WorldWideScience

Sample records for alamos national laboratory

  1. Los Alamos National Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Lab has a proud history and heritage of almost 70 years of science and innovation. The people at the Laboratory work on advanced technologies to provide the best...

  2. Critical Infrastructure Protection- Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bofman, Ryan K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-24

    Los Alamos National Laboratory (LANL) has been a key facet of Critical National Infrastructure since the nuclear bombing of Hiroshima exposed the nature of the Laboratory’s work in 1945. Common knowledge of the nature of sensitive information contained here presents a necessity to protect this critical infrastructure as a matter of national security. This protection occurs in multiple forms beginning with physical security, followed by cybersecurity, safeguarding of classified information, and concluded by the missions of the National Nuclear Security Administration.

  3. Los Alamos National Laboratory Fission Basis

    Energy Technology Data Exchange (ETDEWEB)

    Keksis, A.L.; Chadwick, M.B.; Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Meade, R.A.; Burns, C.J.; Wallstrom, T.C. [Los Alamos National Laboratory, NM 87545 (United States)

    2011-07-01

    This report is an overview of two main publications that provide a comprehensive review of the Los Alamos National Laboratory (LANL) Fission Basis. The first is the experimental paper, {sup F}ission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on {sup 239}Pu, {sup 235}U, {sup 238}U, [Selby, H. D., et al., Nucl. Data Sheets, Vol. 111 2010, pp. 2891-2922] and the second is the theoretical paper, Fission Product Yields from Fission Spectrum n+ {sup 239}Pu for ENDF/B-VII.1, [Chadwick, M. B., et al., Nucl. Data Sheets, Vol. 111, 2010, pp. 2923-2964]. One important note is that none of this work would have been possible without the great documentation of the experimental details and results by G.W. Knobeloch, G. Butler, C.I. Browne, B. Erdal, B. Bayhurst, R. Prestwood, V. Armijo, J. Hasty and many others. (authors)

  4. DOE Los Alamos National Laboratory – PV Feasibility Assessment, 2015 Update, NREL Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Witt, Monica Rene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This report summarizes solar and wind potential for Los Alamos National Laboratory (LANL). This report is part of the “Los Alamos National Laboratory and Los Alamos County Renewable Generation” study.

  5. Los Alamos National Laboratory A National Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, Mark B. [Los Alamos National Laboratory

    2012-07-20

    Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national security challenges.

  6. Los Alamos National Laboratory Facility Review

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-05

    This series of slides depicts the Los Alamos Neutron Science Center (LANSCE). The Center's 800-MeV linac produces H+ and H- beams as well as beams of moderated (cold to 1 MeV) and unmoderated (0.1 to 600 MeV) neutrons. Experimental facilities and their capabilities and characteristics are outlined. Among these are LENZ, SPIDER, and DANCE.

  7. Aqueous Nitrate Recovery Line at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Finstad, Casey Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-15

    This powerpoint is part of the ADPSM Plutonium Engineering Lecture Series, which is an opportunity for new hires at LANL to get an overview of work done at TA55. It goes into detail about the aqueous nitrate recovery line at Los Alamos National Laboratory.

  8. Los Alamos National Laboratory strategic directions

    Energy Technology Data Exchange (ETDEWEB)

    Hecker, S. [Los Alamos National Lab., NM (United States)

    1995-10-01

    It is my pleasure to welcome you to Los Alamos. I like the idea of bringing together all aspects of the research community-defense, basic science, and industrial. It is particularly important in today`s times of constrained budgets and in fields such as neutron research because I am convinced that the best science and the best applications will come from their interplay. If we do the science well, then we will do good applications. Keeping our eye focused on interesting applications will spawn new areas of science. This interplay is especially critical, and it is good to have these communities represented here today.

  9. Biological assessment for the effluent reduction program, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.P.

    1996-08-01

    This report describes the biological assessment for the effluent recution program proposed to occur within the boundaries of Los Alamos National Laboratory. Potential effects on wetland plants and on threatened and endangered species are discussed, along with a detailed description of the individual outfalls resulting from the effluent reduction program.

  10. The engineering institute of Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles R [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Cornwell, Phillip J [Los Alamos National Laboratory; Todd, Michael D [UCSD

    2008-01-01

    Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD) have taken the unprecedented step of creating a collaborative, multi-disciplinary graduate education program and associated research agenda called the Engineering Institute. The mission of the Engineering Institute is to develop a comprehensive approach for conducting LANL mission-driven, multidisciplinary engineering research and to improve recruiting, revitalization, and retention of the current and future staff necessary to support the LANL' s national security responsibilities. The components of the Engineering Institute are (1) a joint LANL/UCSD degree program, (2) joint LANL/UCSD research projects, (3) the Los Alamos Dynamic Summer School, (4) an annual workshop, and (5) industry short courses. This program is a possible model for future industry/government interactions with university partners.

  11. Tiger Team Assessment of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This report documents the Tiger Team Assessment of the Los Alamos National Laboratory (LANL) located in Los Alamos, New Mexico. LANL is operated for the US Department of Energy (DOE) by the University of California. The Tiger Team Assessment was conducted from September 23 to November 8, 1991, under the auspices of the DOE Office of Special Projects, Office of Assistant Secretary for Environment, Safety and Health. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal LANL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors' management of ES H/quality assurance programs was conducted. This volume discusses findings concerning the environmental assessment.

  12. Defense programs industrial partnerships at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Freese, K.B. [Los Alamos National Lab., NM (United States). Industrial Partnership Office

    1996-10-01

    The US Department of Energy`s Defense Programs face unprecedented challenges of stewardship for an aging nuclear stockpile, cessation of nuclear testing, reduced federal budgets, and a smaller manufacturing complex. Partnerships with industry are essential in developing technology, modernizing the manufacturing complex, and maintaining the safety and reliability of the nation`s nuclear capability. The past decade of federal support for industrial partnerships has promoted benefits to US industrial competitiveness. Recent shifts in government policy have re-emphasized the importance of industrial partnerships in accomplishing agency missions. Nevertheless, abundant opportunities exist for dual-benefit, mission-driven partnerships between the national laboratories and industry. Experience at Los Alamos National Laboratory with this transition is presented.

  13. Overview of laser technology at Los Alamos National Laboratory

    Science.gov (United States)

    Lewis, G. K.; Cremers, D. A.

    Los Alamos National Laboratory has had a long history of involvement in laser sciences and has been recognized both for its large laser programs and smaller scale developments in laser technology and applications. The first significant program was with the Rover nuclear-based rocket propulsion system in 1968 to study laser initiated fusion. From here applications spread to programs in laser isotope separation and development of large lasers for fusion. These programs established the technological human resource base of highly trained laser physicists, engineers, and chemists that remain at the Laboratory today. Almost every technical division at Los Alamos now has some laser capability ranging from laser development, applications, studies on nonlinear processes, modeling and materials processing. During the past six years over eight R&D-100 Awards have been received by Los Alamos for development of laser-based techniques and instrumentation. Outstanding examples of technology developed include LIDAR applications to environmental monitoring, single molecule detection using fluorescence spectroscopy, a laser-based high kinetic energy source of oxygen atoms produced by a laser-sustained plasma, laser-induced breakdown spectroscopy (LIBS) for compositional, analysis, thin film high temperature superconductor deposition, multi-station laser welding, and direct metal deposition and build-up of components by fusing powder particles with a laser beam.

  14. Tiger Team Assessment of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  15. Groundwater level status report for 2010, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2011-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2010 is provided in this report. This report summarizes groundwater level data for 194 monitoring wells, including 63 regional aquifer wells (including 10 regional/intermediate wells), 34 intermediate wells, 97 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 162 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells and seasonal responses to snowmelt runoff observed in intermediate wells.

  16. Groundwater level status report for 2009, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2010-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2009 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 55 regional aquifer wells (including 11 regional/intermediate wells), 26 intermediate wells, 98 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 161 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

  17. Groundwater level status report for 2008, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2009-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2008 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 45 regional aquifer wells, 28 intermediate wells, 8 regional/intermediate wells, 106 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 166 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

  18. Mac configuration management at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Allan B [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos National Laboratory (LANL) had a need for central configuration management of non-Windows computers. LANL has three to five thousand Macs and an equal number of Linux based systems. The primary goal was to be able to inventory all non-windows systems and patch Mc OS X systems. LANL examined a number of commercial and open source solutions and ultimately selected Puppet. This paper will discuss why we chose Puppet, how we implemented it, and some lessons we learned along the way.

  19. Los Alamos National Laboratory Economic Analysis Capability Overview

    Energy Technology Data Exchange (ETDEWEB)

    Boero, Riccardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group; Edwards, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group; Pasqualini, Donatella [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group; Rivera, Michael Kelly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group

    2016-04-19

    Los Alamos National Laboratory has developed two types of models to compute the economic impact of infrastructure disruptions. FastEcon is a fast running model that estimates first-­order economic impacts of large scale events such as hurricanes and floods and can be used to identify the amount of economic activity that occurs in a specific area. LANL’s Computable General Equilibrium (CGE) model estimates more comprehensive static and dynamic economic impacts of a broader array of events and captures the interactions between sectors and industries when estimating economic impacts.

  20. Los Alamos National Laboratory support to IAEA environmental safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert E [Los Alamos National Laboratory; Dry, Don E [Los Alamos National Laboratory; Roensch, Fred R [Los Alamos National Laboratory; Kinman, Will S [Los Alamos National Laboratory; Roach, Jeff L [Los Alamos National Laboratory; La Mont, Stephen P [Los Alamos National Laboratory

    2010-12-01

    The nuclear and radiochemistry group provides sample preparation and analysis support to the International Atomic Energy Agency (IAEA) Network of Analytical Laboratories (NWAL). These analyses include both non-destructive (alpha and gamma-ray spectrometry) and destructive (thermal ionization mass spectrometry and inductively coupled plasma mass spectrometry) methods. On a bi-annual basis the NWAL laboratories are invited to meet to discuss program evolution and issues. During this meeting each participating laboratory summarizes their efforts over the previous two years. This presentation will present Los Alamos National Laboratories efforts in support of this program. Data showing results from sample and blank analysis will be presented along with capability enhancement and issues that arose over the previous two years.

  1. Los Alamos National Laboratory: 21st century solutions to urgent national challenges

    Energy Technology Data Exchange (ETDEWEB)

    Mcbranch, Duncan [Los Alamos National Laboratory

    2008-01-01

    Los Alamos National Laboratory has been called upon to meet urgent national challenges for more than 65 years. The people, tools, and technologies at Los Alamos are a world class resource that has proved decisive through our history, and are needed in the future. We offer expertise in nearly every science, technology, and engineering discipline, a unique integrated capability for large-scale computing and experimentation, and the proven ability to deliver solutions involving the most complex and difficult technical systems. This white paper outlines some emerging challenges and why the nation needs Los Alamos, the premier National Security Science Laboratory, to meet these challenges.

  2. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-02

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, which is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  3. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  4. Cleanup at Los Alamos National Laboratory - the challenges - 9493

    Energy Technology Data Exchange (ETDEWEB)

    Stiger, Susan G [Los Alamos National Laboratory; Hargis, Kenneth M [Los Alamos National Laboratory; Graham, Michael J [Los Alamos National Laboratory; Rael, George J [NNSL/LASO

    2008-01-01

    This paper provides an overview of environmental cleanup at the Los Alamos National Laboratory (LANL) and some of the unique aspects and challenges. Cleanup of the 65-year old Department of Energy Laboratory is being conducted under a RCRA Consent Order with the State of New Mexico. This agreement is one of the most recent cleanup agreements signed in the DOE complex and was based on lessons learned at other DOE sites. A number of attributes create unique challenges for LANL cleanup -- the proximity to the community and pueblos, the site's topography and geology, and the nature of LANL's on-going missions. This overview paper will set the stage for other papers in this session, including papers that present: Plans to retrieve buried waste at Material Disposal Area B, across the street from oen of Los Alamos' commercial districts and the local newspaper; Progress to date and joint plans with WIPP for disposal of the remaining inventory of legacy transuranic waste; Reviews of both groundwater and surface water contamination and the factors complicating both characterization and remediation; Optimizing the disposal of low-level radioactive waste from ongoing LANL missions; A stakeholder environmental data transparency project (RACER), with full public access to all available information on contamination at LANL, and A description of the approach to waste processing cost recovery from the programs that generate hazardous and radioactive waste at LANL.

  5. A survey of macromycete diversity at Los Alamos National Laboratory, Bandelier National Monument, and Los Alamos County; A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Jarmie, N.; Rogers, F.J. [Mycology Associates, Los Alamos, NM (United States)

    1997-11-01

    The authors have completed a 5-year survey (1991--1995) of macromycetes found in Los Alamos County, Los Alamos National Laboratory, and Bandelier National Monument. The authors have compiled a database of 1,048 collections, their characteristics, and identifications. The database represents 123 (98%) genera and 175 (73%) species reliably identified. Issues of habitat loss, species extinction, and ecological relationships are addressed, and comparisons with other surveys are made. With this baseline information and modeling of this baseline data, one can begin to understand more about the fungal flora of the area.

  6. Fuels Inventories in the Los Alamos National Laboratory Region: 1997

    Energy Technology Data Exchange (ETDEWEB)

    Balice, R.G.; Oswald, B.P.; Martin, C.

    1999-03-01

    Fifty-four sites were surveyed for fuel levels, vegetational structures, and topographic characteristics. Most of the surveyed sites were on Los Alamos National Laboratory property, however, some surveys were also conducted on U.S. Forest Service property. The overall vegetation of these sites ranged from pinon-juniper woodlands to ponderosa pine forests to mixed conifer forests, and the topographic positions included canyons, mesas, and mountains. The results of these surveys indicate that the understory fuels are the greatest in mixed conifer forests and that overstory fuels are greatest in both mixed conifer forests and ponderosa pine forests on mesas. The geographic distribution of these fuels would suggest a most credible wildfire scenario for the Los Alamos region. Three major fires have occurred since 1954 and these fires behaved in a manner that is consistent with this scenario. The most credible wildfire scenario was also supported by the results of BEHAVE modeling that used the fuels inventory data as inputs. Output from the BEHAVE model suggested that catastrophic wildfires would continue to occur during any season with sufficiently dry, windy weather.

  7. Tiger Team Assessment of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The Management Subteam conducted a management and organization assessment of environment, safety, and health (ES H) activities performed by the Los Alamos National Laboratory (LANL) and onsite contractor personnel. The objectives of the assessment were to (1) evaluate the effectiveness of management systems and practices in terms of ensuring environmental compliance and the safety and health of workers and the general public, (2) identify key findings, and (3) identify root causes for all ES H findings and concerns. The scope of the assessment included examinations of the following from an ES H perspective: (1) strategic and program planning; (2) organizational structure and management configuration; (3) human resource management, including training and staffing; (4) management systems, including performance monitoring and assessment; (5) conduct of operations; (6) public and institutional interactions; and (7) corporate'' parent support.

  8. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Carton, D.; Rhyne, T. [and others

    1997-06-01

    Appendices are presented from a study performed on a concept model system for the commercialization of Los Alamos National Laboratory technologies via small businesses. Topics include a summary of information from the joint MCC/Los Alamos technology conference; a comparison of New Mexico infrastructure to other areas; a typical licensing agreement; technology screening guides; summaries of specific DOE/UC/Los Alamos documents; a bibliography; the Oak Ridge National Laboratory TCRD; The Ames Center for Advanced Technology Development; Los Alamos licensing procedures; presentation of slides from monthly MCC/Los Alamos review meetings; generalized entrepreneurship model; and a discussion on receiving equity for technology.

  9. Architect and engineering costs at Los Alamos and Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The objective of this audit was to determine whether architect and engineering (A-E) costs at Los Alamos National Laboratory and Sandia National Laboratories were reasonable in comparison with industry standards.

  10. Pinon Pine Tree Study, Los Alamos National Laboratory: Source document

    Energy Technology Data Exchange (ETDEWEB)

    P. R. Fresquez; J. D. Huchton; M. A. Mullen; L. Naranjo, Jr.

    2000-01-01

    One of the dominant tree species growing within and around Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis) tree. Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food--the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of {sup 3}H, {sup 137}Cs, {sup 90}Sr, {sup tot}U, {sup 238}Pu, {sup 239,240}Pu, and {sup 241}Am in soils (0- to 12-in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) concentrations of radionuclides in PPN collected in 1977 to present data, (3) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (4) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of {sup 3}H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 {micro}Sv). Soil-to-nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.

  11. Wildlife use of NPDES outfalls at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Foxx, T.; Blea-Edeskuty, B.

    1995-09-01

    From July through October of 1991, the Biological Resources Evaluation Team (BRET) surveyed 133 of the 140 National Pollutant Discharge and Elimination System outfalls at Los Alamos National Laboratory (LANL). The purpose of the survey was to determine the use of these wastewater outfalls by wildlife. BRET observed wildlife or evidence of wildlife (scat, tracks, or bedding) by 35 vertebrate species in the vicinity of the outfalls, suggesting these animals could be using water from outfalls. Approximately 56% of the outfalls are probably used or are suitable for use by large mammals as sources of drinking water. Additionally, hydrophytic vegetation grows in association with approximately 40% of the outfalls-a characteristic that could make these areas eligible for wetland status. BRET recommends further study to accurately characterize the use of outfalls by small and medium-sized mammals and amphibians. The team also recommends systematic aquatic macroinvertebrate studies to provide information on resident communities and water quality. Wetland assessments may be necessary to ensure compliance with wetland regulations if LANL activities affect any of the outfalls supporting hydrophytic vegetation.

  12. Los Alamos National Laboratory considers the use of biodiesel.

    Energy Technology Data Exchange (ETDEWEB)

    Matlin, M. K. (Marla K.)

    2002-01-01

    A new EPA-approved alternative fuel, called biodiesel, may soon be used at Los Alamos National Laboratory in everything from diesel trucks to laboratory equipment. Biodiesel transforms vegetable oils into a renewable, cleaner energy source that can be used in any machinery that uses diesel fuel. For the past couple years, the Laboratory has been exploring the possibility of switching over to soybean-based biodiesel. This change could lead to many health and environmental benefits, as well as help reduce the nation's dependence on foreign oil. Biodiesel is a clean, renewable diesel fuel substitute made from soybean and other vegetable oil crops, as well as from recycled cooking oils. A chemical process breaks down the vegetable oil into a usable form. Vegetable oil has a chain of about 18 carbons and ordinary diesel has about 12 or 13 carbons. The process breaks the carbon chains of the vegetable oil and separates out the glycerin (a fatty substance used in creams and soaps). The co-product of glycerin can be used by pharmaceutical and cosmetic companies, as well as many other markets. Once the chains are shortened and the glycerin is removed from the oil, the remaining liquid is similar to petroleum diesel fuel. It can be burned in pure form or in a blend of any proportion with petroleum diesel. To be considered an alternative fuel source by the EPA, the blend must be at least 20 percent biodiesel (B20). According to the U.S. Department of Energy (DOE), biodiesel is America's fastest growing alternative fuel.

  13. Environmental Survey preliminary report, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Los Alamos National Laboratory (LANL), conducted March 29, 1987 through April 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the LANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the LANL, and interviews with site personnel. The Survey team developed Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by the Idaho National Engineering Laboratory. When completed, the results will be incorporated into the LANL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Survey for the LANL. 65 refs., 68 figs., 73 tabs.

  14. Final Progress Report: Internship at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Ryan Q. [Los Alamos National Laboratory

    2012-08-10

    Originally I was tasked fluidized bed modeling, however, I changed projects. While still working with ANSYS Fluent, I performed a study of particle tracks in glove boxes. This is useful from a Health-Physics perspective, dealing respirable particles that can be hazardous to the human body. I iteratively tested different amounts of turbulent particles in a steady-state flow. The goal of this testing was to discover how Fluent handles built-in Rosin-Rammler distributions for particle injections. I worked on the health physics flow problems and distribution analysis under the direction of two mentors, Bruce Letellier and Dave Decroix. I set up and ran particle injection calculations using Fluent. I tried different combinations of input parameters to produce sets of 500,000, 1 million, and 1.5 million particles to determine what a good test case would be for future experiments. I performed a variety of tasks in my work as an Undergraduate Student Intern at LANL this summer, and learned how to use a powerful CFD application in addition to expanding my skills in MATLAB. I enjoyed my work at LANL and hope to be able to use the experience here to further my career in the future working in a security-conscious environment. My mentors provided guidance and help with all of my projects and I am grateful for the opportunity to work at Los Alamos National Laboratory.

  15. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    O' LEARY, GERALD A. [Los Alamos National Laboratory

    2007-01-04

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with

  16. Penetrating radiation: applications at Los Alamos National Laboratory

    Science.gov (United States)

    Watson, Scott; Hunter, James; Morris, Christopher

    2013-09-01

    Los Alamos has used penetrating radiography extensively throughout its history dating back to the Manhattan Project where imaging dense, imploding objects was the subject of intense interest. This interest continues today as major facilities like DARHT1 have become the mainstay of the US Stockpile Stewardship Program2 and the cornerstone of nuclear weapons certification. Meanwhile, emerging threats to national security from cargo containers and improvised explosive devices (IEDs) have invigorated inspection efforts using muon tomography, and compact x-ray radiography. Additionally, unusual environmental threats, like those from underwater oil spills and nuclear power plant accidents, have caused renewed interest in fielding radiography in severe operating conditions. We review the history of penetrating radiography at Los Alamos and survey technologies as presently applied to these important problems.

  17. Environmental assessment for effluent reduction, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-11

    The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL`s sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent. After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL`s outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE`s purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives.

  18. Los Alamos National Laboratory W76 Pit Tube Lifetime Study

    Energy Technology Data Exchange (ETDEWEB)

    Abeln, Terri G. [Los Alamos National Laboratory

    2012-04-25

    A metallurgical study was requested as part of the Los Alamos National Laboratory (LANL) W76-1 life-extension program (LEP) involving a lifetime analysis of type 304 stainless steel pit tubes subject to repeat bending loads during assembly and disassembly operations at BWXT/Pantex. This initial test phase was completed during the calendar years of 2004-2006 and the report not issued until additional recommended tests could be performed. These tests have not been funded to this date and therefore this report is considered final. Tubes were reportedly fabricated according to Rocky Flats specification P14548 - Seamless Type 304 VIM/VAR Stainless Steel Tubing. Tube diameter was specified as 0.125 inches and wall thickness as 0.028 inches. A heat treat condition is not specified and the hardness range specification can be characteristic of both 1/8 and 1/4 hard conditions. Properties of all tubes tested were within specification. Metallographic analysis could not conclusively determine a specified limit to number of bends allowable. A statistical analysis suggests a range of 5-7 bends with a 99.95% confidence limit. See the 'Statistical Analysis' section of this report. The initial phase of this study involved two separate sets of test specimens. The first group was part of an investigation originating in the ESA-GTS [now Gas Transfer Systems (W-7) Group]. After the bend cycle test parameters were chosen (all three required bends subjected to the same amount of bend cycles) and the tubes bent, the investigation was transferred to Terri Abeln (Metallurgical Science and Engineering) for analysis. Subsequently, another limited quantity of tubes became available for testing and were cycled with the same bending fixture, but with different test parameters determined by T. Abeln.

  19. Isentropic Compression Studies at the Los Alamos National High Magnetic Field Laboratory

    Science.gov (United States)

    2011-06-01

    D.G. Tasker, C.H. Mielke , G. Rodriguez, and D.W. Rickel Los Alamos National Laboratory, WX-6, MS J566 Los Alamos, NM 87545, USA Abstract...07E108-3. [3] D. G. Tasker, C. H. Mielke , G. Rodriguez, and D. G. Rickel, "A Simple Isentropic Compression Experiment (ICE) Machine," presented at

  20. Surface Water Data at Los Alamos National Laboratory 1998 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Shaull; M. R. Alexander; R. P. Reynolds; C. T. McLean; R. P. Romero

    1999-02-01

    The principal investigators collected and computed surface water discharge data from 19 stream-gaging stations that cover most of Los Alamos National Laboratory. Also included are discharge data from three springs that flow into Caiion de Vane.

  1. Los Alamos National Laboratory Science Education Programs. Quarterly progress report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.

    1995-09-01

    This report is quarterly progress report on the Los Alamos National Laboratory Science Education Programs. Included in the report are dicussions on teacher and faculty enhancement, curriculum improvement, student support, educational technology, and institutional improvement.

  2. Monitoring Sensitive Bat Species at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberg, Kari M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-15

    Bats play a critical role in ecosystems and are vulnerable to disturbance and disruption by human activities. In recent decades, bat populations in the United States and elsewhere have decreased tremendously. There are 47 different species of bat in the United States and 28 of these occur in New Mexico with 15 different species documented at the Los Alamos National Laboratory (LANL) and surrounding areas. Euderma maculatum(the spotted bat) is listed as “threatened” by the state of New Mexico and is known to occur at LANL. Four other species of bats are listed as “sensitive” and also occur here. In 1995, a four year study was initiated at LANL to assess the status of bat species of concern, elucidate distribution and relative abundance, and obtain information on roosting sites. There have been no definitive studies since then. Biologists in the Environmental Protection Division at LANL initiated a multi-year monitoring program for bats in May 2013 to implement the Biological Resources Management Plan. The objective of this ongoing study is to monitor bat species diversity and seasonal activity over time at LANL. Bat species diversity and seasonal activity were measured using an acoustic bat detector, the Pettersson D500X. This ultrasound recording unit is intended for long-term, unattended recording of bat and other high frequency animal calls. During 2013, the detector was deployed at two locations around LANL. Study sites were selected based on proximity to water where bats may be foraging. Recorded bat calls were analyzed using Sonobat, software that can help determine specific species of bat through their calls. A list of bat species at the two sites was developed and compared to lists from previous studies. Species diversity and seasonal activity, measured as the number of call sequences recorded each month, were compared between sites and among months. A total of 17,923 bat calls were recorded representing 15 species. Results indicate that there is a

  3. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    Energy Technology Data Exchange (ETDEWEB)

    McAlpine, Bradley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclear capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.

  4. Surface water data at Los Alamos National Laboratory: 1995 water year. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Barks, R. [ed.; Shaull, D.A.; Alexander, M.R.; Reynolds, R.P.

    1996-08-01

    The principle investigators collected and computed surface water discharge data from 15 stream-gaging stations that cover most of Los Alamos National Laboratory. The United States Department of Interior Geological Survey, Water Resources Division, operates two of the stations under a subcontract; these are identified in the station manuscripts. Included in this report are data from one seepage run conducted in Los Alamos Canyon during the 1995 water year.

  5. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  6. Surface water data at Los Alamos National Laboratory: 2008 water year

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, David; Cata, Betsy; Kuyumjian, Gregory

    2009-09-01

    The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  7. Surface water data at Los Alamos National Laboratory: 2009 water year

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, David; McCullough, Betsy

    2010-05-01

    The principal investigators collected and computed surface water discharge data from 73 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  8. Surface Water Data at Los Alamos National Laboratory 2000 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D.A.Shaull; M.R.Alexander; R.P.Reynolds; R.P.Romero; E.T.Riebsomer; C.T.McLean

    2001-06-02

    The principal investigators collected and computed surface water discharge data from 23 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs, two that flow into Canon del Valle and one that flows into Water Canyon.

  9. Surface Water Data at Los Alamos National Laboratory: 2002 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Shaull; D. Ortiz; M.R. Alexander; R.P. Romero

    2003-03-03

    The principal investigators collected and computed surface water discharge data from 34 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data from 16 stations.

  10. Surface Water Data at Los Alamos National Laboratory: 1999 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Shaull; M. R. Alexander; R. P. Reynolds; C. T. McLean; R. P. Romero

    2000-04-01

    The principal investigators collected and computed surface water discharge data from 22 stream-gaging stations that cover most of Los Alamos National Laboratory with one at Bandelier National Monument. Also included are discharge data from three springs that flow into Canon de Valle and nine partial-record storm water stations.

  11. 77 FR 3257 - Transfer of Land Tracts Located at Los Alamos National Laboratory, New Mexico

    Science.gov (United States)

    2012-01-23

    ... (Conveyance and Transfer EIS) to address the remaining acreage of Los Alamos National Laboratory's (LANL's...) 472-2756. Additional information regarding DOE NEPA activities and access to many DOE NEPA documents.../ . SUPPLEMENTARY INFORMATION: Background LANL is a multidisciplinary, multipurpose research institution in...

  12. Simplifying Complexity: Miriam Blake--Los Alamos National Laboratory Research Library, NM

    Science.gov (United States)

    Library Journal, 2004

    2004-01-01

    The holy grail for many research librarians is one-stop searching: seamless access to all the library's resources on a topic, regardless of the source. Miriam Blake, Library Without Walls Project Leader at Los Alamos National laboratory (LANL), is making this vision a reality. Blake is part of a growing cadre of experts: a techie who is becoming a…

  13. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1995 quality program status report

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1996-07-01

    This status report summarizes the activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project`s (YMP`s) quality assurance program for January 1 to September 30, 1995. The report includes major sections on program activities and trend analysis.

  14. Mapping the future of CIC Division, Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report summarizes three scenario-based strategic planning workshops run for the CIC Division of the Los Alamos National Laboratory during November and December, 1995. Each of the two-day meetings was facilitated by Northeast Consulting Resources, Inc. (NCRI) of Boston, MA. using the Future Mapping{reg_sign} methodology.

  15. Los Alamos National Laboratory Training Capabilities (Possible Applications in the Global Initiatives for Proliferation Prevention Program)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Olga [Los Alamos National Laboratory

    2012-06-04

    The briefing provides an overview of the training capabilities at Los Alamos National Laboratory that can be applied to nonproliferation/responsible science education at nuclear institutes in the Former Soviet Union, as part of the programmatic effort under the Global Initiatives for Proliferation Prevention program (GIPP).

  16. Audit of the radioactive liquid waste treatment facility operations at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-19

    Los Alamos National Laboratory (Los Alamos) generates radioactive and liquid wastes that must be treated before being discharged to the environment. Presently, the liquid wastes are treated in the Radioactive Liquid Waste Treatment Facility (Treatment Facility), which is over 30 years old and in need of repair or replacement. However, there are various ways to satisfy the treatment need. The objective of the audit was to determine whether Los Alamos cost effectively managed its Treatment Facility operations. The audit determined that Los Alamos` treatment costs were significantly higher when compared to similar costs incurred by the private sector. This situation occurred because Los Alamos did not perform a complete analysis of privatization or prepare a {open_quotes}make-or-buy{close_quotes} plan for its treatment operations, although a {open_quotes}make-or-buy{close_quotes} plan requirement was incorporated into the contract in 1996. As a result, Los Alamos may be spending $2.15 million more than necessary each year and could needlessly spend $10.75 million over the next five years to treat its radioactive liquid waste. In addition, Los Alamos has proposed to spend $13 million for a new treatment facility that may not be needed if privatization proves to be a cost effective alternative. We recommended that the Manager, Albuquerque Operations Office (Albuquerque), (1) require Los Alamos to prepare a {open_quotes}make-or-buy{close_quotes} plan for its radioactive liquid waste treatment operations, (2) review the plan for approval, and (3) direct Los Alamos to select the most cost effective method of operations while also considering other factors such as mission support, reliability, and long-term program needs. Albuquerque concurred with the recommendations.

  17. LAMPF II workshop, Los Alamos National Laboratory, Los Alamos, New Mexico, February 1-4, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Thiessen, H.A. (comp.)

    1982-01-01

    This report contains the proceedings of the first LAMPF II Workshop held at Los Alamos February 1 to 4, 1982. Included are the talks that were available in written form. The conclusion of the participants was that there are many exciting areas of physics that will be addressed by such a machine.

  18. Misuse and intrusion detection at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K.A.; Neuman, M.C.; Simmonds, D.D.; Stallings, C.A.; Thompson, J.L.; Christoph, G.G.

    1995-04-01

    An effective method for detecting computer misuse is the automatic auditing and analysis of on-line user activity. This activity is reflected in system audit records, in system vulnerability postures, and in other evidence found through active system testing. Since 1989 we have implemented a misuse and intrusion detection system at Los Alamos. This is the Network Anomaly Detection and Intrusion Reporter, or NADIR. NADIR currently audits a Kerberos distributed authentication system, file activity on a mass, storage system, and four Cray supercomputers that run the UNICOS operating system. NADIR summarizes user activity and system configuration in statistical profiles. It compares these profiles to expert rules that define security policy and improper or suspicious behavior. It reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations, As NADIR is constantly evolving, this paper reports its development to date.

  19. Surface water data at Los Alamos National Laboratory: 1997 water year. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Shaull, D.A.; Alexander, M.R.; Reynolds, R.P.; McLean, C.T.

    1998-01-01

    This annual water data report from Los Alamos National Laboratory (LANL) contains flow data from 19 stream-gaging stations that cover most of the Laboratory`s property. The authors focused data collection on the Laboratory`s downstream boundary, approximated by New Mexico State Highway 4; the upstream boundary is approximated by New Mexico State Highway 501. Some of the gaging stations are within Laboratory boundaries and were originally installed to assist groups other than the Water Quality and Hydrology Group (ESH-18) that also conduct site-specific earth science research. Also included are discharge data from three springs that flow into Canon de Valle.

  20. Shock and Detonation Physics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, David L [Los Alamos National Laboratory; Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve A [Los Alamos National Laboratory

    2012-08-22

    WX-9 serves the Laboratory and the Nation by delivering quality technical results, serving customers that include the Nuclear Weapons Program (DOE/NNSA), the Department of Defense, the Department of Homeland Security and other government agencies. The scientific expertise of the group encompasses equations-of-state, shock compression science, phase transformations, detonation physics including explosives initiation, detonation propagation, and reaction rates, spectroscopic methods and velocimetry, and detonation and equation-of-state theory. We are also internationally-recognized in ultra-fast laser shock methods and associated diagnostics, and are active in the area of ultra-sensitive explosives detection. The facility capital enabling the group to fulfill its missions include a number of laser systems, both for laser-driven shocks, and spectroscopic analysis, high pressure gas-driven guns and powder guns for high velocity plate impact experiments, explosively-driven techniques, static high pressure devices including diamond anvil cells and dilatometers coupled with spectroscopic probes, and machine shops and target fabrication facilities.

  1. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Cartron, D.; Rhyne, T.; Schulze, M.; Welty, L.

    1997-06-01

    Over the past decade, numerous companies have been formed to commercialize research results from leading U.S. academic and research institutions. Emerging small businesses in areas such as Silicon Valley, Boston`s Route 128 corridor, and North Carolina`s Research Triangle have been especially effective in moving promising technologies from the laboratory bench to the commercial marketplace--creating new jobs and economic expansion in the process. Unfortunately, many of the U.S. national laboratories have not been major participants in this technology/commercialization activity, a result of a wide variety of factors which, until recently, acted against successful commercialization. This {open_quotes}commercialization gap{close_quotes} exists partly due to a lack, within Los Alamos in particular and the DOE in general, of in-depth expertise and experience in such business areas as new business development, securities regulation, market research and the determination of commercial potential, the identification of entrepreneurial management, marketing and distribution, and venture capital sources. The immediate consequence of these factors is the disappointingly small number of start-up companies based on technologies from Los Alamos National Laboratory that have been attempted, the modest financial return Los Alamos has received from these start-ups, and the lack of significant national recognition that Los Alamos has received for creating and commercializing these technologies.

  2. Measurements at Los Alamos National Laboratory Plutonium Facility in Support of Global Security Mission Space

    Energy Technology Data Exchange (ETDEWEB)

    Stange, Sy [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Herrera, Gary D. [Los Alamos National Laboratory; McLaughlin, Anastasia D. [Los Alamos National Laboratory; Montoya, Charles M. [Los Alamos National Laboratory; Quihuis, Becky A. [Los Alamos National Laboratory; Trujillo, Julio B. [Los Alamos National Laboratory; Van Pelt, Craig E. [Los Alamos National Laboratory; Wenz, Tracy R. [Los Alamos National Laboratory

    2012-07-13

    The Los Alamos National Laboratory Plutonium Facility at Technical Area (TA) 55 is one of a few nuclear facilities in the United States where Research & Development measurements can be performed on Safeguards Category-I (CAT-I) quantities of nuclear material. This capability allows us to incorporate measurements of CAT-IV through CAT-I materials as a component of detector characterization campaigns and training courses conducted at Los Alamos. A wider range of measurements can be supported. We will present an overview of recent measurements conducted in support of nuclear emergency response, nuclear counterterrorism, and international and domestic safeguards. This work was supported by the NNSA Office of Counterterrorism.

  3. Chemical decontamination technical resources at Los Alamos National Laboratory (2008)

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E [Los Alamos National Laboratory

    2008-01-01

    This document supplies information resources for a person seeking to create planning or pre-planning documents for chemical decontamination operations. A building decontamination plan can be separated into four different sections: Pre-planning, Characterization, Decontamination (Initial response and also complete cleanup), and Clearance. Of the identified Los Alamos resources, they can be matched with these four sections: Pre-planning -- Dave Seidel, EO-EPP, Emergency Planning and Preparedness; David DeCroix and Bruce Letellier, D-3, Computational fluids modeling of structures; Murray E. Moore, RP-2, Aerosol sampling and ventilation engineering. Characterization (this can include development projects) -- Beth Perry, IAT-3, Nuclear Counterterrorism Response (SNIPER database); Fernando Garzon, MPA-11, Sensors and Electrochemical Devices (development); George Havrilla, C-CDE, Chemical Diagnostics and Engineering; Kristen McCabe, B-7, Biosecurity and Public Health. Decontamination -- Adam Stively, EO-ER, Emergency Response; Dina Matz, IHS-IP, Industrial hygiene; Don Hickmott, EES-6, Chemical cleanup. Clearance (validation) -- Larry Ticknor, CCS-6, Statistical Sciences.

  4. 2011 Los Alamos National Laboratory Riparian Inventory Results

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Elizabeth J. [Los Alamos National Laboratory; Hansen, Leslie A. [Los Alamos National Laboratory; Hathcock, Charles D. [Los Alamos National Laboratory; Keller, David C. [Los Alamos National Laboratory; Zemlick, Catherine M. [Los Alamos National Laboratory

    2012-03-29

    A total length of 36.7 kilometers of riparian habitat were inventoried within LANL boundaries between 2007 and 2011. The following canyons and lengths of riparian habitat were surveyed and inventoried between 2007 and 2011. Water Canyon (9,669 m), Los Alamos Canyon (7,131 m), Pajarito Canyon (6,009 m), Mortandad Canyon (3,110 m), Two-Mile Canyon (2,680 m), Sandia Canyon (2,181 m), Three-Mile Canyon (1,883 m), Canyon de Valle (1,835 m), Ancho Canyon (1,143 m), Canada del Buey (700 m), Sandia Canyon (221 m), DP Canyon (159 m) and Chaquehui Canyon (50 m). Effluent Canyon, Fence Canyon and Potrillo Canyon were surveyed but no areas of riparian habitat were found. Stretches of inventoried riparian habitat were classified for prioritization of treatment, if any was recommended. High priority sites included stretches of Mortandad Canyon, LA Canyon, Pajarito Canyon, Two-Mile Canyon, Sandia Canyon and Water Canyon. Recommended treatment for high priority sites includes placement of objects into the stream channel to encourage sediment deposition, elimination of channel incision, and to expand and slow water flow across the floodplain. Additional stretches were classified as lower priority, and, for other sites it was recommended that feral cattle and exotic plants be removed to aid in riparian habitat recovery. In June 2011 the Las Conchas Wildfire burned over 150,000 acres of land in the Jemez Mountains and surrounding areas. The watersheds above LA Canyon, Water Canyon and Pajarito Canyon were burned in the Las Conchas Wildfire and flooding and habitat alteration were observed in these canyon bottoms (Wright 2011). Post fire status of lower priority areas may change to higher priority for some of the sites surveyed prior to the Las Conchas Wildfire, due to changes in vegetation cover in the adjacent upland watershed.

  5. NEPA and NHPA- successful decommissioning of historic Manhattan Project properties at Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    McGehee, E.D.; Pendergrass, A.K.

    1997-05-21

    This paper describes experiences at Los Alamos National Laboratory during the process of planning and executing decommissioning and decontamination activities on a number of properties constructed as part of the Manhattan project. Many of these buildings had been abandoned for many years and were in deteriorating condition, in addition to being contaminated with asbestos, lead based paints and high explosive residues. Due to the age and use of the structures they were evaluated against criteria for the National Register of Historic Places. This process is briefly reviewed, along with the results, as well as actions implemented as a result of the condition and safety of the structures. A number of the structures have been decontaminated and demolished. Planning is still ongoing for the renovation of one structure, and the photographic and drawing records of the properties is near completion.

  6. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dion, Heather M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dry, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaMont, Stephen Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Podlesak, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tandon, Lav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-22

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  7. Los Alamos National Laboratory emergency management plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, G.F.

    1998-07-15

    The Laboratory has developed this Emergency Management Plan (EMP) to assist in emergency planning, preparedness, and response to anticipated and actual emergencies. The Plan establishes guidance for ensuring safe Laboratory operation, protection of the environment, and safeguarding Department of Energy (DOE) property. Detailed information and specific instructions required by emergency response personnel to implement the EMP are contained in the Emergency Management Plan Implementing Procedure (EMPIP) document, which consists of individual EMPIPs. The EMP and EMPIPs may be used to assist in resolving emergencies including but not limited to fires, high-energy accidents, hazardous material releases (radioactive and nonradioactive), security incidents, transportation accidents, electrical accidents, and natural disasters.

  8. Summary of New Los Alamos National Laboratory Groundwater Data Loaded in July 2012

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Steven M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-07

    This report provides information concerning groundwater monitoring data obtained by the Los Alamos National Laboratory under its interim monitoring plan and contains results for chemical constituents that meet seven screening criteria laid out in the Compliance Order on Consent. Tables are included in the report to organize the findings from the samples. The report covers groundwater samples taken from wells or springs that provide surveillance of the groundwater zones indicated in the table.

  9. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1994 quality program status report

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1996-03-01

    This status report is for calendar year 1994. It summarizes the annual activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project (YMP or Project) quality assurance program. By identifying the accomplishments of the quality program, a baseline is established that will assist in decision making, improve administrative controls and predictability, and allow us to annually identify adverse trends and to evaluate improvements. This is the fourth annual status report.

  10. Plan for increasing public participation in cleanup decisions for the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This document describes a plan for involving the public in decisions related to cleaning up sites suspected of being contaminated with chemicals or radioactivity at Los Alamos National Laboratory. In this section we describe the purpose of the Environmental Remediation Project, our past efforts to communicate with the northern New Mexico community, and the events that brought about our realization that less traditional, more innovative approaches to public involvement are needed.

  11. From Bombs to Breast Cancer Imaging: Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Martineau, Rebecca M [Los Alamos National Laboratory

    2012-07-26

    . Currently, there is fierce debate surrounding the age at which breast cancer screening should begin, and once begun, how often it should occur. The American Cancer Society recommends yearly mammograms starting at age 40. On the other hand, the U.S. Preventive Services Task Force recommends against routine so early. Rather, the Task Force recommends biennial mammography screening for women aged 50 to 74 years. The ten-year discrepancy in the onset of screening results from recent data suggesting that the frequent use of X-ray radiation during screenings could potentially increase the likelihood of developing cancer. This danger is increased by the low sensitivity and accuracy of mammograms, which sometimes require multiple screenings to yield results. Furthermore, mammograms are often not only inaccurate, but average appalling misdiagnoses rates: about 80% false positives and 15% false negatives. These misdiagnoses lead to unwarranted biopsies at an estimated health care cost of $2 billion per year, while at the same time, resulting in excessive cases of undetected cancer. As such, the National Cancer Institute recommends more studies on the advantages of types and frequency of screenings, as well as alternative screening options. The UST technology developed at LANL could be an alternative option to greatly improve the specificity and sensitivity of breast cancer screening without using ionizing radiation. LANL is developing high-resolution ultrasound tomography algorithms and a clinical ultrasound tomography scanner to conduct patient studies at the UNM Hospital. During UST scanning, the patient lies face-down while her breast, immersed in a tank of warm water, is scanned by phased-transducer arrays. UST uses recorded ultrasound signals to reconstruct a high-resolution three-dimensional image of the breast, showing the spatial distribution of mechanical properties within the breast. Breast cancers are detected by higher values of mechanical properties compared to

  12. Los Alamos National Laboratory Science Education Program. Annual progress report, October 1, 1995--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.H.

    1997-01-01

    The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours for the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.

  13. Biosafety Practices and Emergency Response at the Idaho National Laboratory and Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Frank F. Roberto; Dina M. Matz

    2008-03-01

    Strict federal regulations govern the possession, use, and transfer of pathogens and toxins with potential to cause harm to the public, either through accidental or deliberate means. Laboratories registered through either the Centers for Disease Control and Prevention (CDC), the U.S. Dept. of Agriculture (USDA), or both, must prepare biosafety, security, and incident response plans, conduct drills or exercises on an annual basis, and update plans accordingly. At the Idaho National Laboratory (INL), biosafety, laboratory, and emergency management staff have been working together for 2 years to satisfy federal and DOE/NNSA requirements. This has been done through the establishment of plans, training, tabletop and walk-through exercises and drills, and coordination with local and regional emergency response personnel. Responding to the release of infectious agents or toxins is challenging, but through familiarization with the nature of the hazardous biological substances or organisms, and integration with laboratory-wide emergency response procedures, credible scenarios are being used to evaluate our ability to protect workers, the public, and the environment from agents we must work with to provide for national biodefense.

  14. A Wildfire Behavior Modeling System at Los Alamos National Laboratory for Operational Applications

    Energy Technology Data Exchange (ETDEWEB)

    S.W. Koch; R.G.Balice

    2004-11-01

    To support efforts to protect facilities and property at Los Alamos National Laboratory from damages caused by wildfire, we completed a multiyear project to develop a system for modeling the behavior of wildfires in the Los Alamos region. This was accomplished by parameterizing the FARSITE wildfire behavior model with locally gathered data representing topography, fuels, and weather conditions from throughout the Los Alamos region. Detailed parameterization was made possible by an extensive monitoring network of permanent plots, weather towers, and other data collection facilities. We also incorporated a database of lightning strikes that can be used individually as repeatable ignition points or can be used as a group in Monte Carlo simulation exercises and in other randomization procedures. The assembled modeling system was subjected to sensitivity analyses and was validated against documented fires, including the Cerro Grande Fire. The resulting modeling system is a valuable tool for research and management. It also complements knowledge based on professional expertise and information gathered from other modeling technologies. However, the modeling system requires frequent updates of the input data layers to produce currently valid results, to adapt to changes in environmental conditions within the Los Alamos region, and to allow for the quick production of model outputs during emergency operations.

  15. Radionuclide concentrations in pinto beans, sweet corn, and zucchini squash grown in Los Alamos Canyon at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, P.R.; Mullen, M.A.; Naranjo, L. Jr.; Armstrong, D.R.

    1997-05-01

    Pinto beans, sweet corn, and zucchini squash (Cucurbita pepo var. black beauty) were grown in a randomized complete-block field/pot experiment at a site that contained the highest observed levels of surface gross gamma radioactivity within Los Alamos Canyon (LAC) at Los Alamos National Laboratory. Soils as well as washed edible and nonedible crop tissues were analyzed for various radionuclides and heavy metals . Most radionuclides, with the exception of {sup 3}H and {sup tot}U, in soil from LAC were detected in significantly higher concentrations (p <0.01) than in soil collected from regional background (RBG) locations. Similarly, most radionuclides in edible crop portions of beans, squash, and corn were detected in significantly higher (p <0.01 and 0.05) concentrations than RBG. Most soil-to-plant concentration ratios for radionuclides in edible and nonedible crop tissues from LAC were within the default values given by the Nuclear Regulatory Commission and Environmental Protection Agency. All heavy metals in soils, as well as edible and nonedible crop tissues grown in soils from LAC, were within RBG concentrations. Overall, the total maximum net positive committed effective dose equivalent (CEDE)--the CEDE plus two sigma for each radioisotope minus background and then all positive doses summed--to a hypothetical 50-year resident that ingested 160 kg of beans, corn, and squash in equal proportions, was 74 mrem y{sup -1}. This dose was below the International Commission on Radiological Protection permissible dose limit (PDL) of 100 mrem y{sup -1} from all pathways; however, the addition of other internal and external exposure route factors may increase the overall dose over the PDL. Also, the risk of an excess cancer fatality, based on 74 mrem y{sup -1}, was 3.7 x 10{sup -5} (37 in a million), which is above the Environmental Protection Agency`s (acceptable) guideline of one in a million. 31 refs., 15 tabs.

  16. New Mexicans` images and perceptions of Los Alamos National Laboratory. Winter, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-01-01

    This report uses survey data to profile New Mexico residents` images and perceptions of Los Alamos National Laboratory (LANL). The survey results are the responses of a representative, stratified random sample of 992 New Mexico households to a set of questions asked in October, 1992. The data allow statistical inference to the general population`s responses to the same set of questions at the time the survey was administered. The results provide an overview of New Mexico residents` current images and perceptions of the Laboratory. The sample margin of error is plus or minus 3.5% at the 95% confidence level.

  17. Evaluation of Macroinvertebrate Communities and Habitat for Selected Stream Reaches at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    L.J. Henne; K.J. Buckley

    2005-08-12

    This is the second aquatic biological monitoring report generated by Los Alamos National Laboratory's (LANL's) Water Quality and Hydrology Group. The study has been conducted to generate impact-based assessments of habitat and water quality for LANL waterways. The monitoring program was designed to allow for the detection of spatial and temporal trends in water and habitat quality through ongoing, biannual monitoring of habitat characteristics and benthic aquatic macroinvertebrate communities at six key sites in Los Alamos, Sandia, Water, Pajarito, and Starmer's Gulch Canyons. Data were collected on aquatic habitat characteristics, channel substrate, and macroinvertebrate communities during 2001 and 2002. Aquatic habitat scores were stable between 2001 and 2002 at all locations except Starmer's Gulch and Pajarito Canyon, which had lower scores in 2002 due to low flow conditions. Channel substrate changes were most evident at the upper Los Alamos and Pajarito study reaches. The macroinvertebrate Stream Condition Index (SCI) indicated moderate to severe impairment at upper Los Alamos Canyon, slight to moderate impairment at upper Sandia Canyon, and little or no impairment at lower Sandia Canyon, Starmer's Gulch, and Pajarito Canyon. Habitat, substrate, and macroinvertebrate data from the site in upper Los Alamos Canyon indicated severe impacts from the Cerro Grande Fire of 2000. Impairment in the macroinvertebrate community at upper Sandia Canyon was probably due to effluent-dominated flow at that site. The minimal impairment SCI scores for the lower Sandia site indicated that water quality improved with distance downstream from the outfall at upper Sandia Canyon.

  18. Environmental assessment for the proposed CMR Building upgrades at the Los Alamos National Laboratory, Los Alamos, New Mexico. Final document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-04

    In order to maintain its ability to continue to conduct uninterrupted radioactive and metallurgical research in a safe, secure, and environmentally sound manner, the US Department of Energy (DOE) proposes to upgrade the Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Building. The building was built in the early 1950s to provide a research and experimental facility for analytical chemistry, plutonium and uranium chemistry, and metallurgy. Today, research and development activities are performed involving nuclear materials. A variety of radioactive and chemical hazards are present. The CMR Building is nearing the end of its original design life and does not meet many of today`s design codes and standards. The Proposed Action for this Environmental Assessment (EA) includes structural modifications to some portions of the CMR Building which do not meet current seismic criteria for a Hazard Category 2 Facility. Also included are upgrades and improvements in building ventilation, communications, monitoring, and fire protection systems. This EA analyzes the environmental effects of construction of the proposed upgrades. The Proposed Action will have no adverse effects upon agricultural and cultural resources, wetlands and floodplains, endangered and threatened species, recreational resources, or water resources. The Proposed Action would have negligible effects on human health and transportation, and would not pose a disproportionate adverse health or environmental impact on minority or low-income populations within an 80 kilometer (50 mile) radius of the CMR Building.

  19. Climate Change and the Los Alamos National Laboratory. The Adaptation Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Kimberly M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hjeresen, Dennis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Silverman, Josh [U.S. Dept. of Energy, Washington, DC (United States)

    2015-02-01

    The Los Alamos National Laboratory (LANL) has been adapting to climate change related impacts that have been occurring on decadal time scales. The region where LANL is located has been subject to a cascade of climate related impacts: drought, devastating wildfires, and historic flooding events. Instead of buckling under the pressure, LANL and the surrounding communities have integrated climate change mitigation strategies into their daily operations and long-term plans by increasing coordination and communication between the Federal, State, and local agencies in the region, identifying and aggressively managing forested areas in need of near-term attention, addressing flood control and retention issues, and more.

  20. Environmental Assessment for Electrical Power System Upgrades at Los Alamos National Laboratory, Los Alamos, New Mexico - Final Document

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-03-09

    The ''National Environmental Policy Act of 1969'' (NEPA) requires Federal agency officials to consider the environmental consequences of their proposed actions before decisions are made. In complying with NEPA, the United States (U.S.) Department of Energy (DOE) follows the Council on Environmental Quality (CEQ) regulations (40 Code of Federal Regulations [CFR] 1500-1508) and DOE's NEPA implementing procedures (10 CFR 1021). The purpose of an Environmental Assessment (EA) is to provide Federal decision makers with sufficient evidence and analysis to determine whether to prepare an Environmental Impact Statement (EIS) or issue a Finding of No Significant Impact. In this case, the DOE decision to be made is whether to construct and operate a 19.5-mile (mi) (31-kilometer [km]) electric transmission line (power line) reaching from the Norton Substation, west across the Rio Grande, to locations within the Los Alamos National Laboratory (LANL) Technical Areas (TAs) 3 and 5 at Los Alamos, New Mexico. The construction of one electric substation at LANL would be included in the project as would the construction of two line segments less than 1,200 feet (ft) (366 meters [m]) long that would allow for the uncrossing of a portion of two existing power lines. Additionally, a fiber optics communications line would be included and installed concurrently as part of the required overhead ground conductor for the power line. The new power line would improve the reliability of electric service in the LANL and Los Aktrnos County areas as would the uncrossing of the crossed segments of the existing lines. Additionally, installation of the new power line would enable the LANL and the Los Alamos County electric grid, which is a shared resource, to be adapted to accommodate the future import of increased power when additional power service becomes available in the northern New Mexico area. Similarly, the fiber optics line would allow DOE to take advantage of

  1. Setting priorities for action plans at Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.C.

    1992-09-30

    This report summarizes work done by Applied Decision Analysis (ADA) for Los Alamos National Laboratory (LANL) under Subcontract Number 9-XQ2-Y3837-1 with the University of California. The purpose of this work was to develop a method of setting priorities for environmental, safety, and health (ES&H) deficiencies at Los Alamos. The deficiencies were identified by a DOE Tiger Team that visited LANL in the fall of 1991, and by self assessments done by the Laboratory. ADA did the work described here between October 1991 and the end of September 1992. The ADA staff working on this project became part of a Risk Management Team in the Laboratory`s Integration and Coordination Office (ICO). During the project, the Risk Management Team produced a variety of documents describing aspects of the action-plan prioritization system. Some of those documents are attached to this report. Rather than attempt to duplicate their contents, this report provides a guide to those documents, and references them whenever appropriate.

  2. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Reneau, S.L.; Raymond, R. Jr. [eds.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  3. Materials Capability Review Los Alamos National Laboratory April 29-May 2, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoinette J [Los Alamos National Laboratory

    2012-04-20

    Los Alamos National Laboratory (LANL) uses Capability Reviews to assess the quality and institutional integration of science, technology and engineering (STE) and to advise Laboratory Management on the current and future health of LANL STE. The capabilities are deliberately chosen to be crosscutting over the Laboratory and therefore will include experimental, theoretical and simulation disciplines from multiple line organizations. Capability Reviews are designed to provide a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. The principal product of the Capability Review is the report that includes the review committee's assessments, recommendations, and recommendations for STE.

  4. Occurrences at Los Alamos National Laboratory: What can they tell us?

    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Reichelt; A. Jeffery Eichorst; Marc E. Clay; Rita J. Henins; Judith D. DeHaven; Richard J. Brake

    2000-03-01

    The authors analyzed the evolution of institutional and facility response to groups of abnormal incidents at Los Alamos National Laboratory (LANL). The analysis is divided into three stages: (1) the LANL response to severe accidents from 1994 to 1996, (2) the LANL response to facility-specific clusters of low-consequence incidents from 1997 to 1999, and (3) the ongoing development of and response to a Laboratory-wide trending and analysis program. The first stage is characterized by five severe accidents at LANL--a shooting fatality, a forklift accident, two electrical shock incidents, and an explosion in a nuclear facility. Each accident caused LANL and the Department of Energy (DOE) to launch in-depth investigations. A recurrent theme of the investigations was the failure of LANL and DOE to identify and act on precursor or low-consequence events that preceded the severe accidents. The second stage is characterized by LANL response to precursor or low-consequence incidents over a two-year period. In this stage, the Chemistry and Metallurgy Research Facility, the Los Alamos Critical Experiments Facility, and the Los Alamos Neutron Science Center responded to an increase in low-consequence events by standing down their facilities. During the restart process, each facility collectively analyzed the low-consequence events and developed systemic corrective actions. The third stage is characterized by the development of a Laboratory-wide trending and analysis program, which involves proactive division-level analysis of incidents and development of systemic actions. The authors conclude that, while the stages show an encouraging evolution, the facility standdowns and restarts are overly costly and that the institutional trending and analysis program is underutilized. The authors therefore recommend the implementation of an institutional, mentored program of trending and analysis that identifies clusters of related low-consequence events, analyzes those events, and

  5. Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-03

    The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL`s current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency`s (EPA`s) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL`s existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility.

  6. Statement of work for Los Alamos National Laboratory on ferrocyanide studies

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, R.D.

    1990-11-01

    During management of the Hanford Single-Shell Waste Tanks (SST), the site operator precipitated cesium from the supernate as nickel cesium ferrocyanide to allow disposal of the supernate as low-level waste. This freed valuable tank storage space for receipt of additional radioactive waste generated by Hanford defense operations. Concern has arisen that the ferrocyanide could react explosively with nitrate, another waste component, and/or its radiolysis product nitrite. The current Hanford Principal Contractor, Westinghouse Hanford Company (WHC), has requested that the Pacific Northwest Laboratory (PNL) evaluate the potential for explosive ferrocyanide reactions on a worst case basis. The worst case is believed, at this time, to be a mixture of nickel cesium ferrocyanide and a mixture of nitrate and nitrite without any dilution by inert waste constituents. PNL will perform energetic and small-scale explosion tests. The large-scale explosion tests (s) will be performed by Los Alamos National Laboratory (LANL)

  7. Derivation of Authorized Limits for Land Transfer at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Perona, Ralph [Neptune and Company, Inc., Bellingham, WA (United States); Whicker, Jeffrey Jay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mirenda, Richard J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-14

    This report documents the calculation of Authorized Limits for radionuclides in soil to be used in the transfer of property by the Los Alamos National Laboratory (LANL or the Laboratory). The Authorized Limits support the evaluation process to clear land for release under different uses even though the soil contains small residual amounts of radioactivity. The Authorized Limits are developed for four exposure scenarios: residential, commercial/industrial, construction worker, and recreational. Exposure to radionuclides in soil under these scenarios is assessed for exposure routes that include incidental ingestion of soil; inhalation of soil particulates; ingestion of homegrown produce (residential only); and external irradiation from soil. Inhalation and dermal absorption of tritiated water vapor in air are also assessed.

  8. Shaping the library of the future: Digital library developments at Los Alamos National Laboratory`s Research Library

    Energy Technology Data Exchange (ETDEWEB)

    Luce, R. E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    1994-10-01

    This paper offers an overview of current efforts at the Research Library, Los Alamos National Laboratory, (LANL), to develop digital library services. Current projects of LANL`s Library without Walls initiative are described. Although the architecture of digital libraries generally is experimental and subject to debate, one principle of LANL`s approach to delivering library information is the use of Mosaic as a client for the Research Library`s resources. Several projects under development have significant ramifications for delivering library services over the Internet. Specific efforts via Mosaic include support for preprint databases, providing access to citation databases, and access to a digital image database of unclassified Los Alamos technical reports.

  9. Los Alamos National Laboratory Science Education Programs. Progress report, October 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.H.

    1995-02-01

    During the 1994 summer institute NTEP teachers worked in coordination with LANL and the Los Alamos Middle School and Mountain Elementary School to gain experience in communicating on-line, to gain further information from the Internet and in using electronic Bulletin Board Systems (BBSs) to exchange ideas with other teachers. To build on their telecommunications skills, NTEP teachers participated in the International Telecommunications In Education Conference (Tel*ED `94) at the Albuquerque Convention Center on November 11 & 12, 1994. They attended the multimedia keynote address, various workshops highlighting many aspects of educational telecommunications skills, and the Telecomm Rodeo sponsored by Los Alamos National Laboratory. The Rodeo featured many presentations by Laboratory personnel and educational institutions on ways in which telecommunications technologies can be use din the classroom. Many were of the `hands-on` type, so that teachers were able to try out methods and equipment and evaluate their usefulness in their own schools and classrooms. Some of the presentations featured were the Geonet educational BBS system, the Supercomputing Challenge, and the Sunrise Project, all sponsored by LANL; the `CU-seeMe` live video software, various simulation software packages, networking help, and many other interesting and useful exhibits.

  10. Radonuclide concentrations in bees and honey in the vicinity of Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, P.R.; Armstrong, D.R. [Los Alamos National Laboratory, NM (United States)

    1996-06-01

    Honeybees are effective monitors of environmental pollution; they forage for P len and nectar over a large area ({congruent}7 km{sup 2}), accumulate contaminants from air, water, plants, and soil, and return to a fixed location (the hive) for sampling. Los Alamos National Laboratory (LANL), in fact, has maintained a network of honeybee colonies within and around LANL for 16 years (1979 to 1994); the objectives for maintaining this honeybee network were to (1) determine the bioavailability of radionuclides in the environment, and (2) the committed effective dose equivalent (CEDE) to people who may consume honey from these beehives (Los Alamos and White Rock/Pajarito Acres lownsites). Of all the radionuclides studied over the years, tritium (314) was consistently picked up by the bees and was most readily transferred to the honey. Tritium in honey collected from hives located within LANL, for example, ranged in concentration from 0.07 Bq mL{sup -1} (1.9 pCi mL{sup -1}) to 27.75 Bq mL{sup -1} (749.9 pCi mL{sup -1}) (LANL Neutron Science Center); the average concentration of {sup 3}H in honey Collected from hives located around the LANL area (perimeter) ranged in concentration from 0.34 Bq mL{sup -1} (9.3 pCi mL{sup -1}) (White Rock/Pajarito Acres townsite) to 3.67 Bq mL{sup -1} (99.3 pCi mL{sup -1}) (Los Alamos townsite). Overall, the CEDE-based on the average concentration of all radionuclides measured over the years-from consuming 5 kg (11 lbs) of honey collected from hives located within the townsites of Los Alamos and White Rock/Pajarito Acres, after regional (background) as been subtracted, was 0.074 {mu}Sv y{sup -1} (0.0074 mrem y{sup -1}) and 0.024 pSv y{sup -1} (0.0024 mrem y{sup -1}), respectively. The highest CEDE, based on the mean + 2 standard deviations (95% confidence level), was 0.334 fiSv y{sup -1} (0.0334 mrem y{sup -1}) (Los Alamos townsitc).

  11. Contaminant monitoring of biota downstream of a radioactive liquid waste treatment facility, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K.D.; Biggs, J.R.; Fresquez, P.R. [Los Alamos National Lab., NM (United States). Environment, Safety, and Health Div.

    1996-12-31

    Small mammals, plants, and sediments were sampled at one upstream location (Site 1) and two downstream locations (Site 2 and Site 3) from the National Pollution Discharge Elimination System (NPDES) outfall {number_sign}051-051 in Mortandad Canyon, Los Alamos National Laboratory, Los Alamos, New Mexico. The purpose of the sampling was to identify radionuclides potentially present, to quantitatively estimate and compare the amount of radionuclide uptake at specific locations (Site 2 and Site 3) within Mortandad Canyon to an upstream site (Site 1), and to identify the primary mode (inhalation/ingestion or surface contact) of contamination to small mammals. Three composite samples of at least five animals per sample were collected at each site. The pelt was separated from the carcass of each animal and both were analyzed independently. In addition, three composite samples were also collected for plants and sediments at each site. Samples were analyzed for americium ({sup 241}Am), strontium ({sup 90}Sr), plutonium ({sup 238}Pu and {sup 239}Pu), and total uranium (U). With the exception of total U, all mean radionuclide concentrations in small mammal carcasses and sediments were significantly higher at Site 2 than Site 1 or Site 3. No differences were detected in the mean radionuclide concentration of plant samples between sites. However, some radionuclide concentrations found at all three sites were higher than regional background. No differences were found between mean carcass radionuclide concentrations and mean pelt radionuclide concentrations, indicating that the two primary modes of contamination may be equally occurring.

  12. Welcome to Los Alamos National Laboratory: A premier national security science laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Terry [Los Alamos National Laboratory

    2012-06-25

    Dr Wallace presents visitors with an overview of LANL's national security science mission: stockpile stewardship, protecting against the nuclear threat, and energy security & emerging threats, which are underpinned by excellence in science/technology/engineering capabilities. He shows visitors a general Lab overview of budget, staff, and facilities before providing a more in-depth look at recent Global Security accomplishments and current programs.

  13. High-speed electronic imaging applications at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.L.; King, N.S.P.; Yates, G.G. [Los Alamos National Lab., NM (United States); Turko, B.T. [Lawrence Berkeley Lab., CA (United States)

    1992-03-01

    An overview is presented of high-speed imaging technology developed at the Los Alamos National Laboratory. High-speed imaging is used by Los Alamos primarily in the underground testing of nuclear devices at the Nevada Test Site (NTS). The first camera system developed, which is still the ``work horse`` of this application, uses focus projection scan (FPS) vidicon imaging technology operating at an effective pixel readout rate of approximately 40 Mpixels/s. In an effort to take advantage of charge-coupled devices (CCD) technology, a CCD camera is under development that currently operates at approximately 25 Mpixels/s, but, with an improved CCD sensor, has the prospect of operating at 70-100 Mpixel/s. A possible application of the technology to the detection of military ordnance is discussed. Also, a flexible test station is described that has been assembled for testing CCDs at high pixel readout rates. The station can operate at clock rates of up to 100 MHz and can accommodate a wide variety of single and multiport sensors.

  14. A checklist of plant and animal species at Los Alamos National Laboratory and surrounding areas

    Energy Technology Data Exchange (ETDEWEB)

    Hinojosa, H. [comp.

    1998-02-01

    Past and current members of the Biology Team (BT) of the Ecology Group have completed biological assessments (BAs) for all of the land that comprises Los Alamos National Laboratory (LANL). Within these assessments are lists of plant and animal species with the potential to exist on LANL lands and the surrounding areas. To compile these lists, BT members examined earlier published and unpublished reports, surveys, and data bases that pertained to the biota of this area or to areas that are similar. The species lists that are contained herein are compilations of the lists from these BAs, other lists that were a part of the initial research for the performance of these BAs, and more recent surveys.

  15. Derivation of Authorized Limits for Land Transfer at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Perona, Ralph [Neptune and Company, Inc., Bellingham, WA (United States); Whicker, Jeffrey Jay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mirenda, Richard J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-14

    This report documents the calculation of Authorized Limits for radionuclides in soil to be used in the transfer of property by the Los Alamos National Laboratory (LANL). The Authorized Limits support the evaluation process to clear land for release under different uses even though the soil contains small residual amounts of radioactivity. The Authorized Limits are developed for four exposure scenarios: residential, commercial/industrial, construction worker, and recreational. Exposure to radionuclides in soil under these scenarios is assessed for exposure routes that include incidental ingestion of soil; inhalation of soil particulates; ingestion of homegrown produce (residential only); and external irradiation from soil. Inhalation and dermal absorption of tritiated water vapor in air are also assessed.

  16. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M. [Los Alamos National Lab., NM (United States)

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on the liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.

  17. Los Alamos National Laboratory Environmental Restoration Project quarterly technical report, April--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-18

    This quarterly report describes the technical status of activities in the Los Alamos National Laboratory Environmental Restoration (ER) Project. Each activity is identified by an activity data sheet number, a brief title describing the activity or the technical area where the activity is located, and the name of the project leader. The Hazardous and Solid Waste Amendments (HSWA) portion of the facility operating permit requires the submission of a technical progress report on a quarterly basis. This report, submitted to fulfill the permit`s requirement, summarizes the work performed and the results of sampling and analysis in the ER Project. Suspect waste found include: Radionuclides, high explosives, metals, solvents and organics. The data provided in this report have not been validated. These data are considered ``reviewed data.``

  18. Materials Capability Review Los Alamos National Laboratory May 4-7, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoniette J [Los Alamos National Laboratory

    2009-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g ., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors. LANL has defined fourteen

  19. Polycyclic aromatic hydrocarbons at selected burning grounds at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B.W.; Minor, L.K.M.; Flucas, B.J.

    1998-02-01

    A commercial immunoassay field test (IFT) was used to rapidly assess the total concentrations of polycyclic aromatic hydrocarbons (PAHs) in the soil at selected burning grounds within the explosives corridor at Los Alamos National Laboratory (LANL). Results were compared with analyses obtained from LANL Analytical Laboratory and from a commercial laboratory. Both used the Environmental Protection Agency`s (EPA`s) Methods 8270 and 8310. EPA`s Method 8270 employs gas chromatography and mass spectral analyses, whereas EPA`s Method 8310 uses an ultraviolet detector in a high-performance liquid chromatography procedure. One crude oil sample and one diesel fuel sample, analyzed by EPA Method 8270, were included for references. On an average the IFT results were lower for standard samples and lower than the analytical laboratory results for the unknown samples. Sites were selected to determine whether the PAHs came from the material burned or the fuel used to ignite the burn, or whether they are produced by a high-temperature chemical reaction during the burn. Even though the crude oil and diesel fuel samples did contain measurable quantities of PAHs, there were no significant concentrations of PAHs detected in the ashes and soil at the burning grounds. Tests were made on fresh soil and ashes collected after a large burn and on aged soil and ashes known to have been at the site more than three years. Also analyzed were twelve-year-old samples from an inactive open burn cage.

  20. Installation of a cw radiofrequency quadrupole accelerator at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J.D.; Bolme, J.; Brown, V. [and others

    1994-09-01

    Chalk River Laboratories (CRL) has had a long history of cw proton beam development for production of intense neutron sources and fissile fuel breeders. In 1986 CRL and Los Alamos National Laboratory (LANL) entered into a collaborative effort to establish a base technologies program for the development of a cw radiofrequency quadrupole (RFQ). The initial cw RFQ design had 50-keV proton injection energy with 600-keV output energy. The 75-mA design current at 600-keV beam energy was obtained in 1990. Subsequently, the RFQ output energy was increased to 1250 keV by replacing the RFQ vanes, still maintaining the 75-m A design current. A new 250-kW cw klystrode rf power source at 267-MHz was installed at CRL. By April of 1993, 55-mA proton beams had been accelerated to 1250 keV. Concurrent developments were taking place on proton source development and on 50-keV low-energy beam transport (LEBT) systems. Development of a dc, high-proton fraction ({ge} 70%) microwave ion source led to utilization of a single-solenoid RFQ direct injection scheme. It was decided to continue this cw RFQ demonstration project at Los Alamos when the CRL project was terminated in April 1993. The LANL goals are to find the current limit of the 1250-keV RFQ, better understand the beam transport properties through the single-solenoid focusing LEBT, continue the application of the cw klystrode tube technology to accelerators, and develop a two-solenoid LEBT which could be the front end of an Accelerator-Driven Transmutation Technologies (ADTT) linear accelerator.

  1. Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    M. Stockton

    2005-10-01

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), ''Notice of Intent and Emissions Inventory Requirements''. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department, Air Quality Bureau, under 20.2.70 NMAC. This Title V Operating Permit (Permit No. P-100) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semi-annual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semi-annual emissions reporting for LANL for calendar year 2004. LANL's 2004 emissions are well below the emission limits in the Title V Operating Permit.

  2. Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Environmental Stewardship Group

    2010-10-01

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department/Air Quality Bureau, under 20.2.70 NMAC. This permit was modified and reissued on July 16, 2007. This Title V Operating Permit (Permit No. P-100M2) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semiannual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semiannual emissions reporting for LANL for calendar year 2009. LANL's 2009 emissions are well below the emission limits in the Title V Operating Permit.

  3. Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Ecology and Air Quality Group

    2007-09-28

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department, Air Quality Bureau, under 20.2.70 NMAC. Modification Number 1 to this Title V Operating Permit was issued on June 15, 2006 (Permit No P-100M1) and includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semi-annual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semi-annual emissions reporting for LANL for calendar year 2006. LANL's 2006 emissions are well below the emission limits in the Title V Operating Permit.

  4. Measurements of air contaminants during the Cerro Grande fire at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Eberhart, Craig

    2010-08-01

    Ambient air sampling for radioactive air contaminants was continued throughout the Cerro Grande fire that burned part of Los Alamos National Laboratory. During the fire, samples were collected more frequently than normal because buildup of smoke particles on the filters was decreasing the air flow. Overall, actual sampling time was 96% of the total possible sampling time for the May 2000 samples. To evaluate potential human exposure to air contaminants, the samples were analyzed as soon as possible and for additional specific radionuclides. Analyses showed that the smoke from the fire included resuspended radon decay products that had been accumulating for many years on the vegetation and the forest floor that burned. Concentrations of plutonium, americium, and depleted uranium were also measurable, but at locations and concentrations comparable to non-fire periods. A continuous particulate matter sampler measured concentrations that exceeded the National Ambient Air Quality Standard for PM-10 (particles less than 10 micrometers in diameter). These high concentrations were caused by smoke from the fire when it was close to the sampler.

  5. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, D.M.; Boring, A.M. [comps.

    1991-10-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

  6. Needs analysis and project schedule for the Los Alamos National Laboratory (LANL) Health Physics Analysis Laboratory (HPAL) upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rhea, T.A.; Rucker, T.L. [Science Applications International Corp., Oak Ridge, TN (United States); Stafford, M.W. [NUS Corp., Aiken, SC (US)

    1990-09-28

    This report is a needs assessment and project schedule for the Health Physics Analysis Laboratory (HPAL) upgrade project at Los Alamos National Laboratory (LANL). After reviewing current and projected HPAL operations, two custom-developed laboratory information management systems (LIMS) for similar facilities were reviewed; four commercially available LIMS products were also evaluated. This project is motivated by new regulations for radiation protection and training and by increased emphasis on quality assurance (QA). HPAL data are used to: protect the health of radiation workers; document contamination levels for transportation of radioactive materials and for release of materials to the public for uncontrolled use; and verify compliance with environmental emission regulations. Phase 1 of the HPAL upgrade project concentrates on four types of counting instruments which support in excess of 90% of the sample workload at the existing central laboratories. Phase 2 is a refinement phase and also integrates summary-level databases on the central Health, Safety, and Environment (HSE) VAX. Phase 3 incorporates additional instrument types and integrates satellite laboratories into the HPAL LIMS. Phase 1 will be a multi-year, multimillion dollar project. The temptation to approach the upgrade of the HPAL program in a piece meal fashion should be avoided. This is a major project, with clearly-defined goals and priorities, and should be approached as such. Major programmatic and operational impacts will be felt throughout HSE as a result of this upgrade, so effective coordination with key customer contacts will be critical.

  7. Nonradioactive Ambient Air Monitoring at Los Alamos National Laboratory 2001--2002

    Energy Technology Data Exchange (ETDEWEB)

    E. Gladney; J.Dewart, C.Eberhart; J.Lochamy

    2004-09-01

    During the spring of 2000, the Cerro Grande forest fire reached Los Alamos National Laboratory (LANL) and ignited both above-ground vegetation and disposed materials in several landfills. During and after the fire, there was concern about the potential human health impacts from chemicals emitted by the combustion of these Laboratory materials. Consequently, short-term, intensive air-monitoring studies were performed during and shortly after the fire. Unlike the radiological data from many years of AIRNET sampling, LANL did not have an adequate database of nonradiological species under baseline conditions with which to compare data collected during the fire. Therefore, during 2001 the Meteorology and Air Quality Group designed and implemented a new air-monitoring program, entitled NonRadNET, to provide nonradiological background data under normal conditions. The objectives of NonRadNET were to: (1) develop the capability for collecting nonradiological air-monitoring data, (2) conduct monitoring to develop a database of typical background levels of selected nonradiological species in the communities nearest the Laboratory, and (3) determine LANL's potential contribution to nonradiological air pollution in the surrounding communities. NonRadNET ended in late December 2002 with five quarters of data. The purpose of this paper is to organize and describe the NonRadNET data collected over 2001-2002 to use as baseline data, either for monitoring during a fire, some other abnormal event, or routine use. To achieve that purpose, in this paper we will: (1) document the NonRadNET program procedures, methods, and quality management, (2) describe the usual origins and uses of the species measured, (3) compare the species measured to LANL and other area emissions, (4) present the five quarters of data, (5) compare the data to known typical environmental values, and (6) evaluate the data against exposure standards.

  8. Distribution and diversity of fungal species in and adjacent to the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Balice, R.G.; Jarmie, N.; Rogers, F.J.

    1997-12-01

    Fungi have demonstrated their ability to diversify and specialize to take advantage of new environments (Murphy 1996). These species are essential to the normal functioning of ecosystems and the impacts of human activities may be harmful to fungi. There is a need to inventory fungi throughout the range of their environments. Previously archived information representing 43 sample locations was used to perform a preliminary evaluation of the distributions and diversity of fungal species at the Los Alamos National Laboratory and in adjacent environments. Presence-absence data for 71 species of fungi in five habitats, pinon-juniper, canyon-bottom ponderosa pine, ponderosa pine, canyon-bottom mixed conifer, and mixed conifer were analyzed. The results indicate that even though fungi occur in each of the habitats, fungal species are not distributed evenly among these habitats. The richness of fungal species is greater in the canyon-bottom mixed conifer and mixed conifer habitats than in the pinon-juniper, canyon-bottom ponderosa pine or ponderosa pine habitats. All but three of the fungal species were recorded in either the canyon-bottom mixed conifer or the mixed conifer habitats, and all but seven of the fungal species were found in the mixed conifer habitat.

  9. Linear induction accelerators at the Los Alamos National Laboratory DARHT facility

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Subrata [Los Alamos National Laboratory

    2010-09-07

    The Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) at Los Alamos National Laboratory consists of two linear induction accelerators at right angles to each other. The First Axis, operating since 1999, produces a nominal 20-MeV, 2-kA single beam-pulse with 60-nsec width. In contrast, the DARHT Second Axis, operating since 2008, produces up to four pulses in a variable pulse format by slicing micro-pulses out of a longer {approx}1.6-microseconds (flat-top) pulse of nominal beam-energy and -current of 17 MeV and 2 kA respectively. Bremsstrahlung x-rays, shining on a hydro-dynamical experimental device, are produced by focusing the electron beam-pulses onto a high-Z target. Variable pulse-formats allow for adjustment of the pulse-to-pulse doses to record a time sequence of x-ray images of the explosively driven imploding mock device. Herein, we present a sampling of the numerous physics and engineering aspects along with the current status of the fully operational dual axes capability. First successful simultaneous use of both the axes for a hydrodynamic experiment was achieved in 2009.

  10. Final Report - Los Alamos National Laboratory Compuational Physics Summer Student Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Lung, Tyler B. [Los Alamos National Laboratory; Roe, Phil [University of Michigan; Morgan, Nathaniel R. [Los Alamos National Laboratory

    2012-08-15

    The numerical solution of highly compressible, multi-material flows is an ongoing research area. These types of flows can be solved with a Lagrangian type mesh which moves with the material in a simulation to allow precise material interface tracking. Currently, researchers at Los Alamos National Laboratory and elsewhere are investigating cell-centered Lagrangian algorithms with the aim of producing methods that have second-order accuracy, preserve symmetry, and do not generate spurious vorticity. The new cell-centered algorithms solve a Riemann-like problem at the vertex of a cell. Professor Phil Roe at the University of Michigan has proposed a new struture for Lagrangian hydrodynamic algorithms that does not rely on the solution of the Riemann problem. The new approach utilizes Flux Corrected Transport (FCT) and it implements a form of vorticity control. The first step in the development of this method has been to construct an algorithm that solves the acoustic equations on an Eulerian mesh. The algorithm, which builds on the work of Morton and Roe [1], calculates fluxes at cell vertices, attains second-order accuracy using FCT, and has the special property of preserving vorticity. Results are presented that confirm the second order accuracy of the scheme and the vorticity preserving properties. The results are compared to the output produced by a MUSCL-Hancock algorithm. Some discussion of limiting methods for the FCT algorithm is also given.

  11. The Influence of Ergonomics Training on Employee Behavior at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Puckett, Leslie Guthrie [Colorado State Univ., Fort Collins, CO (United States)

    2001-01-01

    A survey of employee behavior was conducted at Los Alamos National Laboratory (LANL). The objective of this study was to evaluate the prevalence of ergonomic behavior that decreased the chance of having a work-related musculoskeletal disorder (WMSD) among employees. The null hypothesis was tested to determine if there was a significant difference in ergonomic behavior between trained and untrained employees. The LANL employees were stratified by job series and then randomly selected to participate. The data were gathered using an electronic self-administered behavior questionnaire. The study population was composed of 6931 employees, and the response rate was 48%. The null hypothesis was rejected for twelve out of fifteen questions on the questionnaire. Logistic regression results indicate that the trained participants were more likely to report the risk-avoiding behavior, which supported the rejection of the null hypothesis for 60% of the questions. There was a higher frequency that the beneficial or risk-avoiding behavior was reported by the uninjured participants. Job series analysis revealed that ergonomics is an important issue among participants from all the job series. It also identified the occupational specialist classification (an administrative job), as the job series with the most occurrences of undesired ergonomic behaviors. In conclusion, there was a significant difference between the trained and untrained participants of the beneficial ergonomic behavior in the reported risk reducing behaviors.

  12. Emissions inventory report summary for Los Alamos National Laboratory for calendar year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Ecology and Air Quality Group

    2009-10-01

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory’s potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department/Air Quality Bureau, under 20.2.70 NMAC. This permit was modified and reissued on July 16, 2007. This Title V Operating Permit (Permit No. P-100M2) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semiannual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semiannual emissions reporting for LANL for calendar year 2008. LANL’s 2008 emissions are well below the emission limits in the Title V Operating Permit.

  13. The Management of Silica in Los Alamos National Laboratory Tap Water - A Study of Silica Solubility

    Energy Technology Data Exchange (ETDEWEB)

    Wohlberg, C.; Worland, V.P.; Kozubal, M.A.; Erickson, G.F.; Jacobson, H.M.; McCarthy, K.T.

    1999-07-01

    Well water at Los Alamos National Laboratory (LANL) has a silica (SiO{sub 2}) content of 60 to 100 mg/L, with 4 mg/L of magnesium, 13 mg/L calcium and lesser concentrations of other ions. On evaporation in cooling towers, when the silica concentration reaches 150 to 220 mg/L, silica deposits on heat transfer surfaces. When the high silica well water is used in the reprocessing of plutonium, silica remains in solution at the end of the process and creates a problem of removal from the effluent prior to discharge or evaporation. The work described in this Report is divided into two major parts. The first part describes the behavior of silica when the water is evaporated at various conditions of pH and in the presence of different classes of anions: inorganic and organic. In the second part of this work it was found that precipitation (floccing) of silica was a function of solution pH and mole ratio of metal to silica.

  14. Tritium concentrations in bees and honey at Los Alamos National Laboratory: 1979-1996

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, P.R.; Armstrong, D.R.; Pratt, L.H.

    1997-01-01

    Honeybees are effective monitors of environmental pollution. The objective of this study was to summarize tritium ({sup 3}H) concentrations in bees and honey collected from within and around Los Alamos National Laboratory (LANL) over an 18-year period. Based on the long-term average, bees from nine out of eleven hives and honey from six out of eleven hives on LANL lands contained {sup 3}H that was significantly higher (p <0.05) than background. The highest average concentration of {sup 3}H in bees (435 pCi mL{sup -1}) collected over the years was from LANL`s Technical Area (TA) 54-a low-level radioactive waste disposal site (Area G). Similarly, the highest average concentration of {sup 3}H in honey (709 pCi mL{sup - 1}) was collected from a hive located near three {sup 3}H storage ponds at LANL TA-53. The average concentrations of {sup 3}H in bees and honey from background hives was 1.0 pCi mL{sup -1} and 1.5 pCi ML{sup -1}, respectively. Although the concentrations of 3H in bees and honey from most LANL and perimeter (White Rock/Pajarito Acres) areas were significantly higher than background, most areas, with the exception of TA-53 and TA-54, generally exhibited decreasing 3H concentrations over time.

  15. Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, November 1993--October 1994

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.

    1995-08-01

    The Ecological Studies Team (EST) of ESH-20 at Los Alamos National Laboratory (LANL) has collected samples from the stream within Sandia Canyon since the summer of 1990. These field studies gather water quality measurements and collect aquatic macroinvertebrates from permanent sampling sites. Reports by Bennett (1994) and Cross (1994) discuss previous EST aquatic studies in Sandia Canyon. This report updates and expands those findings. EST collected water quality data and aquatic macroinvertebrates at five permanent stations within the canyon from November 1993 through October 1994. The two upstream stations are located below outfalls that discharge industrial and sanitary waste effluent into the stream, thereby maintaining year-round flow. Some water quality parameters are different at the first three stations from those expected of natural streams in the area, indicating degraded water quality due to effluent discharges. The aquatic habitat at the upper stations has also been degraded by sedimentation and channelization. The macroinvertebrate communities at these stations are characterized by low diversities and unstable communities. In contrast, the two downstream stations appear to be in a zone of recovery, where water quality parameters more closely resemble those found in natural streams of the area. The two lower stations have increased macroinvertebrate diversity and stable communities, further indications of downstream water quality improvement.

  16. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Patrice Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  17. Assessment of Options for the Treatment of Nitrate Salt Wastes at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Patrice Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-17

    This paper summarizes the methodology used to evaluate options for treatment of the remediated nitrate salt waste containers at Los Alamos National Laboratory. The method selected must enable treatment of the waste drums, which consist of a mixture of complex nitrate salts (oxidizer) improperly mixed with sWheat Scoop®1, an organic kitty litter and absorbent (fuel), in a manner that renders the waste safe, meets the specifications of waste acceptance criteria, and is suitable for transport and final disposal in the Waste Isolation Pilot Plant located in Carlsbad, New Mexico. A Core Remediation Team was responsible for comprehensively reviewing the options, ensuring a robust, defensible treatment recommendation. The evaluation process consisted of two steps. First, a prescreening process was conducted to cull the list on the basis for a decision of feasibility of certain potential options with respect to the criteria. Then, the remaining potential options were evaluated and ranked against each of the criteria in a consistent methodology. Numerical scores were established by consensus of the review team. Finally, recommendations were developed based on current information and understanding of the scientific, technical, and regulatory situation. A discussion of the preferred options and documentation of the process used to reach the recommended treatment options are presented.

  18. Options assessment report: Treatment of nitrate salt waste at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Patrice Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-16

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognized that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and the a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL's preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  19. Materials capability review Los Alamos National Laboratory, May 3-6, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoinette [Los Alamos National Laboratory

    2010-01-01

    The 2010 'Capability Review' process at LANL significantly differs from the Division reviews of prior years. The Capabilities being reviewed (some 4-8 per year) are deliberately chosen to be crosscutting over the Laboratory, and therefore will include not only several experimental, theoretical and simulation disciplines, but also contributions from multiple line organizations. This approach is consistent with the new Laboratory organizational structure, focusing on agile and integrated capabilities applied to present national security missions, and also nurtured to be available for rapid application to future missions. The overall intent is that the Committee assess the quality of the science, engineering, and technology identified in the agenda, and advise the LANS Board of Governors and Laboratory management. Specifically, the Committees will: (1) Assess the quality of science, technology and engineering within the Capability in the areas defined in the agenda. Identify issues to develop or enhance the core competencies within this capability. (2) Evaluate the integration of this capability across the Laboratory organizations that are listed in the agenda in terms of joint programs, projects, proposals, and/or publications. Describe the integration of this capability in the wider scientific community using the recognition as a leader within the community, ability to set research agendas, and attraction and retention of staff. (3) Assess the quality and relevance of this capability's science, technology and engineering contributions to current and emerging Laboratory programs, including Nuclear Weapons, Threat Reduction/Homeland Security, and Energy Security. (4) Advise the Laboratory Director/Principal Associate Director for Science, Technology and Engineering on the health of the Capability including the current and future (5 year) science, technology and engineering staff needs, mix of research and development activities, program opportunities

  20. 2003 Los Alamos National Laboratory Annual Illness and Injury Surveillance Report, Revised September 2007

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-10-04

    Annual Illness and Injury Surveillance Program report for 2003 for Los Alamos National Lab. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  1. Large-scale demonstration and deployment project at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.; McFee, J. [IT Corp. (United States); Broom, C. [Florida International Univ., Miami, FL (United States); Dugger, H. [ICF Inc. (United States); Stallings, E. [Los Alamos National Lab., NM (United States)

    1999-04-01

    Established by the US Department of Energy (DOE) Environmental Management program through its Office of Science and Technology, the Deactivation and Decommissioning Focus Area is developing answers to the technological problems that hinder Environmental Management`s extensive cleanup efforts. The optimized application of technologies to ongoing nuclear facility decontamination and dismantlement is critical in meeting the challenge of decommissioning approximately 9,000 buildings and structures within the DOE complex. The significant technical and economic concerns in this area underscore a national imperative for the qualification and timely delivery of cost-reduction technologies and management approaches to meet federal and private needs. At Los Alamos National Laboratory (LANL), a Large-Scale Demonstration and Deployment Project (LSDDP) has been established to facilitate demonstration and deployment of technologies for the characterization, decontamination, and volume reduction of oversized metallic waste, mostly in the form of gloveboxes contaminated with transuranic radionuclides. The LANL LSDDP is being managed by an integrated contractor team (ICT) consisting of IT Corporation, ICF Incorporated, and Florida International University and includes representation from LANL`s Environmental Management Program Office. The ICT published in the Commerce Business Daily a solicitation for interest for innovative technologies capable of improving cost and performance of the baseline process. Each expression of interest response was evaluated and demonstration contract negotiations are under way for those technologies expected to be capable of meeting the project objectives. This paper discusses management organization and approach, the results of the technology search, the technology selection methodology, the results of the selection process, and future plans for the program.

  2. Biological Assessment of the Continued Operation of Los Alamos National Laboratory on Federally Listed Threatened and Endangered Species

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Leslie A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Ecology and Air Quality Group

    2006-09-19

    This biological assessment considers the effects of continuing to operate Los Alamos National Laboratory on Federally listed threatened or endangered species, based on current and future operations identified in the 2006 Site-wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (SWEIS; DOE In Prep.). We reviewed 40 projects analyzed in the SWEIS as well as two aspects on ongoing operations to determine if these actions had the potential to affect Federally listed species. Eighteen projects that had not already received U.S. Fish and Wildlife Service (USFWS) consultation and concurrence, as well as the two aspects of ongoing operations, ecological risk from legacy contaminants and the Outfall Reduction Project, were determined to have the potential to affect threatened or endangered species. Cumulative impacts were also analyzed.

  3. The Los Alamos, Sandia, and Livermore Laboratories: Integration and collaboration solving science and technology problems for the nation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    More than 40 years ago, three laboratories were established to take on scientific responsibility for the nation`s nuclear weapons - Los Alamos, Sandia, and Livermore. This triad of laboratories has provided the state-of-the-art science and technology to create America`s nuclear deterrent and to ensure that the weapons are safe, secure, and to ensure that the weapons are safe, secure, and reliable. These national security laboratories carried out their responsibilities through intense efforts involving almost every field of science, engineering, and technology. Today, they are recognized as three of the world`s premier research and development laboratories. This report sketches the history of the laboratories and their evolution to an integrated three-laboratory system. The characteristics that make them unique are described and some of the major contributions they have made over the years are highlighted.

  4. Waste site characterization through digital analysis of historical aerial photographs at Los Alamos National Laboratory and Eglin Air Force Base

    Energy Technology Data Exchange (ETDEWEB)

    Van Eeckhout, E.; Pope, P.; Wells, B.; Rofer, C.; Martin, B.

    1995-05-01

    Historical aerial photographs are used to provide a physical history and preliminary mapping information for characterizing hazardous waste sites at Los Alamos National Laboratory and Eglin Air Force Base. The examples cited show how imagery was used to accurately locate and identify previous activities at a site, monitor changes that occurred over time, and document the observable of such activities today. The methodology demonstrates how historical imagery (along with any other pertinent data) can be used in the characterization of past environmental damage.

  5. Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations : current state of knowledge and proposed path forward

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Gordon N.; Schultz-Fellenz, Emily S.; Miller, Elizabeth D.

    2010-09-01

    The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.

  6. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory

    Science.gov (United States)

    Ren, Xiaoming; Zelenay, Piotr; Thomas, Sharon; Davey, John; Gottesfeld, Shimshon

    This paper describes recent advances in the science and technology of direct methanol fuel cells (DMFCs) made at Los Alamos National Laboratory (LANL). The effort on DMFCs at LANL includes work devoted to portable power applications, funded by the Defense Advanced Research Project Agency (DARPA), and work devoted to potential transport applications, funded by the US DOE. We describe recent results with a new type of DMFC stack hardware that allows to lower the pitch per cell to 2 mm while allowing low air flow and air pressure drops. Such stack technology lends itself to both portable power and potential transport applications. Power densities of 300 W/l and 1 kW/l seem achievable under conditions applicable to portable power and transport applications, respectively. DMFC power system analysis based on the performance of this stack, under conditions applying to transport applications (joint effort with U.C. Davis), has shown that, in terms of overall system efficiency and system packaging requirements, a power source for a passenger vehicle based on a DMFC could compete favorably with a hydrogen-fueled fuel cell system, as well as with fuel cell systems based on fuel processing on board. As part of more fundamental studies performed, we describe optimization of anode catalyst layers in terms of PtRu catalyst nature, loading and catalyst layer composition and structure. We specifically show that, optimized content of recast ionic conductor added to the catalyst layer is a sensitive function of the nature of the catalyst. Other elements of membrane/electrode assembly (MEA) optimization efforts are also described, highlighting our ability to resolve, to a large degree, a well-documented problem of polymer electrolyte DMFCs, namely "methanol crossover". This was achieved by appropriate cell design, enabling fuel utilization as high as 90% in highly performing DMFCs.

  7. VITRIFICATION SYSTEM FOR THE TREATMENT OF PLUTONIUM-BEARING WASTE AT LOS ALAMOS NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    R. NAKAOKA; G. VEAZEY; ET AL

    2001-05-01

    A glove box vitrification system is being fabricated to process aqueous evaporator bottom waste generated at the Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL). The system will be the first within the U.S. Department of Energy Complex to routinely convert Pu{sup 239}-bearing transuranic (TRU) waste to a glass matrix for eventual disposal at the Waste Isolation Pilot Plant (WIPP). Currently at LANL, this waste is solidified in Portland cement. Radionuclide loading in the cementation process is restricted by potential radiolytic degradation (expressed as a wattage limit), which has been imposed to prevent the accumulation of flammable concentrations of H{sub 2} within waste packages. Waste matrixes with a higher water content (e.g., cement) are assigned a lower permissible wattage limit to compensate for their potential higher generation of H{sub 2}. This significantly increases the number of waste packages that must be prepared and shipped, thus driving up the costs of waste handling and disposal. The glove box vitrification system that is under construction will address this limitation. Because the resultant glass matrix produced by the vitrification process is non-hydrogenous, no H{sub 2} can be radiolytically evolved, and drums could be loaded to the maximum allowable limit of 40 watts. In effect, the glass waste form shifts the limiting constraint for loading disposal drums from wattage to the criticality limit of 200 fissile gram equivalents, thus significantly reducing the number of drums generated from this waste stream. It is anticipated that the number of drums generated from treatment of evaporator bottoms will be reduced by a factor of 4 annually when the vitrification system is operational. The system is currently undergoing non-radioactive operability testing, and will be fully operational in the year 2003.

  8. Best available technology for the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Midkiff, W.S.; Romero, R.L.; Suazo, I.L.; Garcia, R.; Parsons, R.M.

    1993-10-15

    The existing Los Alamos National Laboratory TA-50 liquid radioactive waste treatment plant RLWP has been in service for over thirty years, during this period many technical, regulatory, and processing changes have occurred. The existing facility can no longer comply with the demands and requirements for continued operation, and would not be able to comply with anticipated stringent future contaminant discharge limitations. Either a major upgrading or replacement of the existing facility is required. In order to assess the most appropriate means of providing an adequate facility to comply with predicted requirements for Ta-50, this Best Available Technology (BAT) Study was conducted to compare feasible technical and economic alternatives in order to define the most favorable technology configuration. This report consists of eleven sections. Section 1 provides a general introduction and background of the TA-50 operations and the basis for this study. Section 2 provides a technical discussion of the unit processes at TA-50 and several other comparable operations at other DOE sites. Section 3 addresses the evaluation and selection of appropriate treatment processes. Section 4 provides an analysis of environmental issues and concerns. Section 5 presents the rationale for the selection of preferred process configurations. Section 6 is the evaluation of operational issues. Section 7 addresses energy and resource use topics. Section 8 provides an economic analysis, and Section 9 summarizes the evaluation and the identification of the BAT. These sections are augmented by appendices. The report identifies the construction of a new radioactive liquid waste treatment facility as the BAT. Based on the information analyzed for this study, this option appears to provide the best combination of environmental compliance, operability, and economic value.

  9. Los Alamos national Laboratory overview of the SAVY-4000 design: meeting the challenge for worker safety

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Timothy Amos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2012-06-12

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based storage container design, the SAVY-4000. The SAVY-4000 is the first vented general use nuclear material container demonstrated to meet the requirements of DOE M 441.1-1, Nuclear Material Packaging Manual. The SAVY-4000 is an innovative and creative design demonstrated by the fact that it can be opened and closed in a few seconds without torque wrenches or other tools; has a built-in, fire-rated filter that prevents the build-up of hydrogen gas, yet retains 99.97% of plutonium particulates, and prevents release of material even in a 12 foot drop. Finally, it has been tested to 500C for 2 hours, and will reduce the risk to the public in the event of an earthquake/fire scenario. This will allow major nuclear facilities to credit the container towards source term Material at Risk (MAR) reduction. The container was approved for nuclear material storage in theTA-55 Plutonium Facility on March 15, 2011, and the first order of 79 containers was received at LANL on March 21, 2011. The first four SAVY-4000 containers were packaged with plutonium on August 2, 2011. Key aspects ofthe SAVY-4000 vented storage container design will be discussed which include design qualification and testing, implementation plan development and status, risk ranking methodology for re-packaging, in use implementation with interface to LANMAS, surveillance strategy, the design life extension program as enhanced by surveillance activities and production status with the intent to extend well beyond the current five year design life.

  10. Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.; Nottelman, H.

    1997-01-01

    The Biology Team of ESH-20 (the Ecology Group) at Los Alamos National Laboratory (LANL) has collected samples from the stream within Sandia Canyon since the summer of 1990. These field studies measure water quality parameters and collect aquatic macroinvertebrates from sampling sites within the upper canyon stream. Reports by Bennett and Cross discuss previous aquatic studies in Sandia Canyon. This report updates and expands the previous findings. The Biology Team collected water quality data and aquatic macroinvertebrates monthly at three sampling stations within Sandia Canyon in 1995. The two upstream stations occur near a cattail (Typha latifolia) dominated marsh downstream from outfalls that discharge industrial and sanitary waste effluent into the stream, thereby maintaining year-round flow. The third station is approximately 1.5 miles downstream from the outfalls within a mixed conifer forest. All water chemistry parameters measured in Sandia Canyon during 1995 fell within acceptable State limits and scored in the {open_quotes}good{close_quotes} or {open_quotes}excellent{close_quotes} ranges when compared to an Environmental Quality Index. However, aquatic macroinvertebrates habitats have been degraded by widespread erosion, channelization, loss of wetlands due to deposition and stream lowering, scour, limited acceptable substrates, LANL releases and spills, and other stressors. Macroinvertebrate communities at all the stations had low diversities, low densities, and erratic numbers of individuals. These results indicate that although the stream possesses acceptable water chemistry, it has reduced biotic potential. The best developed aquatic community occurs at the sampling station with the best habitat and whose downstream location partially mitigates the effects of upstream impairments.

  11. Los Alamos National Security, LLC Request for Information from industrial entities that desire to commercialize Laboratory-developed Extremely Low Resource Optical Identifier (ELROI) tech

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Michael Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-10

    Los Alamos National Security, LLC (LANS) is the manager and operator of the Los Alamos National Laboratory for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. LANS is a mission-centric Federally Funded Research and Development Center focused on solving the most critical national security challenges through science and engineering for both government and private customers.

  12. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  13. Siting study for a consolidated waste capability at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Steven Richard [Los Alamos National Laboratory

    2010-11-05

    Decision analysis was used to rank alternative sites for a potential Consolidated Waste Capability (CWC) to replace current hazardous solid waste operations (hazardous/chemical, mixed low-level, transuranic, and low-level waste) at Los Alamos National Laboratory's Technical Area (TA)-54. An original list of 21 site alternatives was pre-screened to seven sites that were assessed using the analytical hierarchy process with five top-level criteria and fifteen sub-criteria. The top site choice is TA-63/52/46; the second choice is TA-18/36. The seven sites are as follows. TA-18/36 (62 acres) is located on Potrillo Drive that intersects Pajarito Road at the bottom of a steep grade. It has some blast zone issues on its southwest side and some important archeological sites on the southeast section. TA-60 (50 acres) is located at the end of Eniwetok Road off Diamond Drive, east of TA-3. Most of the site is within a fifty foot-deep ravine (that may have contamination in the drainage), with a small section on the mesa above. TA-63/52/46 (110 acres) lies to the north of Pajarito Road along Puye Road. It is centrally located in a brown field industrial area, with good access to generators on a controlled road. TA-46 (22 acres) is a narrow site on the south side of Pajarito Road across from TA-46 office buildings. TA-48 (14 acres) is also narrow, and is located on the north side of Pajarito Road near the west vehicle access portal (VAP). TA-51 (19 acres) is located on the south side of Pajarito Road at the top of the hill above TA-18 near the current entrance to the TA-54. TA-54 West (16 acres) is just north of the entrance to TA-54 at Pajarito Road and is close to Zone 4. Although it is near the San Ildefonso Pueblo property line, there may be adequate set-back for sight screening.

  14. Radionuclide concentrations in vegetation at the Los Alamos National Laboratory in 1998

    Energy Technology Data Exchange (ETDEWEB)

    G. J. Gonzales; P. R. Fresquez; M. A. Mullen; L. Naranjo, Jr.

    2000-03-01

    This report summarizes and evaluates the concentrations of {sup 3}H, {sup 137}Cs, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 90}Sr, and total U in understory and overstory vegetation collected from Los Alamos National Laboratory (LANL), its perimeter, and regional background areas in 1998. Comparisons to conservative toxicity reference value safe limits were also made. The arithmetic mean LANL radionuclide concentrations in understory were 501 pCi L{sup {minus}1} for {sup 3}H, 0.581 pCi ash g{sup {minus}1} for {sup 137}Cs, 0.001 pCi ash g{sup {minus}1} for {sup 238}Pu, 0.008 pCi ash g{sup {minus}1} for {sup 239,240}Pu, 0.007 pCi ash g{sup {minus}1} for {sup 241}Am, 1.46 pCi ash g{sup {minus}1} for {sup 90}Sr, and 0.233 {micro}g ash g{sup {minus}1} for total uranium. The mean LANL radionuclide concentrations in overstory were 463 pCi L{sup {minus}1} for {sup 3}H, 1.51 pCi ash g{sup {minus}1} for {sup 137}Cs, 0.0004 pCi ash g{sup {minus}1} {sup 238}Pu, 0.008 pCi ash g{sup {minus}1} for {sup 239,240}Pu, 0.014 pCi ash g{sup {minus}1} for {sup 241}Am, 1.97 pCi ash g{sup {minus}1} for {sup 90}Sr, and 0.388 {micro}g ash g{sup {minus}1} for total uranium. Concentrations of radionuclides and total U in both understory and overstory vegetation at LANL generally were not statistically higher than in perimeter and regional background vegetation ({alpha} = 0.05). The exceptions were LANL {sup 3}H > perimeter {sup 3}H (understory) and LANL {sup 3}H background {sup 3}H (overstory). All maximum radionuclide concentrations were lower than toxicity reference values. With the exception of total U, the relationship between contaminant concentration in soil vs. vegetation was insignificant ({alpha} = 0.05). Generally, as the concentration of total U in soil decreased, the concentration in vegetation increased. This held true for both understory and overstory and regardless of whether data were separated by general location (LANL, perimeter, and background) or not. There was no

  15. Moisture Monitoring at Area G, Technical Area 54, Los Alamos National Laboratory, 2016 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, Daniel Glenn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jennings, Terry L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-17

    Hydrological characterization and moisture monitoring activities provide data required for evaluating the transport of subsurface contaminants in the unsaturated and saturated zones beneath Area G, and for the Area G Performance Assessment and Composite Analysis. These activities have been ongoing at Area G, Technical Area 54 of the Los Alamos National Laboratory since waste disposal operations began in 1957. This report summarizes the hydrological characterization and moisture monitoring activities conducted at Area G. It includes moisture monitoring data collected from 1986 through 2016 from numerous boreholes and access tubes with neutron moisture meters, as well as data collected by automated dataloggers for water content measurement sensors installed in a waste disposal pit cover, and buried beneath the floor of a waste disposal pit. This report is an update of a nearly identical report by Levitt et al., (2015) that summarized data collected through early 2015; this report includes additional moisture monitoring data collected at Pit 31 and the Pit 38 extension through December, 2016. It also includes information from the Jennings and French (2009) moisture monitoring report and includes all data from Jennings and French (2009) and the Draft 2010 Addendum moisture monitoring report (Jennings and French, 2010). For the 2015 version of this report, all neutron logging data, including neutron probe calibrations, were investigated for quality and pedigree. Some data were recalculated using more defensible calibration data. Therefore, some water content profiles are different from those in the Jennings and French (2009) report. All of that information is repeated in this report for completeness. Monitoring and characterization data generally indicate that some areas of the Area G vadose zone are consistent with undisturbed conditions, with water contents of less than five percent by volume in the top two layers of the Bandelier tuff at Area G. These data also

  16. Los Alamos National Laboratory new generation standard nuclear material storage container - the SAVY4000 design

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Timothy Amos [Los Alamos National Laboratory

    2010-01-01

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based standard involving storage of nuclear material (RD003). This RD003 requirements document has sense been updated to reflect requirements as identified with recently issued DOE M 441.1-1 'Nuclear Material Packaging Manual'. The new packaging manual was issued at the encouragement of the Defense Nuclear Facilities Safety Board with a clear directive for protecting the worker from exposure due to loss of containment of stored materials. The Manual specifies a detailed and all inclusive approach to achieve a high level of protection; from package design & performance requirements, design life determinations of limited life components, authorized contents evaluations, and surveillance/maintenance to ensure in use package integrity over time. Materials in scope involve those stored outside an approved engineered-contamination barrier that would result in a worker exposure of in excess of 5 rem Committed Effective Does Equivalent (CEDE). Key aspects of meeting the challenge as developed around the SAVY-3000 vented storage container design will be discussed. Design performance and acceptance criteria against the manual, bounding conditions as established that the user must ensure are met to authorize contents in the package (based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide), interface as a safety class system within the facility under the LANL plutonium facility DSA, design life determinations for limited life components, and a sense of design specific surveillance

  17. Threatened and Endangered Species Habitat Management Plan for Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Keller, David Charles [Los Alamos National Laboratory; Hathcock, Charles Dean [Los Alamos National Laboratory

    2015-11-17

    Los Alamos National Laboratory’s (LANL) Threatened and Endangered Species Habitat Management Plan (HMP) fulfills a commitment made to the U.S. Department of Energy (DOE) in the “Final Environmental Impact Statement for the Dual-Axis Radiographic Hydrodynamic Test Facility Mitigation Action Plan” (DOE 1996). The HMP received concurrence from the U.S. Fish and Wildlife Service (USFWS) in 1999 (USFWS consultation numbers 2-22-98-I-336 and 2-22-95-I-108). This 2015 update retains the management guidelines from the 1999 HMP for listed species, updates some descriptive information, and adds the New Mexico Meadow Jumping Mouse (Zapus hudsonius luteus) and Yellow-billed Cuckoo (Coccyzus americanus) which were federally listed in 2014 (Keller 2015: USFWS consultation number 02ENNM00- 2015-I-0538).

  18. Los Alamos National Laboratory SAVY-4000 Field Surveillance Plan Update for 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Elizabeth J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stone, Timothy Amos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Paul Herrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Prochnow, David Adrian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weis, Eric M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-17

    The Packaging Surveillance Program section of the Department of Energy (DOE) Manual 441.1-1, Nuclear Material Packaging Manual (DOE 2008), requires DOE contractors to “ensure that a surveillance program is established and implemented to ensure the nuclear material storage package continues to meet its design criteria.” The Los Alamos National Laboratory (LANL) SAVY-4000 Field Surveillance Plan was first issued in FY 2013 (Kelly et al. 2013). The surveillance plan is reviewed annually and updated as necessary based on SAVY-4000 surveillance and other surveillance findings, as well as results of the lifetime extension studies (Blair et al. 2012, Weis et al. 2015a). The LANL SAVY-4000 Field Surveillance Plan Update was issued in 2014 (Kelly et al. 2014). This 2016 update reflects changes to the surveillance plan resulting from restrictions on handling residue materials greater than 500 g, the addition of specific engineering judgment containers, and 2015 surveillance findings. The SAVY-4000 container has a design life of five years, which was chosen as a conservative estimate of the functional properties of the materials used in the construction of the SAVY 4000 when exposed to the potential insults including temperature, corrosive materials and gases, and radiation. The SAVY-4000 container design basis is described in a safety analysis report (Anderson et al. 2013). In the National Nuclear Security Administration's (NNSA’s) approval of the safety analysis report, it was recommended that the design life clock begin on March 2014 (Nez et al. 2014). However, it is expected that a technical basis can be developed to extend the design life of the SAVY-4000 containers to approximately 40 years (Blair et al. 2012, Weis et al. 2015a). This surveillance plan update covers five years (2015–2019) and is developed to ensure SAVY-4000 containers meet their design criteria over the current five-year design life and to gather data that can be used in developing the

  19. Evaluation of the Likelihood for Thermal Runaway for Nitrate Salt Containers in Storage at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Heatwole, Eric Mann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gunderson, Jake Alfred [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Gary Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-25

    In order to handle and process the existing Los Alamos National Laboratory (LANL) Nitrate Salt drums it is necessary to quantify the risk. One of the most obvious dangers is a repeat of the original violent reaction (2015), which would endanger nearby workers, not only with radioactive contamination, but also with large amounts of heat, dangerous corrosive gases and the physical dangers associated with a bursting drum. If there still existed a high probability of violent reaction, then these drums should only be accessed remotely. The objective of the work reported herein is to determine the likelihood of a similar violent event occurring.

  20. 1993 Annual PCB Document for Los Alamos National Laboratory EPA Region VI, January 1, 1993 through December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Wechsler, R.J.; Sandoval, T.M.; Bryant, D.E.; Hupke, L.; Esquibel, L.

    1995-12-31

    This document, the {open_quotes}1993 Annual PCB Document for Los Alamos National Laboratory{close_quotes} was prepared to fulffill the requirements of the federal PCB (Polychlorinated Biphenyl) regulation: 40 CFR 761 Subpart J General Records and Reports. The PCB Management Program at Los Alamos National Laboratory (LANL), Environmental Protection Group, compiled this 1993 Annual PCB Document. The overall format generally follows the sequence of the applicable regulations. Subsection 1.2 cross references those regulatory requirements with the applicable Document Section. The scope of this document also includes status summaries of various aspects of LANL`s PCB Management Program. The intent of this approach to the Annual Document is to provide an overview of LANL`s PCB Management Program and to increase the usefulness of this document as a management tool. Section 2.0, {open_quotes}Status of the PCB Management Program{close_quotes}, discusses the use, generation of waste, and storage of PCBs at LANL. Section 3.0 is the 1993 Annual Document Log required by 761.180(a). This Section also discusses the PCB Management Program`s policies for reporting under those regulatory requirements. Sections 4.0 and 5.0 contain the 1993 Annual Records for off-site and on-site disposal as required by 761.180(b). There is a tab for each manifest and its associated continuation sheets, receipt letters, and certificates of disposal.

  1. Floodplain statement of findings for corrective actions in Potrillo Canyon technical area-36, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Keller, David Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-18

    In 2014, baseline storm water monitoring samples for Potrillo Canyon Sample Management Area at Los Alamos National Laboratory (LANL) exceeded the National Pollutant Discharge Elimination System Individual Permit No. NM0030759 target action level (TAL) of 15 picocuries per liter (pCi/L) for gross-alpha radioactivity (393 pCi/L) and a TAL of 30 pCi/L for radium-226 and radium-228 (95.9 pCi/L). Consequently, erosion control measures within the management area are proposed to minimize sediment migration, a corrective action under the permit that is a requirement of the New Mexico Environment Department consent decree and a good management practice to limit off-site sediment migration. The area proposed for erosion controls consists of portions of Technical Area 36 that were used as firing sites primarily involving high explosives (HE) and metal (e.g., depleted uranium, lead, copper, aluminum, and steel), small-explosives experiments and burn pits (burn pits were used for burning and disposal of test debris). In addition, underground explosive tests at an approximate depth of 100 feet were also conducted. These watershed-based storm water controls will focus on addressing erosion occurring within the floodplain through mitigating and reducing both current and future channelization and head cutting.

  2. University of New Mexico-Los Alamos National Laboratory Program in Volcanology

    Science.gov (United States)

    Goff, F.; Fischer, T.; Baldridge, W.; Wohletz, K.; Smith, G.; Heiken, G.; Valentine, G.; Elston, W.

    2002-05-01

    taken this class. Former students have pursued advanced degrees in the Geosciences and taken jobs with academia, research laboratories, volcanology observatories and/or the private sector. Although a degree in Volcanology is not granted, the program has supported and/or contributed to the degrees and theses of many UNM and non-UNM students. In some circumstances, thesis research can be conducted at Los Alamos while enrolled at UNM. For more information contact any of the co-authors listed above.

  3. Environmental Assessment for Leasing Land for the Siting, Construction and Operation of a Commercial AM Radio Antenna at Los Alamos National Laboratory, Los Alamos, NM

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-02-16

    The United States (U.S.) Department of Energy (DOE) proposes to lease approximately 3 acres of land at the Los Alamos National Laboratory (LANL) on the southeast tip of Technical Area (TA) 54 for the siting, construction and operation of an AM radio broadcasting antenna. This Environmental Assessment (EA) has been developed in order to assess the environmental effects of the Proposed Action and No Action alternative. The Proposed Action includes the lease of land for the siting, construction and operation of an AM radio broadcasting antenna in TA-54, just north of Pajarito Road and State Highway 4. The No Action Alternative was also considered. Under the No Action Alternative, DOE would not lease land on LANL property for the siting and operation of an AM radio broadcasting antenna; the DOE would not have a local station for emergency response use; and the land would continue to be covered in native vegetation and serve as a health and safety buffer zone for TA-54 waste management activities. Other potential sites on LANL property were evaluated but dismissed for reasons such as interference with sensitive laboratory experiments. Potential visual, health, and environmental effects are anticipated to be minimal for the Proposed Action. The radio broadcasting antenna would be visible against the skyline from some public areas, but would be consistent with other man-made objects in the vicinity that partially obstruct viewsheds (e.g. meteorological tower, power lines). Therefore, the net result would be a modest change of the existing view. Electromagnetic field (EMF) emissions from the antenna would be orders or magnitude less than permissible limits. The proposed antenna construction would not affect known cultural sites, but is located in close proximity to two archaeological sites. Construction would be monitored to ensure that the associated road and utility corridor would avoid cultural sites.

  4. Implementation of Unclassified Controlled Nuclear Information guidelines for fixed-site safeguards and security (FSSS) at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rood, P.L.

    1995-02-01

    Unclassified Controlled Nuclear Information (UCNI) is one type of sensitive information that DOE employees, including computer users, must now identify and protect. Guidelines to identify information as UCNI are gradually being put in place. The publication of Unclassified Controlled Nuclear Information Topical Guideline for Fixed-Site Safeguards and Security, TG-FSSS-1, is a major step in the development of UCNI guidelines. This DOE published guide cuts across and addresses many different programmatic areas including automated data processing. Our local guideline, Los Alamos National Laboratory Unclassified Controlled Nuclear Information Guideline for Fixed-Site Safeguards and Security, IG-LAFSSS-1, is based on TG-FSSS-1. In this paper, I plan to discuss the background of UCNI, the definition of UCNI, information that qualifies as UCNI, the consequences of information being UCNI, the development of UCNI guidelines, TG-FSSS-1 and IG-LAFSSS-1, the relationship of UCNI to classification, and the implementation of the IG-LAFSSS-1 at Los Alamos.

  5. An assessment of Microtox{trademark} as a biomonitoring tool for whole effluent testing for Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Zachritz, W.H. II; Morrow, J. [New Mexico State Univ., Las Cruces, NM (United States)

    1994-06-13

    Los Alamos National Laboratory (LANL) has special discharge problems relating to potential radioactive content of the effluent discharge waters. Because of this all testing must be performed on-site and results must be rapidly determined. There is a need to examine the development of a real-time procedure for effluent biomonitoring to met these site limitations. The Microtox{trademark} unit for toxicity testing is a microbially-based test system that shows great promise to be used for WET testing. The overall goal of this study is to develop an acceptable protocol for operational biomonitoring using the Microtox {trademark} toxicity test for LANL. The specific objectives include: development of an appropriate toxicity testing protocol using the Microtox{trademark} toxicity test for whole effluent toxicity testing and evaluation of the protocol based on factors such as sensitivity, response time, cost of analysis, and simplicity of operation.

  6. Studies of Annual and Seasonal Variations in Four Species of Reptiles and Amphibians at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Keller, D.C.; Nelson, E.I.; Mullen, M.A.; Foxx, T.S.; Haarmann, T.K.

    1998-07-01

    Baseline studies of reptiles and amphibians of the Pajarito wetlands at Los Alamos National Laboratory have been conducted by the Ecology group since 1990. With the data gathered from 1990-1997 (excluding 1992), we examined the annual and seasonal population changes of four species of reptiles and amphibians over the past seven years. The four species studied are the Woodhouse toad (Bufo woodhousii), the western chorus frog (Pseudacris triseriata), the many-lined skink (Eunzeces nudtivirgatus), and the plateau striped whiptail lizard (Cnemidophorus velox). Statistical analyses indicate a significant change on a seasonal basis for the western chorus frog and the many-lined skink. Results indicate a significant difference in the annual population of the Woodhouse toad.

  7. Studies of annual and seasonal variations in four species of reptiles and amphibians at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.I.; Haarmann, T.; Keller, D.C.; Foxx, T.

    1998-11-01

    Baseline studies of reptiles and amphibians of the Pajarito wetlands at Los Alamos National Laboratory have been conducted by the Ecology group since 1990. With the gathered data from 1990--1997 (excluding 1992), they plan to determine if patterns can be found in the annual and seasonal population changes of four species of reptiles and amphibians over the past seven years. The four species studied are the Woodhouse toad, the western chorus frog, the many-linked skink, and the plateau striped whiptail lizard. Statistical analysis results show that significant changes occurred on a seasonal basis for the western chorus frog and the many-lined skink. Results indicate a significant difference in the annual population of the Woodhouse toad.

  8. Floristic composition and plant succession on near-surface radioactive-waste-disposal facilities in the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, G.D.; Foxx, T.S.

    1982-03-01

    Since 1946, low-level radioactive waste has been buried in shallow landfills within the confines of the Los Alamos National Laboratory. Five of these sites were studied for plant composition and successional patterns by reconnaissance and vegetation mapping. The data show a slow rate of recovery for all sites, regardless of age, in both the pinon-juniper and ponderosa pine communities. The sites are not comparable in succession or composition because of location and previous land use. The two oldest sites have the highest species diversity and the only mature trees. All sites allowed to revegetate naturally tend to be colonized by the same species that originally surrounded the sites. Sites on historic fields are colonized by the old field flora, whereas those in areas disturbed only by grazing are revegetated by the local native flora.

  9. Environmental Assessment for Lease of Land for the Development of a Research Park at Los Alamos National Laboratory, Los Alamos, New Mexico - Final Document

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1997-10-07

    As part of its initiative to fulfill its responsibilities to provide support for the incorporated County of Los Alamos (the County) as an Atomic Energy Community, while simultaneously fulfilling its obligations to enhance the self-sufficiency of the County under authority of the Atomic Energy Community Act of 1955 and the Defense Authorization Act, the U.S. Department of Energy (DOE) proposes to lease undeveloped land in Los Alamos, New Mexico, to the County for private sector use as a research park. The Proposed Action is intended to accelerate economic development activities within the County by creating regional employment opportunities through offering federal land for private sector lease and use. As a result of the proposed land lease, any government expenditures for providing infrastructure to the property would be somewhat supplemented by tenant purchase of Los Alamos National Laboratory (LANL) expertise in research and development activities. The presence of a research park within LANL boundaries is expected to allow private sector tenants of the park to be able to quickly and efficiently call upon LANL scientific expertise and facility and equipment capabilities as part of their own research operations and LANL research personnel, in turn, would be challenged in areas complementary to their federally funded research. In this way a symbiotic relationship would be enjoyed by both parties while simultaneously promoting economic development for the County through new job opportunities at the Research Park and at LANL, new indirect support opportunities for the community at large, and through payment of the basic building space leases. A ''sliding-scale'' approach (DOE 1993) is the basis for the analysis of effects in this Environmental Assessment (EA). That is, certain aspects of the Proposed Action have a greater potential for creating adverse environmental effects than others; therefore, they are discussed in greater detail in this EA

  10. Legacies of the recent past: The built environment at Los Alamos National Laboratory, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    McGehee, E.D.

    1997-03-01

    In the early 1940s, a remote area of northern New Mexico was selected to be the site of a secret laboratory, a scientific facility whose only goal was the development of the first atomic bomb. The National Historic Preservation Act (NHPA) of 1966 requires that US federal agencies address this area. Properties, both buildings and structures, older than fifty years, or if more recent, of exceptional historical importance, are to be evaluated for eligibility to the National Register of Historic Places. In compliance with this regulation, LANL has begun to identify and inventory historic properties eligible for the register. This paper will provide an overview of LANL`s WWII and postwar history and will describe recently identified LANL property types and significant historic themes associated with the years 1943--1956. Past NHPA ``Section 106`` documentation efforts will also be summarized.

  11. Applying GIS characterizing and modeling contaminant transport in surface water at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Becker, N.M.; Van Eeckhout, E. [Los Alamos National Lab., NM (United States); David, N.A. [Environmental Res., Inst. of Michigan, Santa Fe, NM (United States); Irvine, J.M. [Environmental Res. Inst. of Michigan, Arlington, VA (United States)

    1995-10-01

    During World War II, Los Alamos, New Mexico was chosen as the site for the secret development of the first atomic bomb. The remote location in the southwestern United States was ideal for such a project. After the war, research activities continued at the Los Alamos installation, focusing on new nuclear weapons models as well as greater effectiveness and reliability of existing weapons. Due to the emphasis on nuclear and non-nuclear weapons development as well as associated nuclear research, a large inventory of radionuclides and heavy metals have been tested, expended, and disposed of in the local environment, a high plateau of tuffaceous volcanic rocks incised by deep canyons in a semi-arid climate. In recent years an intensive evaluation of the environmental, impact of weapons testing at Los Alamos and elsewhere has been undertaken. GIS system utilization and image processing of past and current data has been an important part of this evaluation. Important problems can be more easily displayed and understood using this methodology. The main objective in this paper is to illustrate how transport of depleted uranium and associated heavy metals (copper in this case) used in dynamic testing of weapons components at open air firing sites can be evaluated and visualized. In our studies, surface water has been found to be the predominant transport mechanism. We have sampled soils, sediments, fallout, runoff water and snowmelt over a number of years in order to understand contaminant transport on- and offsite. Statistical analyses of these data have assisted in our characterization of issues such as contaminant variability, spatially and temporally, as well as in development of transport rates.

  12. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1992 quality program status report

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.; Burningham, A.; Chavez, P. [and others

    1994-03-01

    This status report summarizes the activities and accomplishments of the Los Alamos Yucca Mountain Site Characterization Project`s quality assurance program for calendar year 1992. The report includes major sections on Program Activities and Trend Analysis. Program Activities are discussed periodically at quality meetings. The most significant issue addressed in 1992 has been the timely revision of quality administrative procedures. The procedure revision process was streamlined from 55 steps to 7. The number of forms in procedures was reduced by 38%, and the text reduced by 29%. This allowed revision in 1992 of almost half of all implementing procedures. The time necessary to complete the revision process (for a procedure) was reduced from 11 months to 3 months. Other accomplishments include the relaxation of unnecessarily strict training requirements, requiring quality assurance reviews only from affected organizations, and in general simplifying work processes. All members of the YMP received training to the new Orientation class Eleven other training classed were held. Investigators submitted 971 records to the Project and only 37 were rejected. The software program has 115 programs approved for quality-affecting work. The Project Office conducted 3 audits and 1 survey of Los Alamos activities. We conducted 14 audits and 4 surveys. Eight corrective action reports were closed, leaving only one open. Internally, 22 deficiencies were recognized. This is a decrease from 65 in 1991. Since each deficiency requires about 2 man weeks to resolve, the savings are significant. Problems with writing acceptable deficiency reports have essentially disappeared. Trend reports for 1992 were examined and are summarized herein. Three adverse trends have been closed; one remaining adverse trend will be closed when the affected procedures are revised. The number of deficiencies issued to Los Alamos compared to other participants is minimal.

  13. Los Alamos National Laboratory Yucca Mountain Project publications (1979--1994)

    Energy Technology Data Exchange (ETDEWEB)

    Bowker, L.M.; Espinosa, M.L.; Klein, S.H. [comps.

    1995-11-01

    This over-300 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1994 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/groundwater chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance.

  14. Los Alamos National Laboratory Yucca Mountain Project Publications (1979-1996)

    Energy Technology Data Exchange (ETDEWEB)

    Ruhala, E.R.; Klein, S.H. [comps.

    1997-06-01

    This over-350 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1996 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/ground-water chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance.

  15. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    Energy Technology Data Exchange (ETDEWEB)

    Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

    1997-12-01

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

  16. P24 Plasma Physics Summer School 2012 Los Alamos National Laboratory Summer lecture series for students

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Laboratory; Bauer, Bruno [Univ Nevada, Reno; Fernandez, Juan C. [Los Alamos National Laboratory; Daughton, William S. [Los Alamos National Laboratory; Flippo, Kirk A. [Los Alamos National Laboratory; Weber, Thomas [Los Alamos National Laboratory; Awe, Thomas J. [Los Alamos National Laboratory; Kim, Yong Ho [Los Alamos National Laboratory

    2012-09-07

    This report covers the 2012 LANL summer lecture series for students. The lectures were: (1) Tom Intrator, P24 LANL: Kick off, Introduction - What is a plasma; (2) Bruno Bauer, Univ. Nevada-Reno: Derivation of plasma fluid equations; (3) Juan Fernandez, P24 LANL Overview of research being done in p-24; (4) Tom Intrator, P24 LANL: Intro to dynamo, reconnection, shocks; (5) Bill Daughton X-CP6 LANL: Intro to computational particle in cell methods; (6) Kirk Flippo, P24 LANL: High energy density plasmas; (7) Thom Weber, P24 LANL: Energy crisis, fission, fusion, non carbon fuel cycles; (8) Tom Awe, Sandia National Laboratory: Magneto Inertial Fusion; and (9) Yongho Kim, P24 LANL: Industrial technologies.

  17. Los Alamos National Laboratory: A guide to records series supporting epidemiologic studies conducted for the Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The purpose of this guide is to describe each series of records that pertains to the epidemiologic studies conducted by the Epidemiology Section of the Occupational Medicine Group (ESH-2) at the Department of Energy`s (DOE) Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico. The records described in this guide relate to occupational studies performed by the Epidemiology Section, including those pertaining to workers at LANL, Mound Plant, Oak Ridge Reservation, Pantex Plant, Rocky Flats Plant, and Savannah River Site. Also included are descriptions of other health-related records generated or collected by the Epidemiology Section and a small set of records collected by the Industrial Hygiene and Safety Group. This guide is not designed to describe the universe of records generated by LANL which may be used for epidemiologic studies of the LANL work force. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project, HAI`s role in the project, the history of LANL the history and functions of LANL`s Health Division and Epidemiology Section, and the various epidemiologic studies performed by the Epidemiology Section. It provides information on the methodology that HAI used to inventory and describe records housed in the offices of the LANL Epidemiology Section in Technical Area 59 and at the LANL Records Center. Other topics include the methodology used to produce the guide, the arrangement of the detailed record series descriptions, and information concerning access to records repositories.

  18. Radionuclides in pinon pine (Pinus edulis) nuts from Los Alamos National Laboratory lands and the dose from consumption.

    Science.gov (United States)

    Fresquez, P R; Huchton, J D; Mullen, M A; Naranjo, L

    2000-09-01

    One of the dominant tree species growing within and around the eastern portion of Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis). Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food--the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3H, 137Cs, 90Sr, totU, 238Pu, 239,240Pu, and 241Am in soils (0- to 12-in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (3) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN fromLANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 microSv); this is far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem (1000 microSv). Soil-to-nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.

  19. Preliminary Risk Assessment of the Southwestern Willow Flycatcher (Empidonax traillii extimus) at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.F.; Gonzales, G.J.; Bennett, K.D.; Mullen, M.A.; Foxx, T.S.

    1998-10-01

    The southwestern willow flycatcher (Empidonax traillii extimus) is the fourth threatened or endangered species to undergo a preliminary assessment for estimating potential risk from environmental contaminants at the Los Alamos National Laboratory. The assessments are being conducted as part of a three-year project to develop a habitat management plan for threatened and endangered species and species of concern at the Laboratory. For the preliminary assessment, estimated doses were compared against toxicity reference values to generate hazard indices (HIs). This assessment included a measure of cumulative effects from multiple contaminants (radionuclides, metals, and organic chemicals) to 100 simulated nest sites located within flycatcher potential habitat. Sources of contaminant values were 10,000-ft{sup 2} grid cells within an Ecological Exposure Unit (EEU). This EEU was estimated around the potential habitat and was based on the maximum home range for the fly catcher identified in the scientific literature. The tools used included a custom FORTRAN program, ECORSK5, and a geographic information system. Food consumption and soil ingestion contaminant pathways were addressed in the assessment. Using a four-category risk evaluation, HI results indicate no appreciable impact is expected to the southwestern willow flycatcher. Information on risk by specific geographical location was generated, which can be used to manage contaminated areas, flycatcher habitat, facility siting, and/or facility operations in order to maintain low levels of risk from contaminants.

  20. Geology of the Western Part of Los Alamos National Laboratory (TA-3 to TA-16), Rio Grande Rift, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    C.J.Lewis; A.Lavine; S.L.Reneau; J.N.Gardner; R.Channell; C.W.Criswell

    2002-12-01

    We present data that elucidate the stratigraphy, geomorphology, and structure in the western part of Los Alamos National Laboratory between Technical Areas 3 and 16 (TA-3 and TA-16). Data include those gathered by geologic mapping of surficial, post-Bandelier Tuff strata, conventional and high-precision geologic mapping and geochemical analysis of cooling units within the Bandelier Tuff, logging of boreholes and a gas pipeline trench, and structural analysis using profiles, cross sections, structure contour maps, and stereographic projections. This work contributes to an improved understanding of the paleoseismic and geomorphic history of the area, which will aid in future seismic hazard evaluations and other investigations. The study area lies at the base of the main, 120-m (400-ft) high escarpment formed by the Pajarito fault, an active fault of the Rio Grande rift that bounds Los Alamos National Laboratory on the west. Subsidiary fracturing, faulting, and folding associated with the Pajarito fault zone extends at least 1,500 m (5,000 ft) to the east of the main Pajarito fault escarpment. Stratigraphic units in the study area include upper units of the Tshirege Member of the early Pleistocene Bandelier Tuff, early Pleistocene alluvial fan deposits that predate incision of canyons on this part of the Pajarito Plateau, and younger Pleistocene and Holocene alluvium and colluvium that postdate drainage incision. We discriminate four sets of structures in the area between TA-3 and TA-16: (a) north-striking faults and folds that mark the main zone of deformation, including a graben in the central part of the study area; (b) north-northwest-striking fractures and rare faults that bound the eastern side of the principal zone of deformation and may be the surface expression of deep-seated faulting; (c) rare northeast-striking structures near the northern limit of the area associated with the southern end of the Rendija Canyon fault; and (d) several small east

  1. A spatially-dynamic preliminary risk assessment of the bald eagle at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, G.J.; Gallegos, A.F.; Foxx, T.S.; Fresquez, P.R.; Mullen, M.A.; Pratt, L.E.; Gomez, P.E.

    1998-04-01

    The Endangered Species Act of 1973 and the Record of Decision on the Dual Axis Radiographic Hydrodynamic Test Facility at the Los Alamos National Laboratory (LANL) require that the Department of Energy protect the bald eagle (Haliaeetus leucocephalus), a state and federally listed species, from stressors such as contaminants. A preliminary risk assessment of the bald eagle was performed using a custom FORTRAN code, ECORSK5, and the geographical information system. Estimated exposure doses to the eagle for radionuclide, inorganic metal, and organic contaminants were derived for varying ratios of aquatic vs. terrestrial simulated diet and compared against toxicity reference values to generate hazard indices (His). HI results indicate that no appreciable impact to the bald eagle is expected from contaminants at LANL from soil ingestion and food consumption pathways. This includes a measure of cumulative effects from multiple contaminants that assumes linear additive toxicity. Improving model realism by weighting simulated eagle foraging based on distance from potential roost sites increased the HI by 76%, but still to inconsequential levels. Information on risk by specific geographical location was generated, which can be used to manage contaminated areas, eagle habitat, facility siting, and/or facility operations in order to maintain risk from contaminants at low levels.

  2. The Los Alamos National Laboratory Chemistry and Metallurgy Research Facility upgrades project - A model for waste minimization

    Energy Technology Data Exchange (ETDEWEB)

    Burns, M.L.; Durrer, R.E.; Kennicott, M.A.

    1996-07-01

    The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Facility, constructed in 1952, is currently undergoing a major, multi-year construction project. Many of the operations required under this project (i.e., design, demolition, decontamination, construction, and waste management) mimic the processes required of a large scale decontamination and decommissioning (D&D) job and are identical to the requirements of any of several upgrades projects anticipated for LANL and other Department of Energy (DOE) sites. For these reasons the CMR Upgrades Project is seen as an ideal model facility - to test the application, and measure the success of - waste minimization techniques which could be brought to bear on any of the similar projects. The purpose of this paper will be to discuss the past, present, and anticipated waste minimization applications at the facility and will focus on the development and execution of the project`s {open_quotes}Waste Minimization/Pollution Prevention Strategic Plan.{close_quotes}

  3. Ambient air sampling for radioactive air contaminants at Los Alamos National Laboratory: A large research and development facility

    Energy Technology Data Exchange (ETDEWEB)

    Eberhart, C.F.

    1998-09-01

    This paper describes the ambient air sampling program for collection, analysis, and reporting of radioactive air contaminants in and around Los Alamos National Laboratory (LANL). Particulate matter and water vapor are sampled continuously at more than 50 sites. These samples are collected every two weeks and then analyzed for tritium, and gross alpha, gross beta, and gamma ray radiation. The alpha, beta, and gamma measurements are used to detect unexpected radionuclide releases. Quarterly composites are analyzed for isotopes of uranium ({sup 234}U, {sup 235}U, {sup 238}U), plutonium ({sup 238}Pu, {sup 239/249}Pu), and americium ({sup 241}Am). All of the data is stored in a relational database with hard copies as the official records. Data used to determine environmental concentrations are validated and verified before being used in any calculations. This evaluation demonstrates that the sampling and analysis process can detect tritium, uranium, plutonium, and americium at levels much less than one percent of the public dose limit of 10 millirems. The isotopic results also indicate that, except for tritium, off-site concentrations of radionuclides potentially released from LANL are similar to typical background measurements.

  4. Evaluation of potential surface rupture and review of current seismic hazards program at the Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-09

    This report summarizes the authors review and evaluation of the existing seismic hazards program at Los Alamos National Laboratory (LANL). The report recommends that the original program be augmented with a probabilistic analysis of seismic hazards involving assignment of weighted probabilities of occurrence to all potential sources. This approach yields a more realistic evaluation of the likelihood of large earthquake occurrence particularly in regions where seismic sources may have recurrent intervals of several thousand years or more. The report reviews the locations and geomorphic expressions of identified fault lines along with the known displacements of these faults and last know occurrence of seismic activity. Faults are mapped and categorized into by their potential for actual movement. Based on geologic site characterization, recommendations are made for increased seismic monitoring; age-dating studies of faults and geomorphic features; increased use of remote sensing and aerial photography for surface mapping of faults; the development of a landslide susceptibility map; and to develop seismic design standards for all existing and proposed facilities at LANL.

  5. Risk-based analysis for prioritization and processing in the Los Alamos National Laboratory 94-1 program

    Energy Technology Data Exchange (ETDEWEB)

    Boerigter, S.T.; DeMuth, N.S.; Tietjen, G.

    1996-10-01

    A previous report, {open_quotes}Analysis of LANL Options for Processing Plutonium Legacy Materials,{close_quotes} LA-UR-95-4301, summarized the development of a risk-based prioritization methodology for the Los Alamos National Laboratory (LANL) Plutonium Facility at Technical Area-55 (TA-55). The methodology described in that report was developed not only to assist processing personnel in prioritizing the remediation of legacy materials but also to evaluate the risk impacts of schedule modifications and changes. Several key activities were undertaken in the development of that methodology. The most notable was that the risk assessments were based on statistically developed data from sampling containers in the vault and evaluating their condition; the data from the vault sampling programs were used as the basis for risk estimates. Also, the time-dependent behavior of the legacy materials was explicitly modeled and included in the risk analysis. The results indicated that significant reductions in program risk can be achieved by proper prioritization of the materials for processing.

  6. Hands-on program of IBM-PC training at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lier, R.H.

    1985-01-01

    Since December 1983, the Laboratory has offered introductory courses of IBM-PC training. A comprehensive needs assessment was conducted and a nine-course module of classes was designed and implemented. Forty classes were completed in the one-year period. The target group includes the novice computer user in the scientific, management, administrative, and secretarial personnel groups. The development, needs assessment, course implementation and design, course evaluations, and future direction of computer training will be discussed. Lab-automation, robotics, design of the lab and office and the impact of computer on society will be discussed briefly.

  7. Design, installation, and performance of a multi-layered permeable reactive barrier, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kaszuba, J. P. (John P.); Longmire, P. A. (Patrick A.); Strietelmeier, E. A. (Elizabeth A.); Taylor, T. P. (Tammy P.); Den-Baars, P. S. (Peter S.)

    2004-01-01

    A multi-layered permeable reactive barrier (PRB) has been installed in Mortandad Canyon, on the Pajarito Plateau in the north-central part of LANL, to demonstrate in-situ treatment of a suite of contaminants with dissimilar geochemical properties. The PRB will also mitigate possible vulnerabilities from downgradient contaminant movement within alluvial and deeper perched groundwater. Mortandad Canyon was selected as the location for this demonstration project because the flow of alluvial groundwater is constrained by the geology of the canyon, a large network of monitoring wells already were installed along the canyon reach, and the hydrochemistry and contaminant history of the canyon is well-documented. The PRB uses a funnel-and-gate system with a series of four reactive media cells to immobilize or destroy contaminants present in alluvial groundwater, including strontium-90, plutonium-238,239,240, americium-241, perchlorate, and nitrate. The four cells, ordered by sequence of contact with the groundwater, consist of gravel-sized scoria (for colloid removal); phosphate rock containing apatite (for metals and radionuclides); pecan shells and cotton seed admixed with gravel (bio-barrier, to deplete dissolved oxygen and destroy potential RCRA organic compounds, nitrate and perchlorate); and limestone (pH buffering and anion adsorption). Design elements of the PRB are based on laboratory-scale treatability studies and on a field investigation of hydrologic, geochemical, and geotechnical parameters. The PRB was designed with the following criteria: 1-day residence time within the biobarrier, 10-year lifetime, minimization of surface water infiltration and erosion, optimization of hydraulic capture, and minimization of excavated material requiring disposal. Each layer has been equipped with monitoring wells or ports to allow sampling of groundwater and reactive media, and monitor wells are located immediately adjacent to the up- and down-gradient perimeter of the

  8. A spatially-dynamic preliminary risk assessment of the American peregrine falcon at the Los Alamos National Laboratory (version 1)

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.F.; Gonzales, G.J.; Bennett, K.D. [and others

    1997-06-01

    The Endangered Species Act and the Record of Decision on the Dual Axis Radiographic Hydrodynamic Test Facility at the Los Alamos National Laboratory require protection of the American peregrine falcon. A preliminary risk assessment of the peregrine was performed using a custom FORTRAN model and a geographical information system. Estimated doses to the falcon were compared against toxicity reference values to generate hazard indices. Hazard index results indicated no unacceptable risk to the falcon from the soil ingestion pathway, including a measure of cumulative effects from multiple contaminants that assumes a linear additive toxicity type. Scaling home ranges on the basis of maximizing falcon height for viewing prey decreased estimated risk by 69% in a canyons-based home range and increased estimated risk by 40% in a river-based home range. Improving model realism by weighting simulated falcon foraging based on distance from potential nest sites decreased risk by 93% in one exposure unit and by 82% in a second exposure unit. It was demonstrated that choice of toxicity reference values can have a substantial impact on risk estimates. Adding bioaccumulation factors for several organics increased partial hazard quotients by a factor of 110, but increased the mean hazard index by only 0.02 units. Adding a food consumption exposure pathway in the form of biomagnification factors for 15 contaminants of potential ecological concern increased the mean hazard index to 1.16 ({+-} 1.0), which is above the level of acceptability (1.0). Aroclor-1254, dichlorodiphenyltrichlorethane (DDT) and dichlorodiphenylethelyne (DDE) accounted for 81% of the estimated risk that includes soil ingestion and food consumption Contaminant pathways and a biomagnification component. Information on risk by specific geographical location was generated, which can be used to manage contaminated areas, falcon habitat, facility siting, and/or facility operations. 123 refs., 10 figs., 2 tabs.

  9. Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, December 1992--October 1993. Status report

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S. [Ewing Technical Design, Inc., Albuquerque, NM (United States)

    1994-09-01

    In the summer of 1990, an accidental spill from the TA-3 Power Plant Environment Tank released more than 3,785 liters of sulfuric acid into upper Sandia Canyon. The Biological Resource Evaluation Team (BRET) of EM-8 at Los Alamos National Laboratory (LANL) has collected aquatic samples from the stream within Sandia Canyon since then. These field studies gather water quality measurements and collect macroinvertebrates from permanent sampling sites. An earlier report by Bennett (1994) discusses previous BRET aquatic studies in Sandia Canyon. This report updates and expands Bennett`s initial findings. During 1993, BRET collected water quality data and aquatic macroinvertebrates at five permanent stations within the canyon. The substrates of the upper three stations are largely sands and silts while the substrates of the two lower stations are largely rock and cobbles. The two upstream stations are located near outfalls that discharge industrial and sanitary waste effluent. The third station is within a natural cattail marsh, approximately 0.4 km (0.25 mi) downstream from Stations SC1 and SC2. Water quality parameters are slightly different at these first three stations from those expected of natural streams, suggesting slightly degraded water quality. Correspondingly, the macroinvertebrate communities at these stations are characterized by low diversities and poorly-developed community structures. The two downstream stations appear to be in a zone of recovery, where water quality parameters more closely resemble those found in natural streams of the area. Macroinvertebrate diversity increases and community structure becomes more complex at the two lower stations, which are further indications of improved water quality downstream.

  10. Chemical surety material decontamination and decommissioning of Los Alamos National Laboratory Chemical Surety Material Laboratory area TA-3, building SM-29, room 4009

    Energy Technology Data Exchange (ETDEWEB)

    Moore, T.E.; Smith, J.M.

    1994-04-01

    From 1982 through 1987, Los Alamos National Laboratory (LANL) performed surety laboratory operations for the U.S. Army Medical Research and Development Command (MRDC). Room 4009 in building SM-29, TA-3, was used as the laboratory for work with the following chemical surety material (CSM) agents: sarin (GB), soman (GD), lewisite (L), and distilled mustard (HD) radio-labelled with H{sup 3} or C{sup 14}. The work was confined to three CSM-certified fume hoods, located in room 4009 (see diagram in Appendix C). The laboratory ceased all active operations during the late 1986 and early 1987 period. From 1987 until 1993 the laboratory was secured and the ventilation system continued to operate. During late 1992, the decision was made to utilize this laboratory space for other operations, thus a decision was made to dismantle and reconfigure this room. LANL sub-contracted Battelle Memorial Institute (BMI) to draw upon the CSM experience of the technical staff from the Hazardous Materials Research Facility (HMRF) to assist in developing a decontamination and decommissioning plan. BMI was subcontracted to devise a CSM safety training course, and a sampling and air monitoring plan for CSM material to ensure personnel safety during all disassembly operations. LANL subcontracted Johnson Controls personnel to perform all disassembly operations. Beginning in early 1993 BMI personnel from the HMRF visited the laboratory to develop both the safety plan and the sample and air monitoring plan. Execution of that plan began in September 1993 and was completed in January 1994.

  11. 2016 Results for Avian Monitoring at the TA-36 Minie Site, TA-39 Point 6, and TA-16 Burn Ground at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, Charles Dean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thompson, Brent E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Berryhill, Jesse Tobias [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-23

    Los Alamos National Security, LLC (LANS) biologists in the Environmental Compliance and Protection Division at Los Alamos National Laboratory (LANL) initiated a multi-year program in 2013 to monitor avifauna at two open detonation sites and one open burn site on LANL property. Monitoring results from these efforts are compared among years and with avifauna monitoring conducted at other areas across LANL. The objectives of this study are to determine whether LANL firing site operations impact bird abundance or diversity. LANS biologists completed the fourth year of this effort in 2016. The overall results from 2016 continue to indicate that operations are not negatively affecting bird populations. Data suggest that community structure may be changing at some sites and this trend will continue to be monitored.

  12. Application of 129I/127I Ratios in Groundwater Studies Conducted at Los Alamos National Laboratory, New Mexico

    Science.gov (United States)

    Longmire, P.; Dale, M.; Granzow, K.; Yanicak, S. M.

    2014-12-01

    Los Alamos National Laboratory (LANL) is an operating nuclear site that has released treated effluents from three plutonium-processing facilities since the mid 1940s. The radioisotope 129I (T1/2 = 15.7 Myrs) derived from235U and 239Pu processing at LANL is locally detected in groundwater above background concentrations. This isotope provides a unique tracer for groundwater investigations conducted at LANL that helps to identify source releases linked to groundwater-flow paths in aquifers subject to binary and ternary mixing of natural- and industrial-derived waters containing chromate and other chemicals. Bromide, chlorate, chloride, nitrate, perchlorate, sulfate, and tritium were associated with multiple outfalls at LANL and, therefore, do not provide unique chemical signatures identifying a specific point of release or source. Natural and anthropogenic ratios of 129I/127I measured in groundwater samples collected at LANL were quantified using accelerator mass spectrometry at Purdue Rare Isotope Measurement Laboratory, Purdue University. Anthropogenic ratios of 129I/127I range from 1,531 X 10-15 to 10,323 X 10-15 within perched-intermediate groundwater present in volcanoclastic and basalt aquifers (210 - 216 m depth). Anthropogenic ratios of 129I/127I range from 359 X 10-15 to 4,350 X 10-15 within the regional aquifer (280 m depth) consisting of volcanoclastic sediments of variable hydraulic properties. Local background ratios of 129I/127I have a narrow range of 171 X 10-15 to 378 X 10-15 in the regional aquifer. Dissolved iodide measured in groundwater at LANL is stable dominantly as iodate. Background concentrations of dissolved iodate (0.1 to 33.2 nM) are less variable compared to anthropogenic iodate (8.0 to 246 nM) in groundwater at the site. Variability in concentrations of anthropogenic iodate is controlled by heterogeneous source releases of iodate over time and non-uniform mixing of groundwater in the different aquifers.

  13. Sandia`s network for Supercomputing `94: Linking the Los Alamos, Lawrence Livermore, and Sandia National Laboratories using switched multimegabit data service

    Energy Technology Data Exchange (ETDEWEB)

    Vahle, M.O.; Gossage, S.A.; Brenkosh, J.P. [Sandia National Labs., Albuquerque, NM (United States). Advanced Networking Integration Dept.

    1995-01-01

    Supercomputing `94, a high-performance computing and communications conference, was held November 14th through 18th, 1994 in Washington DC. For the past four years, Sandia National Laboratories has used this conference to showcase and focus its communications and networking endeavors. At the 1994 conference, Sandia built a Switched Multimegabit Data Service (SMDS) network running at 44.736 megabits per second linking its private SMDS network between its facilities in Albuquerque, New Mexico and Livermore, California to the convention center in Washington, D.C. For the show, the network was also extended from Sandia, New Mexico to Los Alamos National Laboratory and from Sandia, California to Lawrence Livermore National Laboratory. This paper documents and describes this network and how it was used at the conference.

  14. Los Alamos and Lawrence Livermore National Laboratories Code-to-Code Comparison of Inter Lab Test Problem 1 for Asteroid Impact Hazard Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Robert P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Paul [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Howley, Kirsten [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ferguson, Jim Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gisler, Galen Ross [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Plesko, Catherine Suzanne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Managan, Rob [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Owen, Mike [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wasem, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bruck-Syal, Megan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-15

    The NNSA Laboratories have entered into an interagency collaboration with the National Aeronautics and Space Administration (NASA) to explore strategies for prevention of Earth impacts by asteroids. Assessment of such strategies relies upon use of sophisticated multi-physics simulation codes. This document describes the task of verifying and cross-validating, between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), modeling capabilities and methods to be employed as part of the NNSA-NASA collaboration. The approach has been to develop a set of test problems and then to compare and contrast results obtained by use of a suite of codes, including MCNP, RAGE, Mercury, Ares, and Spheral. This document provides a short description of the codes, an overview of the idealized test problems, and discussion of the results for deflection by kinetic impactors and stand-off nuclear explosions.

  15. SWEIS Yearbook-2012 Comparison of 2012 Data to Projections of the 2008 Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mahowald, Hallie B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wright, Marjorie Alys [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-16

    Los Alamos National Laboratory (LANL or the Laboratory) operations data for Calendar Year (CY) 2012 mostly fell within the 2008 Site-Wide Environmental Impact Statement (SWEIS) projections. Operation levels for one LANL facility exceeded the 2008 SWEIS capability projections—Radiochemistry Facility; however, none of the capability increases caused exceedances in radioactive air emissions, waste generation, or National Pollutant Discharge Elimination System (NPDES) discharge. Several facilities exceeded the2008 SWEIS levels for waste generation quantities; however, all were one-time, non-routine events that do not reflect the day-to-day operations of the Laboratory. In addition, total site-wide waste generation quantities were below SWEIS projections for all waste types, reflecting the overall levels of operations at both the Key and Non-Key Facilities. Although gas and electricity consumption have remained within the 2008 SWEIS limits for utilities, water consumption exceeded the 2008 SWEIS projections by 27 million gallons in CY 2012.

  16. The economic impact of Los Alamos National Laboratory on north-central New Mexico and the state of New Mexico fiscal year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Lansford, R.R. [New Mexico State Univ., Las Cruces, NM (US); Adcock, L.D.; Gentry, L.M. [Albuquerque Operations Office, Dept. of Energy, Albuquerque, NM (US); Ben-David, S. [Univ. of New Mexico, Albuquerque, NM (US). Dept. of Economics; Temple, J. [Temple (John), Albuquerque, NM (US)

    1999-08-05

    Los Alamos National Laboratory (LANL) is a multidisciplinary, multiprogram laboratory with a mission to enhance national military and economic security through science and technology. Its mission is to reduce the nuclear danger through stewardship of the nation`s nuclear stockpile and through its nonproliferation and verification activities. An important secondary mission is to promote US industrial competitiveness by working with US companies in technology transfer and technology development partnerships. Los Alamos is involved in partnerships and collaborations with other federal agencies, with industry (including New Mexico businesses), and with universities worldwide. For this report, the reference period is FY 1998 (October 1, 1997, through September 30, 1998). It includes two major impact analysis: the impact of LANL activities on north-central New Mexico and the economic impacts of LANL on the state of New Mexico. Total impact represents both direct and indirect responding by business, including induced effects (responding by households). The standard multipliers used in determining impacts result from the inter-industry, input-output models developed for the three-county region and the state of New Mexico.

  17. WIPP WAC Equivalence Support Measurements for Low-Level Sludge Waste at Los Alamos National Laboratory - 12242

    Energy Technology Data Exchange (ETDEWEB)

    Gruetzmacher, Kathleen M.; Bustos, Roland M.; Ferran, Scott G.; Gallegos, Lucas E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lucero, Randy P. [Pajarito Scientific Corporation, Santa Fe, New Mexico 87507 (United States)

    2012-07-01

    Los Alamos National Laboratory (LANL) uses the Nevada National Security Site (NNSS) as an off-site disposal facility for low-level waste (LLW), including sludge waste. NNSS has issued a position paper that indicates that systems that are not certified by the Carlsbad Field Office (CBFO) for Waste Isolation Pilot Plant (WIPP) disposal of Transuranic (TRU) waste must demonstrate equivalent practices to the CBFO certified systems in order to assign activity concentration values to assayed items without adding in the Total Measurement Uncertainty (TMU) when certifying waste for NNSS disposal. Efforts have been made to meet NNSS requirements to accept sludge waste for disposal at their facility. The LANL LLW Characterization Team uses portable high purity germanium (HPGe) detector systems for the nondestructive assay (NDA) of both debris and sludge LLW. A number of performance studies have been conducted historically by LANL to support the efficacy and quality of assay results generated by the LANL HPGe systems, and, while these detector systems are supported by these performance studies and used with LANL approved procedures and processes, they are not certified by CBFO for TRU waste disposal. Beginning in 2009, the LANL LLW Characterization Team undertook additional NDA measurements of both debris and sludge simulated waste containers to supplement existing studies and procedures to demonstrate full compliance with the NNSS position paper. Where possible, Performance Demonstration Project (PDP) drums were used for the waste matrix and PDP sources were used for the radioactive sources. Sludge drums are an example of a matrix with a uniform distribution of contaminants. When attempting to perform a gamma assay of a sludge drum, it is very important to adequately simulate this uniform distribution of radionuclides in order to accurately model the assay results. This was accomplished by using a spiral radial source tube placement in a sludge drum rather than the standard

  18. Annual Report on the Activities and Publications of the DHS-DNDO-NTNFC Sponsored Post-doctoral Fellow at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rim, Jung Ho [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Actinide Analytical Chemistry Group; Tandon, Lav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Actinide Analytical Chemistry Group

    2015-04-10

    This report is a summary of the projects Jung Rim is working on as a DHS postdoctoral fellow at Los Alamos National Laboratory. These research projects are designed to explore different radioanalytical methods to support nuclear forensics applications. The current projects discussed here include development of alpha spectroscopy method for 240/239Pu Isotopic ratio measurement, non-destructive uranium assay method using gamma spectroscopy, and 236U non-destructive uranium analysis using FRAM code. This report documents the work that has been performed since the start of the postdoctoral appointment.

  19. Program management assessment of Federal Facility Compliance Agreement regarding CAA-40 C.F.R. Part 61, Subpart H at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    An assessment of Los Alamos National Laboratory`s management system related to facility compliance with an element of the Clean Air Act was performed under contract by a team from Northern Arizona University. More specifically, a Federal Facilities Compliance Agreement (FFCA) was established in 1996 to bring the Laboratory into compliance with emissions standards of radionuclides, commonly referred to as Rad/NESHAP. In the fall of 1996, the four-person team of experienced environmental managers evaluated the adequacy of relevant management systems to implement the FFCA provisions. The assessment process utilized multiple procedures including document review, personnel interviews and re-interviews, and facility observations. The management system assessment was completed with a meeting among team members, Laboratory officials and others on November 1, 1996 and preparation of an assessment report.

  20. “Internal Dosimetry is Multidisciplinary, Challenging, and Exciting” An interview with John Klumpp, Ph.D., Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Poudel, Deepesh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-02

    Here we want to give our student readers a good picture of what it is like to work in various types of organizations and possibly aid them in choosing a career that’s a good fit for them, we have introduced a new series in this section of the newsletter. We will be chatting with young professionals working in different settings— national laboratories, academia, hospitals, and industries—about their back - ground, their responsibilities, what they like about working for their employer, and what suggestions they have for students aspiring to a similar career. In the first installment of the series, I talked to John Klumpp of Radiation Protection Services Group at Los Alamos National Laboratory about his experiences.

  1. A human factors approach towards the design of a new glovebox glove for Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Jude M. [Los Alamos National Laboratory

    2012-08-06

    Present day glovebox gloves at Los Alamos National Laboratory (LANL) are underdeveloped and ergonomically inaccurate. This problem results in numerous sprain and strain injuries every year for employees who perform glovebox work. In addition to injuries, using the current glovebox glove design also contributes to breaches and contamination. The current glove used today at LANL has several problems: (1) The length of the fingers is incorrect, (2) the web spacing between the fingers is nonexistent, (3) the angles between each digit on the finger are incorrect, (4) the thumb is placed inaccurately, and (5) the length of the hand is incorrect. These problems present a need to correct the current glove design to decrease the risk of injuries, breaches, and contamination. Anthropometrics were researched to help find the best range of hand measurements to fix the current glove design. Anthropometrics is the measure of the human physical variation. Anthropometrics for this study were gathered from the American National Survey (ANSUR) data that was conducted by the U.S Army in 1988. The current glovebox glove uses anthropometrics from the 95th to 105th percentile range which is too large so the new gloves are going to implement data from a smaller range of percentile groups. The 105th percentile range represents measurements that exceed the human population but are needed to fit certain circumstance such as wearing several under gloves within the glovebox gloves. Anthropometrics used in this study include: 105th percentile measurements for joint circumference which was unchanged because the room for under gloves plus ease of hand insertion and extraction is needed, 80th percentile measurements for crotch length to allow workers to reach the web spacing in the glove, 20th percentile measurements for finger length to allow workers to reach the end of the glove, standard 10.5cm hand breadth to allow more room to accommodate under gloves, 45 degrees abduction angle for the

  2. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

    2012-05-22

    As a condition to the Disposal Authorization Statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year 2011 annual review for Area G. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 and formally approved in 2009. These analyses are expected to provide reasonable estimates of the long-term performance of Area G and, hence, the disposal facility's ability to comply with Department of Energy (DOE) performance objectives. Annual disposal receipt reviews indicate that smaller volumes of waste will require disposal in the pits and shafts at Area G relative to what was projected for the performance assessment and composite analysis. The future inventories are projected to decrease modestly for the pits but increase substantially for the shafts due to an increase in the amount of tritium that is projected to require disposal. Overall, however, changes in the projected future inventories of waste are not expected to compromise the ability of Area G to satisfy DOE performance objectives. The Area G composite analysis addresses potential impacts from all waste disposed of at the facility, as well as other sources of radioactive material that may interact with releases from Area G. The level of knowledge about the other sources included in the composite analysis has not changed sufficiently to call into question the validity of that analysis. Ongoing environmental surveillance activities are conducted at, and in the vicinity of, Area G. However, the information generated by

  3. A human factors approach towards the design of a new glovebox glove for Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Jude M. [Los Alamos National Laboratory

    2012-08-06

    Present day glovebox gloves at Los Alamos National Laboratory (LANL) are underdeveloped and ergonomically inaccurate. This problem results in numerous sprain and strain injuries every year for employees who perform glovebox work. In addition to injuries, using the current glovebox glove design also contributes to breaches and contamination. The current glove used today at LANL has several problems: (1) The length of the fingers is incorrect, (2) the web spacing between the fingers is nonexistent, (3) the angles between each digit on the finger are incorrect, (4) the thumb is placed inaccurately, and (5) the length of the hand is incorrect. These problems present a need to correct the current glove design to decrease the risk of injuries, breaches, and contamination. Anthropometrics were researched to help find the best range of hand measurements to fix the current glove design. Anthropometrics is the measure of the human physical variation. Anthropometrics for this study were gathered from the American National Survey (ANSUR) data that was conducted by the U.S Army in 1988. The current glovebox glove uses anthropometrics from the 95th to 105th percentile range which is too large so the new gloves are going to implement data from a smaller range of percentile groups. The 105th percentile range represents measurements that exceed the human population but are needed to fit certain circumstance such as wearing several under gloves within the glovebox gloves. Anthropometrics used in this study include: 105th percentile measurements for joint circumference which was unchanged because the room for under gloves plus ease of hand insertion and extraction is needed, 80th percentile measurements for crotch length to allow workers to reach the web spacing in the glove, 20th percentile measurements for finger length to allow workers to reach the end of the glove, standard 10.5cm hand breadth to allow more room to accommodate under gloves, 45 degrees abduction angle for the

  4. Pilot Project on Women and Science. A report on women scientists at the University of New Mexico and Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Salvaggio, R. [New Mexico Univ., Albuquerque, NM (United States)

    1993-08-01

    In the fall of 1991, through the coordinating efforts of the University of New Mexico and Los Alamos National Laboratory, the Pilot Project on Women and Science was initiated as a year-long study of women scientists at both the university and the laboratory. Its purpose was to gather information directly from women scientists in an attempt to analyze and make recommendations concerning the professional and cultural environment for women in the sciences. This report is an initial attempt to understand the ways in which women scientists view themselves, their profession, and the scientific culture they inhabit. By recording what these women say about their backgrounds and educational experiences, their current positions, the difficult negotiations many have made between their personal and professional lives, and their relative positions inside and outside the scientific community, the report calls attention both to the individual perspectives offered by these women and to the common concerns they share.

  5. Los Alamos National Laboratory: Request for Information (RFI) – Call for Commercialization Partners on behalf of the Department of Energy’s Fuel Cell Technologies Office (FCTO) L’Innovator Pilot Program

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Laura Jeaneen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-19

    The purpose of the L’Innovator is to assemble unique, state-of-the-art IP bundles developed at the national labs that aggregate synergistic technologies in furtherance of the emerging hydrogen and fuel cell market. The first L’Innovator IP bundle consists of Oxygen Reduction Reaction (ORR) Catalyst technology developed at Brookhaven National Laboratory (BNL), combined with Membrane Electrode Assembly (MEA) technology developed at Los Alamos National Laboratory (LANL).

  6. Operational comparison of bubble (super heated drop) dosimetry with routine albedo TLD for a selected group of Pu-238 workers at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.L.; Hoffman, J.M.; Foltyn, E.M.; Buhl, T.E.

    1998-09-01

    Personnel neutron dosimetry continues to be a difficult science due to the lack of availability of robust passive dosimeters that exhibit tissue- or near-tissue- equivalent response. This paper is an operational study that compares the use of albedo thermoluminescent dosimeters with bubble dosimeters to determine whether bubble dosimeters do provide a useful daily ALARA tool that can yield measurements close to the dose-of-record. A group of workers at Los Alamos National Laboratory (LANL) working on the Radioisotopic Thermoelectric Generators (RTG) for the NASA Cassini space mission wore both bubble dosimeters and albedo dosimeters over a period from 1993 through 1996. The personal albedo dosimeter was processed on a monthly basis and used as the dose-of-record. The results of this study indicated that cumulative daily bubble dosimetry results agreed with whole-body albedo dosimetry results within about 37% on average.

  7. Pilot studies to achieve waste minimization and enhance radioactive liquid waste treatment at the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Freer, J.; Freer, E.; Bond, A. [and others

    1996-07-01

    The Radioactive and Industrial Wastewater Science Group manages and operates the Radioactive Liquid Waste Treatment Facility (RLWTF) at the Los Alamos National Laboratory (LANL). The RLWTF treats low-level radioactive liquid waste generated by research and analytical facilities at approximately 35 technical areas throughout the 43-square-mile site. The RLWTF treats an average of 5.8 million gallons (21.8-million liters) of liquid waste annually. Clarifloculation and filtration is the primary treatment technology used by the RLWTF. This technology has been used since the RLWTF became operable in 1963. Last year the RLWTF achieved an average of 99.7% removal of gross alpha activity in the waste stream. The treatment process requires the addition of chemicals for the flocculation and subsequent precipitation of radionuclides. The resultant sludge generated during this process is solidified in drums and stored or disposed of at LANL.

  8. Overview of recent tritium target filling, layering, and material testing at Los Alamos national laboratory in support of inertial fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ebey, P. S.; Dole, J. M.; Geller, D. A.; Hoffer, J. K.; Morris, J.; Nobile, A.; Schoonover, J. R.; Wilson, D. [MS-C927, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Bonino, M.; Harding, D.; Sangster, C.; Shmayda, W. [Laboratory for Laser Energetics LLE, Univ. of Rochester, 250 East River Road, Rochester, NY 14623 (United States); Nikroo, A.; Sheliak, J. D. [General Atomics GA (United States); Burmann, J.; Cook, B.; Letts, S.; Sanchez, J. [Lawrence Livermore National Laboratory LLNL (United States)

    2008-07-15

    The Tritium Science and Engineering (AET-3) Group at Los Alamos National Laboratory (LANL) performs a variety of activities to support Inertial Fusion (IF) research - both to further fundamental fusion science and to develop technologies in support of Inertial Fusion Energy (IFE) power generation. Inertial fusion ignition target designs have a smooth spherical shell of cryogenic Deuterium-Tritium (DT) solid contained within a metal or plastic shell that is a few mm in diameter. Fusion is attained by imploding these shells under the symmetric application of energy beams. For IFE targets the DT solid must also survive the process of injecting it into the power plant reactor. Non-ignition IF targets often require a non-cryogenic DT gas fill of a glass or polymeric shell. In this paper an overview will be given of recent LANL activities to study cryogenic DT layering, observe tritium exposure effects on IF relevant materials, and fill targets in support of IF implosion experiments. (authors)

  9. Cerro Grande Fire Impact to Water Quality and Stream Flow near Los Alamos National Laboratory: Results of Four Years of Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    B.M. Gallaher; R.J. Koch

    2004-09-15

    In May 2000, the Cerro Grande fire burned about 7400 acres of mixed conifer forest on the Los Alamos National Laboratory (LANL), and much of the 10,000 acres of mountainside draining onto LANL was severely burned. The resulting burned landscapes raised concerns of increased storm runoff and transport of contaminants by runoff in the canyons traversing LANL. The first storms after the fire produced runoff peaks that were more than 200 times greater than prefire levels. Total runoff volume for the year 2000 increased 50% over prefire years, despite a decline in total precipitation of 13% below normal and a general decrease in the number of monsoonal thunderstorms. The majority of runoff in 2000 occurred in the canyons at LANL south of Pueblo Canyon (70%), where the highest runoff volume occurred in Water Canyon and the peak discharge occurred in Pajarito Canyon. This report describes the observed effects of the Cerro Grande fire and related environmental impacts to watersheds at and near Los Alamos National Laboratory (LANL) for the first four runoff seasons after the fire, from 2000 through 2003. Spatial and temporal trends in radiological and chemical constituents that were identified as being associated with the Cerro Grande fire and those that were identified as being associated with historic LANL discharges are evaluated with regard to impacts to the Rio Grande and area reservoirs downstream of LANL. The results of environmental sampling performed by LANL, the New Mexico Environment Department (NMED), and U.S. Geological Survey (USGS) after the Cerro Grande fire are included in the evaluation. Effects are described for storm runoff, baseflow, stream sediments, and area regional reservoir sediment.

  10. Integrated Verification Experiment data collected as part of the Los Alamos National Laboratory's Source Region Program

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, C.L.; Baker, D.F.

    1993-03-01

    Our goal was to obtain a better understanding of the effects of near-source phenomenology on far-field signals used for monitoring the testing limits of the Threshold Test Ban Treaty. Specifically, we tried to determine if regional phases, with or without corrections for working point media or spallation effects, provide yield estimates with acceptable uncertainties. When acquiring regional seismic data, careful selection of hard-rock sites was paramount to reducing the ground-motion amplitude scatter typical of network data sets. In spite of this cautious approach to siting stations, the scatter of the observed amplitudes was unacceptably large, and so we tried measurements of the near-total-wave trains to bring the range of estimates for any given explosion down to more acceptable levels. Most of our field deployments for recording seismic signals from NTS events at local and near-regional distances were toward the east along a profile that passes by the LANL intrasound array site at St. George, Utah, and continues by the Lawrence livermore National Laboratory seismic station at Kanab, Utah. The Sandia National Laboratories seismic station at Leeds, Utah is between St. George and Kanab. Typically, four to six stations were set up to record intermediate-period data, and four to eight stations were set up to record the high-frequency data. Intermediate-period seismic stations, high-frequency seismic stations, and intrasound arrays of stations were collocated whenever possible to maximize the data acquired with the manpower and equipment resources available. We used two types of instrumentation for recording the regional seismic waves: high-frequency and intermediate-period systems. The high-frequency system records acceleration to a corner frequency at approximately 25 Hz and records velocity at higher frequencies. The intermediate-period system records velocity at frequencies above the seismometer period of 5 s.

  11. Uptake of strontium by chamisa (Chrysothamnus nauseosus) shrub plants growing over a former liquid waste disposal site at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, P.R.; Foxx, T.S.; Naranjo, L. Jr. [Los Alamos National Lab., NM (United States). Environment, Safety and Health Div.

    1996-06-01

    A major concern of managers at low-level waste burial site facilities is that plant roots may translocate contaminants up to the soil surface. This study investigates the uptake of strontium ({sup 90}Sr), a biologically mobile element, by chamisa (Chrysothamnus nauseosus), a deep-rooted shrub plant, growing in a former liquid waste disposal site (Solid Waste Management Unit [SWMU] 10-003[c]) at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Surface soil samples were also collected from below (understory) and between (interspace) shrub canopies. Both chamisa plants growing over SWMU 10-003(c) contained significantly higher concentrations of {sup 90}Sr than a control plant--one plant, in particular, contained 3.35 x 10{sup 6} Bq kg{sup {minus}1} ash (9.05 x 10{sup 4} pCi g{sup {minus}1} ash) in top-growth material. Similarly, soil surface samples collected underneath and between plants contained {sup 90}Sr concentrations above background and LANL screening action levels (> 218 Bq kg{sup {minus}1} dry [5.90 pCi g{sup {minus}1} dry]); this probably occurred as a result of chamisa plant leaf fall contaminating the soil understory area followed by water and/or winds moving {sup 90}Sr to the soil interspace areas. Although some soil surface migration of {sup 90}Sr from SWMU 10-003(c) has occurred, the level of {sup 90}Sr in sediments collected downstream of SWMU 10-003(c) at the LANL boundary was still within regional (background) concentrations.

  12. A legacy of the ""megagoule committee,"" thirty years of explosive pulsed power research and development at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Goforth, James H [Los Alamos National Laboratory; Oona, Henn [Los Alamos National Laboratory; Herrera, Dennis H [Los Alamos National Laboratory; Torres, David T [Los Alamos National Laboratory; Tasker, D. G. [Los Alamos National Laboratory; Meyer, R. K. [Los Alamos National Laboratory; Atchison, W. L. [Los Alamos National Laboratory; Rousculp, C. L. [Los Alamos National Laboratory; Reinovsky, R. E. [Los Alamos National Laboratory; Sheppard, M. [Los Alamos National Laboratory; Turchi, P. J. [Los Alamos National Laboratory; Watt, R. G. [Los Alamos National Laboratory

    2010-10-29

    In 1980, Los Alamos formed the 'Megajoule Committee' with the expressed goal of developing a one Megajoule plasma radiation source. The ensuing research and development has given rise to a wide variety of high explosive pulsed power accomplishments, and there is a continuous stream of work that continues to the present. A variety of flux compression generators (FCGs or generators) have been designed and tested, and a number of pulse shortening schemes have been investigated. Supporting computational tools have been developed in parallel with experiments. No fewer that six unique systems have been developed and used for experiments. This paper attempts to pull together the technical details, achievements, and wisdom amassed during the intervening thirty years, and notes how we would push for increased performance in the future.

  13. Product and market study for Los Alamos National Laboratory. Building resources for technology commercialization: The SciBus Analytical, Inc. paradigm

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The study project was undertaken to investigate how entrepreneurial small businesses with technology licenses can develop product and market strategies sufficiently persuasive to attract resources and exploit commercialization opportunities. The study attempts to answer two primary questions: (1) What key business development strategies are likely to make technology transfers successful, and (2) How should the plan best be presented in order to attract resources (e.g., personnel, funding, channels of distribution)? In the opinion of the investigator, Calidex Corporation, if the business strategies later prove to be successful, then the plan model has relevance for any technology licensee attempting to accumulate resources and bridge from technology resident in government laboratories to the commercial marketplace. The study utilized SciBus Analytical, Inc. (SciBus), a Los Alamos National Laboratory CRADA participant, as the paradigm small business technology licensee. The investigator concluded that the optimum value of the study lay in the preparation of an actual business development plan for SciBus that might then have, hopefully, broader relevance and merit for other private sector technology transfer licensees working with various Government agencies.

  14. The Los Alamos universe: Using multimedia to promote laboratory capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Kindel, J.

    2000-03-01

    This project consists of a multimedia presentation that explains the technological capabilities of Los Alamos National Laboratory. It takes the form of a human-computer interface built around the metaphor of the universe. The project is intended promote Laboratory capabilities to a wide audience. Multimedia is simply a means of communicating information through a diverse set of tools--be they text, sound, animation, video, etc. Likewise, Los Alamos National Laboratory is a collection of diverse technologies, projects, and people. Given the ample material available at the Laboratory, there are tangible benefits to be gained by communicating across media. This paper consists of three parts. The first section provides some basic information about the Laboratory, its mission, and its needs. The second section introduces this multimedia presentation and the metaphor it is based on along with some basic concepts of color and user interaction used in the building of this project. The final section covers construction of the project, pitfalls, and future improvements.

  15. Analysis of Precipitation (Rain and Snow) Levels and Straight-line Wind Speeds in Support of the 10-year Natural Phenomena Hazards Review for Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Elizabeth J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Deola, Regina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-10

    This report provides site-specific return level analyses for rain, snow, and straight-line wind extreme events. These analyses are in support of the 10-year review plan for the assessment of meteorological natural phenomena hazards at Los Alamos National Laboratory (LANL). These analyses follow guidance from Department of Energy, DOE Standard, Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities (DOE-STD-1020-2012), Nuclear Regulatory Commission Standard Review Plan (NUREG-0800, 2007) and ANSI/ ANS-2.3-2011, Estimating Tornado, Hurricane, and Extreme Straight-Line Wind Characteristics at Nuclear Facility Sites. LANL precipitation and snow level data have been collected since 1910, although not all years are complete. In this report the results from the more recent data (1990–2014) are compared to those of past analyses and a 2004 National Oceanographic and Atmospheric Administration report. Given the many differences in the data sets used in these different analyses, the lack of statistically significant differences in return level estimates increases confidence in the data and in the modeling and analysis approach.

  16. Operational comparison of bubble (super heated drop) dosimetry results with routine albedo thermoluminescent dosimetry for a selected group of Pu-238 workers at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.L.; Hoffman, J.M.; Foltyn, E.M.; Buhl, T.E.

    1999-03-01

    This paper is an operational study that compares the use of albedo thermoluminescent dosimeters with bubble dosimeters to determine whether bubble dosimeters do provide a useful daily ALARA tool that can yield measurements close to the dose-of-record. A group of workers at the Los Alamos National Laboratory (LANL) working on the Radioactive Thermoelectric Generators (RTG) for the NASA Cassini space mission wore both bubble dosimeters and albedo dosimeters over a period from 1993 through 1996. The bubble dosimeters were issued and read on a daily basis and the data were used as an ALARA tool. The personnel albedo dosimeter was processed on monthly basis and used as the dose-of-record. The results of this study indicated that cumulative bubble dosimetry results agreed with whole-body albedo dosimetry results within about 37% on average. However it was observed that there is a significant variability of the results on an individual basis both month-to-month and from one individual to another.

  17. Chemical Concentrations in Field Mice from Open-Detonation Firing Sites TA-36 Minie and TA-39 Point 6 at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, Philip R. [Los Alamos National Laboratory

    2011-01-01

    Field mice (mostly Peromyscus spp.) were collected at two open-detonation (high explosive) firing sites - Minie at Technical Area (TA) 36 and Point 6 at TA-39 - at Los Alamos National Laboratory in August of 2010 and in February of 2011 for chemical analysis. Samples of whole body field mice from both sites were analyzed for target analyte list elements (mostly metals), dioxin/furans, polychlorinated biphenyl congeners, high explosives, and perchlorate. In addition, uranium isotopes were analyzed in a composite sample collected from TA-36 Minie. In general, all constituents, with the exception of lead at TA-39 Point 6, in whole body field mice samples collected from these two open-detonation firing sites were either not detected or they were detected below regional statistical reference levels (99% confidence level), biota dose screening levels, and/or soil ecological chemical screening levels. The amount of lead in field mice tissue collected from TA-39 Point 6 was higher than regional background, and some lead levels in the soil were higher than the ecological screening level for the field mouse; however, these levels are not expected to affect the viability of the populations over the site as a whole.

  18. Los Alamos National Laboratory Request for Proposals: Trident Laser System (TLS) Redeployment and Life Extension, October 5, 2016

    Energy Technology Data Exchange (ETDEWEB)

    Stringer, Steven F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-04

    In May 2016, LANS announced that the Trident Laser Facility would cease operating effective September 15, 2016. That date was subsequently extended. The current plan is to operate for an additional, limited period in early CY 2017, and to leverage that activity to provide a training opportunity to the party that will redeploy the TLS. The TLS will then be disassembled and packaged for shipping to the new site, where it may be reconstituted and continue to be used by the physics research community. It is LANS’ intent that Trident will be sited with an organization that will supply its own funding for TLS installation, calibration, and lifecycle operation. Ideally, the receiving party will plan to upgrade TLS with new capability. The equipment to be transferred includes the laser, its power supply, target station and chamber, and a suite of diagnostic instrumentation. Under a Joint Use Agreement it is anticipated that all equipment will remain property of the Laboratory and subject to on-site configuration verification.

  19. Ionospheric Disturbances Originating From Tropospheric and Ground Activities: A new Strategic Research Program at the Los Alamos National Laboratory

    Science.gov (United States)

    Shao, X. M.

    2015-12-01

    It has been increasingly recognized and observed that activities within the troposphere, either natural (e.g., thunderstorm, earthquake, volcano) or anthropogenic (e.g., explosion above or below ground), can substantially disturb the ionosphere in the forms of atmosphere gravity wave, infrasonic acoustic wave, and electric-field-induced ionospheric chemical reaction. These disturbances introduce plasma density variations in the ionosphere that adversely distort the transionospheric radio signals for communication, navigation, surveillance, and other national security missions. A new three-year strategic research program has been initiated at LANL in FY16 to investigate, understand, and characterize the interwoven dynamic and electrodynamic coupling processes from the source in the troposphere to the disturbances in the ionosphere via comprehensive observation and model simulation. The planned study area is chosen to be over the US Great Plains where severe thunderstorms occur frequently and where the necessary atmospheric and ionospheric observations are conducted routinely. In this presentation, we will outline our program plan, technical approaches, and scientific goals, and will discuss opportunities of possible inter-institute collaborations.

  20. Preliminary risk assessment of the Mexican Spotted Owl under a spatially-weighted foraging regime at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.F.; Gonzales, G.J.; Bennett, K.D.; Pratt, L.E.

    1997-02-01

    The Record of Decision on the Dual Axis Radiographic Hydrodynamic Test Facility at the Los Alamos National Laboratory requires that the Department of Energy takes special precautions to protect the Mexican Spotted Owl (Strix occidentalis lucida). In order to do so, risk to the owl presented by radiological and nonradiological contaminants must be estimated. A preliminary risk assessment on the Mexican Spotted Owl in two Ecological Exposure Units (EEUs) was performed using a modified Environmental Protection Agency Quotient method, the FORTRAN model ECORSK4, and a geographic information system. Estimated doses to the owl under a spatially-weighted foraging regime were compared against toxicological reference doses generating hazard indices (HIs) and hazard quotients (HQs) for three risk source types. The average HI was 0.20 for EEU-21 and 0.0015 for EEU-40. Under the risk parameter assumptions made, hazard quotient results indicated no unacceptable risk to the owl, including a measure of cumulative effects from multiple contaminants that assumes a linear additive toxicity type. An HI of 1.0 was used as the evaluative criteria for determining the acceptability of risk. This value was exceeded (1.06) in only one of 200 simulated potential nest sites. Cesium-137, Ni, {sup 239}Pu, Al and {sup 234}U we`re among the constituents with the highest partial HQs. Improving model realism by weighting simulated owl foraging based on distance from potential nest sites decreased the estimated risk by 72% (0.5 HI units) for EEU-21 and by 97.6% (6.3E-02 HI units) for EEU-40. Information on risk by specific geographical location was generated, which can be used to manage contaminated areas, owl habitat, facility siting, and/or facility operations in order to maintain risk from contaminants at acceptably low levels.

  1. Concentrations of Radionuclides and Trace Elements in Environmantal Media arond te Dual-Axis Radiographic Hydrodynamic Test Facilit at Los Alamos National Laboratory during 2005

    Energy Technology Data Exchange (ETDEWEB)

    G.J.Gonzales; P.R. Fresquez; C.D.Hathcock; D.C. Keller

    2006-05-15

    The Mitigation Action Plan (MAP) for the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory requires that samples of biotic and abiotic media be collected after operations began to determine if there are any human health or environmental impacts. The DARHT facility is the Laboratory's principal explosive test facility. To this end, samples of soil and sediment, vegetation, bees, and birds were collected around the facility in 2005 and analyzed for concentrations of {sup 3}H, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, {sup 238}U, Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, and Tl. Bird populations have also been monitored. Contaminant results, which represent up to six sample years since the start of operations, were compared with (1) baseline statistical reference levels (BSRLs) established over a four-year preoperational period before DARHT facility operations, (2) screening levels (SLs), and (3) regulatory standards. Most radionuclides and trace elements were below BSRLs and those few samples that contained radionuclides and trace elements above BSRLs were below SLs. Concentrations of radionuclides and nonradionuclides in biotic and abiotic media around the DARHT facility do not pose a significant human health hazard. The total number of birds captured and number of species represented were similar in 2003 and 2004, but both of these parameters increased substantially in 2005. Periodic interruption of the scope and schedule identified in the MAP generally should have no impact on meeting the intent of the MAP. The risk of not sampling one of the five media in any given year is that if a significant impact to contaminant levels were to occur there would exist a less complete understanding of the extent of the change to the baseline for these media and to the ecosystem as a whole. Since the MAP is a requirement that was established under the regulatory framework of

  2. An independent review and prioritization of past radionuclide and chemical releases from the Los Alamos National Laboratory--implications for future dose reconstruction studies.

    Science.gov (United States)

    Le, Matthew H; Buddenbaum, John E; Burns, Robert E; Shonka, Joseph J; Gaffney, Shannon H; Donovan, Ellen P; Flack, Susan M; Widner, Thomas E

    2011-10-01

    From 1999 through 2010, a team of scientists and engineers systematically reviewed approximately eight million classified and unclassified documents at Los Alamos National Laboratory (LANL) that describe historical off-site releases of radionuclides and chemicals in order to determine the extent to which a full-scale dose reconstruction for releases is warranted and/or feasible. As a part of this effort, a relative ranking of historical airborne and waterborne radionuclide releases from LANL was established using priority index (PI) values that were calculated from estimated annual quantities released and the maximum allowable effluent concentrations according to The U.S. Nuclear Regulatory Commission (USNRC). Chemical releases were ranked based on annual usage estimates and U.S. Environmental Protection Agency (USEPA) toxicity values. PI results for airborne radionuclides indicate that early plutonium operations were of most concern between 1948 and 1961, in 1967, and again from 1970 through 1973. Airborne releases of uranium were found to be of most interest for 1968, from 1974 through 1978, and again in 1996. Mixed fission products yielded the highest PI value for 1969. Mixed activation product releases yielded the highest PI values from 1979 to 1995. For waterborne releases, results indicate that plutonium is of most concern for all years evaluated with the exception of 1956 when (90)Sr yielded the highest PI value. The prioritization of chemical releases indicate that four of the top five ranked chemicals were organic solvents that were commonly used in chemical processing and for cleaning. Trichloroethylene ranked highest, indicating highest relative potential for health effects, for both cancer and non-cancer effects. Documents also indicate that beryllium was used in significant quantities, which could have lead to residential exposures exceeding established environmental and occupational exposure limits, and warrants further consideration. In part because

  3. Polychlorinated Biphenyls (PCBs) in Catfish and Carp Collected from the Rio Grande Upstream and Downstream of Los Alamos National Laboratory: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert J. Gonzales

    2008-05-12

    Concern has existed for years that the Los Alamos National Laboratory (LANL), a complex of nuclear weapons research and support facilities, has released polychlorinated biphenyls (PCBs) to the environment that may have reached adjacent bodies of water through canyons that connect them. In 1997, LANL's Ecology Group began measuring PCBs in fish in the Rio Grande upstream and downstream of ephemeral streams that cross LANL and later began sampling fish in Abiquiu and Cochiti reservoirs, which are situated on the Rio Chama and Rio Grande upstream and downstream of LANL, respectively. In 2002, we electroshocked channel catfish (Ictalurus punctatus) and common carp (Carpiodes carpio) in the Rio Grande upstream and downstream of LANL and analyzed fillets for PCB congeners. We also sampled soils along the Rio Chama and Rio Grande drainages to discern whether a background atmospheric source of PCBs that could impact surface water adjacent to LANL might exist. Trace concentrations of PCBs measured in soil (mean = 4.7E-05 {micro}g/g-ww) appear to be from background global atmospheric sources, at least in part, because the bimodal distribution of low-chlorinated PCB congeners and mid-chlorinated PCB congeners in the soil samples is interpreted to be typical of volatilized PCB congeners that are found in the atmosphere and dust from global fallout. Upstream catfish (n = 5) contained statistically (P = 0.047) higher concentrations of total PCBs (mean = 2.80E-02 {micro}g/g-ww) than downstream catfish (n = 10) (mean = 1.50E-02 {micro}g/g-ww). Similarly, upstream carp (n = 4) contained higher concentrations of total PCBs (mean = 7.98E-02 {micro}g/g-ww) than downstream carp (n = 4) (3.07E-02 {micro}g/g-ww); however, the difference was not statistically significant (P = 0.42). The dominant PCB homologue in all fish samples was hexachlorobiphenyls. Total PCB concentrations in fish in 2002 are lower than 1997; however, differences in analytical methods and other uncertainties

  4. National High Magnetic Field Laboratory (NHMFL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Pulsed Field Program is located in Northern New Mexico at Los Alamos National Laboratory. The user program is designed to provide researchers with a balance of...

  5. Modeling Aeolian Transport of Contaminated Sediments at Los Alamos National Laboratory, Technical Area 54, Area G: Sensitivities to Succession, Disturbance, and Future Climate

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J. [Los Alamos National Laboratory; Kirchner, Thomas B. [New Mexico State University; Breshears, David D. [University of Arizona; Field, Jason P. [University of Arizona

    2012-03-27

    The Technical Area 54 (TA-54) Area G disposal facility is used for the disposal of radioactive waste at Los Alamos National Laboratory (LANL). U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety and the environment. In compliance with that requirement, DOE field sites must prepare and maintain site-specific radiological performance assessments for facilities that receive waste after September 26, 1988. Sites are also required to conduct composite analyses for facilities that receive waste after this date; these analyses account for the cumulative impacts of all waste that has been (and will be) disposed of at the facilities and other sources of radioactive material that may interact with these facilities. LANL issued Revision 4 of the Area G performance assessment and composite analysis in 2008. In support of those analyses, vertical and horizontal sediment flux data were collected at two analog sites, each with different dominant vegetation characteristics, and used to estimate rates of vertical resuspension and wind erosion for Area G. The results of that investigation indicated that there was no net loss of soil at the disposal site due to wind erosion, and suggested minimal impacts of wind on the long-term performance of the facility. However, that study did not evaluate the potential for contaminant transport caused by the horizontal movement of soil particles over long time frames. Since that time, additional field data have been collected to estimate wind threshold velocities for initiating sediment transport due to saltation and rates of sediment transport once those thresholds are reached. Data such as these have been used in the development of the Vegetation Modified Transport (VMTran) model. This model is designed to estimate patterns and long-term rates of contaminant redistribution caused by winds at the site, taking into account the impacts of plant

  6. Introductory materials for committee members: 1) instructions for the Los Alamos National Laboratory fiscal year 2010 capability reviews 2) NPAC strategic capability planning 3) Summary self-assessment for the nuclear and particle physics, astrophysics an

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors.

  7. Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Robert [WPS: WASTE PROJECTS AND SERVICES

    2012-04-17

    The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call

  8. Modeling Aeolian Transport of Contaminated Sediments at Los Alamos National Laboratory, Technical Area 54, Area G: Sensitivities to Succession, Disturbance, and Future Climate

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J. [Los Alamos National Laboratory; Kirchner, Thomas B. [New Mexico State University; Breshears, David D. [University of Arizona; Field, Jason P. [University of Arizona

    2012-03-27

    The Technical Area 54 (TA-54) Area G disposal facility is used for the disposal of radioactive waste at Los Alamos National Laboratory (LANL). U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety and the environment. In compliance with that requirement, DOE field sites must prepare and maintain site-specific radiological performance assessments for facilities that receive waste after September 26, 1988. Sites are also required to conduct composite analyses for facilities that receive waste after this date; these analyses account for the cumulative impacts of all waste that has been (and will be) disposed of at the facilities and other sources of radioactive material that may interact with these facilities. LANL issued Revision 4 of the Area G performance assessment and composite analysis in 2008. In support of those analyses, vertical and horizontal sediment flux data were collected at two analog sites, each with different dominant vegetation characteristics, and used to estimate rates of vertical resuspension and wind erosion for Area G. The results of that investigation indicated that there was no net loss of soil at the disposal site due to wind erosion, and suggested minimal impacts of wind on the long-term performance of the facility. However, that study did not evaluate the potential for contaminant transport caused by the horizontal movement of soil particles over long time frames. Since that time, additional field data have been collected to estimate wind threshold velocities for initiating sediment transport due to saltation and rates of sediment transport once those thresholds are reached. Data such as these have been used in the development of the Vegetation Modified Transport (VMTran) model. This model is designed to estimate patterns and long-term rates of contaminant redistribution caused by winds at the site, taking into account the impacts of plant

  9. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Norris E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. This report is the transcript of his talk.

  10. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Norris E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. Below is the transcript of his talk.

  11. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.

  12. Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lamont, Stephen Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-30

    Nuclear forensics assists in responding to any event where nuclear material is found outside of regulatory control; a response plan is presented and a nuclear forensics program is undergoing further development so that smugglers are sufficiently deterred.

  13. Sandia National Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 60 years, Sandia has delivered essential science and technology to resolve the nation's most challenging security issues.Sandia National Laboratories...

  14. An independent evaluation of plutonium body burdens in populations near Los Alamos Laboratory using human autopsy data.

    Science.gov (United States)

    Gaffney, Shannon H; Donovan, Ellen P; Shonka, Joseph J; Le, Matthew H; Widner, Thomas E

    2013-06-01

    In the mid-1940s, the United States began producing atomic weapon components at the Los Alamos National Laboratory (LANL). In an attempt to better understand historical exposure to nearby residents, this study evaluates plutonium activity in human tissue relative to residential location and length of time at residence. Data on plutonium activity in the lung, vertebrae, and liver of nearby residents were obtained during autopsies as a part of the Los Alamos Tissue Program. Participant residential histories and the distance from each residence to the primary plutonium processing buildings at LANL were evaluated in the analysis. Summary statistics, including Student t-tests and simple regressions, were calculated. Because the biological half-life of plutonium can vary significantly by organ, data were analyzed separately by tissue type (lung, liver, vertebrae). The ratios of plutonium activity (vertebrae:liver; liver:lung) were also analyzed in order to evaluate the importance of timing of exposure. Tissue data were available for 236 participants who lived in a total of 809 locations, of which 677 were verified postal addresses. Residents of Los Alamos were found to have higher plutonium activities in the lung than non-residents. Further, those who moved to Los Alamos before 1955 had higher lung activities than those who moved there later. These trends were not observed with the liver, vertebrae, or vertebrae:liver and liver:lung ratio data, however, and should be interpreted with caution. Although there are many limitations to this study, including the amount of available data and the analytical methods used to analyze the tissue, the overall results indicate that residence (defined as the year that the individual moved to Los Alamos) may have had a strong correlation to plutonium activity in human tissue. This study is the first to present the results of Los Alamos Autopsy Program in relation to residential status and location in Los Alamos.

  15. Integrated Verification Experiment data collected as part of the Los Alamos National Laboratory`s Source Region Program. Appendix E: Local and near-regional seismic data for IVEs

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, C.L.; Baker, D.F.

    1993-03-01

    Our goal was to obtain a better understanding of the effects of near-source phenomenology on far-field signals used for monitoring the testing limits of the Threshold Test Ban Treaty. Specifically, we tried to determine if regional phases, with or without corrections for working point media or spallation effects, provide yield estimates with acceptable uncertainties. When acquiring regional seismic data, careful selection of hard-rock sites was paramount to reducing the ground-motion amplitude scatter typical of network data sets. In spite of this cautious approach to siting stations, the scatter of the observed amplitudes was unacceptably large, and so we tried measurements of the near-total-wave trains to bring the range of estimates for any given explosion down to more acceptable levels. Most of our field deployments for recording seismic signals from NTS events at local and near-regional distances were toward the east along a profile that passes by the LANL intrasound array site at St. George, Utah, and continues by the Lawrence livermore National Laboratory seismic station at Kanab, Utah. The Sandia National Laboratories seismic station at Leeds, Utah is between St. George and Kanab. Typically, four to six stations were set up to record intermediate-period data, and four to eight stations were set up to record the high-frequency data. Intermediate-period seismic stations, high-frequency seismic stations, and intrasound arrays of stations were collocated whenever possible to maximize the data acquired with the manpower and equipment resources available. We used two types of instrumentation for recording the regional seismic waves: high-frequency and intermediate-period systems. The high-frequency system records acceleration to a corner frequency at approximately 25 Hz and records velocity at higher frequencies. The intermediate-period system records velocity at frequencies above the seismometer period of 5 s.

  16. PIGMI program at the Los Alamos Scientific Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, J.E.

    1980-09-01

    The PIGMI Program has completed 3-1/2 yr of a project to develop the technology for the optimal pion generator for medical irradiations (PIGMI). The major accomplishments under the program include completion of the injector beam measurements; completion of the 440-MHz radio-frequency (rf) power source; assembly and test of the alternating phase focusing accelerator section; development of the rf-quadrupole (RFQ) beam-dynamics program, PARMTEQ; design, fabrication, assembly, and test of the RFQ accelerator; final decision on low-energy configuration for PIGMI; assembly of the drift-tube linac section of the PIGMI Prototype; completion of sample set of permanent magnet quadrupoles; optimization of the disk-and-washer (DAW) cavity geometry; fabrication of model cavities of the DAW; final decision on DAW support geometry; acquisition of additional laboratory space for the DAW power test; partial assembly of the 1320-MHz rf power source for the DAW test; and pion channel design studies.

  17. Los Alamos Climatology 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-10

    The Los Alamos National Laboratory (LANL or the Laboratory) operates a meteorology monitoring network to support LANL emergency response, engineering designs, environmental compliance, environmental assessments, safety evaluations, weather forecasting, environmental monitoring, research programs, and environmental restoration. Weather data has been collected in Los Alamos since 1910. Bowen (1990) provided climate statistics (temperature and precipitation) for the 1961– 1990 averaging period, and included other analyses (e.g., wind and relative humidity) based on the available station locations and time periods. This report provides an update to the 1990 publication Los Alamos Climatology (Bowen 1990).

  18. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  19. Los Alamos National Security, LLC Request for Interest (RFI) for Investment Mentors to participate in the Laboratory’s Entrepreneurial Postdoctoral Pilot.

    Energy Technology Data Exchange (ETDEWEB)

    Clow, Shandra Deann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-15

    Los Alamos National Laboratory (LANL) is committed to understanding how the role of venture funding, new investment mechanisms, and fostering the development of a culture of entrepreneurship may enhance the Laboratory and bring strength and creativity to its people. LANL, in partnership with the University of California (UC), has created the Entrepreneurial Postdoctoral Fellowship Pilot (Pilot) to provide an immersion-based learning opportunity to post-doctoral researchers to develop and practice skills in entrepreneurship and comercialization.

  20. Publications of Los Alamos research 1988

    Energy Technology Data Exchange (ETDEWEB)

    Varjabedian, K.; Dussart, S.A.; McClary, W.J.; Rich, J.A. (comps.)

    1989-12-01

    This bibliography lists unclassified publications of work done at the Los Alamos National Laboratory for 1988. The entries, which are subdivided by broad subject categories, are cross-referenced with an author index and a numeric index.

  1. Environmental surveillance at Los Alamos during 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance.

  2. Status of laser fusion. [Review of research at KMSF, LLL, Los Alamos, and Univ. of Rochester Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Nuckolls, J.H.

    1975-10-20

    During 1974-1975, first generation laser implosion experiments have been performed at the KMSF, Livermore, Los Alamos, and University of Rochester Laboratories. Several significant results were achieved in these experiments. The fuel underwent large entropy changes during implosion and did not reach high densities. Consequently, the sensitivity to fluid and plasma instabilities was greatly reduced. A summary of these implosion experiments is presented.

  3. Lujan at Los Alamos Neutron Science Center (LANSCE)

    Data.gov (United States)

    Federal Laboratory Consortium — The Lujan Neutron Scattering Center (Lujan Center) at Los Alamos National Laboratory is an intense pulsed neutrons source operating at a power level of 80 -100 kW....

  4. A History of Building 828, Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Rebecca

    1999-08-01

    This report documents the history of Building 828 in Sandia National Laboratories' Technical Area I. Building 828 was constructed in 1946 as a mechanical test laboratory for Los Alamos' Z-Division (later Sandia) as it moved to Sandia Base. The building has undergone significant remodeling over the years and has had a variety of occupants. The building was evaluated in compliance with the National Historic Preservation Act, but was not eligible for the National Register of Historic Places. Nevertheless, for many Labs employees, it was a symbol of Sandia's roots in World War II and the Manhattan Project.

  5. Science-based stockpile stewardship at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Immele, J. [Los Alamos National Lab., NM (United States)

    1995-10-01

    I would like to start by working from Vic Reis`s total quality management diagram in which he began with the strategy and then worked through the customer requirements-what the Department of Defense (DoD) is hoping for from the science-based stockpile stewardship program. Maybe our customer`s requirements will help guide some of the issues that we should be working on. ONe quick answer to {open_quotes}why have we adopted a science-based strategy{close_quotes} is that nuclear weapons are a 50-year responsibility, not just a 5-year responsibility, and stewardship without testing is a grand challenge. While we can do engineering maintenance and turn over and remake a few things on the short time scale, without nuclear testing, without new weapons development, and without much of the manufacturing base that we had in the past, we need to learn better just how these weapons are actually working.

  6. Los Alamos National Laboratory JOWOG 31 Weapons Engineering Education & Training

    Energy Technology Data Exchange (ETDEWEB)

    Domzalski, Mark W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-03

    The objectives of this report are to recruit talented staff, invest in new and early/mid career staff, retain trained and talented staff and future leaders, and shorten the ~5-10 year time line to realize new Weaponeers.

  7. Los Alamos National Laboratory Prototype Fabrication Division CNM Briefing

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, Stephen P. [Los Alamos National Laboratory; Keyser, Richard J. [Los Alamos National Laboratory

    2012-06-18

    Prototype Fabrication Division designs, programs, manufactures, and inspects on-site high quality, diverse material parts and components that can be delivered at the pace the customer needs to meet their mission. Our goal is to bring vision to reality in the name of science.

  8. Subpicosecond compression experiments at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Carlsten, B.E.; Russell, S.J.; Kinross-Wright, J.M. [and others

    1995-09-01

    The authors report on recent experiments using a magnetic chicane compressor at 8 MeV. Electron bunches at both low (0.1 nC) and high (1 nC) charges were compressed from 20 ps to less than 1 ps (FWHM). A transverse deflecting rf cavity was used to measure the bunch length at low charge; the bunch length at high charge was inferred from an induced energy spread of the beam. The longitudinal centrifugal-space charge force is calculated using a point-to-point numerical simulation and is shown not to influence the energy-spread measurement.

  9. THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS

    Energy Technology Data Exchange (ETDEWEB)

    M. WILLIAMS [and others

    1999-08-01

    The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.

  10. Nanosecond image-shuttering studies at Los Alamos National Laboratory

    Science.gov (United States)

    Yates, G. J.; King, N. S. P.; Jaramillo, S. A.; Noel, B. W.; Gobby, P. L.; Aeby, I.; Detch, J. L.

    Experimental results comparing gated imaging capabilities of proximity-focused microchannel-plate intensifiers and electrostatically-focused silicon-intensified-target vidicons are presented. Previous response data obtained from several standard and modified versions of both image sensors are summarized. Current efforts on: (1) sector gating of segmented photocathodes; (2) pre-pulsing of photocathodes with infrared light to increase conductivity; and (3) gate pulse injection techniques are discussed. Segmented photocathodes increased gating speed by simultaneous turn-on individual sectors whereas preliminary analyses indicate no improvements from infrared illumination.

  11. The National Fire Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The National Fire Research Laboratory (NFRL) is adding a unique facility that will serve as a center of excellence for fireperformance of structures ranging in size...

  12. The National Laboratory Gene Library Project

    Energy Technology Data Exchange (ETDEWEB)

    Deaven, L.L.; Van Dilla, M.A.

    1988-01-01

    The two National Laboratories at Livermore and Los Alamos have played a prominent role in the development and application of flow cytometry and sorting to chromosome classification and purification. Both laboratories began to receive numerous requests for specific human chromosomal types purified by flow sorting for gene library construction, but these requests were difficult to satisfy due to time and personnel constraints. The Department of Energy, through its Office of Health and Environmental Research, has a long-standing interest in the human genome in general and in the mutagenic and carcinogenic effects of energy-related environmental pollutants in particular. Hence, it was decided in 1983 to use the flow construct chromosome-specific gene libraries to be made available to the genetic research community. The National Laboratory Gene Library Project was envisioned as a practical way to deal with requests for sorted chromosomes, and also as a way to promote increased understanding of the human genome and the effects of mutagens and carcinogens on it. The strategy for the project was developed with the help of an advisory committee as well as suggestions and advice from many other geneticists. 4 refs., 2 tabs.

  13. UC/Los Alamos Entrepreneurial Postdoctoral Fellowship Pilot Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Mariann R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clow, Shandra Deann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    The UC/Los Alamos Entrepreneurial Postdoctoral Fellowship Pilot Program (Pilot) for existing postdoctoral researchers at Los Alamos National Laboratory (Los Alamos) to gain skills in entrepreneurship and commercializing technology as part of their postdoctoral experience. This program will incorporate training and mentoring during the first 6-month period, culminating in a focused 6-month Fellowship aimed at creating a new business in Northern New Mexico.

  14. 1994 Northern Goshawk inventory on portions of Los Alamos National Laboratory, Los Alamos, NM

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, D.T.; Kennedy, P.L. [Colorado State Univ., Fort Collins, CO (United States)

    1995-01-01

    Northern goshawks (Accipiter gentilis) (hereafter referred to as goshawk) are large forest dwelling hawks. They are the largest species of the Accipiter genus which also includes sharp-shinned hawks (A. striatus) and the Cooper`s hawk (A. cooperii). Goshawks are holarctic in distribution and nest in coniferous, deciduous, and mixed species forests. In the southwest they primarily nest in ponderosa pine (Pinus ponderosa), mixed species, and spruce-fir forests. Goshawks may be declining in population and reproduction in the southwestern United States. In 1982 the USDA-Forest Service listed the goshawk as a {open_quotes}sensitive species{close_quotes} and in 1992 the U.S. Fish and Wildlife Service listed the goshawk as a {open_quotes}Category 2 species{close_quotes} in accordance with the Endangered Species Act. Reasons for the possible decline in goshawk populations include timber harvesting resulting in the loss of nesting habitat, toxic chemicals, and the effects of drought, fire, and disease. Thus, there is a need to determine their population status and assess impacts of management activities in potential goshawk habitat. Goshawk inventory was conducted during the 1993 nesting season with no adult goshawk responses detected within the LANL survey area. As noted by Sinton and Kennedy, these results may be interpreted in several ways: (1) no goshawk territory(ies) occur in the inventoried area; (2) goshawk territory(ies) exist but have failed prior to the survey and thus were not detected; or (3) territory(ies) exist and were successful but the goshawks did not respond to tapes or their responses were undetected by the observer. For those reasons, a goshawk inventory was conducted in 1994. This report summarizes the results of this inventory.

  15. Lawrence Livermore National Laboratory Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, P; Walter, K

    2007-05-24

    For the Laboratory and staff, 2006 was a year of outstanding achievements. As our many accomplishments in this annual report illustrate, the Laboratory's focus on important problems that affect our nation's security and our researchers breakthroughs in science and technology have led to major successes. As a national laboratory that is part of the Department of Energy's National Nuclear Security Administration (DOE/NNSA), Livermore is a key contributor to the Stockpile Stewardship Program for maintaining the safety, security, and reliability of the nation's nuclear weapons stockpile. The program has been highly successful, and our annual report features some of the Laboratory's significant stockpile stewardship accomplishments in 2006. A notable example is a long-term study with Los Alamos National Laboratory, which found that weapon pit performance will not sharply degrade from the aging effects on plutonium. The conclusion was based on a wide range of nonnuclear experiments, detailed simulations, theoretical advances, and thorough analyses of the results of past nuclear tests. The study was a superb scientific effort. The continuing success of stockpile stewardship enabled NNSA in 2006 to lay out Complex 2030, a vision for a transformed nuclear weapons complex that is more responsive, cost efficient, and highly secure. One of the ways our Laboratory will help lead this transformation is through the design and development of reliable replacement warheads (RRWs). Compared to current designs, these warheads would have enhanced performance margins and security features and would be less costly to manufacture and maintain in a smaller, modernized production complex. In early 2007, NNSA selected Lawrence Livermore and Sandia National Laboratories-California to develop ''RRW-1'' for the U.S. Navy. Design efforts for the RRW, the plutonium aging work, and many other stockpile stewardship accomplishments rely on computer

  16. Risk-based prioritization of the Idaho National Engineering Laboratory Environmental Programs

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.G. [Los Alamos National Lab., NM (United States); Merkhofer, M.W.; Voth, M. [Applied Decision Analysis, Inc., Menlo Park, CA (United States); Sire, D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-03-01

    This paper describes an application of a formal prioritization system to help the Idaho National Engineering Laboratory (INEL) allocate funds for environmental projects. The system, known as the Laboratory Integration and Prioritization System (LIPS), was jointly developed by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), and the US Department of Energy (DOE). LIPS is based on a formal approach for multi-criteria decision-making known as multiattribute utility analysis. The system is designed to provide a logical, practical, and equitable means for estimating and comparing the benefits to be obtained from funding project work.

  17. National strategic challenges and the role of Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ayat, R.A.; Chrzanowski, P.L.; Werne, R.W.

    1995-01-01

    The end of the Cold War was a water-shed event in history--an event that calls for re-evaluation of the basic assumptions and priorities of US national security that have gone essentially unchallenged for nearly 50 years. Central to this re-evaluation are the changing needs for federal Science and Technology (S and T) investment to underpin national and economic security and the role of the Department of Energy (DOE) national laboratories in fulfilling those needs. The three nuclear weapons laboratories-Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratory (SNL)-are major constituents of DOE`s national laboratory system. They helped win the Cold War, and will undoubtedly continue to support US security S and T requirements. This paper discusses of the role these three laboratories, and LLNL in particular, can play in supporting the nation`s S and T priorities. The paper also highlights some of the changes that are necessary for the laboratories to effectively support the national S and T and economic competitiveness agenda. These issues are important to DOE and laboratory managers responsible for the development of strategic direction and implementation plans.

  18. Explosive Flux Compression: 50 Years of Los Alamos Activities

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, C.M.; Thomson, D.B.; Garn, W.B.

    1998-10-18

    Los Alamos flux compression activities are surveyed, mainly through references in view of space limitations. However, two plasma physics programs done with Sandia National Laboratory are discussed in more detail.

  19. Publications of Los Alamos Research, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, C.J.; McClary, W.J.; Rich, J.A.; Rodriguez, L.L. (comps.)

    1984-10-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1983. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers publishd in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  20. Publications of Los Alamos research 1980

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, C.A.; Willis, J.K. (comps.)

    1981-09-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1980. Papers published in 1980 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted-even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was pubished more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-laboratory reports, journal articles, books, chapters of books, conference papers published either separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  1. Los Alamos Scientific Laboratory energy-related history, research, managerial reorganization proposals, actions taken, and results. History report, 1945--1979

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, E.F.

    1997-03-01

    This report documents the development of major energy-related programs at the Los Alamos Scientific Laboratory between 1945 and 1979. Although the Laboratory`s primary mission during that era was the design and development of nuclear weapons and most of the Laboratory`s funding came from a single source, a number of factors were at work that led to the development of these other programs. Some of those factors were affected by the Laboratory`s internal management structure and organization; others were the result of increasing environmental awareness within the general population and the political consequences of that awareness; still others were related to the increasing demand for energy and the increasing turmoil in the energy-rich Middle East. This report also describes the various activities in Los Alamos, in Washington, and in other areas of the world that contributed to the development of major energy-related programs at Los Alamos. The author has a unique historical perspective because of his involvement as a scientist and manager at the Los Alamos Scientific Laboratory during the time period described within the report. In addition, in numerous footnotes and references, he cites a large body of documents that include the opinions and perspectives of many others who were involved at one time or another in these programs. Finally the report includes a detailed chronology of geopolitical events that led to the development of energy-related programs at Los Alamos.

  2. Comparison of Uncertainty of Two Precipitation Prediction Models at Los Alamos National Lab Technical Area 54

    Energy Technology Data Exchange (ETDEWEB)

    Shield, Stephen Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dai, Zhenxue [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-18

    Meteorological inputs are an important part of subsurface flow and transport modeling. The choice of source for meteorological data used as inputs has significant impacts on the results of subsurface flow and transport studies. One method to obtain the meteorological data required for flow and transport studies is the use of weather generating models. This paper compares the difference in performance of two weather generating models at Technical Area 54 of Los Alamos National Lab. Technical Area 54 is contains several waste pits for low-level radioactive waste and is the site for subsurface flow and transport studies. This makes the comparison of the performance of the two weather generators at this site particularly valuable.

  3. The Energy Science and Technology Database on a local library system: A case study at the Los Alamos National Research Library

    Energy Technology Data Exchange (ETDEWEB)

    Holtkamp, I.S.

    1994-10-01

    This paper presents an overview of efforts at Los Alamos National Laboratory to acquire and mount the Energy Science and Technology Database (EDB) as a citation database on the Research Library`s Geac Advance system. The rationale for undertaking this project and expected benefits are explained. Significant issues explored are loading non-USMARC records into a MARC-based library system, the use of EDB records to replace or supplement in-house cataloging of technical reports, the impact of different cataloging standards and database size on searching and retrieval, and how integrating an external database into the library`s online catalog may affect staffing and workflow.

  4. DETERMINISTIC TRANSPORT METHODS AND CODES AT LOS ALAMOS

    Energy Technology Data Exchange (ETDEWEB)

    J. E. MOREL

    1999-06-01

    The purposes of this paper are to: Present a brief history of deterministic transport methods development at Los Alamos National Laboratory from the 1950's to the present; Discuss the current status and capabilities of deterministic transport codes at Los Alamos; and Discuss future transport needs and possible future research directions. Our discussion of methods research necessarily includes only a small fraction of the total research actually done. The works that have been included represent a very subjective choice on the part of the author that was strongly influenced by his personal knowledge and experience. The remainder of this paper is organized in four sections: the first relates to deterministic methods research performed at Los Alamos, the second relates to production codes developed at Los Alamos, the third relates to the current status of transport codes at Los Alamos, and the fourth relates to future research directions at Los Alamos.

  5. Proposal for a New Integrated Circuit and Electronics Neutron Experiment Source at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Phillip D [ORNL

    2009-01-01

    Government and customer specifications increasingly require assessments of the single event effects probability in electronics from atmospheric neutrons. The accelerator that best simulates this neutron spectrum is the WNR facility (Los Alamos), but it is underfunded and oversubscribed for present and future needs. A new beam-line is proposed at the Oak Ridge National Laboratory, as part of the Spallation Neutron Source (SNS).

  6. Los Alamos National Laboratory and Lawrence Livermore National Laboratory Plutonium Sustainment Monthly Program Report September 2012

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, Anastasia Dawn [Los Alamos National Laboratory; Storey, Bradford G. [Los Alamos National Laboratory; Bowidowicz, Martin [Los Alamos National Laboratory; Robertson, William G. [Los Alamos National Laboratory; Hobson, Beverly F. [Los Alamos National Laboratory

    2012-10-22

    In March of 2012 the Plutonium Sustainment program at LANL completed or addressed the following high-level activities: (1) Delivered Revision 2 of the Plutonium Sustainment Manufacturing Study, which incorporated changes needed due to the release of the FY2013 President's Budget and the delay in the Chemistry and Metallurgy Research Replacement Nuclear Facility (CMRRNF). (2) W87 pit type development activities completed a detailed process capability review for the flowsheet in preparation for the Engineering Development Unit Build. (3) Completed revising the Laser Beam Welding schedule to address scope and resource changes. (4) Completed machining and inspecting the first set of high-fidelity cold parts on Precitech 2 for Gemini. (5) The Power Supply Assembly Area started floor cutting with a concrete saw and continued legacy equipment decommissioning. There are currently no major issues associated with achieving MRT L2 Milestones 4195-4198 or the relevant PBIs associated with Plutonium Sustainment. There are no budget issues associated with FY12 final budget guidance. Table 1 identifies all Baseline Change Requests (BCRs) that were initiated, in process, or completed during the month. The earned value metrics overall for LANL are within acceptable thresholds, so no high-level recovery plan is required. Each of the 5 major LANL WBS elements is discussed in detail.

  7. Lawrence Livermore National Laboratory Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, P; Walter, K

    2007-05-24

    For the Laboratory and staff, 2006 was a year of outstanding achievements. As our many accomplishments in this annual report illustrate, the Laboratory's focus on important problems that affect our nation's security and our researchers breakthroughs in science and technology have led to major successes. As a national laboratory that is part of the Department of Energy's National Nuclear Security Administration (DOE/NNSA), Livermore is a key contributor to the Stockpile Stewardship Program for maintaining the safety, security, and reliability of the nation's nuclear weapons stockpile. The program has been highly successful, and our annual report features some of the Laboratory's significant stockpile stewardship accomplishments in 2006. A notable example is a long-term study with Los Alamos National Laboratory, which found that weapon pit performance will not sharply degrade from the aging effects on plutonium. The conclusion was based on a wide range of nonnuclear experiments, detailed simulations, theoretical advances, and thorough analyses of the results of past nuclear tests. The study was a superb scientific effort. The continuing success of stockpile stewardship enabled NNSA in 2006 to lay out Complex 2030, a vision for a transformed nuclear weapons complex that is more responsive, cost efficient, and highly secure. One of the ways our Laboratory will help lead this transformation is through the design and development of reliable replacement warheads (RRWs). Compared to current designs, these warheads would have enhanced performance margins and security features and would be less costly to manufacture and maintain in a smaller, modernized production complex. In early 2007, NNSA selected Lawrence Livermore and Sandia National Laboratories-California to develop ''RRW-1'' for the U.S. Navy. Design efforts for the RRW, the plutonium aging work, and many other stockpile stewardship accomplishments rely on computer

  8. Argonne National Laboratory 1985 publications

    Energy Technology Data Exchange (ETDEWEB)

    Kopta, J.A. (ED.); Hale, M.R. (comp.)

    1987-08-01

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index.

  9. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberg, Kurt F [Los Alamos National Laboratory

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  10. Oak Ridge National Laboratory Review

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C.; Pearce, J.; Zucker, A. (eds.)

    1992-01-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  11. New Generation of Los Alamos Opacity Tables

    Science.gov (United States)

    Colgan, James; Kilcrease, D. P.; Magee, N. H.; Sherrill, M. E.; Abdallah, J.; Hakel, P.; Fontes, C. J.; Guzik, J. A.; Mussack, K. A.

    2016-05-01

    We present a new generation of Los Alamos OPLIB opacity tables that have been computed using the ATOMIC code. Our tables have been calculated for all 30 elements from hydrogen through zinc and are publicly available through our website. In this poster we discuss the details of the calculations that underpin the new opacity tables. We also show several recent applications of the use of our opacity tables to solar modeling and other astrophysical applications. In particular, we demonstrate that use of the new opacities improves the agreement between solar models and helioseismology, but does not fully resolve the long-standing `solar abundance' problem. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  12. Sandia National Laboratories embraces ISDN

    Energy Technology Data Exchange (ETDEWEB)

    Tolendino, L.F.; Eldridge, J.M.

    1994-08-01

    Sandia National Laboratories (Sandia), a multidisciplinary research and development laboratory located on Kirtland Air Force Base, has embraced Integrated Services Digital Network technology as an integral part of its communication network. Sandia and the Department of Energy`s Albuquerque Operations Office have recently completed the installation of a modernized and expanded telephone system based, on the AT&T 5ESS telephone switch. Sandia is committed to ISDN as an integral part of data communication services, and it views ISDN as one part of a continuum of services -- services that range from ISDN`s asynchronous and limited bandwidth Ethernet (250--1000 Kbps) through full bandwidth Ethernet, FDDI, and ATM at Sonet rates. Sandia has demonstrated this commitment through its use of ISDN data features to support critical progmmmatic services such as access to corporate data base systems. In the future, ISDN will provide enhanced voice, data communication, and video services.

  13. Argonne National Laboratory 1986 publications

    Energy Technology Data Exchange (ETDEWEB)

    Kopta, J.A.; Springer, C.J.

    1987-12-01

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index.

  14. Women in Physics: The Next Generation At Our National Laboratories

    Science.gov (United States)

    Krossa, Cheryl

    2001-04-01

    Just as a house must be built on a strong foundation, with each subsequent course of bricks placed upon those that went before, the advances of women in physics are built upon the accomplishments of those women who have gone before. How are we preparing for the next course of bricks? Where will the next generation of women in physics come from, and how are these women being prepared to take their place among your ranks? The United States Department of Energy is helping to mold the next generation of women in physics, in part, through the efforts of its fifteen national laboratories: Argonne, Brookhaven, Fermi, Idaho, Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific Northwest, Princeton Plasma Physics, Sandia, National Energy Technology Laboratory, National Renewable Energy Laboratory, Stanford Linear Accelerator Center, and Thomas Jefferson National Accelerator Facility. This presentation will showcase some of the creative and innovative approaches these institutions are taking, from outreach to girls in elementary schools to executive appointments, to secure not only this nation's future, but that of women in physics.

  15. Frederick National Laboratory for Cancer Research

    Data.gov (United States)

    Federal Laboratory Consortium — Among the many cancer research laboratories operated by NCI, the Frederick National Laboratory for Cancer Research(FNLCR) is unique in that it is a Federally Funded...

  16. NM - Risk and injury assessment of radionuclides to Los Alamos fauna

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is an assessment of environmental contaminants associated with the Los Alamos National Laboratory. One objective of the study is to determine if a significant...

  17. Publications of Los Alamos research, 1977-1981

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, C.J.; Garcia, C.A. (comps.)

    1983-03-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1977-1981. Papers published in those years are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  18. BROOKHAVEN NATIONAL LABORATORY WILDLIFE MANAGEMENT PLAN.

    Energy Technology Data Exchange (ETDEWEB)

    NAIDU,J.R.

    2002-10-22

    The purpose of the Wildlife Management Plan (WMP) is to promote stewardship of the natural resources found at the Brookhaven National Laboratory (BNL), and to integrate their protection with pursuit of the Laboratory's mission.

  19. Fuel cells for transportation program: FY1997 national laboratory annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Department of Energy (DOE) Fuel Cells for Transportation Program is structured to effectively implement the research and development (R and D) required for highly efficient, low or zero emission fuel cell power systems to be a viable replacement for the internal combustion engine in automobiles. The Program is part of the Partnership for a New Generation of Vehicles (PNGV), a government-industry initiative aimed at development of an 80 mile-per-gallon vehicle. This Annual Report summarizes the technical accomplishments of the laboratories during 1997. Participants include: Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and the National Renewable Energy Laboratory (NREL). During 1997, the laboratory R and D included one project on solid oxide fuel cells; this project has since been terminated to focus Department resources on PEM fuel cells. The technical component of this report is divided into five key areas: fuel cell stack research and development; fuel processing; fuel cell modeling, testing, and evaluation; direct methanol PEM fuel cells; and solid oxide fuel cells.

  20. National Standard on Laboratory Biosafety Officially Promulgated

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ On May 28, a press conference on national standards of the General Requirements on Laboratory Biosafety, which was sponsored by the Standardization Administration of China (SAC) and the Certification and Accreditation Administration of the People's Republic of China (CNCA) and undertaken by China National Accreditation Board for Laboratories, was held in Beijing.

  1. Amphibians and Reptiles of Los Alamos County

    Energy Technology Data Exchange (ETDEWEB)

    Teralene S. Foxx; Timothy K. Haarmann; David C. Keller

    1999-10-01

    Recent studies have shown that amphibians and reptiles are good indicators of environmental health. They live in terrestrial and aquatic environments and are often the first animals to be affected by environmental change. This publication provides baseline information about amphibians and reptiles that are present on the Pajarito Plateau. Ten years of data collection and observations by researchers at Los Alamos National Laboratory, the University of New Mexico, the New Mexico Department of Game and Fish, and hobbyists are represented.

  2. Feasibility study of medical isotope production at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Massey, C.D.; Miller, D.L.; Carson, S.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Regulatory Assessment Dept.] [and others

    1995-12-01

    In late 1994, Sandia National Laboratories in Albuquerque, New Mexico, (SNL/NM), was instructed by the Department of Energy (DOE) Isotope Production and Distribution Program (IPDP) to examine the feasibility of producing medically useful radioisotopes using the Annular Core Research Reactor (ACRR) and the Hot Cell Facility (HCF). Los Alamos National Laboratory (LANL) would be expected to supply the targets to be irradiated in the ACRR. The intent of DOE would be to provide a capability to satisfy the North American health care system demand for {sup 99}Mo, the parent of {sup 99m}Tc, in the event of an interruption in the current Canadian supply. {sup 99m}Tc is used in 70 to 80% of all nuclear medicine procedures in the US. The goal of the SNL/NM study effort is to determine the physical plant capability, infrastructure, and staffing necessary to meet the North American need for {sup 99}Mo and to identify and examine all issues with potential for environmental impact.

  3. Lawrence Livermore National Laboratory Working Reference Material Production Pla

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Amy; Thronas, Denise; Marshall, Robert

    1998-11-04

    This Lawrence Livermore National Laboratory (LLNL) Working Reference Material Production Plan was written for LLNL by the Los Alamos National Laboratory to address key elements of producing seven Pu-diatomaceous earth NDA Working Reference Materials (WRMS). These WRMS contain low burnup Pu ranging in mass from 0.1 grams to 68 grams. The composite Pu mass of the seven WRMS was designed to approximate the maximum TRU allowable loading of 200 grams Pu. This document serves two purposes: first, it defines all the operations required to meet the LLNL Statement of Work quality objectives, and second, it provides a record of the production and certification of the WRMS. Guidance provided in ASTM Standard Guide C1128-89 was used to ensure that this Plan addressed all the required elements for producing and certifying Working Reference Materials. The Production Plan was written to provide a general description of the processes, steps, files, quality control, and certification measures that were taken to produce the WRMS. The Plan identifies the files where detailed procedures, data, quality control, and certification documentation and forms are retained. The Production Plan is organized into three parts: a) an initial section describing the preparation and characterization of the Pu02 and diatomaceous earth materials, b) middle sections describing the loading, encapsulation, and measurement on the encapsulated WRMS, and c) final sections describing the calculations of the Pu, Am, and alpha activity for the WRMS and the uncertainties associated with these quantities.

  4. Oak Ridge National Laboratory Next Generation Safeguards Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Bernadette Lugue [ORNL; Eipeldauer, Mary D [ORNL; Whitaker, J Michael [ORNL

    2011-12-01

    with several DOE laboratories such as Pacific Northwest National Laboratory (PNNL), Lawrence Livermore National Laboratory (LLNL), Brookhaven National Laboratory (BNL), and Los Alamos National Laboratory (LANL). In particular, ORNL's participation encompasses student internships, postdoctoral appointments, collaboration with universities in safeguards curriculum development, workshops, and outreach to professional societies through career fairs.

  5. Fifty-one years of Los Alamos Spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-04

    From 1963 to 2014, the Los Alamos National Laboratory was involved in at least 233 spacecraft. There are probably only one or two institutions in the world that have been involved in so many spacecraft. Los Alamos space exploration started with the Vela satellites for nuclear test detection, but soon expanded to ionospheric research (mostly barium releases), radioisotope thermoelectric generators, solar physics, solar wind, magnetospheres, astrophysics, national security, planetary physics, earth resources, radio propagation in the ionosphere, and cubesats. Here, we present a list of the spacecraft, their purpose, and their launch dates for use during RocketFest

  6. Job cuts loom at National Physical Laboratory

    Science.gov (United States)

    Extance, Andy

    2016-09-01

    The UK's National Physical Laboratory (NPL) - the country's standards lab - is consulting on making up to 50 compulsory redundancies as it prepares to shift its research priorities towards quantum technologies and big data.

  7. NNSA Master Asset Map - Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Billie, Gepetta S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This report gives information on the following topics related to Sandia National Laboratories: site leadership's vision, condition, footprint management, major gaps and risks, and proposed investment plan.

  8. Los Alamos National Laboratory use study phase II : Toxicity testing of surface waters and sediment pore waters at Los Alamos National Laboratory

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The U.S. Fish and Wildlife Service New Mexico Ecological Services Field Office (Service) submitted a Use Study Proposal (USFWS 1996) in response to the settlement...

  9. Simulation information regarding Sandia National Laboratories trinity capability improvement metric.

    Energy Technology Data Exchange (ETDEWEB)

    Agelastos, Anthony Michael; Lin, Paul T.

    2013-10-01

    Sandia National Laboratories, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory each selected a representative simulation code to be used as a performance benchmark for the Trinity Capability Improvement Metric. Sandia selected SIERRA Low Mach Module: Nalu, which is a uid dynamics code that solves many variable-density, acoustically incompressible problems of interest spanning from laminar to turbulent ow regimes, since it is fairly representative of implicit codes that have been developed under ASC. The simulations for this metric were performed on the Cielo Cray XE6 platform during dedicated application time and the chosen case utilized 131,072 Cielo cores to perform a canonical turbulent open jet simulation within an approximately 9-billion-elementunstructured- hexahedral computational mesh. This report will document some of the results from these simulations as well as provide instructions to perform these simulations for comparison.

  10. The Future of the National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.

    1997-12-31

    The policy debate that has surrounded the national laboratories of the Department of Energy since the end of the Cold War has been very confusing. Initially, with the passage of the National Competitiveness Technology Transfer Act of 1989, the laboratories were encouraged to form cooperative arrangements with industry to maintain their technology base and give a boost for U.S. industrial competitiveness. But in the 104th Congress, technology transfer programs were severely constrained.

  11. Cost and schedule estimate to construct the tunnel and shaft remedial shielding concept, Los Alamos Meson Physics Facility, Los Alamos National Laboratory, Los Alamos, New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-30

    The report provides an estimate of the cost and associated schedule to construct the tunnel and shaft remedial shielding concept. The cost and schedule estimate is based on a preliminary concept intended to address the potential radiation effects on Line D and Line Facilities in event of a beam spill. The construction approach utilizes careful tunneling methods based on available excavation and ground support technology. The tunneling rates and overall productivity on which the cost and project schedule are estimated are based on conservative assumptions with appropriate contingencies to address the uncertainty associated with geological conditions. The report is intended to provide supplemental information which will assist in assessing the feasibility of the tunnel and shaft concept and justification for future development of this particular aspect of remedial shielding for Line D and Line D Facilities.

  12. Brookhaven highlights - Brookhaven National Laboratory 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report highlights research conducted at Brookhaven National Laboratory in the following areas: alternating gradient synchrotron; physics; biology; national synchrotron light source; department of applied science; medical; chemistry; department of advanced technology; reactor; safety and environmental protection; instrumentation; and computing and communications.

  13. Idaho National Laboratory Research & Development Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, Nicole [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  14. Challenges of Implementing Iranian National Laboratory Standards

    Directory of Open Access Journals (Sweden)

    S Mahdavi

    2013-01-01

    Full Text Available After four years of publishing the Iranian National Laboratory Standard and following a strategic plan to implement its requirements, it was decided to review the taken actions, evaluating the achievements and the failures, as well as analyzing the gaps and planning the interventional activities to resolve the problems. A thorough evaluation revealed that the progress of implementation process varies considerably in different provinces, as well as in laboratories in different public and private sectors. Diversity and heterogeneousity of laboratories throughout the country is one of unresolvable problems. Although we encounter shortage of resources in the country, improper allocation or distribution of resources and budgets make the problems more complicated. Inadequacy of academic training in laboratory sciences has resulted in necessity of holding comprehensive post-graduate training courses. Revising academic curriculum of laboratory sciences could be mostly helpful, moreover there should be organized, training courses with pre-determined practical topics. providing specific technical guidelines, to clarify the required technical details could temporarily fill the training gaps of laboratory staff. Inadequate number of competent auditors was one of the difficulties in universities. Another important challenge returns to laboratory equipment, developing the national controlling system to manage the laboratory equipment in terms of quality and accessibility has been planned in RHL. At last cultural problems and resistance to change are main obstacles that have reduced the pace of standardization, it needs to rationalize the necessity of establishing laboratory standards for all stakeholders.

  15. Creating the laboratory`s future; A strategy for Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    ``Creating The Laboratory`s Future`` describes Livermore`s roles and responsibilities as a Department of Energy (DOE) national laboratory and sets the foundation for decisions about the Laboratory`s programs and operations. It summarizes Livermore`s near-term strategy, which builds on recent Lab achievements and world events affecting their future. It also discusses their programmatic and operational emphases and highlights program areas that the authors believe can grow through application of Lab science and technology. Creating the Laboratory`s Future reflects their very strong focus on national security, important changes in the character of their national security work, major efforts are under way to overhaul their administrative and operational systems, and the continuing challenge of achieving national consensus on the role of the government in energy, environment, and the biosciences.

  16. Environmental surveillance at Los Alamos during 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory (LANL or the Laboratory) during 1995. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring result to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1995 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, Laboratory employees, or the environment.

  17. ISO 14001 IMPLEMENTATION AT A NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    BRIGGS,S.L.K.

    2001-06-01

    After a tumultuous year discovering serious lapses in environment, safety and health management at Brookhaven National Laboratory, the Department of Energy established a new management contract. It called for implementation of an IS0 14001 Environmental Management System and registration of key facilities. Brookhaven Science Associates, the managing contractor for the Laboratory, designed and developed a three-year project to change culture and achieve the goals of the contract. The focus of its efforts were to use IS0 14001 to integrate environmental stewardship into all facets of the Laboratory's mission, and manage its programs in a manner that protected the ecosystem and public health. A large multidisciplinary National Laboratory with over 3,000 employees and 4,000 visiting scientists annually posed significant challenges for IS0 14001 implementation. Activities with environmental impacts varied from regulated industrial waste generation, to soil activation from particle accelerator operations, to radioactive groundwater contamination from research reactors. A project management approach was taken to ensure project completion on schedule and within budget. The major work units for the Environmental Management System Project were as follows: Institutional EMS Program Requirements, Communications, Training, Laboratory-wide Implementation, and Program Assessments. To minimize costs and incorporate lessons learned before full-scale deployment throughout the Laboratory, a pilot process was employed at three facilities. Brookhaven National Laboratory has completed its second year of the project in the summer of 2000, successfully registering nine facilities and self-declaring conformance in all remaining facilities. Project controls, including tracking and reporting progress against a model, have been critical to the successful implementation. Costs summaries are lower than initial estimates, but as expected legal requirements, training, and assessments are key

  18. ORNL (Oak Ridge National Laboratory) 89

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.D.; Appleton, B.R.; Jefferson, J.W.; Merriman, J.R.; Mynatt, F.R.; Richmond, C.R.; Rosenthal, M.W.

    1989-01-01

    This is the inaugural issues of an annual publication about the Oak Ridge National Laboratory. Here you will find a brief overview of ORNL, a sampling of our recent research achievements, and a glimpse of the directions we want to take over the next 15 years. A major purpose of ornl 89 is to provide the staff with a sketch of the character and dynamics of the Laboratory.

  19. The Founding of the Brookhaven National Laboratory - Associated Universities, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    BROOKHAVEN NATIONAL LABORATORY

    1948-01-15

    At the end of the war it became apparent that the teamwork of government and scientific institutions, which had been so effective in wartime work, must somehow be perpetuated in order to insure the continued progress of nuclear science in peace time. The enormous expense of the tools needed to pursue the next steps in this research -- nuclear reactors and high energy accelerators -- and the shortage of scientifically trained personnel pointed towards the establishment of a cooperative laboratory. Such a laboratory, using government funds, could carry out a comprehensive research program that would benefit the many interested research groups throughout the country. As a result of the wartime programs under the Manhattan District, centers of research in nuclear science were already active at the Radiation Laboratory in Berkeley, California, at Los Alamos in New Mexico, at the Clinton Laboratories in Oak Ridge, Tennessee and at the Argonne Laboratory in Chicago. No analogous nuclear research laboratories, however, had developed in the Northeast, and since so much of the nation's scientific talent and industrial activities are concentrated in the northeastern states, it was proposed that a new laboratory be established near New York City. As a result of this plan, the Brookhaven National Laboratory is now in operation at Upton, Long Island. The work of this Laboratory is performed under a contract between the Atomic Energy Commission (AEC) and a corporation, Associated Universities, Inc. (AUI) , formed by representatives of nine of the larger private universities in the northeast: Columbia, Cornell, Harvard, Johns Hopkins, the Massachusetts Institute of Technology, the University of Pennsylvania, Princeton, the University of Rochester, and Yale. The purpose of this laboratory is the advancement of knowledge in the fundamentals of nuclear science, the extension of its application to other fields, and the training of young scientists in these new subjects. This

  20. LDRD Highlights at the National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Alayat, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-10

    To meet the nation’s critical challenges, the Department of Energy (DOE) national laboratories have always pushed the boundaries of science, technology, and engineering. The Atomic Energy Act of 1954 provided the basis for these laboratories to engage in the cutting edge of science and technology and respond to technological surprises, while retaining the best scientific and technological minds. To help re-energize this commitment, in 1991 the U.S. Congress authorized the national laboratories to devote a relatively small percentage of their budget to creative and innovative work that serves to maintain their vitality in disciplines relevant to DOE missions. Since then, this effort has been formally called the Laboratory Directed Research and Development (LDRD) Program. LDRD has been an essential mechanism to enable the laboratories to address DOE’s current and future missions with leading-edge research proposed independently by laboratory technical staff, evaluated through expert peer-review committees, and funded by the individual laboratories consistent with the authorizing legislation and the DOE LDRD Order 413.2C.

  1. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  2. Sandia National Laboratories focus issue: introduction.

    Science.gov (United States)

    Boye, Robert

    2014-08-20

    For more than six decades, Sandia has provided the critical science and technology to address the nation's most challenging issues. Our original nuclear weapons mission has been complemented with work in defense systems, energy and climate, as well as international and homeland security. Our vision is to be a premier science and engineering laboratory for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe.

  3. Environmental surveillance at Los Alamos during 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kohen, K.; Stoker, A.; Stone, G. [and others

    1994-07-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory during 1992. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring results to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1992 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, laboratory employees, or the environment.

  4. Biomedical engineering at Sandia National Laboratories

    Science.gov (United States)

    Zanner, Mary Ann

    1994-12-01

    The potential exists to reduce or control some aspects of the U.S. health care expenditure without compromising health care delivery by developing carefully selected technologies which impact favorably on the health care system. A focused effort to develop such technologies is underway at Sandia National Laboratories. As a DOE National Laboratory, Sandia possesses a wealth of engineering and scientific expertise that can be readily applied to this critical national need. Appropriate mechanisms currently exist to allow transfer of technology from the laboratory to the private sector. Sandia's Biomedical Engineering Initiative addresses the development of properly evaluated, cost-effective medical technologies through team collaborations with the medical community. Technology development is subjected to certain criteria including wide applicability, earlier diagnoses, increased efficiency, cost-effectiveness and dual-use. Examples of Sandia's medical technologies include a noninvasive blood glucose sensor, computer aided mammographic screening, noninvasive fetal oximetry and blood gas measurement, burn diagnostics and laser debridement, telerobotics and ultrasonic scanning for prosthetic devices. Sandia National Laboratories has the potential to aid in directing medical technology development efforts which emphasize health care needs, earlier diagnosis, cost containment and improvement of the quality of life.

  5. Applied programs at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This document overviews the areas of current research at Brookhaven National Laboratory. Technology transfer and the user facilities are discussed. Current topics are presented in the areas of applied physics, chemical science, material science, energy efficiency and conservation, environmental health and mathematics, biosystems and process science, oceanography, and nuclear energy. (GHH)

  6. Lawrence Livermore National Laboratory Environmental Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Henry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Armstrong, Dave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, Rick G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, Nicholas A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, Steven J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, Craig [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dibley, Valerie R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doman, Jennifer L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, Allen R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heidecker, Kelly R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hollister, Rod K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumamoto, Gene [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, Donald H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nelson, Jennifer C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, Heather L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, Lisa E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, Crystal A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, Alison A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, Anthony M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, Kent R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, Jim S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-19

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security, LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  7. Lawrence Livermore National Laboratory Environmental Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dibley, V. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doman, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heidecker, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumamoto, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montemayor, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, H. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Veseliza, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-01

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security, LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  8. The International Space Station: A National Laboratory

    Science.gov (United States)

    Giblin, Timothy W.

    2012-01-01

    After more than a decade of assembly missions and the end of the space shuttle program, the International Space Station (ISS) has reached assembly completion. With other visiting spacecraft now docking with the ISS on a regular basis, the orbiting outpost now serves as a National Laboratory to scientists back on Earth. The ISS has the ability to strengthen relationships between NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. The ISS National Laboratory also opens new paths for the exploration and economic development of space. In this presentation we will explore the operation of the ISS and the realm of scientific research onboard that includes: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science.

  9. Wide-area Gigabit networking: Los Alamos HIPPI-SONET Gateway

    Energy Technology Data Exchange (ETDEWEB)

    St. John, W.B.; DuBois, D.H.

    1995-05-01

    This paper describes a HIPPI-SONET Gateway which has been designed by members of the Computer Network Engineering Group at Los Alamos National Laboratory. The Gateway has been used in the CASA Gigabit Testbed at Caltech, Los Alamos National Laboratory, and the San Diego Supercomputer Center to provide communications between the sites. This paper will also make some qualitative statements as to lessons learned during the deployment and maintenance of this wide area network. We report record throughput for transmission of data across a wide area network. We have sustained data rates using the TCP/IP protocol of 550 Mbits/second and the rate of 792 Mbits/second for raw HIPPI data transfer over the 2,000 kilometers from the San Diego Supercomputer Center to the Los Alamos National Laboratory.

  10. Chemical research at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  11. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun Williams

    2013-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices

  12. Sandia National Laboratories analysis code data base

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, C.W.

    1994-11-01

    Sandia National Laboratories, mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The Laboratories` strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia`s technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code ``ownership`` and release status, and references describing the physical models and numerical implementation.

  13. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  14. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2011-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  15. Environmental surveillance at Los Alamos during 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1987. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1987 cover: external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are insignificant and do not pose a threat to the public, Laboratory employees, or the environment. 113 refs., 33 figs., 120 tabs.

  16. The Dalian National Laboratory for Clean Energy.

    Science.gov (United States)

    Zhang, Tao; Li, Can; Bao, Xinhe

    2012-05-01

    The Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences conducts fundamental and applied research towards chemistry and chemical engineering, with strong competence in the development of new technologies. The research in this special issue, containing 19 papers, features some of the DICP's best work on sustainable energy, use of environmental resources, and advanced materials within the framework of the Dalian National Laboratory for Clean Energy (DNL).

  17. Frederick National Laboratory Celebrates 40 Years | Poster

    Science.gov (United States)

    By Ashley DeVine, Staff Writer Forty years ago, what we now call the Frederick National Laboratory for Cancer Research was born. Here are some highlights in the facility’s history. October 19, 1971 – President Richard Nixon announced that Fort Detrick would be converted from a biological warfare facility to a cancer research center (Covert, Norman M., Cutting Edge: A History of Fort Detrick, Maryland, 1943–1993, pp. 85–87).

  18. Lawrence Livermore National Laboratory 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, P; Walter, K

    2008-04-25

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that

  19. Oak Ridge National Laboratory Core Competencies

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, J.B.; Anderson, T.D.; Berven, B.A.; Hildebrand, S.G.; Hartman, F.C.; Honea, R.B.; Jones, J.E. Jr.; Moon, R.M. Jr.; Saltmarsh, M.J.; Shelton, R.B. [and others

    1994-12-01

    A core competency is a distinguishing integration of capabilities which enables an organization to deliver mission results. Core competencies represent the collective learning of an organization and provide the capacity to perform present and future missions. Core competencies are distinguishing characteristics which offer comparative advantage and are difficult to reproduce. They exhibit customer focus, mission relevance, and vertical integration from research through applications. They are demonstrable by metrics such as level of investment, uniqueness of facilities and expertise, and national impact. The Oak Ridge National Laboratory (ORNL) has identified four core competencies which satisfy the above criteria. Each core competency represents an annual investment of at least $100M and is characterized by an integration of Laboratory technical foundations in physical, chemical, and materials sciences; biological, environmental, and social sciences; engineering sciences; and computational sciences and informatics. The ability to integrate broad technical foundations to develop and sustain core competencies in support of national R&D goals is a distinguishing strength of the national laboratories. The ORNL core competencies are: 9 Energy Production and End-Use Technologies o Biological and Environmental Sciences and Technology o Advanced Materials Synthesis, Processing, and Characterization & Neutron-Based Science and Technology. The distinguishing characteristics of each ORNL core competency are described. In addition, written material is provided for two emerging competencies: Manufacturing Technologies and Computational Science and Advanced Computing. Distinguishing institutional competencies in the Development and Operation of National Research Facilities, R&D Integration and Partnerships, Technology Transfer, and Science Education are also described. Finally, financial data for the ORNL core competencies are summarized in the appendices.

  20. Lawrence Livermore National Laboratory 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, P; Walter, K

    2008-04-25

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that

  1. National Storage Laboratory: a collaborative research project

    Science.gov (United States)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  2. Analyze imagery and other data collected at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    David, N. [Environmental Research Institute of Michigan, Santa Fe, NM (United States); Ginsberg, I. [Environmental Research Institute of Michigan, Ann Arbor, MI (United States)

    1995-10-01

    Unfortunately, areas of waste disposal at DOE sites are not all documented and located, There are a number of reasons for this situation: records have been lost or destroyed, the location were not documented, and memories have been lost. The search of large areas at these sites for buried waste and buried-waste containers is a difficult and expensive problem when using conventional, ground-based methods. Typical conventional methods involve the drilling of wells/boreholes (point sampling), and interpolation is required to obtain the needed areal information. Drilling for buried waste is expensive, potentially hazardous, and time-consuming, yet accurate interpolation can require a large number of holes per-unit-area. A similar problem is encountered in gaining current information about: the boundaries of toxic waste plumes in the ground, transport pathways, and the composition and concentration of toxic materials. The purpose of this effort is to analyze existing imagery data collected under various Department of Energy and other programs. This analyses will be useful for screening, characterization, and monitoring work in the waste site remediation process.

  3. Evaluation of Tower Shadowing on Anemometer Measurements at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-14

    The objective of this study is to evaluate the effect of tower shadowing from the meteorology towers at LANL during 2014. This study is in response to the Department of Energy Meteorological Coordinating Council visit in 2015 that recommended an evaluation of any biases in the wind data introduced by the tower and boom alignment at all meteorology towers.

  4. 2015 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Runnels, Scott Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caldwell, Wendy [Arizona State Univ., Mesa, AZ (United States); Brown, Barton Jed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pederson, Clark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Justin [Univ. of California, Santa Cruz, CA (United States); Burrill, Daniel [Univ. of Vermont, Burlington, VT (United States); Feinblum, David [Univ. of California, Irvine, CA (United States); Hyde, David [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Levick, Nathan [Univ. of New Mexico, Albuquerque, NM (United States); Lyngaas, Isaac [Florida State Univ., Tallahassee, FL (United States); Maeng, Brad [Univ. of Michigan, Ann Arbor, MI (United States); Reed, Richard LeRoy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sarno-Smith, Lois [Univ. of Michigan, Ann Arbor, MI (United States); Shohet, Gil [Univ. of Illinois, Urbana-Champaign, IL (United States); Skarda, Jinhie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Josey [Missouri Univ. of Science and Technology, Rolla, MO (United States); Zeppetello, Lucas [Columbia Univ., New York, NY (United States); Grossman-Ponemon, Benjamin [Stanford Univ., CA (United States); Bottini, Joseph Larkin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Loudon, Tyson Shane [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); VanGessel, Francis Gilbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nagaraj, Sriram [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Price, Jacob [Univ. of Washington, Seattle, WA (United States)

    2015-10-15

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transport and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it. This report includes both the background for the program and the reports from the students.

  5. 2006 Los Alamos National Laboratory Annual Illness and Injury Surveillance Report

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

    2008-06-13

    The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.

  6. Groundwater Pathway Model for the Los Alamos National Laboratory Technical Area 54, Area G, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Terry A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Strobridge, Daniel M. [Neptune Inc., Los Alamos, NM (United States); Cole, Gregory L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gable, Carl Walter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Broxton, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Springer, Everett P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schofield, Tracy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-10

    This report consists of four major sections, including this introductory section. Section 2 provides an overview of previous investigations related to the development of the current sitescale model. The methods and data used to develop the 3-D groundwater model and the techniques used to distill that model into a form suitable for use in the GoldSim models are discussed in Section 3. Section 4 presents the results of the model development effort and discusses some of the uncertainties involved. Eight attachments that provide details about the components and data used in this groundwater pathway model are also included with this report. The groundwater modeling effort reported here is a revision of the work that was conducted in 2005 (Stauffer et al., 2005a) in support of the 2008 Area G performance assessment and composite analysis (LANL, 2008). The revision effort was undertaken primarily to incorporate new geologic information that has been collected since 2003 at, and in the vicinity of, Area G. The new data were used to create a more accurate geologic framework model (GFM) that forms the basis of the numerical modeling of the site’s long-term performance. The groundwater modeling uses mean hydrologic properties of the geologic strata underlying Area G; this revision includes an evaluation of the impacts that natural variability in these properties may have on the model projections.

  7. Next Generation Safeguards Initiative Efforts at Los Alamos National Laboratory: Developing Our Human Capital FY2015

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Rebecca S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hawkins Erpenbeck, Heather [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    This report documents the accomplishments of the Safeguards HCD Fiscal Year 2015 (FY15) Project Work Plan, highlighting LANL’s work as well as the accomplishments of our NGSI-sponsored students, graduate and postdoctoral fellows, and mid-career professionals during this past year. While fiscal year 2015 has been a year of transition in the Human Capital Development area for LANL, we are working to revitalize our efforts to promote and develop Human Capital in Safeguards and Non-proliferation and are looking forward to implementing new initiatives in the coming fiscal year and continuing to transition the knowledge of staff who have been on assignment at IAEA and Headquarters to improve our support to HCD.

  8. Los Alamos National Laboratory corregated metal pipe saw facility preliminary safety analysis report. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-09-19

    This Preliminary Safety Analysis Report addresses site assessment, facility design and construction, and design operation of the processing systems in the Corrugated Metal Pipe Saw Facility with respect to normal and abnormal conditions. Potential hazards are identified, credible accidents relative to the operation of the facility and the process systems are analyzed, and the consequences of postulated accidents are presented. The risk associated with normal operations, abnormal operations, and natural phenomena are analyzed. The accident analysis presented shows that the impact of the facility will be acceptable for all foreseeable normal and abnormal conditions of operation. Specifically, under normal conditions the facility will have impacts within the limits posted by applicable DOE guidelines, and in accident conditions the facility will similarly meet or exceed the requirements of all applicable standards. 16 figs., 6 tabs.

  9. Experimental Studies of Engineered Barrier Systems Conducted at Los Alamos National Laboratory (FY16)

    Energy Technology Data Exchange (ETDEWEB)

    Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Norskog, Katherine Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maner, James [Univ. of Oklahoma, Norman, OK (United States). School of Geology and Geophysics; Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Palaich, Sarah [Univ. of California, Los Angeles, CA (United States). Dept. of Earth, Planetary, and Space Sciences; Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cheshire, Michael C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-04

    Over the past five years the Used Fuel Campaign has investigated Engineered Barrier Systems (EBS) at higher heat loads (up to 300°C) and pressure (150 bar). This past year experimental work was hindered due to a revamping of the hydrothermal lab. Regardless, two experiments were run this past year, EBS-18 and EBS-19. EBS-18 was run using Low Carbon Steel (LCS) and opalinus clay in addition to the bentonite and opalinus brine. Many of the past results were confirmed in EBS-18, such as the restriction of illite formation due to the bulk chemistry, pyrite degradation, and zeolite formation dependent on the bentonite and opalinus clay. The LCS show vast amounts of pit corrosion (over 100μm of corrosion in six weeks), leading a corrosion rate of 1083 μm/year. In addition, a mineral goethite, an iron-bearing hydroxide, formed in the pits of the LCS. Preliminary results from EBS-19 water chemistry are included but SEM imaging, micro probe and XRD are still needed for further results. Copper corrosion was investigated further and over 850 measurements were taken. It was concluded that pitting and pyrite degradation drastically increase the corrosion rate from 0.12 to 0.39 μm/day. However, the growth of a layer of the mineral chalcocite is thought to subdue the corrosion rate to 0.024 μm/day as observed in the EBS-13, a sixth month experiment. This document presents the findings of this past year.

  10. Los Alamos National Laboratory Tritium Technology Deployments Large Scale Demonstration and Deployment Project

    Energy Technology Data Exchange (ETDEWEB)

    McFee, J.; Blauvelt, D.; Stallings, E.; Willms, S.

    2002-02-26

    This paper describes the organization, planning and initial implementation of a DOE OST program to deploy proven, cost effective technologies into D&D programs throughout the complex. The primary intent is to accelerate closure of the projects thereby saving considerable funds and at the same time being protective of worker health and the environment. Most of the technologies in the ''toolkit'' for this program have been demonstrated at a DOE site as part of a Large Scale Demonstration and Deployment Project (LSDDP). The Mound Tritium D&D LSDDP served as the base program for the technologies being deployed in this project but other LSDDP demonstrated technologies or ready-for-use commercial technologies will also be considered. The project team will evaluate needs provided by site D&D project managers, match technologies against those needs and rank deployments using a criteria listing. After selecting deployments the project will purchase the equipment and provide a deployment engineer to facilitate the technology implementation. Other cost associated with the use of the technology will be borne by the site including operating staff, safety and health reviews etc. A cost and performance report will be prepared following the deployment to document the results.

  11. Organic Contaminant Levels in Three Fish Species Downchannel from the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, G.J.; Fresquez, P.R.; Beveridge, J.W.

    1999-06-01

    The LANL contribution, if any, to organic contaminant levels in the common carp, the channel catfish, and the white sucker in the Rio Grande appear to be small; however, low sample sizes, high variation, and potential interaction of species effect with location treatment effect require additional sampling and analysis.

  12. Los Alamos National Laboratory Modular Pumped Hydro Feasibility Study for Santa Fe Community College

    Energy Technology Data Exchange (ETDEWEB)

    Bibeault, Mark Leonide [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-21

    Report on the Economic Energy Assessment for a community college in Santa Fe, New Mexico. Report shows graphically the demand for energy in the month of September, and illustrates the production of electricity as it goes onto the grid for use.

  13. Prioritization methodology using hazard analysis results at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sasser, M.K.; Hall, M.; Stack, D. [Los Alamos National Lab., NM (United States); Brooks, D.G. [Arizona State Univ. (United States)

    1995-09-01

    Risk management activities, such as prioritizing risk-reducing projects, often are commissioned for facilities as special tasks supported by special task forces and conducted independently of other on-going risk assessment and risk management activities. Many DOE facilities have completed hazard analyses (HAs) as part of their efforts to upgrade their SARs to meet the new DOE standard that was issued in 1994. Although a complete SAR would contain more resource allocation information than the HA, the HA usually is completed before the SAR. This paper describes how SAR results, and particularly HA results, can be used directly to support managers` risk-based prioritization of project funding. This can reduce the time to conduct prioritization modeling, increase the quality of the results, and, perhaps most importantly, integrate the results into the on-going risk management activities of the site.

  14. 2007 Los Alamos National Laboratory Annual Illness and Injury Surveillance Report

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

    2009-06-30

    The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  15. Experimental Studies of Engineered Barrier Systems Conducted at Los Alamos National Laboratory (FY16)

    Energy Technology Data Exchange (ETDEWEB)

    Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Norskog, Katherine Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maner, James [Univ. of Oklahoma, Norman, OK (United States). School of Geology and Geophysics; Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Palaich, Sarah [Univ. of California, Los Angeles, CA (United States). Dept. of Earth, Planetary, and Space Sciences; Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cheshire, Michael C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-04

    Over the past five years the Used Fuel Campaign has investigated Engineered Barrier Systems (EBS) at higher heat loads (up to 300°C) and pressure (150 bar). This past year experimental work was hindered due to a revamping of the hydrothermal lab. Regardless, two experiments were run this past year, EBS-18 and EBS-19. EBS-18 was run using Low Carbon Steel (LCS) and opalinus clay in addition to the bentonite and opalinus brine. Many of the past results were confirmed in EBS-18 such as the restriction of illite formation due to the bulk chemistry, pyrite degradation, and zeolite formation dependent on the bentonite and opalinus clay. The LCS show vast amounts of pit corrosion over 100μm of corrosion in six weeks, leading a corrosion rate of 1083 μm/year. In addition, a mineral goethite, an iron bearing hydroxide, formed in the pits of the LCS. Preliminary results from EBS-19 water chemistry are included but SEM imaging, micro probe and XRD are still needed for further results. Copper corrosion was investigated further and over 850 measurements were taken. It was concluded that pitting and pyrite degradation drastically increase the corrosion rate from 0.12 to 0.39 μm/day. However, the growth of a layer of the mineral chalcocite is thought to subdue the corrosion rate to 0.024 μm/day as observed in the EBS-13 a sixth month experiment. This document presents the findings of this past year.

  16. 2016 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Runnels, Scott Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bachrach, Harrison Ian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carlson, Nils [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Collier, Angela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dumas, William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fankell, Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ferris, Natalie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzalez, Francisco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Griffith, Alec [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guston, Brandon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kenyon, Connor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Benson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mookerjee, Adaleena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parkinson, Christian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peck, Hailee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peters, Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poondla, Yasvanth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, Brandon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shaffer, Nathaniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trettel, Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Valaitis, Sonata Mae [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Venzke, Joel Aaron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Black, Mason [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Demircan, Samet [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holladay, Robert Tyler [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-22

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transport and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it.

  17. Groundwater Pathway Model for the Los Alamos National Laboratory Technical Area 21, Material Disposal Area T

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Levitt, Daniel G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Terry Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jordan, Amy [Neptune Inc, Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dash, Zora [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-09

    This report consists of four major sections, including this introductory section. Section 2 provides an overview of previous investigations related to the development of the current sitescale model. The methods and data used to develop the 3-D groundwater model and the techniques used to distill that model into a form suitable for use in the GoldSim models are discussed in Section 3. Section 4 presents the results of the model development effort and discusses some of the uncertainties involved. Three attachments that provide details about the components and data used in this groundwater pathway model are also included with this report.

  18. Fracture Characteristics in a Disposal Pit on Mesita del Buey, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    David T. Vaniman; Steven L. Reneau

    1998-12-01

    The characteristics of fractures in unit 2 of the Tshirege Member of the Bandelier Tuff were documented in Pit 39, a newly excavated 13.7 m deep disposal pit at Material Disposal Area G on Mesita del Buey. The average spacing between fractures is about 1.0 to 1.3 m, the average fracture aperture is about 3 to 5 mm, and the average fracture dip is about 76o to 77o. Fracture spacing and dip in Pit 39 are generally consistent with that reported from other fracture studies on the Pajarito Plateau, although the fracture apertures in Pit 39 are less than reported elsewhere. Measured fracture orientations are strongly affected by biases imparted by the orientations of the pit walls, which, combined with a small data set, make identification of potential preferred orientations dlfflcult. The most prominent fracture orientations observed in Pit 39, about E-W and N20E, are often not well represented elsewhere on the Pajarito Plateau. Fracture fills contain smectite to about 3 m depth, and calcite and opal may occur at all depths, principally associated with roots or root fossils (rhizoliths). Roots of pifion pine extend in fractures to the bottom of the pit along the north side, perhaps indicating a zone of preferred infiltration of water. Finely powdered tuff with clay-sized particles occurs within a number of fractures and may record abrasive disaggregation associated with small amounts of displacement on minor local faults.

  19. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.R.

    1993-12-31

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards.

  20. Hydraulics national laboratory; Laboratoire national d`hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Chabard, J.P.

    1995-12-31

    The hydraulics national laboratory is a department of the service of applications of electric power and environment from the direction of studies and researches of Electricite de France. It has to solve the EDF problems concerning the fluids mechanics and hydraulics. Problems in PWR type reactors, fossil fuel power plants, circulating fluidized bed power plants, hydroelectric power plants relative to fluid mechanics and hydraulics studied and solved in 1995 are explained in this report. (N.C.)

  1. National Renewable Energy Laboratory 2005 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

    2006-06-01

    Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

  2. THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE

    Energy Technology Data Exchange (ETDEWEB)

    Glen R. Longhurst

    2007-12-01

    A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

  3. Lawrence Livermore National Laboratory Environmental Report 2014

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buscheck, W. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Byrne, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bish, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratanduono, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montemayor, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, H. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Swanson, K. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-29

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2014 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  4. Lawrence Livermore National Laboratory Environmental Report 2015

    Energy Technology Data Exchange (ETDEWEB)

    Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-22

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  5. Brookhaven National Laboratory site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A. [eds.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory.

  6. National Environmental Policy Act (NEPA) Compliance Guide, Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1995-08-01

    This report contains a comprehensive National Environmental Policy Act (NEPA) Compliance Guide for the Sandia National Laboratories. It is based on the Council on Environmental Quality (CEQ) NEPA regulations in 40 CFR Parts 1500 through 1508; the US Department of Energy (DOE) N-EPA implementing procedures in 10 CFR Part 102 1; DOE Order 5440.1E; the DOE ``Secretarial Policy Statement on the National Environmental Policy Act`` of June 1994- Sandia NEPA compliance procedures-, and other CEQ and DOE guidance. The Guide includes step-by-step procedures for preparation of Environmental Checklists/Action Descriptions Memoranda (ECL/ADMs), Environmental Assessments (EAs), and Environmental Impact Statements (EISs). It also includes sections on ``Dealing With NEPA Documentation Problems`` and ``Special N-EPA Compliance Issues.``

  7. Environmental surveillance at Los Alamos during 2005

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (LANL or the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.IA, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory's efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory's major environmental programs. Chapter 2 reports the Laboratory's compliance status for 2005. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, Air; Chapters 5 and 6, Water and Sediments; Chapter 7, Soils; and Chapter 8, Foodstuffs and Biota) in a format to meet the needs of a general and scientific audience. Chapter 9, new for this year, provides a summary of the status of environmental restoration work around LANL. A glossary and a list ofacronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory's technical areas and their associated programs, and Appendix D provides web links to more information.

  8. Water Supply at Los Alamos 1998-2001

    Energy Technology Data Exchange (ETDEWEB)

    Richard J. Koch; David B. Rogers

    2003-03-01

    For the period 1998 through 2001, the total water used at Los Alamos from all sources ranged from 1325 million gallons (Mg) in 1999 to 1515 Mg in 2000. Groundwater production ranged from 1323 Mg in 1999 to 1506 Mg in 2000 from the Guaje, Pajarito, and Otowi fields. Nonpotable surface water used from Los Alamos reservoir ranged from zero gallons in 2001 to 9.3 Mg in 2000. For years 1998 through 2001, over 99% of all water used at Los Alamos was groundwater. Water use by Los Alamos National Laboratory (LANL) between 1998 and 2001 ranged from 379 Mg in 2000 to 461 Mg in 1998. The LANL water use in 2001 was 393 Mg or 27% of the total water use at Los Alamos. Water use by Los Alamos County ranged from 872 Mg in 1999 to 1137 Mg in 2000, and averaged 1006 Mg/yr. Four new replacement wells in the Guaje field (G-2A, G-3A, G-4A, and G-5A) were drilled in 1998 and began production in 1999; with existing well G-1A, the Guaje field currently has five producing wells. Five of the old Guaje wells (G-1, G-2, G-4, G-5, and G-6) were plugged and abandoned in 1999, and one well (G-3) was abandoned but remains as an observation well for the Guaje field. The long-term water level observations in production and observation (test) wells at Los Alamos are consistent with the formation of a cone of depression in response to water production. The water level decline is gradual and at most has been about 0.7 to 2 ft per year for production wells and from 0.4 to 0.9 ft/yr for observation (test) wells. The largest water level declines have been in the Guaje field where nonpumping water levels were about 91 ft lower in 2001 than in 1951. The initial water levels of the Guaje replacement wells were 32 to 57 ft lower than the initial water levels of adjacent original Guaje wells. When production wells are taken off-line for pump replacement or repair, water levels have returned to within about 25 ft of initial static levels within 6 to 12 months. Thus, the water-level trends suggest no adverse

  9. After the Resistance: The Alamo Today

    Centers for Disease Control (CDC) Podcasts

    2014-09-23

    Byron Breedlove reads his essay After the Resistance: The Alamo Today about the Alamo and emerging disease resistance.  Created: 9/23/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 10/20/2014.

  10. Sound speed and oscillation frequencies for solar models evolved with Los Alamos ATOMIC opacities

    CERN Document Server

    Guzik, Joyce A; Walczak, P; Wood, S R; Mussack, K; Farag, E

    2016-01-01

    Los Alamos National Laboratory has calculated a new generation of radiative opacities (OPLIB data using the ATOMIC code) for elements with atomic number Z=1-30 with improved physics input, updated atomic data, and finer temperature grid to replace the Los Alamos LEDCOP opacities released in the year 2000. We calculate the evolution of standard solar models including these new opacities, and compare with models evolved using the Lawrence Livermore National Laboratory OPAL (Iglesias and Rogers 1996) opacities. We use the solar abundance mixture of Asplund et al. (2009). The new Los Alamos ATOMIC opacities have steeper opacity derivatives than those of OPAL for temperatures and densities of the solar interior radiative zone. We compare the calculated nonadiabatic solar oscillation frequencies and solar interior sound speed to observed frequencies and helioseismic inferences. The calculated sound-speed profiles are similar for models evolved using either the updated Iben evolution code (see \\cite{Guzik2010}), or ...

  11. Oak Ridge National Laboratory Institutional Plan, FY 1995--FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years (1995-2000). Included in this report are the: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; and resource projections.

  12. The case for National Environmental Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    1970-02-01

    We suggest the establishment of several large generalized National Environmental Laboratories (NELs), each containing interacting groups of natural and social scientists, engineers, and information specialists. The field of action is the whole environment, both urban and rural, both present and future. By their organization and outlook, NELs would take a different cut across the fabric of environmental problems than has been possible hitherto. However, we must realize that NELs will not per se create instant Paradise; all we propose are instrumentalities designed to match the true scope of problems and perhaps stimulate a willing and charitable spirit. The tasks hitherto separately considered -- the retrospective ones of restoring and preserving the environment and the prospective one of future technology assessment -- are joined in NELS, because (1) environmental restoration and preservation involve prior and present technology decisions; assessment of future technology is the forward equivalent; (2) one of the activities tends to be conservationist, the other expansionist, and the two provide useful balance. We believe that these structures and roles are what is really required to implement both the recommendations of the National Academy of Sciences Panel on Technology Assessment, and the requirements implicit in the National Environmental Policy Act.

  13. The Los Alamos Space Science Outreach (LASSO) Program

    Science.gov (United States)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  14. Request for Information from entities interested in commercializing Laboratory-developed advanced in vitro assessment technology

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Miranda Huang [Los Alamos National Laboratory

    2016-03-30

    Los Alamos National Security, LLC (LANS) is the manager and operator of Los Alamos National Laboratory (Los Alamos) for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52- 06NA25396. Los Alamos is a mission-centric Federally Funded Research and Development Center focused on solving critical national security challenges through science and engineering for both government and private customers. LANS is opening this formal Request for Information (RFI) to gauge interest in engaging as an industry partner to LANS for collaboration in advancing the bio-assessment platform described below. Please see last section for details on submitting a Letter of Interest.

  15. Adaptive Optics at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gavel, D T

    2003-03-10

    Adaptive optics enables high resolution imaging through the atmospheric by correcting for the turbulent air's aberrations to the light waves passing through it. The Lawrence Livermore National Laboratory for a number of years has been at the forefront of applying adaptive optics technology to astronomy on the world's largest astronomical telescopes, in particular at the Keck 10-meter telescope on Mauna Kea, Hawaii. The technology includes the development of high-speed electrically driven deformable mirrors, high-speed low-noise CCD sensors, and real-time wavefront reconstruction and control hardware. Adaptive optics finds applications in many other areas where light beams pass through aberrating media and must be corrected to maintain diffraction-limited performance. We describe systems and results in astronomy, medicine (vision science), and horizontal path imaging, all active programs in our group.

  16. Fleet Tools; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-04-01

    From beverage distributors to shipping companies and federal agencies, industry leaders turn to the National Renewable Energy Laboratory (NREL) to help green their fleet operations. Cost, efficiency, and reliability are top priorities for fleets, and NREL partners know the lab’s portfolio of tools can pinpoint fuel efficiency and emissions-reduction strategies that also support operational the bottom line. NREL is one of the nation’s foremost leaders in medium- and heavy-duty vehicle research and development (R&D) and the go-to source for credible, validated transportation data. NREL developers have drawn on this expertise to create tools grounded in the real-world experiences of commercial and government fleets. Operators can use this comprehensive set of technology- and fuel-neutral tools to explore and analyze equipment and practices, energy-saving strategies, and other operational variables to ensure meaningful performance, financial, and environmental benefits.

  17. Push technology at Argonne National Laboratory.

    Energy Technology Data Exchange (ETDEWEB)

    Noel, R. E.; Woell, Y. N.

    1999-04-06

    Selective dissemination of information (SDI) services, also referred to as current awareness searches, are usually provided by periodically running computer programs (personal profiles) against a cumulative database or databases. This concept of pushing relevant content to users has long been integral to librarianship. Librarians traditionally turned to information companies to implement these searches for their users in business, academia, and the science community. This paper describes how a push technology was implemented on a large scale for scientists and engineers at Argonne National Laboratory, explains some of the challenges to designers/maintainers, and identifies the positive effects that SDI seems to be having on users. Argonne purchases the Institute for Scientific Information (ISI) Current Contents data (all subject areas except Humanities), and scientists no longer need to turn to outside companies for reliable SDI service. Argonne's database and its customized services are known as ACCESS (Argonne-University of Chicago Current Contents Electronic Search Service).

  18. Idaho National Laboratory Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Joanne L. Knight

    2008-04-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  19. Idaho National Laboratory Site Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Joanne L. Knight

    2010-10-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  20. Idaho National Laboratory Quarterly Occurrence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 85 reportable events (18 from the 4th Qtr FY-15 and 67 from the prior three reporting quarters), as well as 25 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (8 from this quarter and 17 from the prior three quarters).

  1. Idaho National Laboratory Site Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Joanne L. Knight

    2012-08-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  2. Idaho National Laboratory Quarterly Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INL from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.

  3. Los Alamos neutron science user facility - control system risk mitigation & updates

    Energy Technology Data Exchange (ETDEWEB)

    Pieck, Martin [Los Alamos National Laboratory

    2011-01-05

    LANSCE User Facility is seeing continuing support and investments. The investment will sustain reliable facility operations well into the next decade. As a result, the LANSCE User Facility will continue to be a premier Neutron Science Facility at the Los Alamos National Laboratory.

  4. Idaho National Laboratory Site Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Jenifer Nordstrom

    2014-02-01

    This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Nonroutine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

  5. Brookhaven National Laboratory site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, G.L.; Paquette, D.E.; Naidu, J.R.; Lee, R.J.; Briggs, S.L.K.

    1998-01-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1996. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and non-radiological emissions and effluents to the environment.

  6. Power source evaluation capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  7. Environmental surveillance and compliance at Los Alamos during 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report presents environmental data that characterize environmental performance and addresses compliance with environmental standards and requirements at Los Alamos National Laboratory (LANL or the Laboratory) during 1996. The Laboratory routinely monitors for radiation and for radioactive nonradioactive materials at Laboratory sites as well as in the surrounding region. LANL uses the monitoring results to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1996 to assess external penetrating radiation; quantities of airborne emissions; and concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, the municipal water supply, soils and sediments, and foodstuffs. Using comparisons with standards and regulations, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, Laboratory employees, or the environment. Laboratory operations were in compliance with all major environmental regulations.

  8. Oak Ridge National Laboratory institutional plan, FY 1996--FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years. Included in the report are: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory strategic plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; resource projections; appendix which contains data for site and facilities, user facility, science and mathematic education and human resources; and laboratory organization chart.

  9. Lawrence Livermore National Laboratory Environmental Report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H E; Bertoldo, N A; Campbell, C G; Cerruti, S J; Coty, J D; Dibley, V R; Doman, J L; Grayson, A R; MacQueen, D H; Wegrecki, A M; Armstrong, D H; Brigdon, S L; Heidecker, K R; Hollister, R K; Khan, H N; Lee, G S; Nelson, J C; Paterson, L E; Salvo, V J; Schwartz, W W; Terusaki, S H; Wilson, K R; Woods, J M; Yimbo, P O; Gallegos, G M; Terrill, A A; Revelli, M A; Rosene, C A; Blake, R G; Woollett, J S; Kumamoto, G

    2011-09-14

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff

  10. Environmental surveillance at Los Alamos during 2009

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poff, Ben [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hjeresen, Denny [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Isaacson, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Scot [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morgan, Terry [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Paulson, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Salzman, Sonja [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2010-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2009. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (air in Chapter 4; water and sediments in Chapters 5 and 6; soils in Chapter 7; and foodstuffs and biota in Chapter 8) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. The new Chapter 10 describes the Laboratory’s environmental stewardship efforts and provides an overview of the health of the Rio Grande. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory’s technical

  11. Environmental surveillance at Los Alamos during 2008

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gallagher, Pat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hjeresen, Denny [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Isaacson, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johson, Scot [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morgan, Terry [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Paulson, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2009-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Programs Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information.

  12. A study of bat populations at Los Alamos National Laboratory and Bandelier National Monument, Jemez Mountains, New Mexico: FY95--97 report to Los Alamos National Laboratory and Bandelier National Monument

    Energy Technology Data Exchange (ETDEWEB)

    Bogan, M.A.; O`Shea, T.J.; Cryan, P.M.; Ditto, A.M.; Schaedla, W.H.; Valdez, E.W.; Castle, K.T.; Ellison, L. [Univ. of New Mexico, Albuquerque, NM (United States)

    1998-12-31

    In 1995, a three-year study was initiated to assess the current status of bat species of concern, elucidate distribution and relative abundance, and obtain information on roosting sites of bats. The authors captured and released 1532 bats of 15 species (Myotis californicus, M. ciliolabrum, M. evotis, M. thysanodes, M. volans, M. yumanensis, Lasiurus cinereus, Lasionycteris noctivagans, Pipistrellus hesperus, Eptesicus fuscus, Euderma maculatum, Corynorhinus townsendii, Antrozous pallidus, Tadarida brasiliensis, and Nyctinomops macrotis) and followed 32 bats of eight species (M. evotis, M. thysanodes, M. volans, E. fuscus, E. maculatum, C. townsendii, A. pallidus, and N. macrotis) to 51 active diurnal roosts. The most abundant species were L. noctivagans, E. fuscus, L. cinereus, M. evotis, M. volans, and M. ciliolabrum. Most of these species are typical inhabitants of ponderosa pine-mixed coniferous forests.

  13. Nanosatellite program at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, D.A.; Kern, J.P.; Schoeneman, J.L.

    1999-11-11

    The concept of building extremely small satellites which, either independently or as a collective, can perform missions which are comparable to their much larger cousins, has fascinated scientists and engineers for several years now. In addition to the now commonplace microelectronic integrated circuits, the more recent advent of technologies such as photonic integrated circuits (PIC's) and micro-electromechanical systems (MEMS) have placed such a goal within their grasp. Key to the acceptance of this technology will be the ability to manufacture these very small satellites in quantity without sacrificing their performance or versatility. In support of its nuclear treaty verification, proliferation monitoring and other remote sensing missions, Sandia National laboratories has had a 35-year history of providing highly capable systems, densely packaged for unintrusive piggyback missions on government satellites. As monitoring requirements have become more challenging and remote sensing technologies become more sophisticated, packaging greater capability into these systems has become a requirement. Likewise, dwindling budgets are pushing satellite programs toward smaller and smaller platforms, reinforcing the need for smaller, cheaper satellite systems. In the next step of its miniaturization plan, Sandia has begun development of technologies for a highly integrated miniature satellite. The focus of this development is to achieve nanosat or smaller dimensions while maintaining significant capability utilizing semiconductor wafer-level integration and, at the same time promoting affordability through modular generic construction.

  14. Geothermal materials development at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E. [Brookhaven National Lab., Upton, NY (United States)

    1997-12-31

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R&D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O&M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R&D, most of which is performed as cost-shared efforts with U.S. geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  15. Sandia National Laboratories Medical Isotope Reactor concept.

    Energy Technology Data Exchange (ETDEWEB)

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-04-01

    This report describes the Sandia National Laboratories Medical Isotope Reactor and hot cell facility concepts. The reactor proposed is designed to be capable of producing 100% of the U.S. demand for the medical isotope {sup 99}Mo. The concept is novel in that the fuel for the reactor and the targets for the {sup 99}Mo production are the same. There is no driver core required. The fuel pins that are in the reactor core are processed on a 7 to 21 day irradiation cycle. The fuel is low enriched uranium oxide enriched to less than 20% {sup 235}U. The fuel pins are approximately 1 cm in diameter and 30 to 40 cm in height, clad with Zircaloy (zirconium alloy). Approximately 90 to 150 fuel pins are arranged in the core in a water pool {approx}30 ft deep. The reactor power level is 1 to 2 MW. The reactor concept is a simple design that is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days. The fuel fabrication, reactor design and operation, and {sup 99}Mo production processing use well-developed technologies that minimize the technological and licensing risks. There are no impediments that prevent this type of reactor, along with its collocated hot cell facility, from being designed, fabricated, and licensed today.

  16. Transportation Deployment; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    Automakers, commercial fleet operators, component manufacturers, and government agencies all turn to the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) to help put more green vehicles on the road. The lab’s independent analysis and evaluation pinpoint fuel-efficient and low-emission strategies to support economic and operational goals, while breaking down barriers to widespread adoption. Customized assessment of existing equipment and practices, energy-saving alternatives, operational considerations, and marketplace realities factor in the multitude of variables needed to ensure meaningful performance, financial, and environmental benefits. NREL provides integrated, unbiased, 360-degree sustainable transportation deployment expertise encompassing alternative fuels, advanced vehicles, and related infrastructure. Hands-on support comes from technical experts experienced in advanced vehicle technologies, fleet operations, and field data collection coupled with extensive modeling and analysis capabilities. The lab’s research team works closely with automakers and vehicle equipment manufacturers to test, analyze, develop, and evaluate high-performance fuel-efficient technologies that meet marketplace needs.

  17. Geothermal materials development at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E.

    1997-06-01

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R and D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O and M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R and D, most of which is performed as cost-shared efforts with US geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  18. ELECTRONICS UPGRADE TO THE SAVANNAH RIVER NATIONAL LABORATORY COULOMETER FOR PLUTONIUM AND NEPTUNIUM ASSAY

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, J.; Holland, M.; Reeves, G.; Nichols, S.; Kruzner, A.

    2011-07-08

    The Savannah River Site (SRS) has the analytical measurement capability to perform high-precision plutonium concentration measurements by controlled-potential coulometry. State-of-the-art controlled-potential coulometers were designed and fabricated by the Savannah River National Laboratory and installed in the Analytical Laboratories process control laboratory. The Analytical Laboratories uses coulometry for routine accountability measurements of and for verification of standard preparations used to calibrate other plutonium measurement systems routinely applied to process control, nuclear safety, and other accountability applications. The SRNL Coulometer has a demonstrated measurement reliability of {approx}0.05% for 10 mg samples. The system has also been applied to the characterization of neptunium standard solutions with a comparable reliability. The SRNL coulometer features: a patented current integration system; continuous electrical calibration versus Faraday's Constants and Ohm's Law; the control-potential adjustment technique for enhanced application of the Nernst Equation; a wide operating room temperature range; and a fully automated instrument control and data acquisition capability. Systems have been supplied to the International Atomic Energy Agency (IAEA), Russia, Japanese Atomic Energy Agency (JAEA) and the New Brunswick Laboratory (NBL). The most recent vintage of electronics was based on early 1990's integrated circuits. Many of the components are no longer available. At the request of the IAEA and the Department of State, SRNL has completed an electronics upgrade of their controlled-potential coulometer design. Three systems have built with the new design, one for the IAEA which was installed at SAL in May 2011, one system for Los Alamos National Laboratory, (LANL) and one for the SRS Analytical Laboratory. The LANL and SRS systems are undergoing startup testing with installation scheduled for this summer.

  19. Final Report National Laboratory Professional Development Workshop for Underrepresented Participants

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Valerie [Texas Engineering Experiment Station, College Station, TX (United States)

    2016-11-07

    The 2013 CMD-IT National Laboratories Professional Development Workshop for Underrepresented Participants (CMD-IT NLPDev 2013) was held at the Oak Ridge National Laboratory campus in Oak Ridge, TN. from June 13 - 14, 2013. Sponsored by the Department of Energy (DOE) Advanced Scientific Computing Research Program, the primary goal of these workshops is to provide information about career opportunities in computational science at the various national laboratories and to mentor the underrepresented participants through community building and expert presentations focused on career success. This second annual workshop offered sessions to facilitate career advancement and, in particular, the strategies and resources needed to be successful at the national laboratories.

  20. Partnering at the National Laboratories: Catalysis as a Case Study

    Energy Technology Data Exchange (ETDEWEB)

    JACKSON,NANCY B.

    1999-09-14

    The role of the national laboratories, particularly the defense program laboratories, since the end of the cold war, has been a topic of continuing debate. The relationship of national laboratories to industry spurred debate which ranged from designating the labs as instrumental to maintaining U.S. economic competitiveness to concern over the perception of corporate welfare to questions regarding the industrial globalization and the possibility of U.S. taxpayer dollars supporting foreign entities. Less debated, but equally important, has been the national laboratories' potential competition with academia for federal research dollars and discussions detailing the role of each in the national research enterprise.

  1. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Todd Randall [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Virginia Latta [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  2. The decade of innovation: Los Alamos, Livermore, and national security decision making in the 1950s. Workshop executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Greb, G.A. [Maryland Univ., College Park, MD (United States). School of Public Affairs; Adkins, K. [Los Alamos National Lab., NM (United States)

    1994-06-15

    This report discusses the following topics; establishment and growth of the laboratories and the struggle for Livermore; technology and weapons development; and challenges to unbridled technological development--the laboratories and arms control.

  3. Los Alamos Air Monitoring Data Related to the Fukushima Daiichi Reactor

    Energy Technology Data Exchange (ETDEWEB)

    McNaughton, Michael [Los Alamos National Laboratory

    2011-01-01

    In response to the disasters in Japan on March 11, 2011, Los Alamos National Laboratory (LANL) is collecting air data and analyzing the data for fission products. At present, we report preliminary data from three high-volume air samplers and one stack sampler. Iodine-131 (I-131) is not optimally measured by our standard polypropylene filters. In addition to the filter data, we have one measurement obtained from a charcoal cartridge. These data, together with measurements of other radionuclides are adequate for a preliminary assessment and assure us that radionuclides from Fukushima Daiichi do not present a threat to human health at or near Los Alamos.

  4. Los Alamos Controlled Air Incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Neuls, A.S.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.; Warner, C.L.

    1982-08-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawing, specifications, calculations, and costs. It aids duplication of the process at other facilities.

  5. Concentration Ratios for Cesium and Strontium in Produce Near Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    S. Salazar, M.McNaughton, P.R. Fresquez

    2006-03-01

    The ratios of the concentrations of radionuclides in produce (fruits, vegetables, and grains) to the concentrations in the soil have been measured for cesium and strontium at locations near Los Alamos. The Soil, Foodstuffs, and Biota Team of the Meteorology and Air Quality Group of the Los Alamos National Laboratory (LANL) obtained the data at locations within a radius of 50 miles of LANL. The concentration ratios are in good agreement with previous measurements: 0.01 to 0.06 for cesium-137 and 0.1 to 0.5 for strontium-90 (wet-weight basis).

  6. 60 Years of Great Science (Oak Ridge National Laboratory)

    Science.gov (United States)

    2003-01-01

    This issue of Oak Ridge National Laboratory Review (vol. 36, issue 1) highlights Oak Ridge National Laboratory's contributions in more than 30 areas of research and related activities during the past 60 years and provides glimpses of current activities that are carrying on this heritage.

  7. Annual Report on the State of the DOE National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-01-01

    This first Annual Report to Congress on the State of the DOE National Laboratories provides a comprehensive overview of the Lab system, covering S&T programs, management and strategic planning. The Department committed to prepare this report in response to recommendations from the Congressionally mandated Commission to Review the Effectiveness of the National Energy Laboratories (CRENEL) that the Department should better communicate the value that the Laboratories provide to the Nation. We expect that future annual reports will be much more compact, building on the extensive description of the Laboratories and of the governance structures that are part of this first report.

  8. National Bio-fuel Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jezierski, Kelly [NextEnergy Center, Detroit, MI (United States)

    2010-12-27

    The National Biofuel Energy Laboratory or NBEL was a consortia consisting of non-profits, universities, industry, and OEM’s. NextEnergy Center (NEC) in Detroit, Michigan was the prime with Wayne State University as the primary subcontractor. Other partners included: Art Van Furniture; Biodiesel Industries Inc. (BDI); Bosch; Clean Emission Fluids (CEF); Delphi; Oakland University; U.S. TARDEC (The Army); and later Cummins Bridgeway. The program was awarded to NextEnergy by U.S. DOE-NREL on July 1, 2005. The period of performance was about five (5) years, ending June 30, 2010. This program was executed in two phases: 1.Phase I focused on bench-scale R&D and performance-property-relationships. 2.Phase II expanded those efforts into further engine testing, emissions testing, and on-road fleet testing of biodiesel using additional types of feedstock (i.e., corn, and choice white grease based). NextEnergy – a non-profit 501(c)(3) organization based in Detroit was originally awarded a $1.9 million grant from the U.S. Dept. of Energy for Phase I of the NBEL program. A few years later, NextEnergy and its partners received an additional $1.9MM in DOE funding to complete Phase II. The NBEL funding was completely exhausted by the program end date of June 30, 2010 and the cost share commitment of 20% minimum has been exceeded nearly two times over. As a result of the work performed by the NBEL consortia, the following successes were realized: 1.Over one hundred publications and presentations have been delivered by the NBEL consortia, including but not limited to: R&D efforts on algae-based biodiesel, novel heterogeneous catalysis, biodiesel properties from a vast array of feedstock blends, cold flow properties, engine testing results (several Society of Automotive Engineers [SAE] papers have been published on this research), emissions testing results, and market quality survey results. 2.One new spinoff company (NextCAT) was formed by two WSU Chemical Engineering professors

  9. Idaho National Laboratory Site Pollution Prevention Plan

    Energy Technology Data Exchange (ETDEWEB)

    E. D. Sellers

    2007-03-01

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively

  10. Californium Electrodepositions at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boll, Rose Ann [ORNL

    2015-01-01

    Electrodepositions of californium isotopes were successfully performed at Oak Ridge National Laboratory (ORNL) during the past year involving two different types of deposition solutions, ammonium acetate (NH4C2H3O2) and isobutanol ((CH3)2CHCH2OH). A californium product that was decay enriched in 251Cf was recovered for use in super-heavy element (SHE) research. This neutron-rich isotope, 251Cf, provides target material for SHE research for the potential discovery of heavier isotopes of Z=118. The californium material was recovered from aged 252Cf neutron sources in storage at ORNL. These sources have decayed for over 30 years, thus providing material with a very high 251Cf-to-252Cf ratio. After the source capsules were opened, the californium was purified and then electrodeposited using the isobutanol method onto thin titanium foils for use in an accelerator at the Joint Institute for Nuclear Research in Dubna, Russia. Another deposition method, ammonium acetate, was used to produce a deposition containing 1.7 0.1 Ci of 252Cf onto a stainless steel substrate. This was the largest single electrodeposition of 252Cf ever prepared. The 252Cf material was initially purified using traditional ion exchange media, such as AG50-AHIB and AG50-HCl, and further purified using a TEVA-NH4SCN system to remove any lanthanides, resulting in the recovery of 3.6 0.1 mg of purified 252Cf. The ammonium acetate deposition was run with a current of 1.0 amp, resulting in a 91.5% deposition yield. Purification and handling of the highly radioactive californium material created additional challenges in the production of these sources.

  11. Pacific Northwest National Laboratory Institutional Plan FY 2004-2008

    Energy Technology Data Exchange (ETDEWEB)

    Quadrel, Marilyn J.

    2004-04-15

    This Institutional Plan for FY 2004-2008 is the principal annual planning document submitted to the Department of Energy's Office of Science by Pacific Northwest National Laboratory in Richland, Washington. This plan describes the Laboratory's mission, roles, and technical capabilities in support of Department of Energy priorities, missions, and plans. It also describes the Laboratory strategic plan, key planning assumptions, major research initiatives, and program strategy for fundamental science, energy resources, environmental quality, and national security.

  12. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.

    2000-10-01

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure success in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.

  13. Establishment of national laboratory standards in public and private hospital laboratories.

    Science.gov (United States)

    Anjarani, Soghra; Safadel, Nooshafarin; Dahim, Parisa; Amini, Rana; Mahdavi, Saeed; Mirab Samiee, Siamak

    2013-01-01

    In September 2007 national standard manual was finalized and officially announced as the minimal quality requirements for all medical laboratories in the country. Apart from auditing laboratories, Reference Health Laboratory has performed benchmarking auditing of medical laboratory network (surveys) in provinces. 12(th) benchmarks performed in Tehran and Alborz provinces, Iran in 2010 in three stages. We tried to compare different processes, their quality and accordance with national standard measures between public and private hospital laboratories. The assessment tool was a standardized checklist consists of 164 questions. Analyzing process show although in most cases implementing the standard requirements are more prominent in private laboratories, there is still a long way to complete fulfillment of requirements, and it takes a lot of effort. Differences between laboratories in public and private sectors especially in laboratory personnel and management process are significant. Probably lack of motivation, plays a key role in obtaining less desirable results in laboratories in public sectors.

  14. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  15. Ambient air monitoring during the 2011 Las Conchas wildland fire near Los Alamos, U.S.A.

    Energy Technology Data Exchange (ETDEWEB)

    Green, Andrew A. [Los Alamos National Laboratory; Schlemann, Shea A. [Los Alamos Technical Associates; Young, Daniel L. [Los Alamos National Laboratory

    2012-08-31

    Air monitoring data collected during the Las Conchas fire near the Los Alamos National Laboratory during 2011 are presented. Data included are for selected radionuclides and selected metals found in particulate matter. None of these analytes were seen at levels which exceeded any state or federal standards.

  16. Result of China National Accreditation for Laboratories Achieving Good Credit

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ With the efforts of the past 10 years, the accreditation system for laboratories, which is complete in range, integrate on function and normative on operation, has been set up in China, and has achieved good reputation home and abroad. The result of laboratories accreditation is widely admitted and used in the international. Since the China national accreditation system for laboratories entering the international multilateral mutual recognition arrangement, the accreditation for laboratories has been playing an increasingly important role in the international trade. The testing result provided by the accreditation laboratories is required by many international-famous enterprises when they purchase in China, and there have been 37 economic systems admitting the result of China national accreditation for laboratories. More and more governmental departments require using accreditation for laboratories in the administrative management and law enforcement.

  17. Auditing nuclear weapons quality programs at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.H.

    1988-01-01

    Some of the problems involved in introducing quality assurance on a broad scale in a national laboratory are discussed. A philosophy of how QA can be utilized beneficially in research and development activities is described briefly, and our experiences at Los Alamos in applying QA to nuclear weapons activities are outlines. The important role of audits is emphasized; audits are used not merely to determine the effectiveness of QA programs but also to explain and demonstrate the usefulness of QA to a generally sceptical body of engineers and scientists. Finally, some ways of easing the application of QA in the future are proposed. 1 ref.

  18. Environmental surveillance at Los Alamos during 1991. Environmental protection group

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, J.; Kohen, K.L. [comps.

    1993-08-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1991. Routine monitoring for radiation and for radioactive and chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1991 cover external penetrating radiation; quantities of airborne emissions and effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are small and do not pose a threat to the public, Laboratory employees, or the environment.

  19. Argonne National Laboratory research offers clues to Alzheimer's plaques

    CERN Multimedia

    2003-01-01

    Researchers from Argonne National Laboratory and the University of Chicago have developed methods to directly observe the structure and growth of microscopic filaments that form the characteristic plaques found in the brains of those with Alzheimer's Disease (1 page).

  20. Former Fermilab boss to lead Lawrence Berkeley National Laboratory

    Science.gov (United States)

    Gwynne, Peter

    2016-03-01

    Particle physicist Michael Witherell - current vice-chancellor for research at the University of California, Santa Barbara (UCSB) - has been appointed the next director of the Lawrence Berkeley National Laboratory (LBL).

  1. 1993 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Culp, T.A.; Cheng, C.F.; Cox, W.; Durand, N.; Irwin, M.; Jones, A.; Lauffer, F.; Lincoln, M.; McClellan, Y.; Molley, K. [and others

    1994-11-01

    This 1993 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0016 millirem. The total population within a 50-mile (80 kilometer) radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.027 person-rem during 1993 from the laboratories operations, As in the previous year, the 1993 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1.

  2. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Culp, T.; Cox, W.; Hwang, H.; Irwin, M.; Jones, A.; Matz, B.; Molley, K.; Rhodes, W.; Stermer, D.; Wolff, T.

    1993-09-01

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories` operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment.

  3. High-temperature superconductor applications development at Argonne National Laboratory

    Science.gov (United States)

    Hull, J. R.; Poeppel, R. B.

    1992-02-01

    Developments at Argonne National Laboratory of near and intermediate term applications using high-temperature superconductors are discussed. Near-term applications of liquid-nitrogen depth sensors, current leads, and magnetic bearings are discussed in detail.

  4. 60 years of great science [Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-01-01

    This issue highlights Oak Ridge National Laboratory's contributions in more than 30 areas of research and related activities during the past 60 years and provides glimpses of current activities that are carrying on this heritage.

  5. NATIONAL ENVIRONMENTAL LABORATORY ACCREDITATION CONFERENCE (NELAC): CONSTITUTION, BYLAWS, AND STANDARDS

    Science.gov (United States)

    The principles and operating procedures for the National Environmental Laboratory Accreditation Conference (NELAC) are contained in the NELAC Constitution and Bylaws. The major portion of this document (standards) contains detailed requirements for accrediting environmental labo...

  6. Ice Cores of the National Ice Core Laboratory

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. National Ice Core Laboratory (NICL) is a facility for storing, curating, and studying ice cores recovered from the polar regions of the world. It provides...

  7. 2020 Foresight Forging the Future of Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, P.

    2000-01-01

    The Lawrence Livermore National Laboratory (LLNL) of 2020 will look much different from the LLNL of today and vastly different from how it looked twenty years ago. We, the members of the Long-Range Strategy Project, envision a Laboratory not defined by one program--nuclear weapons research--but by several core programs related to or synergistic with LLNL's national security mission. We expect the Laboratory to be fully engaged with sponsors and the local community and closely partnering with other research and development (R&D) organizations and academia. Unclassified work will be a vital part of the Laboratory of 2020 and will visibly demonstrate LLNL's international science and technology strengths. We firmly believe that there will be a critical and continuing role for the Laboratory. As a dynamic and versatile multipurpose laboratory with a national security focus, LLNL will be applying its capabilities in science and technology to meet the needs of the nation in the 21st century. With strategic investments in science, outstanding technical capabilities, and effective relationships, the Laboratory will, we believe, continue to play a key role in securing the nation's future.

  8. Feed additives : annual report 2012 of the National Reference Laboratory

    NARCIS (Netherlands)

    Driessen, J.J.M.; Beek, W.M.J.; Zuidema, T.; Jong, de J.

    2013-01-01

    This report of the Dutch National Reference Laboratory (NRL) for feed additives (RIKILT Wageningen UR) descreibes the activities employed in 2012. The main tasks of the NRL are: providing assistance to the European Union Reference Laboratory (EURL) on their request, as well as providing advice and s

  9. Partnering with Sandia National Laboratories through alliances or consortia

    Energy Technology Data Exchange (ETDEWEB)

    Winchell, B.M.

    1994-12-01

    To better facilitate working with industry, groups of industrial participants, and partners in alliances or consortia, Sandia National Laboratories presents information helpful to those outside groups as to the forms of arrangements that may be used to better facilitate partnering relationships between Sandia National Laboratories and consortia or alliances of outside parties. It is expected that these alliances and consortia will include both large and small for-profit industrial concerns, as well as not-for-profit entities such as universities, institutes, other research facilities, and other nonprofit institutions or consortia containing institutions. The intent of this report is to provide such outside groups with information that will facilitate rapid interactions with Sandia National Laboratories through some of these forms of business which will be discussed in this report. These are not the only approaches to facilitating business interactions with Sandia National Laboratories and it is not intended that this report be legal advice or required approaches to doing business with Sandia National Laboratories. The intent of this report is merely to suggest ways in which Sandia National Laboratories can work with outside parties in the most expeditious manner.

  10. Partnering with Sandia National Laboratories through alliances or consortia

    Energy Technology Data Exchange (ETDEWEB)

    Winchell, B.M.

    1994-04-01

    To better facilitate working with industry, groups of industrial participants, and partners in alliances or consortia, Sandia National laboratories presents information helpful to those outside groups as to the forms of arrangements that may be used to better facilitate partnering relationships between Sandia National Laboratories and consortia or alliances of outside parties. It is expected that these alliances and consortia will include both large and small for-profit industrial concerns, as well as not-for-profit entities such as universities, institutes, other research facilities, and other nonprofit institutions or consortia containing institutions. The intent of this report is to provide such outside groups with information that will facilitate rapid interactions with Sandia National Laboratories through some of these forms of business which will be discussed in this report. These are not the only approaches to facilitating business interactions with Sandia National Laboratories and it is not intended that this report be legal advice or required approaches to doing business with Sandia National Laboratories. The intent of this report is merely to suggest ways in which Sandia National Laboratories can work with outside parties in the most expeditious manner.

  11. Site environmental report for 2003 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2004-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2003 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2003. General site and environmental program information is also included.

  12. Site environmental report for 2004 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. (Sandia National Laboratories, Livermore, CA)

    2005-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2004 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2004. General site and environmental program information is also included.

  13. Site environmental report for 2008 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2009-04-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2008 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2008. General site and environmental program information is also included.

  14. National Renewable Energy Laboratory: 35 Years of Innovation (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    This brochure is an overview of NREL's innovations over the last 35 years. It includes the lab's history and a description of the laboratory of the future. The National Renewable Energy Laboratory (NREL) is the U.S. Department of Energy's (DOE) primary national laboratory for renewable energy and energy efficiency. NREL's work focuses on advancing renewable energy and energy efficiency technologies from concept to the commercial marketplace through industry partnerships. The Alliance for Sustainable Energy, LLC, a partnership between Battelle and MRIGlobal, manages NREL for DOE's Office of Energy Efficiency and Renewable Energy.

  15. Site environmental report for 2006 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2006 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2006. General site and environmental program information is also included.

  16. Site environmental report for 2005 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2006-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2005 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2005. General site and environmental program information is also included.

  17. Site Environmental Report for 2007: Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Environmental Management Dept.

    2008-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2007 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2007. General site and environmental program information is also included.

  18. Site Environmental Report for 2012 Sandia National Laboratories California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2012 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2012. General site and environmental program information is also included.

  19. Site environmental report for 2011. Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2012-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractoroperated laboratory. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2011 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2011. General site and environmental program information is also included.

  20. Nuclear policy impacts at the national laboratories: maintaining the deterrence

    Energy Technology Data Exchange (ETDEWEB)

    Beck, James Bradley [Los Alamos National Laboratory

    2010-08-24

    In this presentation, the author will discuss recent nuclear policy impacts, including the 2010 Nuclear Posture Review, and the impacts they have on maintaining the nuclear deterrent. Specifically, he will highlight some of the remaining questions and challenges that remain to the nation and to the national laboratories. (auth)

  1. 1995 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, L.J.; Duncan, D. [eds.; Sanchez, R.

    1996-09-01

    This 1995 report contains data from routine radiological and non-radiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration and various waste management programs at Sandia National Laboratories in Albuquerque, New Mexico, are included.

  2. Brookhaven National Laboratory site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Paquette, D.E.; Schroeder, G.L. [eds.] [and others

    1996-12-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1995. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment. Areas of known contamination are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement established by the Department of Energy, Environmental Protection Agency and the New York Department of Environmental Conservation. Except for identified areas of soil and groundwater contamination, the environmental monitoring data has continued to demonstrate that compliance was achieved with the applicable environmental laws and regulations governing emission and discharge of materials to the environment. Also, the data show that the environmental impacts at Brookhaven National Laboratory are minimal and pose no threat to the public nor to the environment. This report meets the requirements of Department of Energy Orders 5484.1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

  3. Oak Ridge National Laboratory Review: Volume 24, No. 2, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C. [ed.

    1991-12-31

    The Oak Ridge National Laboratory (ORNL) is a multiprogram, multipurpose laboratory that conducts research in the physical, chemical, and life sciences; in fusion, fission, and fossil energy; and in energy conservation and other energy-related technologies. This review outlines some current endeavors of the lab. A state of the laboratory presentation is given by director, Alvin Trivelpiece. Research of single crystals for welding is described. The Science Alliance, a partnership between ORNL and the University of Tennessee, is chronicled. And several incites into distinguished personnel at the laboratory are given. (GHH)

  4. Oak Ridge National Laboratory Review: Volume 24, No. 2, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C. (ed.)

    1991-01-01

    The Oak Ridge National Laboratory (ORNL) is a multiprogram, multipurpose laboratory that conducts research in the physical, chemical, and life sciences; in fusion, fission, and fossil energy; and in energy conservation and other energy-related technologies. This review outlines some current endeavors of the lab. A state of the laboratory presentation is given by director, Alvin Trivelpiece. Research of single crystals for welding is described. The Science Alliance, a partnership between ORNL and the University of Tennessee, is chronicled. And several incites into distinguished personnel at the laboratory are given. (GHH)

  5. Pacific Northwest National Laboratory Institutional Plan FY 2001-2005

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Darrell R.; Pearson, Erik W.

    2000-12-29

    The Pacific Northwest National Laboratory Institutional Plan for FY 2001-2005 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; managaement procatices and standards; and communications and trust.

  6. Pacific Northwest National Laboratory Institutional Plan FY 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Erik W.

    2000-03-01

    The Pacific Northwest National Laboratory Institutional Plan for FY 2000-2004 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; management practices and standards; and communications and trust.

  7. Pacific Northwest National Laboratory institutional plan FY 1997--2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research fundamental knowledge is created of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. Legacy environmental problems are solved by delivering technologies that remedy existing environmental hazards, today`s environmental needs are addressed with technologies that prevent pollution and minimize waste, and the technical foundation is being laid for tomorrow`s inherently clean energy and industrial processes. Pacific Northwest National Laboratory also applies its capabilities to meet selected national security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. Brief summaries are given of the various tasks being carried out under these broad categories.

  8. Pathfinder radar development at Sandia National Laboratories

    Science.gov (United States)

    Castillo, Steven

    2016-05-01

    Since the invention of Synthetic Aperture Radar imaging in the 1950's, users or potential users have sought to exploit SAR imagery for a variety of applications including the earth sciences and defense. At Sandia Laboratories, SAR Research and Development and associated defense applications grew out of the nuclear weapons program in the 1980's and over the years has become a highly viable ISR sensor for a variety of tactical applications. Sandia SAR systems excel where real-­-time, high-­-resolution, all-­-weather, day or night surveillance is required for developing situational awareness. This presentation will discuss the various aspects of Sandia's airborne ISR capability with respect to issues related to current operational success as well as the future direction of the capability as Sandia seeks to improve the SAR capability it delivers into multiple mission scenarios. Issues discussed include fundamental radar capabilities, advanced exploitation techniques and human-­-computer interface (HMI) challenges that are part of the advances required to maintain Sandia's ability to continue to support ever changing and demanding mission challenges.

  9. Evaluation of Radiometers in Full-Time Use at the National Renewable Energy Laboratory Solar Radiation Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, S. M.; Myers, D. R.

    2008-12-01

    This report describes the evaluation of the relative performance of the complement of solar radiometers deployed at the National Renewable Energy Laboratory (NREL) Solar Radiation Research Laboratory (SRRL).

  10. Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, F. J., Institute of Geophysics and Planetary Physics

    1998-03-23

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, and Riverside, and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the five branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research

  11. Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, F. J., Institute of Geophysics and Planetary Physics

    1998-03-23

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, and Riverside, and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the five branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research

  12. 78 FR 66964 - International Space Station National Laboratory Advisory Committee; Charter Renewal

    Science.gov (United States)

    2013-11-07

    ... SPACE ADMINISTRATION International Space Station National Laboratory Advisory Committee; Charter Renewal... the International Space Station National Laboratory Advisory Committee. SUMMARY: Pursuant to sections... determined that renewal of the charter of the International Space Station National Laboratory...

  13. Environmental Surveillance at Los Alamos during 2007

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information. In printed copies of this report or Executive Summary, we have

  14. Production Potential of 47Sc Using Spallation Neutron Flux at the Los Alamos Isotope Production Facility

    Science.gov (United States)

    2014-03-27

    Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this document are those of the author and do...targets at the Los Alamos National Laboratory ( LANL ) Isotope Production Facility (IPF). Targets were activated for 1 hr using an average proton beam...for 47SC production is the unique neutron flux that results from this unique beam/target structure [8]. 1.3 Summary The remainder of this document is

  15. Integrating the digital library puzzle: The library without walls at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Luce, R. E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    1998-01-01

    Current efforts at the Research Library, Los Alamos National Laboratory (LANL), to develop digital library services are described. A key principle of LANL`s approach to delivering library information is the integration of products into a common interface and the use of the Web as the medium of service provision. Products described include science databases such as the SciSearch at LANL and electronic journals. Project developments described have significant ramifications for delivering library services over the Internet.

  16. Oak Ridge National Laboratory Institutional Plan, FY 1991--FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    The Oak Ridge National Laboratory -- one of DOE's major multiprogram laboratories -- focuses its resources on energy research and development (R D). To be able to meet these R D challenges, the Laboratory must achieve excellence in its operations relative to environmental, safety, and health (ES H) protection and to restore its aging facility infrastructure. ORNL's missions are carried out in compliance with all applicable ES H regulations. The Laboratory conducts applied R D in energy technologies -- in conservation; fission; magnetic fusion; health and environmental protection; waste management; renewable resources; and fossil energy. Experimental and theoretical research is undertaken to investigate fundamental problems in physical, chemical, materials, computational, biomedical, earth, and environmental sciences; to advance scientific knowledge; and to support energy technology R D. ORNL designs, builds, and operates unique research facilities for the benefit of university, industrial, and national laboratory researchers. The Laboratory serves as a catalyst in bringing national and international research elements together for important scientific and technical collaborations. ORNL helps to prepare the scientific and technical work force of the future by offering innovative and varied learning and R D experiences at the Laboratory for students and faculty from preschool level through postdoctoral candidates. The transfer of science and technology to US industries and universities is an integral component of ORNL's R D missions. ORNL also undertakes research and development for non-DOE sponsors when such work is synergistic with DOE mission. 66 figs., 55 tabs.

  17. 76 FR 68179 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Science.gov (United States)

    2011-11-03

    ..., Idaho National Laboratory AGENCY: Department of Energy. ACTION: Notice of open meeting: correction... National Laboratory (76 FR 66917). This document makes a correction to that notice. FOR FURTHER...

  18. 1994 Site Environmental Report Sandia National Laboratories Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, L.J.; Wiggins, T.; White, B.B. [eds.] [and others

    1995-09-01

    This 1994 report contains data from routine radiological and nonradiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum off-site dose impact from air emissions was calculated to be 1.5 x 10{sup -4} millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.012 person-rem during 1994 from the laboratories` operations. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1.

  19. The pressing energy innovation challenge of the US National Laboratories

    Science.gov (United States)

    Anadon, Laura Diaz; Chan, Gabriel; Bin-Nun, Amitai Y.; Narayanamurti, Venkatesh

    2016-10-01

    Accelerating the development and deployment of energy technologies is a pressing challenge. Doing so will require policy reform that improves the efficacy of public research organizations and strengthens the links between public and private innovators. With their US$14 billion annual budget and unique mandates, the US National Laboratories have the potential to critically advance energy innovation, yet reviews of their performance find several areas of weak organizational design. Here, we discuss the challenges the National Laboratories face in engaging the private sector, increasing their contributions to transformative research, and developing culture and management practices to better support innovation. We also offer recommendations for how policymakers can address these challenges.

  20. MEMORANDUM OF UNDERSTANDING between Los Alamos National Laboratory (LANL) and Savannah River National Laboratory (SRNL) for Analytical Chemistry Support for Oxide Production Samples

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, Jane Alexandria [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-01

    This MOU establishes the responsibilities and requirements for the packaging and transport of plutonium dioxide (PuO2) samples for shipment from LANL to SRNL. The scope includes the shipping, packaging, quality assurance (QA), inspection, and documentation requirements to successfully obtain the chemical and isotopic characteristics of the PuO2. The requirements in this document are necessary, but not sufficient to execute this work and do not imply exemption from contractual requirements at either site. This document is not intended to specify all of the processes and procedures necessary to execute this work. This MOU also establishes appropriate requirements, goals, and expectations. Each party will establish a technical point of contact (POC) who will be responsible for addressing issues as they arise

  1. The changing role of the National Laboratories in materials research

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, J.; Fluss, M.

    1995-06-02

    The role of the National Laboratories is summarized from the era of post World War II to the present time. The U.S. federal government policy for the National Laboratories and its influence on their materials science infrastructure is reviewed with respect to: determining overall research strategies, various initiatives to interact with industry (especially in recent years), building facilities that serve the nation, and developing leading edge research in the materials sciences. Despite reductions in support for research in the U.S. in recent years, and uncertainties regarding the specific policies for R&D in the U.S., there are strong roles for materials research at the National Laboratories. These roles will be centered on the abilities of the National Laboratories to field multidisciplinary teams, the use of unique cutting edge facilities, a focus on areas of strength within each of the labs, increased teaming and partnerships, and the selection of motivated research areas. It is hoped that such teaming opportunities will include new alliances with China, in a manner similar, perhaps, to those recently achieved between the U.S. and other countries.

  2. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

  3. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    Science.gov (United States)

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.

  4. Waste management study: Process development at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    This report presents the results of an evaluation of the present Toxic Waste Control Operations at the Lawrence Livermore National Laboratory, evaluates the technologies most applicable to the treatment of toxic and hazardous wastes and presents conceptual designs of processes for the installation of a new decontamination and waste treatment facility (DWTF) for future treatment of these wastes.

  5. Transport Energy Impact Analysis; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.

    2015-05-13

    Presented at the Sustainable Transportation Energy Pathways Spring 2015 Symposium on May 13, 2015, this presentation by Jeff Gonder of the National Renewable Energy Laboratory (NREL) provides information about NREL's transportation energy impact analysis of connected and automated vehicles.

  6. Amchitka Island Environmental Analysis at Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gracy Elias; W. F. Bauer; J.G. Eisenmenger; C.C. Jensen; B.K. Schuetz; T. C. Sorensen; B.M. White; A. L. Freeman; M. E. McIlwain

    2005-08-01

    The Idaho National Laboratory (INL) provided support to Consortium for Risk Evaluation with Stakeholder Participation (CRESP) in their activities which is supported by the Department of Energy (DOE) to assess the impact of past nuclear testing at Amchitka Island on the ecosystemof the island and surrounding ocean. INL participated in this project in three phases, Phase 1, Phase 2 and Phase 3.

  7. List of Selected Publications 1983. Risø National Laboratory

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The list comprises a selection of scientific and technical publications of Risø National Laboratory and its staff during 1983. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply and Supporting...

  8. Successful neural network projects at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, G.A.

    1991-01-01

    This paper presents recent and current projects at the Idaho National Engineering Laboratory (INEL) that research and apply neural network technology. The projects are summarized in the paper and their direct application to space reactor power and propulsion systems activities is discussed. 9 refs., 10 figs., 3 tabs.

  9. Sandia National Laboratories, California Environmental Management System program manual

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  10. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  11. Airbags to Martian Landers: Analyses at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Gwinn, K.W.

    1994-03-01

    A new direction for the national laboratories is to assist US business with research and development, primarily through cooperative research and development agreements (CRADAs). Technology transfer to the private sector has been very successful as over 200 CRADAs are in place at Sandia. Because of these cooperative efforts, technology has evolved into some new areas not commonly associated with the former mission of the national laboratories. An example of this is the analysis of fabric structures. Explicit analyses and expertise in constructing parachutes led to the development of a next generation automobile airbag; which led to the construction, testing, and analysis of the Jet Propulsion Laboratory Mars Environmental Survey Lander; and finally led to the development of CAD based custom garment designs using 3D scanned images of the human body. The structural analysis of these fabric structures is described as well as a more traditional example Sandia with the test/analysis correlation of the impact of a weapon container.

  12. 1980 environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Millard, G.C.; Simmons, T.N.; Gray, C.E.; O' Neal, B.L.

    1981-04-01

    Sandia National Laboratories in Albuquerque is located south of the city on two broad mesas. The local climate is arid continental. Radionuclides are potentially released from five technical areas from the Laboratories' research activities. Sandia's environmental monitoring program searches for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. No activity was found in public areas in excess of that found in local background in 1980. The Albuquerque population receives only 0.11 person-rem (estimated) from airborne radioactive releases. While national security research is the Laboratories' major responsibility, energy research is a major area of activity. Both these research areas cause radioactive releases.

  13. Ergonomic assessments of three Idaho National Engineering Laboratory cafeterias

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, L.T.; Romero, H.A.; Gilbert, B.G.; Wilhelmsen, C.A.

    1993-05-01

    The Idaho National Engineering Laboratory is a Department of Energy facility that performs a variety of engineering and research projects. EG&G Idaho is the prime contractor for the laboratory and, as such, performs the support functions in addition to technical, research, and development functions. As a part of the EG&G Idaho Industrial Hygiene Initiative, ergonomic assessments were conducted at three Idaho National Engineering Laboratory Cafeterias. The purposes of the assessments were to determine whether ergonomic problems existed in the work places and, if so, to make recommendations to improve the work place and task designs. The study showed there were ergonomic problems in all three cafeterias assessed. The primary ergonomic stresses observed included wrist and shoulder stress in the dish washing task, postural stress in the dish washing and food preparation tasks, and back stress in the food handling tasks.

  14. Ergonomic assessments of three Idaho National Engineering Laboratory cafeterias

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, L.T.; Romero, H.A.; Gilbert, B.G.; Wilhelmsen, C.A.

    1993-01-01

    The Idaho National Engineering Laboratory is a Department of Energy facility that performs a variety of engineering and research projects. EG G Idaho is the prime contractor for the laboratory and, as such, performs the support functions in addition to technical, research, and development functions. As a part of the EG G Idaho Industrial Hygiene Initiative, ergonomic assessments were conducted at three Idaho National Engineering Laboratory Cafeterias. The purposes of the assessments were to determine whether ergonomic problems existed in the work places and, if so, to make recommendations to improve the work place and task designs. The study showed there were ergonomic problems in all three cafeterias assessed. The primary ergonomic stresses observed included wrist and shoulder stress in the dish washing task, postural stress in the dish washing and food preparation tasks, and back stress in the food handling tasks.

  15. The National Teacher Enhancement Program (K-8) coordinated by the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, C.R.

    1991-01-01

    Teachers need help, not harassment. So do the establishments in which teachers practice their profession. Community resources must be marshalled to provide help to local schools and teachers. In 1990 the National Science Foundation (NSF) established a unique educational activity named the National Teacher Enhancement Program (NTEP). NSF took advantage of the Department of Energy (DOE) sponsored educational programs and resources at several large DOE contractor labs that had had prior experience with DOE supported teacher enhancement programs. While DOE concentrated on teacher enhancement activities for secondary teachers, the NSF concentrated on teachers from grades K-8. The Oak Ridge National Laboratory (ORNL) is the lead organization for both administering and coordinating the grant. Other participating laboratories are Argonne National Laboratory (ANL), Fermi National Accelerator Laboratory (FERMI), Battelle-Pacific Northwest Laboratory (PNL), Lawrence Livermore Laboratory (LLNL) with some support functions provided by Brookhaven National Laboratory (BNL) and the Oak Ridge Associated Universities (ORAU). The program calls for a three week duration workshop to be conducted at each lab followed by in-service training and other activities during the year. The NSF/NTEP protocol calls for networking among the participating organizations and some of the teachers. An assessment effort is also an integral part of the program. 2 refs.

  16. Prototype prosperity-diversity game for the Laboratory Development Division of Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    VanDevender, P.; Berman, M.; Savage, K.

    1996-02-01

    The Prosperity Game conducted for the Laboratory Development Division of National Laboratories on May 24--25, 1995, focused on the individual and organizational autonomy plaguing the Department of Energy (DOE)-Congress-Laboratories` ability to manage the wrenching change of declining budgets. Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Each Prosperity Game is unique in that both the game format and the player contributions vary from game to game. This particular Prosperity Game was played by volunteers from Sandia National Laboratories, Eastman Kodak, IBM, and AT&T. Since the participants fully control the content of the games, the specific outcomes will be different when the team for each laboratory, Congress, DOE, and the Laboratory Operating Board (now Laboratory Operations Board) is composed of executives from those respective organizations. Nevertheless, the strategies and implementing agreements suggest that the Prosperity Games stimulate cooperative behaviors and may permit the executives of the institutions to safely explore the consequences of a family of DOE concert.

  17. Superconductivity program for electric systems, Superconductivity Technology Center, Los Alamos National Laboratory, annual progress report for fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Willis, J.O.; Newnam, B.E. [eds.; Peterson, D.E.

    1999-03-01

    Development of high-temperature superconductors (HTS) has undergone tremendous progress during the past year. Kilometer tape lengths and associated magnets based on BSCCO materials are now commercially available from several industrial partners. Superconducting properties in the exciting YBCO coated conductors continue to be improved over longer lengths. The Superconducting Partnership Initiative (SPI) projects to develop HTS fault current limiters and transmission cables have demonstrated that HTS prototype applications can be produced successfully with properties appropriate for commercial applications. Research and development activities at LANL related to the HTS program for Fiscal Year 1997 are collected in this report. LANL continues to support further development of Bi2223 and Bi2212 tapes in collaboration with American Superconductor Corporation (ASC) and Oxford Superconductivity Technology, Inc. (OSTI), respectively. The tape processing studies involving novel thermal treatments and microstructural characterization have assisted these companies in commercializing these materials. The research on second-generation YBCO-coated conductors produced by pulsed-laser deposition (PLD) over buffer template layers produced by ion beam-assisted deposition (IBAD) continues to lead the world. The applied physics studies of magnetic flux pinning by proton and heavy ion bombardment of BSCCO and YBCO tapes have provided many insights into improving the behavior of these materials in magnetic fields. Sections 4 to 7 of this report contain a list of 29 referred publications and 15 conference abstracts, a list of patent and license activities, and a comprehensive list of collaborative agreements in progress and completed.

  18. Screening level model for ecological risk assessment at EF-Site Los Alamos National Laboratory, New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alldredge, A.W.; Kirchner, T.B.; McLendon, T. [and others

    1995-12-01

    In response to a paucity of data on the chemical toxicity of uranium to plants, a factorial experiment employing five uranium concentrations (0, 50, 500, 5000, 25000 ppm) and three moisture regimes (low, medium, high) was performed using three native grasses. Buchloe dactyloides (buffalograss-mid/late seral), Schizachyrium scoparium (little bluestem-late seral), and Aristida longiseta (purple threeawn-early/mid seral) were grown in monocultures and every mixture of two species under all combinations of uranium and moisture levels. This design allows for the analysis of uranium effects, as well as possible compound effects due to moisture stress. Several measures of plant health and viability were made, including: percent emergence, survivability of seedlings and mature plants, root and shoot biomass, and the number and mass of inflorescences. No significant differences between uranium levels were observed in terms of emergence and seedling survival. Effects are evident for plant biomass, fecundity, and long-term survivability.

  19. The application of formal software engineering methods to the unattended and remote monitoring software suite at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Determan, John Clifford [Los Alamos National Laboratory; Longo, Joseph F [Los Alamos National Laboratory; Michel, Kelly D [Los Alamos National Laboratory

    2009-01-01

    The Unattended and Remote Monitoring (UNARM) system is a collection of specialized hardware and software used by the International Atomic Energy Agency (IAEA) to institute nuclear safeguards at many nuclear facilities around the world. The hardware consists of detectors, instruments, and networked computers for acquiring various forms of data, including but not limited to radiation data, global position coordinates, camera images, isotopic data, and operator declarations. The software provides two primary functions: the secure and reliable collection of this data from the instruments and the ability to perform an integrated review and analysis of the disparate data sources. Several years ago the team responsible for maintaining the software portion of the UNARM system began the process of formalizing its operations. These formal operations include a configuration management system, a change control board, an issue tracking system, and extensive formal testing, for both functionality and reliability. Functionality is tested with formal test cases chosen to fully represent the data types and methods of analysis that will be commonly encountered. Reliability is tested with iterative, concurrent testing where up to five analyses are executed simultaneously for thousands of cycles. Iterative concurrent testing helps ensure that there are no resource conflicts or leaks when multiple system components are in use simultaneously. The goal of this work is to provide a high quality, reliable product, commensurate with the criticality of the application. Testing results will be presented that demonstrate that this goal has been achieved and the impact of the introduction of a formal software engineering framework to the UNARM product will be presented.

  20. Los Alamos National Security, LLC Request for Information on how industry may partner with the Laboratory on KIVA software.

    Energy Technology Data Exchange (ETDEWEB)

    Mcdonald, Kathleen Herrera [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    KIVA is a family of Fortran-based computational fluid dynamics software developed by LANL. The software predicts complex fuel and air flows as well as ignition, combustion, and pollutant-formation processes in engines. The KIVA models have been used to understand combustion chemistry processes, such as auto-ignition of fuels, and to optimize diesel engines for high efficiency and low emissions. Fuel economy is heavily dependent upon engine efficiency, which in turn depends to a large degree on how fuel is burned within the cylinders of the engine. Higher in-cylinder pressures and temperatures lead to increased fuel economy, but they also create more difficulty in controlling the combustion process. Poorly controlled and incomplete combustion can cause higher levels of emissions and lower engine efficiencies.

  1. Performance of the CEDS Accident Dosimetry System at the 1995 Los Alamos National Laboratory Nuclear Accident Dosimetry Intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, K.L.; Schwanke, L.J.

    1996-12-01

    In July 1995, LANL hosted an accident dosimetry intercomparison. When all reactors on the Oak Ridge Reservation were idled in 1988, the Health Physics Research Reactor (HPRR), which had been used for 22 previous intercomparisons dating from 1965, was shut down for an indefinite period. The LANL group began characterization of two critical assemblies for dosimetry purposes. As a result, NAD-23 was conceived and 10 DOE facilities accepted invitations to participate in the intercomparison. This report is a summary of the performance of one of the participants, the Centralized External Dosimetry System (CEDS). The CEDS is a cooperative personnel dosimetry arrangement between three DOE sites in Oak Ridge, Tennessee. Many successes and failures are reported herein. Generally, the TL dosimeters performed poorly and always over-reported the delivered dose. The TLD processing procedures contain efforts that would lead to large biases in the reported absorbed dose, and omit several key steps in the TLD reading process. The supralinear behavior of lithium fluoride (LiF) has not been characterized for this particular dosimeter and application (i.e., in high-dose mixed neutron/gamma fields). The use of TLD materials may also be precluded given the limitations of the LiF material itself, the TLD reading system, and the upper dose level to which accident dosimetry systems are required to perform as set forth in DOE regulations. The indium foil results confirm the expected inability of that material to predict the magnitude of the wearer`s dose reliably, although it is quite suitable as a quick-sort material. Biological sample (hair) results were above the minimum detectable activity (MDA) for only one of the tests. Several questions as to the best methods for sample handling and processing remain.

  2. Pacific Northwest National Laboratory institutional plan FY 1998--2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research the lab creates fundamental knowledge of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. They solve legacy environmental problems by delivering technologies that remedy existing environmental hazards, they address today`s environmental needs with technologies that prevent pollution and minimize waste, and they are laying the technical foundation for tomorrow`s inherently clean energy and industrial processes. The lab also applies their capabilities to meet selected national security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. The paper summarizes individual research activities under each of these areas.

  3. National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, T.A. [Sandia National Labs., Albuquerque, NM (United States). Community Involvement and Issues Management Dept.; Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1998-08-01

    This report on National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM) chronicles past and current compliance activities and includes a recommended strategy that can be implemented for continued improvement. This report provides a list of important references. Attachment 1 contains the table of contents for SAND95-1648, National Environmental Policy Act (NEPA) Compliance Guide Sandia National Laboratories (Hansen, 1995). Attachment 2 contains a list of published environmental assessments (EAs) and environmental impact statements (EISs) prepared by SNL/NM. Attachment 3 contains abstracts of NEPA compliance papers authored by SNL/NM and its contractors.

  4. Piloting a national laboratory electronic programme status reporting system.

    Science.gov (United States)

    Cassim, Naseem; Coetzee, Lindi; Motlonye, Bahule; Mpele, Nobantu; Glencross, Deborah K

    2013-01-01

    The NHLS performs close to 4 million CD4 tests per annum for the public sector in South Africa through a network of 60 CD4 testing laboratories. CD4 laboratory data provides an assessment of the number of patients on ART and HIV-positive patients in the pre-ART wellness programs. This study aims to develop a laboratory based Comprehensive Care, Management and Treatment of HIV and AIDS (CCMT) programme status reporting system for CD4 testing at three health facilities in the Ekurhuleni health district using a newly developed CCMT request form, the Laboratory Information System (LIMS) and Corporate Data Warehouse (CDW). The study will generate monitoring and evaluation data to assist in the management of health facilities through a national electronic corporate data warehouse.

  5. Investigation of excess thyroid cancer incidence in Los Alamos County

    Energy Technology Data Exchange (ETDEWEB)

    Athas, W.F.

    1996-04-01

    Los Alamos County (LAC) is home to the Los Alamos National Laboratory, a U.S. Department of Energy (DOE) nuclear research and design facility. In 1991, the DOE funded the New Mexico Department of Health to conduct a review of cancer incidence rates in LAC in response to citizen concerns over what was perceived as a large excess of brain tumors and a possible relationship to radiological contaminants from the Laboratory. The study found no unusual or alarming pattern in the incidence of brain cancer, however, a fourfold excess of thyroid cancer was observed during the late-1980`s. A rapid review of the medical records for cases diagnosed between 1986 and 1990 failed to demonstrate that the thyroid cancer excess had resulted from enhanced detection. Surveillance activities subsequently undertaken to monitor the trend revealed that the excess persisted into 1993. A feasibility assessment of further studies was made, and ultimately, an investigation was conducted to document the epidemiologic characteristics of the excess in detail and to explore possible causes through a case-series records review. Findings from the investigation are the subject of this report.

  6. 76 FR 39443 - National Environmental Policy Act; Santa Susana Field Laboratory

    Science.gov (United States)

    2011-07-06

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION National Environmental Policy Act; Santa Susana Field Laboratory AGENCY: National... administered portion of the Santa Susana Field Laboratory (SSFL), Ventura County, California. SUMMARY:...

  7. Sandia National Laboratories Institutional Plan FY1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defense imperatives.

  8. Brookhaven National Laboratory site report for calendar year 1988

    Energy Technology Data Exchange (ETDEWEB)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1989-06-01

    Brookhaven National Laboratory (BNL) is managed by Associated Universities Inc. (AUI). AUI was formed in 1946 by a group of nine universities whose purpose was to create and manage a laboratory in the Northeast in order to advance scientific research in areas of interest to universities, industry, and government. On January 31, 1947, the contract for BNL was approved by the Manhattan District of the Army Corps of Engineers and BNL was established on the former Camp Upton army camp. 54 refs., 21 figs., 78 tabs.

  9. Customer satisfaction assessment at the Pacific Northwest National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    DN Anderson; ML Sours

    2000-03-23

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. This report presents the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of two major sections: Strategic Value and Project Performance. Both sections contain a set of questions that can be answered with a 5-point Likert scale response. The strategic value section consists of five questions that are designed to determine if a project directly contributes to critical future national needs. The project Performance section consists of nine questions designed to determine PNNL performance in meeting customer expectations. A statistical model for customer survey data is developed and this report discusses how to analyze the data with this model. The properties of the statistical model can be used to establish a gold standard or performance expectation for the laboratory, and then to assess progress. The gold standard is defined using laboratory management input--answers to four questions, in terms of the information obtained from the customer survey: (1) What should the average Strategic Value be for the laboratory project portfolio? (2) What Strategic Value interval should include most of the projects in the laboratory portfolio? (3) What should average Project Performance be for projects with a Strategic Value of about 2? (4) What should average Project Performance be for projects with a Strategic Value of about 4? To be able to provide meaningful answers to these questions, the PNNL customer survey will need to be fully implemented for several years, thus providing a link between management perceptions of laboratory performance and customer survey data.

  10. The laboratory efficiencies initiative: partnership for building a sustainable national public health laboratory system.

    Science.gov (United States)

    Ridderhof, John C; Moulton, Anthony D; Ned, Renée M; Nicholson, Janet K A; Chu, May C; Becker, Scott J; Blank, Eric C; Breckenridge, Karen J; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners.

  11. Nuclear energy related capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, Susan Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing the nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.

  12. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2014-03-01

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program proves its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.

  13. Sandia National Laboratories, California proposed CREATE facility environmental baseline survey.

    Energy Technology Data Exchange (ETDEWEB)

    Catechis, Christopher Spyros

    2013-10-01

    Sandia National Laboratories, Environmental Programs completed an environmental baseline survey (EBS) of 12.6 acres located at Sandia National Laboratories/California (SNL/CA) in support of the proposed Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) Facility. The survey area is comprised of several parcels of land within SNL/CA, County of Alameda, California. The survey area is located within T 3S, R 2E, Section 13. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  14. BROOKHAVEN NATIONAL LABORATORY SITE ENVIRONMENTAL REPORT FOR CALENDAR YEAR 1994.

    Energy Technology Data Exchange (ETDEWEB)

    NAIDU,J.R.; ROYCE,B.A.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory's operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory. Brookhaven National Laboratory's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment were evaluated. Among the permitted facilities, two instances of pH exceedances were observed at recharge basins, possibly related to rain-water run-off to these recharge basins. Also, the discharge from the Sewage Treatment Plant to the Peconic River exceeded. on ten occasions, one each for fecal coliform and 5-day Biochemical Oxygen Demand (avg.) and eight for ammonia nitrogen. The ammonia and Biochemical Oxygen Demand exceedances were attributed to the cold winter and the routine cultivation of the sand filter beds which resulted in the hydraulic overloading of the filter beds and the possible destruction of nitrifying bacteria. The on-set of warm weather and increased aeration of the filter beds via cultivation helped to alleviate this condition. The discharge of fecal coliform may also be linked to this occurrence, in that the increase in fecal coliform coincided with the increased cultivation of the sand filter beds. The environmental monitoring data has identified site-specific contamination of groundwater and soil. These areas are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement. Except for the above, the environmental monitoring data has continued to demonstrate that compliance was achieved with

  15. Monolithic circuit development for RHIC at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Alley, G.T.; Britton, C.L. Jr.; Kennedy, E.J.; Newport, D.F.; Wintenberg, A.L.; Young, G.R. [Oak Ridge National Laboratory, TN (United States)

    1991-12-31

    The work performed for RHIC at Oak Ridge National Laboratory during FY 91 is presented in this paper. The work includes preamplifier, analog memory, and analog-digital converter development for Dimuon Pad Readout, and evaluation and development of preamplifier-shapers for silicon strip readout. The approaches for implementation are considered as well as measured data for the various circuits that have been developed.

  16. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  17. Idaho National Laboratory FY12 Greenhouse Gas Report

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Frerichs

    2013-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  18. Astronomy applications of adaptive optics at Lawrence Livermore National Laboratory

    Science.gov (United States)

    Bauman, Brian J.; Gavel, Donald T.

    2003-06-01

    Astronomical applications of adaptive optics at Lawrence Livermore National Laboratory (LLNL) has a history that extends from 1984. The program started with the Lick Observatory Adaptive Optics system and has progressed through the years to lever-larger telescopes: Keck, and now the proposed CELT (California Extremely Large Telescope) 30m telescope. LLNL AO continues to be at the forefront of AO development and science.

  19. Oak Ridge National Laboratory Review. Volume 25, No. 1, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C.; Pearce, J.; Zucker, A. [eds.

    1992-10-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  20. Sandia National Laboratories, California Waste Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2010-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  1. Astronomy Applications of Adaptive Optics at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, B J; Gavel, D T

    2003-04-23

    Astronomical applications of adaptive optics at Lawrence Livermore National Laboratory (LLNL) has a history that extends from 1984. The program started with the Lick Observatory Adaptive Optics system and has progressed through the years to lever-larger telescopes: Keck, and now the proposed CELT (California Extremely Large Telescope) 30m telescope. LLNL AO continues to be at the forefront of AO development and science.

  2. Implementing a lessons learned process at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Fosshage, Erik D.; Drewien, Celeste A.; Eras, Kenneth; Hartwig, Ronald Craig; Post, Debra S.; Stoecker, Nora Kathleen

    2016-01-01

    The Lessons Learned Process Improvement Team was tasked to gain an understanding of the existing lessons learned environment within the major programs at Sandia National Laboratories, identify opportunities for improvement in that environment as compared to desired attributes, propose alternative implementations to address existing inefficiencies, perform qualitative evaluations of alternative implementations, and recommend one or more near-term activities for prototyping and/or implementation. This report documents the work and findings of the team.

  3. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  4. Customer Satisfaction Assessment at the Pacific Northwest National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dale N.; Sours, Mardell L.

    2000-03-20

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. We present the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of 2 major sections, Strategic Value and Project Performance. The Strategic Value section of the questionnaire consists of 5 questions that can be answered with a 5 point Likert scale response. These questions are designed to determine if a project is directly contributing to critical future national needs. The Project Performance section of the questionnaire consists of 9 questions that can be answered with a 5 point Likert scale response. These questions determine PNNL performance in meeting customer expectations. Many approaches could be used to analyze customer survey data. We present a statistical model that can accurately capture the random behavior of customer survey data. The properties of this statistical model can be used to establish a "gold standard'' or performance expectation for the laboratory, and then assess progress. The gold standard is defined from input from laboratory management --- answers to 4 simple questions, in terms of the information obtained from the CSAP customer survey, define the standard: *What should the average Strategic Value be for the laboratory project portfolio? *What Strategic Value interval should include most of the projects in the laboratory portfolio? *What should average Project Performance be for projects with a Strategic Value of about 2? *What should average Project Performance be for projects with a Strategic Value of about 4? We discuss how to analyze CSAP customer survey data with this model. Our discussion will include "lessons learned" and issues that can invalidate this type of assessment.

  5. Microscale chemistry technology exchange at Argonne National Laboratory - east.

    Energy Technology Data Exchange (ETDEWEB)

    Pausma, R.

    1998-06-04

    The Division of Educational Programs (DEP) at Argonne National Laboratory-East interacts with the education community at all levels to improve science and mathematics education and to provide resources to instructors of science and mathematics. DEP conducts a wide range of educational programs and has established an enormous audience of teachers, both in the Chicago area and nationally. DEP has brought microscale chemistry to the attention of this huge audience. This effort has been supported by the U.S. Department of Energy through the Environmental Management Operations organization within Argonne. Microscale chemistry is a teaching methodology wherein laboratory chemistry training is provided to students while utilizing very small amounts of reagents and correspondingly small apparatus. The techniques enable a school to reduce significantly the cost of reagents, the cost of waste disposal and the dangers associated with the manipulation of chemicals. The cost reductions are achieved while still providing the students with the hands-on laboratory experience that is vital to students who might choose to pursue careers in the sciences. Many universities and colleges have already begun to switch from macroscale to microscale chemistry in their educational laboratories. The introduction of these techniques at the secondary education level will lead to freshman being better prepared for the type of experimentation that they will encounter in college.

  6. MIT Lincoln Laboratory: Physics and Technology in the National Interest

    Science.gov (United States)

    Ralston, Richard

    2001-03-01

    This year, MIT is celebrating the 50th anniversary of the founding of Lincoln Laboratory, which was formed at the request of the DoD with the initial goal of developing a national air defense system. In its 50 years, the Laboratory staff have made significant contributions in diverse areas including radar imaging, satellite communications, digital signal processing, computer science, semiconductor materials and solid state physics. The Laboratory has been true to its mission statement, which places strong emphasis on the application of advanced electronics to R&D in the national interest. Much of the technology is transitioned to U.S. industry for both government and commercial use. Annually more than 500 publications and meeting speeches are given, and cooperative developments with industry have targeted technology transitions ranging from next-generation photolithographic tools to microchip lasers. The Laboratory staff have been granted over 400 patents, and license to this intellectual property is at the core of many of the over 70 spin-off companies. MIT employs 2,300 people at Lincoln, including 1,200 professionals with degrees in physics, math, computer science, materials science and the engineering disciplines. Two-fifths of the professional staff are at the doctoral level; over two-thirds hold advanced degrees. This presentation will describe recent examples of research challenges for physicists in a multidisciplinary project-oriented environment.

  7. Oak Ridge National Laboratory institutional plan, FY 1990--FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    The Oak Ridge National Laboratory is one of DOE's major multiprogram energy laboratories. ORNL's program missions are (1) to conduct applied research and engineering development in support of DOE's programs in fusion, fission, fossil, renewables (biomass), and other energy technologies, and in the more efficient conversion and use of energy (conservation) and (2) to perform basic scientific research in selected areas of the physical and life sciences. These missions are to be carried out in compliance with environmental, safety, and health regulations. Transfer of science and technology is an integral component of our missions. A complementary mission is to apply the Laboratory's resources to other nationally important tasks when such work is synergistic with the program missions. Some of the issues addressed include education, international competitiveness, hazardous waste research and development, and selected defense technologies. In addition to the R D missions, ORNL performs important service roles for DOE; these roles include designing, building, and operating user facilities for the benefit of university and industrial researchers and supplying radioactive and stable isotopes that are not available from private industry. Scientific and technical efforts in support of the Laboratory's missions cover a spectrum of activities. In fusion, the emphasis is on advanced studies of toroidal confinement, plasma heating, fueling systems, superconducting magnets, first-wall and blanket materials, and applied plasma physics. 69 figs., 49 tabs.

  8. Oak Ridge National Laboratory Technology Logic Diagram. Indexes

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Decontamination and Decommissioning (D&D) Index provides a comprehensive list of site problems, problem area/constituents, remedial technologies, and regulatory terms discussed in the D&D sections of the Oak Ridge National Laboratory Technology Logic Diagram. All entries provide specific page numbers, or cross-reference entries that provide specific page numbers, in the D&D volumes (Vol. 1, Pt. A; Vol. 2, Pt. A; and appropriate parts of Vol. 3). The Oak Ridge National Laboratory Technology (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA) and WM activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk.

  9. Post Irradiation Capabilities at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schulthess, J.L.

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  10. Post Irradiation Capabilities at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schulthess, J.L.; Robert D. Mariani; Rory Kennedy; Doug Toomer

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States’ ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  11. Environmental Survey preliminary report, Argonne National Laboratory, Argonne, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Argonne National Laboratory (ANL), conducted June 15 through 26, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ANL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the S A results will be incorporated into the Argonne National Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 75 refs., 24 figs., 60 tabs.

  12. Idaho National Laboratory Site Long-Term Stewardship Implementation Plan

    Energy Technology Data Exchange (ETDEWEB)

    B. E. Olaveson

    2006-07-27

    The U.S. Department of Energy has established long-term stewardship programs to protect human health and the environment at sites where residual contamination remains after site cleanup. At the Idaho National Laboratory Site, Comprehensive Environmental Response, Compensation, and Liability Act (CERLA) long-term stewardship activities performed under the aegis of regulatory agreements, the Federal Facility Agreement and Consent Order for the Idaho National Laboratory, and state and federal requirements are administered primarily under the direction of the Idaho Cleanup Project. It represents a subset of all on-going environmental activity at the Idaho National Laboratory Site. This plan provides a listing of applicable CERCLA long-term stewardship requirements and their planned and completed implementation goals. It proffers the Long-Term Stewardship Environmental Data Warehouse for Sitewide management of environmental data. This plan will be updated as needed over time, based on input from the U.S. Department of Energy, its cognizant subcontractors, and other local and regional stakeholders.

  13. The Los Alamos high-brightness photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, P.G.

    1991-01-01

    For a number of years Los Alamos National Laboratory has been developing photocathode RF guns for high-brightness electron beam applications such as free-electron lasers (FELs). Previously thermionic high-voltage guns have been the source of choice for the electron accelerators used to drive FELs. The performance of such FELs is severely limited by the emittance growth produced by the subharmonic bunching process and also by the low peak current of the source. In a photoinjector, a laser driven photocathode is placed directly in a high-gradient RF accelerating cavity. A photocathode allows unsurpassed control over the current, and the spatial and temporal profile of the beam. In addition the electrodeless emission'' avoids many of the difficulties associated with multi-electrode guns, i.e. the electrons are accelerated very rapidly to relativistic energies, and there are no electrodes to distort the accelerating fields. For the past two years we have been integrating a photocathode into our existing FEL facility by replacing our thermionic gun and subharmonic bunchers with a high-gradient 1.3 GHz photoinjector. The photoinjector, which is approximately 0.6 m in length, produces 6 MeV, 300 A, 15 ps linac, and accelerated to a final energy of 40 MeV. We have recently begun lasing at wavelengths near 3 {mu}m. 16 refs., 2 figs., 5 tabs.

  14. Energy and Water Conservation Assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Stephanie R.; Koehler, Theresa M.; Boyd, Brian K.

    2014-05-31

    This report summarizes the results of an energy and water conservation assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory (PNNL). The assessment was performed in October 2013 by engineers from the PNNL Building Performance Team with the support of the dedicated RPL staff and several Facilities and Operations (F&O) department engineers. The assessment was completed for the Facilities and Operations (F&O) department at PNNL in support of the requirements within Section 432 of the Energy Independence and Security Act (EISA) of 2007.

  15. Los Alamos Programming Models

    Energy Technology Data Exchange (ETDEWEB)

    Bergen, Benjamin Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-07

    This is the PDF of a powerpoint presentation from a teleconference on Los Alamos programming models. It starts by listing their assumptions for the programming models and then details a hierarchical programming model at the System Level and Node Level. Then it details how to map this to their internal nomenclature. Finally, a list is given of what they are currently doing in this regard.

  16. Pacific Northwest National Laboratory FY1996 midyear self-evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    As stated in our mission, the Laboratory is concentrated on DOE`s environmental quality mission and the scientific research required to support that mission. The Laboratory also supports the energy resources and national security missions in areas where an overlap between our core competencies and DOE`s goals exists. Our intent for fiscal year l996 is to focus our efforts on the critical outcomes necessary for us to meet DOE`s needs. Six Critical Outcomes were established and substantial progress has been made against five of those outcomes during the first half of the fiscal year. A summary of progress and key issues is provided. The Critical Outcomes are: Environmental Molecular Sciences Laboratory; Environmental Management; Scientific Excellence and Productivity; ES&H/Conduct of Operations; Leadership; and Economic Development. The Laboratory has also made a significant commitment to the implementation of a fully integrated self-assessment program. Efforts during the first half of the fiscal year have been focused on developing an approach for the overall program and implementation in selected organizations. The approach is holistic and focuses assessment on activities important to the successful completion of our critical outcomes. Progress towards full implementation of the integrated assessment program is meeting expectations in general, but significant effort still needs to be applied to obtain effective implementation across the Laboratory and to ensure integration with the business planning process.

  17. A Sailor in the Los Alamos Navy

    Energy Technology Data Exchange (ETDEWEB)

    Judd, D. L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States

    2016-12-20

    As part of the War Department’s Manhattan Engineer District (MED), Los Alamos was an Army installation during World War II, complete with a base commander and a brace of MPs. But it was a unique Army installation, having more civilian then military personnel. Even more unique was the work performed by the civilian population, work that required highly educated scientists and engineers. As the breadth, scope, and complexity of the Laboratory’s work increased, more and more technically educated and trained personnel were needed. But, the manpower needs of the nation’s war economy had created a shortage of such people. To meet its manpower needs, the MED scoured the ranks of the Army for anyone who had technical training and reassigned these men to its laboratories, including Los Alamos, as part of its Special Engineer Detachment (SED). Among the SEDs assigned to Los Alamos was Val Fitch, who was awarded the Nobel Prize in Physics in 1980. Another was Al Van Vessem, who helped stack the TNT for the 100 ton test, bolted together the Trinity device, and rode shotgun with the bomb has it was driven from Los Alamos to ground zero.

  18. Proton Radiography at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-28

    The proton radiography (pRad) facility at Los Alamos National Lab uses high energy protons to acquire multiple frame flash radiographic sequences at megahertz speeds: that is, it can make movies of the inside of explosions as they happen. The facility is primarily used to study the damage to and failure of metals subjected to the shock forces of high explosives as well as to study the detonation of the explosives themselves. Applications include improving our understanding of the underlying physical processes that drive the performance of the nuclear weapons in the United States stockpile and developing novel armor technologies in collaboration with the Army Research Lab. The principle and techniques of pRad will be described, and examples of some recent results will be shown.

  19. Argonne National Laboratory`s photooxidation organic mixed-waste treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, T.L.; Torres, T.; Conner, C. [Argonne National Lab., IL (United States)] [and others

    1997-12-01

    This paper describes the installation and startup testing of the Argonne National Laboratory-East (ANL-E) photo-oxidation organic mixed-waste treatment system. This system will treat organic mixed (i.e., radioactive and hazardous) waste by oxidizing the organics to carbon dioxide and inorganic salts in an aqueous media. The residue will be treated in the existing radwaste evaporators. The system is installed in the waste management facility at the ANL-E site in Argonne, Illinois.

  20. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  1. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  2. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Barbara J.; West, Stephanie G.; Jones, Olga G.; Kerr, Dorothy A.; Bieri, Rita A.; Sanderson, Nancy L.

    1991-08-01

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  3. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Edward S.; Keating, John J.

    1991-08-01

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG G Idaho, Inc. (EG G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes.

  4. Site environmental report for 2009 : Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2010-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2009 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2009. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2009. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2009. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  5. Site Environmental Report for 2010 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  6. The Role of a National Biocontainment Laboratory in Emergencies.

    Science.gov (United States)

    Le Duc, James W; Ksiazek, Thomas G

    2015-01-01

    Over a decade ago, the National Institutes of Health awarded partial support for the construction and operation of 2 National Biocontainment Laboratories, with the condition that they would be available to assist in the event of public health emergencies-although how a biocontainment facility located on an academic campus might contribute was not defined. Here we offer examples of how one of these laboratories has contributed to a coordinated response to 2 recent international public health emergencies. Essential assets for success include highly trained and experienced staff, access to reference pathogens and reagents, cutting-edge knowledge of the field, appropriate biocontainment facilities, robust biosafety and biosecurity programs, and availability of modern instrumentation. The ability to marry the strengths of academia in basic and applied research with access to appropriate biocontainment facilities while drawing on a highly skilled cadre of experienced experts has proven extremely valuable in the response to recent national emergencies and will continue to do so in the future. Areas where additional planning and preparation are needed have also been identified through these experiences.

  7. Draft environmental assessment of Argonne National Laboratory, East

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-01

    This environmental assessment of the operation of the Argonne National Laboratory is related to continuation of research and development work being conducted at the Laboratory site at Argonne, Illinois. The Laboratory has been monitoring various environmental parameters both offsite and onsite since 1949. Meteorological data have been collected to support development of models for atmospheric dispersion of radioactive and other pollutants. Gaseous and liquid effluents, both radioactive and non-radioactive, have been measured by portable monitors and by continuous monitors at fixed sites. Monitoring of constituents of the terrestrial ecosystem provides a basis for identifying changes should they occur in this regime. The Laboratory has established a position of leadership in monitoring methodologies and their application. Offsite impacts of nonradiological accidents are primarily those associated with the release of chlorine and with sodium fires. Both result in releases that cause no health damage offsite. Radioactive materials released to the environment result in a cumulative dose to persons residing within 50 miles of the site of about 47 man-rem per year, compared to an annual total of about 950,000 man-rem delivered to the same population from natural background radiation. 100 refs., 17 figs., 33 tabs.

  8. Brookhaven National Laboratory 2008 Site Environment Report Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Brookhaven National Laboratory

    2009-10-01

    Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory's environmental performance during the calendar year in review. Volume I of the SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and performance in restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. Volume II of the SER, the Groundwater Status Report, also is prepared annually to report on the status of and evaluate the performance of groundwater treatment systems at the Laboratory. Volume II includes detailed technical summaries of groundwater data and its interpretation, and is intended for internal BNL users, regulators, and other technically oriented stakeholders. A brief summary of the information contained in Volume II is included in this volume in Chapter 7, Groundwater Protection. Both reports are available in print and as downloadable files on the BNL web page at http://www.bnl.gov/ewms/ser/. An electronic version on compact disc is distributed with each printed report. In addition, a summary of Volume I is prepared each year to provide a general overview of the report, and is distributed with a compact disc containing the full report.

  9. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In

  10. The Characterization of Biotic and Abiotic Media Upgradient and Downgradient of the Los Alamos Canyon Weir

    Energy Technology Data Exchange (ETDEWEB)

    P.R. Fresquez

    2006-01-15

    As per the Mitigation Action Plan for the Special Environmental Analysis of the actions taken in response to the Cerro Grande Fire, sediments, vegetation, and small mammals were collected directly up- and downgradient of the Los Alamos Canyon weir, a low-head sediment control structure located on the northeastern boundary of Los Alamos National Laboratory, to determine contaminant impacts, if any. All radionuclides ({sup 3}H, {sup 137}Cs, {sup 238}Pu, {sup 239,240}Pu, {sup 90}Sr, {sup 241}Am, {sup 234}U, {sup 235}U and {sup 238}U) and trace elements (Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, and Tl) in these media were low and most were below regional upper level background concentrations (mean plus three sigma). The very few constituents that were above regional background concentrations were far below screening levels (set from State and Federal standards) for the protection of the human food chain and the terrestrial environment.

  11. The Los Alamos Science Pillars The Science of Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Joshua E. [Los Alamos National Laboratory; Peterson, Eugene J. [Los Alamos National Laboratory

    2012-09-13

    As a national security science laboratory, Los Alamos is often asked to detect and measure the characteristics of complex systems and to use the resulting information to quantify the system's behavior. The Science of Signatures (SoS) pillar is the broad suite of technical expertise and capability that we use to accomplish this task. With it, we discover new signatures, develop new methods for detecting or measuring signatures, and deploy new detection technologies. The breadth of work at Los Alamos National Laboratory (LANL) in SoS is impressive and spans from the initial understanding of nuclear weapon performance during the Manhattan Project, to unraveling the human genome, to deploying laser spectroscopy instrumentation on Mars. Clearly, SoS is a primary science area for the Laboratory and we foresee that as it matures, new regimes of signatures will be discovered and new ways of extracting information from existing data streams will be developed. These advances will in turn drive the development of sensing instrumentation and sensor deployment. The Science of Signatures is one of three science pillars championed by the Laboratory and vital to supporting our status as a leading national security science laboratory. As with the other two pillars, Materials for the Future and Information Science and Technology for Predictive Science (IS&T), SoS relies on the integration of technical disciplines and the multidisciplinary science and engineering that is our hallmark to tackle the most difficult national security challenges. Over nine months in 2011 and 2012, a team of science leaders from across the Laboratory has worked to develop a SoS strategy that positions us for the future. The crafting of this strategy has been championed by the Chemistry, Life, and Earth Sciences Directorate, but as you will see from this document, SoS is truly an Institution-wide effort and it has engagement from every organization at the Laboratory. This process tapped the insight and

  12. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site

  13. BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-10

    This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and the nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.

  14. Alternative futures for the Department of Energy National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This Task Force was asked to propose alternate futures for the Department of Energy laboratories noted in the report. The authors` intensive ten months` study revealed multiple missions and sub-missions--traditional missions and new missions--programs and projects--each with factors of merit. They respectively suggest that the essence of what the Department, and particularly the laboratories, should and do stand for: the energy agenda. Under the overarching energy agenda--the labs serving the energy opportunities--they comment on their national security role, the all important energy role, all related environmental roles, the science and engineering underpinning for all the above, a focused economic role, and conclude with governance/organization change recommendations.

  15. Idaho National Engineering Laboratory analytical services performance evaluation plan

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, J.M.; Sailer, S.J.; Anderson, D.A.

    1994-03-01

    The Idaho National Engineering Laboratory`s (INEL`s) Sample Management Office (SMO) conducts a Performance Evaluation Program that ensures that data of known quality are supplied by the analytical. chemistry service organizations with which the INEL contracts. The Analytical Services Performance Evaluation Plan documents the routine monitoring and assessment of suppliers conducted by the SMO, and it describes the procedures that are followed to ensure that suppliers meet all appropriate requirements. Because high-quality analytical support is vital to the success of DOE Environmental Management programs at the INEL, the performance of organizations providing these services must be routinely monitored and assessed. Analytical disciplines for which performance is monitored include metals, organics, radiochemical, and miscellaneous classical analysis methods.

  16. High field magnet program at Brookhaven National Laboratory

    CERN Document Server

    Ghosh, A; Muratore, J; Parker, B; Sampson, W; Wanderer, P J; Willen, E

    2000-01-01

    The magnet program at Brookhaven National Laboratory (BNL) is focussed on superconducting magnets for particle accelerators. The effort includes magnet production at the laboratory and in industry, magnet R&D, and test facilities for magnets and superconductors. Nearly 2000 magnets-dipoles, quadrupoles, sextupoles and correctors for the arc and insertion regions-were produced for the Relativistic Heavy Ion Collider (RHIC), which is being commissioned. Currently, production of helical dipoles for the polarized proton program at RHIC, insertion region dipoles for the Large Hadron Collider (LHC) at CERN, and an insertion magnet system for the Hadron-Elektron-Ring- Analage (HERA) collider at Deutsches Elektronen-Synchrotron (DESY) is underway. The R&D effort is exploring dipoles with fields above 10 T for use in post-LHC colliders. Brittle superconductors-Nb/sub 3/Sn or HTS-are being used for these magnets. The superconductor test facility measures short-sample currents and other characteristics of sample...

  17. Deriving cleanup guidelines for radionuclides at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, A.F.; Morris, S.C.; Dionne, B.; Moskowitz, P.D.

    1997-01-01

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL`s Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory. With the exception of radium, there are no regulations or guidelines to establish cleanup guidelines for radionuclides in soils at BNL. BNL must derive radionuclide soil cleanup guidelines for a number of Operable Units (OUs) and Areas of Concern (AOCs). These guidelines are required by DOE under a proposed regulation for radiation protection of public health and the environment as well as to satisfy the requirements of CERCLA. The objective of this report is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL. Implementation of the approach is briefly discussed.

  18. Seismic vulnerability study Los Alamos Meson Physics Facility (LAMPF)

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, M. [EQE International, Inc., Irvine, CA (United States); Goen, L.K. [Los Alamos National Lab., NM (United States)

    1995-12-01

    The Los Alamos Meson Physics Facility (LAMPF), located at TA-53 of Los Alamos National Laboratory (LANL), features an 800 MeV proton accelerator used for nuclear physics and materials science research. As part of the implementation of DOE Order 5480.25 and in preparation for DOE Order 5480.28, a seismic vulnerability study of the structures, systems, and components (SSCs) supporting the beam line from the accelerator building through to the ends of die various beam stops at LAMPF has been performed. The study was accomplished using the SQUG GIP methodology to assess the capability of the various SSCs to resist an evaluation basis earthquake. The evaluation basis earthquake was selected from site specific seismic hazard studies. The goals for the study were as follows: (1) identify SSCs which are vulnerable to seismic loads; and (2) ensure that those SSCs screened during die evaluation met the performance goals required for DOE Order 5480.28. The first goal was obtained by applying the SQUG GIP methodology to those SSCS represented in the experience data base. For those SSCs not represented in the data base, information was gathered and a significant amount of engineering judgment applied to determine whether to screen the SSC or to classify it as an outlier. To assure the performance goals required by DOE Order 5480.28 are met, modifications to the SQUG GIP methodology proposed by Salmon and Kennedy were used. The results of this study ire presented in this paper.

  19. Final Report - Advanced Ion Trap Mass Spectrometry Program - Oak Ridge National Laboratory - Sandia National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Whitten, W.B.

    2002-12-18

    This report covers the three main projects that collectively comprised the Advanced Ion Trap Mass Spectrometry Program. Chapter 1 describes the direct interrogation of individual particles by laser desorption within the ion trap mass spectrometer analyzer. The goals were (1) to develop an ''intelligent trigger'' capable of distinguishing particles of biological origin from those of nonbiological origin in the background and interferent particles and (2) to explore the capability for individual particle identification. Direct interrogation of particles by laser ablation and ion trap mass spectrometry was shown to have good promise for discriminating between particles of biological origin and those of nonbiological origin, although detailed protocols and operating conditions were not worked out. A library of more than 20,000 spectra of various types of biological particles has been assembled. Methods based on multivariate analysis and on neural networks were used to discriminate between particles of biological origin and those of nonbiological origin. It was possible to discriminate between at least some species of bacteria if mass spectra of several hundred similar particles were obtained. Chapter 2 addresses the development of a new ion trap mass analyzer geometry that offers the potential for a significant increase in ion storage capacity for a given set of analyzer operating conditions. This geometry may lead to the development of smaller, lower-power field-portable ion trap mass spectrometers while retaining laboratory-scale analytical performance. A novel ion trap mass spectrometer based on toroidal ion storage geometry has been developed. The analyzer geometry is based on the edge rotation of a quadrupolar ion trap cross section into the shape of a torus. Initial performance of this device was poor, however, due to the significant contribution of nonlinear fields introduced by the rotation of the symmetric ion-trapping geometry. These

  20. Argonne National Laboratory institutional plan FY 2001--FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, S.D.

    2000-12-07

    This Institutional Plan describes what Argonne management regards as the optimal future development of Laboratory activities. The document outlines the development of both research programs and support operations in the context of the nation's R and D priorities, the missions of the Department of Energy (DOE) and Argonne, and expected resource constraints. The Draft Institutional Plan is the product of many discussions between DOE and Argonne program managers, and it also reflects programmatic priorities developed during Argonne's summer strategic planning process. That process serves additionally to identify new areas of strategic value to DOE and Argonne, to which Laboratory Directed Research and Development funds may be applied. The Draft Plan is provided to the Department before Argonne's On-Site Review. Issuance of the final Institutional Plan in the fall, after further comment and discussion, marks the culmination of the Laboratory's annual planning cycle. Chapter II of this Institutional Plan describes Argonne's missions and roles within the DOE laboratory system, its underlying core competencies in science and technology, and six broad planning objectives whose achievement is considered critical to the future of the Laboratory. Chapter III presents the Laboratory's ''Science and Technology Strategic Plan,'' which summarizes key features of the external environment, presents Argonne's vision, and describes how Argonne's strategic goals and objectives support DOE's four business lines. The balance of Chapter III comprises strategic plans for 23 areas of science and technology at Argonne, grouped according to the four DOE business lines. The Laboratory's 14 major initiatives, presented in Chapter IV, propose important advances in key areas of fundamental science and technology development. The ''Operations and Infrastructure Strategic Plan'' in Chapter V includes