

    The recently completed 100-MeV H+ Isotope Production Facility (IPF) at the LANSCE will provide radioisotopes for medical research and diagnosis, for basic research and for commercial use. A change to the LANSCE accelerator facility allowed for the installation of the IPF. Three components make up the LANSCE accelerator: an injector that accelerates the H+ beam to 750-KeV, a drift-tube linac (DTL) that increases the beam energy to 100-MeV, and a side-coupled cavity linac (SCCL) that accelerates the beam to 800-MeV. The transition region, a space between the DTL and the SCCL, was modified to permit the insertion of a kicker magnet (23o kick angle) for the purpose of extracting a portion of the 100-MeV H+ beam. A new beam line was installed to transport the extracted H+ beam to the radioisotope production target chamber. This paper will describe the commissioning and initial operating experiences of IPF.

  16. Class 1 Permit Modification Notification Addition of Structures within Technical Area 54, Area G, Pad 11, Dome 375 Los Alamos National Laboratory Hazardous Waste Facility Permit, July 2012

    International Nuclear Information System (INIS)

    The purpose of this letter is to notify the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of a Class 1 Permit Modification to the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit issued to the Department of Energy (DOE) and Los Alamos National Security, LLC (LANS) in November 2010. The modification adds structures to the container storage unit at Technical Area (TA) 54 Area G, Pad 11. Permit Section 3.1(3) requires that changes to the location of a structure that does not manage hazardous waste shall be changed within the Permit as a Class 1 modification without prior approval in accordance with Code of Federal Regulations, Title 40 (40 CFR), (section)270.42(a)(1). Structures have been added within Dome 375 located at TA-54, Area G, Pad 11 that will be used in support of waste management operations within Dome 375 and the modular panel containment structure located within Dome 375, but will not be used as waste management structures. The Class 1 Permit Modification revises Figure 36 in Attachment N, Figures; and Figure G.12-1 in Attachment G.12, Technical Area 54, Area G, Pad 11 Outdoor Container Storage Unit Closure Plan. Descriptions of the structures have also been added to Section A.4.2.9 in Attachment A, TA - Unit Descriptions; and Section 2.0 in Attachment G.12, Technical Area 54, Area G, Pad 11 Outdoor Container Storage Unit Closure Plan. Full description of the permit modification and the necessary changes are included in Enclosure 1. The modification has been prepared in accordance with 40 CFR (section)270.42(a)(l). This package includes this letter and an enclosure containing a description of the permit modification, text edits of the Permit sections, and the revised figures (collectively LA-UR--12-22808). Accordingly, a signed certification page is also enclosed. Three hard copies and one electronic copy of this submittal will be delivered to the NMED-HWB.

  17. Characterization of uranium and plutonium in surface-waters and sediments collected at the Rocky Flats Facility

    International Nuclear Information System (INIS)

    This study was initiated to characterize actinides in environmental samples collected at the Rocky Flats Plant (RFP). Thermal Ionization Mass Spectrometry (TIMS) measurement techniques were used to measure the plutonium and uranium content of water and sediment samples collected from the ponds used to control surface-waters on-site at RFP. TIMS was also used to separate the uranium into anthropogenic and naturally occurring components. The results of these studies are presented

  18. LOS ALAMOS: Reorganization

    International Nuclear Information System (INIS)

    Full text: A few months ago Los Alamos National Laboratory embarked on a major reorganization. All upper management was invited to submit their resignations and reapply for new positions, of which there are only about one third as many. This action was coordinated with an attractive early retirement incentive so that displaced managers, as well as any other employee, could choose to retire if they were unhappy with the reorganization, or for any other reason. About 850 of the Lab's 7,700 employees have chosen retirement. MP (Meson or Medium Energy Physics) and AT (Accelerator Technology) Divisions have been combined into the AOT (Accelerator Operations and Technology) Division. Stanley O. Schriber is its new Director. AOT Division is responsible for operations and improvements at the Los Alamos Meson Physics Facility (LAMPF) and supports traditional users, LANSCE (the Los Alamos Neutron Scattering Center), and the emerging neutron applications community. Advanced accelerator development, including beam transport theory, instrumentation, free electron laser technology, and engineering for research, defence, industrial, and medical applications will be a major focus

  19. Recent development in pyrochemistry at Los Alamos

    International Nuclear Information System (INIS)

    Recent developments in pyrochemical processing at Los Alamos include the recovery of plutonium from anodes and impure metal by pyroredox and new molten salt handling and purification techniques. The anode is dissolved in a ZnCl2 KCl salt to form PuCl3 and a zinc and impurities button. Calcium reduction of the PuCl3 yields 95 to 98% pure plutonium. New techniques for transferring molten salt from a purification or regeneration vessel to molds has been successfully developed and demonstrated. Additional salt work involving recycle of direct oxide reduction salts using anhydrous hydrogen chloride, phosgene, and chlorine gases is under way. 13 figures, 1 table

  20. DOE nuclear material packaging manual: storage container requirements for plutonium oxide materials

    International Nuclear Information System (INIS)

    Loss of containment of nuclear material stored in containers such as food-pack cans, paint cans, or taped slip lid cans has generated concern about packaging requirements for interim storage of nuclear materials in working facilities such as the plutonium facility at Los Alamos National Laboratory (LANL). In response, DOE has recently issued DOE M 441.1 'Nuclear Material Packaging Manual' with encouragement from the Defense Nuclear Facilities Safety Board. A unique feature compared to transportation containers is the allowance of filters to vent flammable gases during storage. Defining commonly used concepts such as maximum allowable working pressure and He leak rate criteria become problematic when considering vented containers. Los Alamos has developed a set of container requirements that are in compliance with 441.1 based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide. The pre and post drop-test He leak rates depend upon container size as well as the material contents. For containers that are routinely handled, ease of handling and weight are a major consideration. Relatively thin-walled containers with flat bottoms are desired yet they cannot be He leak tested at a differential pressure of one atmosphere due to the potential for plastic deformation of the flat bottom during testing. The He leak rates and He leak testing configuration for containers designed for plutonium bearing materials will be presented. The approach to meeting the other manual requirements such as corrosion and thermal degradation resistance will be addressed. The information presented can be used by other sites to evaluate if their conditions are bounded by LANL requirements when considering procurement of 441.1 compliant containers.

  1. Report on the control of the safety and security of nuclear facilities. Part 2: the reconversion of military plutonium stocks. The use of the helps given to central and eastern Europe countries and to the new independent states

    International Nuclear Information System (INIS)

    This report deals with two different aspects of the safety and security of nuclear facilities. The first aspect concerns the reconversion of weapon grade plutonium stocks: the plutonium in excess, plutonium hazards and nuclear fuel potentialities, the US program, the Russian program, the actions of European countries (France, Germany), the intervention of other countries, the unanswered questions (political aspects, uncertainties), the solutions of the future (improvement of reactors, the helium-cooled high temperature reactor technology (gas-turbine modular helium reactor: GT-MHR), the Carlo Rubbia's project). The second aspect concerns the actions carried out by the European Union in favor of the civil nuclear facilities of central and eastern Europe: the European Union competencies through the Euratom treaty, the conclusions of the European audit office about the PHARE and TACIS nuclear programs, the status of committed actions, the coming planned actions, and the critical analysis of the policy adopted so far. (J.S.)

  2. HENC performance evaluation and plutonium calibration

    International Nuclear Information System (INIS)

    The authors have designed a high-efficiency neutron counter (HENC) to increase the plutonium content in 200-L waste drums. The counter uses totals neutron counting, coincidence counting, and multiplicity counting to determine the plutonium mass. The HENC was developed as part of a Cooperative Research and Development Agreement between the Department of Energy and Canberra Industries. This report presents the results of the detector modifications, the performance tests, the add-a-source calibration, and the plutonium calibration at Los Alamos National Laboratory (TA-35) in 1996

  3. Lung cancers already produced by plutonium inhalation

    International Nuclear Information System (INIS)

    This chapter presents the basis for the author's estimate that plutonium particulates have already committed approximately 950,000 persons worldwide to a lung-cancer death, and that more will be so committed in the future, even if no more plutonium is dispersed in the environment. The author's calculations are based on fallout data from atmospheric bomb testing, and on two sets of workers exposed to plutonium: one group at the Rocky Flats Plant in Colorado, and the other at the Los Alamos Laboratory who were involved in the Manhattan Project

  4. Los Alamos National Laboratory Facilities, Security and Safeguards Division, Safeguards and Security Program Office, Protective Force Oversight Program

    International Nuclear Information System (INIS)

    The purpose of this document is to identify and describe the duties and responsibilities of Facility Security and Safeguards (FSS) Safeguards and Security (SS) organizations (groups/offices) with oversight functions over the Protection Force (PF) subcontractor. Responsible organizations will continue their present PF oversight functions under the Cost Plus Award Fee (CPAF) assessment, but now will be required to also coordinate, integrate, and interface with other FSS S and S organizations and with the PF subcontractor to measure performance, assess Department of Energy (DOE) compliance, reduce costs, and minimize duplication of effort. The role of the PF subcontractor is to provide the Laboratory with effective and efficient protective force services. PF services include providing protection for the special nuclear material, government property and classified or sensitive information developed and/or consigned to the Laboratory, as well as protection for personnel who work or participate in laboratory activities. FSS S and S oversight of both performance and compliance standards/metrics is essential for these PF objectives to be met

  5. Nuclear structure studies using the high resolution spectrometer at The Los Alamos Clinton P. Anderson Meson Physics Facility. Technical progress report

    International Nuclear Information System (INIS)

    A major part of the work is associated with research done using the High Resolution Spectrometer (HRS) at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF); this research focuses on (1) providing data which test nonrelativistic and relativistic microscopic models of the medium energy proton + nucleus interaction, (2) providing data which are to be analyzed to provide new nuclear structure information (both ground state and excited state), and (3) developing and improving the models themselves. Progress is detailed on the following studies: (A) the relativistic impulse approximation; (B) Exp 425/433/479: p + nucleus elastic and inelastic scattering at 500 MeV; (C) Exp 654: measurement of spin-rotation parameter Q for 800 MeV p + nucleus elastic scattering; (D) Exp 470: reactive content of the optical potential at 800 MeV; (E) Exp 642: 800 MeV (vector p,p') inclusive cross sections and analyzing powers; (F) Exp 392: a measurement of the Wolfenstein amplitudes for p - p and p - n scattering at 800 MeV; (G) Exp 626: measurement of triple scattering parameters for 800 MeV inclusive (vector p,p') on 1H, 2H, and 12C; (H) Exp 686U: P + 208Pb elastic and inelastic scattering at 318 MeV; (I) Exp 736: P + 40,48Ca, 54Fe elastic scattering at 318 MeV; (J) Exp 563: P + P elastic scattering at 500 and 800 MeV; (K) Exp 760: P + 1H, 40Ca, and 208Pb elastic and inelastic scattering at 650 MeV; (L) BNL Exp 758: observation of hypernuclei in the 12C(π+,K+)/sub lambda/12C reaction; (M) theoretical study of kaon + nucleus elastic and inelastic scattering; and (N) theoretical determination of effective interactions. Publications are listed

  6. Accident investigation board report on the May 14, 1997, chemical explosion at the Plutonium Reclamation Facility, Hanford Site,Richland, Washington - summary report

    International Nuclear Information System (INIS)

    This report is a summary of the Accident Investigation Board Report on the May 14, 1997, Chemical Explosion at the Plutonium Reclamation Facility, Hanford Site, Richland, Washington (DOE/RL-97-59). The referenced report provides a greater level of detail and includes a complete discussion of the facts identified, analysis of those facts, conclusions derived from the analysis, identification of the accident's causal factors, and recommendations that should be addressed through follow-up action by the U.S. Department of Energy and its contractors. This companion document provides a concise summary of that report, with emphasis on management issues. Evaluation of emergency and occupational health response to, and radiological and chemical releases from, this accident was not within the scope of this investigation, but is the subject of a separate investigation and report (see DOE/RL-97-62)

  7. Plutonium contamination in the environment. September 1977-November 1989 (A Bibliography from the Selected Water Resources Abstracts data base). Report for September 1977-November 1989

    International Nuclear Information System (INIS)

    This bibliography contains citations concerning the ecological impact of plutonium contamination in the environment. Topics include plutonium contamination in freshwater and marine sediments, plutonium bioaccumulation, plutonium transport in the food chain, plutonium contamination bioindicators, methods of analysis, plutonium genotoxicity, plutonium contamination in soil and groundwater, and plutonium contamination from nuclear fallout and nuclear facilities. Plutonium distribution changes due to stratification in oxic and anoxic environments are described. (Contains 83 citations fully indexed and including a title list.)

  8. PLUTONIUM CONTAMINATION VALENCE STATE DETERMINATION USING X-RAY ABSORPTION FINE STRUCTURE PERMITS CONCRETE RECYCLE

    International Nuclear Information System (INIS)

    This paper describes the determination of the speciation of plutonium contamination present on concrete surfaces at the Rocky Flats Environmental Technology Site (RFETS). At RFETS, the plutonium processing facilities have been contaminated during multiple events over their 50 year operating history. Contamination has resulted from plutonium fire smoke, plutonium fire fighting water, milling and lathe operation aerosols, furnace operations vapors and plutonium ''dust'' diffusion

  9. Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Robert [WPS: WASTE PROJECTS AND SERVICES

    2012-04-17

    The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call

  10. Morbidity and mortality in Los Alamos County, New Mexico. I. Methodological issues and preliminary results

    International Nuclear Information System (INIS)

    Cancer among Los Alamos County, New Mexico, male residents, all of whom have worked in or have lived within a few kilometers of a major plutonium plant and other nuclear facilities, has been reviewed with respect to mortality between 1950 and 1969 and incidence between 1969 and 1974. Several potentially causal occupational exposures have existed. Higher than expected incidence, currently, of cancers of the colon and rectum appears to be explained better by socioeconomic than occupational factors. Healthy worker and healthy military effects, white ethnicity, and migration are discussed as intervening variables relevant to interpreting mortality data in counties dominated by a single major facility. The utility of county data bases in the study of single local area mortality rates is reviewed

  11. A review of historic and instrumental earthquake activity and studies of seismic hazards near Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    House, L.S.; Cash, D.J.

    1988-06-01

    Several studies of seismic hazards and seismic risk have been done for the Los Alamos area. The most comprehensive one was completed in 1972 and was intended for design engineering for the TA-55 Plutonium Facility. This study concluded that a peak horizontal acceleration of 0.33 g was appropriate for design of facilities at TA-55 since it was ''unlikely to be exceeded.'' Progress in several areas of earthquake studies in the past 15 years has provided an improved understanding of earthquake occurrence and recurrence, as well as an improved ability to estimate ground response resulting from possible local earthquakes. Because the results of the 1972 study are still being used for seismic design of new facilities at Los Alamos, the seismic hazards and risks for Los Alamos should be reevaluated in order to confirm that the 1972 results are still meaningful and valid. Such a reevaluation is, however, beyond the scope of this report. 49 refs., 9 figs., 1 tab.

  12. Post-remedial-action radiological survey report for the Plutonium Facility of the Battelle Memorial Institute, Columbus Division, West Jefferson Complex, West Jefferson, Ohio, April 1980-June 1982

    International Nuclear Information System (INIS)

    The post-remedial-action surveys involved only the remaining, newer segment of the original Plutonium Facility and those outdoor environs at the former location of the buried autoclave and old holding tanks. The assessment activities conducted during the three surveys included determination of surface contamination levels, both fixed and removable, through direct instrument and smear surveys; measurement of ambient external penetrating radiation levels at 1-meter heights throughout the involved areas; measurement of the concentrations of radon, thoron, and actinon daughters and longer-lived radionuclides within air samples; and determination of concentrations of uranium, plutonium, americium, neptunium, the thorium-232 decay chain, and the radium-226 decay chain in soil and other material samples from the involved areas. The direct instrument and smear surveys were performed on all accessible floor, wall, and overhead surfaces and ductwork in the laboratory and corridor areas, mechanical room, and men's locker room, where the false ceiling, formerly at the 12-ft level, had been removed. In the office areas, the accessible floors, walls, and overheads were surveyed to the height of the existing 8-ft false ceiling. Although the office areas were adjacent to, not part of, the affected areas, it was possible that radioactive materials could have been carried by the ventilation system, spilled, or otherwise tracked into these adjacent areas. In some building areas, surfaces might hae been retiled, painted, or otherwise covered since the beginning of use of radioactive materials; however, the instruments used for the direct survey had some capability to detect beta-gamma activity on the underlying surfaces. 5 refs., 8 figs., 8 tabs

  13. Preparation of high purity plutonium oxide standards for radiochemical Analysis

    International Nuclear Information System (INIS)

    Due to the lack of suitable high level plutonium solution standards from a national accredited laboratory or commercial vendors, a well-characterized plutonium oxide was used to prepared radiochemistry instrument calibration standards and working standards at Los Alamos National Laboratory (LANL). All the dilution and aliquoting steps were performed gravimetrically. The counting efficiency of a liquid scintillation counter obtained from the alpha activity of this plutonium oxide was compared to a commercial 241Am standardized solution. The results agreed to within 0.05%. The aliquots of the plutonium standard solutions and dilutions were then sealed in glass ampules for long term storage

  14. Report on the emergency response to the event on May 14, 1997, at the plutonium reclamation facility, Hanford Site, Richland,Washington

    International Nuclear Information System (INIS)

    On the evening of May 14,1997, a chemical explosion Occurred at the Plutonium Reclamation Facility (PRF) in the 200 West Area(200-W) of the Hanford Site. The event warranted the declaration of an Alert emergency, activation of the Hanford Emergency Response Organization (BRO), and notification of offsite agencies. As a result of the emergency declaration, a subsequent evaluation was conducted to assess: 9 the performance of the emergency response organization o the occupational health response related to emergency activities o event notifications to offsite and environmental agencies. Additionally, the evaluation was designed to: 9 document the chronology of emergency and occupational health responses and environmental notifications connected with the explosion at the facility 0 assess the adequacy of the Hanford Site emergency preparedness activities; response readiness; and emergency management actions, occupational health, and environmental actions 0 provide an analysis of the causes of the deficiencies and weaknesses in the preparedness and response system that have been identified in the evaluation of the response a assign organizational responsibility to correct deficiencies and weaknesses a improve future performance 0 adjust elements of emergency implementing procedures and emergency preparedness activities

  15. Plutonium solubilities

    International Nuclear Information System (INIS)

    Thermochemical data has been selected for plutonium oxide, hydroxide, carbonate and phosphate equilibria. Equilibrium constants have been evaluated in the temperature range 0 to 300 degrees C at a pressure of 1 bar to T≤100 degrees C and at the steam saturated pressure at higher temperatures. Measured solubilities of plutonium that are reported in the literature for laboratory experiments have been collected. Solubility data on oxides, hydroxides, carbonates and phosphates have been selected. No solubility data were found at temperatures higher than 60 degrees C. The literature solubility data have been compared with plutonium solubilities calculated with the EQ3/6 geochemical modelling programs, using the selected thermodynamic data for plutonium. (authors)

  16. Aqueous Nitrate Recovery Line at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Finstad, Casey Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-15

    This powerpoint is part of the ADPSM Plutonium Engineering Lecture Series, which is an opportunity for new hires at LANL to get an overview of work done at TA55. It goes into detail about the aqueous nitrate recovery line at Los Alamos National Laboratory.

  17. Surplus plutonium disposition draft environmental impact statement. Volume 2

    International Nuclear Information System (INIS)

    On May 22, 1997, DOE published a Notice of Intent (NOI) in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS). DOE's disposition strategy allows for both the immobilization of surplus plutonium and its use as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of the immobilized plutonium and MOX fuel (as spent nuclear fuel) in a geologic repository. The Surplus Plutonium Disposition Environmental Impact Statement analyzes alternatives that would use the immobilization approach (for some of the surplus plutonium) and the MOX fuel approach (for some of the surplus plutonium); alternatives that would immobilize all of the surplus plutonium; and the No Action Alternative. The alternatives include three disposition facilities that would be designed so that they could collectively accomplish disposition of up to 50 metric tons (55 tons) of surplus plutonium over their operating lives: (1) the pit disassembly and conversion facility would disassemble pits (a weapons component) and convert the recovered plutonium, as well as plutonium metal from other sources, into plutonium dioxide suitable for disposition; (2) the immobilization facility would include a collocated capability for converting nonpit plutonium materials into plutonium dioxide suitable for immobilization and would be located at either Hanford or SRS. DOE has identified SRS as the preferred site for an immobilization facility; (3) the MOX fuel fabrication facility would fabricate plutonium dioxide into MOX fuel. Volume 2 contains the appendices to the report and describe the following: Federal Register notices; contractor nondisclosure statement; adjunct melter

  18. Plutonium inventories for stabilization and stabilized materials

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.K.

    1996-05-01

    The objective of the breakout session was to identify characteristics of materials containing plutonium, the need to stabilize these materials for storage, and plans to accomplish the stabilization activities. All current stabilization activities are driven by the Defense Nuclear Facilities Safety Board Recommendation 94-1 (May 26, 1994) and by the recently completed Plutonium ES&H Vulnerability Assessment (DOE-EH-0415). The Implementation Plan for accomplishing stabilization of plutonium-bearing residues in response to the Recommendation and the Assessment was published by DOE on February 28, 1995. This Implementation Plan (IP) commits to stabilizing problem materials within 3 years, and stabilizing all other materials within 8 years. The IP identifies approximately 20 metric tons of plutonium requiring stabilization and/or repackaging. A further breakdown shows this material to consist of 8.5 metric tons of plutonium metal and alloys, 5.5 metric tons of plutonium as oxide, and 6 metric tons of plutonium as residues. Stabilization of the metal and oxide categories containing greater than 50 weight percent plutonium is covered by DOE Standard {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides{close_quotes} December, 1994 (DOE-STD-3013-94). This standard establishes criteria for safe storage of stabilized plutonium metals and oxides for up to 50 years. Each of the DOE sites and contractors with large plutonium inventories has either started or is preparing to start stabilization activities to meet these criteria.

  19. Evaluation technology for burnup and generated amount of plutonium by measurement of Xenon isotopic ratio in dissolver off-gas at reprocessing facility (Joint research)

    International Nuclear Information System (INIS)

    The amount of Pu in the spent fuel was evaluated from Xe isotopic ratio in off-gas in reprocessing facility, is related to burnup. Six batches of dissolver off-gas (DOG) at spent fuel dissolution process were sampled from the main stack in Tokai Reprocessing Plant (TRP) during BWR fuel (approx. 30GWD/MTU) reprocessing campaign. Xenon isotopic ratio was determined with Gas Chromatography/Mass Spectrometry. Burnup and generated amount of Pu were evaluated with Noble Gas Environmental Monitoring Application code (NOVA), developed by Los Alamos National Laboratory. Inferred burnup evaluated by Xe isotopic measurements and NOVA were in good agreement with those of the declared burnup in the range from -3.8% to 7.1%. Also, the inferred amount of Pu in spent fuel was in good agreed with those of the declared amount of Pu calculated by ORIGEN code in the range from -0.9% to 4.7%. The evaluation technique is applicable for both burnup credit to achieve efficient criticality safety control and a new measurement method for safeguards inspection. (author)

  20. Plutonium Disposition by Immobilization

    International Nuclear Information System (INIS)

    The ultimate goal of the Department of Energy (DOE) Immobilization Project is to develop, construct, and operate facilities that will immobilize between 17 to 50 tonnes (MT) of U.S. surplus weapons-usable plutonium materials in waste forms that meet the ''spent fuel'' standard and are acceptable for disposal in a geologic repository. Using the ceramic can-in-canister technology selected for immobilization, surplus plutonium materials will be chemically combined into ceramic forms which will be encapsulated within large canisters of high level waste (HLW) glass. Deployment of the immobilization capability should occur by 2008 and be completed within 10 years. In support of this goal, the DOE Office of Fissile Materials Disposition (MD) is conducting development and testing (D and T) activities at four DOE laboratories under the technical leadership of Lawrence Livermore National Laboratory (LLNL). The Savannah River Site has been selected as the site for the planned Plutonium Immobilization Plant (PIP). The D and T effort, now in its third year, will establish the technical bases for the design, construction, and operation of the U. S. capability to immobilize surplus plutonium in a suitable and cost-effective manner. Based on the D and T effort and on the development of a conceptual design of the PIP, automation is expected to play a key role in the design and operation of the Immobilization Plant. Automation and remote handling are needed to achieve required dose reduction and to enhance operational efficiency

  1. Integrated five station nondestructive assay system for the support of decontamination and decommissioning of a former plutonium mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    The goal of a safe, efficient and economic decontamination and decommissioning of plutonium facilities can be greatly enhanced through the intelligent use of an integrated system of nondestructive assay equipment. We have designed and fabricated such a system utilizing five separate NDA stations integrated through a single data acquisition and management personal computer-based controller. The initial station utilizes a passive neutron measurement to determine item Pu inventory to the 0.1 gm level prior to insertion into the decontamination cell. A large active neutron station integrated into the cell is used to measure decontamination effectiveness at the 10 nci/gm level. Cell Pu buildup at critical points is monitored with passive neutron detectors. An active neutron station having better than 1 mg Pu assay sensitivity is used to quantify final compacted waste pucks outside the cell. Bulk Pu in various forms and isotopic enrichments is quantified in a combined passive neutron coincidence and high resolution gamma ray spectrometer station outside the cell. Item control and Pu inventory are managed with bar code labeling and a station integrating algorithm. Overall economy is achieved by multiple station use of the same expensive hardware such as the neutron generator

  2. Environmental assessment for the proposed CMR Building upgrades at the Los Alamos National Laboratory, Los Alamos, New Mexico. Final document

    International Nuclear Information System (INIS)

    In order to maintain its ability to continue to conduct uninterrupted radioactive and metallurgical research in a safe, secure, and environmentally sound manner, the US Department of Energy (DOE) proposes to upgrade the Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Building. The building was built in the early 1950s to provide a research and experimental facility for analytical chemistry, plutonium and uranium chemistry, and metallurgy. Today, research and development activities are performed involving nuclear materials. A variety of radioactive and chemical hazards are present. The CMR Building is nearing the end of its original design life and does not meet many of today's design codes and standards. The Proposed Action for this Environmental Assessment (EA) includes structural modifications to some portions of the CMR Building which do not meet current seismic criteria for a Hazard Category 2 Facility. Also included are upgrades and improvements in building ventilation, communications, monitoring, and fire protection systems. This EA analyzes the environmental effects of construction of the proposed upgrades. The Proposed Action will have no adverse effects upon agricultural and cultural resources, wetlands and floodplains, endangered and threatened species, recreational resources, or water resources. The Proposed Action would have negligible effects on human health and transportation, and would not pose a disproportionate adverse health or environmental impact on minority or low-income populations within an 80 kilometer (50 mile) radius of the CMR Building

  3. Environmental assessment for the proposed CMR Building upgrades at the Los Alamos National Laboratory, Los Alamos, New Mexico. Final document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-04

    In order to maintain its ability to continue to conduct uninterrupted radioactive and metallurgical research in a safe, secure, and environmentally sound manner, the US Department of Energy (DOE) proposes to upgrade the Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Building. The building was built in the early 1950s to provide a research and experimental facility for analytical chemistry, plutonium and uranium chemistry, and metallurgy. Today, research and development activities are performed involving nuclear materials. A variety of radioactive and chemical hazards are present. The CMR Building is nearing the end of its original design life and does not meet many of today`s design codes and standards. The Proposed Action for this Environmental Assessment (EA) includes structural modifications to some portions of the CMR Building which do not meet current seismic criteria for a Hazard Category 2 Facility. Also included are upgrades and improvements in building ventilation, communications, monitoring, and fire protection systems. This EA analyzes the environmental effects of construction of the proposed upgrades. The Proposed Action will have no adverse effects upon agricultural and cultural resources, wetlands and floodplains, endangered and threatened species, recreational resources, or water resources. The Proposed Action would have negligible effects on human health and transportation, and would not pose a disproportionate adverse health or environmental impact on minority or low-income populations within an 80 kilometer (50 mile) radius of the CMR Building.

  4. TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM OXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, J.; Livingston, R.; Berg, J.; Veirs, D.

    2012-07-02

    The HB-Line (HBL) facility at the Savannah River Site (SRS) is designed to produce high-purity plutonium dioxide (PuO{sub 2}) which is suitable for future use in production of Mixed Oxide (MOX) fuel. The MOX Fuel Fabrication Facility (MFFF) requires PuO{sub 2} feed to be packaged per the U.S. Department of Energy (DOE) Standard 3013 (DOE-STD-3013) to comply with the facility's safety basis. The stabilization conditions imposed by DOE-STD-3013 for PuO{sub 2} (i.e., 950 C for 2 hours) preclude use of the HBL PuO{sub 2} in direct fuel fabrication and reduce the value of the HBL product as MFFF feedstock. Consequently, HBL initiated a technical evaluation to define acceptable operating conditions for production of high-purity PuO{sub 2} that fulfills the DOE-STD-3013 criteria for safe storage. The purpose of this document is to demonstrate that within the defined operating conditions, the HBL process will be equivalent for meeting the requirements of the DOE-STD-3013 stabilization process for plutonium-bearing materials from the DOE complex. The proposed 3013 equivalency reduces the prescribed stabilization temperature for high-purity PuO{sub 2} from oxalate precipitation processes from 950 C to 640 C and places a limit of 60% on the relative humidity (RH) at the lowest material temperature. The equivalency is limited to material produced using the HBL established flow sheet, for example, nitric acid anion exchange and Pu(IV) direct strike oxalate precipitation with stabilization at a minimum temperature of 640 C for four hours (h). The product purity must meet the MFFF acceptance criteria of 23,600 {micro}g/g Pu (i.e., 2.1 wt %) total impurities and chloride content less than 250 {micro}g/g of Pu. All other stabilization and packaging criteria identified by DOE-STD-3013-2012 or earlier revisions of the standard apply. Based on the evaluation of test data discussed in this document, the expert judgment of the authors supports packaging the HBL product under a 3013

  5. International plutonium policy

    International Nuclear Information System (INIS)

    The need to distinguish between diversion by sub-national groups and by governments is clearly stated. The paper identifies the international safeguards measures which already exist for the handling of plutonium. It proposes that the implementation of Article XII A5 of the IAEA statute concerning the international storage of plutonium could be an important additional measure. The paper also mentions the concept of using confinement as a complimentary safeguards measure and identifies the PIPEX concept. In addition, greater use is proposed of containment and surveillance procedures. The multiplication of small reprocessing plants spread over many countries is perceived as a proliferation risk. Other means such as co-location of reprocessing and fuel fabrication facilities are relevant to diversion by sub-national groups

  6. Los Alamos, Hiroshima, Nagasaki - a personal recollection

    International Nuclear Information System (INIS)

    The author, a physicist participating in the Manhattan Project, recalls his experiences and work in the laboratories at the time which marked the onset of the nuclear era, the construction of the first uranium and plutonium bombs in Los Alamos, and the hidious effects shown to the world by the nuclear bombing of Japan. His thoughts and memories presented 50 years after the nuclear destruction of Hiroshima and Nagasaki, and now that the Cold War has ended, call for a global ban of nuclear weapons. (orig.)

  7. Report on the control of the safety and security of nuclear facilities. Part 2: the reconversion of military plutonium stocks. The use of the helps given to central and eastern Europe countries and to the new independent states; Rapport sur le controle de la surete et de la securite des installations nucleaires. Deuxieme partie: la reconversion des stocks de plutonium militaire. L'utilisation des aides accordees aux pays d'Europe centrale et orientale et aux nouveaux etats independants

    Energy Technology Data Exchange (ETDEWEB)

    Birraux, C

    2002-07-01

    This report deals with two different aspects of the safety and security of nuclear facilities. The first aspect concerns the reconversion of weapon grade plutonium stocks: the plutonium in excess, plutonium hazards and nuclear fuel potentialities, the US program, the Russian program, the actions of European countries (France, Germany), the intervention of other countries, the unanswered questions (political aspects, uncertainties), the solutions of the future (improvement of reactors, the helium-cooled high temperature reactor technology (gas-turbine modular helium reactor: GT-MHR), the Carlo Rubbia's project). The second aspect concerns the actions carried out by the European Union in favor of the civil nuclear facilities of central and eastern Europe: the European Union competencies through the Euratom treaty, the conclusions of the European audit office about the PHARE and TACIS nuclear programs, the status of committed actions, the coming planned actions, and the critical analysis of the policy adopted so far. (J.S.)

  8. PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Estochen, E.

    2013-03-20

    Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

  9. Plutonium finishing plant dangerous waste training plan

    International Nuclear Information System (INIS)

    This training plan describes general requirements, worker categories, and provides course descriptions for operation of the Plutonium Finish Plant (PFP) waste generation facilities, permitted treatment, storage and disposal (TSD) units, and the 90-Day Accumulation Areas

  10. Storage of weapons-grade plutonium

    International Nuclear Information System (INIS)

    With the end of the cold war, the United States has started to reduce its nuclear weapons stockpiles and will place special nuclear material (plutonium and uranium) into storage. The existing plutonium storage facilities are designed for short-term storage or to support operation of adjacent processing facilities. The U.S. Department of Energy (DOE) is proposing to construct and operate a new plutonium storage facility as part of the reconfigured weapons complex, called Complex-21, to provide safe and secure long-term storage of plutonium materials. This facility will be required to meet new, more stringent requirements such as potential third-party inspection, enhanced safeguard and security requirements, and reduced personnel radiation exposure limits

  11. Decommissioning of a 239Pu contaminated incinerator facility

    International Nuclear Information System (INIS)

    In early 1978, a plutonium contaminated incinerator facility at the Los Alamos Scientific Laboratory (LASL), Los Alamos, New Mexico, was decommissioned. The project involved dismantling the facility and disposal by burial or by retrievable storage of the debri at an on-site waste disposal area. Contaminated soil from the 0.5 hectare area was buried. The facility was constructed in 1951 to incinerate plutonium contaminated wastes. It was later used as a decontamination facility. The major features included a 185 m2 control building, incinerator, cyclone dust collector, spray cooler, venturi scrubber, air filter bank, ash separator, and two 140,000 litres ash storage tanks. Preliminary soil contamination surveys were performed by a LASL developed portable phoswich detector system. Final soil contamination levels were measured with a zinc sulphide gross alpha scintillation system. Six hundred cubic metres of debris and 1200 m3 of soil contaminated with less than 10 nCi 239 Pu/g were buried at the LASL disposal area. Five cubic metres of 239 Pu contaminated ash residues were packed and stored to meet the Department of Energy's 20 year retrievable storage criteria. (author)

  12. Characterization of Representative Materials in Support of Safe, Long Term Storage of Surplus Plutonium in DOE-STD-3013 Containers

    Energy Technology Data Exchange (ETDEWEB)

    Narlesky, Joshua E. [Los Alamos National Laboratory; Stroud, Mary Ann [Los Alamos National Laboratory; Smith, Paul Herrick [Los Alamos National Laboratory; Wayne, David M. [Los Alamos National Laboratory; Mason, Richard E. [MET-1: ACTINIDE PROCESSING SUPPORT; Worl, Laura A. [Los Alamos National Laboratory

    2013-02-15

    The Surveillance and Monitoring Program is a joint Los Alamos National Laboratory/Savannah River Site effort funded by the Department of Energy-Environmental Management to provide the technical basis for the safe, long-term storage (up to 50 years) of over 6 metric tons of plutonium stored in over 5,000 DOE-STD-3013 containers at various facilities around the DOE complex. The majority of this material is plutonium that is surplus to the nuclear weapons program, and much of it is destined for conversion to mixed oxide fuel for use in US nuclear power plants. The form of the plutonium ranges from relatively pure metal and oxide to very impure oxide. The performance of the 3013 containers has been shown to depend on moisture content and on the levels, types and chemical forms of the impurities. The oxide materials that present the greatest challenge to the storage container are those that contain chloride salts. Other common impurities include oxides and other compounds of calcium, magnesium, iron, and nickel. Over the past 15 years the program has collected a large body of experimental data on 54 samples of plutonium, with 53 chosen to represent the broader population of materials in storage. This paper summarizes the characterization data, moisture analysis, particle size, surface area, density, wattage, actinide composition, trace element impurity analysis, and shelf life surveillance data and includes origin and process history information. Limited characterization data on fourteen nonrepresentative samples is also presented.

  13. Cost Estimating for Decommissioning of a Plutonium Facility--Lessons Learned From The Rocky Flats Building 771 Project

    International Nuclear Information System (INIS)

    The Rocky Flats Closure Site is implementing an aggressive approach in an attempt to complete Site closure by 2006. The replanning effort to meet this goal required that the life-cycle decommissioning effort for the Site and for the major individual facilities be reexamined in detail. As part of the overall effort, the cost estimate for the Building 771 decommissioning project was revised to incorporate both actual cost data from a recently-completed similar project and detailed planning for all activities. This paper provides a brief overview of the replanning process and the original estimate, and then discusses the modifications to that estimate to reflect new data, methods, and planning rigor. It provides the new work breakdown structure and discusses the reasons for the final arrangement chosen. It follows with the process used to assign scope, cost, and schedule elements within the new structure, and development of the new code of accounts. Finally, it describes the project control methodology used to track the project, and provides lessons learned on cost tracking in the decommissioning environment

  14. In-situ gamma-ray assay of the west cell line in the 235-F plutonium fuel form facility

    Energy Technology Data Exchange (ETDEWEB)

    Couture, A. H. [Savannah River Site (SRS), Aiken, SC (United States); Diprete, D. [Savannah River Site (SRS), Aiken, SC (United States)

    2014-09-01

    On August 29th, 2013, scientists from SRNL took a series of in-situ gamma-ray measurements in the maintenance trench beneath Cells 6-9 on the west line of the PuFF facility using an uncollimated, highpurity germanium detector. The detector efficiency was estimated using a combination of MCNP simulations and empirical measurements. Data analysis was performed using three gamma-rays emitted by Pu-238 (99.85 keV, 152.7 keV, and 766.4 keV) providing three independent estimates of the mass of Pu-238 holdup in each of the cells. The weighted mean of these three results was used as the best estimate of Pu-238 holdup in the West Cell Line of PuFF. The results of the assay measurements are found in the table below along with the results from the scoping assay performed in 2006. All uncertainties in this table (as well as the rest of the report) are given as 1σ. The total holdup in the West Cell Line was 2.4 ± 0.7 grams. This result is 0.6 g higher than the previous estimate, a 0.4σ difference.

  15. Cost Estimating for Decommissioning of a Plutonium Facility--Lessons Learned From The Rocky Flats Building 771 Project

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, J. L.; Titus, R.; Sanford, P. C.

    2002-02-26

    The Rocky Flats Closure Site is implementing an aggressive approach in an attempt to complete Site closure by 2006. The replanning effort to meet this goal required that the life-cycle decommissioning effort for the Site and for the major individual facilities be reexamined in detail. As part of the overall effort, the cost estimate for the Building 771 decommissioning project was revised to incorporate both actual cost data from a recently-completed similar project and detailed planning for all activities. This paper provides a brief overview of the replanning process and the original estimate, and then discusses the modifications to that estimate to reflect new data, methods, and planning rigor. It provides the new work breakdown structure and discusses the reasons for the final arrangement chosen. It follows with the process used to assign scope, cost, and schedule elements within the new structure, and development of the new code of accounts. Finally, it describes the project control methodology used to track the project, and provides lessons learned on cost tracking in the decommissioning environment.

  16. In-situ gamma-ray assay of the east cell line in the 235-F Plutonium fuel form facility

    Energy Technology Data Exchange (ETDEWEB)

    Diprete, D. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-08-21

    On September 17th -19th , 2013, scientists from SRNL took a series of in-situ gamma-ray measurements in the maintenance trench beneath Cells 1-5 on the east line of the PuFF facility using a well-collimated, high-purity germanium detector. The cell interiors were assayed along with the furnaces and storage coolers that protrude beneath the cells. The detector efficiency was estimated using a combination of MCNP simulations and empirical measurements. Data analysis was performed using three gamma-rays emitted by Pu-238 (99.85 keV, 152.7 keV, and 766.4 keV) providing three independent estimates of the mass of Pu-238 holdup in each of the cells. The weighted mean of these three results was used as the best estimate of Pu-238 holdup in the East Cell Line of PuFF. The results of the assay measurements are found in the table on the following page along with the results from the scoping assay performed in 2006. All uncertainties in this table (as well as the rest of the report) are reported at 1σ. Summing the assay results and treating MDAs as M238Pu= 0 ± MDA, the total holdup in the East Cell Line was 240 ± 40 grams. This result is 100 grams lower than the previous estimate, a 0.55σ difference. The uncertainty in the Pu-238 holdup is also reduced substantially relative to the 2006 scoping assay. However, the current assay results are in agreement with the 2006 scoping assay results due to the large uncertainty associated with the 2006 scoping assays. The current assay results support the conclusion that the 2006 results bound the Pu-238 mass in Cells 1-5. These results should be considered preliminary since additional measurements of the East Cell line are scheduled for 2017 and 2018. Those measurements will provide detailed information about the distribution of Pu-238 in the cells to be used to refine the results of the current assay.

  17. Plutonium story

    International Nuclear Information System (INIS)

    The first nuclear synthesis and identification (i.e., the discovery) of the synthetic transuranium element plutonium (isotope 238Pu) and the demonstration of its fissionability with slow neutrons (isotope 239Pu) took place at the University of California, Berkeley, through the use of the 60-inch and 37-inch cyclotrons, in late 1940 and early 1941. This led to the development of industrial scale methods in secret work centered at the University of Chicago's Metallurgical Laboratory and the application of these methods to industrial scale production, at manufacturing plants in Tennessee and Washington, during the World War II years 1942 to 1945. The chemical properties of plutonium, needed to devise the procedures for its industrial scale production, were studied by tracer and ultramicrochemical methods during this period on an extraordinarily urgent basis. This work, and subsequent investigations on a worldwide basis, have made the properties of plutonium very well known. Its well studied electronic structure and chemical properties give it a very interesting position in the actinide series of inner transition elements

  18. Plutonium Story

    Science.gov (United States)

    Seaborg, G. T.

    1981-09-01

    The first nuclear synthesis and identification (i.e., the discovery) of the synthetic transuranium element plutonium (isotope /sup 238/Pu) and the demonstration of its fissionability with slow neutrons (isotope /sup 239/Pu) took place at the University of California, Berkeley, through the use of the 60-inch and 37-inch cyclotrons, in late 1940 and early 1941. This led to the development of industrial scale methods in secret work centered at the University of Chicago's Metallurgical Laboratory and the application of these methods to industrial scale production, at manufacturing plants in Tennessee and Washington, during the World War II years 1942 to 1945. The chemical properties of plutonium, needed to devise the procedures for its industrial scale production, were studied by tracer and ultramicrochemical methods during this period on an extraordinarily urgent basis. This work, and subsequent investigations on a worldwide basis, have made the properties of plutonium very well known. Its well studied electronic structure and chemical properties give it a very interesting position in the actinide series of inner transition elements.

  19. In Plant Measurement and Analysis of Mixtures of Uranium and Plutonium TRU-Waste Using a {sup 252}Cf Shuffler Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, J.R.

    1998-11-02

    The active-passive {sup 252}Cf shuffler instrument, installed and certified several years ago in Los Alamos National Laboratory's plutonium facility, has now been calibrated for different matrices to measure Waste Isolation Pilot Plant (WIPP)-destined transuranic (TRU)-waste. Little or no data currently exist for these types of measurements in plant environments where sudden large changes in the neutron background radiation can significantly distort the results. Measurements and analyses of twenty-two 55-gallon drums, consisting of mixtures of varying quantities of uranium and plutonium in mostly noncombustible matrices, have been recently completed at the plutonium facility. The calibration and measurement techniques, including the method used to separate out the plutonium component, will be presented and discussed. Calculations used to adjust for differences in uranium enrichment from that of the calibration standards will be shown. Methods used to determine various sources of both random and systematic error will be indicated. Particular attention will be directed to those problems identified as arising from the plant environment. The results of studies to quantify the aforementioned distortion effects in the data will be presented. Various solution scenarios will be outlined, along with those adopted here.

  20. Canyon Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  1. Surplus plutonium disposition draft environmental impact statement. Summary

    International Nuclear Information System (INIS)

    On May 22, 1997, DOE published a Notice of Intent (NOI) in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS). DOE's disposition strategy allows for both the immobilization of surplus plutonium and its use as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of the immobilized plutonium and MOX fuel (as spent nuclear fuel) in a geologic repository. The Surplus Plutonium Disposition Environmental Impact Statement analyzes alternatives that would use the immobilization approach (for some of the surplus plutonium) and the MOX fuel approach (for some of the surplus plutonium); alternatives that would immobilize all of the surplus plutonium; and the No Action Alternative. The alternatives include three disposition facilities that would be designed so that they could collectively accomplish disposition of up to 50 metric tons (55 tons) of surplus plutonium over their operating lives: (1) the pit disassembly and conversion facility would disassemble pits (a weapons component) and convert the recovered plutonium, as well as plutonium metal from other sources, into plutonium dioxide suitable for disposition; (2) the immobilization facility would include a collocated capability for converting nonpit plutonium materials into plutonium dioxide suitable for immobilization and would be located at either Hanford or SRS. DOE has identified SRS as the preferred site for an immobilization facility; (3) the MOX fuel fabrication facility would fabricate plutonium dioxide into MOX fuel

  2. Lessons learned from decommissioning projects at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    This paper describes lessons learned over the last 20 years from 12 decommissioning projects at Los Alamos National Laboratory. These lessons relate both to overall program management and to management of specific projects during the planning and operations phases. The issues include waste management; the National Environmental Policy Act (NEPA); the Resource Conservation and Recovery Act (RCRA); the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); contracting; public involvement; client/customer interface; and funding. Key elements of our approach are to be proactive; follow the observation method; perform field activities concurrently; develop strategies to keep reportable incidents from delaying work; seek and use programs, methods, etc., in existence to shorten learning curves; network to help develop solutions; and avoid overstudying and overcharacterizing. This approach results in preliminary plans that require very little revision before implementation, reasonable costs and schedules, early acquisition of permits and NEPA documents, preliminary characterization reports, and contracting documents. Our track record is good -- the last four projects (uranium and plutonium-processing facility and three research reactors) have been on budget and on schedule

  3. Los Alamos national Laboratory overview of the SAVY-4000 design: meeting the challenge for worker safety

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Timothy Amos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2012-06-12

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based storage container design, the SAVY-4000. The SAVY-4000 is the first vented general use nuclear material container demonstrated to meet the requirements of DOE M 441.1-1, Nuclear Material Packaging Manual. The SAVY-4000 is an innovative and creative design demonstrated by the fact that it can be opened and closed in a few seconds without torque wrenches or other tools; has a built-in, fire-rated filter that prevents the build-up of hydrogen gas, yet retains 99.97% of plutonium particulates, and prevents release of material even in a 12 foot drop. Finally, it has been tested to 500C for 2 hours, and will reduce the risk to the public in the event of an earthquake/fire scenario. This will allow major nuclear facilities to credit the container towards source term Material at Risk (MAR) reduction. The container was approved for nuclear material storage in theTA-55 Plutonium Facility on March 15, 2011, and the first order of 79 containers was received at LANL on March 21, 2011. The first four SAVY-4000 containers were packaged with plutonium on August 2, 2011. Key aspects ofthe SAVY-4000 vented storage container design will be discussed which include design qualification and testing, implementation plan development and status, risk ranking methodology for re-packaging, in use implementation with interface to LANMAS, surveillance strategy, the design life extension program as enhanced by surveillance activities and production status with the intent to extend well beyond the current five year design life.

  4. Development of advanced mixed oxide fuels for plutonium management

    International Nuclear Information System (INIS)

    A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium

  5. The plutonium cycle under high surveillance

    International Nuclear Information System (INIS)

    The plutonium is a source of strong public anxiety because of the risk of uncontrolled nuclear weapons proliferation. Several countries have decided to adopt a politics of transparency by drawing up the inventory of plutonium stocks. Most of the plutonium available comes from the operation of nuclear power plants and from the dismantlement of US and Soviet nuclear weapons. A part of plutonium reserves can be burn in fast breeder reactors while the rest can be recycled to produce the Mox (mixed oxides) fuel made of 5 to 7 % of plutonium and 93 to 95 % of uranium 238. The Mox fuel is presently tested in 20 European reactor from which seven are French. The use of Mox requires some modifications of the reactor conception such as the addition of supplementary control rods. The expectations from now to the year 2000 are to use Mox in 28 French reactors, which represents half of the EdF (Electricite de France) units. The paper describes the Melox facility sited in Marcoule (Gard, France) and devoted to the fabrication of Mox fuel from uranium and plutonium oxides. The paper also focusses on the safety and security aspects of plutonium transportation and storage. In a second part, the plutonium isotopes properties are briefly described together with the possible use of plutonium for the fabrication of radiological weapons in the case of nuclear materials diversion. (J.S.). 1 fig., 5 photos

  6. Plutonium contamination in the environment. May 1978-April 1987 (A Bibliography from the Life Sciences Collection data base). Report for May 1978-April 1987

    International Nuclear Information System (INIS)

    This bibliography contains citations concerning the ecological impact of plutonium contamination in the environment. Topics include plutonium contamination in freshwater and marine sediments, plutonium bioaccumulation, plutonium transport in the food chain, plutonium accumulation in the soil, methods of analysis, plutonium removal from contaminated soils, plutonium contamination from nuclear fallout and nuclear facilities, and the presence of plutonium in seaspray and in the atmosphere. Plutonium biokinetics in humans, and fetal effects from plutonium contamination are also described. (Contains 93 citations fully indexed and including a title list.)

  7. Current trends for packaging transuranic waste at Los Alamos National Laboratory (LA-UR-07-4785)

    International Nuclear Information System (INIS)

    Transuranic (TRU) waste leaving the Plutonium Facility at Los Alamos National Laboratory (LANL) is packaged using LANL's waste acceptance criteria for onsite storage. Before shipment to the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico, each payload container is subject to rigorous characterization to ensure compliance with WIPP waste acceptance criteria and Department of Transportation regulations. Techniques used for waste characterization include nondestructive examination by WIPP-certified real-time radiography (RTR) and nondestructive assay (NDA) of containers, as well as headspace gas sampling to ensure hydrogen and other flammable gases remain at safe levels during transport. These techniques are performed under a rigorous quality assurance program to confirm that results are accurate and reproducible. If containers are deemed problematic, corrective action is taken before shipment to WIPP. Currently this activity is possible only at the Laboratory's Waste Characterization, Reduction, and Repackaging Facility. To minimize additional waste requiring remediation, WIPP waste acceptance criteria must be applied at the point of waste generation. Additional criteria stem from limitations of RTR or NDA instruments or lack of appropriate sampling and analysis. This paper presents the changes that have been implemented at the Plutonium Facility and gives readers a preview of what LANL expects to accomplish to expeditiously certify and dispose of newly generated TRU waste. (authors)

  8. Seaborg's Plutonium ?

    CERN Document Server

    Norman, Eric B; Telhami, Kristina E

    2014-01-01

    Passive x-ray and gamma-ray analysis was performed on UC Berkeley's EH&S Sample S338. The object was found to contain Pu-239 and no other radioactive isotopes. The mass of Pu-239 contained in this object was determined to be 2.0 +- 0.3 micrograms. These observations are consistent with the identification of this object being the 2.77-microgram plutonium oxide sample described by Glenn Seaborg and his collaborators as the first sample of Pu-239 that was large enough to be weighed.

  9. Los Alamos National Laboratory DOE M441.1-1 implementation

    International Nuclear Information System (INIS)

    Loss of containment of nuclear material stored in containers such as food-pack cans, paint cans, or taped slip lid cans has generated concern about packaging requirements for interim storage of nuclear materials in working facilities such as the plutonium facility at Los Alamos National Laboratory (LANL). The Department of Energy (DOE) issued DOE M 441.1-1, Nuclear Materials Packaging Manual on March 7, 2008 in response to the Defense Nuclear Facilities Safety Board Recommendation 2005-1. The Manual directs DOE facilities to follow detailed packaging requirements to protect workers from exposure to nuclear materials stored outside of approved engineered-contamination barriers. Los Alamos National Laboratory has identified the activities that will be performed to bring LANL into compliance with DOE M 441.1-1. These include design, qualification and procurement of new containers, repackaging based on a risk-ranking methodology, surveillance and maintenance of containers, and database requirements. The primary purpose is to replace the out-dated nuclear material storage containers with more robust containers that meet present day safety and quality standards. The repackaging campaign is supported by an integrated risk reduction methodology to prioritize the limited resources to the highest risk containers. This methodology is systematically revised and updated based on the collection of package integrity data. A set of seven nested packages with built-in filters have been designed. These range in size from 1 qt. to 10 gallon. Progress of the testing to meet Manual requirements will be given. Due to the number of packages at LANL, repackaging to achieve full compliance will take five to seven years.

  10. Los Alamos National Laboratory DOE M441.1-1 implementation

    Energy Technology Data Exchange (ETDEWEB)

    Worl, Laura A [Los Alamos National Laboratory; Veirs, D Kirk [Los Alamos National Laboratory; Smith, Paul H [Los Alamos National Laboratory; Yarbro, Tresa F [Los Alamos National Laboratory; Stone, Timothy A [Los Alamos National Laboratory

    2010-01-01

    Loss of containment of nuclear material stored in containers such as food-pack cans, paint cans, or taped slip lid cans has generated concern about packaging requirements for interim storage of nuclear materials in working facilities such as the plutonium facility at Los Alamos National Laboratory (LANL). The Department of Energy (DOE) issued DOE M 441.1-1, Nuclear Materials Packaging Manual on March 7, 2008 in response to the Defense Nuclear Facilities Safety Board Recommendation 2005-1. The Manual directs DOE facilities to follow detailed packaging requirements to protect workers from exposure to nuclear materials stored outside of approved engineered-contamination barriers. Los Alamos National Laboratory has identified the activities that will be performed to bring LANL into compliance with DOE M 441.1-1. These include design, qualification and procurement of new containers, repackaging based on a risk-ranking methodology, surveillance and maintenance of containers, and database requirements. The primary purpose is to replace the out-dated nuclear material storage containers with more robust containers that meet present day safety and quality standards. The repackaging campaign is supported by an integrated risk reduction methodology to prioritize the limited resources to the highest risk containers. This methodology is systematically revised and updated based on the collection of package integrity data. A set of seven nested packages with built-in filters have been designed. These range in size from 1 qt. to 10 gallon. Progress of the testing to meet Manual requirements will be given. Due to the number of packages at LANL, repackaging to achieve full compliance will take five to seven years.

  11. Shielding calculational system for plutonium

    International Nuclear Information System (INIS)

    A computer calculational system has been developed and assembled specifically for calculating dose rates in AEC plutonium fabrication facilities. The system consists of two computer codes and all nuclear data necessary for calculation of neutron and gamma dose rates from plutonium. The codes include the multigroup version of the Battelle Monte Carlo code for solution of general neutron and gamma shielding problems and the PUSHLD code for solution of shielding problems where low energy gamma and x-rays are important. The nuclear data consists of built in neutron and gamma yields and spectra for various plutonium compounds, an automatic calculation of age effects and all cross-sections commonly used. Experimental correlations have been performed to verify portions of the calculational system. (23 tables, 7 figs, 16 refs) (U.S.)

  12. Analysis results from the Los Alamos 2D/3D program

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory is a participant in the 2D/3D program. Activities conducted at Los Alamos National Laboratory in support of 2D/3D program goals include analysis support of facility design, construction, and operation; provision of boundary and initial conditions for test-facility operations based on analysis of pressurized water reactors; performance of pretest and posttest predictions and analyses; and use of experimental results to validate and assess the single- and multi-dimensional, nonequilibrium features in the Transient Reactor Analysis Code (TRAC). During fiscal year 1987, Los Alamos conducted analytical assessment activities using data from the Slab Core Test Facility, The Cylindrical Core Test Facility, and the Upper Plenum Test Facility. Finally, Los Alamos continued work to provide TRAC improvements. In this paper, Los Alamos activities during fiscal year 1987 will be summarized; several significant accomplishments will be described in more detail to illustrate the work activities at Los Alamos

  13. Analysis results from the Los Alamos 2D/3D program

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory is a participant in the 2D/3D program. Activities conducted at Los Alamos National Laboratory in support of 2D/3D program goals include analysis support of facility design, construction, and operation; provision of boundary and initial conditions for test-facility operations based on analysis of pressurized water reactors; performance of pretest and post-test predictions and analyses; and use of experimental results to validate and assess the single- and multi-dimensional, nonequilibrium features in the Transient Reactor Analysis Code (TRAC). During fiscal year 1987, Los Alamos conducted analytical assessment activities using data from the Slab Core Test Facility, the Cylindrical Core Test Facility, and the Upper Plenum Test Facility. Finally, Los Alamos continued work to provide TRAC improvements. In this paper, Los Alamos activities during fiscal year 1987 are summarized; several significant accomplishments are described in more detail to illustrate the work activities at Los Alamos

  14. Robot vision system for remote plutonium disposition

    International Nuclear Information System (INIS)

    Tons of weapons-usable plutonium has been declared surplus to the national security needs of the United States. The Plutonium Immobilization Program (PIP) is a US Department of Energy sponsored program to place excess plutonium in a stable form and make it unattractive for reuse. A vision system was developed as part of PIP robotic and remote systems development. This vision system provides visual feedback to a can-loading robot that places plutonium/ceramic pucks in stainless steel cans. Inexpensive grayscale CCD cameras were used in conjunction with an off-the-shelf video capture card and computer to build an effective two-camera vision system. Testing demonstrates the viability of this technology for use in the Plutonium Immobilization Project facility, which is scheduled to begin operations in 2008

  15. Plutonium in depleted uranium penetrators

    International Nuclear Information System (INIS)

    Depleted Uranium (DU) penetrators used in the recent Balkan conflicts have been found to be contaminated with trace amounts of transuranic materials such as plutonium. This contamination is usually a consequence of DU fabrication being carried out in facilities also using uranium recycled from spent military and civilian nuclear reactor fuel. Specific activities of 239+240 Plutonium generally in the range 1 to 12 Bq/kg have been found to be present in DU penetrators recovered from the attack sites of the 1999 NATO bombardment of Kosovo. A DU penetrator recovered from a May 1999 attack site at Bratoselce in southern Serbia and analysed by University College Dublin was found to contain 43.7 +/- 1.9 Bq/kg of 239+240 Plutonium. This analysis is described. An account is also given of the general population radiation dose implications arising from both the DU itself and from the presence of plutonium in the penetrators. According to current dosimetric models, in all scenarios considered likely ,the dose from the plutonium is estimated to be much smaller than that due to the uranium isotopes present in the penetrators. (author)

  16. Fuel cycles using adulterated plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Brooksbank, R. E.; Bigelow, J. E.; Campbell, D. O.; Kitts, F. G.; Lindauer, R. B.

    1978-01-01

    Adjustments in the U-Pu fuel cycle necessitated by decisions made to improve the nonproliferation objectives of the US are examined. The uranium-based fuel cycle, using bred plutonium to provide the fissile enrichment, is the fuel system with the highest degree of commercial development at the present time. However, because purified plutonium can be used in weapons, this fuel cycle is potentially vulnerable to diversion of that plutonium. It does appear that there are technologically sound ways in which the plutonium might be adulterated by admixture with /sup 238/U and/or radioisotopes, and maintained in that state throughout the fuel cycle, so that the likelihood of a successful diversion is small. Adulteration of the plutonium in this manner would have relatively little effect on the operations of existing or planned reactors. Studies now in progress should show within a year or two whether the less expensive coprocessing scheme would provide adequate protection (coupled perhaps with elaborate conventional safeguards procedures) or if the more expensive spiked fuel cycle is needed as in the proposed civex pocess. If the latter is the case, it will be further necessary to determine the optimum spiking level, which could vary as much as a factor of a billion. A very basic question hangs on these determinations: What is to be the nature of the recycle fuel fabrication facilities. If the hot, fully remote fuel fabrication is required, then a great deal of further development work will be required to make the full cycle fully commercial.

  17. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress

  18. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.

  19. SEPARATION OF PLUTONIUM

    Science.gov (United States)

    Maddock, A.G.; Smith, F.

    1959-08-25

    A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.

  20. Plutonium stabilization and storage research in the DNFSB 94-1 core technology program

    International Nuclear Information System (INIS)

    Recommendation 94-1 of the Defense Nuclear Facility Safety Board (DNFSB) addresses legacy actinide materials left in the US nuclear defense program pipeline when the production mission ended in 1989. The Department of Energy (DOE) Implementation Plan responding to this recommendation instituted a Core Technology program to augment the knowledge base about general chemical and physical processing and storage behavior and to assure safe interim nuclear material storage, until disposition policies are formulated. The Core Technology program focuses on plutonium, in concert with a complex-wide applied R/D program administered by Los Alamos National Laboratory. This paper will summarize the Core Technology program's first two years, describe the research program for FY98, and project the overall direction of the program in the future

  1. Los Alamos National Laboratory new generation standard nuclear material storage container - the SAVY4000 design

    International Nuclear Information System (INIS)

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based standard involving storage of nuclear material (RD003). This RD003 requirements document has sense been updated to reflect requirements as identified with recently issued DOE M 441.1-1 'Nuclear Material Packaging Manual'. The new packaging manual was issued at the encouragement of the Defense Nuclear Facilities Safety Board with a clear directive for protecting the worker from exposure due to loss of containment of stored materials. The Manual specifies a detailed and all inclusive approach to achieve a high level of protection; from package design and performance requirements, design life determinations of limited life components, authorized contents evaluations, and surveillance/maintenance to ensure in use package integrity over time. Materials in scope involve those stored outside an approved engineered-contamination barrier that would result in a worker exposure of in excess of 5 rem Committed Effective Does Equivalent (CEDE). Key aspects of meeting the challenge as developed around the SAVY-3000 vented storage container design will be discussed. Design performance and acceptance criteria against the manual, bounding conditions as established that the user must ensure are met to authorize contents in the package (based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide), interface as a safety class system within the facility under the LANL plutonium facility DSA, design life determinations for limited life components, and a sense of design specific surveillance program

  2. Los Alamos National Laboratory new generation standard nuclear material storage container - the SAVY4000 design

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Timothy Amos [Los Alamos National Laboratory

    2010-01-01

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based standard involving storage of nuclear material (RD003). This RD003 requirements document has sense been updated to reflect requirements as identified with recently issued DOE M 441.1-1 'Nuclear Material Packaging Manual'. The new packaging manual was issued at the encouragement of the Defense Nuclear Facilities Safety Board with a clear directive for protecting the worker from exposure due to loss of containment of stored materials. The Manual specifies a detailed and all inclusive approach to achieve a high level of protection; from package design & performance requirements, design life determinations of limited life components, authorized contents evaluations, and surveillance/maintenance to ensure in use package integrity over time. Materials in scope involve those stored outside an approved engineered-contamination barrier that would result in a worker exposure of in excess of 5 rem Committed Effective Does Equivalent (CEDE). Key aspects of meeting the challenge as developed around the SAVY-3000 vented storage container design will be discussed. Design performance and acceptance criteria against the manual, bounding conditions as established that the user must ensure are met to authorize contents in the package (based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide), interface as a safety class system within the facility under the LANL plutonium facility DSA, design life determinations for limited life components, and a sense of design specific surveillance

  3. Plutonium-239

    International Nuclear Information System (INIS)

    This sheet belongs to a collection which relates to the use of radionuclides essentially in unsealed sources. Its goal is to gather on a single document the most relevant information as well as the best prevention practices to be implemented. These sheets are made for the persons in charge of radiation protection: users, radioprotection-skill persons, labor physicians. Each sheet treats of: 1 - the radio-physical and biological properties; 2 - the main uses; 3 - the dosimetric parameters; 4 - the measurement; 5 - the protection means; 6 - the areas delimitation and monitoring; 7 - the personnel classification, training and monitoring; 8 - the effluents and wastes; 9 - the authorization and declaration administrative procedures; 10 - the transport; and 11 - the right conduct to adopt in case of incident or accident. This sheet deals specifically with Plutonium-239

  4. Plutonium Round Robin Test

    International Nuclear Information System (INIS)

    Full text: The goal of nuclear forensics is to develop a preferred approach to illicit trafficking investigations. This approach must be widely understood and acceptable as credible. The principle objectives of the Round Robin Test are to prioritize the forensic techniques and methods, evaluate attribution capabilities, and examine the utility of database. The Plutonium Round Robin has made a tremendous contribution to fulfilling these goals through a collaborative learning experience that resulted from the outstanding efforts of the six participating international laboratories. A prioritize list of techniques and methods has been developed based on this exercise. Future work will focus on a Highly Enriched Round Robin and extent to which the techniques and methods can be generalized. The Plutonium Round Robin demonstrated a rather high level of capability to determine the important characteristics of the materials and processes using analytical methods. When this capability to was combined with the appropriate knowledge and database, it resulted in a demonstrated capability to attribute the source of the materials to a specific nuclear fuel, reactor, and reprocessing facility. A number of shortfalls were also identified in our current capabilities. These included alternative dating techniques. Light Water Reactor discrimination techniques, and the lack of a comprehensive network of data/knowledge bases. The result of the Round Robin will be used to develop guidelines or a 'recommended protocol' to be made available to the interested authorities and countries to use in real cases. The poster will present a summary of the results of the Plutonium Round Robin and describe the plans the subsequent Highly Enriched Uranium Round Robin Test. (author)

  5. Plutonium Round Robin Test

    International Nuclear Information System (INIS)

    Full text: The goal of nuclear forensics is to develop a preferred approach to illicit trafficking investigations. This approach must be widely understood and acceptable as credible. The principle objectives of the Round Robin Test are to prioritize the forensic techniques and methods, evaluate attribution capabilities, and examine the utility of database. The Plutonium Round Robin has made a tremendous contribution to fulfilling these goals through a collaborative learning experience that resulted from the outstanding efforts of the six participating international laboratories. A prioritize list of techniques and methods has been developed based on this exercise. Future work will focus on a Highly Enriched Round Robin and extent to which the techniques and methods can be generalized. The Plutonium Round Robin demonstrated a rather high level of capability to determine the important characteristics of the materials and processes using analytical methods. When this capability to was combined with the appropriate knowledge and database, it resulted in a demonstrated capability to attribute the source of the materials to a specific nuclear fuel, reactor, and reprocessing facility. A number of shortfalls were also identified in our current capabilities. These included alternative dating techniques, Light Water Reactor discrimination techniques, and the lack of a comprehensive network of data/knowledge bases. The result of the Round Robin will be used to develop guidelines or a 'recommended protocol' to be made available to the interested authorities and countries to use in real cases. The poster will present a summary of the results of the Plutonium Round Robin and describe the plans the subsequent Highly Enriched Uranium Round Robin Test. (author)

  6. International and institutional aspects of reprocessing and plutonium management

    International Nuclear Information System (INIS)

    Various institutional alternatives applicable to reprocessing, plutonium management and recycle are considered, not as a definitive analysis but rather as a basis for identifying the institutional approaches and measures which the Working Group might wish to examine more thoroughly. Seven alternatives arrangements for reprocessing are presented. These range from suspending the operation of existing reprocessing plants through placing national facilities under safeguards to limiting reprocessing to a few large facilities subject to plutonium management, multinational or international control. Finally, the comprehensive alternative of an International Nuclear Fuel Authority with worldwide responsibility for reprocessing and plutonium management is considered. Plutonium management alternatives to complement the reprocessing options, are then outlined. These include national discretion on the separation and disposition of plutonium under safeguards, an agreed Code of Practice for plutonium management at national facilities and the international storage of plutonium. The advantages and disadvantages of the alternative are discussed tentatively. It is recognised that the alternatives are presented in a simplified form and that their elements can be combined or separated in many ways. Although strengthening the institutions relating to the peaceful uses of nuclear energy is imperative and can contribute to non-proliferation, such arrangements might open other proliferation risks through the spread of sensitive materials, facilities and technology. While there are risks with any fuel cycle, where plutonium in quantity is separated these risks are of a high order. Although these can be mitigated, they will have to be set against the energy and economic case for reprocessing and alternatives other than plutonium considered

  7. Plutonium Finishing Plant safety evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE`s independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91.

  8. Plutonium Finishing Plant safety evaluation report

    International Nuclear Information System (INIS)

    The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE's independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91

  9. Design-Only Conceptual Design Report: Plutonium Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    DiSabatino, A.; Loftus, D.

    1999-01-01

    This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The siting for the Plutonium Immobilization Plant will be determined pursuant to the site-specific Surplus Plutonium Disposition Environmental Impact Statement in a Plutonium Deposition Record of Decision in early 1999. This document reflects a new facility using the preferred technology (ceramic immobilization using the can-in-canister approach) and the preferred site (at Savannah River). The Plutonium Immobilization Plant accepts plutonium from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors and must be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses: (1) A new building, the Plutonium Immobilization Plant, which will convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize plutonium in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister; (2) The existing Defense Waste Processing Facility for the pouring of high-level waste glass into the canisters; and (3) The Actinide Packaging and Storage Facility to receive and store feed materials. The Plutonium Immobilization Plant uses existing Savannah River Site infra-structure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. The Plutonium Immobilization Plant

  10. Inventory extension at the Nuclear Materials Storage Facility

    International Nuclear Information System (INIS)

    The planned renovation of the Nuclear Material Storage Facility (NMSF) at Los Alamos National Laboratory will be a significant addition to the plutonium storage capacity of the nuclear weapons complex. However, the utility of the facility may be impaired by an overly conservative approach to performing inventories of material in storage. This report examines options for taking advantage of provisions in Department of Energy orders to extend the time between inventories. These extensions are based on a combination of modern surveillance technology, facility design features, and revised operational procedures. The report also addresses the possibility that NMSF could be the site of some form of international inspection as part of the US arms control and nonproliferation policy

  11. Plutonium economy

    International Nuclear Information System (INIS)

    The author expresses his opinion on the situation, describes the energy-economic setting, indicates the alternatives: fuel reprocessing or immediate long-term storage, and investigates the prospects for economic utilization of the breeder reactors. All the facts suggest that the breeder reactor will never be able to stand economic competition with light-water reactors. However, there is no way to prove the future. It is naive to think that every doubt could and must be removed before stopping the development of breeder reactors - and thus also the reprocessing of the fuel of light-water reactors. On the basis of the current state of knowledge an unbiased cost-benefit-analysis can only lead to the recommendation to stop construction immediately. But can 'experts', who for years or even decades have called for and supported the development of breeder reactors be expected to make an unbiased analysis. Klaus Traube strikes the balance of the state Germany's nuclear economy is in: although there is no chance of definitively abandoning that energy-political cul-de-sac, no new adventures must be embarked upon. Responsible handling of currently used nuclear technology means to give up breeder technology and waive plutonium economy. It is no supreme technology with the aid of which structural unemployment or any other economic problem could be solved. (orig.)

  12. Plutonium Finishing Plant

    Data.gov (United States)

    Federal Laboratory Consortium — The Plutonium Finishing Plant, also known as PFP, represented the end of the line (the final procedure) associated with plutonium production at Hanford.PFP was also...

  13. Analysis of personnel error occurrence reports across Defense Program facilities

    Energy Technology Data Exchange (ETDEWEB)

    Stock, D.A.; Shurberg, D.A.; O`Brien, J.N.

    1994-05-01

    More than 2,000 reports from the Occurrence Reporting and Processing System (ORPS) database were examined in order to identify weaknesses in the implementation of the guidance for the Conduct of Operations (DOE Order 5480.19) at Defense Program (DP) facilities. The analysis revealed recurrent problems involving procedures, training of employees, the occurrence of accidents, planning and scheduling of daily operations, and communications. Changes to DOE 5480.19 and modifications of the Occurrence Reporting and Processing System are recommended to reduce the frequency of these problems. The primary tool used in this analysis was a coding scheme based on the guidelines in 5480.19, which was used to classify the textual content of occurrence reports. The occurrence reports selected for analysis came from across all DP facilities, and listed personnel error as a cause of the event. A number of additional reports, specifically from the Plutonium Processing and Handling Facility (TA55), and the Chemistry and Metallurgy Research Facility (CMR), at Los Alamos National Laboratory, were analyzed separately as a case study. In total, 2070 occurrence reports were examined for this analysis. A number of core issues were consistently found in all analyses conducted, and all subsets of data examined. When individual DP sites were analyzed, including some sites which have since been transferred, only minor variations were found in the importance of these core issues. The same issues also appeared in different time periods, in different types of reports, and at the two Los Alamos facilities selected for the case study.

  14. Plutonium in plants

    International Nuclear Information System (INIS)

    A bibliography on plutonium in plants is presented. It covers the subjects occurrence of plutonium in plants; soil-plant relationships; root uptake; distribution and translocation; foliar deposition and loss. Compiled data are presented on: recorded and calculated concentration factors of plutonium as well as those for uranium; concentration ratios for several crop types; proportion of plutonium removed from soil by plants; concentration ratios according to plant parts of cereal and vegetable crops. (G.J.P.)

  15. Thermal and Physical Properties of Plutonium Dioxide Produced from the Oxidation of Metal: a Data Summary

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, David M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-13

    The ARIES Program at the Los Alamos National Laboratory removes plutonium metal from decommissioned nuclear weapons, and converts it to plutonium dioxide in a specially-designed Direct Metal Oxidation furnace. The plutonium dioxide is analyzed for specific surface area, particle size distribution, and moisture content. The purpose of these analyses is to certify that the plutonium dioxide powder meets or exceeds the specifications of the end-user, and the specifications for the packaging and transport of nuclear materials. Analytical results from plutonium dioxide from ARIES development activities, from ARIES production activities, from muffle furnace oxidation of metal, and from metal that was oxidized over a lengthy time interval in air at room temperature, are presented. The processes studied produce plutonium dioxide powder with distinct differences in measured properties, indicating the significant influence of oxidation conditions on physical properties.

  16. Thermal and Physical Properties of Plutonium Dioxide Produced from the Oxidation of Metal: a Data Summary

    International Nuclear Information System (INIS)

    The ARIES Program at the Los Alamos National Laboratory removes plutonium metal from decommissioned nuclear weapons, and converts it to plutonium dioxide in a specially-designed Direct Metal Oxidation furnace. The plutonium dioxide is analyzed for specific surface area, particle size distribution, and moisture content. The purpose of these analyses is to certify that the plutonium dioxide powder meets or exceeds the specifications of the end-user, and the specifications for the packaging and transport of nuclear materials. Analytical results from plutonium dioxide from ARIES development activities, from ARIES production activities, from muffle furnace oxidation of metal, and from metal that was oxidized over a lengthy time interval in air at room temperature, are presented. The processes studied produce plutonium dioxide powder with distinct differences in measured properties, indicating the significant influence of oxidation conditions on physical properties.

  17. Cigarette smoke and plutonium

    International Nuclear Information System (INIS)

    Autoradiographic techniques with liquid photographic emulsion and cellulose nitrate track-etch film are being used to investigate the spatial distribution of inhaled plutonium in the lungs of beagle dogs exposed to cigarette smoke or to the plutonium aerosol only. More plutonium than expected was detected on the inner surfaces of bronchi, and particles were observed beneath the bronchial mucosa. 2 figures, 2 tables

  18. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department's plutonium storage. Volume I: Summary

    International Nuclear Information System (INIS)

    At the conclusion of the Cold War, the Department of Energy (DOE) stopped plutonium processing for nuclear weapons production. Facilities used for that purpose now hold significant quantities of plutonium in various forms. Unless properly stored and handled, plutonium can present environment, safety and health (ES ampersand H) hazards. Improperly stored plutonium poses a variety of hazards. When containers or packaging fail to fully protect plutonium metal from exposure to air, oxidation can occur and cause packaging failures and personnel contamination. Contamination can also result when plutonium solutions leak from bottles, tanks or piping. Plutonium in the form of scrap or residues generated by weapons production are often very corrosive, chemically reactive and difficult to contain. Buildings and equipment that are aging, poorly maintained or of obsolete design contribute to the overall problem. Inadvertent accumulations of plutonium of any form in sufficient quantities within facilities can result in nuclear criticality events that could emit large amounts of radiation locally. Contamination events and precursors of criticality events are causing safety and health concerns for workers at the Department's plutonium facilities. Contamination events also potentially threaten the public and the surrounding environment

  19. Experience with confirmation measurement at Los Alamos

    International Nuclear Information System (INIS)

    Confirmation measurements are used at Los Alamos in support of incoming and outgoing shipment accountibility and for support of both at 235U and Pu inventories. Statistical data are presented to show the consistency of measurements on items of identical composition and on items measured at two facilitis using similar instruments. A description of confirmation measurement techniques used in support of 235U and Pu inventories and a discussion on the ability of the measurements to identify items with misstated SNM are given

  20. Experience with confirmation measurement at Los Alamos

    International Nuclear Information System (INIS)

    Confirmation measurements are used at Los Alamos in support of incoming and outgoing shipment accountability and for support of both 235U and Pu inventories. Statistical data are presented to show the consistency of measurements on items of identical composition and on items measured at two facilities using similar instruments. A description of confirmation measurement techniques used in support of 235U and Pu inventories and a discussion on the ability of the measurements to identify items with misstated SNM are given

  1. Plutonium use - Present status and prospects

    International Nuclear Information System (INIS)

    The use of plutonium in thermal and fast reactors is a demonstrated, if not proven, technology. Moreover, plutonium is being produced in increasing quantities. Evaluation of this production on a world scale shows that it would be theoretically possible to construct numerous breeders and thus to make the best use of plutonium, while considerably reducing uranium consumption. This source of plutonium is nevertheless dependent on the reprocessing of irradiated fuel. Long delays in installing and adequate world reprocessing capacity are weakening the prospects for introducing breeders. Furthermore, the critical situation regarding reprocessing may delay the development of complementary reprocessing methods for fuels with a high plutonium content and high burnup. The recycling of plutonium is now a well-known technique and any objections to it hardly bear analysis. Utilization of plutonium offers an appreciable saving in terms of uranium and separative work units; and it can also be shown that immediate reprocessing of the recycling fuel is not essential for the economics of the concept. Temporary storage of recycled fuel is a particularly safe form of concentrating plutonium, namely in irradiated plutonium-bearing fuel assemblies. Finally, recycling offers such flexibility that it represents no obstacle to fuel management at power plants with light-water reactors. These strategic considerations imply that the technology of using plutonium for fabricating thermal or fast reactor fuels is both technically reliable and economically viable. The methods used in industrial facilities are fully reassuring in this respect. Although various unsolved problems exist, none seems likely to impede current developments, while the industrial experience gained has enabled the economics and reliability of the methods to be improved appreciably. Apart from the techno-economic aspects, the plutonium industry must face extremely important problems in connection with the safety of personnel

  2. Plutonium isotopic abundance measurements on CBNM NRM 271 analyzed with the FRAM and MGA codes

    Energy Technology Data Exchange (ETDEWEB)

    Friar, R.J.; Sampson, T.E.

    1992-05-01

    We report results of gamma-ray spectroscopy measurements of the isotopic distributions of plutonium in the reference-material set CBNM NRM 271 as analyzed by the FRAM and MGA plutonium isotopic codes. We acquired high-quality spectral data under measurement conditions approximating field-use conditions recommended by the code developers. Bias and precision results from these measurements are presented for both codes. Both codes performed very well for these measurements. These standards have proven to be very useful for testing the Los Alamos FRAM code in the high-burnup region where well-characterized materials have been unavailable at Los Alamos.

  3. Preliminary evaluation of the electrapette for possible use in the glovebox for pipetting plutonium solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hansbury, E.; Ortiz, B.; Roybal, C.

    1990-12-01

    At the Los Alamos Laboratory Plutonium Facility, Solution Assay Instruments (SAIs) are used to provide real-time information on the plutonium (Pu) content of the process stream at various stages in the process. Much of the solution analysis must be carried and as a glovebox to protect the operator from radiation. In order to overcome some of the difficulties usually encountered when working in a glovebox, an electronic solution-volume measuring device called an Electrapette was ordered from Matrix Technologies Corporation. It is said to be highly accurate, simple to use, and can handle the 25 ml of solution required for SAI analyses. It is microprocessor-controlled and comes in two components connected by a detachable cable so that the electronic part can be installed outside the box, while the nosepiece is inside. The two pieces are connected through a plug-in on the glovebox wall. The Electrapette was tested in three sets of experiments: a cold'' lab set, a set run is a hood in a production building, and a third set run in a glovebox using a process solution whose density had been predetermined. The accuracy of the determination could not be determined because the samples had been mixed with other feed before being sent for analysis by the Electrapette. 2 refs., 5 tabs.

  4. History and stabilization of the Plutonium Finishing Plant (PFP) complex, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S., Fluor Daniel Hanford

    1997-02-18

    The 231-Z Isolation Building or Plutonium Metallurgy Building is located in the Hanford Site`s 200 West Area, approximately 300 yards north of the Plutonium Finishing Plant (PFP) (234-5 Building). When the Hanford Engineer Works (HEW) built it in 1944 to contain the final step for processing plutonium, it was called the Isolation Building. At that time, HEW used a bismuth phosphate radiochemical separations process to make `AT solution,` which was then dried and shipped to Los Alamos, New Mexico. (AT solution is a code name used during World War II for the final HEW product.) The process was carried out first in T Plant and the 224-T Bulk Reduction Building and B Plant and the 224-B Bulk Reduction Building. The 224-T and -B processes produced a concentrated plutonium nitrate stream, which then was sent in 8-gallon batches to the 231-Z Building for final purification. In the 231-Z Building, the plutonium nitrate solution underwent peroxide `strikes` (additions of hydrogen peroxide to further separate the plutonium from its carrier solutions), to form the AT solution. The AT solution was dried and shipped to the Los Alamos Site, where it was made into metallic plutonium and then into weapons hemispheres.` The 231-Z Building began `hot` operations (operations using radioactive materials) with regular runs of plutonium nitrate on January 16, 1945.

  5. Risk-based analysis for prioritization and processing in the Los Alamos National Laboratory 94-1 program

    International Nuclear Information System (INIS)

    A previous report, open-quotes Analysis of LANL Options for Processing Plutonium Legacy Materials,close quotes LA-UR-95-4301, summarized the development of a risk-based prioritization methodology for the Los Alamos National Laboratory (LANL) Plutonium Facility at Technical Area-55 (TA-55). The methodology described in that report was developed not only to assist processing personnel in prioritizing the remediation of legacy materials but also to evaluate the risk impacts of schedule modifications and changes. Several key activities were undertaken in the development of that methodology. The most notable was that the risk assessments were based on statistically developed data from sampling containers in the vault and evaluating their condition; the data from the vault sampling programs were used as the basis for risk estimates. Also, the time-dependent behavior of the legacy materials was explicitly modeled and included in the risk analysis. The results indicated that significant reductions in program risk can be achieved by proper prioritization of the materials for processing

  6. Technical considerations and policy requirements for plutonium management

    International Nuclear Information System (INIS)

    The goals for plutonium management have changed dramatically over the past few years. Today, the challenge is focused on isolating plutonium from the environment and preparing it for permanent disposition. In parallel, the requirements for managing plutonium are rapidly changing. For example, there is a significant increase in public awareness on how facilities operate, increased attention to environmental safety and health (ES and H) concerns, greater interest in minimizing waste, more emphasis on protecting material from theft, providing materials for international inspection, and a resurgence of interest in using plutonium as an energy source. Of highest concern, in the immediate future, is protecting plutonium from theft or diversion, while the national policy on disposition is debated. These expanded requirements are causing a broadening of responsibilities within the Department of Energy (DOE) to include at least seven organizations. An unavoidable consequence is the divergence in approach and short-term goals for managing similar materials within each organization. The technology base does exist, properly, safely, and cost effectively to extract plutonium from excess weapons, residues, waste, and contaminated equipment and facilities, and to properly stabilize it. Extracting the plutonium enables it to be easily inventoried, packaged, and managed to minimize the risk of theft and diversion. Discarding excess plutonium does not sufficiently reduce the risk of diversion, and as a result, long-term containment of plutonium from the environment may not be able to be proven to the satisfaction of the public

  7. A Versatile two-step process for immobilizing excess plutonium

    International Nuclear Information System (INIS)

    As a consequence of weapon stockpile reduction and the associated shutdown of weapons production facilities, approximately 50 metric tons of plutonium (both weapons-grade and non-weapons-grade) has been declared excess by the US. Recent experiments demonstrated the feasibility of using high-level waste stored at the Idaho Chemical Processing Plant to immobilize plutonium. The most effective plutonium host phase identified in these experiments was a plutonium zirconate solid solution. Results of recent experiments are reported that show the feasibility of using the highly durable plutonium zirconate host phase as a feed material for high and low temperature encapsulation processes, thereby increasing the potential applications of this material for plutonium dispositioning

  8. Excess Weapons Plutonium Immobilization in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L.; Borisov, G.B.

    2000-04-15

    The joint goal of the Russian work is to establish a full-scale plutonium immobilization facility at a Russian industrial site by 2005. To achieve this requires that the necessary engineering and technical basis be developed in these Russian projects and the needed Russian approvals be obtained to conduct industrial-scale immobilization of plutonium-containing materials at a Russian industrial site by the 2005 date. This meeting and future work will provide the basis for joint decisions. Supporting R&D projects are being carried out at Russian Institutes that directly support the technical needs of Russian industrial sites to immobilize plutonium-containing materials. Special R&D on plutonium materials is also being carried out to support excess weapons disposition in Russia and the US, including nonproliferation studies of plutonium recovery from immobilization forms and accelerated radiation damage studies of the US-specified plutonium ceramic for immobilizing plutonium. This intriguing and extraordinary cooperation on certain aspects of the weapons plutonium problem is now progressing well and much work with plutonium has been completed in the past two years. Because much excellent and unique scientific and engineering technical work has now been completed in Russia in many aspects of plutonium immobilization, this meeting in St. Petersburg was both timely and necessary to summarize, review, and discuss these efforts among those who performed the actual work. The results of this meeting will help the US and Russia jointly define the future direction of the Russian plutonium immobilization program, and make it an even stronger and more integrated Russian program. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing the work into one place for four days to review and discuss their work with each other; and (2) Publish a meeting summary and a proceedings to compile reports of all the excellent

  9. ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Allender, J.; Moore, E.

    2013-07-17

    The United States holds at least 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition of the National Nuclear Security Administration and the DOE Office of Environmental Management. Many of the items that require disposition are only partially characterized, and SRNL uses a variety of techniques to predict the isotopic and chemical properties that are important for processing through the Mixed Oxide Fuel Fabrication Facility and alternative disposition paths. Recent advances in laboratory tools, including Prompt Gamma Analysis and Peroxide Fusion treatment, provide data on the existing inventories that will enable disposition without additional, costly sampling and destructive analysis.

  10. Surplus plutonium disposition draft environmental impact statement. Volume 1, Part A

    International Nuclear Information System (INIS)

    On May 22, 1997, DOE published a Notice of Intent (NOI) in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS). DOE's disposition strategy allows for both the immobilization of surplus plutonium and its use as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of the immobilized plutonium and MOX fuel (as spent nuclear fuel) in a geologic repository. The Surplus Plutonium Disposition Environmental Impact Statement analyzes alternatives that would use the immobilization approach (for some of the surplus plutonium) and the MOX fuel approach (for some of the surplus plutonium); alternatives that would immobilize all of the surplus plutonium; and the No Action Alternative. The alternatives include three disposition facilities that would be designed so that they could collectively accomplish disposition of up to 50 metric tons (55 tons) of surplus plutonium over their operating lives: (1) the pit disassembly and conversion facility would disassemble pits (a weapons component) and convert the recovered plutonium, as well as plutonium metal from other sources, into plutonium dioxide suitable for disposition; (2) the immobilization facility would include a collocated capability for converting nonpit plutonium materials into plutonium dioxide suitable for immobilization and would be located at either Hanford or SRS. DOE has identified SRS as the preferred site for an immobilization facility; (3) the MOX fuel fabrication facility would fabricate plutonium dioxide into MOX fuel. This volume includes background information; purpose of and need for the proposed action; alternatives for disposition of surplus weapons useable plutonium; and

  11. Plutonium Finishing Plant (PFP) Dangerous Waste Training Plan

    International Nuclear Information System (INIS)

    This training plan describes general requirements, worker categories, and provides course descriptions for operation of the plutonium finishing plant (PFP) waste generation facilities, permitted treatment, storage and disposal (TSD) units, and the 90-Day Accumulation Areas

  12. Plutonium finishing plant dangerous waste training plan; TOPICAL

    International Nuclear Information System (INIS)

    This training plan describes general requirements, worker categories, and provides course descriptions for operation of the Plutonium Finish Plant (PFP) waste generation facilities, permitted treatment, storage and disposal (TSD) units, and the 90-Day Accumulation Areas

  13. Los Alamos Programming Models

    Energy Technology Data Exchange (ETDEWEB)

    Bergen, Benjamin Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-07

    This is the PDF of a powerpoint presentation from a teleconference on Los Alamos programming models. It starts by listing their assumptions for the programming models and then details a hierarchical programming model at the System Level and Node Level. Then it details how to map this to their internal nomenclature. Finally, a list is given of what they are currently doing in this regard.

  14. Plutonium immobilization ceramic feed batching component test report

    International Nuclear Information System (INIS)

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with high level waste glass for permanent storage. Ceramic feed batching (CFB) is one of the first process steps involved with first stage plutonium immobilization. The CFB step will blend plutonium oxide powder before it is combined with other materials to make pucks. This report discusses the Plutonium Immobilization CFB process preliminary concept (including a process block diagram), batch splitting component test results, CFB development areas, and FY 1999 and 2000 CFB program milestones

  15. Applications of plutonium dioxide oxydising dissolution process

    International Nuclear Information System (INIS)

    Laboratory investigations having demonstrated the outstanding effectiveness of Ag2+ ions for the dissolution of plutonium dioxide in nitric medium, two applications of this method were developed at the CEA: dissolution of off-standard PuO2, recovery of the plutonium contained in ashes produced by incineration of solid wastes. With respect to PuO2 dissolution, the parametric investigation of the electrogeneration of Ag (II) and of its reaction with PuO2, led to the development of a process and of the equipment required for its implementation. The prototype facility used to dissolve in 4 hours 1 kg of plutonium, in oxide form, was built and tested in the laboratory. This equipment was used to dissolve 30 kg of plutonium oxide in batches of about 700 grams. An in-line spectrophotometric method was developed for process control. The application of this process to the recovery of plutonium from incineration ash is currently being developed. Tested on the scale of about 1 kg of ash, the process helps to recover the plutonium with yields higher than 98 %

  16. Results of low level waste analysis of plutonium with a passive neutron coincidence counter

    International Nuclear Information System (INIS)

    Measurements have been made at the Los Alamos National Laboratory (LANL) in the US and the Power Reactor Nuclear Fuel Development Corporation/Plutonium Fuel Production Facility (PNC/PFPF) in Japan with the Passive Neutron Waste Assay System (JCC-21) employing the Add-a-Source technique to quantify the plutonium content in 208 liter drums. The JCC-21 was jointly developed by Canberra Nuclear and LANL. High counting efficiency is obtained by using multiple 3He detectors in a 4π geometry, and a carefully-designed high-density polyethylene moderator provides relative insensitivity to the effects of scattering reactions in the matrix. Additional high-density polyethylene also provides shielding to reduce the low-energy ambient neutron background and improves the detection limit. The Add-a-Source technique developed by LANL provides a significant improvement in accounting for matrix effects by actually measuring the matrix absorption of neutrons from a small 252Cf source and correcting the detected flux for the matrix absorption. Matrix effects and corrections using the Add-a-Source technique were evaluated during installation. A detectability limit of 0.73 mg 240Pueff was measured for coincidence count at PNC/PFPF, making the JCC-21 one of the most sensitive and accurate NDA systems for analysis of plutonium-bearing waste. A detectability limit of 0.4 mg 240Pueff was measured for total counts at LANL, demonstrating a lower detection limit for waste where the (α,n) component is known. Enhancements to the counter design are being investigated to improve the sensitivity by reducing the background and increasing the counting efficiency. New counting techniques are also being investigated to improve the accuracy of the assay. The results of these enhancements and new techniques are presented

  17. Properties of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jin Su; Yoon, Hwan Ki; Min, Kyung Sik; Kim, Hyun Tae; Ahn, Jong Sung; Kwag, Eon Ho; Ryu, Keon Joong [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-03-01

    Plutonium has unique chemical and physical properties. Its uniqueness in use has led to rare publications, in Korea. This report covers physical aspects of phase change of metal plutonium, mechanical properties, thermal conductivity, etc, chemical aspects of corrosion, oxidation, how to produce plutonium from spent fuels by describing various chemical treatment methods, which are currently used and were used in the past. It also contains characteristics of the purex reprocessing process which is the most widely used nowadays. And show processes to purify and metalize from recovered plutonium solution. Detection and analysis methods are introduced with key pints for handling, critical safety, toxicity, and effects on peoples. This report gives not only a general idea on what plutonium is, rather than deep technical description, but also basic knowledge on plutonium production and safeguards diversion from the view point of nonproliferation. 18 refs. (Author) .new.

  18. Plutonium Finishing Plant (PFP) hazards assessment

    International Nuclear Information System (INIS)

    This report documents the hazards assessment for the Plutonium Finishing Plant (PFP) located on the US Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for the PFP. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  19. Studies of plutonium in human tracheobronchial lymph nodes

    International Nuclear Information System (INIS)

    Since 1959, tissues from 70 occupationally exposed former employees of the Los Alamos Scientific Laboratory have been examined following autopsy. Exposure in most cases was to inhaled plutonium oxide aerosols. Chemical analyses of selected tissues were performed to determine the amount of plutonium retained in the body at the time of death. On the basis of the measured tissue concentrations of plutonium, extrapolations of total-body burdens were made. Thirty-three of the measured cases had plutonium depositions in the tracheobronchial lymph nodes ranging from 0.1 to 4000 dpm per gram of tissue (0.05 to 1800 pCi/g). The duration of exposures ranged from 4 to 30 years. Microscopic examination of representative sections of these lymph nodes revealed no abnormalities other than those which were directly attributable to the basic disease that caused the demise of the various persons in this study. The size distribution of plutonium particles in nodes from one individual was determined by exposing tissue sections to nuclear track film. The estimated mass median diameter of the particles was 0.3 μm, and the distribution had a geometric standard deviation of 1.6. It is estimated that 95 percent of the individual particles had corresponding plutonium concentrations between 0.001 and 0.22 pCi

  20. PREPARATION OF PLUTONIUM HALIDES

    Science.gov (United States)

    Davidson, N.R.; Katz, J.J.

    1958-11-01

    A process ls presented for the preparation of plutonium trihalides. Plutonium oxide or a compound which may be readily converted to plutonlum oxide, for example, a plutonium hydroxide or plutonlum oxalate is contacted with a suitable halogenating agent. Speciflc agents mentioned are carbon tetrachloride, carbon tetrabromide, sulfur dioxide, and phosphorus pentachloride. The reaction is carried out under superatmospberic pressure at about 300 icient laborato C.

  1. Gamma-ray isotopic analysis development at Los Alamos

    International Nuclear Information System (INIS)

    This report describes the development history and characteristics of software developed in the Safeguards Science and Technology group at Los Alamos for gamma-ray isotopic analysis. This software analyzes the gamma-ray spectrum from measurements performed on actinide samples (principally plutonium and uranium) of arbitrary size, geometry, and physical and chemical composition. The results are obtained without calibration using only fundamental tabulated nuclear constants. Characteristics of the current software versions are discussed in some detail and many examples of implemented measurement systems are shown

  2. Perspective on plutonium

    International Nuclear Information System (INIS)

    This paper is intended as a brief overview on the element plutonium. Plutonium is the first primarily man-made element to play a significant role not only in technological development, but also in the economic growth of many countries. The importance of plutonium centers around its enormous energy making it ideal for wide-scale use in reactors, while the nuclear industry continues to work toward improving safety and efficiency of plutonium as a reactor fuel politicians and the public still debate over the safety and benefits of nuclear power. (30 refs.)

  3. Surplus plutonium disposition draft environmental impact statement. Volume 1, Part B

    International Nuclear Information System (INIS)

    On May 22, 1997, DOE published a Notice of Intent (NOI) in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS). DOE's disposition strategy allows for both the immobilization of surplus plutonium and its use as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of the immobilized plutonium and MOX fuel (as spent nuclear fuel) in a geologic repository. The Surplus Plutonium Disposition Environmental Impact Statement analyzes alternatives that would use the immobilization approach (for some of the surplus plutonium) and the MOX fuel approach (for some of the surplus plutonium); alternatives that would immobilize all of the surplus plutonium; and the No Action Alternative. The alternatives include three disposition facilities that would be designed so that they could collectively accomplish disposition of up to 50 metric tons (55 tons) of surplus plutonium over their operating lives: (1) the pit disassembly and conversion facility would disassemble pits (a weapons component) and convert the recovered plutonium, as well as plutonium metal from other sources, into plutonium dioxide suitable for disposition; (2) the immobilization facility would include a collocated capability for converting nonpit plutonium materials into plutonium dioxide suitable for immobilization and would be located at either Hanford or SRS. DOE has identified SRS as the preferred site for an immobilization facility; (3) the MOX fuel fabrication facility would fabricate plutonium dioxide into MOX fuel. This volume has chapters on environmental consequences; environmental regulations, permits, and consultations; a glossary; list of preparers; distribution list

  4. Civilian Uses and Production of Plutonium in the United States Of America

    International Nuclear Information System (INIS)

    Large quantities of plutonium will be produced in thermal reactors according to present projections of die growth of nuclear power. Part of this plutonium will be recycled in such reactors and part will be used in the development of fast reactors. Estimates are given of the quantity and isotopic content of plutonium to be produced in the United States in nuclear power plants at present in operation, under construction, definitely planned, or projected for operation through 1980. Estimates are also given of the quantity and isotopic content of plutonium to be utilized in the United States in the development and application of plutonium recycle for thermal reactors and in the development of fast reactors during the next ten years. Existing facilities for recovery of plutonium from irradiated fuel and for fabrication of fuel containing plutonium are summarized. The effects on natural uranium feed and separative work requirements for enriched uranium fuel for light-water reactors using plutonium recycle are discussed. (author)

  5. Deposition and retention of plutonium in the United States general population

    International Nuclear Information System (INIS)

    Since 1959, a Los Alamos National Laboratory study has analyzed over 5000 tissues from 1100 individuals of the nonoccupationally exposed general population for fallout plutonium. These data have been useful in determining the tissue distributions and the annual baseline levels of environmental plutonium in the United States population. The effects of age, sex, date of death, cause of death and geographic location of resididence on the observed plutonium deposition have been evaluated. Because of the difference in biological turnover times of plutonium in the various organs of the body and the changing concentrations of plutonium in the atmosphere, the plutonium concentration ratios between tissues have changed as a function of time. However, our data indicate that over the past 10 years, the highest concentrations in the general population are found in the tracheobronchial lymph nodes and the liver and the lowest concentrations are in the spleen, gonads and kidney. The median body burdens of plutonium in the US population are estimated to have reached 12 pCi during the 1960's and have declined to about 2 pCi in 1977. Large errors in estimated skeletal burdens of plutonium may exist because of small specimen sample sizes and a lack of knowledge concerning the relative distribution of plutonium among the various bones of the human body

  6. Regulatory issues for deep borehole plutonium disposition

    International Nuclear Information System (INIS)

    As a result of recent changes throughout the world, a substantial inventory of excess separated plutonium is expected to result from dismantlement of US nuclear weapons. The safe and secure management and eventual disposition of this plutonium, and of a similar inventory in Russia, is a high priority. A variety of options (both interim and permanent) are under consideration to manage this material. The permanent solutions can be categorized into two broad groups: direct disposal and utilization. The deep borehole disposition concept involves placing excess plutonium deep into old stable rock formations with little free water present. Issues of concern include the regulatory, statutory and policy status of such a facility, the availability of sites with desirable characteristics and the technologies required for drilling deep holes, characterizing them, emplacing excess plutonium and sealing the holes. This white paper discusses the regulatory issues. Regulatory issues concerning construction, operation and decommissioning of the surface facility do not appear to be controversial, with existing regulations providing adequate coverage. It is in the areas of siting, licensing and long term environmental protection that current regulations may be inappropriate. This is because many current regulations are by intent or by default specific to waste forms, facilities or missions significantly different from deep borehole disposition of excess weapons usable fissile material. It is expected that custom regulations can be evolved in the context of this mission

  7. Electrodeposition of Plutonium

    International Nuclear Information System (INIS)

    Equipment for electrolytic deposition of plutonium from molten salt solutions was designed and built and was tested with cerium as a stand-in for plutonium. The electrolysis cell is a graphite crucible that serves as the anode; the cathode is a molybdenum rod. This paper discusses results of that test

  8. The future of plutonium - an overview

    International Nuclear Information System (INIS)

    Plutonium is the underpinning of the nuclear industry. Without it it is estimated that the fuel will run out not long after the turn of the century. With plutonium in fast breeders nuclear reactors can be operated for tens of thousands of years and the depleted uranium now available can be utilized The fuel cycle contemplated is similar to that of the light water reactor with some important differences at least partially related to the greater radioactivity of the resulting mixture of plutonium isotopes. The regulatory program does recognize the problems, including those of toxicity, safeguards and transportation. The concept of an integrated fuel cycle facility at a single location must be seriously considered. (author)

  9. Field study to obtain plutonium contents of old field vegetation and soil under humid climatic conditions

    International Nuclear Information System (INIS)

    Soil and vegetation at the Savannah River Plant were analyzed for plutonium. The data indicate that vacuumed samples have the greatest concentration of plutonium, that resuspension and fallout of plutonium is a principal contributor to the plutonium concentration of vegetation because the 238Pu concentrations are more closely aligned to source term values than soil values under field conditions, and that laboratory uptake studies may underestimate the plutonium content of vegetation growing under field conditions adjacent to a fuel reprocessing facility. (U.S.)

  10. Estimated airborne release of plutonium from Atomics International's Nuclear Materials Development Facility in the Santa Susana site, California, as a result of postulated damage from severe wind and earthquake hazard

    International Nuclear Information System (INIS)

    The potential mass of airborne releases of plutonium (source term) that could result from wind and seismic damage is estimated for the Atomics International Company's Nuclear Materials Development Facility (NMDF) at the Santa Susana site in California. The postulated source terms will be useful as the basis for estimating the potential dose to the maximum exposed individual by inhalation and to the total population living within a prescribed radius of the site. The respirable fraction of airborne particles is thus the principal concern. The estimated source terms are based on the damage ratio, and the potential airborne releases if all enclosures suffer particular levels of damage. In an attempt to provide a realistic range of potential source terms that include most of the normal processing conditions, a best estimate bounded by upper and lower limits is provided. The range of source terms is calculated by combining a high best estimate and a low damage ratio, based on a fraction of enclosures suffering crush or perforation, with the airborne release from enclosures based upon an upper limit, average, and lower limit inventory of dispersible materials at risk. Two throughput levels are considered. The factors used to evaluate the fractional airborne release of materials and the exchange rates between enclosed and exterior atmospheres are discussed. The postulated damage and source terms are discussed for wind and earthquake hazard scenarios in order of their increasing severity

  11. Treatment of plutonium contaminated ashes by electrogenerated Ag(II): a new, simple and efficient process

    International Nuclear Information System (INIS)

    Incineration is a very attractive technique for managing plutonium contaminated solid wastes, allowing for large volume and mass reduction factors. After waste incineration, the plutonium is concentrated in the ashes and an efficient method must be designed for its recovery. To achieve this goal, a process based on the dissolution of plutonium in nitric solution under the agressive action of electrogenerated Ag(II) was developed. This process is very simple, requiring very few steps. Plutonium recovery yields up to 98% can be obtained and, in addition, the plutonium bearing solutions generated by the treatment can be processed by the PUREX technique for plutonium recovery. This process constitutes the basis for the development of industrial facilities: 1) a pilot facility is being built in MARCOULE (COGEMA, UP1 plant), to treat active ash in 1990; 2) an industrial facility will be built in the MELOX plant under construction at MARCOULE (COGEMA plant)

  12. A performance indicator for reduction in vulnerability through stabilization of plutonium

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) is currently storing several metric tons of plutonium in various forms in a variety of facilities throughout the DOE complex. Since the cessation of weapons production in 1990, many of these facilities with plutonium in storage have not operated. Since the shutdown was regarded as temporary, little attempt was made at that time to empty the process lines of plutonium, or to place the plutonium in containers or packages that would provide safe storage for extended periods of time. As a result, the packages and containers providing interim storage are vulnerable to failure through leakage, rupture and other modes, and pose potential hazards to facility workers, the public and the environment. Here, an approach to measuring and tracking the reduction in vulnerabilities resulting from stabilizing and repackaging plutonium is developed and presented. The approach utilizes results obtained by the DOE Working Group on the vulnerabilities associated with plutonium storage

  13. Inertial confinement fusion at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory is contributing to the resolution of key issues in the US Inertial-Confinement-Fusion Program and plans to play a strong role in the experimental program at the National Ignition Facility when it is completed

  14. LOS ALAMOS: New neutrino experiment

    International Nuclear Information System (INIS)

    Full text: The Liquid Scintillator Neutrino Detector (LSND) experiment at Los Alamos' Meson Physics Facility (LAMPF) has been designed for a high sensitivity search for oscillations between muon- and electron-type neutrinos and, concurrently, between the corresponding antineutrinos. In addition, the experiment will measure neutrino-proton elastic scattering, thereby determining the strange quark contribution to the proton spin. At low momentum transfer, neutrino-proton elastic scattering is a direct probe of this contribution. The detector tank, filled with 200 tons of dilute liquid scintillator, has 1220 8'' Hamamatsu photomultiplier tubes mounted on the inside, covering 25% of the surface area. The dilute liquid scintillator is a mixture of mineral oil and 0.03 g/l of b-PBD, so that Cherenkov and scintillation light will be detected in an approximate ratio of 1 to 4. The attenuation length of the scintillator is greater than 30 m for wavelengths above 425 nm. After two years of data collection for (anti)neutrino mixing, the upper limits on the square of the mass difference will be 1.7 x 10-2 ev2 for maximal mixing for antineutrinos and 4.0 x 10-2 for neutrinos. Similarly, mixing strengths of 2.7 x 10-4 can be probed for each channel for all squared mass differences above 1eV2. This will provide the best terrestrial limits on oscillations between muon- and electron-type neutrinos. In addition, the neutrino-proton elastic scattering reaction rate will be measured to an accuracy of 10, determining the strange quark contribution to the proton spin to within ±0.05. Other physics goals include measurements of the charged current reactions where the neutrinos produce electrons or muons, the inelastic neutral current reaction where the neutrino stays a neutrino but excites the target, and a search for the 'rare' decays of a neutral pion and an eta into a neutrino-antineutrino pair. The LSND collaboration includes groups from California at

  15. Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dogliani, Harold O [Los Alamos National Laboratory

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  16. Plutonium radiation surrogate

    Science.gov (United States)

    Frank, Michael I.

    2010-02-02

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  17. Process modeling of plutonium conversion and MOX fabrication for plutonium disposition

    International Nuclear Information System (INIS)

    Two processes are currently under consideration for the disposition of 35 MT of surplus plutonium through its conversion into fuel for power production. These processes are the ARIES process, by which plutonium metal is converted into a powdered oxide form, and MOX fuel fabrication, where the oxide powder is combined with uranium oxide powder to form ceramic fuel. This study was undertaken to determine the optimal size for both facilities, whereby the 35 MT of plutonium metal will be converted into fuel and burned for power. The bounding conditions used were a plutonium concentration of 3--7%, a burnup of 20,000--40,000 MWd/MTHM, a core fraction of 0.1 to 0.4, and the number of reactors ranging from 2--6. Using these boundary conditions, the optimal cost was found with a plutonium concentration of 7%. This resulted in an optimal throughput ranging from 2,000 to 5,000 kg Pu/year. The data showed minimal costs, resulting from throughputs in this range, at 3,840, 2,779, and 3,497 kg Pu/year, which results in a facility lifetime of 9.1, 12.6, and 10.0 years, respectively

  18. Process modeling of plutonium conversion and MOX fabrication for plutonium disposition

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, K.L. [Univ. of Texas, Austin, TX (United States). Dept. of Nuclear Engineering

    1998-10-01

    Two processes are currently under consideration for the disposition of 35 MT of surplus plutonium through its conversion into fuel for power production. These processes are the ARIES process, by which plutonium metal is converted into a powdered oxide form, and MOX fuel fabrication, where the oxide powder is combined with uranium oxide powder to form ceramic fuel. This study was undertaken to determine the optimal size for both facilities, whereby the 35 MT of plutonium metal will be converted into fuel and burned for power. The bounding conditions used were a plutonium concentration of 3--7%, a burnup of 20,000--40,000 MWd/MTHM, a core fraction of 0.1 to 0.4, and the number of reactors ranging from 2--6. Using these boundary conditions, the optimal cost was found with a plutonium concentration of 7%. This resulted in an optimal throughput ranging from 2,000 to 5,000 kg Pu/year. The data showed minimal costs, resulting from throughputs in this range, at 3,840, 2,779, and 3,497 kg Pu/year, which results in a facility lifetime of 9.1, 12.6, and 10.0 years, respectively.

  19. Basis and objectives of the Los Alamos accelerator driven transmutation technology project

    International Nuclear Information System (INIS)

    The paper describes a new accelerator-based nuclear technology developed at Los Alamos National Laboratory which offers total destruction of the weapons Plutonium inventory, a solution to the commercial nuclear waste problem which greatly reduces or eliminates the requirement for geologic waste storage, and a system which generates potentially unlimited energy from Thorium fuel while destroying its own waste and operating in a new regime of nuclear safety

  20. The development of the atomic bomb, Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, R.W.

    1993-11-01

    The historical presentation begins with details of the selection of Los Alamos as the site of the Army installation. Wartime efforts of the Army Corps of Engineers, and scientists to include the leader of Los Alamos, Robert Oppenheimer are presented. The layout and construction of the facilities are discussed. The monumental design requirements of the bombs are discussed, including but not limited to the utilization of the second choice implosion method of detonation, and the production of bomb-grade nuclear explosives. The paper ends with a philosophical discussion on the use of nuclear weapons.

  1. Deposition and retention of plutonium in human populations

    International Nuclear Information System (INIS)

    Since 1959, the Los Alamos Scientific Laboratory (LASL) has analyzed over 5000 human tissues from 1100 individuals of the non-occupationally exposed general population for fallout plutonium. These data have been useful in determining the tissue distributions and the current baseline levels of environmental plutonium in the U.S. population. The effects of age, sex, date of death, cause of death and geographic location of residence on the observed plutonium deposition have been evaluated. Because of the difference in biological turnover times in the various organs of the body and the changing concentrations of plutonium in the atmosphere, the plutonium concentration ratios between tissues have changed as a function of time. However, our date indicate that over the past 10 years, the highest concentrations in the general population are found in the tracheobroncheal lymph nodes and the liver and the lowest concentrations are in the spleen, gonads and kidney. Total body burdens in the U.S. population are estimated to have reached 12 pCi during the 1960's and have declined to about 2 pCi in 1977. The relative distribution of plutonium in the U.S. population, determined from the above data, is 5.4 +- 2.4% residing in the lung, 28.4 +- 9.1% in the liver and 64.7 +- 9.1% in the skeleton. We are currently evaluating our data to obtain estimates of the biological turnover times of fallout plutonium in humans. Deposition of Pu in the tissues of occupationally exposed workers has been measured. The observed variation in the whole body distribution suggests that each exposure incident is unique and must be evaluated on the basis of the chemical form, solubility, particle size, mode of entry and duration of exposure. Several of the highest deposition cases are presented to illustrate the variations observed. (author)

  2. Plutonium spectrophotometric analysis

    International Nuclear Information System (INIS)

    Plutonium ions in solution have absorption spectra so different that it is possible to use them for analytical purposes. Detailed studies have been performed in nitric solutions. Some very convenient methods for the determination of plutonium and its oxidation states, especially the ratios Pu(III):Pu(IV) and Pu(IV):Pu(VI) in a mixture of both, have been developed. These methods are described in this paper, including: a) Absorption spectra for plutonium (III), (IV), (VI) and mixtures. b) Relative extinction coefficients for the above mentioned species. c) Dependences of the relative extinction coefficients on the nitric acid concentration and the plutonium VI deviation from the Beer-Lambert law. The developed methods are simple and rapid and then, suitable in process control. Accuracy is improved when relative absorbance measurements are performed or controlled the variables which have effect on the spectra and extinction coefficients. (Author)

  3. Learning more about plutonium

    International Nuclear Information System (INIS)

    This digest brochure explains what plutonium is, where it comes from, how it is used, its recycling into Mox fuel, its half life, historical discovery, its presence in the environment, toxicity and radioactivity. (J.S.)

  4. The plutonium economy

    International Nuclear Information System (INIS)

    The dangers of producing and storing more plutonium as a result of introducing fast breeder reactors into the nuclear programme are explored, including the risks of terrorism and how to decrease them. (U.K.)

  5. French plutonium management program

    International Nuclear Information System (INIS)

    The French plutonium management program is summarized in this paper. The program considers nuclear generation as a major component of national electric power supply and includes the reprocessing of the spent fuel. (author)

  6. Bulging of cans containing plutonium residues. Summary report

    International Nuclear Information System (INIS)

    In 1994, two cans in the Lawrence Livermore National Laboratory Plutonium Facility were found to be bulging as a result of the generation of gases form the plutonium ash residues contained in the cans. This report describes the chronology of this discovery, the response actions that revealed other pressurized cans, the analysis of the causes, the short-term remedial action, a followup inspection of the short-term storage packages, and a review of proposed long-term remedial options

  7. Bulging of cans containing plutonium residues. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A.; Wood, D.H.; Condit, R.H.; Shikany, S.D.

    1996-03-01

    In 1994, two cans in the Lawrence Livermore National Laboratory Plutonium Facility were found to be bulging as a result of the generation of gases form the plutonium ash residues contained in the cans. This report describes the chronology of this discovery, the response actions that revealed other pressurized cans, the analysis of the causes, the short-term remedial action, a followup inspection of the short-term storage packages, and a review of proposed long-term remedial options.

  8. 2015 In-Situ Gamma-Ray Assay of the West Cell Line in the 235-F Plutonium Fuel Form Facility

    Energy Technology Data Exchange (ETDEWEB)

    Brand, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Aucott, T. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiPrete, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-01

    In November and December 2015, scientists from SRNL took a series of in-situ gamma-ray measurements through the windows in front of Cells 6-9 on the west line of the PuFF facility using a shielded, 120% high-purity germanium detector. The detector efficiency was estimated using a combination of MCNP simulations and empirical measurements. Where possible, the distribution of the Pu-238 in the cells was determined using the Germanium Gamma-ray Imager (GeGI). This distribution was then fed into the MCNP model to quantify the Pu-238 in each cell. Data analysis was performed using three gamma rays emitted by Pu-238 (99.85 keV, 152.7 keV, and 766.4 keV) providing three independent estimates of the mass of Pu-238 holdup in each of the cells.

  9. Plutonium in coniferous forests

    International Nuclear Information System (INIS)

    Our aim was to study the uptake of plutonium by trees, undervegetation and some wild foods. The ratio of 238Pu/239,240Pu in soil samples was determined for comparisons of the fallout origin. In twelve years the Chernobyl derived plutonium has not reached the mineral soil. This refers to a very slow downward migration in podsolic soil. The study confirmed also the low Pu uptake by vegetation and an insignificant contribution to human doses through wild foods. (au)

  10. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    Energy Technology Data Exchange (ETDEWEB)

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stable state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.

  11. Plutonium in Baltic sediments

    International Nuclear Information System (INIS)

    Marine sediments accumulate the bulk of plutonium produced by nuclear tests. The nuclear power industry will form an additional source of plutonium, and it is important to determine the present background levels of plutonium in sediments and to compare the accumulation rate in the Baltic with that in other areas of the world. Plutonium was determined on four sediment cores collected from the Baltic Sea in 1974 and 1975. Two of the samples were from oxygenated coastal sediment with benthic life and two cores were collected from deep basins in the Baltic at depths of 183 m and 164 m where the bottoms were anoxic, with no benthic life, and where the rate of sedimentation is rather high. Data are presented on the Pu-239,240 content of the sediment cores as is pCi/kg dry wt in the different core sections. The highest plutonium concentrations were found near the surface, at depths of 0 to 8 cm. In all cores the plutonium concentration decreases sharply at a depth of about 6 to 8 cm

  12. Automated amperometric plutonium assay system

    International Nuclear Information System (INIS)

    The amperometric titration for plutonium assay has been used in the nuclear industry for over twenty years and has been in routine use at the Hanford Engineering Development Laboratory since 1976 for the analysis of plutonium oxide and mixed oxide fuel material for the Fast Flux Test Facility. It has proven itself to be an accurate and reliable method. The method may be used as a direct end point titration or an excess of titrant may be added and a back titration performed to aid in determination of the end point. Due to the slowness of the PuVI-FeII reaction it is difficult to recognize when the end point is being approached and is very time consuming if the current is allowed to decay to the residual value after each titrant addition. For this reason the back titration in which the rapid FeII-CrVI reaction occurs is used by most laboratories. The back titration is performed by the addition of excess ferrous solution followed by two measured aliquots of standard dichromate with measurement of cell current after each addition

  13. Gas generation over plutonium oxides in the 94-1 shelf-life surveillance program

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) is embarking upon a program to store large quantities of plutonium-bearing materials for up to fifty years. The Los Alamos National Laboratory Shelf Life Project was established to bound the behavior of plutonium-bearing material meeting the DOE 3013 Standard. The shelf life study monitors temperature, pressure and gas composition over oxide materials in a limited number of large-scale 3013 inner containers and in many small-scale containers. For the large-scale study, baseline plutonium oxides, oxides exposed to high-humidity atmospheres, and oxides containing chloride salt impurities are planned. The first large-scale container represents a baseline and contains dry plutonium oxide prepared according to the 3013 Standard. This container has been observed for pressure, temperature and gas compositional changes for less than a year. Results indicate that no detectable changes in pressure and gas composition are observed.

  14. Plutonium-236 traces determination in plutonium-238 by α spectrometry

    International Nuclear Information System (INIS)

    Two methods are described in this report for the determination of plutonium-236 traces in plutonium-238 by a spectrometry using semi-conductor detectors. The first method involves a direct comparison of the areas under the peaks of the α spectra of plutonium-236 and plutonium-238. The electrolytic preparation of the sources is carried out after preliminary purification of the plutonium. The second method makes it possible to determine the 236Pu/238Pu ratio by comparing the areas of the α peaks of uranium-232 and uranium-234, which are the decay products of the two plutonium isotopes respectively. The uranium in the source, also deposited by electrolysis, is separated from a 1 mg amount of plutonium either by a T.L.A. extraction, or by the use of ion-exchange resins. The report ends with a discussion of the results obtained with plutonium of two different origins. (authors)

  15. Assessment of plutonium in the Savannah River Site environment

    International Nuclear Information System (INIS)

    Plutonium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fifth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. These are living documents, each to be revised and updated on a two-year schedule. This document describes the sources of plutonium in the environment, its release from SRS, environmental transport and ecological concentration of plutonium, and the radiological impact of SRS releases to the environment. Plutonium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite SNAP 9-A, plane crashes involving nuclear weapons, and small releases from reactors and reprocessing plants. Plutonium has been produced at SRS during the operation of five production reactors and released in small quantities during the processing of fuel and targets in chemical separations facilities. Approximately 0.6 Ci of plutonium was released into streams and about 12 Ci was released to seepage basins, where it was tightly bound by clay in the soil. A smaller quantity, about 3.8 Ci, was released to the atmosphere. Virtually all releases have occurred in F- and H-Area separation facilities. Plutonium concentration and transport mechanisms for the atmosphere, surface water, and ground water releases have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases to the offsite maximum individual can be characterized by a total dose of 15 mrem (atmospheric) and 0.18 mrem (liquid), compared with the dose of 12,960 mrem from non-SRS sources during the same period of time (1954--1989). Plutonium releases from SRS facilities have resulted in a negligible impact to the environment and the population it supports

  16. System for imaging plutonium through heavy shielding

    International Nuclear Information System (INIS)

    A single pinhole can be used to image strong self-luminescent gamma-ray sources such as plutonium on gamma scintillation (Anger) cameras. However, if the source is weak or heavily shielded, a poor signal to noise ratio can prevent acquisition of the image. An imaging system designed and built at Los Alamos National Laboratory uses a coded aperture to image heavily shielded sources. The paper summarizes the mathematical techniques, based on the Fast Delta Hadamard transform, used to decode raw images. Practical design considerations such as the phase of the uniformly redundant aperture and the encoded image sampling are discussed. The imaging system consists of a custom designed m-sequence coded aperture, a Picker International Corporation gamma scintillation camera, a LeCroy 3500 data acquisition system, and custom imaging software. The paper considers two sources - 1.5 mCi 57Co unshielded at a distance of 27 m and 220 g of bulk plutonium (11.8% 240Pu) with 0.3 cm lead, 2.5 cm steel, and 10 cm of dense plastic material at a distance of 77.5 cm. Results show that the location and geometry of a source hidden in a large sealed package can be determined without having to open the package. 6 references, 4 figures

  17. Plutonium - radiological protection

    International Nuclear Information System (INIS)

    For the protection of persons exposed to plutonium isotopes and higher actinides there are five important requirements. First it is essential to evaluate all the appropriate data and develop basic dose standards for control of exposure of body organs, particularly bone, liver and lung; these must be comparable to standards for exposure to external gamma and X-radiation. Secondly, from these basic standards, values for maximum permissible concentrations in air and permissible annual intakes must be derived using metabolic models for plutonium in humans. As part of the biological monitoring of workers it is necessary to make assessments of the amount of plutonium in the body either by measurement of the excretion rate of plutonium in the urine or by external counting of gamma or X-radiations over the chest or contaminated wound site. For the treatment of cases of high over-exposure therapeutic techniques should be available for accelerating the excretion or removal of the radioactivity from the body. Finally, plans must be made to cover the possibility of a large release of plutonium into the environment and these should include acceptable values for ground contamination levels. (auth)

  18. A plutonium safety training program

    International Nuclear Information System (INIS)

    A multimedia training program to prepare personnel at Argonne National Laboratory's Idaho Site (ANL-W) to work with plutonium-bearing fuels has been developed. The objective has been to produce a self-taught course for persons of varied backgrounds. The primary instruction tool is a videotape assisted by a short text and a workbook for each of three topics. Successful completion of this program is mandatory for all employees assigned to the Hot Fuel Examination Facility (HFEF). Another tape and text are used to orient personnel who enter HFEF on an occasional basis. Annual requalification is required, and test scores are maintained to provide an auditable record for the Department of Energy. Both the basic properties of Pu and specific features of HFEF are covered in the program. (Author)

  19. Plutonium disproportionation: the ambiguity phenomenon.

    Science.gov (United States)

    Silver, G L

    2003-05-01

    Plutonium oxidation-state studies may yield ambiguous results if the parameters are not carefully chosen. The effect can be related to environmental plutonium as illustrated by an example. PMID:12735968

  20. Remote handling in the Plutonium Immobilization Project: Puck handling

    International Nuclear Information System (INIS)

    Since the break up of the Soviet Union at the end of the Cold War, the US and Russia have been negotiating ways to reduce their nuclear stockpiles. Economics is one of the reasons behind this, but another important reason is safeguarding these materials from unstable organizations and countries. With the downsizing of the nuclear stockpiles, large quantities of plutonium are being declared excess and must be safely disposed of. The Savannah River Site (SRS) has been selected as the site where the immobilization facility will be located. Conceptual design and process development commenced in 1998. SRS will immobilize excess plutonium in a ceramic waste form and encapsulate it in vitrified high level waste in the Defense Waste Processing Facility (DWPF) canister. These canisters will then be interred in the national repository at Yucca Mountain, New Mexico. The facility is divided into three distinct operating areas: Plutonium Conversion, First Stage Immobilization, and Second Stage Immobilization. This paper will discuss the first two operations

  1. Plutonium well logging with the photoneutron uranium exploration system

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory prototype photoneutron uranium exploration system was recently demonstrated at the Hanford site near Richland, Washington, for Rockwell-Hanford Operations (Rockwell). The demonstration determined the field performance capabilities of the uranium exploration system for in situ, downhole measurements of transuranic waste concentrations. The uranium exploration system is indeed capable of detecting plutonium in the test wells at the waste sites investigated. The excellent signal-to-background ratio (15:1 in the worst case) of the system made positive plutonium determinations possible despite neutron backgrounds caused by spontaneous fission and (α,n) emitters. We present all the data collected from seven test wells and guidance for interpreting the data relative to the known uranium ore calibration of the system. The demonstration indicated no operational difficulties in the waste site environment, and routine use by Rockwell personnel appears practical

  2. Remote material handling in the Plutonium Immobilization Project. Revision 1

    International Nuclear Information System (INIS)

    With the downsizing of the US and Russian nuclear stockpiles, large quantities of weapons-usable plutonium in the US are being declared excess and will be disposed of by the Department of Energy Fissile Materials Disposition Program. To implement this program, DOE has selected the Savannah River Site (SRS) for the construction and operation of three new facilities: pit disassembly and conversion; mixed oxide fuel fabrication; and plutonium immobilization. The Plutonium Immobilization Project (PIP) will immobilize a portion of the excess plutonium in a hybrid ceramic and glass form containing high level waste for eventual disposal in a geologic repository. The PIP is divided into three distinct operating areas: Plutonium Conversion, First Stage Immobilization, and Second Stage Immobilization. Processing technology for the PIP is being developed jointly by the Lawrence Livermore National Laboratory and Westinghouse Savannah River Company. This paper will discuss development of the automated unpacking and sorting operations in the conversion area, and the automated puck and tray handling operations in the first stage immobilization area. Due to the high radiation levels and toxicity of the materials to be disposed of, the PIP will utilize automated equipment in a contained (glovebox) facility. Most operations involving plutonium-bearing materials will be performed remotely, separating personnel from the radiation source. Source term materials will be removed from the operations during maintenance. Maintenance will then be performed hands on within the containment using glove ports

  3. Integrated development and testing plan for the plutonium immobilization project

    International Nuclear Information System (INIS)

    This integrated plan for the DOE Office of Fissile Materials Disposition describes the technology development and major project activities necessary to support the deployment of the immobilization approach for disposition of surplus weapons-usable plutonium. The plan describes details of the development and testing tasks needed to provide technical data for design and operation of a plutonium immobilization plant based on the ceramic can-in-canister technology. The plan also presents tasks for characterization and performance testing of the immobilization form to support a repository licensing application and to develop the basis for repository acceptance of the plutonium form. Essential elements of the plant project (design, construction, facility activation, etc.) are described, but not developed in detail, to indicate how the test results tie into the overall plant project. Given the importance of repository acceptance, specific activities to be conducted by the Office of Civilian Radioactive Waste Management to incorporate the plutonium form in the repository licensing application are provided in this document, together with a summary of how immobilization activities provide input to the license activity and waste qualification. The ultimate goal of the immobilization project is to develop, construct, and operate facilities that will immobilize from about 18 to 50 tonnes of US surplus plutonium materials in a manner that meets the ''spent fuel'' standard and is acceptable for disposal in a geologic repository. The can-in-canister technology is accomplished by encapsulating the plutonium-containing ceramic forms within large canisters of high level waste glass

  4. Towards a Plutonium Market

    International Nuclear Information System (INIS)

    Taking as their starting point the various power reactor construction programmes, the authors estimate in the first part of the paper the production of plutonium in the non-socialist world for the period up to 1980. They also estimate the plutonium requirements of the various fast reactor programmes. For the period up to 1970-71, it is found that United States requirements will be satisfied only by drawing on the United States Atomic Energy Commission's stocks and through the exchange agreement with the United Kingdom. For the rest of the world, resources and requirements will be more or less in equilibrium. From 1971 onwards production will greatly exceed the requirements of fast reactors, which will still only be at the prototype stage. If it is assumed that the large-scale construction of fast reactors will not begin until ten years later, the only outlet for plutonium, for which there will no longer be a guarantee of repurchase by the USAEC in the case of enriched uranium reactors, will consist of recycling in thermal reactors. Storage with a view to re-use in breeders at a more remote and indeterminate date would impose an intolerable financial burden on power reactor operators. The question thus arises whether a collapse in the price of plutonium will occur after 1970. In the second part of the paper the authors attempt to predict the course of such a price collapse, followed by a rise as breeders enter service on a commercial basis. They discuss the effects that the absence of plutonium stocks and die competition of recycling in thermal reactors might have on the commercial introduction of breeders. Finally, an attempt is made to determine by what mechanisms a harmonious market for plutonium could be assured during the next fifteen years. (author)

  5. Standard specification for sintered (Uranium-Plutonium) dioxide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This specification covers finished sintered and ground (uranium-plutonium) dioxide pellets for use in thermal reactors. It applies to uranium-plutonium dioxide pellets containing plutonium additions up to 15 % weight. This specification may not completely cover the requirements for pellets fabricated from weapons-derived plutonium. 1.2 This specification does not include (1) provisions for preventing criticality accidents or (2) requirements for health and safety. Observance of this specification does not relieve the user of the obligation to be aware of and conform to all applicable international, federal, state, and local regulations pertaining to possessing, processing, shipping, or using source or special nuclear material. Examples of U.S. government documents are Code of Federal Regulations Title 10, Part 50Domestic Licensing of Production and Utilization Facilities; Code of Federal Regulations Title 10, Part 71Packaging and Transportation of Radioactive Material; and Code of Federal Regulations Tit...

  6. Plutonium contents of field crops in the southeastern US

    International Nuclear Information System (INIS)

    Agricultural crops were grown at the US Department of Energy Savannah River Plant (SRP) and at Oak Ridge National Laboratory (ORNL) on soils at field sites containing plutonium concentrations above background levels from nuclear weapon tests. Major US grain crops were grown adjacent to a reprocessing facility at SRP, which releases low chronic levels of plutonium through an emission stack. Major vegetable crops were grown at the ORNL White Oak Creek floodplain, which received plutonium effluent wastes in 1944 from the Manhattan Project weapon development. In general, the concentration ratios of vegetative parts of crops at SRP were approximately one order of magnitude higher than those at ORNL, which indicates the influence of aerial deposition of plutonium at the SRP site

  7. Survey of plutonium and uranium atom ratios and activity levels in Mortandad Canyon

    Energy Technology Data Exchange (ETDEWEB)

    Gallaher, B.M.; Benjamin, T.M.; Rokop, D.J.; Stoker, A.K.

    1997-09-22

    For more than three decades Mortandad Canyon has been the primary release area of treated liquid radioactive waste from the Los Alamos National Laboratory (Laboratory). In this survey, six water samples and seven stream sediment samples collected in Mortandad Canyon were analyzed by thermal ionization mass spectrometry (TIMS) to determine the plutonium and uranium activity levels and atom ratios. Be measuring the {sup 240}Pu/{sup 239}Pu atom ratios, the Laboratory plutonium component was evaluated relative to that from global fallout. Measurements of the relative abundance of {sup 235}U and {sup 236}U were also used to identify non-natural components. The survey results indicate the Laboratory plutonium and uranium concentrations in waters and sediments decrease relatively rapidly with distance downstream from the major industrial sources. Plutonium concentrations in shallow alluvial groundwater decrease by approximately 1000 fold along a 3000 ft distance. At the Laboratory downstream boundary, total plutonium and uranium concentrations were generally within regional background ranges previously reported. Laboratory derived plutonium is readily distinguished from global fallout in on-site waters and sediments. The isotopic ratio data indicates off-site migration of trace levels of Laboratory plutonium in stream sediments to distances approximately two miles downstream of the Laboratory boundary.

  8. SULFIDE METHOD PLUTONIUM SEPARATION

    Science.gov (United States)

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  9. Plutonium and transplutonian biology

    International Nuclear Information System (INIS)

    The present state of knowledge in the field of plutonium and transplutonian biology is reviewed. The physico-chemical properties of these substances, the conditions in which they can contaminate human beings, their behaviour on mammals, their toxic effects and the correlative contamination treatment technique are analyzed successively. Plutonium and transplutonians, although relatively toxic, have as yet never caused severe injuries to humans. They cannot be transmitted to man through alimentary chains and constitute a hazard only for those who handle them. In this last case, the existing protection techniques offer such a high degree of efficiency that virtually all risk of contamination is eliminated

  10. Performance assessment and improvement of plutonium-in air monitor

    International Nuclear Information System (INIS)

    Continuous Plutonium-in-Air Monitoring is mandatory requirement for laboratories/facilities where Plutonium based materials are handled to detect air borne Plutonium particle radioactivity as promptly as possible. Counting of Plutonium activity is affected because of presence of natural background activity which is due to daughter product of radon and thoron. Counting of plutonium activity in air gives false alarm because of presence of natural background activity. Due to increased dust load, interference of natural background becomes more due to degradation of its energy. Also concentration of natural background activity changes with the weather conditions. Hence Plutonium in Air Monitors are being used to detect Plutonium activity, which uses the alpha spectrometric technique for resolving natural background activity. But only resolving peak is not enough, due to degradation of natural background activity its energy falls into Plutonium activity channel. This give false indication of plutonium activity hence a complex algorithm is to be used to nullify/minimize the effect of varying natural background activity. Complex algorithm which is used to nullify/minimize the effect of natural background activity counts in plutonium channel is termed as active background compensation. Presently used Continuous Air Monitors (Plutonium in Air Monitors) has 1K MCA divided into five ROIs (Region of Interests) and also uses complex algorithm for active background compensation. But it was giving false alarm because these instruments were calibrated in cleaner environment and fairly constant weather condition which does not significantly change the concentration of natural background activity. Hence this monitor was required to be recalibrated and several coefficients were also required to be modified for effective background compensation. Monitors were recalibrated with 239Pu source and spectra was so adjusted that interference of spectrum of natural background activity is

  11. LLNL Site plan for a MOX fuel lead assembly mission in support of surplus plutonium disposition

    International Nuclear Information System (INIS)

    The principal facilities that LLNL would use to support a MOX Fuel Lead Assembly Mission are Building 332 and Building 334. Both of these buildings are within the security boundary known as the LLNL Superblock. Building 332 is the LLNL Plutonium Facility. As an operational plutonium facility, it has all the infrastructure and support services required for plutonium operations. The LLNL Plutonium Facility routinely handles kilogram quantities of plutonium and uranium. Currently, the building is limited to a plutonium inventory of 700 kilograms and a uranium inventory of 300 kilograms. Process rooms (excluding the vaults) are limited to an inventory of 20 kilograms per room. Ongoing operations include: receiving SSTS, material receipt, storage, metal machining and casting, welding, metal-to-oxide conversion, purification, molten salt operations, chlorination, oxide calcination, cold pressing and sintering, vitrification, encapsulation, chemical analysis, metallography and microprobe analysis, waste material processing, material accountability measurements, packaging, and material shipping. Building 334 is the Hardened Engineering Test Building. This building supports environmental and radiation measurements on encapsulated plutonium and uranium components. Other existing facilities that would be used to support a MOX Fuel Lead Assembly Mission include Building 335 for hardware receiving and storage and TRU and LLW waste storage and shipping facilities, and Building 331 or Building 241 for storage of depleted uranium

  12. Precipitation of plutonium (III) oxalate and calcination to plutonium oxide

    International Nuclear Information System (INIS)

    The plutonium based fuel fabrication requires the conversion of the plutonium nitrate solution from nuclear fuel reprocessing into pure PuO2. The conversion method based on the precipitation of plutonium (III) oxalate and subsequent calcination has been studied in detail. In this procedure, plutonium (III) oxalate is precipitated, at room temperature, by the slow addition of 1M oxalic acid to the feed solution, containing from 5-100 g/l of plutonium in 1M nitric acid. Before precipitation, the plutonium is adjusted to trivalent state by addition of 1M ascorbic acid in the presence of an oxidation inhibitor such as hydrazine. Finally, the precipitate is calcinated at 700 deg C to obtain PuO2. A flowsheet is proposed in this paper including: a) A study about the conditions to adjust the plutonium valence. b) Solubility data of plutonium (III) oxalate and measurements of plutonium losses to the filtrate and wash solution. c) Characterization of the obtained products. Plutonium (III) oxalate has several potential advantages over similar conversion processes. These include: 1) Formation of small particle sizes powder with good pellets fabrication characteristics. 2) The process is rather insensitive to most process variables, except nitric acid concentration. 3) Ambient temperature operations. 4) The losses of plutonium to the filtrate are less than in other conversion processes. (Author)

  13. Alternative Evaluation for the REDOX (202-S) Plutonium Loadout Hood

    Energy Technology Data Exchange (ETDEWEB)

    N. R. Kerr

    1999-09-20

    Located in the 200 Areas is the inactive 202-S Reduction Oxidation (REDOX) Facility, which is managed by the Bechtel Hanford, Inc. Surveillance/Maintenance and Transition project. This facility is contaminated from nuclear material processes related to nuclear material separation from Hanford Site facility operations. This alternative evaluation report describes the alternatives and selection criteria based on the necessary protective requirements to maintain the REDOX Plutonium Loadout Hood in a safe and stable condition awaiting a final waste response action.

  14. Decontamination and size reduction of plutonium contaminated process exhaust ductwork and glove boxes

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory (LANL) Decommissioning Program has decontaminated and demolished two filter plenum buildings at Technical Area 21 (TA-21). During the project a former hot cell was retrofitted to perform decontamination and size reduction of highly Pu contaminated process exhaust (1,100 ft) and gloveboxes. Pu-238/239 concentrations were as high a 1 Ci per linear foot and averaged approximately 1 mCi/ft. The Project decontamination objective was to reduce the plutonium contamination on surfaces below transuranic levels. If possible, metal surfaces were decontaminated further to meet Science and Ecology Group (SEG) waste classification guidelines to enable the metal to be recycled at their facility in oak Ridge, Tennessee. Project surface contamination acceptance criteria for low-level radioactive waste (LLRW), transuranic waste, and SEG waste acceptance criteria will be presented. Ninety percent of all radioactive waste for the project was characterized as LLRW. Twenty percent of this material was shipped to SEG. Process exhaust and glove boxes were brought to the project decontamination area, an old hot cell in Building 4 North. This paper focuses on process exhaust and glovebox decontamination methodology, size reduction techniques, waste characterization, airborne contamination monitoring, engineering controls, worker protection, lessons learned, and waste minimization. Decontamination objectives are discussed in detail

  15. Smart unattended systems for plutonium safeguards

    International Nuclear Information System (INIS)

    Large automated facilities for fabricating plutonium fuel present both difficulties and challenges for improved accounting of nuclear materials. The traditional methods of sample measurements, requiring the transfer of the sample from the production line to the assay measurement station, are not possible in automated facilities. The robotics used for automation require special containers for nuclear material that cannot be easily removed from the production line. Safety and radiation protection considerations also require that the assay instrumentation be installed in the fuel production lines because, in general, personnel cannot be in the fuel-handling area with nuclear material during operations. Such operational constraints are common in many of the modern facilities that have been designed for fabricating and processing plutonium fuel. A bilateral safeguards agreement between the US Department of Energy (DOE) and Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan was signed to develop and implement nondestructive assay (NDA) systems to provide continuous safeguards measurements for material accountancy in the robot-automated Plutonium Fuel Fabrication Facility (PFFF). The PFFF assay systems were required to operate in unattended mode with a size and fuel mass capability to match the robotics fuel manipulators. Unattended assay systems reduce the requirement for inspector's oversight of measurement operations, reduce the inspector's workload, and improve inspection efficiencies. In addition, unattended measurements become essential when facility constraints limit the access of inspectors to the operations area during material processing. Authentication techniques were incorporated into the NDA systems so that data obtained from unattended assays could be used by independent inspectors such as the IAEA

  16. Characterizing surplus US plutonium for disposition

    Energy Technology Data Exchange (ETDEWEB)

    Allender, Jeffrey S.; Moore, Edwin N.

    2013-02-26

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems.

  17. Characterizing surplus US plutonium for disposition

    International Nuclear Information System (INIS)

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems

  18. Plutonium contamination in the environment. (Latest citations from the Life Sciences Collection database). Published Search

    International Nuclear Information System (INIS)

    The bibliography contains citations concerning the ecological impact of plutonium contamination in the environment. Topics include contamination in freshwater and marine sediments, bioaccumulation, transport in the food chain, accumulation in the soil, methods of analysis, removal from contaminated soils, contamination from nuclear fallout and nuclear facilities, and the presence of plutonium in seaspray and in the atmosphere. Plutonium pharmacokinetics in humans, and effects of plutonium contamination on fetuses are also described. (Contains a minimum of 72 citations and includes a subject term index and title list.)

  19. Plutonium in the Great Lakes

    International Nuclear Information System (INIS)

    Since 1971 plutonium concentrations have been measured annually in Lake Michigan and Lake Ontario and at less frequent intervals in the other Great Lakes. The concentrations of plutonium in the water column have decreased only slightly during the 7 y of measurement. The residence times for plutonium in the lakes have been estimated by simple time-concentration models. The apparent sinking rates for plutonium have been found to be essentially constant in all the Great Lakes, which suggest that the basic processes that control the concentrations of dissolved plutonium are similar despite considerable differences in chemical, biological, and physical characteristics of the lakes. Analyses of plutonium in water, suspended solids, material from sediment traps, and sediment cores show that considerable resuspension of previously sedimented material into the hypolimnion occurs throughout a major part of the year. A mechanism is proposed to account for the seasonal cycling of plutonium in the epilimnion of Lake Michigan

  20. Los Alamos Scientific Laboratory's human autopsy tissue analysis study

    International Nuclear Information System (INIS)

    Since 1959, the Health Division, Los Alamos Scientific Laboratory has analyzed the tissues from 81 former employees of the Laboratory for plutonium. Additionally, approximately 700 autopsy cases from the general population have also been analyzed for Pu resulting from fallout. The variation in the distribution of Pu in the bodies of the occupationally exposed individuals suggest that each exposure incident is unique and must be evaluated on the basis of the chemical form, solubility, particle size, mode of entry, and duration of exposure. Particle size distribution of Pu in a lymph node of a long-term chronic exposure case was estimated to have a mass median diameter of 0.32 μm with a geometric standard deviation of 1.5. The baseline concentrations of environmental Pu have been estimated for the general population and the tissue distributions compared with the occupationally exposed cases

  1. International plutonium policy

    International Nuclear Information System (INIS)

    As any other fissile material, the plutonium raises several utilization problems, particularly as far as diversion by sub-national groups or proliferation are concerned. The purpose of this paper is to show that these problems can be given reasonable solutions avoiding over penalties on energy production

  2. Plutonium safety training course

    International Nuclear Information System (INIS)

    This course seeks to achieve two objectives: to provide initial safety training for people just beginning work with plutonium, and to serve as a review and reference source for those already engaged in such work. Numerous references have been included to provide information sources for those wishing to pursue certain topics more fully. The first part of the course content deals with the general safety approach used in dealing with hazardous materials. Following is a discussion of the four properties of plutonium that lead to potential hazards: radioactivity, toxicity, nuclear properties, and spontaneous ignition. Next, the various hazards arising from these properties are treated. The relative hazards of both internal and external radiation sources are discussed, as well as the specific hazards when plutonium is the source. Similarly, the general hazards involved in a criticality, fire, or explosion are treated. Comments are made concerning the specific hazards when plutonium is involved. A brief summary comparison between the hazards of the transplutonium nuclides relative to 239Pu follows. The final portion deals with control procedures with respect to contamination, internal and external exposure, nuclear safety, and fire protection. The philosophy and approach to emergency planning are also discussed

  3. Plutonium: An introduction

    International Nuclear Information System (INIS)

    This report is a summary of the history and properties of plutonium. It presents information on the atoms, comparing chemical and nuclear properties. It looks at the history of the atom, including its discovery and production methods. It summarizes the metallurgy and chemistry of the element. It also describes means of detecting and measuring the presence and quantity of the element

  4. Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    International Nuclear Information System (INIS)

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program's preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program

  5. Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program.

  6. Recovery of plutonium from carbonate wash solutions

    International Nuclear Information System (INIS)

    A novel method has been developed for recovery of plutonium and uranium from carbonate wash solutions generated during solvent wash process involved in the reprocessing of high burn up FBTR fuel. The proposed method involves a selective coprecipitation of Pu and U by adding ammonium hydroxide to the pre acidified carbonate wash solution. Substantial removal of DBP by successive steps of coprecipitation, completely eliminates the possibility of undesired solid formation which is mainly due to the presence of high content of DBP. By adopting this method, an excellent decontamination factor for DBP has been achieved without any crud/solid formation. Phosphate content in the final oxide product meets the product specifications. Flowsheet condition necessary for the recovery process for plutonium from the aqueous carbonate solution is formulated and adopted in the CORAL facility. (author)

  7. Development of packaging for plutonium oxide powder

    International Nuclear Information System (INIS)

    The packaging has been developed as a packaging for plutonium oxide to be recovered from light water reactor spent fuel and is designed for easy handling within a facility. As deformation and shock absorption data for balsa wood, the data obtained from various experiments carried out when developing the packaging were used. With this packaging, it is possible to transport almost all kinds of raw powder materials required to produce fuel as stated under Section 2 not only in the country but also from abroad. The packaging is expected to be frequently used in transporting plutonium oxide powder from England and/or France which are commissioned by domestic power companies to reprocess spent fuel and also in transporting highly enriched uranium oxide which is required at FBR experimental reactors. 14 references, 5 figures, 4 tables

  8. Plutonium focus area: Technology summary

    International Nuclear Information System (INIS)

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this approach, EM developed a management structure and principles that led to creation of specific focus areas. These organizations were designed to focus scientific and technical talent throughout DOE and the national scientific community on major environmental restoration and waste management problems facing DOE. The focus area approach provides the framework for inter-site cooperation and leveraging of resources on common problems. After the original establishment of five major focus areas within the Office of Technology Development (EM-50), the Nuclear Materials Stabilization Task Group (NMSTG, EM-66) followed EM-50's structure and chartered the Plutonium Focus Area (PFA). NMSTG's charter to the PFA, described in detail later in this book, plays a major role in meeting the EM-66 commitments to the Defense Nuclear Facilities Safety Board (DNFSB). The PFA is a new program for FY96 and as such, the primary focus of revision 0 of this Technology Summary is an introduction to the Focus Area; its history, development, and management structure, including summaries of selected technologies being developed. Revision 1 to the Plutonium Focus Area Technology Summary is slated to include details on all technologies being developed, and is currently planned for release in August 1996. The following report outlines the scope and mission of the Office of Environmental Management, EM-60, and EM-66 organizations as related to the PFA organizational structure

  9. Safeguardability of the vitrification option for disposal of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S. [Los Alamos National Lab., NM (United States)

    1996-05-01

    Safeguardability of the vitrification option for plutonium disposition is rather complex and there is no experience base in either domestic or international safeguards for this approach. In the present treaty regime between the US and the states of the former Soviet Union, bilaterial verifications are considered more likely with potential for a third-party verification of safeguards. There are serious technological limitations to applying conventional bulk handling facility safeguards techniques to achieve independent verification of plutonium in borosilicate glass. If vitrification is the final disposition option chosen, maintaining continuity of knowledge of plutonium in glass matrices, especially those containing boron and those spike with high-level wastes or {sup 137}Cs, is beyond the capability of present-day safeguards technologies and nondestructive assay techniques. The alternative to quantitative measurement of fissile content is to maintain continuity of knowledge through a combination of containment and surveillance, which is not the international norm for bulk handling facilities.

  10. Use of plutonium for power production

    International Nuclear Information System (INIS)

    The panel reviewed available information on various aspects of plutonium utilization, such as physics of plutonium, technology of plutonium fuels in thermal and fast reactors, behaviour of plutonium fuel under reactor irradiation, technological and economic aspects of plutonium fuel cycle. Refs, figs and tabs

  11. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    International Nuclear Information System (INIS)

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage

  12. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J. [Pacific Northwest Lab., Richland, WA (United States); Nass, R. [Nuclear Fuel Services, Inc. (United States)

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

  13. A system for automated, dismantlement of plutonium weapons components

    International Nuclear Information System (INIS)

    The development of advanced dismantlement technologies will play an integral part on the changing role of the DOE. As an important component to this effort, the ARIES (Automated Retirement and Integrated Extraction System) System is designed to provide a test bed for the development of technology for the dismantlement of the primaries of nuclear weapons (pits). The ARIES system will integrate and automate the processes of pit disassembly, plutonium, plutonium removal, preparation of oxide from plutonium metal, decontamination of non-plutonium parts, and in-line measurement of the products and wastes by state-of-the-art non-destructive assay (NDA) methods. No integrated method now exists for the dismantlement and recovery of nuclear material from many weapons designs. Even those assemblies for which recovery techniques have been established require extensive manual handling (with associated personnel exposure to radiation) and result in considerable waste generation during dismantlement. The disposition of excess plutonium will require a facility to disassemble and remove plutonium from the pits. ARIES will provide the methods to satisfy this goal while at the same time reducing waste generation, lowering personnel radiation exposures, and operating to the highest standards of safety and security. A description of the ARIES system is given

  14. Chemistry of plutonium revealed

    International Nuclear Information System (INIS)

    In 1941 one goal of the Manhattan Project was to unravel the chemistry of the synthetic element plutonium as rapidly as possible. In this paper the work carried out at Berkeley from the spring of 1942 to the summer of 1945 is described briefly. The aqueous chemistry of plutonium is quite remarkable. Important insights were obtained from tracer experiments, but the full complexity was not revealed until macroscopic amounts (milligrams) became available. Because processes for separation from fission products were based on aqueous solutions, such solution chemistry was emphasized, particularly precipitation and oxidation-reduction behavior. The latter turned out to be unusually intricate when it was discovered that two more oxidation states existed in aqueous solution than had previously been suspected. Further, an equilibrium was rapidly established among the four aqueous oxidation states, while at the same time any three were not in equilibrium. These and other observations made while doing a crash study of a previously unknown element are reported

  15. Oxidation of plutonium dioxide.

    Science.gov (United States)

    Korzhavyi, Pavel A; Vitos, Levente; Andersson, David A; Johansson, Börje

    2004-04-01

    The physics and chemistry of the actinide elements form the scientific basis for rational handling of nuclear materials. In recent experiments, most unexpectedly, plutonium dioxide has been found to react with water to form higher oxides up to PuO(2.27), whereas PuO(2) had always been thought to be the highest stable oxide of plutonium. We perform a theoretical analysis of this complicated situation on the basis of total energies calculated within density functional theory combined with well-established thermodynamic data. The reactions of PuO(2) with either O(2) or H(2)O to form PuO(2+delta) are calculated to be endothermic: that is, in order to occur they require a supply of energy. However, our calculations show that PuO(2+delta) can be formed, as an intermediate product, by reactions with the products of radiolysis of water, such as H(2)O(2). PMID:15034561

  16. The Fabrication of Plutonium from Highly Irradiated Reactor Fuel

    International Nuclear Information System (INIS)

    Plutonium that has been separated from highly irradiated, or recycled, reactor fuel contains substantial percentages of 238Pu, 240 Pu, 241Pu and 242Pu. These isotopes and their daughter products are sources of increased gamma and neutron radiation, which affects the costs, the facilities and the techniques of fabricating the plutonium into reactor fuel elements. The commercial application of recycled power-reactor plutonium will depend, to a large extent, upon the ability of the fabricators to process, fabricate and use plutonium derived from highly irradiated fuels economically and safely. Experimental fuel elements are being fabricated at Argonne National Laboratory for a long-range study of the effects on reactor neutronics of various plutonium isotopic compositions that range from nearly pure 239Pu to plutonium that is principally 242Pu. A secondary purpose of this work was to determine the gamma and neutron rates of radiation dosage to personnel and to gain practical experience during the fabrication of typical compositions of plutonium from power reactors. The first step in this study was to develop a computer programme for calculating the rates of radiation dosage to personnel encountered during the fabrication of plutonium metal fuel elements of any isotopic composition versus time after fabrication. The effects of mass, geometry, shield composition and thickness, and time of operator exposure may be factored into the programme and the total operator radiation exposure predicted. The second stage was to compare the calculated exposures with measured radiation exposures during the fabrication of plutonium metal and oxide fuel elements containing 10, 30 and 50% of the higher plutonium isotopes. The fabrication of 2-kg batches of plutonium was accomplished unshielded gloveboxes with lightly leaded gloves. Glove-hand contact with the plutonium was avoided, and the operator time spent at the glovebox face was limited. The weekly exposure of each operator to

  17. Plutonium fuel program

    International Nuclear Information System (INIS)

    The project is concerned with developing an advanced method to produce nuclear reactor fuels. Since 1968 EIR has worked successfully on the production of uranium-plutonium mixed carbide using wet gelation chemistry. An important part of the development is irradiating the fuel in materials test reactors and evaluating its performance. During 1979 the programme continued with principal activities of fuel fabrication development, preparation for irradiation testing, performance evaluation, and modelling and plant engineering. (Auth.)

  18. ALARA review for the 202-S plutonium loadout hood stabilization

    International Nuclear Information System (INIS)

    This as low as reasonably achievable (ALARA) review provides a description of the engineering and administrative controls used to manage personnel exposures, control contamination levels, and control airborne radioactivity concentrations while conducting stabilization of the Reduction-Oxidation (REDOX) Facility plutonium loadout hood and associated piping, and the isolation of the ER-8 ventilation system

  19. Televison assessment and identification system for the plutonium protection system

    Energy Technology Data Exchange (ETDEWEB)

    Greenwoll, D.A.

    1979-02-01

    This report covers the selection, description, and use of the components comprising the Television Assessment and Identification System in the Hanford Plutonium Protection System. This work was sponsored by the Department of Energy/Office of Safeguards and Security (DOE/OSS) as part of the overall Sandia Fixed Facility Physical Protection Program.

  20. A mechanism for plutonium pyrophoricity

    International Nuclear Information System (INIS)

    Two-stage mechanism of plutonium pyrophoricity, based on metal warm-up under impact of heat released by Pu2O3 layer oxidation, preliminarily formed as a result of dioxide layer reduction on plutonium surface, is proposed. It is shown that the above mechanism satisfactorily explains the available experimental data, including effect of various factors on ignition temperature of metallic plutonium. 48 refs.; 6 figs