WorldWideScience

Sample records for alamos national laboratory

  1. Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Podlesak, David W [Los Alamos National Laboratory; Steiner, Robert E. [Los Alamos National Laboratory; Burns, Carol J. [Los Alamos National Laboratory; LaMont, Stephen P. [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory

    2012-08-09

    The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities at Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities. Some conclusions are: (1) Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous defense and non-defense programs including safeguards accountancy verification measurements; (2) Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material forensic characterization; (3) Actinide analytical chemistry uses numerous means to validate and independently verify that measurement data quality objectives are met; and (4) Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  2. Expanded recycling at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The Pollution Prevention Program Office has increased recycling activities, reuse, and options to reduce the solid waste streams through streamlining efforts that applied best management practices. The program has prioritized efforts based on volume and economic considerations and has greatly increased Los Alamos National Laboratory's (LANL's) recycle volumes. The Pollution Prevention Program established and chairs a Solid Waste Management Solutions Group to specifically address and solve problems in nonradioactive, Resource Conservation and Recovery Act (RCRA), state-regulated, and sanitary and industrial waste streams (henceforth referred to as sanitary waste in this paper). By identifying materials with recycling potential, identifying best management practices and pathways to return materials for reuse, and introducing the concept and practice of open-quotes asset management,open-quotes the Group will divert much of the current waste stream from disposal. This Group is developing procedures, agreements, and contracts to stage, collect, sort, segregate, transport and process materials, and is also garnering support for the program through the involvement of upper management, facility managers, and generators

  3. DOE Los Alamos National Laboratory – PV Feasibility Assessment, 2015 Update, NREL Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Witt, Monica Rene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This report summarizes solar and wind potential for Los Alamos National Laboratory (LANL). This report is part of the “Los Alamos National Laboratory and Los Alamos County Renewable Generation” study.

  4. Los Alamos National Laboratory A National Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, Mark B. [Los Alamos National Laboratory

    2012-07-20

    Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national security challenges.

  5. Los Alamos National Laboratory Facility Review

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-05

    This series of slides depicts the Los Alamos Neutron Science Center (LANSCE). The Center's 800-MeV linac produces H+ and H- beams as well as beams of moderated (cold to 1 MeV) and unmoderated (0.1 to 600 MeV) neutrons. Experimental facilities and their capabilities and characteristics are outlined. Among these are LENZ, SPIDER, and DANCE.

  6. Aqueous Nitrate Recovery Line at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Finstad, Casey Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-15

    This powerpoint is part of the ADPSM Plutonium Engineering Lecture Series, which is an opportunity for new hires at LANL to get an overview of work done at TA55. It goes into detail about the aqueous nitrate recovery line at Los Alamos National Laboratory.

  7. Los Alamos National Laboratory strategic directions

    Energy Technology Data Exchange (ETDEWEB)

    Hecker, S. [Los Alamos National Lab., NM (United States)

    1995-10-01

    It is my pleasure to welcome you to Los Alamos. I like the idea of bringing together all aspects of the research community-defense, basic science, and industrial. It is particularly important in today`s times of constrained budgets and in fields such as neutron research because I am convinced that the best science and the best applications will come from their interplay. If we do the science well, then we will do good applications. Keeping our eye focused on interesting applications will spawn new areas of science. This interplay is especially critical, and it is good to have these communities represented here today.

  8. Materials accounting at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The materials accounting system at Los Alamos has evolved from an ''80-column'' card system to a very sophisticated near-real-time computerized nuclear material accountability and safeguards system (MASS). The present hardware was designed and acquired in the late 70's and is scheduled for a major upgrade in fiscal year 1986. The history of the system from 1950 through the DYMAC of the late 70's up to the present will be discussed. The philosophy of the system along with the details of the system will be covered. This system has addressed the integrated problems of management, control, and accounting of nuclear material successfully. 8 refs., 3 figs., 1 tab

  9. Biological assessment for the effluent reduction program, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.P.

    1996-08-01

    This report describes the biological assessment for the effluent recution program proposed to occur within the boundaries of Los Alamos National Laboratory. Potential effects on wetland plants and on threatened and endangered species are discussed, along with a detailed description of the individual outfalls resulting from the effluent reduction program.

  10. Resonance ionization mass spectrometry at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Two approaches to Resonance Ionization Mass Spectrometry (RIMS) at Los Alamos National Laboratory are discussed. The first is the use of continuous-wave dye lasers as the ionization source, and the use of pulse counting detection; and results are presented for lutetium and technetium. The second approach is the use of multiphoton resonances in the pulsed laser excitation of atoms. Experiments with 2 + 1 [photons to resonance plus photons to ionize] RIMS schemes for several elements are discussed. (author)

  11. The engineering institute of Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles R [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Cornwell, Phillip J [Los Alamos National Laboratory; Todd, Michael D [UCSD

    2008-01-01

    Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD) have taken the unprecedented step of creating a collaborative, multi-disciplinary graduate education program and associated research agenda called the Engineering Institute. The mission of the Engineering Institute is to develop a comprehensive approach for conducting LANL mission-driven, multidisciplinary engineering research and to improve recruiting, revitalization, and retention of the current and future staff necessary to support the LANL' s national security responsibilities. The components of the Engineering Institute are (1) a joint LANL/UCSD degree program, (2) joint LANL/UCSD research projects, (3) the Los Alamos Dynamic Summer School, (4) an annual workshop, and (5) industry short courses. This program is a possible model for future industry/government interactions with university partners.

  12. Defense programs industrial partnerships at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Freese, K.B. [Los Alamos National Lab., NM (United States). Industrial Partnership Office

    1996-10-01

    The US Department of Energy`s Defense Programs face unprecedented challenges of stewardship for an aging nuclear stockpile, cessation of nuclear testing, reduced federal budgets, and a smaller manufacturing complex. Partnerships with industry are essential in developing technology, modernizing the manufacturing complex, and maintaining the safety and reliability of the nation`s nuclear capability. The past decade of federal support for industrial partnerships has promoted benefits to US industrial competitiveness. Recent shifts in government policy have re-emphasized the importance of industrial partnerships in accomplishing agency missions. Nevertheless, abundant opportunities exist for dual-benefit, mission-driven partnerships between the national laboratories and industry. Experience at Los Alamos National Laboratory with this transition is presented.

  13. Tiger Team Assessment of the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    This report documents the Tiger Team Assessment of the Los Alamos National Laboratory (LANL) located in Los Alamos, New Mexico. LANL is operated for the US Department of Energy (DOE) by the University of California. The Tiger Team Assessment was conducted from September 23 to November 8, 1991, under the auspices of the DOE Office of Special Projects, Office of Assistant Secretary for Environment, Safety and Health. The assessment was comprehensive, encompassing environmental, safety, and health (ES ampersand H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal LANL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors' management of ES ampersand H/quality assurance programs was conducted. This volume discusses findings concerning the environmental assessment

  14. Tiger Team Assessment of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This report documents the Tiger Team Assessment of the Los Alamos National Laboratory (LANL) located in Los Alamos, New Mexico. LANL is operated for the US Department of Energy (DOE) by the University of California. The Tiger Team Assessment was conducted from September 23 to November 8, 1991, under the auspices of the DOE Office of Special Projects, Office of Assistant Secretary for Environment, Safety and Health. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal LANL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors' management of ES H/quality assurance programs was conducted. This volume discusses findings concerning the environmental assessment.

  15. Los Alamos National Laboratory support to IAEA environmental safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert E [Los Alamos National Laboratory; Dry, Don E [Los Alamos National Laboratory; Roensch, Fred R [Los Alamos National Laboratory; Kinman, Will S [Los Alamos National Laboratory; Roach, Jeff L [Los Alamos National Laboratory; La Mont, Stephen P [Los Alamos National Laboratory

    2010-12-01

    The nuclear and radiochemistry group provides sample preparation and analysis support to the International Atomic Energy Agency (IAEA) Network of Analytical Laboratories (NWAL). These analyses include both non-destructive (alpha and gamma-ray spectrometry) and destructive (thermal ionization mass spectrometry and inductively coupled plasma mass spectrometry) methods. On a bi-annual basis the NWAL laboratories are invited to meet to discuss program evolution and issues. During this meeting each participating laboratory summarizes their efforts over the previous two years. This presentation will present Los Alamos National Laboratories efforts in support of this program. Data showing results from sample and blank analysis will be presented along with capability enhancement and issues that arose over the previous two years.

  16. Tiger Team Assessment of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  17. Tiger Team Assessment of the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services

  18. Groundwater level status report for 2009, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2010-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2009 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 55 regional aquifer wells (including 11 regional/intermediate wells), 26 intermediate wells, 98 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 161 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

  19. Groundwater level status report for 2010, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2011-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2010 is provided in this report. This report summarizes groundwater level data for 194 monitoring wells, including 63 regional aquifer wells (including 10 regional/intermediate wells), 34 intermediate wells, 97 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 162 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells and seasonal responses to snowmelt runoff observed in intermediate wells.

  20. Mac configuration management at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Allan B [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos National Laboratory (LANL) had a need for central configuration management of non-Windows computers. LANL has three to five thousand Macs and an equal number of Linux based systems. The primary goal was to be able to inventory all non-windows systems and patch Mc OS X systems. LANL examined a number of commercial and open source solutions and ultimately selected Puppet. This paper will discuss why we chose Puppet, how we implemented it, and some lessons we learned along the way.

  1. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  2. Cleanup at Los Alamos National Laboratory - the challenges - 9493

    Energy Technology Data Exchange (ETDEWEB)

    Stiger, Susan G [Los Alamos National Laboratory; Hargis, Kenneth M [Los Alamos National Laboratory; Graham, Michael J [Los Alamos National Laboratory; Rael, George J [NNSL/LASO

    2008-01-01

    This paper provides an overview of environmental cleanup at the Los Alamos National Laboratory (LANL) and some of the unique aspects and challenges. Cleanup of the 65-year old Department of Energy Laboratory is being conducted under a RCRA Consent Order with the State of New Mexico. This agreement is one of the most recent cleanup agreements signed in the DOE complex and was based on lessons learned at other DOE sites. A number of attributes create unique challenges for LANL cleanup -- the proximity to the community and pueblos, the site's topography and geology, and the nature of LANL's on-going missions. This overview paper will set the stage for other papers in this session, including papers that present: Plans to retrieve buried waste at Material Disposal Area B, across the street from oen of Los Alamos' commercial districts and the local newspaper; Progress to date and joint plans with WIPP for disposal of the remaining inventory of legacy transuranic waste; Reviews of both groundwater and surface water contamination and the factors complicating both characterization and remediation; Optimizing the disposal of low-level radioactive waste from ongoing LANL missions; A stakeholder environmental data transparency project (RACER), with full public access to all available information on contamination at LANL, and A description of the approach to waste processing cost recovery from the programs that generate hazardous and radioactive waste at LANL.

  3. Cleanup at the Los Alamos National Laboratory - The Challenges

    International Nuclear Information System (INIS)

    This paper provides an overview of environmental cleanup at the Los Alamos National Laboratory (LANL) and some of the unique aspects and challenges. Cleanup of the 65-year old Department of Energy laboratory is being conducted under a RCRA Consent Order with the State of New Mexico. This agreement is one of the most recent cleanup agreements signed in the DOE complex and was based on lessons learned at other DOE sites. A number of attributes create unique challenges for LANL cleanup - the proximity to the community and pueblos, the site's topography and geology, and the nature of LANL's on-going missions. This overview paper will set the stage for other papers in this session, including papers that present: - Plans to retrieve buried waste at Material Disposal Area B, across the street from one of Los Alamos' commercial districts and the local newspaper; - Progress to date and joint plans with WIPP for disposal of the remaining inventory of legacy transuranic waste; - Reviews of both groundwater and surface water contamination and the factors complicating both characterization and remediation; - Optimizing the disposal of low-level radioactive waste from ongoing LANL missions; - A stakeholder environmental data transparency project (RACER), with full public access to all available information on contamination at LANL, and - A description of the approach to waste processing cost recovery from the programs that generate hazardous and radioactive waste at LANL. (authors)

  4. A survey of macromycete diversity at Los Alamos National Laboratory, Bandelier National Monument, and Los Alamos County; A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Jarmie, N.; Rogers, F.J. [Mycology Associates, Los Alamos, NM (United States)

    1997-11-01

    The authors have completed a 5-year survey (1991--1995) of macromycetes found in Los Alamos County, Los Alamos National Laboratory, and Bandelier National Monument. The authors have compiled a database of 1,048 collections, their characteristics, and identifications. The database represents 123 (98%) genera and 175 (73%) species reliably identified. Issues of habitat loss, species extinction, and ecological relationships are addressed, and comparisons with other surveys are made. With this baseline information and modeling of this baseline data, one can begin to understand more about the fungal flora of the area.

  5. Fuels Inventories in the Los Alamos National Laboratory Region: 1997

    Energy Technology Data Exchange (ETDEWEB)

    Balice, R.G.; Oswald, B.P.; Martin, C.

    1999-03-01

    Fifty-four sites were surveyed for fuel levels, vegetational structures, and topographic characteristics. Most of the surveyed sites were on Los Alamos National Laboratory property, however, some surveys were also conducted on U.S. Forest Service property. The overall vegetation of these sites ranged from pinon-juniper woodlands to ponderosa pine forests to mixed conifer forests, and the topographic positions included canyons, mesas, and mountains. The results of these surveys indicate that the understory fuels are the greatest in mixed conifer forests and that overstory fuels are greatest in both mixed conifer forests and ponderosa pine forests on mesas. The geographic distribution of these fuels would suggest a most credible wildfire scenario for the Los Alamos region. Three major fires have occurred since 1954 and these fires behaved in a manner that is consistent with this scenario. The most credible wildfire scenario was also supported by the results of BEHAVE modeling that used the fuels inventory data as inputs. Output from the BEHAVE model suggested that catastrophic wildfires would continue to occur during any season with sufficiently dry, windy weather.

  6. Tiger Team Assessment of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The Management Subteam conducted a management and organization assessment of environment, safety, and health (ES H) activities performed by the Los Alamos National Laboratory (LANL) and onsite contractor personnel. The objectives of the assessment were to (1) evaluate the effectiveness of management systems and practices in terms of ensuring environmental compliance and the safety and health of workers and the general public, (2) identify key findings, and (3) identify root causes for all ES H findings and concerns. The scope of the assessment included examinations of the following from an ES H perspective: (1) strategic and program planning; (2) organizational structure and management configuration; (3) human resource management, including training and staffing; (4) management systems, including performance monitoring and assessment; (5) conduct of operations; (6) public and institutional interactions; and (7) corporate'' parent support.

  7. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Carton, D.; Rhyne, T. [and others

    1997-06-01

    Appendices are presented from a study performed on a concept model system for the commercialization of Los Alamos National Laboratory technologies via small businesses. Topics include a summary of information from the joint MCC/Los Alamos technology conference; a comparison of New Mexico infrastructure to other areas; a typical licensing agreement; technology screening guides; summaries of specific DOE/UC/Los Alamos documents; a bibliography; the Oak Ridge National Laboratory TCRD; The Ames Center for Advanced Technology Development; Los Alamos licensing procedures; presentation of slides from monthly MCC/Los Alamos review meetings; generalized entrepreneurship model; and a discussion on receiving equity for technology.

  8. Pinon Pine Tree Study, Los Alamos National Laboratory: Source document

    Energy Technology Data Exchange (ETDEWEB)

    P. R. Fresquez; J. D. Huchton; M. A. Mullen; L. Naranjo, Jr.

    2000-01-01

    One of the dominant tree species growing within and around Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis) tree. Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food--the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of {sup 3}H, {sup 137}Cs, {sup 90}Sr, {sup tot}U, {sup 238}Pu, {sup 239,240}Pu, and {sup 241}Am in soils (0- to 12-in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) concentrations of radionuclides in PPN collected in 1977 to present data, (3) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (4) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of {sup 3}H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 {micro}Sv). Soil-to-nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.

  9. Los Alamos National Laboratory 1995 self assessment report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-30

    The Los Alamos National Laboratory (LANL) Safeguards and Security (S and S) Assurance Program (AP) is designed to ensure the adequacy and effectiveness of the LANL S and S program. The Assurance Program provides a mechanism for discovering deficiencies, determining causes, conducting risk assessments, implementing corrective actions, and documenting the assessment process. Selection of organizations for self assessments is based on the criteria established in the LANL S and S Assurance Program. For FY 1995, 12 organizations were selected for self assessments, these organizations are identified fin the schedule at Appendix A. The S and S topical areas selected for review in each organization varied depending on their security interests and included: Program Planning and Management (PPM); Protection Program Operations (PPO); Material Control and Accountability (MC and A); Computer and Communications Security (COMPSEC and COMSEC); Information Security (INFOSEC); Personnel Security (PERSEC); and Operational Security (OPSEC). The objective was to ascertain the effectiveness of S and S programs in each organization, its formality of operations, and its integration with the overall Laboratory S and S program. The goal was to meet both the DOE self-assessment requirements and the UC performance criteria and document the results.

  10. Los Alamos National Laboratory 1995 self assessment report

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory (LANL) Safeguards and Security (S and S) Assurance Program (AP) is designed to ensure the adequacy and effectiveness of the LANL S and S program. The Assurance Program provides a mechanism for discovering deficiencies, determining causes, conducting risk assessments, implementing corrective actions, and documenting the assessment process. Selection of organizations for self assessments is based on the criteria established in the LANL S and S Assurance Program. For FY 1995, 12 organizations were selected for self assessments, these organizations are identified fin the schedule at Appendix A. The S and S topical areas selected for review in each organization varied depending on their security interests and included: Program Planning and Management (PPM); Protection Program Operations (PPO); Material Control and Accountability (MC and A); Computer and Communications Security (COMPSEC and COMSEC); Information Security (INFOSEC); Personnel Security (PERSEC); and Operational Security (OPSEC). The objective was to ascertain the effectiveness of S and S programs in each organization, its formality of operations, and its integration with the overall Laboratory S and S program. The goal was to meet both the DOE self-assessment requirements and the UC performance criteria and document the results

  11. Wildlife use of NPDES outfalls at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Foxx, T.; Blea-Edeskuty, B.

    1995-09-01

    From July through October of 1991, the Biological Resources Evaluation Team (BRET) surveyed 133 of the 140 National Pollutant Discharge and Elimination System outfalls at Los Alamos National Laboratory (LANL). The purpose of the survey was to determine the use of these wastewater outfalls by wildlife. BRET observed wildlife or evidence of wildlife (scat, tracks, or bedding) by 35 vertebrate species in the vicinity of the outfalls, suggesting these animals could be using water from outfalls. Approximately 56% of the outfalls are probably used or are suitable for use by large mammals as sources of drinking water. Additionally, hydrophytic vegetation grows in association with approximately 40% of the outfalls-a characteristic that could make these areas eligible for wetland status. BRET recommends further study to accurately characterize the use of outfalls by small and medium-sized mammals and amphibians. The team also recommends systematic aquatic macroinvertebrate studies to provide information on resident communities and water quality. Wetland assessments may be necessary to ensure compliance with wetland regulations if LANL activities affect any of the outfalls supporting hydrophytic vegetation.

  12. Lessons learned from decommissioning projects at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    This paper describes lessons learned over the last 20 years from 12 decommissioning projects at Los Alamos National Laboratory. These lessons relate both to overall program management and to management of specific projects during the planning and operations phases. The issues include waste management; the National Environmental Policy Act (NEPA); the Resource Conservation and Recovery Act (RCRA); the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); contracting; public involvement; client/customer interface; and funding. Key elements of our approach are to be proactive; follow the observation method; perform field activities concurrently; develop strategies to keep reportable incidents from delaying work; seek and use programs, methods, etc., in existence to shorten learning curves; network to help develop solutions; and avoid overstudying and overcharacterizing. This approach results in preliminary plans that require very little revision before implementation, reasonable costs and schedules, early acquisition of permits and NEPA documents, preliminary characterization reports, and contracting documents. Our track record is good -- the last four projects (uranium and plutonium-processing facility and three research reactors) have been on budget and on schedule

  13. 1993 Northern goshawk inventory on portions of Los Alamos National Laboratory, Los Alamos, NM. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, D.T.; Kennedy, P.L. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Fishery and Wildlife Biology

    1994-06-01

    Northern goshawks (Accipiter gentilis) (hereafter referred to as goshawk) is a large forest dwelling hawk. Goshawks may be declining in population and reproduction in the southwestern United States. Reasons for the possible decline in goshawk populations include timber harvesting resulting in the loss of nesting habitat, toxic chemicals, and the effects of drought, fire, and disease. Thus, there is a need to determine their population status and assess impacts of management activities in potential goshawk habitat. Inventory for the goshawk was conducted on 2,254 ha of Los Alamos National Laboratory (LANL) to determine the presence of nesting goshawks on LANL lands. This information can be incorporated into LANL`s environmental management program. The inventory was conducted by Colorado State University personnel from May 12 to July 30, 1993. This report summarizes the results of this inventory.

  14. Environmental Survey preliminary report, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Los Alamos National Laboratory (LANL), conducted March 29, 1987 through April 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the LANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the LANL, and interviews with site personnel. The Survey team developed Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by the Idaho National Engineering Laboratory. When completed, the results will be incorporated into the LANL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Survey for the LANL. 65 refs., 68 figs., 73 tabs.

  15. Environmental Survey preliminary report, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Los Alamos National Laboratory (LANL), conducted March 29, 1987 through April 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the LANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the LANL, and interviews with site personnel. The Survey team developed Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by the Idaho National Engineering Laboratory. When completed, the results will be incorporated into the LANL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Survey for the LANL. 65 refs., 68 figs., 73 tabs

  16. Los Alamos National Laboratory W76 Pit Tube Lifetime Study

    Energy Technology Data Exchange (ETDEWEB)

    Abeln, Terri G. [Los Alamos National Laboratory

    2012-04-25

    A metallurgical study was requested as part of the Los Alamos National Laboratory (LANL) W76-1 life-extension program (LEP) involving a lifetime analysis of type 304 stainless steel pit tubes subject to repeat bending loads during assembly and disassembly operations at BWXT/Pantex. This initial test phase was completed during the calendar years of 2004-2006 and the report not issued until additional recommended tests could be performed. These tests have not been funded to this date and therefore this report is considered final. Tubes were reportedly fabricated according to Rocky Flats specification P14548 - Seamless Type 304 VIM/VAR Stainless Steel Tubing. Tube diameter was specified as 0.125 inches and wall thickness as 0.028 inches. A heat treat condition is not specified and the hardness range specification can be characteristic of both 1/8 and 1/4 hard conditions. Properties of all tubes tested were within specification. Metallographic analysis could not conclusively determine a specified limit to number of bends allowable. A statistical analysis suggests a range of 5-7 bends with a 99.95% confidence limit. See the 'Statistical Analysis' section of this report. The initial phase of this study involved two separate sets of test specimens. The first group was part of an investigation originating in the ESA-GTS [now Gas Transfer Systems (W-7) Group]. After the bend cycle test parameters were chosen (all three required bends subjected to the same amount of bend cycles) and the tubes bent, the investigation was transferred to Terri Abeln (Metallurgical Science and Engineering) for analysis. Subsequently, another limited quantity of tubes became available for testing and were cycled with the same bending fixture, but with different test parameters determined by T. Abeln.

  17. Penetrating radiation: applications at Los Alamos National Laboratory

    Science.gov (United States)

    Watson, Scott; Hunter, James; Morris, Christopher

    2013-09-01

    Los Alamos has used penetrating radiography extensively throughout its history dating back to the Manhattan Project where imaging dense, imploding objects was the subject of intense interest. This interest continues today as major facilities like DARHT1 have become the mainstay of the US Stockpile Stewardship Program2 and the cornerstone of nuclear weapons certification. Meanwhile, emerging threats to national security from cargo containers and improvised explosive devices (IEDs) have invigorated inspection efforts using muon tomography, and compact x-ray radiography. Additionally, unusual environmental threats, like those from underwater oil spills and nuclear power plant accidents, have caused renewed interest in fielding radiography in severe operating conditions. We review the history of penetrating radiography at Los Alamos and survey technologies as presently applied to these important problems.

  18. Los Alamos National Laboratory Yucca Mountain Site Characterization Project: 1991 quality program status report

    International Nuclear Information System (INIS)

    This status report summarizes the activities and accomplishments of the Los Alamos National Laboratory (Los Alamos) Yucca Mountain Site Characterization Project's (YMP) quality assurance program for calendar year 1991. The report is divided into three Sections: Program Activities, Verification Activities, and Trend Analysis

  19. Los Alamos National Laboratory Science Education Programs. Quarterly progress report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.

    1995-09-01

    This report is quarterly progress report on the Los Alamos National Laboratory Science Education Programs. Included in the report are dicussions on teacher and faculty enhancement, curriculum improvement, student support, educational technology, and institutional improvement.

  20. Recommendations for future low-level and mixed waste management practices at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    This report describes recommendations concerning the management of low-level radioactive wastes and mixtures at Los Alamos National Laboratory. Performance assessments, characterization, site disposal design, shipment, and storage are discussed

  1. Environmental assessment for effluent reduction, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-11

    The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL`s sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent. After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL`s outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE`s purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives.

  2. Environmental assessment for effluent reduction, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL's sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent. After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL's outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE's purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives

  3. Cancer incidence among workers at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    An analysis of cancer incidence among Los Alamos workers was reported at the Sixteenth Mid-Year Topical Symposium of the Health Physics Society. Cancer incidence was especially low among Anglo-American males for cancer of the lung and oral cancer, cancer sites commonly associated with cigarette smoking. No cases of cancer of the lung, oral cavity, pancreas, or bladder were observed among Anglo-American females in the population. Standardized incidence ratios for cancer of the breast and cancer of the uterine corpus exceeded one; however, these findings were not statistically significant. These findings are consistent with expectation for a population of high socioeconomic class, such as the Laboratory work force. Therefore, working conditions at the Laboratory do not appear to have affected cancer incidence in this population. 1 reference, 2 tables

  4. Monitoring Sensitive Bat Species at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberg, Kari M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-15

    Bats play a critical role in ecosystems and are vulnerable to disturbance and disruption by human activities. In recent decades, bat populations in the United States and elsewhere have decreased tremendously. There are 47 different species of bat in the United States and 28 of these occur in New Mexico with 15 different species documented at the Los Alamos National Laboratory (LANL) and surrounding areas. Euderma maculatum(the spotted bat) is listed as “threatened” by the state of New Mexico and is known to occur at LANL. Four other species of bats are listed as “sensitive” and also occur here. In 1995, a four year study was initiated at LANL to assess the status of bat species of concern, elucidate distribution and relative abundance, and obtain information on roosting sites. There have been no definitive studies since then. Biologists in the Environmental Protection Division at LANL initiated a multi-year monitoring program for bats in May 2013 to implement the Biological Resources Management Plan. The objective of this ongoing study is to monitor bat species diversity and seasonal activity over time at LANL. Bat species diversity and seasonal activity were measured using an acoustic bat detector, the Pettersson D500X. This ultrasound recording unit is intended for long-term, unattended recording of bat and other high frequency animal calls. During 2013, the detector was deployed at two locations around LANL. Study sites were selected based on proximity to water where bats may be foraging. Recorded bat calls were analyzed using Sonobat, software that can help determine specific species of bat through their calls. A list of bat species at the two sites was developed and compared to lists from previous studies. Species diversity and seasonal activity, measured as the number of call sequences recorded each month, were compared between sites and among months. A total of 17,923 bat calls were recorded representing 15 species. Results indicate that there is a

  5. Review of epidemiologic studies at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Epidemiologic studies at Los Alamos are directed toward understanding potential health risks associated with activities pertaining to national energy and defense needs. Currently this research focuses on evaluating the effects of plutonium exposure in man. The major programs consist of (1) epidemiologic studies of the incidence of disease and mortality among plutonium and other workers at six Department of Energy (DOE) contractor facilities (Los Alamos, Rocky Flats, Mound, Savannah River, Hanford, and Oak Ridge), and (2) measurement of plutonium and other radionuclides in human tissues. Currently, investigations of mortality for Pantex workers and the surrounding general population are also being conducted for DOE in support of an Environment Impact Statement. This paper places emphasis on the activities of the national epidemiologic study of plutonium workers. The purpose of the plutonium workers study is to: (1) investigate whether adverse health effects are associated with exposures to plutonium, (2) explore whether adverse health effects are associated with exposure to transuranic elements, other radioisotopes, and hazardous substances that are found in nuclear facilities making routine use of plutonium, and (3) to describe in detail the nature of such health effects should they be discovered

  6. Needs assessment for fire department services and resources for the Los Alamos National Laboratory, Los Alamos, New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-15

    This report has been developed in response to a request from the Los Alamos National Laboratory (LANL) to evaluate the need for fire department services so as to enable the Laboratory to plan effective fire protection and thereby: meet LANL`s regulatory and contractual obligations; interface with the Department of Energy (DOE) and other agencies on matters relating to fire and emergency services; and ensure appropriate protection of the community and environment. This study is an outgrowth of the 1993 Fire Department Needs Assessment (prepared for DOE) but is developed from the LANL perspective. Input has been received from cognizant and responsible representatives at LANL, DOE, Los Alamos County (LAC) and the Los Alamos Fire Department (LAFD).

  7. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    International Nuclear Information System (INIS)

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclear capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.

  8. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    Energy Technology Data Exchange (ETDEWEB)

    McAlpine, Bradley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclear capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.

  9. Surface water data at Los Alamos National Laboratory: 2008 water year

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, David; Cata, Betsy; Kuyumjian, Gregory

    2009-09-01

    The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  10. Surface water data at Los Alamos National Laboratory: 2009 water year

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, David; McCullough, Betsy

    2010-05-01

    The principal investigators collected and computed surface water discharge data from 73 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  11. Mapping the future of CIC Division, Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report summarizes three scenario-based strategic planning workshops run for the CIC Division of the Los Alamos National Laboratory during November and December, 1995. Each of the two-day meetings was facilitated by Northeast Consulting Resources, Inc. (NCRI) of Boston, MA. using the Future Mapping{reg_sign} methodology.

  12. Simplifying Complexity: Miriam Blake--Los Alamos National Laboratory Research Library, NM

    Science.gov (United States)

    Library Journal, 2004

    2004-01-01

    The holy grail for many research librarians is one-stop searching: seamless access to all the library's resources on a topic, regardless of the source. Miriam Blake, Library Without Walls Project Leader at Los Alamos National laboratory (LANL), is making this vision a reality. Blake is part of a growing cadre of experts: a techie who is becoming a…

  13. Los Alamos National Laboratory Training Capabilities (Possible Applications in the Global Initiatives for Proliferation Prevention Program)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Olga [Los Alamos National Laboratory

    2012-06-04

    The briefing provides an overview of the training capabilities at Los Alamos National Laboratory that can be applied to nonproliferation/responsible science education at nuclear institutes in the Former Soviet Union, as part of the programmatic effort under the Global Initiatives for Proliferation Prevention program (GIPP).

  14. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1995 quality program status report

    International Nuclear Information System (INIS)

    This status report summarizes the activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project's (YMP's) quality assurance program for January 1 to September 30, 1995. The report includes major sections on program activities and trend analysis

  15. Frequency Estimates for Aircraft Crashes into Nuclear Facilities at Los Alamos National Laboratory (LANL)

    Energy Technology Data Exchange (ETDEWEB)

    George D. Heindel

    1998-09-01

    In October 1996, the Department of Energy (DOE) issued a new standard for evaluating accidental aircraft crashes into hazardous facilities. This document uses the method prescribed in the new standard to evaluate the likelihood of this type of accident occurring at Los Alamos National Laboratory's nuclear facilities.

  16. Enabling completion of the material disposition area G closure at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Blankenhorn, James Allen [Los Alamos National Laboratory; Bishop, Milton L [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Security, LLC (LANS) and the Los Alamos Site Office (LASO) have developed and are implementing an integrated strategy to accelerate the disposition of Los Alamos National Laboratory (LANL) legacy transuranic waste inventory currently stored in Technical Area 54, Material Disposition Area (MDA) G. As that strategy has been implemented the easier waste streams have been certified and shipped leaving the harder more challenging wastes to be dispositioned. Lessons learned from around the complex and a partnership with the National Transuranic Program located in Carlsbad, New Mexico, are enabling this acceleration. The Waste Disposition Program is responsible for the removal of both the above ground and below grade, retrievably stored transuranic waste in time to support the negotiated consent order with the State of New Mexico which requires closure of MDA G by the year 2015. The solutions and strategy employed at LANL are applicable to any organization that is currently managing legacy transuranic waste.

  17. DECOMMISSIONING THE HIGH PRESSURE TRITIUM LABORATORY AT LOS ALAMOS NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    In May 0f 2000, the Cerro Grande wild land fire burned approximately 48,000 acres in and around Los Alamos. In addition to the many buildings that were destroyed in the town site, many structures were also damaged and destroyed within the 43 square miles that comprise the Los Alamos National Laboratory (LANL). A special Act of Congress provided funding to remove Laboratory structures that were damaged by the fire, or that could be threatened by subsequent catastrophic wild land fires. The High Pressure Tritium Laboratory (HPTL) is located at Technical Area (TA) 33, building 86 in the far southeast corner of the Laboratory property. It is immediately adjacent to Bandelier National Park. Because it was threatened by both the Cerro Grande fire in 2000, and the 16,000- acre Dome fire in 1996, the former tritium processing facility was placed on the list of facilities scheduled for Decontamination and Decommissioning under the Cerro Grande Rehabilitation Project. The work was performed through the Facilities and Waste Operations (FWO) Division and is integrated with other Laboratory D and D efforts. The primary demolition contractor was Clauss Construction of San Diego, California. Earth Tech Global Environmental Services of San Antonio, Texas was sub-contracted to Clauss Construction, and provided radiological decontamination support to the project. Although the forty-seven year old facility had been in a state of safe-shutdown since operations ceased in 1990, a significant amount of tritium remained in the rooms where process systems were located. Tritium was the only radiological contaminant associated with this facility. Since no specific regulatory standards have been set for the release of volumetrically contaminated materials, concentration guidelines were derived in order to meet other established regulatory criteria. A tritium removal system was developed for this project with the goal of reducing the volume of tritium concentrated in the concrete of the

  18. Shock and Detonation Physics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, David L [Los Alamos National Laboratory; Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve A [Los Alamos National Laboratory

    2012-08-22

    WX-9 serves the Laboratory and the Nation by delivering quality technical results, serving customers that include the Nuclear Weapons Program (DOE/NNSA), the Department of Defense, the Department of Homeland Security and other government agencies. The scientific expertise of the group encompasses equations-of-state, shock compression science, phase transformations, detonation physics including explosives initiation, detonation propagation, and reaction rates, spectroscopic methods and velocimetry, and detonation and equation-of-state theory. We are also internationally-recognized in ultra-fast laser shock methods and associated diagnostics, and are active in the area of ultra-sensitive explosives detection. The facility capital enabling the group to fulfill its missions include a number of laser systems, both for laser-driven shocks, and spectroscopic analysis, high pressure gas-driven guns and powder guns for high velocity plate impact experiments, explosively-driven techniques, static high pressure devices including diamond anvil cells and dilatometers coupled with spectroscopic probes, and machine shops and target fabrication facilities.

  19. Status of RF superconductivity at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Work in RF Superconductivity at Los Alamos in the last 2 years has been in fabricating and testing a 4-cell 805-MHz cavity, and completing a preliminary design study comparing normal and superconducting versions of a high-intensity proton linac. The 4-cell cavity work was the completion of a prototype test on a proposed (but unfunded) project for pion acceleration that used a double-sided heat treated cavity with a stiffening scheme to reduce microphonics and allow operation at high external Q's. The high-intensity proton linac design study compared the feasibility, reliability, and capital and operating cost savings possible in replacing the 100-MeV to 1-GeV portion of a 100-mA CW proton accelerator with superconducting elliptical cavities at 700-MHz. An overview of the work is presented. (R.P.)

  20. Misuse and intrusion detection at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K.A.; Neuman, M.C.; Simmonds, D.D.; Stallings, C.A.; Thompson, J.L.; Christoph, G.G.

    1995-04-01

    An effective method for detecting computer misuse is the automatic auditing and analysis of on-line user activity. This activity is reflected in system audit records, in system vulnerability postures, and in other evidence found through active system testing. Since 1989 we have implemented a misuse and intrusion detection system at Los Alamos. This is the Network Anomaly Detection and Intrusion Reporter, or NADIR. NADIR currently audits a Kerberos distributed authentication system, file activity on a mass, storage system, and four Cray supercomputers that run the UNICOS operating system. NADIR summarizes user activity and system configuration in statistical profiles. It compares these profiles to expert rules that define security policy and improper or suspicious behavior. It reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations, As NADIR is constantly evolving, this paper reports its development to date.

  1. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Cartron, D.; Rhyne, T.; Schulze, M.; Welty, L.

    1997-06-01

    Over the past decade, numerous companies have been formed to commercialize research results from leading U.S. academic and research institutions. Emerging small businesses in areas such as Silicon Valley, Boston`s Route 128 corridor, and North Carolina`s Research Triangle have been especially effective in moving promising technologies from the laboratory bench to the commercial marketplace--creating new jobs and economic expansion in the process. Unfortunately, many of the U.S. national laboratories have not been major participants in this technology/commercialization activity, a result of a wide variety of factors which, until recently, acted against successful commercialization. This {open_quotes}commercialization gap{close_quotes} exists partly due to a lack, within Los Alamos in particular and the DOE in general, of in-depth expertise and experience in such business areas as new business development, securities regulation, market research and the determination of commercial potential, the identification of entrepreneurial management, marketing and distribution, and venture capital sources. The immediate consequence of these factors is the disappointingly small number of start-up companies based on technologies from Los Alamos National Laboratory that have been attempted, the modest financial return Los Alamos has received from these start-ups, and the lack of significant national recognition that Los Alamos has received for creating and commercializing these technologies.

  2. Measurements at Los Alamos National Laboratory Plutonium Facility in Support of Global Security Mission Space

    Energy Technology Data Exchange (ETDEWEB)

    Stange, Sy [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Herrera, Gary D. [Los Alamos National Laboratory; McLaughlin, Anastasia D. [Los Alamos National Laboratory; Montoya, Charles M. [Los Alamos National Laboratory; Quihuis, Becky A. [Los Alamos National Laboratory; Trujillo, Julio B. [Los Alamos National Laboratory; Van Pelt, Craig E. [Los Alamos National Laboratory; Wenz, Tracy R. [Los Alamos National Laboratory

    2012-07-13

    The Los Alamos National Laboratory Plutonium Facility at Technical Area (TA) 55 is one of a few nuclear facilities in the United States where Research & Development measurements can be performed on Safeguards Category-I (CAT-I) quantities of nuclear material. This capability allows us to incorporate measurements of CAT-IV through CAT-I materials as a component of detector characterization campaigns and training courses conducted at Los Alamos. A wider range of measurements can be supported. We will present an overview of recent measurements conducted in support of nuclear emergency response, nuclear counterterrorism, and international and domestic safeguards. This work was supported by the NNSA Office of Counterterrorism.

  3. Chemical decontamination technical resources at Los Alamos National Laboratory (2008)

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E [Los Alamos National Laboratory

    2008-01-01

    This document supplies information resources for a person seeking to create planning or pre-planning documents for chemical decontamination operations. A building decontamination plan can be separated into four different sections: Pre-planning, Characterization, Decontamination (Initial response and also complete cleanup), and Clearance. Of the identified Los Alamos resources, they can be matched with these four sections: Pre-planning -- Dave Seidel, EO-EPP, Emergency Planning and Preparedness; David DeCroix and Bruce Letellier, D-3, Computational fluids modeling of structures; Murray E. Moore, RP-2, Aerosol sampling and ventilation engineering. Characterization (this can include development projects) -- Beth Perry, IAT-3, Nuclear Counterterrorism Response (SNIPER database); Fernando Garzon, MPA-11, Sensors and Electrochemical Devices (development); George Havrilla, C-CDE, Chemical Diagnostics and Engineering; Kristen McCabe, B-7, Biosecurity and Public Health. Decontamination -- Adam Stively, EO-ER, Emergency Response; Dina Matz, IHS-IP, Industrial hygiene; Don Hickmott, EES-6, Chemical cleanup. Clearance (validation) -- Larry Ticknor, CCS-6, Statistical Sciences.

  4. Los Alamos National Laboratory Institutional Plan, FY 1983-FY 1988

    International Nuclear Information System (INIS)

    The report is broken down into the following sections: director's overview; laboratory role and mission; description of the laboratory; scientific and technical activities; technology transfer program; personnel resources; university and industry interactions; site and facilities development; and resource projections and analyses

  5. LAMPF II workshop, Los Alamos National Laboratory, Los Alamos, New Mexico, February 1-4, 1982

    International Nuclear Information System (INIS)

    This report contains the proceedings of the first LAMPF II Workshop held at Los Alamos February 1 to 4, 1982. Included are the talks that were available in written form. The conclusion of the participants was that there are many exciting areas of physics that will be addressed by such a machine

  6. LAMPF II workshop, Los Alamos National Laboratory, Los Alamos, New Mexico, February 1-4, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Thiessen, H.A. (comp.)

    1982-01-01

    This report contains the proceedings of the first LAMPF II Workshop held at Los Alamos February 1 to 4, 1982. Included are the talks that were available in written form. The conclusion of the participants was that there are many exciting areas of physics that will be addressed by such a machine.

  7. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dion, Heather M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dry, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaMont, Stephen Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Podlesak, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tandon, Lav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-22

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  8. 2011 Los Alamos National Laboratory Riparian Inventory Results

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Elizabeth J. [Los Alamos National Laboratory; Hansen, Leslie A. [Los Alamos National Laboratory; Hathcock, Charles D. [Los Alamos National Laboratory; Keller, David C. [Los Alamos National Laboratory; Zemlick, Catherine M. [Los Alamos National Laboratory

    2012-03-29

    A total length of 36.7 kilometers of riparian habitat were inventoried within LANL boundaries between 2007 and 2011. The following canyons and lengths of riparian habitat were surveyed and inventoried between 2007 and 2011. Water Canyon (9,669 m), Los Alamos Canyon (7,131 m), Pajarito Canyon (6,009 m), Mortandad Canyon (3,110 m), Two-Mile Canyon (2,680 m), Sandia Canyon (2,181 m), Three-Mile Canyon (1,883 m), Canyon de Valle (1,835 m), Ancho Canyon (1,143 m), Canada del Buey (700 m), Sandia Canyon (221 m), DP Canyon (159 m) and Chaquehui Canyon (50 m). Effluent Canyon, Fence Canyon and Potrillo Canyon were surveyed but no areas of riparian habitat were found. Stretches of inventoried riparian habitat were classified for prioritization of treatment, if any was recommended. High priority sites included stretches of Mortandad Canyon, LA Canyon, Pajarito Canyon, Two-Mile Canyon, Sandia Canyon and Water Canyon. Recommended treatment for high priority sites includes placement of objects into the stream channel to encourage sediment deposition, elimination of channel incision, and to expand and slow water flow across the floodplain. Additional stretches were classified as lower priority, and, for other sites it was recommended that feral cattle and exotic plants be removed to aid in riparian habitat recovery. In June 2011 the Las Conchas Wildfire burned over 150,000 acres of land in the Jemez Mountains and surrounding areas. The watersheds above LA Canyon, Water Canyon and Pajarito Canyon were burned in the Las Conchas Wildfire and flooding and habitat alteration were observed in these canyon bottoms (Wright 2011). Post fire status of lower priority areas may change to higher priority for some of the sites surveyed prior to the Las Conchas Wildfire, due to changes in vegetation cover in the adjacent upland watershed.

  9. Overview of the Los Alamos National Laboratory Inertial Confinement Fusion Program

    International Nuclear Information System (INIS)

    The Los Alamos Inertial Confinement Fusion (ICF) Program is focused on preparing for a National Ignition Facility. Target physics research is addressing specific issues identified for the Ignition Facility target, and materials experts are developing target fabrication techniques necessary for the advanced targets. We are also working with Lawrence Livermore National Laboratory on the design of the National Ignition Facility target chamber. Los Alamos is also continuing to develop the KrF laser-fusion driver for ICF. We are modifying the Aurora laser to higher intensity and shorter pulses and are working with the Naval Research Laboratory on the development of the Nike KrF laser. 9 refs., 1 fig., 2 tabs

  10. Los Alamos National Laboratory: science and technology update

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Terry C [Los Alamos National Laboratory; Mercer - Smith, Janet A [Los Alamos National Laboratory

    2011-01-24

    The update will focus on issues that occurred during the first quarter of FY 2011. These include the Senate Confirmation of the New Start Treaty, the pay freeze for the next two years, impact of the Continuing Resolution for FY 2011 , and the planned retirement of the Laboratory Director. The Laboratory plans to reinvest the 'savings' from the pay freeze in LDRD, sustainability, and infrastructure. The large holdbacks in funds during the Continuing Resolution are causing stop work on many projects and uncertainty in the path forward for MaRIE.

  11. Los Alamos National Laboratory emergency management plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, G.F.

    1998-07-15

    The Laboratory has developed this Emergency Management Plan (EMP) to assist in emergency planning, preparedness, and response to anticipated and actual emergencies. The Plan establishes guidance for ensuring safe Laboratory operation, protection of the environment, and safeguarding Department of Energy (DOE) property. Detailed information and specific instructions required by emergency response personnel to implement the EMP are contained in the Emergency Management Plan Implementing Procedure (EMPIP) document, which consists of individual EMPIPs. The EMP and EMPIPs may be used to assist in resolving emergencies including but not limited to fires, high-energy accidents, hazardous material releases (radioactive and nonradioactive), security incidents, transportation accidents, electrical accidents, and natural disasters.

  12. NEPA and NHPA- successful decommissioning of historic Manhattan Project properties at Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    McGehee, E.D.; Pendergrass, A.K.

    1997-05-21

    This paper describes experiences at Los Alamos National Laboratory during the process of planning and executing decommissioning and decontamination activities on a number of properties constructed as part of the Manhattan project. Many of these buildings had been abandoned for many years and were in deteriorating condition, in addition to being contaminated with asbestos, lead based paints and high explosive residues. Due to the age and use of the structures they were evaluated against criteria for the National Register of Historic Places. This process is briefly reviewed, along with the results, as well as actions implemented as a result of the condition and safety of the structures. A number of the structures have been decontaminated and demolished. Planning is still ongoing for the renovation of one structure, and the photographic and drawing records of the properties is near completion.

  13. Customer service model for waste tracking at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The deployment of any new software system in a production facility will always face multiple hurtles in reaching a successful acceptance. However, a new waste tracking system was required at the plutonium processing facility at Los Alamos National Laboratory (LANL) where waste processing must be integrated to handle Special Nuclear Materials tracking requirements. Waste tracking systems can enhance the processing of waste in production facilities when the system is developed with a focus on customer service throughout the project life cycle. In March 2010 Los Alamos National Laboratory Waste Technical Services (WTS) replaced the aging systems and infrastructure that were being used to support the plutonium processing facility. The Waste Technical Services (WTS) Waste Compliance and Tracking System (WCATS) Project Team, using the following customer service model, succeeded in its goal to meet all operational and regulatory requirements, making waste processing in the facility more efficient while partnering with the customer.

  14. The Los Alamos National Laboratory Environmental Restoration Program

    International Nuclear Information System (INIS)

    The LANL Environmental Restoration (ER) Program Office, established in October 1989, is faced with the challenge of assessing and cleaning up nearly 1,8000 potentially hazardous waste sites according to an aggressive corrective action schedule that the Environmental Protection Agency (EPA) mandated on May 23, 1990, in a Resource, Conservation, and Recovery Act (RCRA) Part B Permit. To maximize program efficiency, the ER Program Office will implement a unique management approach designed to maximize the use of laboratory technical expertise. The Installation Work Plan, which provides a blueprint for the program, has been submitted to EPA for review and approval. A work plan for characterization of Technical Area 21, an early plutonium processing facility, is also nearing completion. The feasibility of an expedited cleanup of the Laboratory's worst hazardous waste release has been modelled using a computer code originally developed by LANL to assist the nuclear weapons testing program. A sophisticated Geographic Information System has been implemented to assist in data management and presentation, and the design of a Mixed Waste Disposal Facility is underway. 6 refs., 2 figs

  15. Biosafety Practices and Emergency Response at the Idaho National Laboratory and Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Frank F. Roberto; Dina M. Matz

    2008-03-01

    Strict federal regulations govern the possession, use, and transfer of pathogens and toxins with potential to cause harm to the public, either through accidental or deliberate means. Laboratories registered through either the Centers for Disease Control and Prevention (CDC), the U.S. Dept. of Agriculture (USDA), or both, must prepare biosafety, security, and incident response plans, conduct drills or exercises on an annual basis, and update plans accordingly. At the Idaho National Laboratory (INL), biosafety, laboratory, and emergency management staff have been working together for 2 years to satisfy federal and DOE/NNSA requirements. This has been done through the establishment of plans, training, tabletop and walk-through exercises and drills, and coordination with local and regional emergency response personnel. Responding to the release of infectious agents or toxins is challenging, but through familiarization with the nature of the hazardous biological substances or organisms, and integration with laboratory-wide emergency response procedures, credible scenarios are being used to evaluate our ability to protect workers, the public, and the environment from agents we must work with to provide for national biodefense.

  16. Plan for increasing public participation in cleanup decisions for the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This document describes a plan for involving the public in decisions related to cleaning up sites suspected of being contaminated with chemicals or radioactivity at Los Alamos National Laboratory. In this section we describe the purpose of the Environmental Remediation Project, our past efforts to communicate with the northern New Mexico community, and the events that brought about our realization that less traditional, more innovative approaches to public involvement are needed.

  17. The Criticality Safety Information Resource Center at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The mission of the Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory (LANL) is the preservation of primary documentation supporting criticality safety. In many cases, but not all, this primary documentation consists of experimentalists' logbooks. Experience has shown that the logbooks and other primary information are vulnerable to being discarded. Destruction of these logbooks results in a permanent loss to the criticality safety community

  18. Summary of New Los Alamos National Laboratory Groundwater Data Loaded in July 2012

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Steven M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-07

    This report provides information concerning groundwater monitoring data obtained by the Los Alamos National Laboratory under its interim monitoring plan and contains results for chemical constituents that meet seven screening criteria laid out in the Compliance Order on Consent. Tables are included in the report to organize the findings from the samples. The report covers groundwater samples taken from wells or springs that provide surveillance of the groundwater zones indicated in the table.

  19. Plan for increasing public participation in cleanup decisions for the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    This document describes a plan for involving the public in decisions related to cleaning up sites suspected of being contaminated with chemicals or radioactivity at Los Alamos National Laboratory. In this section we describe the purpose of the Environmental Remediation Project, our past efforts to communicate with the northern New Mexico community, and the events that brought about our realization that less traditional, more innovative approaches to public involvement are needed

  20. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1994 quality program status report

    International Nuclear Information System (INIS)

    This status report is for calendar year 1994. It summarizes the annual activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project (YMP or Project) quality assurance program. By identifying the accomplishments of the quality program, a baseline is established that will assist in decision making, improve administrative controls and predictability, and allow us to annually identify adverse trends and to evaluate improvements. This is the fourth annual status report

  1. From Bombs to Breast Cancer Imaging: Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Martineau, Rebecca M [Los Alamos National Laboratory

    2012-07-26

    . Currently, there is fierce debate surrounding the age at which breast cancer screening should begin, and once begun, how often it should occur. The American Cancer Society recommends yearly mammograms starting at age 40. On the other hand, the U.S. Preventive Services Task Force recommends against routine so early. Rather, the Task Force recommends biennial mammography screening for women aged 50 to 74 years. The ten-year discrepancy in the onset of screening results from recent data suggesting that the frequent use of X-ray radiation during screenings could potentially increase the likelihood of developing cancer. This danger is increased by the low sensitivity and accuracy of mammograms, which sometimes require multiple screenings to yield results. Furthermore, mammograms are often not only inaccurate, but average appalling misdiagnoses rates: about 80% false positives and 15% false negatives. These misdiagnoses lead to unwarranted biopsies at an estimated health care cost of $2 billion per year, while at the same time, resulting in excessive cases of undetected cancer. As such, the National Cancer Institute recommends more studies on the advantages of types and frequency of screenings, as well as alternative screening options. The UST technology developed at LANL could be an alternative option to greatly improve the specificity and sensitivity of breast cancer screening without using ionizing radiation. LANL is developing high-resolution ultrasound tomography algorithms and a clinical ultrasound tomography scanner to conduct patient studies at the UNM Hospital. During UST scanning, the patient lies face-down while her breast, immersed in a tank of warm water, is scanned by phased-transducer arrays. UST uses recorded ultrasound signals to reconstruct a high-resolution three-dimensional image of the breast, showing the spatial distribution of mechanical properties within the breast. Breast cancers are detected by higher values of mechanical properties compared to

  2. Summary of research for the Inertial Confinement Fusion Program at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The information presented in this report is a summary of the status of the Inertial Confinement Fusion (ICF) program at the Los Alamos National Laboratory as of February 1985. This report contains material on the existing high-power CO2 laser driver (Antares), the program to determine the potential of KrF as an ICF driver, heavy-ion accelerators as drivers for ICF, target fabrication for ICF, and a summary of our understanding of laser-plasma interactions. A classified companion report contains material on our current understanding of capsule physics and lists the contributions to the Laboratory's weapons programs made by the ICF program. The information collected in these two volumes is meant to serve as a report on the status of some of the technological components of the Los Alamos ICF program rather than a detailed review of specific technical issues

  3. Los Alamos National Laboratory Science Education Program. Annual progress report, October 1, 1995--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.H.

    1997-01-01

    The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours for the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.

  4. New Mexicans` images and perceptions of Los Alamos National Laboratory. Winter, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-01-01

    This report uses survey data to profile New Mexico residents` images and perceptions of Los Alamos National Laboratory (LANL). The survey results are the responses of a representative, stratified random sample of 992 New Mexico households to a set of questions asked in October, 1992. The data allow statistical inference to the general population`s responses to the same set of questions at the time the survey was administered. The results provide an overview of New Mexico residents` current images and perceptions of the Laboratory. The sample margin of error is plus or minus 3.5% at the 95% confidence level.

  5. Los Alamos National Laboratory Northern New Mexico Seismic Network and seismicity

    Energy Technology Data Exchange (ETDEWEB)

    Cash, D.J.

    1981-01-01

    The Northern New Mexico Seismic Network (NNMSN) is described and the research conducted there briefly discussed. Its purpose is to: (1) monitor seismic activity that can pose a risk to the Los Alamos National Laboratory; (2) monitor induced seismicity that might result from the Laboratory's experimental activities, such as the Hot Dry Rock project; (3) provide data for research in test ban verification; and (4) provide data for fundamental research in seismology, tectonics, and geologic structure of the Rio Grande Rift and the Jemez Mountains. (ACR)

  6. A Wildfire Behavior Modeling System at Los Alamos National Laboratory for Operational Applications

    Energy Technology Data Exchange (ETDEWEB)

    S.W. Koch; R.G.Balice

    2004-11-01

    To support efforts to protect facilities and property at Los Alamos National Laboratory from damages caused by wildfire, we completed a multiyear project to develop a system for modeling the behavior of wildfires in the Los Alamos region. This was accomplished by parameterizing the FARSITE wildfire behavior model with locally gathered data representing topography, fuels, and weather conditions from throughout the Los Alamos region. Detailed parameterization was made possible by an extensive monitoring network of permanent plots, weather towers, and other data collection facilities. We also incorporated a database of lightning strikes that can be used individually as repeatable ignition points or can be used as a group in Monte Carlo simulation exercises and in other randomization procedures. The assembled modeling system was subjected to sensitivity analyses and was validated against documented fires, including the Cerro Grande Fire. The resulting modeling system is a valuable tool for research and management. It also complements knowledge based on professional expertise and information gathered from other modeling technologies. However, the modeling system requires frequent updates of the input data layers to produce currently valid results, to adapt to changes in environmental conditions within the Los Alamos region, and to allow for the quick production of model outputs during emergency operations.

  7. Location capability of the Los Alamos National Laboratory seismic array, northern New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Wechsler, D.J.

    1981-02-01

    The adequacy of the Los Alamos National Laboratory seismic array in northern New Mexico has been evaluated by a recently implemented least squares inversion program for seismic arrival time data. The condition number of the partial derivative matrix of travel times provides information for estimating the quality of hypocentral solutions. Spatial variation of the condition number combined with the results of inversion of synthetic arrival time data enables us to assess the capability of the seismic array in locating earthquakes occurring throughout the northern part of the state. The results define a large portion of north-central New Mexico over which earthquake epicenters can be detected and located by the Los Alamos array.

  8. Dose reconstruction for weapons experiments involving 140La at Los Alamos National Laboratory, 1944-1962

    International Nuclear Information System (INIS)

    A series of 254 weapons design experiments was conducted by Los Alamos National Laboratory from 1944 through 1962 and resulted in the dispersal of approximately 11 PBq (300 kCi) of radioactive 140La. All shots occurred at Point Able in Bayo Canyon, east of the Los Alamos townsite. Public interest and the Government Accounting Office probe precipitated a dose reconstruction to assess potential exposures to members of the public. The information available for each shot included explosive charge size, date and time of explosion, and shot activity. Detailed meteorological data were not available for the majority of the shots, requiring the development of statistically representative meteorological data. A wind rose was developed specific to the afternoon-evening time of the shots, and the wind frequency in each sector was used to determine the fraction of activity dispersed towards each hypothetical receptor. HOTSPOT 7, a Gaussian plume-based dispersion model, was used to determine the average dose per sector per unit of shot activity. The dose from penetrating radiation from ground-deposited 140La was greater by several orders of magnitude than the dose from inhalation and immersion. The highest doses to a permanent resident probably occurred in the easternmost part of the Los Alamos townsite. The highest annual dose occurred in 1955 and was approximately 0.23 mSv. Assuming an individual had been at the location of maximum potential exposure in the Los Alamos townsite continuously throughout the experiments, the total dose from the 18-y series would have been approximately 1.4 mSv with an average dose of approximately 0.09 mSv y-1. Doses at nearby Totavi trailer park, San Clara Pueblo, and Santa Clara Pueblo were approximately 75%, 40%, and 15%, respectively, of those at Los Alamos. Visitors to nearby public areas received negligible doses. 11 refs., 6 figs., 4 tabs

  9. Evaluation of Macroinvertebrate Communities and Habitat for Selected Stream Reaches at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    L.J. Henne; K.J. Buckley

    2005-08-12

    This is the second aquatic biological monitoring report generated by Los Alamos National Laboratory's (LANL's) Water Quality and Hydrology Group. The study has been conducted to generate impact-based assessments of habitat and water quality for LANL waterways. The monitoring program was designed to allow for the detection of spatial and temporal trends in water and habitat quality through ongoing, biannual monitoring of habitat characteristics and benthic aquatic macroinvertebrate communities at six key sites in Los Alamos, Sandia, Water, Pajarito, and Starmer's Gulch Canyons. Data were collected on aquatic habitat characteristics, channel substrate, and macroinvertebrate communities during 2001 and 2002. Aquatic habitat scores were stable between 2001 and 2002 at all locations except Starmer's Gulch and Pajarito Canyon, which had lower scores in 2002 due to low flow conditions. Channel substrate changes were most evident at the upper Los Alamos and Pajarito study reaches. The macroinvertebrate Stream Condition Index (SCI) indicated moderate to severe impairment at upper Los Alamos Canyon, slight to moderate impairment at upper Sandia Canyon, and little or no impairment at lower Sandia Canyon, Starmer's Gulch, and Pajarito Canyon. Habitat, substrate, and macroinvertebrate data from the site in upper Los Alamos Canyon indicated severe impacts from the Cerro Grande Fire of 2000. Impairment in the macroinvertebrate community at upper Sandia Canyon was probably due to effluent-dominated flow at that site. The minimal impairment SCI scores for the lower Sandia site indicated that water quality improved with distance downstream from the outfall at upper Sandia Canyon.

  10. Radionuclide concentrations in pinto beans, sweet corn, and zucchini squash grown in Los Alamos Canyon at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, P.R.; Mullen, M.A.; Naranjo, L. Jr.; Armstrong, D.R.

    1997-05-01

    Pinto beans, sweet corn, and zucchini squash (Cucurbita pepo var. black beauty) were grown in a randomized complete-block field/pot experiment at a site that contained the highest observed levels of surface gross gamma radioactivity within Los Alamos Canyon (LAC) at Los Alamos National Laboratory. Soils as well as washed edible and nonedible crop tissues were analyzed for various radionuclides and heavy metals . Most radionuclides, with the exception of {sup 3}H and {sup tot}U, in soil from LAC were detected in significantly higher concentrations (p <0.01) than in soil collected from regional background (RBG) locations. Similarly, most radionuclides in edible crop portions of beans, squash, and corn were detected in significantly higher (p <0.01 and 0.05) concentrations than RBG. Most soil-to-plant concentration ratios for radionuclides in edible and nonedible crop tissues from LAC were within the default values given by the Nuclear Regulatory Commission and Environmental Protection Agency. All heavy metals in soils, as well as edible and nonedible crop tissues grown in soils from LAC, were within RBG concentrations. Overall, the total maximum net positive committed effective dose equivalent (CEDE)--the CEDE plus two sigma for each radioisotope minus background and then all positive doses summed--to a hypothetical 50-year resident that ingested 160 kg of beans, corn, and squash in equal proportions, was 74 mrem y{sup -1}. This dose was below the International Commission on Radiological Protection permissible dose limit (PDL) of 100 mrem y{sup -1} from all pathways; however, the addition of other internal and external exposure route factors may increase the overall dose over the PDL. Also, the risk of an excess cancer fatality, based on 74 mrem y{sup -1}, was 3.7 x 10{sup -5} (37 in a million), which is above the Environmental Protection Agency`s (acceptable) guideline of one in a million. 31 refs., 15 tabs.

  11. Evaluation of cancer incidence among employees at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    As part of the National Plutonium Workers Study, cancer incidence for 1969 to 1978 among employees of the Los Alamos National Laboratory was investigated. Incident cancers were identified by a computer match of the Los Alamos employed roster against New Mexico Tumor Registry files. The resulting numbers of total and site-specific cancers were compared to the numbers expected based on incidence rates for the State of New Mexico, specific for age, sex, ethnicity, and calendar period. For Anglo males, significantly fewer cancers than expected (SIR = 0.60, 95% CI 0.44 to 0.79) were found. This resulted from marked deficits of smoking-related cancers, particularly lung (2 observed, 19.4 expected) and oral (1 observed, 6.5 expected) cancer. Similarly, no smoking-related cancers were detected among Anglo females, though they had a slight nonsignificant excess of breast cancer (14 observed, 9.1 expected) and a suggestive excess of cancer of the uterine corpus (2 observed, 0.25 expected). The pattern of cancerincidence among Anglo employees is typical of high social class populations and not likely related to the Los Alamos working environment

  12. Ambient air monitoring for organic compounds, acids, and metals at Los Alamos National Laboratory, January 1991

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory (LANL) contracted Radian Corporation (Radian) to conduct a short-term, intensive air monitoring program whose goal was to estimate the impact of chemical emissions from LANL on the ambient air environment. A comprehensive emission inventory had identified more than 600 potential air contaminants in LANL's emissions. A subset of specific target chemicals was selected for monitoring: 20 organic vapors, 6 metals and 5 inorganic acid vapors. These were measured at 5 ground level sampling sites around LANL over seven consecutive days in January 1991. The sampling and analytical strategy used a combination of EPA and NIOSH methods modified for ambient air applications

  13. Groundwater Level Status Report for Fiscal Year 2006 Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Shannon P. Allen, Richard J. Koch

    2007-03-30

    The status of groundwater level monitoring at Los Alamos National Laboratory in Fiscal Year 2006 is provided in this report. The Groundwater Level Monitoring Project was instituted in 2005 for providing a framework for the collection and processing of quality controlled groundwater level data. This report summarizes groundwater level data for 158 monitoring wells, including 43 regional aquifer wells, 23 intermediate wells, and 92 alluvial wells. Pressure transducers were installed in 132 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well.

  14. Climate Change and the Los Alamos National Laboratory. The Adaptation Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Kimberly M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hjeresen, Dennis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Silverman, Josh [U.S. Dept. of Energy, Washington, DC (United States)

    2015-02-01

    The Los Alamos National Laboratory (LANL) has been adapting to climate change related impacts that have been occurring on decadal time scales. The region where LANL is located has been subject to a cascade of climate related impacts: drought, devastating wildfires, and historic flooding events. Instead of buckling under the pressure, LANL and the surrounding communities have integrated climate change mitigation strategies into their daily operations and long-term plans by increasing coordination and communication between the Federal, State, and local agencies in the region, identifying and aggressively managing forested areas in need of near-term attention, addressing flood control and retention issues, and more.

  15. Implementation of a standards-based management system at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) has issued numerous regulations, directives, and notices that affect the operation of the Los Alamos National Laboratory (LANL) site. In addition, LANL must comply with regulations and requirements from other federal, state, and local agencies. The number of requirements and the receipt of these requirements from many sources have caused fragmented, incomplete, and in some cases duplicate compliance measures to be completed. LANL has embarked on the development, implementation, and maintenance of an integrated standards-based management system as the means to achieve effective and efficient management of operations in a way that meets the expectations of customers and regulators

  16. Fine tuning of a measurement control program at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    This paper suggests a revised measurement control program (MCP) for balance at the Los Alamos National Laboratory plutonium facility. The revised MCP is based on an analysis of data taken from June 1981 through August 1983. The most important finding is that significant measurement bias occurs in nearly every balance. An important cause of this bias has been traced to truncation errors, and a detailed discussion of the effects of truncation errors is presented. We also discuss other sources of bias and their resolution, and finally, we suggest methods for determining accuracy, precision, and randomness of measurements of weights and the response to failures of statistical tests

  17. Groundwater Level Status Report for Fiscal Year 2007 - Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Shannon P. Allen, Richard J. Koch

    2008-03-17

    The status of groundwater level monitoring at Los Alamos National Laboratory in Fiscal Year 2007 is provided in this report. The Groundwater Level Monitoring Project was instituted in 2005 to provide a framework for the collection and processing of quality controlled groundwater level data. This report summarizes groundwater level data for 166 monitoring wells, including 45 regional aquifer wells, 25 intermediate wells, and 96 alluvial wells, and 11 water supply wells. Pressure transducers were installed in 133 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well.

  18. Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.D.

    1998-12-01

    Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel.

  19. Setting priorities for action plans at Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.C.

    1992-09-30

    This report summarizes work done by Applied Decision Analysis (ADA) for Los Alamos National Laboratory (LANL) under Subcontract Number 9-XQ2-Y3837-1 with the University of California. The purpose of this work was to develop a method of setting priorities for environmental, safety, and health (ES&H) deficiencies at Los Alamos. The deficiencies were identified by a DOE Tiger Team that visited LANL in the fall of 1991, and by self assessments done by the Laboratory. ADA did the work described here between October 1991 and the end of September 1992. The ADA staff working on this project became part of a Risk Management Team in the Laboratory`s Integration and Coordination Office (ICO). During the project, the Risk Management Team produced a variety of documents describing aspects of the action-plan prioritization system. Some of those documents are attached to this report. Rather than attempt to duplicate their contents, this report provides a guide to those documents, and references them whenever appropriate.

  20. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau

  1. Use of ecotoxicological screening action levels in ecological risk assessment at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Regulatory drivers found in several environmental statutes require that ecological risk assessment and Natural Resource Damage Assessment be performed to assess potential environmental impact from contaminated sites and from proposed remedial alternatives. At Los Alamos National Laboratory, the initial phase of the ecological risk assessment process required preliminary evaluation of contaminated sites to determine whether potential for ecological impact exists. The preliminary evaluations were made using Ecotoxicological Screening Action Levels (ESALS) calculated as a function of reference toxicity dose, body weight, food/water/air intake, and fraction of soil intake with food. Reference toxicity doses were derived from the Environmental Protection Agency Integrated Risk Information System (IRIS) and Health Effects Assessment Summary Tables (HEAST) toxicology databases. Other parameters required for ESAL calculations were derived from physiological, metabolic, and behavioral data available in the literature. The Los Alamos ESALs were derived for guilds of animals with similar behavioral patterns, which were identified from natural resource survey data collected at Los Alamos. Subsequent to development of Ecotoxicological Screening Action Levels, Hazard Quotients, which are ratios of soil concentrations to Ecotoxicological Screening Action Levels, were calculated for potential contaminants of concern. The Hazard Quotients were used to identify which potential contaminants of concern should be evaluated further for ecological impact. There is potential for ecological impact when the Hazard Quotient is equal to or greater than one

  2. Materials Capability Review Los Alamos National Laboratory April 29-May 2, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoinette J [Los Alamos National Laboratory

    2012-04-20

    Los Alamos National Laboratory (LANL) uses Capability Reviews to assess the quality and institutional integration of science, technology and engineering (STE) and to advise Laboratory Management on the current and future health of LANL STE. The capabilities are deliberately chosen to be crosscutting over the Laboratory and therefore will include experimental, theoretical and simulation disciplines from multiple line organizations. Capability Reviews are designed to provide a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. The principal product of the Capability Review is the report that includes the review committee's assessments, recommendations, and recommendations for STE.

  3. Environmental assessment for the proposed CMR Building upgrades at the Los Alamos National Laboratory, Los Alamos, New Mexico. Final document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-04

    In order to maintain its ability to continue to conduct uninterrupted radioactive and metallurgical research in a safe, secure, and environmentally sound manner, the US Department of Energy (DOE) proposes to upgrade the Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Building. The building was built in the early 1950s to provide a research and experimental facility for analytical chemistry, plutonium and uranium chemistry, and metallurgy. Today, research and development activities are performed involving nuclear materials. A variety of radioactive and chemical hazards are present. The CMR Building is nearing the end of its original design life and does not meet many of today`s design codes and standards. The Proposed Action for this Environmental Assessment (EA) includes structural modifications to some portions of the CMR Building which do not meet current seismic criteria for a Hazard Category 2 Facility. Also included are upgrades and improvements in building ventilation, communications, monitoring, and fire protection systems. This EA analyzes the environmental effects of construction of the proposed upgrades. The Proposed Action will have no adverse effects upon agricultural and cultural resources, wetlands and floodplains, endangered and threatened species, recreational resources, or water resources. The Proposed Action would have negligible effects on human health and transportation, and would not pose a disproportionate adverse health or environmental impact on minority or low-income populations within an 80 kilometer (50 mile) radius of the CMR Building.

  4. Environmental assessment for the proposed CMR Building upgrades at the Los Alamos National Laboratory, Los Alamos, New Mexico. Final document

    International Nuclear Information System (INIS)

    In order to maintain its ability to continue to conduct uninterrupted radioactive and metallurgical research in a safe, secure, and environmentally sound manner, the US Department of Energy (DOE) proposes to upgrade the Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Building. The building was built in the early 1950s to provide a research and experimental facility for analytical chemistry, plutonium and uranium chemistry, and metallurgy. Today, research and development activities are performed involving nuclear materials. A variety of radioactive and chemical hazards are present. The CMR Building is nearing the end of its original design life and does not meet many of today's design codes and standards. The Proposed Action for this Environmental Assessment (EA) includes structural modifications to some portions of the CMR Building which do not meet current seismic criteria for a Hazard Category 2 Facility. Also included are upgrades and improvements in building ventilation, communications, monitoring, and fire protection systems. This EA analyzes the environmental effects of construction of the proposed upgrades. The Proposed Action will have no adverse effects upon agricultural and cultural resources, wetlands and floodplains, endangered and threatened species, recreational resources, or water resources. The Proposed Action would have negligible effects on human health and transportation, and would not pose a disproportionate adverse health or environmental impact on minority or low-income populations within an 80 kilometer (50 mile) radius of the CMR Building

  5. Welcome to Los Alamos National Laboratory: A premier national security science laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Terry [Los Alamos National Laboratory

    2012-06-25

    Dr Wallace presents visitors with an overview of LANL's national security science mission: stockpile stewardship, protecting against the nuclear threat, and energy security & emerging threats, which are underpinned by excellence in science/technology/engineering capabilities. He shows visitors a general Lab overview of budget, staff, and facilities before providing a more in-depth look at recent Global Security accomplishments and current programs.

  6. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    International Nuclear Information System (INIS)

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste

  7. Large Volume Calorimeter Comparison Measurement Results Collected at the Los Alamos National Laboratory Plutonium Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, D. S. (David S.)

    2005-01-01

    A calorimeter capable of measuring the power output from special nuclear material in 208-liter (55-gal) shipping or storatge containers was designed and fabricated at Los Alamos National Laboratory (LANL). This high-sensitivity, large-volume calorimeter (LVC) provides a reliable NDA method to measure many difficult-to-assay forms of plutonium and tritium more accurately. The entire calorimeter is 104 cm wide x 157 cm deep x 196 cm high in the closed position. The LVC also requires space for a standard electronics rack. A standard 208-1 drum with a 60-cm-diameter retaining ring with bolt will fit into the LVC measurement chamber. With careful positioning, cylindrical items up to 66 cm in diameter and 100 cm tall can be assayed in the LVC. The LVC was used to measure numerous plutonium-bearing items in 208-1 drums at the Los Alamos Plutonium Facility. Measurement results from real waste drums that were previously assayed using multiple NDA systems are compared with the LVC results. The calorimeter previously performed well under laboratory conditions using Pu-238 heat standards. The in-plant instrument performance is compared with the laboratory performance. Assay times, precision, measurement threshold, and operability of the LVC are also presented.

  8. Large Volume Calorimeter Comparison Measurement Results Collected at the Los Alamos National Laboratory Plutonium Facility

    International Nuclear Information System (INIS)

    A calorimeter capable of measuring the power output from special nuclear material in 208-liter (55-gal) shipping or storatge containers was designed and fabricated at Los Alamos National Laboratory (LANL). This high-sensitivity, large-volume calorimeter (LVC) provides a reliable NDA method to measure many difficult-to-assay forms of plutonium and tritium more accurately. The entire calorimeter is 104 cm wide x 157 cm deep x 196 cm high in the closed position. The LVC also requires space for a standard electronics rack. A standard 208-1 drum with a 60-cm-diameter retaining ring with bolt will fit into the LVC measurement chamber. With careful positioning, cylindrical items up to 66 cm in diameter and 100 cm tall can be assayed in the LVC. The LVC was used to measure numerous plutonium-bearing items in 208-1 drums at the Los Alamos Plutonium Facility. Measurement results from real waste drums that were previously assayed using multiple NDA systems are compared with the LVC results. The calorimeter previously performed well under laboratory conditions using Pu-238 heat standards. The in-plant instrument performance is compared with the laboratory performance. Assay times, precision, measurement threshold, and operability of the LVC are also presented.

  9. Occurrences at Los Alamos National Laboratory: What can they tell us?

    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Reichelt; A. Jeffery Eichorst; Marc E. Clay; Rita J. Henins; Judith D. DeHaven; Richard J. Brake

    2000-03-01

    The authors analyzed the evolution of institutional and facility response to groups of abnormal incidents at Los Alamos National Laboratory (LANL). The analysis is divided into three stages: (1) the LANL response to severe accidents from 1994 to 1996, (2) the LANL response to facility-specific clusters of low-consequence incidents from 1997 to 1999, and (3) the ongoing development of and response to a Laboratory-wide trending and analysis program. The first stage is characterized by five severe accidents at LANL--a shooting fatality, a forklift accident, two electrical shock incidents, and an explosion in a nuclear facility. Each accident caused LANL and the Department of Energy (DOE) to launch in-depth investigations. A recurrent theme of the investigations was the failure of LANL and DOE to identify and act on precursor or low-consequence events that preceded the severe accidents. The second stage is characterized by LANL response to precursor or low-consequence incidents over a two-year period. In this stage, the Chemistry and Metallurgy Research Facility, the Los Alamos Critical Experiments Facility, and the Los Alamos Neutron Science Center responded to an increase in low-consequence events by standing down their facilities. During the restart process, each facility collectively analyzed the low-consequence events and developed systemic corrective actions. The third stage is characterized by the development of a Laboratory-wide trending and analysis program, which involves proactive division-level analysis of incidents and development of systemic actions. The authors conclude that, while the stages show an encouraging evolution, the facility standdowns and restarts are overly costly and that the institutional trending and analysis program is underutilized. The authors therefore recommend the implementation of an institutional, mentored program of trending and analysis that identifies clusters of related low-consequence events, analyzes those events, and

  10. Environmental Assessment for Electrical Power System Upgrades at Los Alamos National Laboratory, Los Alamos, New Mexico - Final Document

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-03-09

    The ''National Environmental Policy Act of 1969'' (NEPA) requires Federal agency officials to consider the environmental consequences of their proposed actions before decisions are made. In complying with NEPA, the United States (U.S.) Department of Energy (DOE) follows the Council on Environmental Quality (CEQ) regulations (40 Code of Federal Regulations [CFR] 1500-1508) and DOE's NEPA implementing procedures (10 CFR 1021). The purpose of an Environmental Assessment (EA) is to provide Federal decision makers with sufficient evidence and analysis to determine whether to prepare an Environmental Impact Statement (EIS) or issue a Finding of No Significant Impact. In this case, the DOE decision to be made is whether to construct and operate a 19.5-mile (mi) (31-kilometer [km]) electric transmission line (power line) reaching from the Norton Substation, west across the Rio Grande, to locations within the Los Alamos National Laboratory (LANL) Technical Areas (TAs) 3 and 5 at Los Alamos, New Mexico. The construction of one electric substation at LANL would be included in the project as would the construction of two line segments less than 1,200 feet (ft) (366 meters [m]) long that would allow for the uncrossing of a portion of two existing power lines. Additionally, a fiber optics communications line would be included and installed concurrently as part of the required overhead ground conductor for the power line. The new power line would improve the reliability of electric service in the LANL and Los Aktrnos County areas as would the uncrossing of the crossed segments of the existing lines. Additionally, installation of the new power line would enable the LANL and the Los Alamos County electric grid, which is a shared resource, to be adapted to accommodate the future import of increased power when additional power service becomes available in the northern New Mexico area. Similarly, the fiber optics line would allow DOE to take advantage of

  11. Shaping the library of the future: Digital library developments at Los Alamos National Laboratory`s Research Library

    Energy Technology Data Exchange (ETDEWEB)

    Luce, R. E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    1994-10-01

    This paper offers an overview of current efforts at the Research Library, Los Alamos National Laboratory, (LANL), to develop digital library services. Current projects of LANL`s Library without Walls initiative are described. Although the architecture of digital libraries generally is experimental and subject to debate, one principle of LANL`s approach to delivering library information is the use of Mosaic as a client for the Research Library`s resources. Several projects under development have significant ramifications for delivering library services over the Internet. Specific efforts via Mosaic include support for preprint databases, providing access to citation databases, and access to a digital image database of unclassified Los Alamos technical reports.

  12. Derivation of Authorized Limits for Land Transfer at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Perona, Ralph [Neptune and Company, Inc., Bellingham, WA (United States); Whicker, Jeffrey Jay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mirenda, Richard J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-14

    This report documents the calculation of Authorized Limits for radionuclides in soil to be used in the transfer of property by the Los Alamos National Laboratory (LANL or the Laboratory). The Authorized Limits support the evaluation process to clear land for release under different uses even though the soil contains small residual amounts of radioactivity. The Authorized Limits are developed for four exposure scenarios: residential, commercial/industrial, construction worker, and recreational. Exposure to radionuclides in soil under these scenarios is assessed for exposure routes that include incidental ingestion of soil; inhalation of soil particulates; ingestion of homegrown produce (residential only); and external irradiation from soil. Inhalation and dermal absorption of tritiated water vapor in air are also assessed.

  13. Los Alamos National Laboratory Science Education Programs. Progress report, October 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.H.

    1995-02-01

    During the 1994 summer institute NTEP teachers worked in coordination with LANL and the Los Alamos Middle School and Mountain Elementary School to gain experience in communicating on-line, to gain further information from the Internet and in using electronic Bulletin Board Systems (BBSs) to exchange ideas with other teachers. To build on their telecommunications skills, NTEP teachers participated in the International Telecommunications In Education Conference (Tel*ED `94) at the Albuquerque Convention Center on November 11 & 12, 1994. They attended the multimedia keynote address, various workshops highlighting many aspects of educational telecommunications skills, and the Telecomm Rodeo sponsored by Los Alamos National Laboratory. The Rodeo featured many presentations by Laboratory personnel and educational institutions on ways in which telecommunications technologies can be use din the classroom. Many were of the `hands-on` type, so that teachers were able to try out methods and equipment and evaluate their usefulness in their own schools and classrooms. Some of the presentations featured were the Geonet educational BBS system, the Supercomputing Challenge, and the Sunrise Project, all sponsored by LANL; the `CU-seeMe` live video software, various simulation software packages, networking help, and many other interesting and useful exhibits.

  14. Final environmental assessment: TRU waste drum staging building, Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Much of the US Department of Energy's (DOE's) research on plutonium metallurgy and plutonium processing is performed at Los Alamos National Laboratory (LANL), in Los Alamos, New Mexico. LANL's main facility for plutonium research is the Plutonium Facility, also referred to as Technical Area 55 (TA-55). The main laboratory building for plutonium work within the Plutonium Facility (TA-55) is the Plutonium Facility Building 4, or PF-4. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if DOE were to stage sealed containers of transuranic (TRU) and TRU mixed waste in a support building at the Plutonium Facility (TA-55) that is adjacent to PF-4. At present, the waste containers are staged in the basement of PF-4. The proposed project is to convert an existing support structure (Building 185), a prefabricated metal building on a concrete foundation, and operate it as a temporary staging facility for sealed containers of solid TRU and TRU mixed waste. The TRU and TRU mixed wastes would be contained in sealed 55-gallon drums and standard waste boxes as they await approval to be transported to TA-54. The containers would then be transported to a longer term TRU waste storage area at TA-54. The TRU wastes are generated from plutonium operations carried out in PF-4. The drum staging building would also be used to store and prepare for use new, empty TRU waste containers

  15. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory's Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, was also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ''Conduct of Business in the Nuclear Criticality Safety Group.'' There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets

  16. Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-03

    The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL`s current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency`s (EPA`s) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL`s existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility.

  17. Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL's current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency's (EPA's) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL's existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility

  18. Derivation of Authorized Limits for Land Transfer at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Perona, Ralph [Neptune and Company, Inc., Bellingham, WA (United States); Whicker, Jeffrey Jay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mirenda, Richard J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-14

    This report documents the calculation of Authorized Limits for radionuclides in soil to be used in the transfer of property by the Los Alamos National Laboratory (LANL). The Authorized Limits support the evaluation process to clear land for release under different uses even though the soil contains small residual amounts of radioactivity. The Authorized Limits are developed for four exposure scenarios: residential, commercial/industrial, construction worker, and recreational. Exposure to radionuclides in soil under these scenarios is assessed for exposure routes that include incidental ingestion of soil; inhalation of soil particulates; ingestion of homegrown produce (residential only); and external irradiation from soil. Inhalation and dermal absorption of tritiated water vapor in air are also assessed.

  19. Los Alamos National Laboratory Environmental Restoration Project quarterly technical report, April--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-18

    This quarterly report describes the technical status of activities in the Los Alamos National Laboratory Environmental Restoration (ER) Project. Each activity is identified by an activity data sheet number, a brief title describing the activity or the technical area where the activity is located, and the name of the project leader. The Hazardous and Solid Waste Amendments (HSWA) portion of the facility operating permit requires the submission of a technical progress report on a quarterly basis. This report, submitted to fulfill the permit`s requirement, summarizes the work performed and the results of sampling and analysis in the ER Project. Suspect waste found include: Radionuclides, high explosives, metals, solvents and organics. The data provided in this report have not been validated. These data are considered ``reviewed data.``

  20. A checklist of plant and animal species at Los Alamos National Laboratory and surrounding areas

    Energy Technology Data Exchange (ETDEWEB)

    Hinojosa, H. [comp.

    1998-02-01

    Past and current members of the Biology Team (BT) of the Ecology Group have completed biological assessments (BAs) for all of the land that comprises Los Alamos National Laboratory (LANL). Within these assessments are lists of plant and animal species with the potential to exist on LANL lands and the surrounding areas. To compile these lists, BT members examined earlier published and unpublished reports, surveys, and data bases that pertained to the biota of this area or to areas that are similar. The species lists that are contained herein are compilations of the lists from these BAs, other lists that were a part of the initial research for the performance of these BAs, and more recent surveys.

  1. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M. [Los Alamos National Lab., NM (United States)

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on the liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.

  2. Population array and agricultural data arrays for the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, K.W.; Duffy, S. [Los Alamos National Lab., NM (United States); Kowalewsky, K. [Radian International, Rochester, NY (United States)

    1998-07-01

    To quantify or estimate the environmental and radiological impacts from man-made sources of radioactive effluents, certain dose assessment procedures were developed by various government and regulatory agencies. Some of these procedures encourage the use of computer simulations (models) to calculate air dispersion, environmental transport, and subsequent human exposure to radioactivity. Such assessment procedures are frequently used to demonstrate compliance with Department of Energy (DOE) and US Environmental Protection Agency (USEPA) regulations. Knowledge of the density and distribution of the population surrounding a source is an essential component in assessing the impacts from radioactive effluents. Also, as an aid to calculating the dose to a given population, agricultural data relevant to the dose assessment procedure (or computer model) are often required. This report provides such population and agricultural data for the area surrounding Los Alamos National Laboratory.

  3. Structural testing of the Los Alamos National Laboratory Heat Source/Radioisotopic Thermoelectric Generator shipping container

    International Nuclear Information System (INIS)

    The Heat Source/Radioisotopic Thermoelectric Generator shipping container is a Type B packaging design currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to the normal and hypothetical accident environments defined in Title 10 Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this package design. This report documents the test program portion of the design verification, using several prototype packages. Four types of testing were performed: 30-foot hypothetical accident condition drop tests in three orientations, 40-inch hypothetical accident condition puncture tests in five orientations, a 21 psi external overpressure test, and a normal conditions of transport test consisting of a water spray and a 4 foot drop test. 18 refs., 104 figs., 13 tabs

  4. An outline of the intake event at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    On March, 2000, plutonium-238 intake event occurred at the Los Alamos National Laboratory (LANL), USA. The Accident Investigation Board performed the accident investigations in accordance with Department of Energy (DOE) and released the report of the accident on July, 2000. The accident occurred while LANL worker was checking the equipment of glovebox in the Plutonium Processing and Handling Facility of LANL. The lifetime effective dose to the most affected worker was estimated to be as high as 3Sv, and corresponding dose to three other workers probably exceeded their annual exposure level. Since we have many gloveboxes similar to the ones in LANL, and we must improve worker's safety consciousness against glovebox-operation in the future, we have studied this report and compiled as a safety lecture note for the JNC employee. And we compiled to introduce this accident outline to domestic nuclear enterprises and institutes. (author)

  5. Los Alamos National Laboratory DOE M441.1-1 implementation

    Energy Technology Data Exchange (ETDEWEB)

    Worl, Laura A [Los Alamos National Laboratory; Veirs, D Kirk [Los Alamos National Laboratory; Smith, Paul H [Los Alamos National Laboratory; Yarbro, Tresa F [Los Alamos National Laboratory; Stone, Timothy A [Los Alamos National Laboratory

    2010-01-01

    Loss of containment of nuclear material stored in containers such as food-pack cans, paint cans, or taped slip lid cans has generated concern about packaging requirements for interim storage of nuclear materials in working facilities such as the plutonium facility at Los Alamos National Laboratory (LANL). The Department of Energy (DOE) issued DOE M 441.1-1, Nuclear Materials Packaging Manual on March 7, 2008 in response to the Defense Nuclear Facilities Safety Board Recommendation 2005-1. The Manual directs DOE facilities to follow detailed packaging requirements to protect workers from exposure to nuclear materials stored outside of approved engineered-contamination barriers. Los Alamos National Laboratory has identified the activities that will be performed to bring LANL into compliance with DOE M 441.1-1. These include design, qualification and procurement of new containers, repackaging based on a risk-ranking methodology, surveillance and maintenance of containers, and database requirements. The primary purpose is to replace the out-dated nuclear material storage containers with more robust containers that meet present day safety and quality standards. The repackaging campaign is supported by an integrated risk reduction methodology to prioritize the limited resources to the highest risk containers. This methodology is systematically revised and updated based on the collection of package integrity data. A set of seven nested packages with built-in filters have been designed. These range in size from 1 qt. to 10 gallon. Progress of the testing to meet Manual requirements will be given. Due to the number of packages at LANL, repackaging to achieve full compliance will take five to seven years.

  6. Radionuclide contaminant analysis of small mammals at Area G, TA-54, Los Alamos National Laboratory, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K.; Biggs, J.; Fresquez, P.

    1997-01-01

    At Los Alamos National Laboratory, small mammals were sampled at two waste burial sites (Site 1-recently disturbed and Site 2-partially disturbed) at Area G, Technical Area 54 and a control site on Frijoles Mesa (Site 4) in 1995. Our objectives were (1) to identify radionuclides that are present within surface and subsurface soils at waste burial sites, (2) to compare the amount of radionuclide uptake by small mammals at waste burial sites to a control site, and (3) to identify if the primary mode of contamination to small mammals is by surface contact or ingestion/inhalation. Three composite samples of at least rive animals per sample were collected at each site. Pelts and carcasses of each animal were separated and analyzed independently. Samples were analyzed for {sup 241}Am, {sup 90}Sr , {sup 238}Pu, {sup 239}Pu, total U, {sup 137}Cs, and {sup 3}H. Significantly higher (parametric West at p=0.05) levels of total U, {sup 241}Am, {sup 238}Pu and {sup 239}Pu were detected in pelts than in carcasses of small mammals at TA-54. Concentrations of other measured radionuclides in carcasses were nearly equal to or exceeded the mean concentrations in the pelts. Our results show higher concentrations in pelts compared to carcasses, which is similar to what has been found at waste burial/contaminated sites outside of Los Alamos National Laboratory. Site 1 had a significantly higher (alpha=0.05, P=0.0125) mean tritium concentration in carcasses than Site 2 or Site 4. In addition Site 1 also had a significantly higher (alpha=0.05, p=0.0024) mean tritium concentration in pelts than Site 2 or Site 4. Site 2 had a significantly higher (alpha=0.05, P=0.0499) mean {sup 239}Pu concentration in carcasses than either Site 1 or Site 4.

  7. Materials Capability Review Los Alamos National Laboratory May 4-7, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoniette J [Los Alamos National Laboratory

    2009-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g ., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors. LANL has defined fourteen

  8. Polycyclic aromatic hydrocarbons at selected burning grounds at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B.W.; Minor, L.K.M.; Flucas, B.J.

    1998-02-01

    A commercial immunoassay field test (IFT) was used to rapidly assess the total concentrations of polycyclic aromatic hydrocarbons (PAHs) in the soil at selected burning grounds within the explosives corridor at Los Alamos National Laboratory (LANL). Results were compared with analyses obtained from LANL Analytical Laboratory and from a commercial laboratory. Both used the Environmental Protection Agency`s (EPA`s) Methods 8270 and 8310. EPA`s Method 8270 employs gas chromatography and mass spectral analyses, whereas EPA`s Method 8310 uses an ultraviolet detector in a high-performance liquid chromatography procedure. One crude oil sample and one diesel fuel sample, analyzed by EPA Method 8270, were included for references. On an average the IFT results were lower for standard samples and lower than the analytical laboratory results for the unknown samples. Sites were selected to determine whether the PAHs came from the material burned or the fuel used to ignite the burn, or whether they are produced by a high-temperature chemical reaction during the burn. Even though the crude oil and diesel fuel samples did contain measurable quantities of PAHs, there were no significant concentrations of PAHs detected in the ashes and soil at the burning grounds. Tests were made on fresh soil and ashes collected after a large burn and on aged soil and ashes known to have been at the site more than three years. Also analyzed were twelve-year-old samples from an inactive open burn cage.

  9. Installation of a cw radiofrequency quadrupole accelerator at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Chalk River Laboratories (CRL) has had a long history of cw proton beam development for production of intense neutron sources and fissile fuel breeders. In 1986 CRL and Los Alamos National Laboratory (LANL) entered into a collaborative effort to establish a base technologies program for the development of a cw radiofrequency quadrupole (RFQ). The initial cw RFQ design had 50-keV proton injection energy with 600-keV output energy. The 75-mA design current at 600-keV beam energy was obtained in 1990. Subsequently, the RFQ output energy was increased to 1250 keV by replacing the RFQ vanes, still maintaining the 75-m A design current. A new 250-kW cw klystrode rf power source at 267-MHz was installed at CRL. By April of 1993, 55-mA proton beams had been accelerated to 1250 keV. Concurrent developments were taking place on proton source development and on 50-keV low-energy beam transport (LEBT) systems. Development of a dc, high-proton fraction (≥ 70%) microwave ion source led to utilization of a single-solenoid RFQ direct injection scheme. It was decided to continue this cw RFQ demonstration project at Los Alamos when the CRL project was terminated in April 1993. The LANL goals are to find the current limit of the 1250-keV RFQ, better understand the beam transport properties through the single-solenoid focusing LEBT, continue the application of the cw klystrode tube technology to accelerators, and develop a two-solenoid LEBT which could be the front end of an Accelerator-Driven Transmutation Technologies (ADTT) linear accelerator

  10. SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF LOS ALAMOS NATIONAL LABORATORY MERCURY WASTE.

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS,J.W.; KALB,P.D.

    2001-11-01

    Brookhaven National Laboratory's Sulfur Polymer Stabilization/Solidification (SPSS) process was used to treat approximately 90kg of elemental mercury mixed waste from Los Alamos National Laboratory. Treatment was carried out in a series of eight batches using a 1 ft{sup 3} pilot-scale mixer, where mercury loading in each batch was 33.3 weight percent. Although leach performance is currently not regulated for amalgamated elemental mercury (Hg) mixed waste, Toxicity Characteristic Leach Procedure (TCLP) testing of SPSS treated elemental mercury waste indicates that leachability is readily reduced to below the TCLP limit of 200 ppb (regulatory requirement following treatment by retort for wastes containing > 260 ppb Hg), and with process optimization, to levels less than the stringent Universal Treatment Standard (UTS) limit of 25 ppb that is applied to waste containing < 260 ppm Hg. In addition, mercury-contaminated debris, consisting of primary glass and plastic containers, as well as assorted mercury thermometers, switches, and labware, was first reacted with SPSS components to stabilize the mercury contamination, then macroencapsulated in the molten SPSS product. This treatment was done by vigorous agitation of the sulfur polymer powder and the comminuted debris. Larger plastic and metal containers were reacted to stabilize internal mercury contamination, and then filled with molten sulfur polymer to encapsulate the treated product.

  11. Waste processing cost recovery at Los Alamos National Laboratory--analysis and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Steven Richard [Los Alamos National Laboratory

    2008-01-01

    Los Alamos National Laboratory is implementing full cost recovery for waste processing in fiscal year 2009 (FY2009), after a transition year in FY2008. Waste processing cost recovery has been implemented in various forms across the nuclear weapons complex and in corporate America. The fundamental reasoning of sending accurate price signals to waste generators is economically sound, and leads to waste minimization and reduced waste expense over time. However, Los Alamos faces significant implementation challenges because of its status as a government-owned, contractor-operated national scientific institution with a diverse suite of experimental and environmental cleanup activities, and the fact that this represents a fundamental change in how waste processing is viewed by the institution. This paper describes the issues involved during the transition to cost recovery and the ultimate selection of the business model. Of the six alternative cost recovery models evaluated, the business model chosen to be implemented in FY2009 is Recharge Plus Generators Pay Distributed Direct. Under this model, all generators who produce waste must pay a distributed direct share associated with their specific waste type to use a waste processing capability. This cost share is calculated using the distributed direct method on the fixed cost only, i.e., the fixed cost share is based on each program's forecast proportion of the total Los Alamos volume forecast of each waste type. (Fixed activities are those required to establish the waste processing capability, i.e., to make the process ready, permitted, certified, and prepared to handle the first unit ofwaste. Therefore, the fixed cost ends at the point just before waste begins 'to be processed. The activities to actually process the waste are considered variable.) The volume of waste actually sent for processing is charged a unit cost based solely on the variable cost of disposing of that waste. The total cost recovered each

  12. Upgrade and Certification of the Los Alamos National Laboratory SHENC 2011 - 12270

    International Nuclear Information System (INIS)

    Nondestructive assay measurements of Transuranic (TRU) waste at Los Alamos National Laboratory (LANL) required the addition of a standard waste box (SWB) assay system. A Super High Efficiency Neutron Counter (SHENC) located at Hanford was identified to be relocated to LANL. After careful evaluation of waste streams at LANL, it was determined that the current configuration of the SHENC was not sufficient to quantify certain waste streams. At LANL, there is still a large amount of waste that needs to be retrieved and repackaged within SWB's to meet agreements with the State of New Mexico. Prior to relocating the SHENC, the only assay systems available were High Efficiency Neutron Counters having only a 55-gallon drum capacity. Further analyses indicated that the SHENC system should be capable of quantitative gamma measurements that are to be linked, and combined, with the neutron measurements. The SHENC system was therefore augmented with a new high-resolution gamma spectroscopy system using BE5030 detectors and upgraded gamma electronics. The neutron side of the system was also upgraded with an advanced shift register (JSR-15), an improved Programmable Logic Controller and NDA-2000 software. This report will include calibration of both the neutron and gamma modalities of the SHENC system and how the modality results are combined to produce a single assay result. Preliminary performance results will be discussed based on both mock and real waste measurements. Discussions will also include a complete description of the adjustable parameters as well as the calibration plan, techniques and validations including calibration confirmation based on the Waste Isolation Pilot Plant Waste Acceptance Criteria (WIPP-WAC). The SHENC was successfully upgraded to efficiently measure the complex waste streams at Los Alamos National Laboratory. A new PLC was successfully added to the system for Add-A-Source control. A new shift register was added to the SHENC (JSR-15) which provides

  13. Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Environmental Stewardship Group

    2010-10-01

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department/Air Quality Bureau, under 20.2.70 NMAC. This permit was modified and reissued on July 16, 2007. This Title V Operating Permit (Permit No. P-100M2) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semiannual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semiannual emissions reporting for LANL for calendar year 2009. LANL's 2009 emissions are well below the emission limits in the Title V Operating Permit.

  14. Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Ecology and Air Quality Group

    2007-09-28

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department, Air Quality Bureau, under 20.2.70 NMAC. Modification Number 1 to this Title V Operating Permit was issued on June 15, 2006 (Permit No P-100M1) and includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semi-annual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semi-annual emissions reporting for LANL for calendar year 2006. LANL's 2006 emissions are well below the emission limits in the Title V Operating Permit.

  15. Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    M. Stockton

    2005-10-01

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), ''Notice of Intent and Emissions Inventory Requirements''. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department, Air Quality Bureau, under 20.2.70 NMAC. This Title V Operating Permit (Permit No. P-100) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semi-annual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semi-annual emissions reporting for LANL for calendar year 2004. LANL's 2004 emissions are well below the emission limits in the Title V Operating Permit.

  16. Needs analysis and project schedule for the Los Alamos National Laboratory (LANL) Health Physics Analysis Laboratory (HPAL) upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rhea, T.A.; Rucker, T.L. [Science Applications International Corp., Oak Ridge, TN (United States); Stafford, M.W. [NUS Corp., Aiken, SC (US)

    1990-09-28

    This report is a needs assessment and project schedule for the Health Physics Analysis Laboratory (HPAL) upgrade project at Los Alamos National Laboratory (LANL). After reviewing current and projected HPAL operations, two custom-developed laboratory information management systems (LIMS) for similar facilities were reviewed; four commercially available LIMS products were also evaluated. This project is motivated by new regulations for radiation protection and training and by increased emphasis on quality assurance (QA). HPAL data are used to: protect the health of radiation workers; document contamination levels for transportation of radioactive materials and for release of materials to the public for uncontrolled use; and verify compliance with environmental emission regulations. Phase 1 of the HPAL upgrade project concentrates on four types of counting instruments which support in excess of 90% of the sample workload at the existing central laboratories. Phase 2 is a refinement phase and also integrates summary-level databases on the central Health, Safety, and Environment (HSE) VAX. Phase 3 incorporates additional instrument types and integrates satellite laboratories into the HPAL LIMS. Phase 1 will be a multi-year, multimillion dollar project. The temptation to approach the upgrade of the HPAL program in a piece meal fashion should be avoided. This is a major project, with clearly-defined goals and priorities, and should be approached as such. Major programmatic and operational impacts will be felt throughout HSE as a result of this upgrade, so effective coordination with key customer contacts will be critical.

  17. The Integrated Cloud-based Environmental Data Management System at Los Alamos National Laboratory - 13391

    Energy Technology Data Exchange (ETDEWEB)

    Schultz Paige, Karen; Gomez, Penny; Patel, Nita P.; EchoHawk, Chris; Dorries, Alison M. [Los Alamos National Laboratory, MS M996, Los Alamos, NM, 87544 (United States)

    2013-07-01

    In today's world, instant access to information is taken for granted. The national labs are no exception; our data users expect immediate access to their data. Los Alamos National Laboratory (LANL) has collected over ten million records, and the data needs to be accessible to scientists as well as the public. The data span a wide range of media, analytes, time periods, formats, and quality and have traditionally existed in scattered databases, making comprehensive work with the data impossible. Recently, LANL has successfully integrated all their environmental data into a single, cloud-based, web-accessible data management system. The system combines data transparency to the public with immediate access required by the technical staff. The use of automatic electronic data validation has been critical to immediate data access while saving millions of dollars and increasing data consistency and quality. The system includes a Google Maps based GIS tool that is simple enough for people to locate potentially contaminated sites near their home or workplace, and complex enough to allow scientists to plot and trend their data at the surface and at depth as well as over time. A variety of formatted reports can be run at any desired frequency to report the most current data available in the data base. The advanced user can also run free form queries of the data base. This data management system has saved LANL time and money, an increasingly important accomplishment during periods of budget cuts with increasing demand for immediate electronic services. (authors)

  18. Measurements of air contaminants during the Cerro Grande fire at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Eberhart, Craig

    2010-08-01

    Ambient air sampling for radioactive air contaminants was continued throughout the Cerro Grande fire that burned part of Los Alamos National Laboratory. During the fire, samples were collected more frequently than normal because buildup of smoke particles on the filters was decreasing the air flow. Overall, actual sampling time was 96% of the total possible sampling time for the May 2000 samples. To evaluate potential human exposure to air contaminants, the samples were analyzed as soon as possible and for additional specific radionuclides. Analyses showed that the smoke from the fire included resuspended radon decay products that had been accumulating for many years on the vegetation and the forest floor that burned. Concentrations of plutonium, americium, and depleted uranium were also measurable, but at locations and concentrations comparable to non-fire periods. A continuous particulate matter sampler measured concentrations that exceeded the National Ambient Air Quality Standard for PM-10 (particles less than 10 micrometers in diameter). These high concentrations were caused by smoke from the fire when it was close to the sampler.

  19. The Integrated Cloud-based Environmental Data Management System at Los Alamos National Laboratory - 13391

    International Nuclear Information System (INIS)

    In today's world, instant access to information is taken for granted. The national labs are no exception; our data users expect immediate access to their data. Los Alamos National Laboratory (LANL) has collected over ten million records, and the data needs to be accessible to scientists as well as the public. The data span a wide range of media, analytes, time periods, formats, and quality and have traditionally existed in scattered databases, making comprehensive work with the data impossible. Recently, LANL has successfully integrated all their environmental data into a single, cloud-based, web-accessible data management system. The system combines data transparency to the public with immediate access required by the technical staff. The use of automatic electronic data validation has been critical to immediate data access while saving millions of dollars and increasing data consistency and quality. The system includes a Google Maps based GIS tool that is simple enough for people to locate potentially contaminated sites near their home or workplace, and complex enough to allow scientists to plot and trend their data at the surface and at depth as well as over time. A variety of formatted reports can be run at any desired frequency to report the most current data available in the data base. The advanced user can also run free form queries of the data base. This data management system has saved LANL time and money, an increasingly important accomplishment during periods of budget cuts with increasing demand for immediate electronic services. (authors)

  20. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, D.M.; Boring, A.M. [comps.

    1991-10-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

  1. Materials capability review Los Alamos National Laboratory, May 3-6, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoinette [Los Alamos National Laboratory

    2010-01-01

    The 2010 'Capability Review' process at LANL significantly differs from the Division reviews of prior years. The Capabilities being reviewed (some 4-8 per year) are deliberately chosen to be crosscutting over the Laboratory, and therefore will include not only several experimental, theoretical and simulation disciplines, but also contributions from multiple line organizations. This approach is consistent with the new Laboratory organizational structure, focusing on agile and integrated capabilities applied to present national security missions, and also nurtured to be available for rapid application to future missions. The overall intent is that the Committee assess the quality of the science, engineering, and technology identified in the agenda, and advise the LANS Board of Governors and Laboratory management. Specifically, the Committees will: (1) Assess the quality of science, technology and engineering within the Capability in the areas defined in the agenda. Identify issues to develop or enhance the core competencies within this capability. (2) Evaluate the integration of this capability across the Laboratory organizations that are listed in the agenda in terms of joint programs, projects, proposals, and/or publications. Describe the integration of this capability in the wider scientific community using the recognition as a leader within the community, ability to set research agendas, and attraction and retention of staff. (3) Assess the quality and relevance of this capability's science, technology and engineering contributions to current and emerging Laboratory programs, including Nuclear Weapons, Threat Reduction/Homeland Security, and Energy Security. (4) Advise the Laboratory Director/Principal Associate Director for Science, Technology and Engineering on the health of the Capability including the current and future (5 year) science, technology and engineering staff needs, mix of research and development activities, program opportunities

  2. Nonradioactive Ambient Air Monitoring at Los Alamos National Laboratory 2001--2002

    Energy Technology Data Exchange (ETDEWEB)

    E. Gladney; J.Dewart, C.Eberhart; J.Lochamy

    2004-09-01

    During the spring of 2000, the Cerro Grande forest fire reached Los Alamos National Laboratory (LANL) and ignited both above-ground vegetation and disposed materials in several landfills. During and after the fire, there was concern about the potential human health impacts from chemicals emitted by the combustion of these Laboratory materials. Consequently, short-term, intensive air-monitoring studies were performed during and shortly after the fire. Unlike the radiological data from many years of AIRNET sampling, LANL did not have an adequate database of nonradiological species under baseline conditions with which to compare data collected during the fire. Therefore, during 2001 the Meteorology and Air Quality Group designed and implemented a new air-monitoring program, entitled NonRadNET, to provide nonradiological background data under normal conditions. The objectives of NonRadNET were to: (1) develop the capability for collecting nonradiological air-monitoring data, (2) conduct monitoring to develop a database of typical background levels of selected nonradiological species in the communities nearest the Laboratory, and (3) determine LANL's potential contribution to nonradiological air pollution in the surrounding communities. NonRadNET ended in late December 2002 with five quarters of data. The purpose of this paper is to organize and describe the NonRadNET data collected over 2001-2002 to use as baseline data, either for monitoring during a fire, some other abnormal event, or routine use. To achieve that purpose, in this paper we will: (1) document the NonRadNET program procedures, methods, and quality management, (2) describe the usual origins and uses of the species measured, (3) compare the species measured to LANL and other area emissions, (4) present the five quarters of data, (5) compare the data to known typical environmental values, and (6) evaluate the data against exposure standards.

  3. Distribution and diversity of fungal species in and adjacent to the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Balice, R.G.; Jarmie, N.; Rogers, F.J.

    1997-12-01

    Fungi have demonstrated their ability to diversify and specialize to take advantage of new environments (Murphy 1996). These species are essential to the normal functioning of ecosystems and the impacts of human activities may be harmful to fungi. There is a need to inventory fungi throughout the range of their environments. Previously archived information representing 43 sample locations was used to perform a preliminary evaluation of the distributions and diversity of fungal species at the Los Alamos National Laboratory and in adjacent environments. Presence-absence data for 71 species of fungi in five habitats, pinon-juniper, canyon-bottom ponderosa pine, ponderosa pine, canyon-bottom mixed conifer, and mixed conifer were analyzed. The results indicate that even though fungi occur in each of the habitats, fungal species are not distributed evenly among these habitats. The richness of fungal species is greater in the canyon-bottom mixed conifer and mixed conifer habitats than in the pinon-juniper, canyon-bottom ponderosa pine or ponderosa pine habitats. All but three of the fungal species were recorded in either the canyon-bottom mixed conifer or the mixed conifer habitats, and all but seven of the fungal species were found in the mixed conifer habitat.

  4. Radionuclide concentrations in elk that winter on Los Alamos National Laboratory lands. Revision

    International Nuclear Information System (INIS)

    Elk spend the winter in areas at Los Alamos National Laboratory (LANL) that may contain radioactivity above natural and/or worldwide fallout levels. This study was initiated to determine the levels of 90Sr, 137Cs, 238Pu, 239Pu, and total uranium in various tissues (brain, hair, heart, jawbone, kidneys, leg bone, liver, and muscle) of adult cow elk that use LANL lands during the fall/winter months. No significant differences in radionuclide contents were detected in any of the tissue samples collected from elk on LANL lands as compared with elk collected from off-site locations. The total effective (radiation) dose equivalent a person would receive from consuming 3.2 lb of heart, 5.6 lb of liver, and 226 lb of muscle from elk that winter on LANL lands, after natural background has been subtracted, was 0.00008, 0.0001, and 0.008 mrem/yr, respectively. The highest dose was less than 0.01% of the International Commission on Radiological Protection permissible dose limit for protecting the public

  5. Radionuclide concentrations in elk that winter on Los Alamos National Laboratory lands

    International Nuclear Information System (INIS)

    Elk spend the winter in areas at Los Alamos National Laboratory (LANL) that may contain radioactivity above natural and/or worldwide fallout levels. This study was initiated to determine the levels of 90Sr, 137Cs, 238Pu, 239Pu, and total uranium in various tissues (brain, hair, heart, jawbone, kidneys, leg bone, liver, and muscle) of adult cow elk that use LANL lands during the fall/winter months. No significant differences in radionuclide contents were detected in any of the tissue samples collected from elk on LANL lands as compared with elk collected from off-site locations. The total effective (radiation) dose equivalent a person would receive from consuming 3.2 lb of heart, 5.6 lb of liver, and 226 lb of muscle from elk that winter on LANL lands, after natural background has been subtracted, was 0.00008, 0.0001, and 0.008 mrem/yr, respectively. The highest dose was less than 0.01% of the International Commission of Radiological Protection permissible dose limit for protecting the public

  6. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Patrice Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  7. Options assessment report: Treatment of nitrate salt waste at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Patrice Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-16

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognized that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and the a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL's preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  8. The Influence of Ergonomics Training on Employee Behavior at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Leslie Guthrie Puckett

    2001-01-01

    A survey of employee behavior was conducted at Los Alamos National Laboratory (LANL). The objective of this study was to evaluate the prevalence of ergonomic behavior that decreased the chance of having a work-related musculoskeletal disorder (WMSD) among employees. The null hypothesis was tested to determine if there was a significant difference in ergonomic behavior between trained and untrained employees. The LANL employees were stratified by job series and then randomly selected to participate. The data were gathered using an electronic self-administered behavior questionnaire. The study population was composed of 6931 employees, and the response rate was 48%. The null hypothesis was rejected for twelve out of fifteen questions on the questionnaire. Logistic regression results indicate that the trained participants were more likely to report the risk-avoiding behavior, which supported the rejection of the null hypothesis for 60% of the questions. There was a higher frequency that the beneficial or risk-avoiding behavior was reported by the uninjured participants. Job series analysis revealed that ergonomics is an important issue among participants from all the job series. It also identified the occupational specialist classification (an administrative job), as the job series with the most occurrences of undesired ergonomic behaviors. In conclusion, there was a significant difference between the trained and untrained participants of the beneficial ergonomic behavior in the reported risk reducing behaviors.

  9. Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, November 1993--October 1994

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.

    1995-08-01

    The Ecological Studies Team (EST) of ESH-20 at Los Alamos National Laboratory (LANL) has collected samples from the stream within Sandia Canyon since the summer of 1990. These field studies gather water quality measurements and collect aquatic macroinvertebrates from permanent sampling sites. Reports by Bennett (1994) and Cross (1994) discuss previous EST aquatic studies in Sandia Canyon. This report updates and expands those findings. EST collected water quality data and aquatic macroinvertebrates at five permanent stations within the canyon from November 1993 through October 1994. The two upstream stations are located below outfalls that discharge industrial and sanitary waste effluent into the stream, thereby maintaining year-round flow. Some water quality parameters are different at the first three stations from those expected of natural streams in the area, indicating degraded water quality due to effluent discharges. The aquatic habitat at the upper stations has also been degraded by sedimentation and channelization. The macroinvertebrate communities at these stations are characterized by low diversities and unstable communities. In contrast, the two downstream stations appear to be in a zone of recovery, where water quality parameters more closely resemble those found in natural streams of the area. The two lower stations have increased macroinvertebrate diversity and stable communities, further indications of downstream water quality improvement.

  10. The Management of Silica in Los Alamos National Laboratory Tap Water - A Study of Silica Solubility

    Energy Technology Data Exchange (ETDEWEB)

    Wohlberg, C.; Worland, V.P.; Kozubal, M.A.; Erickson, G.F.; Jacobson, H.M.; McCarthy, K.T.

    1999-07-01

    Well water at Los Alamos National Laboratory (LANL) has a silica (SiO{sub 2}) content of 60 to 100 mg/L, with 4 mg/L of magnesium, 13 mg/L calcium and lesser concentrations of other ions. On evaporation in cooling towers, when the silica concentration reaches 150 to 220 mg/L, silica deposits on heat transfer surfaces. When the high silica well water is used in the reprocessing of plutonium, silica remains in solution at the end of the process and creates a problem of removal from the effluent prior to discharge or evaporation. The work described in this Report is divided into two major parts. The first part describes the behavior of silica when the water is evaporated at various conditions of pH and in the presence of different classes of anions: inorganic and organic. In the second part of this work it was found that precipitation (floccing) of silica was a function of solution pH and mole ratio of metal to silica.

  11. Minimum Analytical Chemistry Requirements for Pit Manufacturing at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Moy, Ming M.; Leasure, Craig S.

    1998-08-01

    Analytical chemistry is one of several capabilities necessary for executing the Stockpile Stewardship and Management Program at Los Alamos National Laboratory (LANL). Analytical chemistry capabilities reside in the Chemistry Metallurgy Research (CMR) Facility and Plutonium Facility (TA-55). These analytical capabilities support plutonium recovery operations, plutonium metallurgy, and waste management. Analytical chemistry capabilities at both nuclear facilities are currently being configured to support pit manufacturing. This document summarizes the minimum analytical chemistry capabilities required to sustain pit manufacturing at LANL. By the year 2004, approximately $16 million will be required to procure analytical instrumentation to support pit manufacturing. In addition, $8.5 million will be required to procure glovebox enclosures. An estimated 50% increase in costs has been included for installation of analytical instruments and glovebox enclosures. However, no general and administrative (G and A) taxes have been included. If an additional 42.5/0 G and A tax were to be incurred, approximately $35 million would be required over the next five years to prepare analytical chemistry to support a 50-pit-per-year manufacturing capability by the year 2004.

  12. Emissions inventory report summary for Los Alamos National Laboratory for calendar year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Ecology and Air Quality Group

    2009-10-01

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory’s potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department/Air Quality Bureau, under 20.2.70 NMAC. This permit was modified and reissued on July 16, 2007. This Title V Operating Permit (Permit No. P-100M2) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semiannual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semiannual emissions reporting for LANL for calendar year 2008. LANL’s 2008 emissions are well below the emission limits in the Title V Operating Permit.

  13. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL's preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  14. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    International Nuclear Information System (INIS)

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory's defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location

  15. The Los Alamos, Sandia, and Livermore Laboratories: Integration and collaboration solving science and technology problems for the nation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    More than 40 years ago, three laboratories were established to take on scientific responsibility for the nation`s nuclear weapons - Los Alamos, Sandia, and Livermore. This triad of laboratories has provided the state-of-the-art science and technology to create America`s nuclear deterrent and to ensure that the weapons are safe, secure, and to ensure that the weapons are safe, secure, and reliable. These national security laboratories carried out their responsibilities through intense efforts involving almost every field of science, engineering, and technology. Today, they are recognized as three of the world`s premier research and development laboratories. This report sketches the history of the laboratories and their evolution to an integrated three-laboratory system. The characteristics that make them unique are described and some of the major contributions they have made over the years are highlighted.

  16. Large-scale demonstration and deployment project at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.; McFee, J. [IT Corp. (United States); Broom, C. [Florida International Univ., Miami, FL (United States); Dugger, H. [ICF Inc. (United States); Stallings, E. [Los Alamos National Lab., NM (United States)

    1999-04-01

    Established by the US Department of Energy (DOE) Environmental Management program through its Office of Science and Technology, the Deactivation and Decommissioning Focus Area is developing answers to the technological problems that hinder Environmental Management`s extensive cleanup efforts. The optimized application of technologies to ongoing nuclear facility decontamination and dismantlement is critical in meeting the challenge of decommissioning approximately 9,000 buildings and structures within the DOE complex. The significant technical and economic concerns in this area underscore a national imperative for the qualification and timely delivery of cost-reduction technologies and management approaches to meet federal and private needs. At Los Alamos National Laboratory (LANL), a Large-Scale Demonstration and Deployment Project (LSDDP) has been established to facilitate demonstration and deployment of technologies for the characterization, decontamination, and volume reduction of oversized metallic waste, mostly in the form of gloveboxes contaminated with transuranic radionuclides. The LANL LSDDP is being managed by an integrated contractor team (ICT) consisting of IT Corporation, ICF Incorporated, and Florida International University and includes representation from LANL`s Environmental Management Program Office. The ICT published in the Commerce Business Daily a solicitation for interest for innovative technologies capable of improving cost and performance of the baseline process. Each expression of interest response was evaluated and demonstration contract negotiations are under way for those technologies expected to be capable of meeting the project objectives. This paper discusses management organization and approach, the results of the technology search, the technology selection methodology, the results of the selection process, and future plans for the program.

  17. Biological Assessment of the Continued Operation of Los Alamos National Laboratory on Federally Listed Threatened and Endangered Species

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Leslie A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Ecology and Air Quality Group

    2006-09-19

    This biological assessment considers the effects of continuing to operate Los Alamos National Laboratory on Federally listed threatened or endangered species, based on current and future operations identified in the 2006 Site-wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (SWEIS; DOE In Prep.). We reviewed 40 projects analyzed in the SWEIS as well as two aspects on ongoing operations to determine if these actions had the potential to affect Federally listed species. Eighteen projects that had not already received U.S. Fish and Wildlife Service (USFWS) consultation and concurrence, as well as the two aspects of ongoing operations, ecological risk from legacy contaminants and the Outfall Reduction Project, were determined to have the potential to affect threatened or endangered species. Cumulative impacts were also analyzed.

  18. 2003 Los Alamos National Laboratory Annual Illness and Injury Surveillance Report, Revised September 2007

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-10-04

    Annual Illness and Injury Surveillance Program report for 2003 for Los Alamos National Lab. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  19. Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations : current state of knowledge and proposed path forward

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Gordon N.; Schultz-Fellenz, Emily S.; Miller, Elizabeth D.

    2010-09-01

    The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.

  20. Best available technology for the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Midkiff, W.S.; Romero, R.L.; Suazo, I.L.; Garcia, R.; Parsons, R.M.

    1993-10-15

    The existing Los Alamos National Laboratory TA-50 liquid radioactive waste treatment plant RLWP has been in service for over thirty years, during this period many technical, regulatory, and processing changes have occurred. The existing facility can no longer comply with the demands and requirements for continued operation, and would not be able to comply with anticipated stringent future contaminant discharge limitations. Either a major upgrading or replacement of the existing facility is required. In order to assess the most appropriate means of providing an adequate facility to comply with predicted requirements for Ta-50, this Best Available Technology (BAT) Study was conducted to compare feasible technical and economic alternatives in order to define the most favorable technology configuration. This report consists of eleven sections. Section 1 provides a general introduction and background of the TA-50 operations and the basis for this study. Section 2 provides a technical discussion of the unit processes at TA-50 and several other comparable operations at other DOE sites. Section 3 addresses the evaluation and selection of appropriate treatment processes. Section 4 provides an analysis of environmental issues and concerns. Section 5 presents the rationale for the selection of preferred process configurations. Section 6 is the evaluation of operational issues. Section 7 addresses energy and resource use topics. Section 8 provides an economic analysis, and Section 9 summarizes the evaluation and the identification of the BAT. These sections are augmented by appendices. The report identifies the construction of a new radioactive liquid waste treatment facility as the BAT. Based on the information analyzed for this study, this option appears to provide the best combination of environmental compliance, operability, and economic value.

  1. Los Alamos national Laboratory overview of the SAVY-4000 design: meeting the challenge for worker safety

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Timothy Amos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2012-06-12

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based storage container design, the SAVY-4000. The SAVY-4000 is the first vented general use nuclear material container demonstrated to meet the requirements of DOE M 441.1-1, Nuclear Material Packaging Manual. The SAVY-4000 is an innovative and creative design demonstrated by the fact that it can be opened and closed in a few seconds without torque wrenches or other tools; has a built-in, fire-rated filter that prevents the build-up of hydrogen gas, yet retains 99.97% of plutonium particulates, and prevents release of material even in a 12 foot drop. Finally, it has been tested to 500C for 2 hours, and will reduce the risk to the public in the event of an earthquake/fire scenario. This will allow major nuclear facilities to credit the container towards source term Material at Risk (MAR) reduction. The container was approved for nuclear material storage in theTA-55 Plutonium Facility on March 15, 2011, and the first order of 79 containers was received at LANL on March 21, 2011. The first four SAVY-4000 containers were packaged with plutonium on August 2, 2011. Key aspects ofthe SAVY-4000 vented storage container design will be discussed which include design qualification and testing, implementation plan development and status, risk ranking methodology for re-packaging, in use implementation with interface to LANMAS, surveillance strategy, the design life extension program as enhanced by surveillance activities and production status with the intent to extend well beyond the current five year design life.

  2. Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.; Nottelman, H.

    1997-01-01

    The Biology Team of ESH-20 (the Ecology Group) at Los Alamos National Laboratory (LANL) has collected samples from the stream within Sandia Canyon since the summer of 1990. These field studies measure water quality parameters and collect aquatic macroinvertebrates from sampling sites within the upper canyon stream. Reports by Bennett and Cross discuss previous aquatic studies in Sandia Canyon. This report updates and expands the previous findings. The Biology Team collected water quality data and aquatic macroinvertebrates monthly at three sampling stations within Sandia Canyon in 1995. The two upstream stations occur near a cattail (Typha latifolia) dominated marsh downstream from outfalls that discharge industrial and sanitary waste effluent into the stream, thereby maintaining year-round flow. The third station is approximately 1.5 miles downstream from the outfalls within a mixed conifer forest. All water chemistry parameters measured in Sandia Canyon during 1995 fell within acceptable State limits and scored in the {open_quotes}good{close_quotes} or {open_quotes}excellent{close_quotes} ranges when compared to an Environmental Quality Index. However, aquatic macroinvertebrates habitats have been degraded by widespread erosion, channelization, loss of wetlands due to deposition and stream lowering, scour, limited acceptable substrates, LANL releases and spills, and other stressors. Macroinvertebrate communities at all the stations had low diversities, low densities, and erratic numbers of individuals. These results indicate that although the stream possesses acceptable water chemistry, it has reduced biotic potential. The best developed aquatic community occurs at the sampling station with the best habitat and whose downstream location partially mitigates the effects of upstream impairments.

  3. Best available technology for the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    The existing Los Alamos National Laboratory TA-50 liquid radioactive waste treatment plant RLWP has been in service for over thirty years, during this period many technical, regulatory, and processing changes have occurred. The existing facility can no longer comply with the demands and requirements for continued operation, and would not be able to comply with anticipated stringent future contaminant discharge limitations. Either a major upgrading or replacement of the existing facility is required. In order to assess the most appropriate means of providing an adequate facility to comply with predicted requirements for Ta-50, this Best Available Technology (BAT) Study was conducted to compare feasible technical and economic alternatives in order to define the most favorable technology configuration. This report consists of eleven sections. Section 1 provides a general introduction and background of the TA-50 operations and the basis for this study. Section 2 provides a technical discussion of the unit processes at TA-50 and several other comparable operations at other DOE sites. Section 3 addresses the evaluation and selection of appropriate treatment processes. Section 4 provides an analysis of environmental issues and concerns. Section 5 presents the rationale for the selection of preferred process configurations. Section 6 is the evaluation of operational issues. Section 7 addresses energy and resource use topics. Section 8 provides an economic analysis, and Section 9 summarizes the evaluation and the identification of the BAT. These sections are augmented by appendices. The report identifies the construction of a new radioactive liquid waste treatment facility as the BAT. Based on the information analyzed for this study, this option appears to provide the best combination of environmental compliance, operability, and economic value

  4. Los Alamos National Security, LLC Request for Information from industrial entities that desire to commercialize Laboratory-developed Extremely Low Resource Optical Identifier (ELROI) tech

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Michael Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-10

    Los Alamos National Security, LLC (LANS) is the manager and operator of the Los Alamos National Laboratory for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. LANS is a mission-centric Federally Funded Research and Development Center focused on solving the most critical national security challenges through science and engineering for both government and private customers.

  5. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  6. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    International Nuclear Information System (INIS)

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  7. Recent developments in the Los Alamos National Laboratory Plutonium Facility Waste Tracking System-automated data collection pilot project

    International Nuclear Information System (INIS)

    The waste management and environmental compliance group (NMT-7) at the Los Alamos National Laboratory has initiated a pilot project for demonstrating the feasibility and utility of automated data collection as a solution for tracking waste containers at the Los Alamos National Laboratory Plutonium Facility. This project, the Los Alamos Waste Tracking System (LAWTS), tracks waste containers during their lifecycle at the facility. LAWTS is a two-tiered system consisting of a server/workstation database and reporting engine and a hand-held data terminal-based client program for collecting data directly from tracked containers. New containers may be added to the system from either the client unit or from the server database. Once containers are in the system, they can be tracked through one of three primary transactions: Move, Inventory, and Shipment. Because LAWTS is a pilot project, it also serves as a learning experience for all parties involved. This paper will discuss many of the lessons learned in implementing a data collection system in the restricted environment. Specifically, the authors will discuss issues related to working with the PPT 4640 terminal system as the data collection unit. They will discuss problems with form factor (size, usability, etc.) as well as technical problems with wireless radio frequency functions. They will also discuss complications that arose from outdoor use of the terminal (barcode scanning failures, screen readability problems). The paper will conclude with a series of recommendations for proceeding with LAWTS based on experience to date

  8. Radionuclide concentrations in vegetation at the Los Alamos National Laboratory in 1998

    Energy Technology Data Exchange (ETDEWEB)

    G. J. Gonzales; P. R. Fresquez; M. A. Mullen; L. Naranjo, Jr.

    2000-03-01

    This report summarizes and evaluates the concentrations of {sup 3}H, {sup 137}Cs, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 90}Sr, and total U in understory and overstory vegetation collected from Los Alamos National Laboratory (LANL), its perimeter, and regional background areas in 1998. Comparisons to conservative toxicity reference value safe limits were also made. The arithmetic mean LANL radionuclide concentrations in understory were 501 pCi L{sup {minus}1} for {sup 3}H, 0.581 pCi ash g{sup {minus}1} for {sup 137}Cs, 0.001 pCi ash g{sup {minus}1} for {sup 238}Pu, 0.008 pCi ash g{sup {minus}1} for {sup 239,240}Pu, 0.007 pCi ash g{sup {minus}1} for {sup 241}Am, 1.46 pCi ash g{sup {minus}1} for {sup 90}Sr, and 0.233 {micro}g ash g{sup {minus}1} for total uranium. The mean LANL radionuclide concentrations in overstory were 463 pCi L{sup {minus}1} for {sup 3}H, 1.51 pCi ash g{sup {minus}1} for {sup 137}Cs, 0.0004 pCi ash g{sup {minus}1} {sup 238}Pu, 0.008 pCi ash g{sup {minus}1} for {sup 239,240}Pu, 0.014 pCi ash g{sup {minus}1} for {sup 241}Am, 1.97 pCi ash g{sup {minus}1} for {sup 90}Sr, and 0.388 {micro}g ash g{sup {minus}1} for total uranium. Concentrations of radionuclides and total U in both understory and overstory vegetation at LANL generally were not statistically higher than in perimeter and regional background vegetation ({alpha} = 0.05). The exceptions were LANL {sup 3}H > perimeter {sup 3}H (understory) and LANL {sup 3}H background {sup 3}H (overstory). All maximum radionuclide concentrations were lower than toxicity reference values. With the exception of total U, the relationship between contaminant concentration in soil vs. vegetation was insignificant ({alpha} = 0.05). Generally, as the concentration of total U in soil decreased, the concentration in vegetation increased. This held true for both understory and overstory and regardless of whether data were separated by general location (LANL, perimeter, and background) or not. There was no

  9. Siting study for a consolidated waste capability at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Steven Richard [Los Alamos National Laboratory

    2010-11-05

    Decision analysis was used to rank alternative sites for a potential Consolidated Waste Capability (CWC) to replace current hazardous solid waste operations (hazardous/chemical, mixed low-level, transuranic, and low-level waste) at Los Alamos National Laboratory's Technical Area (TA)-54. An original list of 21 site alternatives was pre-screened to seven sites that were assessed using the analytical hierarchy process with five top-level criteria and fifteen sub-criteria. The top site choice is TA-63/52/46; the second choice is TA-18/36. The seven sites are as follows. TA-18/36 (62 acres) is located on Potrillo Drive that intersects Pajarito Road at the bottom of a steep grade. It has some blast zone issues on its southwest side and some important archeological sites on the southeast section. TA-60 (50 acres) is located at the end of Eniwetok Road off Diamond Drive, east of TA-3. Most of the site is within a fifty foot-deep ravine (that may have contamination in the drainage), with a small section on the mesa above. TA-63/52/46 (110 acres) lies to the north of Pajarito Road along Puye Road. It is centrally located in a brown field industrial area, with good access to generators on a controlled road. TA-46 (22 acres) is a narrow site on the south side of Pajarito Road across from TA-46 office buildings. TA-48 (14 acres) is also narrow, and is located on the north side of Pajarito Road near the west vehicle access portal (VAP). TA-51 (19 acres) is located on the south side of Pajarito Road at the top of the hill above TA-18 near the current entrance to the TA-54. TA-54 West (16 acres) is just north of the entrance to TA-54 at Pajarito Road and is close to Zone 4. Although it is near the San Ildefonso Pueblo property line, there may be adequate set-back for sight screening.

  10. Los Alamos National Laboratory new generation standard nuclear material storage container - the SAVY4000 design

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Timothy Amos [Los Alamos National Laboratory

    2010-01-01

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based standard involving storage of nuclear material (RD003). This RD003 requirements document has sense been updated to reflect requirements as identified with recently issued DOE M 441.1-1 'Nuclear Material Packaging Manual'. The new packaging manual was issued at the encouragement of the Defense Nuclear Facilities Safety Board with a clear directive for protecting the worker from exposure due to loss of containment of stored materials. The Manual specifies a detailed and all inclusive approach to achieve a high level of protection; from package design & performance requirements, design life determinations of limited life components, authorized contents evaluations, and surveillance/maintenance to ensure in use package integrity over time. Materials in scope involve those stored outside an approved engineered-contamination barrier that would result in a worker exposure of in excess of 5 rem Committed Effective Does Equivalent (CEDE). Key aspects of meeting the challenge as developed around the SAVY-3000 vented storage container design will be discussed. Design performance and acceptance criteria against the manual, bounding conditions as established that the user must ensure are met to authorize contents in the package (based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide), interface as a safety class system within the facility under the LANL plutonium facility DSA, design life determinations for limited life components, and a sense of design specific surveillance

  11. Los Alamos National Laboratory SAVY-4000 Field Surveillance Plan Update for 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Elizabeth J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stone, Timothy Amos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Paul Herrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Prochnow, David Adrian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weis, Eric M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-17

    The Packaging Surveillance Program section of the Department of Energy (DOE) Manual 441.1-1, Nuclear Material Packaging Manual (DOE 2008), requires DOE contractors to “ensure that a surveillance program is established and implemented to ensure the nuclear material storage package continues to meet its design criteria.” The Los Alamos National Laboratory (LANL) SAVY-4000 Field Surveillance Plan was first issued in FY 2013 (Kelly et al. 2013). The surveillance plan is reviewed annually and updated as necessary based on SAVY-4000 surveillance and other surveillance findings, as well as results of the lifetime extension studies (Blair et al. 2012, Weis et al. 2015a). The LANL SAVY-4000 Field Surveillance Plan Update was issued in 2014 (Kelly et al. 2014). This 2016 update reflects changes to the surveillance plan resulting from restrictions on handling residue materials greater than 500 g, the addition of specific engineering judgment containers, and 2015 surveillance findings. The SAVY-4000 container has a design life of five years, which was chosen as a conservative estimate of the functional properties of the materials used in the construction of the SAVY 4000 when exposed to the potential insults including temperature, corrosive materials and gases, and radiation. The SAVY-4000 container design basis is described in a safety analysis report (Anderson et al. 2013). In the National Nuclear Security Administration's (NNSA’s) approval of the safety analysis report, it was recommended that the design life clock begin on March 2014 (Nez et al. 2014). However, it is expected that a technical basis can be developed to extend the design life of the SAVY-4000 containers to approximately 40 years (Blair et al. 2012, Weis et al. 2015a). This surveillance plan update covers five years (2015–2019) and is developed to ensure SAVY-4000 containers meet their design criteria over the current five-year design life and to gather data that can be used in developing the

  12. Evaluation of the Likelihood for Thermal Runaway for Nitrate Salt Containers in Storage at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Heatwole, Eric Mann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gunderson, Jake Alfred [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Gary Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-25

    In order to handle and process the existing Los Alamos National Laboratory (LANL) Nitrate Salt drums it is necessary to quantify the risk. One of the most obvious dangers is a repeat of the original violent reaction (2015), which would endanger nearby workers, not only with radioactive contamination, but also with large amounts of heat, dangerous corrosive gases and the physical dangers associated with a bursting drum. If there still existed a high probability of violent reaction, then these drums should only be accessed remotely. The objective of the work reported herein is to determine the likelihood of a similar violent event occurring.

  13. Evaluation of the Likelihood for Thermal Runaway for Nitrate Salt Containers in Storage at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    In order to handle and process the existing Los Alamos National Laboratory (LANL) Nitrate Salt drums it is necessary to quantify the risk. One of the most obvious dangers is a repeat of the original violent reaction (2015), which would endanger nearby workers, not only with radioactive contamination, but also with large amounts of heat, dangerous corrosive gases and the physical dangers associated with a bursting drum. If there still existed a high probability of violent reaction, then these drums should only be accessed remotely. The objective of the work reported herein is to determine the likelihood of a similar violent event occurring.

  14. Threatened and Endangered Species Habitat Management Plan for Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Keller, David Charles [Los Alamos National Laboratory; Hathcock, Charles Dean [Los Alamos National Laboratory

    2015-11-17

    Los Alamos National Laboratory’s (LANL) Threatened and Endangered Species Habitat Management Plan (HMP) fulfills a commitment made to the U.S. Department of Energy (DOE) in the “Final Environmental Impact Statement for the Dual-Axis Radiographic Hydrodynamic Test Facility Mitigation Action Plan” (DOE 1996). The HMP received concurrence from the U.S. Fish and Wildlife Service (USFWS) in 1999 (USFWS consultation numbers 2-22-98-I-336 and 2-22-95-I-108). This 2015 update retains the management guidelines from the 1999 HMP for listed species, updates some descriptive information, and adds the New Mexico Meadow Jumping Mouse (Zapus hudsonius luteus) and Yellow-billed Cuckoo (Coccyzus americanus) which were federally listed in 2014 (Keller 2015: USFWS consultation number 02ENNM00- 2015-I-0538).

  15. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Becker, N.M. [Los Alamos National Lab., NM (United States); Vanta, E.B. [Wright Laboratory Armament Directorate, Eglin Air Force Base, FL (United States)

    1995-05-01

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

  16. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    International Nuclear Information System (INIS)

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980's at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments

  17. The economic impact of Los Alamos National Laboratory on North-Central New Mexico and the state of New Mexico. Fiscal Year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Lansford, R.R. [New Mexico State Univ., Las Cruces, NM (United States). Dept. of Agricultural Economics and Agricultural Business; Adcock, L.D.; Gentry, L.M. [Dept. of Energy, Albuquerque, NM (United States); Ben-David, S. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Economics

    1996-08-01

    Los Alamos National Laboratory is a multidisciplinary, multiprogram laboratory with a mission to enhance national military and economic security through science and technology. Its mission is to reduce the nuclear danger through stewardship of the nation`s nuclear stockpile and through its nonproliferation and verification activities. An important secondary mission is to promote U.S. industrial competitiveness by working with U.S. companies in technology transfer and technology development partnerships. Los Alamos has provided technical assistance to over 70 small New Mexico businesses enabling economic development activities in the region and state.

  18. University of New Mexico-Los Alamos National Laboratory Program in Volcanology

    Science.gov (United States)

    Goff, F.; Fischer, T.; Baldridge, W.; Wohletz, K.; Smith, G.; Heiken, G.; Valentine, G.; Elston, W.

    2002-05-01

    taken this class. Former students have pursued advanced degrees in the Geosciences and taken jobs with academia, research laboratories, volcanology observatories and/or the private sector. Although a degree in Volcanology is not granted, the program has supported and/or contributed to the degrees and theses of many UNM and non-UNM students. In some circumstances, thesis research can be conducted at Los Alamos while enrolled at UNM. For more information contact any of the co-authors listed above.

  19. The economic impact of Los Alamos National Laboratory on North-Central New Mexico and the state of New Mexico. Fiscal Year 1995

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory is a multidisciplinary, multiprogram laboratory with a mission to enhance national military and economic security through science and technology. Its mission is to reduce the nuclear danger through stewardship of the nation's nuclear stockpile and through its nonproliferation and verification activities. An important secondary mission is to promote U.S. industrial competitiveness by working with U.S. companies in technology transfer and technology development partnerships. Los Alamos has provided technical assistance to over 70 small New Mexico businesses enabling economic development activities in the region and state

  20. Floodplain Assessment for the Proposed Engineered Erosion Controls at TA-72 in Lower Sandia Canyon, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, Charles D. [Los Alamos National Laboratory

    2012-08-27

    Los Alamos National Laboratory (LANL) is preparing to implement engineering controls in Sandia Canyon at Technical Area (TA) 72. Los Alamos National Security (LANS) biologists conducted a floodplain determination and this project is located within a 100-year floodplain. The proposed project is to rehabilitate the degraded channel in lower Sandia Canyon where it crosses through the outdoor firing range at TA-72 to limit the loss of sediment and dissipate floodwater leaving LANL property (Figure 1). The proposed construction of these engineered controls is part of the New Mexico Environment Department's (NMED) approved LANL Individual Storm Water Permit. The purpose of this project is to install storm water controls at Sandia Watershed Site Monitoring Area 6 (S-SMA-6). Storm water controls will be designed and installed to meet the requirements of NPDES Permit No. NM0030759, commonly referred to as the LANL Individual Storm Water Permit (IP). The storm water control measures address storm water mitigation for the area within the boundary of Area of Concern (AOC) 72-001. This action meets the requirements of the IP for S-SMA-6 for storm water controls by a combination of: preventing exposure of upstream storm water and storm water generated within the channel to the AOC and totally retaining storm water falling outside the channel but within the AOC.

  1. 1993 Annual PCB Document for Los Alamos National Laboratory EPA Region VI, January 1, 1993 through December 31, 1993

    International Nuclear Information System (INIS)

    This document, the open-quotes 1993 Annual PCB Document for Los Alamos National Laboratoryclose quotes was prepared to fulffill the requirements of the federal PCB (Polychlorinated Biphenyl) regulation: 40 CFR 761 Subpart J General Records and Reports. The PCB Management Program at Los Alamos National Laboratory (LANL), Environmental Protection Group, compiled this 1993 Annual PCB Document. The overall format generally follows the sequence of the applicable regulations. Subsection 1.2 cross references those regulatory requirements with the applicable Document Section. The scope of this document also includes status summaries of various aspects of LANL's PCB Management Program. The intent of this approach to the Annual Document is to provide an overview of LANL's PCB Management Program and to increase the usefulness of this document as a management tool. Section 2.0, open-quotes Status of the PCB Management Programclose quotes, discusses the use, generation of waste, and storage of PCBs at LANL. Section 3.0 is the 1993 Annual Document Log required by 761.180(a). This Section also discusses the PCB Management Program's policies for reporting under those regulatory requirements. Sections 4.0 and 5.0 contain the 1993 Annual Records for off-site and on-site disposal as required by 761.180(b). There is a tab for each manifest and its associated continuation sheets, receipt letters, and certificates of disposal

  2. Floodplain statement of findings for corrective actions in Potrillo Canyon technical area-36, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Keller, David Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-18

    In 2014, baseline storm water monitoring samples for Potrillo Canyon Sample Management Area at Los Alamos National Laboratory (LANL) exceeded the National Pollutant Discharge Elimination System Individual Permit No. NM0030759 target action level (TAL) of 15 picocuries per liter (pCi/L) for gross-alpha radioactivity (393 pCi/L) and a TAL of 30 pCi/L for radium-226 and radium-228 (95.9 pCi/L). Consequently, erosion control measures within the management area are proposed to minimize sediment migration, a corrective action under the permit that is a requirement of the New Mexico Environment Department consent decree and a good management practice to limit off-site sediment migration. The area proposed for erosion controls consists of portions of Technical Area 36 that were used as firing sites primarily involving high explosives (HE) and metal (e.g., depleted uranium, lead, copper, aluminum, and steel), small-explosives experiments and burn pits (burn pits were used for burning and disposal of test debris). In addition, underground explosive tests at an approximate depth of 100 feet were also conducted. These watershed-based storm water controls will focus on addressing erosion occurring within the floodplain through mitigating and reducing both current and future channelization and head cutting.

  3. Floodplain statement of findings for corrective actions in Potrillo Canyon technical area-36, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Keller, David Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-18

    In 2014, baseline storm water monitoring samples for Potrillo Canyon Sample Management Area (Figure 1) at Los Alamos National Laboratory (LANL) exceeded the National Pollutant Discharge Elimination System Individual Permit No. NM0030759 target action level (TAL) of 15 picocuries per liter (pCi/L) for gross-alpha radioactivity (393 pCi/L) and a TAL of 30 pCi/L for radium-226 and radium-228 (95.9 pCi/L). Consequently, erosion control measures within the management area are proposed to minimize sediment migration, a corrective action under the permit that is a requirement of the New Mexico Environment Department consent decree and a good management practice to limit off site sediment migration. The area proposed for erosion controls (Figure 1) consists of portions of Technical Area 36 that were used as firing sites primarily involved high explosives (HE) and metal (e.g., depleted uranium, lead, copper, aluminum, and steel), small-explosives experiments and burn pits (burn pits were used for burning and disposal of test debris). In addition, underground explosive tests were conducted at an approximate depth of 100 feet were also conducted. These watershed-based storm water controls will focus on addressing erosion occurring within the floodplain through mitigating and reducing both current and future channelization and head cutting.

  4. Systematic evaluation of options to avoid generation of noncertifiable transuranic (TRU) waste at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boak, J.M.; Kosiewicz, S.T.; Triay, I.; Gruetzmacher, K.; Montoya, A.

    1998-03-01

    At present, >35% of the volume of newly generated transuranic (TRU) waste at Los Alamos National Laboratory is not certifiable for transport to the Waste Isolation Pilot Plant (WIPP). Noncertifiable waste would constitute 900--1,000 m{sup 3} of the 2,600 m{sup 3} of waste projected during the period of the Environmental Management (EM) Accelerated Cleanup: Focus on 2006 plan (DOE, 1997). Volume expansion of this waste to meet thermal limits would increase the shipped volume to {approximately}5,400 m{sup 3}. This paper presents the results of efforts to define which TRU waste streams are noncertifiable at Los Alamos, and to prioritize site-specific options to reduce the volume of certifiable waste over the period of the EM Accelerated Cleanup Plan. A team of Los Alamos TRU waste generators and waste managers reviewed historic generation rates and thermal loads and current practices to estimate the projected volume and thermal load of TRU waste streams for Fiscal Years 1999--2006. These data defined four major problem TRU waste streams. Estimates were also made of the volume expansion that would be required to meet the permissible wattages for all waste. The four waste streams defined were: (1) {sup 238}Pu-contaminated combustible waste from production of Radioactive Thermoelectric Generators (RTGs) with {sup 238}Pu activity which exceeds allowable shipping limits by 10--100X. (2) {sup 241}Am-contaminated cement waste from plutonium recovery processes (nitric and hydrochloric acid recovery) are estimated to exceed thermal limits by {approximately}3X. (3) {sup 239}Pu-contaminated combustible waste, mainly organic waste materials contaminated with {sup 239}Pu and {sup 241}Am, is estimated to exceed thermal load requirements by a factor of {approximately}2X. (4) Oversized metal waste objects, (especially gloveboxes), cannot be shipped as is to WIPP because they will not fit in a standard waste box or drum.

  5. The Los Alamos National Laboratory Chemistry and Metallurgy Research Facility upgrades project - A model for waste minimization

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Facility, constructed in 1952, is currently undergoing a major, multi-year construction project. Many of the operations required under this project (i.e., design, demolition, decontamination, construction, and waste management) mimic the processes required of a large scale decontamination and decommissioning (D ampersand D) job and are identical to the requirements of any of several upgrades projects anticipated for LANL and other Department of Energy (DOE) sites. For these reasons the CMR Upgrades Project is seen as an ideal model facility - to test the application, and measure the success of - waste minimization techniques which could be brought to bear on any of the similar projects. The purpose of this paper will be to discuss the past, present, and anticipated waste minimization applications at the facility and will focus on the development and execution of the project's open-quotes Waste Minimization/Pollution Prevention Strategic Plan.close quotes

  6. Floristic composition and plant succession on near-surface radioactive-waste-disposal facilities in the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Since 1946, low-level radioactive waste has been buried in shallow landfills within the confines of the Los Alamos National Laboratory. Five of these sites were studied for plant composition and successional patterns by reconnaissance and vegetation mapping. The data show a slow rate of recovery for all sites, regardless of age, in both the pinon-juniper and ponderosa pine communities. The sites are not comparable in succession or composition because of location and previous land use. The two oldest sites have the highest species diversity and the only mature trees. All sites allowed to revegetate naturally tend to be colonized by the same species that originally surrounded the sites. Sites on historic fields are colonized by the old field flora, whereas those in areas disturbed only by grazing are revegetated by the local native flora

  7. An assessment of Microtox{trademark} as a biomonitoring tool for whole effluent testing for Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Zachritz, W.H. II; Morrow, J. [New Mexico State Univ., Las Cruces, NM (United States)

    1994-06-13

    Los Alamos National Laboratory (LANL) has special discharge problems relating to potential radioactive content of the effluent discharge waters. Because of this all testing must be performed on-site and results must be rapidly determined. There is a need to examine the development of a real-time procedure for effluent biomonitoring to met these site limitations. The Microtox{trademark} unit for toxicity testing is a microbially-based test system that shows great promise to be used for WET testing. The overall goal of this study is to develop an acceptable protocol for operational biomonitoring using the Microtox {trademark} toxicity test for LANL. The specific objectives include: development of an appropriate toxicity testing protocol using the Microtox{trademark} toxicity test for whole effluent toxicity testing and evaluation of the protocol based on factors such as sensitivity, response time, cost of analysis, and simplicity of operation.

  8. Floristic composition and plant succession on near-surface radioactive-waste-disposal facilities in the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, G.D.; Foxx, T.S.

    1982-03-01

    Since 1946, low-level radioactive waste has been buried in shallow landfills within the confines of the Los Alamos National Laboratory. Five of these sites were studied for plant composition and successional patterns by reconnaissance and vegetation mapping. The data show a slow rate of recovery for all sites, regardless of age, in both the pinon-juniper and ponderosa pine communities. The sites are not comparable in succession or composition because of location and previous land use. The two oldest sites have the highest species diversity and the only mature trees. All sites allowed to revegetate naturally tend to be colonized by the same species that originally surrounded the sites. Sites on historic fields are colonized by the old field flora, whereas those in areas disturbed only by grazing are revegetated by the local native flora.

  9. Studies of Annual and Seasonal Variations in Four Species of Reptiles and Amphibians at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Keller, D.C.; Nelson, E.I.; Mullen, M.A.; Foxx, T.S.; Haarmann, T.K.

    1998-07-01

    Baseline studies of reptiles and amphibians of the Pajarito wetlands at Los Alamos National Laboratory have been conducted by the Ecology group since 1990. With the data gathered from 1990-1997 (excluding 1992), we examined the annual and seasonal population changes of four species of reptiles and amphibians over the past seven years. The four species studied are the Woodhouse toad (Bufo woodhousii), the western chorus frog (Pseudacris triseriata), the many-lined skink (Eunzeces nudtivirgatus), and the plateau striped whiptail lizard (Cnemidophorus velox). Statistical analyses indicate a significant change on a seasonal basis for the western chorus frog and the many-lined skink. Results indicate a significant difference in the annual population of the Woodhouse toad.

  10. Studies of annual and seasonal variations in four species of reptiles and amphibians at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.I.; Haarmann, T.; Keller, D.C.; Foxx, T.

    1998-11-01

    Baseline studies of reptiles and amphibians of the Pajarito wetlands at Los Alamos National Laboratory have been conducted by the Ecology group since 1990. With the gathered data from 1990--1997 (excluding 1992), they plan to determine if patterns can be found in the annual and seasonal population changes of four species of reptiles and amphibians over the past seven years. The four species studied are the Woodhouse toad, the western chorus frog, the many-linked skink, and the plateau striped whiptail lizard. Statistical analysis results show that significant changes occurred on a seasonal basis for the western chorus frog and the many-lined skink. Results indicate a significant difference in the annual population of the Woodhouse toad.

  11. Legacies of the recent past: The built environment at Los Alamos National Laboratory, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    McGehee, E.D.

    1997-03-01

    In the early 1940s, a remote area of northern New Mexico was selected to be the site of a secret laboratory, a scientific facility whose only goal was the development of the first atomic bomb. The National Historic Preservation Act (NHPA) of 1966 requires that US federal agencies address this area. Properties, both buildings and structures, older than fifty years, or if more recent, of exceptional historical importance, are to be evaluated for eligibility to the National Register of Historic Places. In compliance with this regulation, LANL has begun to identify and inventory historic properties eligible for the register. This paper will provide an overview of LANL`s WWII and postwar history and will describe recently identified LANL property types and significant historic themes associated with the years 1943--1956. Past NHPA ``Section 106`` documentation efforts will also be summarized.

  12. Environmental Assessment for Leasing Land for the Siting, Construction and Operation of a Commercial AM Radio Antenna at Los Alamos National Laboratory, Los Alamos, NM

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-02-16

    The United States (U.S.) Department of Energy (DOE) proposes to lease approximately 3 acres of land at the Los Alamos National Laboratory (LANL) on the southeast tip of Technical Area (TA) 54 for the siting, construction and operation of an AM radio broadcasting antenna. This Environmental Assessment (EA) has been developed in order to assess the environmental effects of the Proposed Action and No Action alternative. The Proposed Action includes the lease of land for the siting, construction and operation of an AM radio broadcasting antenna in TA-54, just north of Pajarito Road and State Highway 4. The No Action Alternative was also considered. Under the No Action Alternative, DOE would not lease land on LANL property for the siting and operation of an AM radio broadcasting antenna; the DOE would not have a local station for emergency response use; and the land would continue to be covered in native vegetation and serve as a health and safety buffer zone for TA-54 waste management activities. Other potential sites on LANL property were evaluated but dismissed for reasons such as interference with sensitive laboratory experiments. Potential visual, health, and environmental effects are anticipated to be minimal for the Proposed Action. The radio broadcasting antenna would be visible against the skyline from some public areas, but would be consistent with other man-made objects in the vicinity that partially obstruct viewsheds (e.g. meteorological tower, power lines). Therefore, the net result would be a modest change of the existing view. Electromagnetic field (EMF) emissions from the antenna would be orders or magnitude less than permissible limits. The proposed antenna construction would not affect known cultural sites, but is located in close proximity to two archaeological sites. Construction would be monitored to ensure that the associated road and utility corridor would avoid cultural sites.

  13. A research study to determine the perception of security awareness within Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The DOE is opening its doors and much of the Cold War secrets are being declassified. There still remains, however, much information which cannot be declassified at this time. The classified material which cannot be released coupled with new technology research and development still makes security a major issue within the DOE complex. Chapter 1 provides background information on the organizations involved in this research and a discussion of the problem. Three populations were selected for this research: EG and G/EM, a DOE contractor used by Los Alamos; a Los Alamos population of division identified as having committed a security infraction within the six months prior to this study; and a Los Alamos population who had not committed a security infraction during the same time frame. Since security within Los Alamos is still a major issue, the DOE periodically performs security audits to ensure DOE policies are being implemented and that security requirements are being met. This study analyzed security awareness perceptions and the possible relationship to infractions. Chapter 2 discusses other research that has been done in areas which relate directly to the seven hypotheses of this study. Chapter 3 deals with the methodology used to conduct the research. Surveys were sent out to randomly selected employees from each population. Chapter 4 discusses the collected data and presents the statistical results of the study. A detailed discussion of the data analyzed in Chapter 4 is presented in Chapter 5 with recommendations to management. This chapter also looks at the limitations of the study and the implications on future studies in this area

  14. Environmental Assessment for Lease of Land for the Development of a Research Park at Los Alamos National Laboratory, Los Alamos, New Mexico - Final Document

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1997-10-07

    As part of its initiative to fulfill its responsibilities to provide support for the incorporated County of Los Alamos (the County) as an Atomic Energy Community, while simultaneously fulfilling its obligations to enhance the self-sufficiency of the County under authority of the Atomic Energy Community Act of 1955 and the Defense Authorization Act, the U.S. Department of Energy (DOE) proposes to lease undeveloped land in Los Alamos, New Mexico, to the County for private sector use as a research park. The Proposed Action is intended to accelerate economic development activities within the County by creating regional employment opportunities through offering federal land for private sector lease and use. As a result of the proposed land lease, any government expenditures for providing infrastructure to the property would be somewhat supplemented by tenant purchase of Los Alamos National Laboratory (LANL) expertise in research and development activities. The presence of a research park within LANL boundaries is expected to allow private sector tenants of the park to be able to quickly and efficiently call upon LANL scientific expertise and facility and equipment capabilities as part of their own research operations and LANL research personnel, in turn, would be challenged in areas complementary to their federally funded research. In this way a symbiotic relationship would be enjoyed by both parties while simultaneously promoting economic development for the County through new job opportunities at the Research Park and at LANL, new indirect support opportunities for the community at large, and through payment of the basic building space leases. A ''sliding-scale'' approach (DOE 1993) is the basis for the analysis of effects in this Environmental Assessment (EA). That is, certain aspects of the Proposed Action have a greater potential for creating adverse environmental effects than others; therefore, they are discussed in greater detail in this EA

  15. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    Energy Technology Data Exchange (ETDEWEB)

    Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

    1997-12-01

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

  16. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    International Nuclear Information System (INIS)

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory

  17. Geology, drilling, and some hydrologic aspects of seismic hazards program core holes, Los Alamos National Laboratory, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, J.N. [Los Alamos National Lab., NM (United States); Kolbe, T.; Chang, S. [Woodward-Clyde Consultants, Oakland, CA (United States)

    1993-01-01

    As part of the Los Alamos National Laboratory`s Seismic Hazards Investigations Program, we have cored four holes, as follows: SHB-I at TA-55 to 700 feet; SHB-2 at TA-3 to 200 feet; SHB-3 at TA-16 to 860 feet; and, SHB-4 at TA-18 to 200 feet. In that the near-surface seismic velocity structure of the holes is the subject of other reports, we describe here the lithologies, general aspects of drilling, and some hydrologic implications of the core holes. All four holes penetrated variably welded Tshirege Member of the Bandelier Tuff. Beneath two deeper holes encountered thick sequences of epiclastic sands and gravels, with minor interbeds of Cerro Toledo Rhyolite, on top of the dominantly nonwelded Otowi Member of the Bandelier Tuff. Beneath the Otowi was basalt at TA-55 and Puye Formation sands and gravels at TA-16. Two of the core holes (SHB-3 at TA-16 and SHB-4 at TA-18) appear to have encountered groundwater. The holes were all continuously cored with conventional wireline diamond coring techniques. Maintaining high percentage core recovery in nonwelded tuff and loose formations with air as the circulating fluid proved impossible. Light muds, however, improved recovery in these zones considerably. A variety of bits were tested, but none yielded consistent results in the alternating hard and soft rock conditions found beneath the Laboratory.

  18. P24 Plasma Physics Summer School 2012 Los Alamos National Laboratory Summer lecture series for students

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Laboratory; Bauer, Bruno [Univ Nevada, Reno; Fernandez, Juan C. [Los Alamos National Laboratory; Daughton, William S. [Los Alamos National Laboratory; Flippo, Kirk A. [Los Alamos National Laboratory; Weber, Thomas [Los Alamos National Laboratory; Awe, Thomas J. [Los Alamos National Laboratory; Kim, Yong Ho [Los Alamos National Laboratory

    2012-09-07

    This report covers the 2012 LANL summer lecture series for students. The lectures were: (1) Tom Intrator, P24 LANL: Kick off, Introduction - What is a plasma; (2) Bruno Bauer, Univ. Nevada-Reno: Derivation of plasma fluid equations; (3) Juan Fernandez, P24 LANL Overview of research being done in p-24; (4) Tom Intrator, P24 LANL: Intro to dynamo, reconnection, shocks; (5) Bill Daughton X-CP6 LANL: Intro to computational particle in cell methods; (6) Kirk Flippo, P24 LANL: High energy density plasmas; (7) Thom Weber, P24 LANL: Energy crisis, fission, fusion, non carbon fuel cycles; (8) Tom Awe, Sandia National Laboratory: Magneto Inertial Fusion; and (9) Yongho Kim, P24 LANL: Industrial technologies.

  19. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1992 quality program status report

    International Nuclear Information System (INIS)

    This status report summarizes the activities and accomplishments of the Los Alamos Yucca Mountain Site Characterization Project's quality assurance program for calendar year 1992. The report includes major sections on Program Activities and Trend Analysis. Program Activities are discussed periodically at quality meetings. The most significant issue addressed in 1992 has been the timely revision of quality administrative procedures. The procedure revision process was streamlined from 55 steps to 7. The number of forms in procedures was reduced by 38%, and the text reduced by 29%. This allowed revision in 1992 of almost half of all implementing procedures. The time necessary to complete the revision process (for a procedure) was reduced from 11 months to 3 months. Other accomplishments include the relaxation of unnecessarily strict training requirements, requiring quality assurance reviews only from affected organizations, and in general simplifying work processes. All members of the YMP received training to the new Orientation class Eleven other training classed were held. Investigators submitted 971 records to the Project and only 37 were rejected. The software program has 115 programs approved for quality-affecting work. The Project Office conducted 3 audits and 1 survey of Los Alamos activities. We conducted 14 audits and 4 surveys. Eight corrective action reports were closed, leaving only one open. Internally, 22 deficiencies were recognized. This is a decrease from 65 in 1991. Since each deficiency requires about 2 man weeks to resolve, the savings are significant. Problems with writing acceptable deficiency reports have essentially disappeared. Trend reports for 1992 were examined and are summarized herein. Three adverse trends have been closed; one remaining adverse trend will be closed when the affected procedures are revised. The number of deficiencies issued to Los Alamos compared to other participants is minimal

  20. Applying GIS characterizing and modeling contaminant transport in surface water at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Becker, N.M.; Van Eeckhout, E. [Los Alamos National Lab., NM (United States); David, N.A. [Environmental Res., Inst. of Michigan, Santa Fe, NM (United States); Irvine, J.M. [Environmental Res. Inst. of Michigan, Arlington, VA (United States)

    1995-10-01

    During World War II, Los Alamos, New Mexico was chosen as the site for the secret development of the first atomic bomb. The remote location in the southwestern United States was ideal for such a project. After the war, research activities continued at the Los Alamos installation, focusing on new nuclear weapons models as well as greater effectiveness and reliability of existing weapons. Due to the emphasis on nuclear and non-nuclear weapons development as well as associated nuclear research, a large inventory of radionuclides and heavy metals have been tested, expended, and disposed of in the local environment, a high plateau of tuffaceous volcanic rocks incised by deep canyons in a semi-arid climate. In recent years an intensive evaluation of the environmental, impact of weapons testing at Los Alamos and elsewhere has been undertaken. GIS system utilization and image processing of past and current data has been an important part of this evaluation. Important problems can be more easily displayed and understood using this methodology. The main objective in this paper is to illustrate how transport of depleted uranium and associated heavy metals (copper in this case) used in dynamic testing of weapons components at open air firing sites can be evaluated and visualized. In our studies, surface water has been found to be the predominant transport mechanism. We have sampled soils, sediments, fallout, runoff water and snowmelt over a number of years in order to understand contaminant transport on- and offsite. Statistical analyses of these data have assisted in our characterization of issues such as contaminant variability, spatially and temporally, as well as in development of transport rates.

  1. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1992 quality program status report

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.; Burningham, A.; Chavez, P. [and others

    1994-03-01

    This status report summarizes the activities and accomplishments of the Los Alamos Yucca Mountain Site Characterization Project`s quality assurance program for calendar year 1992. The report includes major sections on Program Activities and Trend Analysis. Program Activities are discussed periodically at quality meetings. The most significant issue addressed in 1992 has been the timely revision of quality administrative procedures. The procedure revision process was streamlined from 55 steps to 7. The number of forms in procedures was reduced by 38%, and the text reduced by 29%. This allowed revision in 1992 of almost half of all implementing procedures. The time necessary to complete the revision process (for a procedure) was reduced from 11 months to 3 months. Other accomplishments include the relaxation of unnecessarily strict training requirements, requiring quality assurance reviews only from affected organizations, and in general simplifying work processes. All members of the YMP received training to the new Orientation class Eleven other training classed were held. Investigators submitted 971 records to the Project and only 37 were rejected. The software program has 115 programs approved for quality-affecting work. The Project Office conducted 3 audits and 1 survey of Los Alamos activities. We conducted 14 audits and 4 surveys. Eight corrective action reports were closed, leaving only one open. Internally, 22 deficiencies were recognized. This is a decrease from 65 in 1991. Since each deficiency requires about 2 man weeks to resolve, the savings are significant. Problems with writing acceptable deficiency reports have essentially disappeared. Trend reports for 1992 were examined and are summarized herein. Three adverse trends have been closed; one remaining adverse trend will be closed when the affected procedures are revised. The number of deficiencies issued to Los Alamos compared to other participants is minimal.

  2. Los Alamos National Laboratory Yucca Mountain Project Publications (1979-1996)

    Energy Technology Data Exchange (ETDEWEB)

    Ruhala, E.R.; Klein, S.H. [comps.

    1997-06-01

    This over-350 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1996 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/ground-water chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance.

  3. Capabilities of the Los Alamos National Laboratory in nuclear target technology

    International Nuclear Information System (INIS)

    Targets are made at Los Alamos for experiments at the Ion Beam Facility (Van de Graaff), the Medium Energy Physics Facility (LAMPF), and for experiments conducted at many other accelerators in the US and Europe. Thin, isotopic targets are made by sputtering and evaporation. Versatile, large-scale facilities exist for ceramics and plastics fabrication, electroplating, powder metallurgy, fabrication by pressing, casting and rolling, chemical and physical vapor deposition and sputtering. Special developments include ultra-precision machining, cryogenic targets and shaped-foil targets. 20 references

  4. Los Alamos National Laboratory Yucca Mountain Project Publications (1979-1996)

    International Nuclear Information System (INIS)

    This over-350 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1996 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/ground-water chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance

  5. Installation and test results of a high-power, CW klystrode amplifier at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The Chalk River Laboratory (CRL) 1.25 MeV, 267 MHz CW radio frequency quadrupole (RFQ) project has been moved to Los Alamos AOT Division as a collaborative effort between Los Alamos and Chalk River Laboratories. The RF part of this project includes two 267 MHz, 0.25 MW, CW klystrode transmitters. The klystrode is a relatively new type of RF source that combines the input structure from a conventional gridded tube and the output structure of a klystron. It is widely used within the UHF television band at reduced power (60 kW at peak of sync). However, this is the first application of a high power klystrode for a particle accelerator. This paper will describe the experimental configuration at Los Alamos, provide block diagrams of the klystrode transmitter, discuss the attributes of the klystrode which make it a desirable candidate for high efficiency CW accelerators, and present relevant test results

  6. Los Alamos National Laboratory: A guide to records series supporting epidemiologic studies conducted for the Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The purpose of this guide is to describe each series of records that pertains to the epidemiologic studies conducted by the Epidemiology Section of the Occupational Medicine Group (ESH-2) at the Department of Energy`s (DOE) Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico. The records described in this guide relate to occupational studies performed by the Epidemiology Section, including those pertaining to workers at LANL, Mound Plant, Oak Ridge Reservation, Pantex Plant, Rocky Flats Plant, and Savannah River Site. Also included are descriptions of other health-related records generated or collected by the Epidemiology Section and a small set of records collected by the Industrial Hygiene and Safety Group. This guide is not designed to describe the universe of records generated by LANL which may be used for epidemiologic studies of the LANL work force. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project, HAI`s role in the project, the history of LANL the history and functions of LANL`s Health Division and Epidemiology Section, and the various epidemiologic studies performed by the Epidemiology Section. It provides information on the methodology that HAI used to inventory and describe records housed in the offices of the LANL Epidemiology Section in Technical Area 59 and at the LANL Records Center. Other topics include the methodology used to produce the guide, the arrangement of the detailed record series descriptions, and information concerning access to records repositories.

  7. Radionuclides in pinon pine (Pinus edulis) nuts from Los Alamos National Laboratory lands and the dose from consumption.

    Science.gov (United States)

    Fresquez, P R; Huchton, J D; Mullen, M A; Naranjo, L

    2000-09-01

    One of the dominant tree species growing within and around the eastern portion of Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis). Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food--the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3H, 137Cs, 90Sr, totU, 238Pu, 239,240Pu, and 241Am in soils (0- to 12-in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (3) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN fromLANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 microSv); this is far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem (1000 microSv). Soil-to-nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.

  8. Radionuclide concentrations in game and nongame fish upstream and downstream of Los Alamos National Laboratory: 1981 to 1993

    International Nuclear Information System (INIS)

    Radionuclide concentrations were determined in game (surface-feeding) and nongame (bottom-feeding) fish collected from reservoirs upstream (Abiquiu, Heron, and El Vado) and downstream (Cochiti) of Los Alamos National Laboratory from 1981 to 1993. The average levels of 90Sr, 137Cs, 238Pu, and 239Pu in game and nongame fish collected from Cochiti reservoir were not significantly different in fish collected from reservoirs upstream of the Laboratory. Total uranium was the only radionuclide that was found to be significantly higher n both game and nongame fish from Cochiti as compared to fish from Abiquiu, Heron, and El Vado. Uranium concentrations in fish collected from Cochiti, however, significantly decreased from 1981 to 1993, and no evidence of depleted uranium was found in fish samples collected from Cochiti in 1993. Based on the average concentration of radionuclides over the year the effective (radiation) dose equivalent from consuming 46 lb of game fish and nongame fish from Cochiti reservoir after natural background has been subtracted was 0.005 and 0.009 mrem/yr, respectively. The highest dose was <0.01% of the International Commission on Radiological Protection (ICRP) permissible dose limit for protecting members of the public

  9. Preliminary Risk Assessment of the Southwestern Willow Flycatcher (Empidonax traillii extimus) at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.F.; Gonzales, G.J.; Bennett, K.D.; Mullen, M.A.; Foxx, T.S.

    1998-10-01

    The southwestern willow flycatcher (Empidonax traillii extimus) is the fourth threatened or endangered species to undergo a preliminary assessment for estimating potential risk from environmental contaminants at the Los Alamos National Laboratory. The assessments are being conducted as part of a three-year project to develop a habitat management plan for threatened and endangered species and species of concern at the Laboratory. For the preliminary assessment, estimated doses were compared against toxicity reference values to generate hazard indices (HIs). This assessment included a measure of cumulative effects from multiple contaminants (radionuclides, metals, and organic chemicals) to 100 simulated nest sites located within flycatcher potential habitat. Sources of contaminant values were 10,000-ft{sup 2} grid cells within an Ecological Exposure Unit (EEU). This EEU was estimated around the potential habitat and was based on the maximum home range for the fly catcher identified in the scientific literature. The tools used included a custom FORTRAN program, ECORSK5, and a geographic information system. Food consumption and soil ingestion contaminant pathways were addressed in the assessment. Using a four-category risk evaluation, HI results indicate no appreciable impact is expected to the southwestern willow flycatcher. Information on risk by specific geographical location was generated, which can be used to manage contaminated areas, flycatcher habitat, facility siting, and/or facility operations in order to maintain low levels of risk from contaminants.

  10. Geology, drilling, and some hydrologic aspects of seismic hazards program core holes, Los Alamos National Laboratory, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, J.N. (Los Alamos National Lab., NM (United States)); Kolbe, T.; Chang, S. (Woodward-Clyde Consultants, Oakland, CA (United States))

    1993-01-01

    As part of the Los Alamos National Laboratory's Seismic Hazards Investigations Program, we have cored four holes, as follows: SHB-I at TA-55 to 700 feet; SHB-2 at TA-3 to 200 feet; SHB-3 at TA-16 to 860 feet; and, SHB-4 at TA-18 to 200 feet. In that the near-surface seismic velocity structure of the holes is the subject of other reports, we describe here the lithologies, general aspects of drilling, and some hydrologic implications of the core holes. All four holes penetrated variably welded Tshirege Member of the Bandelier Tuff. Beneath two deeper holes encountered thick sequences of epiclastic sands and gravels, with minor interbeds of Cerro Toledo Rhyolite, on top of the dominantly nonwelded Otowi Member of the Bandelier Tuff. Beneath the Otowi was basalt at TA-55 and Puye Formation sands and gravels at TA-16. Two of the core holes (SHB-3 at TA-16 and SHB-4 at TA-18) appear to have encountered groundwater. The holes were all continuously cored with conventional wireline diamond coring techniques. Maintaining high percentage core recovery in nonwelded tuff and loose formations with air as the circulating fluid proved impossible. Light muds, however, improved recovery in these zones considerably. A variety of bits were tested, but none yielded consistent results in the alternating hard and soft rock conditions found beneath the Laboratory.

  11. Chemical surety material decontamination and decommissioning of Los Alamos National Laboratory Chemical Surety Material Laboratory area TA-3, building SM-29, room 4009

    International Nuclear Information System (INIS)

    From 1982 through 1987, Los Alamos National Laboratory (LANL) performed surety laboratory operations for the U.S. Army Medical Research and Development Command (MRDC). Room 4009 in building SM-29, TA-3, was used as the laboratory for work with the following chemical surety material (CSM) agents: sarin (GB), soman (GD), lewisite (L), and distilled mustard (HD) radio-labelled with H3 or C14. The work was confined to three CSM-certified fume hoods, located in room 4009 (see diagram in Appendix C). The laboratory ceased all active operations during the late 1986 and early 1987 period. From 1987 until 1993 the laboratory was secured and the ventilation system continued to operate. During late 1992, the decision was made to utilize this laboratory space for other operations, thus a decision was made to dismantle and reconfigure this room. LANL sub-contracted Battelle Memorial Institute (BMI) to draw upon the CSM experience of the technical staff from the Hazardous Materials Research Facility (HMRF) to assist in developing a decontamination and decommissioning plan. BMI was subcontracted to devise a CSM safety training course, and a sampling and air monitoring plan for CSM material to ensure personnel safety during all disassembly operations. LANL subcontracted Johnson Controls personnel to perform all disassembly operations. Beginning in early 1993 BMI personnel from the HMRF visited the laboratory to develop both the safety plan and the sample and air monitoring plan. Execution of that plan began in September 1993 and was completed in January 1994

  12. Geology of the Western Part of Los Alamos National Laboratory (TA-3 to TA-16), Rio Grande Rift, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    C.J.Lewis; A.Lavine; S.L.Reneau; J.N.Gardner; R.Channell; C.W.Criswell

    2002-12-01

    We present data that elucidate the stratigraphy, geomorphology, and structure in the western part of Los Alamos National Laboratory between Technical Areas 3 and 16 (TA-3 and TA-16). Data include those gathered by geologic mapping of surficial, post-Bandelier Tuff strata, conventional and high-precision geologic mapping and geochemical analysis of cooling units within the Bandelier Tuff, logging of boreholes and a gas pipeline trench, and structural analysis using profiles, cross sections, structure contour maps, and stereographic projections. This work contributes to an improved understanding of the paleoseismic and geomorphic history of the area, which will aid in future seismic hazard evaluations and other investigations. The study area lies at the base of the main, 120-m (400-ft) high escarpment formed by the Pajarito fault, an active fault of the Rio Grande rift that bounds Los Alamos National Laboratory on the west. Subsidiary fracturing, faulting, and folding associated with the Pajarito fault zone extends at least 1,500 m (5,000 ft) to the east of the main Pajarito fault escarpment. Stratigraphic units in the study area include upper units of the Tshirege Member of the early Pleistocene Bandelier Tuff, early Pleistocene alluvial fan deposits that predate incision of canyons on this part of the Pajarito Plateau, and younger Pleistocene and Holocene alluvium and colluvium that postdate drainage incision. We discriminate four sets of structures in the area between TA-3 and TA-16: (a) north-striking faults and folds that mark the main zone of deformation, including a graben in the central part of the study area; (b) north-northwest-striking fractures and rare faults that bound the eastern side of the principal zone of deformation and may be the surface expression of deep-seated faulting; (c) rare northeast-striking structures near the northern limit of the area associated with the southern end of the Rendija Canyon fault; and (d) several small east

  13. A spatially-dynamic preliminary risk assessment of the bald eagle at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, G.J.; Gallegos, A.F.; Foxx, T.S.; Fresquez, P.R.; Mullen, M.A.; Pratt, L.E.; Gomez, P.E.

    1998-04-01

    The Endangered Species Act of 1973 and the Record of Decision on the Dual Axis Radiographic Hydrodynamic Test Facility at the Los Alamos National Laboratory (LANL) require that the Department of Energy protect the bald eagle (Haliaeetus leucocephalus), a state and federally listed species, from stressors such as contaminants. A preliminary risk assessment of the bald eagle was performed using a custom FORTRAN code, ECORSK5, and the geographical information system. Estimated exposure doses to the eagle for radionuclide, inorganic metal, and organic contaminants were derived for varying ratios of aquatic vs. terrestrial simulated diet and compared against toxicity reference values to generate hazard indices (His). HI results indicate that no appreciable impact to the bald eagle is expected from contaminants at LANL from soil ingestion and food consumption pathways. This includes a measure of cumulative effects from multiple contaminants that assumes linear additive toxicity. Improving model realism by weighting simulated eagle foraging based on distance from potential roost sites increased the HI by 76%, but still to inconsequential levels. Information on risk by specific geographical location was generated, which can be used to manage contaminated areas, eagle habitat, facility siting, and/or facility operations in order to maintain risk from contaminants at low levels.

  14. Trace Elements, With Special Reference to Mercury, in Fish Collected Upstream and Downstream of Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    P. R. Fresquez; J. D. Huchton; M. A. Mullen

    1999-11-01

    Trace elements (Ag, As, Ba, Be, Cr, Cd, Cu, Hg, Ni, Pb, Sb, Se, and Tl) were determined in muscle (fillet) of average sized fish (mostly carp, catfish, and sucker) collected from the confluences of major canyons that cross Los Alamos National Laboratory (LANL) lands with the Rio Grande (RG). Also, trace elements were determined in fish from reservoirs upstream (Abiquiu [AR]) and downstream (Cochiti [CR]) of LANL from 1991 through 1999. In general, all of the (mean) trace elements, including Hg, were either at the limits of detection (LOD) or in low concentrations at all study sites. Of the trace elements (e.g., Ba, Cu, and Hg) that were found to be above the LOD in fish muscle collected from LANL canyons/RG, none were in significantly higher (p < 0.05) concentrations than in muscle of fish collected from background locations. Mercury concentrations (mean of means) in fish from AR (all other trace elements were at LOD) were significantly higher (p < 0.10) than Hg concentrations in fish from CR, and Hg concentrations in fish collected from both reservoirs exhibited significantly (AR = p <0.05 and CR = p < 0.10) decreasing trends over time.

  15. Mercury in Fish Collected Upstream and Downstream of Los Alamos National Laboratory, New Mexico: 1991--2004.

    Energy Technology Data Exchange (ETDEWEB)

    P.R. Fresquez

    2004-10-15

    Small amounts of mercury (Hg) may exist in some canyon drainage systems within Los Alamos National Laboratory lands as a result of past discharges of untreated effluents. This paper reports on the concentrations of Hg in muscle (fillets) of various types of fish species collected downstream of LANL's influence from 1991 through 2004. The mean Hg concentration in fish from Cochiti reservoir (0.22 {micro}g/g wet weight), which is located downstream of LANL, was similar to fish collected from a reservoir upstream of LANL (Abiquiu) (0.26 {micro}g/g wet weight). Mercury concentrations in fish collected from both reservoirs exhibited significantly (Abiquiu = p < 0.05 and Cochiti = p < 0.10) decreasing trends over time. Predator fish like the northern pike (Esox lucius) contained significantly higher concentrations of Hg (0.39 {micro}g/g wet weight) than bottom-feeding fish like the white sucker (Catostomus commersoni) (0.10 {micro}g/g wet weight).

  16. Risk-based analysis for prioritization and processing in the Los Alamos National Laboratory 94-1 program

    International Nuclear Information System (INIS)

    A previous report, open-quotes Analysis of LANL Options for Processing Plutonium Legacy Materials,close quotes LA-UR-95-4301, summarized the development of a risk-based prioritization methodology for the Los Alamos National Laboratory (LANL) Plutonium Facility at Technical Area-55 (TA-55). The methodology described in that report was developed not only to assist processing personnel in prioritizing the remediation of legacy materials but also to evaluate the risk impacts of schedule modifications and changes. Several key activities were undertaken in the development of that methodology. The most notable was that the risk assessments were based on statistically developed data from sampling containers in the vault and evaluating their condition; the data from the vault sampling programs were used as the basis for risk estimates. Also, the time-dependent behavior of the legacy materials was explicitly modeled and included in the risk analysis. The results indicated that significant reductions in program risk can be achieved by proper prioritization of the materials for processing

  17. Evaluation of potential surface rupture and review of current seismic hazards program at the Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-09

    This report summarizes the authors review and evaluation of the existing seismic hazards program at Los Alamos National Laboratory (LANL). The report recommends that the original program be augmented with a probabilistic analysis of seismic hazards involving assignment of weighted probabilities of occurrence to all potential sources. This approach yields a more realistic evaluation of the likelihood of large earthquake occurrence particularly in regions where seismic sources may have recurrent intervals of several thousand years or more. The report reviews the locations and geomorphic expressions of identified fault lines along with the known displacements of these faults and last know occurrence of seismic activity. Faults are mapped and categorized into by their potential for actual movement. Based on geologic site characterization, recommendations are made for increased seismic monitoring; age-dating studies of faults and geomorphic features; increased use of remote sensing and aerial photography for surface mapping of faults; the development of a landslide susceptibility map; and to develop seismic design standards for all existing and proposed facilities at LANL.

  18. Inspection of alleged design and construction deficiencies in the Nuclear Materials Storage Facility at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-16

    On June 8, 1994, the Office of Inspections, Office of Inspector General (OIG), Department of Energy (DOE), received a letter dated May 31, 1994, from a complainant concerning the Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory. The complainant alleged that the NMSF, completed in 1987, was so poorly designed and constructed that it was never usable and that DOE proposed to gut the entire facility and sandblast the walls. According to the complainant, ``these errors are so gross as to constitute professional malpractice in a commercial design setting.`` The complainant further stated that ``DOE proposes to renovate this facility to store large amounts of plutonium (as much as 30 metric tons, by some accounts), and it is imperative that the public receive some assurance that this waste will not recur and that the facility will be made safe.`` The purpose of our inspection was to determine if the allegations regarding the design and construction of the NMSF were accurate, and if so, to determine if the Government could recover damages from the Architect/Engineer and/or the construction contractor. We also reviewed the Department`s proposed actions to renovate the NMSF.

  19. Hands-on program of IBM-PC training at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lier, R.H.

    1985-01-01

    Since December 1983, the Laboratory has offered introductory courses of IBM-PC training. A comprehensive needs assessment was conducted and a nine-course module of classes was designed and implemented. Forty classes were completed in the one-year period. The target group includes the novice computer user in the scientific, management, administrative, and secretarial personnel groups. The development, needs assessment, course implementation and design, course evaluations, and future direction of computer training will be discussed. Lab-automation, robotics, design of the lab and office and the impact of computer on society will be discussed briefly.

  20. Chemical surety material decontamination and decommissioning of Los Alamos National Laboratory Chemical Surety Material Laboratory area TA-3, building SM-29, room 4009

    Energy Technology Data Exchange (ETDEWEB)

    Moore, T.E.; Smith, J.M.

    1994-04-01

    From 1982 through 1987, Los Alamos National Laboratory (LANL) performed surety laboratory operations for the U.S. Army Medical Research and Development Command (MRDC). Room 4009 in building SM-29, TA-3, was used as the laboratory for work with the following chemical surety material (CSM) agents: sarin (GB), soman (GD), lewisite (L), and distilled mustard (HD) radio-labelled with H{sup 3} or C{sup 14}. The work was confined to three CSM-certified fume hoods, located in room 4009 (see diagram in Appendix C). The laboratory ceased all active operations during the late 1986 and early 1987 period. From 1987 until 1993 the laboratory was secured and the ventilation system continued to operate. During late 1992, the decision was made to utilize this laboratory space for other operations, thus a decision was made to dismantle and reconfigure this room. LANL sub-contracted Battelle Memorial Institute (BMI) to draw upon the CSM experience of the technical staff from the Hazardous Materials Research Facility (HMRF) to assist in developing a decontamination and decommissioning plan. BMI was subcontracted to devise a CSM safety training course, and a sampling and air monitoring plan for CSM material to ensure personnel safety during all disassembly operations. LANL subcontracted Johnson Controls personnel to perform all disassembly operations. Beginning in early 1993 BMI personnel from the HMRF visited the laboratory to develop both the safety plan and the sample and air monitoring plan. Execution of that plan began in September 1993 and was completed in January 1994.

  1. Zero waste machine coolant management strategy at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Machine coolants are used in machining equipment including lathes, grinders, saws and drills. The purpose of coolants is to wash away machinery debris in the form of metal fines, lubricate, and disperse heat between the part and the machine tool. An effective coolant prolongs tool life and protects against part rejection, commonly due to scoring or scorching. Traditionally, coolants have a very short effective life in the machine, often times being disposed of as frequently as once per week. The cause of coolant degradation is primarily due to the effects of bacteria, which thrive in the organic rich coolant environment. Bacteria in this environment reproduce at a logarithmic rate, destroying the coolant desirable aspects and causing potential worker health risks associated with the use of biocides to control the bacteria. The strategy described in this paper has effectively controlled bacterial activity without the use of biocides, avoided disposal of a hazardous waste, and has extended coolant life indefinitely. The Machine Coolant Management Strategy employed a combination of filtration, heavy lubricating oil removal, and aeration, which maintained the coolant peak performance without the use of biocides. In FY96, the Laboratory generated and disposed of 19,880 kg of coolants from 9 separate sites at a cost of $145K. The single largest generator was the main machine shop producing an average 14,000 kg annually. However, in FY97, the waste generation for the main machine shop dropped to 4,000 kg after the implementation of the zero waste strategy. It is expected that this value will be further reduced in FY98

  2. Human factors aspects of the major upgrade to control systems at the Los Alamos National Laboratory Plutonium Facility

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, J. [Brookhaven National Lab., Upton, NY (United States); Pope, N. [Los Alamos National Lab., NM (United States)

    1997-06-01

    The Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL) has been in operation for over 15 years. It handles projects such as: stockpile maintenance, surveillance, and dismantlement; pit rebuild; plutonium power source fabrication for long duration spacecraft missions (e.g., Cassini); nuclear materials technology research; nuclear materials storage; and remediation of nuclear waste. The Operations Center of TA-55 is the nerve center of the facility where operators are on duty around the clock and monitor several thousand data points using the Facility Control System (FCS). The FCS monitors, displays, alarms, and provides some limited control of the following systems; HVAC, fire detection and suppression, radiation detection, electrical, and other miscellaneous systems. The FCS was originally based on late 1970s digital technology, which is not longer supported by the vendors. Additionally, the equipment failure rates increased notably in the 1990s. Thus, plans were put into place to upgrade and replace the FCS hardware, software, and display components with modernized equipment. The process was complicated by the facts that: the facility was operational and could not be totally closed for the modifications; complete documentation was not available for the existing system; the Safety Analyses for the facility were in the process of being upgraded at the same time; and of course limited time and budgets. This paper will discuss the human factors aspects of the design, installation, and testing of the new FCS within the above noted constraints. Particular items to be discussed include the functional requirements definition, operating experience review, screen designs, test program, operator training, and phased activation of the new circuits in an operational facility.

  3. A spatially-dynamic preliminary risk assessment of the American peregrine falcon at the Los Alamos National Laboratory (version 1)

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.F.; Gonzales, G.J.; Bennett, K.D. [and others

    1997-06-01

    The Endangered Species Act and the Record of Decision on the Dual Axis Radiographic Hydrodynamic Test Facility at the Los Alamos National Laboratory require protection of the American peregrine falcon. A preliminary risk assessment of the peregrine was performed using a custom FORTRAN model and a geographical information system. Estimated doses to the falcon were compared against toxicity reference values to generate hazard indices. Hazard index results indicated no unacceptable risk to the falcon from the soil ingestion pathway, including a measure of cumulative effects from multiple contaminants that assumes a linear additive toxicity type. Scaling home ranges on the basis of maximizing falcon height for viewing prey decreased estimated risk by 69% in a canyons-based home range and increased estimated risk by 40% in a river-based home range. Improving model realism by weighting simulated falcon foraging based on distance from potential nest sites decreased risk by 93% in one exposure unit and by 82% in a second exposure unit. It was demonstrated that choice of toxicity reference values can have a substantial impact on risk estimates. Adding bioaccumulation factors for several organics increased partial hazard quotients by a factor of 110, but increased the mean hazard index by only 0.02 units. Adding a food consumption exposure pathway in the form of biomagnification factors for 15 contaminants of potential ecological concern increased the mean hazard index to 1.16 ({+-} 1.0), which is above the level of acceptability (1.0). Aroclor-1254, dichlorodiphenyltrichlorethane (DDT) and dichlorodiphenylethelyne (DDE) accounted for 81% of the estimated risk that includes soil ingestion and food consumption Contaminant pathways and a biomagnification component. Information on risk by specific geographical location was generated, which can be used to manage contaminated areas, falcon habitat, facility siting, and/or facility operations. 123 refs., 10 figs., 2 tabs.

  4. Source-term and building-wake consequence modeling for the GODIVA IV reactor at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The objectives of this work were to evaluate the consequences of a postulated accident to on-site security personnel stationed near the facility during operations of the Godiva IV critical assembly and to identify controls needed to protest these personnel in case of an extreme criticality excursion equivalent to a design-basis accident (DBA). Godiva IV, one of several critical assemblies operated by Los Alamos National Laboratory (LANL), is located within the Kiva III facility at the Technical Area 18 (TA-18) complex. The TA-18 area is located in a canyon surrounded by complex terrain features such as a steep adjacent hillside and tall stands of fir trees. This analysis was motivated by the need to evaluate the air concentrations and radiological exposure consequences to on-site personnel (guards) located within 40 to 100 m of the facility. GODIVA IV is a highly enriched 235U metal-fuel, fast-burst assembly. The DBA was defined to be a $1.40 critical pulse, which leads to an approximate burst yield of 1.3 x 1018 fissions (or ≅41.6 MJ). The DBA is postulated to lead to partial melt of the reactor assembly (approximately10% of the fuel), with subsequent release of fission products to the environment. The authors present the methodology and results of the source-term calculations, building ventilation rates, air concentrations, and consequence calculations that were performed using a multidisciplinary approach with several phenomenology models. Identification of controls needed to mitigate the consequences to near-field receptors is discussed

  5. Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, December 1992--October 1993. Status report

    International Nuclear Information System (INIS)

    In the summer of 1990, an accidental spill from the TA-3 Power Plant Environment Tank released more than 3,785 liters of sulfuric acid into upper Sandia Canyon. The Biological Resource Evaluation Team (BRET) of EM-8 at Los Alamos National Laboratory (LANL) has collected aquatic samples from the stream within Sandia Canyon since then. These field studies gather water quality measurements and collect macroinvertebrates from permanent sampling sites. An earlier report by Bennett (1994) discusses previous BRET aquatic studies in Sandia Canyon. This report updates and expands Bennett's initial findings. During 1993, BRET collected water quality data and aquatic macroinvertebrates at five permanent stations within the canyon. The substrates of the upper three stations are largely sands and silts while the substrates of the two lower stations are largely rock and cobbles. The two upstream stations are located near outfalls that discharge industrial and sanitary waste effluent. The third station is within a natural cattail marsh, approximately 0.4 km (0.25 mi) downstream from Stations SC1 and SC2. Water quality parameters are slightly different at these first three stations from those expected of natural streams, suggesting slightly degraded water quality. Correspondingly, the macroinvertebrate communities at these stations are characterized by low diversities and poorly-developed community structures. The two downstream stations appear to be in a zone of recovery, where water quality parameters more closely resemble those found in natural streams of the area. Macroinvertebrate diversity increases and community structure becomes more complex at the two lower stations, which are further indications of improved water quality downstream

  6. A spatially-dynamic preliminary risk assessment of the American peregrine falcon at the Los Alamos National Laboratory (version 1)

    International Nuclear Information System (INIS)

    The Endangered Species Act and the Record of Decision on the Dual Axis Radiographic Hydrodynamic Test Facility at the Los Alamos National Laboratory require protection of the American peregrine falcon. A preliminary risk assessment of the peregrine was performed using a custom FORTRAN model and a geographical information system. Estimated doses to the falcon were compared against toxicity reference values to generate hazard indices. Hazard index results indicated no unacceptable risk to the falcon from the soil ingestion pathway, including a measure of cumulative effects from multiple contaminants that assumes a linear additive toxicity type. Scaling home ranges on the basis of maximizing falcon height for viewing prey decreased estimated risk by 69% in a canyons-based home range and increased estimated risk by 40% in a river-based home range. Improving model realism by weighting simulated falcon foraging based on distance from potential nest sites decreased risk by 93% in one exposure unit and by 82% in a second exposure unit. It was demonstrated that choice of toxicity reference values can have a substantial impact on risk estimates. Adding bioaccumulation factors for several organics increased partial hazard quotients by a factor of 110, but increased the mean hazard index by only 0.02 units. Adding a food consumption exposure pathway in the form of biomagnification factors for 15 contaminants of potential ecological concern increased the mean hazard index to 1.16 (± 1.0), which is above the level of acceptability (1.0). Aroclor-1254, dichlorodiphenyltrichlorethane (DDT) and dichlorodiphenylethelyne (DDE) accounted for 81% of the estimated risk that includes soil ingestion and food consumption Contaminant pathways and a biomagnification component. Information on risk by specific geographical location was generated, which can be used to manage contaminated areas, falcon habitat, facility siting, and/or facility operations. 123 refs., 10 figs., 2 tabs

  7. Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, December 1992--October 1993. Status report

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S. [Ewing Technical Design, Inc., Albuquerque, NM (United States)

    1994-09-01

    In the summer of 1990, an accidental spill from the TA-3 Power Plant Environment Tank released more than 3,785 liters of sulfuric acid into upper Sandia Canyon. The Biological Resource Evaluation Team (BRET) of EM-8 at Los Alamos National Laboratory (LANL) has collected aquatic samples from the stream within Sandia Canyon since then. These field studies gather water quality measurements and collect macroinvertebrates from permanent sampling sites. An earlier report by Bennett (1994) discusses previous BRET aquatic studies in Sandia Canyon. This report updates and expands Bennett`s initial findings. During 1993, BRET collected water quality data and aquatic macroinvertebrates at five permanent stations within the canyon. The substrates of the upper three stations are largely sands and silts while the substrates of the two lower stations are largely rock and cobbles. The two upstream stations are located near outfalls that discharge industrial and sanitary waste effluent. The third station is within a natural cattail marsh, approximately 0.4 km (0.25 mi) downstream from Stations SC1 and SC2. Water quality parameters are slightly different at these first three stations from those expected of natural streams, suggesting slightly degraded water quality. Correspondingly, the macroinvertebrate communities at these stations are characterized by low diversities and poorly-developed community structures. The two downstream stations appear to be in a zone of recovery, where water quality parameters more closely resemble those found in natural streams of the area. Macroinvertebrate diversity increases and community structure becomes more complex at the two lower stations, which are further indications of improved water quality downstream.

  8. Los Alamos and Lawrence Livermore National Laboratories Code-to-Code Comparison of Inter Lab Test Problem 1 for Asteroid Impact Hazard Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Robert P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Paul [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Howley, Kirsten [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ferguson, Jim Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gisler, Galen Ross [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Plesko, Catherine Suzanne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Managan, Rob [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Owen, Mike [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wasem, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bruck-Syal, Megan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-15

    The NNSA Laboratories have entered into an interagency collaboration with the National Aeronautics and Space Administration (NASA) to explore strategies for prevention of Earth impacts by asteroids. Assessment of such strategies relies upon use of sophisticated multi-physics simulation codes. This document describes the task of verifying and cross-validating, between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), modeling capabilities and methods to be employed as part of the NNSA-NASA collaboration. The approach has been to develop a set of test problems and then to compare and contrast results obtained by use of a suite of codes, including MCNP, RAGE, Mercury, Ares, and Spheral. This document provides a short description of the codes, an overview of the idealized test problems, and discussion of the results for deflection by kinetic impactors and stand-off nuclear explosions.

  9. Sandia`s network for Supercomputing `94: Linking the Los Alamos, Lawrence Livermore, and Sandia National Laboratories using switched multimegabit data service

    Energy Technology Data Exchange (ETDEWEB)

    Vahle, M.O.; Gossage, S.A.; Brenkosh, J.P. [Sandia National Labs., Albuquerque, NM (United States). Advanced Networking Integration Dept.

    1995-01-01

    Supercomputing `94, a high-performance computing and communications conference, was held November 14th through 18th, 1994 in Washington DC. For the past four years, Sandia National Laboratories has used this conference to showcase and focus its communications and networking endeavors. At the 1994 conference, Sandia built a Switched Multimegabit Data Service (SMDS) network running at 44.736 megabits per second linking its private SMDS network between its facilities in Albuquerque, New Mexico and Livermore, California to the convention center in Washington, D.C. For the show, the network was also extended from Sandia, New Mexico to Los Alamos National Laboratory and from Sandia, California to Lawrence Livermore National Laboratory. This paper documents and describes this network and how it was used at the conference.

  10. Radionuclides and radioactivity in soils within and around Los Alamos National Laboratory, 1974 through 1994: Concentrations, trends, and dose comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, P.R.; Mullen, M.A.; Ferenbaugh, J.K. [Los Alamos National Lab., NM (United States); Perona, R.A. [ERM/Golder Los Alamos Project Team, NM (United States)

    1996-04-01

    A soil sampling and analysis program is the most direct means of determining the concentration, inventory, and distribution of radionuclides and radioactivity in the environment within and around nuclear facilities. This report summarizes and evaluates the concentrations of {sup 3}H, {sup 137}Cs, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 90}Sr, total uranium, and gross alpha, beta, and gamma activity in soils collected from Los Alamos National Laboratory (LANL), perimeter, and regional (background) areas over a 21-year period (1974 through 1994). Also, trends in radionuclide concentrations and radioactivity over time and the total effective dose equivalent (TEDE) were determined for each site. The upper-limit regional background concentration (95% upper-confidence level) for each radionuclide and level of radioactivity were as follows: {sup 3}H (6.34 pCi mL{sup {minus}1}), {sup 137}Cs (1.13 pCi dry g{sup {minus}1}), {sup 238}Pu (0.008 pCi dry g{sup {minus}1}), {sup 239,240}Pu (0.028 pCi dry g{sup {minus}1}), {sup 241}Am (0.208 pCi dry g{sup {minus}1}), {sup 90}Sr (0.82 pCi dry g{sup {minus}1}), total uranium (4.05 {micro}g dry g{sup {minus}1}); and gross alpha (35.24 pCi dry g{sup {minus}1}), beta (13.62 pCi dry g{sup {minus}1}), and gamma (7.33 pCi dry g{sup {minus}1}) activity. Based on the average over the years, most LANL and perimeter soils contained three or more radionuclides and/or gross radioactive that were significantly higher in concentration (p < 0.05) than regional background. The net dose (TEDE minus background) for residents living on-site at LANL or along its perimeter ranged from {minus}0.3 mrem y{sup {minus}1} (east of TA-54) to 3.8 mrem y{sup {minus}1} (east of Ta-53) and from {minus}0.4 mrem y{sup {minus}1} (White Rock) to 3.6 mrem yy{sup {minus}1} (west of LANL on Forest Service land across from TA-8GT site).

  11. Structural Geology of the Northwestern Portion of Los Alamos National Laboratory, Rio Grande Rift, New Mexico: Implications for Seismic Surface Rupture Potential from TA-3 to TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Jamie N. Gardner: Alexis Lavine; Giday WoldeGabriel; Donathon Krier; David Vaniman; Florie Caporuscio; Claudia Lewis; Peggy Reneau; Emily Kluk; M. J. Snow

    1999-03-01

    Los Alamos National Laboratory lies at the western boundary of the Rio Grande rift, a major tectonic feature of the North American Continent. Three major faults locally constitute the modem rift boundary, and each of these is potentially seismogenic. In this study we have gathered structural geologic data for the northwestern portion of Los Alamos National Laboratory through high-precision geologic mapping, conventional geologic mapping, stratigraphic studies, drilling, petrologic studies, and stereographic aerial photograph analyses. Our study area encompasses TA-55 and TA-3, where potential for seismic surface rupture is of interest, and is bounded on the north and south by the townsite of Los Alamos and Twomile Canyon, respectively. The study area includes parts of two of the potentially active rift boundary faults--the Pajarito and Rendija Canyon faults-that form a large graben that we name the Diamond Drive graben. The graben embraces the western part of the townsite of Los Alamos, and its southern end is in the TA-3 area where it is defined by east-southeast-trending cross faults. The cross faults are small, but they accommodate interactions between the two major fault zones and gentle tilting of structural blocks to the north into the graben. North of Los Alamos townsite, the Rendija Canyon fault is a large normal fault with about 120 feet of down-to-the-west displacement over the last 1.22 million years. South from Los Alamos townsite, the Rendija Canyon fault splays to the southwest into a broad zone of deformation. The zone of deformation is about 2,000 feet wide where it crosses Los Alamos Canyon and cuts through the Los Alamos County Landfill. Farther southwest, the fault zone is about 3,000 feet wide at the southeastern corner of TA-3 in upper Mortandad Canyon and about 5,000 feet wide in Twomile Canyon. Net down-to-the-west displacement across the entire fault zone over the last 1.22 million years decreases to the south as the fault zone broadens as

  12. Metal recycling experience at Los Alamos National Laboratory. Reuse, release, and recycle of metals from radiological control areas``

    Energy Technology Data Exchange (ETDEWEB)

    Gogol, S.

    1997-11-01

    Approximately 15% of the Low-Level Waste (LLW) produced at Los Alamos consists of scrap metal equipment and materials. The majority of this material is produced by decommissioning and the modification of existing facilities. To reduce this waste stream, Department of Energy Headquarters, EM-77 Office, sponsored the Reuse, Recycle, and Release of Metals from Radiological Control Areas High Return on Investment (ROI) Project to implement recycle, reuse, and release of scrap metal at the laboratory. The goal of this project was to develop cost effective alternatives to LLW disposal of scrap metal and to avoid the disposal of 2,400 m{sup 3} of scrap metal. The ROI for this project was estimated at 948%. The ROI project was funded in March 1996 and is scheduled for completion by October 1997. At completion, a total of 2,400 m{sup 3} of LLW avoidance will have been accomplished and a facility to continue recycling activities will be operational. This paper will present the approach used to develop effective alternatives for scrap metal at Los Alamos and then discuss the tasks identified in the approach in detail. Current scrap metal inventory, waste projections, alternatives to LLW disposal, regulatory guidance, and efforts to institutionalize the alternatives to LLW disposal will be discussed in detail.

  13. SWEIS Yearbook-2012 Comparison of 2012 Data to Projections of the 2008 Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mahowald, Hallie B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wright, Marjorie Alys [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-16

    Los Alamos National Laboratory (LANL or the Laboratory) operations data for Calendar Year (CY) 2012 mostly fell within the 2008 Site-Wide Environmental Impact Statement (SWEIS) projections. Operation levels for one LANL facility exceeded the 2008 SWEIS capability projections—Radiochemistry Facility; however, none of the capability increases caused exceedances in radioactive air emissions, waste generation, or National Pollutant Discharge Elimination System (NPDES) discharge. Several facilities exceeded the2008 SWEIS levels for waste generation quantities; however, all were one-time, non-routine events that do not reflect the day-to-day operations of the Laboratory. In addition, total site-wide waste generation quantities were below SWEIS projections for all waste types, reflecting the overall levels of operations at both the Key and Non-Key Facilities. Although gas and electricity consumption have remained within the 2008 SWEIS limits for utilities, water consumption exceeded the 2008 SWEIS projections by 27 million gallons in CY 2012.

  14. Program management assessment of Federal Facility Compliance Agreement regarding CAA-40 C.F.R. Part 61, Subpart H at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    An assessment of Los Alamos National Laboratory`s management system related to facility compliance with an element of the Clean Air Act was performed under contract by a team from Northern Arizona University. More specifically, a Federal Facilities Compliance Agreement (FFCA) was established in 1996 to bring the Laboratory into compliance with emissions standards of radionuclides, commonly referred to as Rad/NESHAP. In the fall of 1996, the four-person team of experienced environmental managers evaluated the adequacy of relevant management systems to implement the FFCA provisions. The assessment process utilized multiple procedures including document review, personnel interviews and re-interviews, and facility observations. The management system assessment was completed with a meeting among team members, Laboratory officials and others on November 1, 1996 and preparation of an assessment report.

  15. The economic impact of Los Alamos National Laboratory on north-central New Mexico and the state of New Mexico fiscal year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Lansford, R.R. [New Mexico State Univ., Las Cruces, NM (US); Adcock, L.D.; Gentry, L.M. [Albuquerque Operations Office, Dept. of Energy, Albuquerque, NM (US); Ben-David, S. [Univ. of New Mexico, Albuquerque, NM (US). Dept. of Economics; Temple, J. [Temple (John), Albuquerque, NM (US)

    1999-08-05

    Los Alamos National Laboratory (LANL) is a multidisciplinary, multiprogram laboratory with a mission to enhance national military and economic security through science and technology. Its mission is to reduce the nuclear danger through stewardship of the nation`s nuclear stockpile and through its nonproliferation and verification activities. An important secondary mission is to promote US industrial competitiveness by working with US companies in technology transfer and technology development partnerships. Los Alamos is involved in partnerships and collaborations with other federal agencies, with industry (including New Mexico businesses), and with universities worldwide. For this report, the reference period is FY 1998 (October 1, 1997, through September 30, 1998). It includes two major impact analysis: the impact of LANL activities on north-central New Mexico and the economic impacts of LANL on the state of New Mexico. Total impact represents both direct and indirect responding by business, including induced effects (responding by households). The standard multipliers used in determining impacts result from the inter-industry, input-output models developed for the three-county region and the state of New Mexico.

  16. WIPP WAC Equivalence Support Measurements for Low-Level Sludge Waste at Los Alamos National Laboratory - 12242

    Energy Technology Data Exchange (ETDEWEB)

    Gruetzmacher, Kathleen M.; Bustos, Roland M.; Ferran, Scott G.; Gallegos, Lucas E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lucero, Randy P. [Pajarito Scientific Corporation, Santa Fe, New Mexico 87507 (United States)

    2012-07-01

    Los Alamos National Laboratory (LANL) uses the Nevada National Security Site (NNSS) as an off-site disposal facility for low-level waste (LLW), including sludge waste. NNSS has issued a position paper that indicates that systems that are not certified by the Carlsbad Field Office (CBFO) for Waste Isolation Pilot Plant (WIPP) disposal of Transuranic (TRU) waste must demonstrate equivalent practices to the CBFO certified systems in order to assign activity concentration values to assayed items without adding in the Total Measurement Uncertainty (TMU) when certifying waste for NNSS disposal. Efforts have been made to meet NNSS requirements to accept sludge waste for disposal at their facility. The LANL LLW Characterization Team uses portable high purity germanium (HPGe) detector systems for the nondestructive assay (NDA) of both debris and sludge LLW. A number of performance studies have been conducted historically by LANL to support the efficacy and quality of assay results generated by the LANL HPGe systems, and, while these detector systems are supported by these performance studies and used with LANL approved procedures and processes, they are not certified by CBFO for TRU waste disposal. Beginning in 2009, the LANL LLW Characterization Team undertook additional NDA measurements of both debris and sludge simulated waste containers to supplement existing studies and procedures to demonstrate full compliance with the NNSS position paper. Where possible, Performance Demonstration Project (PDP) drums were used for the waste matrix and PDP sources were used for the radioactive sources. Sludge drums are an example of a matrix with a uniform distribution of contaminants. When attempting to perform a gamma assay of a sludge drum, it is very important to adequately simulate this uniform distribution of radionuclides in order to accurately model the assay results. This was accomplished by using a spiral radial source tube placement in a sludge drum rather than the standard

  17. Annual Report on the Activities and Publications of the DHS-DNDO-NTNFC Sponsored Post-doctoral Fellow at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rim, Jung Ho [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Actinide Analytical Chemistry Group; Tandon, Lav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Actinide Analytical Chemistry Group

    2015-04-10

    This report is a summary of the projects Jung Rim is working on as a DHS postdoctoral fellow at Los Alamos National Laboratory. These research projects are designed to explore different radioanalytical methods to support nuclear forensics applications. The current projects discussed here include development of alpha spectroscopy method for 240/239Pu Isotopic ratio measurement, non-destructive uranium assay method using gamma spectroscopy, and 236U non-destructive uranium analysis using FRAM code. This report documents the work that has been performed since the start of the postdoctoral appointment.

  18. The economic impact of Los Alamos National Laboratory on north-central New Mexico and the state of New Mexico fiscal year 1997

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory (LANL) is a multidisciplinary, multiprogram laboratory with a mission to enhance national military and economic security through science and technology. Its mission is to reduce the nuclear danger through stewardship of the nation's nuclear stockpile and through its nonproliferation and verification activities. An important secondary mission is to promote US industrial competitiveness by working with US companies in technology transfer and technology development partnerships. Los Alamos is involved in partnerships and collaborations with other federal agencies, with industry (including New Mexico businesses), and with universities worldwide. For this report, the reference period is FY 1997 (October 1, 1996, through September 30, 1997) and includes two major impact analysis: the impact of LANL activities on north-central New Mexico and the economic impacts of LANL on the state of New Mexico. Total impact represents both direct and indirect respending by business, including induced effects (respending by households). The standard multipliers used in determining impacts result from the inter-industry, input-output models developed for the three-county region and the state of New Mexico. 5 figs., 12 tabs

  19. Program management assessment of Federal Facility Compliance Agreement regarding CAA-40 C.F.R. Part 61, Subpart H at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    An assessment of Los Alamos National Laboratory's management system related to facility compliance with an element of the Clean Air Act was performed under contract by a team from Northern Arizona University. More specifically, a Federal Facilities Compliance Agreement (FFCA) was established in 1996 to bring the Laboratory into compliance with emissions standards of radionuclides, commonly referred to as Rad/NESHAP. In the fall of 1996, the four-person team of experienced environmental managers evaluated the adequacy of relevant management systems to implement the FFCA provisions. The assessment process utilized multiple procedures including document review, personnel interviews and re-interviews, and facility observations. The management system assessment was completed with a meeting among team members, Laboratory officials and others on November 1, 1996 and preparation of an assessment report

  20. A human factors approach towards the design of a new glovebox glove for Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Jude M. [Los Alamos National Laboratory

    2012-08-06

    Present day glovebox gloves at Los Alamos National Laboratory (LANL) are underdeveloped and ergonomically inaccurate. This problem results in numerous sprain and strain injuries every year for employees who perform glovebox work. In addition to injuries, using the current glovebox glove design also contributes to breaches and contamination. The current glove used today at LANL has several problems: (1) The length of the fingers is incorrect, (2) the web spacing between the fingers is nonexistent, (3) the angles between each digit on the finger are incorrect, (4) the thumb is placed inaccurately, and (5) the length of the hand is incorrect. These problems present a need to correct the current glove design to decrease the risk of injuries, breaches, and contamination. Anthropometrics were researched to help find the best range of hand measurements to fix the current glove design. Anthropometrics is the measure of the human physical variation. Anthropometrics for this study were gathered from the American National Survey (ANSUR) data that was conducted by the U.S Army in 1988. The current glovebox glove uses anthropometrics from the 95th to 105th percentile range which is too large so the new gloves are going to implement data from a smaller range of percentile groups. The 105th percentile range represents measurements that exceed the human population but are needed to fit certain circumstance such as wearing several under gloves within the glovebox gloves. Anthropometrics used in this study include: 105th percentile measurements for joint circumference which was unchanged because the room for under gloves plus ease of hand insertion and extraction is needed, 80th percentile measurements for crotch length to allow workers to reach the web spacing in the glove, 20th percentile measurements for finger length to allow workers to reach the end of the glove, standard 10.5cm hand breadth to allow more room to accommodate under gloves, 45 degrees abduction angle for the

  1. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

    2012-05-22

    As a condition to the Disposal Authorization Statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year 2011 annual review for Area G. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 and formally approved in 2009. These analyses are expected to provide reasonable estimates of the long-term performance of Area G and, hence, the disposal facility's ability to comply with Department of Energy (DOE) performance objectives. Annual disposal receipt reviews indicate that smaller volumes of waste will require disposal in the pits and shafts at Area G relative to what was projected for the performance assessment and composite analysis. The future inventories are projected to decrease modestly for the pits but increase substantially for the shafts due to an increase in the amount of tritium that is projected to require disposal. Overall, however, changes in the projected future inventories of waste are not expected to compromise the ability of Area G to satisfy DOE performance objectives. The Area G composite analysis addresses potential impacts from all waste disposed of at the facility, as well as other sources of radioactive material that may interact with releases from Area G. The level of knowledge about the other sources included in the composite analysis has not changed sufficiently to call into question the validity of that analysis. Ongoing environmental surveillance activities are conducted at, and in the vicinity of, Area G. However, the information generated by

  2. Foreign National Involvement at Los Alamos

    Science.gov (United States)

    Wilhelmy, Jerry

    2000-04-01

    Since the beginning of the spring of 1999 there has been an intense national media focus on alleged security breaches by a foreign born scientist employed at LANL. Alarmed by an apparent growing sense of xenophobia, the Fellows of the Los Alamos National Laboratory addressed this issue by preparing a white paper on Foreign National Involvement at LANL (www.fellows.lanl.gov). Its purpose was to recognize and acknowledge the vital role that foreign scientists have played and continue to play in making LANL a forefront scientific institution. This legacy will be discussed, as well as concerns that constraining regulations triggered by this episode and subsequent reactions to this by our scientific peer community could have long term consequences on the vitality of the Laboratory.

  3. A human factors approach towards the design of a new glovebox glove for Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Jude M. [Los Alamos National Laboratory

    2012-08-06

    Present day glovebox gloves at Los Alamos National Laboratory (LANL) are underdeveloped and ergonomically inaccurate. This problem results in numerous sprain and strain injuries every year for employees who perform glovebox work. In addition to injuries, using the current glovebox glove design also contributes to breaches and contamination. The current glove used today at LANL has several problems: (1) The length of the fingers is incorrect, (2) the web spacing between the fingers is nonexistent, (3) the angles between each digit on the finger are incorrect, (4) the thumb is placed inaccurately, and (5) the length of the hand is incorrect. These problems present a need to correct the current glove design to decrease the risk of injuries, breaches, and contamination. Anthropometrics were researched to help find the best range of hand measurements to fix the current glove design. Anthropometrics is the measure of the human physical variation. Anthropometrics for this study were gathered from the American National Survey (ANSUR) data that was conducted by the U.S Army in 1988. The current glovebox glove uses anthropometrics from the 95th to 105th percentile range which is too large so the new gloves are going to implement data from a smaller range of percentile groups. The 105th percentile range represents measurements that exceed the human population but are needed to fit certain circumstance such as wearing several under gloves within the glovebox gloves. Anthropometrics used in this study include: 105th percentile measurements for joint circumference which was unchanged because the room for under gloves plus ease of hand insertion and extraction is needed, 80th percentile measurements for crotch length to allow workers to reach the web spacing in the glove, 20th percentile measurements for finger length to allow workers to reach the end of the glove, standard 10.5cm hand breadth to allow more room to accommodate under gloves, 45 degrees abduction angle for the

  4. Pilot Project on Women and Science. A report on women scientists at the University of New Mexico and Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Salvaggio, R. [New Mexico Univ., Albuquerque, NM (United States)

    1993-08-01

    In the fall of 1991, through the coordinating efforts of the University of New Mexico and Los Alamos National Laboratory, the Pilot Project on Women and Science was initiated as a year-long study of women scientists at both the university and the laboratory. Its purpose was to gather information directly from women scientists in an attempt to analyze and make recommendations concerning the professional and cultural environment for women in the sciences. This report is an initial attempt to understand the ways in which women scientists view themselves, their profession, and the scientific culture they inhabit. By recording what these women say about their backgrounds and educational experiences, their current positions, the difficult negotiations many have made between their personal and professional lives, and their relative positions inside and outside the scientific community, the report calls attention both to the individual perspectives offered by these women and to the common concerns they share.

  5. The US Agency for International Development--Los Alamos National Laboratory--US Geological Survey Central American Geothermal Resources Program

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, G.; Goff, S. (Los Alamos National Lab., NM (United States)); Janik, K. (Geological Survey, Menlo Park, CA (United States). Branch of Igneous and Geothermal Processes)

    1992-01-01

    Interdisciplinary field teams for this energy assistance program consisted of staff from Los Alamos, the US Geological Survey, the country of the study, and consultants; this provided the wide range of expertise necessary for geothermal resource evaluation. The program was successful largely because of the field teams dedication to their goals of verifying new geothermal resources and of sharing exploration techniques with in-country collaborators. Training programs included the geochemical, geophysical, and geological techniques needed for geothermal exploration. However, the most important aspect was long-term field work with in-country collaborators. Four geothermal gradient coreholes were drilled, three in Honduras and one in Guatemala. One of the coreholes was co-financed with Honduras, and showed their commitment to the project. Three of the exploration holes encountered high-temperature fluids, which provided information on the nature and extent of the geothermal reservoirs at promising sites in both countries. A geothermal well logging system was built and is shared between four Central American countries. For the evaluation of geothermal fluids, a geochemistry laboratory was established in Tegucigalpa, Honduras; it is now self-sufficient, and is part of Honduras' energy program. Through the teaching process and by working with counterparts in the field, the team expanded its own experience with a wide variety of geothermal systems, an experience that will be beneficial in the future for both the US investigators and in-country collaborators. At the working-scientists level, new contacts were developed that may flourish and professional ties were strengthened between scientists from a variety of US agencies. Rather than competing for research and field budgets, they worked together toward a common goal.

  6. Waste management and technologies analytical database project for Los Alamos National Laboratory/Department of Energy. Final report, June 7, 1993--June 15, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-17

    The Waste Management and Technologies Analytical Database System (WMTADS) supported by the Department of Energy`s (DOE) Office of Environmental Management (EM), Office of Technology Development (EM-50), was developed and based at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, to collect, identify, organize, track, update, and maintain information related to existing/available/developing and planned technologies to characterize, treat, and handle mixed, hazardous and radioactive waste for storage and disposal in support of EM strategies and goals and to focus area projects. WMTADS was developed as a centralized source of on-line information regarding technologies for environmental management processes that can be accessed by a computer, modem, phone line, and communications software through a Local Area Network (LAN), and server connectivity on the Internet, the world`s largest computer network, and with file transfer protocol (FTP) can also be used to globally transfer files from the server to the user`s computer through Internet and World Wide Web (WWW) using Mosaic.

  7. Uptake of strontium by chamisa (Chrysothamnus nauseosus) shrub plants growing over a former liquid waste disposal site at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    A major concern of managers at low-level waste burial site facilities is that plant roots may translocate contaminants up to the soil surface. This study investigates the uptake of strontium (90Sr), a biologically mobile element, by chamisa (Chrysothamnus nauseosus), a deep-rooted shrub plant, growing in a former liquid waste disposal site (Solid Waste Management Unit [SWMU] 10-003[c]) at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Surface soil samples were also collected from below (understory) and between (interspace) shrub canopies. Both chamisa plants growing over SWMU 10-003(c) contained significantly higher concentrations of 90Sr than a control plant--one plant, in particular, contained 3.35 x 106 Bq kg-1 ash (9.05 x 104 pCi g-1 ash) in top-growth material. Similarly, soil surface samples collected underneath and between plants contained 90Sr concentrations above background and LANL screening action levels (> 218 Bq kg-1 dry [5.90 pCi g-1 dry]); this probably occurred as a result of chamisa plant leaf fall contaminating the soil understory area followed by water and/or winds moving 90Sr to the soil interspace areas. Although some soil surface migration of 90Sr from SWMU 10-003(c) has occurred, the level of 90Sr in sediments collected downstream of SWMU 10-003(c) at the LANL boundary was still within regional (background) concentrations

  8. Proceedings of the DOE/Yucca Mountain Site Characterization Project Radionuclde Adsorption Workshop at Los Alamos National Laboratory, September 11--12, 1990

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory hosted a workshop on radionuclide adsorption for the Department of Energy (DOE)/Yucca Mountain Site Characterization Project on September 11 and 12, 1990. The purpose of the workshop was to respond to a recommendation by the Nuclear Waste Technical Review Board that the DOE organize a radionuclide adsorption workshop to be attended by the DOE and its contractors involved in the measurement and modeling of such adsorption. The workshop would have two general purposes: (a) to determine the applicability of available radionuclide adsorption data on tuff and models for predicting such adsorption under existing and postclosure conditions at Yucca Mountain and (b) to establish what additional radionuclide adsorption research and model development are needed. Individual projects are processed separately for the databases

  9. Effects of the Cerro Grande Fire (Smoke and Fallout Ash) on Soil Chemical Properties Within and Around Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, P.R.; Velasquez, W.R.; Naranjo, L. Jr.

    2000-11-01

    Soil surface (0- to 2-in. depth) samples were collected from areas within and around Los Alamos National Laboratory (LANL) just after the Cerro Grande fire, analyzed for radionuclides, radioactivity, and trace elements (heavy metals), and compared to soil samples collected in 1999 from the same sites. In addition, many types of organic substances (volatile and semivolatile organic compounds, organochlorine pesticides, polychlorinated biphenyls, high explosives, and dioxin and dioxin-like compounds) were assessed in soils from LANL, perimeter, and regional sites after the fire. Results show that impacts to regional, perimeter, and on-site (mesa top) areas from smoke and fallout ash as a result of the Cerro Grande fire were minimal.

  10. Operational comparison of bubble (super heated drop) dosimetry with routine albedo TLD for a selected group of Pu-238 workers at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.L.; Hoffman, J.M.; Foltyn, E.M.; Buhl, T.E.

    1998-09-01

    Personnel neutron dosimetry continues to be a difficult science due to the lack of availability of robust passive dosimeters that exhibit tissue- or near-tissue- equivalent response. This paper is an operational study that compares the use of albedo thermoluminescent dosimeters with bubble dosimeters to determine whether bubble dosimeters do provide a useful daily ALARA tool that can yield measurements close to the dose-of-record. A group of workers at Los Alamos National Laboratory (LANL) working on the Radioisotopic Thermoelectric Generators (RTG) for the NASA Cassini space mission wore both bubble dosimeters and albedo dosimeters over a period from 1993 through 1996. The personal albedo dosimeter was processed on a monthly basis and used as the dose-of-record. The results of this study indicated that cumulative daily bubble dosimetry results agreed with whole-body albedo dosimetry results within about 37% on average.

  11. Overview of recent tritium target filling, layering, and material testing at Los Alamos national laboratory in support of inertial fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ebey, P. S.; Dole, J. M.; Geller, D. A.; Hoffer, J. K.; Morris, J.; Nobile, A.; Schoonover, J. R.; Wilson, D. [MS-C927, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Bonino, M.; Harding, D.; Sangster, C.; Shmayda, W. [Laboratory for Laser Energetics LLE, Univ. of Rochester, 250 East River Road, Rochester, NY 14623 (United States); Nikroo, A.; Sheliak, J. D. [General Atomics GA (United States); Burmann, J.; Cook, B.; Letts, S.; Sanchez, J. [Lawrence Livermore National Laboratory LLNL (United States)

    2008-07-15

    The Tritium Science and Engineering (AET-3) Group at Los Alamos National Laboratory (LANL) performs a variety of activities to support Inertial Fusion (IF) research - both to further fundamental fusion science and to develop technologies in support of Inertial Fusion Energy (IFE) power generation. Inertial fusion ignition target designs have a smooth spherical shell of cryogenic Deuterium-Tritium (DT) solid contained within a metal or plastic shell that is a few mm in diameter. Fusion is attained by imploding these shells under the symmetric application of energy beams. For IFE targets the DT solid must also survive the process of injecting it into the power plant reactor. Non-ignition IF targets often require a non-cryogenic DT gas fill of a glass or polymeric shell. In this paper an overview will be given of recent LANL activities to study cryogenic DT layering, observe tritium exposure effects on IF relevant materials, and fill targets in support of IF implosion experiments. (authors)

  12. Cerro Grande Fire Impact to Water Quality and Stream Flow near Los Alamos National Laboratory: Results of Four Years of Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    B.M. Gallaher; R.J. Koch

    2004-09-15

    In May 2000, the Cerro Grande fire burned about 7400 acres of mixed conifer forest on the Los Alamos National Laboratory (LANL), and much of the 10,000 acres of mountainside draining onto LANL was severely burned. The resulting burned landscapes raised concerns of increased storm runoff and transport of contaminants by runoff in the canyons traversing LANL. The first storms after the fire produced runoff peaks that were more than 200 times greater than prefire levels. Total runoff volume for the year 2000 increased 50% over prefire years, despite a decline in total precipitation of 13% below normal and a general decrease in the number of monsoonal thunderstorms. The majority of runoff in 2000 occurred in the canyons at LANL south of Pueblo Canyon (70%), where the highest runoff volume occurred in Water Canyon and the peak discharge occurred in Pajarito Canyon. This report describes the observed effects of the Cerro Grande fire and related environmental impacts to watersheds at and near Los Alamos National Laboratory (LANL) for the first four runoff seasons after the fire, from 2000 through 2003. Spatial and temporal trends in radiological and chemical constituents that were identified as being associated with the Cerro Grande fire and those that were identified as being associated with historic LANL discharges are evaluated with regard to impacts to the Rio Grande and area reservoirs downstream of LANL. The results of environmental sampling performed by LANL, the New Mexico Environment Department (NMED), and U.S. Geological Survey (USGS) after the Cerro Grande fire are included in the evaluation. Effects are described for storm runoff, baseflow, stream sediments, and area regional reservoir sediment.

  13. Implementing waste minimization at an active plutonium processing facility: Successes and progress at technical area (TA) -55 of the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory has ongoing national security missions that necessitate increased plutonium processing. The bulk of this activity occurs at Technical Area -55 (TA-55), the nations only operable plutonium facility. TA-55 has developed and demonstrated a number of technologies that significantly minimize waste generation in plutonium processing (supercritical CO2, Mg(OH)2 precipitation, supercritical H2O oxidation, WAND), disposition of excess fissile materials (hydride-dehydride, electrolytic decontamination), disposition of historical waste inventories (salt distillation), and Decontamination ampersand Decommissioning (D ampersand D) of closed nuclear facilities (electrolytic decontamination). Furthermore, TA-55 is in the process of developing additional waste minimization technologies (molten salt oxidation, nitric acid recycle, americium extraction) that will significantly reduce ongoing waste generation rates and allow volume reduction of existing waste streams. Cost savings from reduction in waste volumes to be managed and disposed far exceed development and deployment costs in every case. Waste minimization is also important because it reduces occupational exposure to ionizing radiation, risks of transportation accidents, and transfer of burdens from current nuclear operations to future generations

  14. Product and market study for Los Alamos National Laboratory. Building resources for technology commercialization: The SciBus Analytical, Inc. paradigm

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The study project was undertaken to investigate how entrepreneurial small businesses with technology licenses can develop product and market strategies sufficiently persuasive to attract resources and exploit commercialization opportunities. The study attempts to answer two primary questions: (1) What key business development strategies are likely to make technology transfers successful, and (2) How should the plan best be presented in order to attract resources (e.g., personnel, funding, channels of distribution)? In the opinion of the investigator, Calidex Corporation, if the business strategies later prove to be successful, then the plan model has relevance for any technology licensee attempting to accumulate resources and bridge from technology resident in government laboratories to the commercial marketplace. The study utilized SciBus Analytical, Inc. (SciBus), a Los Alamos National Laboratory CRADA participant, as the paradigm small business technology licensee. The investigator concluded that the optimum value of the study lay in the preparation of an actual business development plan for SciBus that might then have, hopefully, broader relevance and merit for other private sector technology transfer licensees working with various Government agencies.

  15. Performance of the Los Alamos National Laboratory spallation-driven solid-deuterium ultra-cold neutron source

    International Nuclear Information System (INIS)

    In this paper, we describe the performance of the Los Alamos spallation-driven solid-deuterium ultra-cold neutron (UCN) source. Measurements of the cold neutron flux, the very low energy neutron production rate, and the UCN rates and density at the exit from the biological shield are presented and compared to Monte Carlo predictions. The cold neutron rates compare well with predictions from the Monte Carlo code MCNPX and the UCN rates agree with our custom UCN Monte Carlo code. The source is shown to perform as modeled. The maximum delivered UCN density at the exit from the biological shield is 52(9) UCN/cc with a solid deuterium volume of ∼1500 cm3.

  16. A legacy of the ""megagoule committee,"" thirty years of explosive pulsed power research and development at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Goforth, James H [Los Alamos National Laboratory; Oona, Henn [Los Alamos National Laboratory; Herrera, Dennis H [Los Alamos National Laboratory; Torres, David T [Los Alamos National Laboratory; Tasker, D. G. [Los Alamos National Laboratory; Meyer, R. K. [Los Alamos National Laboratory; Atchison, W. L. [Los Alamos National Laboratory; Rousculp, C. L. [Los Alamos National Laboratory; Reinovsky, R. E. [Los Alamos National Laboratory; Sheppard, M. [Los Alamos National Laboratory; Turchi, P. J. [Los Alamos National Laboratory; Watt, R. G. [Los Alamos National Laboratory

    2010-10-29

    In 1980, Los Alamos formed the 'Megajoule Committee' with the expressed goal of developing a one Megajoule plasma radiation source. The ensuing research and development has given rise to a wide variety of high explosive pulsed power accomplishments, and there is a continuous stream of work that continues to the present. A variety of flux compression generators (FCGs or generators) have been designed and tested, and a number of pulse shortening schemes have been investigated. Supporting computational tools have been developed in parallel with experiments. No fewer that six unique systems have been developed and used for experiments. This paper attempts to pull together the technical details, achievements, and wisdom amassed during the intervening thirty years, and notes how we would push for increased performance in the future.

  17. National laboratories

    International Nuclear Information System (INIS)

    The foundation of a 'National Laboratory' which would support a Research center in synchrotron radiation applications is proposed. The essential features of such a laboratory differing of others centers in Brazil are presented. (L.C.)

  18. Analysis of Precipitation (Rain and Snow) Levels and Straight-line Wind Speeds in Support of the 10-year Natural Phenomena Hazards Review for Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Elizabeth J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Deola, Regina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-10

    This report provides site-specific return level analyses for rain, snow, and straight-line wind extreme events. These analyses are in support of the 10-year review plan for the assessment of meteorological natural phenomena hazards at Los Alamos National Laboratory (LANL). These analyses follow guidance from Department of Energy, DOE Standard, Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities (DOE-STD-1020-2012), Nuclear Regulatory Commission Standard Review Plan (NUREG-0800, 2007) and ANSI/ ANS-2.3-2011, Estimating Tornado, Hurricane, and Extreme Straight-Line Wind Characteristics at Nuclear Facility Sites. LANL precipitation and snow level data have been collected since 1910, although not all years are complete. In this report the results from the more recent data (1990–2014) are compared to those of past analyses and a 2004 National Oceanographic and Atmospheric Administration report. Given the many differences in the data sets used in these different analyses, the lack of statistically significant differences in return level estimates increases confidence in the data and in the modeling and analysis approach.

  19. Chemical Concentrations in Field Mice from Open-Detonation Firing Sites TA-36 Minie and TA-39 Point 6 at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, Philip R. [Los Alamos National Laboratory

    2011-01-01

    Field mice (mostly Peromyscus spp.) were collected at two open-detonation (high explosive) firing sites - Minie at Technical Area (TA) 36 and Point 6 at TA-39 - at Los Alamos National Laboratory in August of 2010 and in February of 2011 for chemical analysis. Samples of whole body field mice from both sites were analyzed for target analyte list elements (mostly metals), dioxin/furans, polychlorinated biphenyl congeners, high explosives, and perchlorate. In addition, uranium isotopes were analyzed in a composite sample collected from TA-36 Minie. In general, all constituents, with the exception of lead at TA-39 Point 6, in whole body field mice samples collected from these two open-detonation firing sites were either not detected or they were detected below regional statistical reference levels (99% confidence level), biota dose screening levels, and/or soil ecological chemical screening levels. The amount of lead in field mice tissue collected from TA-39 Point 6 was higher than regional background, and some lead levels in the soil were higher than the ecological screening level for the field mouse; however, these levels are not expected to affect the viability of the populations over the site as a whole.

  20. The impact of two Department of Energy orders on the design and cost of select plutonium facilities at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory (LANL) is a research and development facility in northern New Mexico, owned by the federal government and operated for the US Department of Energy (DOE) by the University of California (UC). LANL conducts research and experiments in many arenas including plutonium. Its plutonium facilities are required to meet the facility design and safety criteria of applicable DOE orders as specified in the UC contract. Although DOE 420.1, Facility Safety, superseded DOE 6430.1A, General Design Criteria, the UC contract requires LANL to adhere to DOE 6430.1A, Division 13 in its special nuclear facilities. A comparison of costs and savings relative to installation of double-wall piping at two LANL plutonium facilities is demonstrated. DOE 6430.1A is prescriptive in its design criteria whereas DOE 420.1 is a performance-based directive. The differences in these orders impact time and design costs in nuclear construction projects. LANL's approach to integrated quality and conduct of operations for design, needs to be re-evaluated. In conclusion, there is a need for highly-technical, knowledgeable people and an integrated, quality/conduct of operations-based approach to assure that nuclear facilities are designed and constructed in a safe and cost-effective manner

  1. Operational comparison of bubble (super heated drop) dosimetry results with routine albedo thermoluminescent dosimetry for a selected group of Pu-238 workers at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.L.; Hoffman, J.M.; Foltyn, E.M.; Buhl, T.E.

    1999-03-01

    This paper is an operational study that compares the use of albedo thermoluminescent dosimeters with bubble dosimeters to determine whether bubble dosimeters do provide a useful daily ALARA tool that can yield measurements close to the dose-of-record. A group of workers at the Los Alamos National Laboratory (LANL) working on the Radioactive Thermoelectric Generators (RTG) for the NASA Cassini space mission wore both bubble dosimeters and albedo dosimeters over a period from 1993 through 1996. The bubble dosimeters were issued and read on a daily basis and the data were used as an ALARA tool. The personnel albedo dosimeter was processed on monthly basis and used as the dose-of-record. The results of this study indicated that cumulative bubble dosimetry results agreed with whole-body albedo dosimetry results within about 37% on average. However it was observed that there is a significant variability of the results on an individual basis both month-to-month and from one individual to another.

  2. The Los Alamos universe: Using multimedia to promote laboratory capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Kindel, J.

    2000-03-01

    This project consists of a multimedia presentation that explains the technological capabilities of Los Alamos National Laboratory. It takes the form of a human-computer interface built around the metaphor of the universe. The project is intended promote Laboratory capabilities to a wide audience. Multimedia is simply a means of communicating information through a diverse set of tools--be they text, sound, animation, video, etc. Likewise, Los Alamos National Laboratory is a collection of diverse technologies, projects, and people. Given the ample material available at the Laboratory, there are tangible benefits to be gained by communicating across media. This paper consists of three parts. The first section provides some basic information about the Laboratory, its mission, and its needs. The second section introduces this multimedia presentation and the metaphor it is based on along with some basic concepts of color and user interaction used in the building of this project. The final section covers construction of the project, pitfalls, and future improvements.

  3. Los Alamos National Laboratory Facilities, Security and Safeguards Division, Safeguards and Security Program Office, Protective Force Oversight Program

    International Nuclear Information System (INIS)

    The purpose of this document is to identify and describe the duties and responsibilities of Facility Security and Safeguards (FSS) Safeguards and Security (SS) organizations (groups/offices) with oversight functions over the Protection Force (PF) subcontractor. Responsible organizations will continue their present PF oversight functions under the Cost Plus Award Fee (CPAF) assessment, but now will be required to also coordinate, integrate, and interface with other FSS S and S organizations and with the PF subcontractor to measure performance, assess Department of Energy (DOE) compliance, reduce costs, and minimize duplication of effort. The role of the PF subcontractor is to provide the Laboratory with effective and efficient protective force services. PF services include providing protection for the special nuclear material, government property and classified or sensitive information developed and/or consigned to the Laboratory, as well as protection for personnel who work or participate in laboratory activities. FSS S and S oversight of both performance and compliance standards/metrics is essential for these PF objectives to be met

  4. Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

    2012-04-18

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

  5. Los Alamos National Laboratory Request for Proposals: Trident Laser System (TLS) Redeployment and Life Extension, October 5, 2016

    Energy Technology Data Exchange (ETDEWEB)

    Stringer, Steven F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-04

    In May 2016, LANS announced that the Trident Laser Facility would cease operating effective September 15, 2016. That date was subsequently extended. The current plan is to operate for an additional, limited period in early CY 2017, and to leverage that activity to provide a training opportunity to the party that will redeploy the TLS. The TLS will then be disassembled and packaged for shipping to the new site, where it may be reconstituted and continue to be used by the physics research community. It is LANS’ intent that Trident will be sited with an organization that will supply its own funding for TLS installation, calibration, and lifecycle operation. Ideally, the receiving party will plan to upgrade TLS with new capability. The equipment to be transferred includes the laser, its power supply, target station and chamber, and a suite of diagnostic instrumentation. Under a Joint Use Agreement it is anticipated that all equipment will remain property of the Laboratory and subject to on-site configuration verification.

  6. National High Magnetic Field Laboratory (NHMFL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Pulsed Field Program is located in Northern New Mexico at Los Alamos National Laboratory. The user program is designed to provide researchers with a balance of...

  7. Ionospheric Disturbances Originating From Tropospheric and Ground Activities: A new Strategic Research Program at the Los Alamos National Laboratory

    Science.gov (United States)

    Shao, X. M.

    2015-12-01

    It has been increasingly recognized and observed that activities within the troposphere, either natural (e.g., thunderstorm, earthquake, volcano) or anthropogenic (e.g., explosion above or below ground), can substantially disturb the ionosphere in the forms of atmosphere gravity wave, infrasonic acoustic wave, and electric-field-induced ionospheric chemical reaction. These disturbances introduce plasma density variations in the ionosphere that adversely distort the transionospheric radio signals for communication, navigation, surveillance, and other national security missions. A new three-year strategic research program has been initiated at LANL in FY16 to investigate, understand, and characterize the interwoven dynamic and electrodynamic coupling processes from the source in the troposphere to the disturbances in the ionosphere via comprehensive observation and model simulation. The planned study area is chosen to be over the US Great Plains where severe thunderstorms occur frequently and where the necessary atmospheric and ionospheric observations are conducted routinely. In this presentation, we will outline our program plan, technical approaches, and scientific goals, and will discuss opportunities of possible inter-institute collaborations.

  8. Overview of Environmental Transport Models Contained in the Risk Analysis, Communication, Evaluation, and Reduction (RACER) Software Tools at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The objective of the Risk Analysis, Communication, Evaluation, and Reduction (RACER) project is to provide more relevant and timely access to information related to chemicals and radionuclides in the environment around Los Alamos National Laboratory (LANL), and to develop tools to support an effective and logical evaluation and reduction of human health risks and ecological impacts associated with exposures to these materials. The guiding principle of RACER is an open and transparent process that considers community input as an integral part of making decisions about how to most effectively reduce risks related to LANL operations. Tools and resources include a database of geo-referenced environmental data, mapping software to display spatial data, environmental transport models, a risk assessment module, and various options to assist with interpreting the results. Human health risk assessment is performed for a user-defined exposure scenario using current environmental measurements, environmental transfer functions to estimate contaminant concentrations in environmental media that do not have measurements, and environmental transport models to estimate contaminant concentrations in the future. Environmental transport and transfer models address transport in air, vadose zone, groundwater, and the food chain. Recognizing that environmental transport models are generally developed on a site-specific basis, the RACER software tools incorporate methodology to distill complex site-specific model behavior into simple functional forms that are stored within the RACER database tables and are executed either by external dynamic-linked libraries or within Visual Basic code. Groundwater model computer run times can be excessively long and construction and operation of the model require specialized expertise. Instead of incorporating a complex groundwater model directly into the tool, a response surface model was developed that abstracts the behavior of an external groundwater

  9. Preliminary risk assessment of the Mexican Spotted Owl under a spatially-weighted foraging regime at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The Record of Decision on the Dual Axis Radiographic Hydrodynamic Test Facility at the Los Alamos National Laboratory requires that the Department of Energy takes special precautions to protect the Mexican Spotted Owl (Strix occidentalis lucida). In order to do so, risk to the owl presented by radiological and nonradiological contaminants must be estimated. A preliminary risk assessment on the Mexican Spotted Owl in two Ecological Exposure Units (EEUs) was performed using a modified Environmental Protection Agency Quotient method, the FORTRAN model ECORSK4, and a geographic information system. Estimated doses to the owl under a spatially-weighted foraging regime were compared against toxicological reference doses generating hazard indices (HIs) and hazard quotients (HQs) for three risk source types. The average HI was 0.20 for EEU-21 and 0.0015 for EEU-40. Under the risk parameter assumptions made, hazard quotient results indicated no unacceptable risk to the owl, including a measure of cumulative effects from multiple contaminants that assumes a linear additive toxicity type. An HI of 1.0 was used as the evaluative criteria for determining the acceptability of risk. This value was exceeded (1.06) in only one of 200 simulated potential nest sites. Cesium-137, Ni, 239Pu, Al and 234U we're among the constituents with the highest partial HQs. Improving model realism by weighting simulated owl foraging based on distance from potential nest sites decreased the estimated risk by 72% (0.5 HI units) for EEU-21 and by 97.6% (6.3E-02 HI units) for EEU-40. Information on risk by specific geographical location was generated, which can be used to manage contaminated areas, owl habitat, facility siting, and/or facility operations in order to maintain risk from contaminants at acceptably low levels

  10. Preliminary risk assessment of the Mexican Spotted Owl under a spatially-weighted foraging regime at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.F.; Gonzales, G.J.; Bennett, K.D.; Pratt, L.E.

    1997-02-01

    The Record of Decision on the Dual Axis Radiographic Hydrodynamic Test Facility at the Los Alamos National Laboratory requires that the Department of Energy takes special precautions to protect the Mexican Spotted Owl (Strix occidentalis lucida). In order to do so, risk to the owl presented by radiological and nonradiological contaminants must be estimated. A preliminary risk assessment on the Mexican Spotted Owl in two Ecological Exposure Units (EEUs) was performed using a modified Environmental Protection Agency Quotient method, the FORTRAN model ECORSK4, and a geographic information system. Estimated doses to the owl under a spatially-weighted foraging regime were compared against toxicological reference doses generating hazard indices (HIs) and hazard quotients (HQs) for three risk source types. The average HI was 0.20 for EEU-21 and 0.0015 for EEU-40. Under the risk parameter assumptions made, hazard quotient results indicated no unacceptable risk to the owl, including a measure of cumulative effects from multiple contaminants that assumes a linear additive toxicity type. An HI of 1.0 was used as the evaluative criteria for determining the acceptability of risk. This value was exceeded (1.06) in only one of 200 simulated potential nest sites. Cesium-137, Ni, {sup 239}Pu, Al and {sup 234}U we`re among the constituents with the highest partial HQs. Improving model realism by weighting simulated owl foraging based on distance from potential nest sites decreased the estimated risk by 72% (0.5 HI units) for EEU-21 and by 97.6% (6.3E-02 HI units) for EEU-40. Information on risk by specific geographical location was generated, which can be used to manage contaminated areas, owl habitat, facility siting, and/or facility operations in order to maintain risk from contaminants at acceptably low levels.

  11. Concentrations of Radionuclides and Trace Elements in Environmantal Media arond te Dual-Axis Radiographic Hydrodynamic Test Facilit at Los Alamos National Laboratory during 2005

    Energy Technology Data Exchange (ETDEWEB)

    G.J.Gonzales; P.R. Fresquez; C.D.Hathcock; D.C. Keller

    2006-05-15

    The Mitigation Action Plan (MAP) for the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory requires that samples of biotic and abiotic media be collected after operations began to determine if there are any human health or environmental impacts. The DARHT facility is the Laboratory's principal explosive test facility. To this end, samples of soil and sediment, vegetation, bees, and birds were collected around the facility in 2005 and analyzed for concentrations of {sup 3}H, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, {sup 238}U, Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, and Tl. Bird populations have also been monitored. Contaminant results, which represent up to six sample years since the start of operations, were compared with (1) baseline statistical reference levels (BSRLs) established over a four-year preoperational period before DARHT facility operations, (2) screening levels (SLs), and (3) regulatory standards. Most radionuclides and trace elements were below BSRLs and those few samples that contained radionuclides and trace elements above BSRLs were below SLs. Concentrations of radionuclides and nonradionuclides in biotic and abiotic media around the DARHT facility do not pose a significant human health hazard. The total number of birds captured and number of species represented were similar in 2003 and 2004, but both of these parameters increased substantially in 2005. Periodic interruption of the scope and schedule identified in the MAP generally should have no impact on meeting the intent of the MAP. The risk of not sampling one of the five media in any given year is that if a significant impact to contaminant levels were to occur there would exist a less complete understanding of the extent of the change to the baseline for these media and to the ecosystem as a whole. Since the MAP is a requirement that was established under the regulatory framework of

  12. Los Alamos Scientific Laboratory building cost index

    International Nuclear Information System (INIS)

    The Controller's budget request for FY-1979 established guidance for escalation rates at 6 to 8 percent for construction projects beyond FY-1976. The Los Alamos Scientific Laboratory (LASL) has chosen to use an annual construction escalation rate of 10 percent. Results of this study should contribute toward the establishment of realistic construction cost estimate totals and estimates of annual construction funding requirements. Many methods were used to arrive at the LASL escalation rate recommendation. First, a computer program was developed which greatly expanded the number of materials previously analyzed. The program calculated the 1970 to 76 weighted averages for labor, materials, and equipment for the base line project. It also plotted graphs for each category and composite indexes for labor and material/equipment. Second, estimated increases for 1977 were obtained from several sources. The Zia Company provided labor cost estimates. Projected increases for material and equipment were obtained through conversations with vendors and analysis of trade publications. Third, economic forecast reports and the Wall Street Journal were used for source material, narrative, and forecast support. Finally, we compared LASL Building Cost Index with the effects of escalation associated with three recently developed projects at LASL

  13. The Walls Come Tumbling Down: Decontamination and Demolition of 29 Manhattan Project and Cold War-Era Buildings and Structures at Los Alamos National Laboratory-12301

    International Nuclear Information System (INIS)

    When the nation's top scientists and military leaders converged on Los Alamos, New Mexico in the 1943, to work on the Manhattan Project, the facilities they used to conduct their top-secret work were quickly constructed and located in the middle of what eventually became the Los Alamos town site. After one of these early facilities caught on fire, it seemed wise to build labs and production facilities farther away from the homes of the town's residents. They chose to build facilities on what was then known as Delta Prime (DP) Mesa and called it Technical Area 21, or TA-21. With wartime urgency, a number of buildings were built at TA-21, some in as little as a few months. Before long, DP Mesa was populated with several nondescript metal and cinder-block buildings, including what became, immediately following the war, the world's first plutonium production facility. TA-21 also housed labs that used hazardous chemicals and analyzed americium, tritium and plutonium. TA-21 was a bustling center of research and production for the next several decades. Additional buildings were built there in the 1960's, but by the 1990's many of them had reached the end of their service lives. Labs and offices were moved to newer, more modern buildings. When Los Alamos National Laboratory received $212 million in funding from the American Recovery and Reinvestment Act in July 2009 for environmental cleanup projects, about $73 million of the funds were earmarked to decontaminate and demolish 21 of the old buildings at TA-21. Although some D and D of TA-21 buildings was performed in the 1990's, many of the facilities at DP Site remained relatively untouched for nearly three decades following their final operational use. In 2006, there were over three dozen buildings or structures on the mesa to be removed so that soil cleanup could be completed (and the land made available for transfer and reuse). The total footprint of buildings across the mesa was approximately 18,580 m2 (200,000 ft2

  14. An independent review and prioritization of past radionuclide and chemical releases from the Los Alamos National Laboratory--implications for future dose reconstruction studies.

    Science.gov (United States)

    Le, Matthew H; Buddenbaum, John E; Burns, Robert E; Shonka, Joseph J; Gaffney, Shannon H; Donovan, Ellen P; Flack, Susan M; Widner, Thomas E

    2011-10-01

    From 1999 through 2010, a team of scientists and engineers systematically reviewed approximately eight million classified and unclassified documents at Los Alamos National Laboratory (LANL) that describe historical off-site releases of radionuclides and chemicals in order to determine the extent to which a full-scale dose reconstruction for releases is warranted and/or feasible. As a part of this effort, a relative ranking of historical airborne and waterborne radionuclide releases from LANL was established using priority index (PI) values that were calculated from estimated annual quantities released and the maximum allowable effluent concentrations according to The U.S. Nuclear Regulatory Commission (USNRC). Chemical releases were ranked based on annual usage estimates and U.S. Environmental Protection Agency (USEPA) toxicity values. PI results for airborne radionuclides indicate that early plutonium operations were of most concern between 1948 and 1961, in 1967, and again from 1970 through 1973. Airborne releases of uranium were found to be of most interest for 1968, from 1974 through 1978, and again in 1996. Mixed fission products yielded the highest PI value for 1969. Mixed activation product releases yielded the highest PI values from 1979 to 1995. For waterborne releases, results indicate that plutonium is of most concern for all years evaluated with the exception of 1956 when (90)Sr yielded the highest PI value. The prioritization of chemical releases indicate that four of the top five ranked chemicals were organic solvents that were commonly used in chemical processing and for cleaning. Trichloroethylene ranked highest, indicating highest relative potential for health effects, for both cancer and non-cancer effects. Documents also indicate that beryllium was used in significant quantities, which could have lead to residential exposures exceeding established environmental and occupational exposure limits, and warrants further consideration. In part because

  15. Polychlorinated Biphenyls (PCBs) in Catfish and Carp Collected from the Rio Grande Upstream and Downstream of Los Alamos National Laboratory: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert J. Gonzales

    2008-05-12

    Concern has existed for years that the Los Alamos National Laboratory (LANL), a complex of nuclear weapons research and support facilities, has released polychlorinated biphenyls (PCBs) to the environment that may have reached adjacent bodies of water through canyons that connect them. In 1997, LANL's Ecology Group began measuring PCBs in fish in the Rio Grande upstream and downstream of ephemeral streams that cross LANL and later began sampling fish in Abiquiu and Cochiti reservoirs, which are situated on the Rio Chama and Rio Grande upstream and downstream of LANL, respectively. In 2002, we electroshocked channel catfish (Ictalurus punctatus) and common carp (Carpiodes carpio) in the Rio Grande upstream and downstream of LANL and analyzed fillets for PCB congeners. We also sampled soils along the Rio Chama and Rio Grande drainages to discern whether a background atmospheric source of PCBs that could impact surface water adjacent to LANL might exist. Trace concentrations of PCBs measured in soil (mean = 4.7E-05 {micro}g/g-ww) appear to be from background global atmospheric sources, at least in part, because the bimodal distribution of low-chlorinated PCB congeners and mid-chlorinated PCB congeners in the soil samples is interpreted to be typical of volatilized PCB congeners that are found in the atmosphere and dust from global fallout. Upstream catfish (n = 5) contained statistically (P = 0.047) higher concentrations of total PCBs (mean = 2.80E-02 {micro}g/g-ww) than downstream catfish (n = 10) (mean = 1.50E-02 {micro}g/g-ww). Similarly, upstream carp (n = 4) contained higher concentrations of total PCBs (mean = 7.98E-02 {micro}g/g-ww) than downstream carp (n = 4) (3.07E-02 {micro}g/g-ww); however, the difference was not statistically significant (P = 0.42). The dominant PCB homologue in all fish samples was hexachlorobiphenyls. Total PCB concentrations in fish in 2002 are lower than 1997; however, differences in analytical methods and other uncertainties

  16. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department's plutonium storage. Volume II, part 3: Los Alamos National Laboratory working group assessment team report

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory (LANL) was established in 1943 with its sole mission to develop a fission bomb. Since that time, the mission of the Laboratory has expanded to include not only the primary one of nuclear weapon stockpile stewardship, but also one that supports energy, biomedical, environmental, and physical research. As part of the Laboratory's primary and diverse missions, many forms of plutonium materials are used and stored. Over the years of production and use of plutonium at Department of Energy (DOE) sites, some events have occurred that were unexpected and that have resulted in environmental, safety, and/or health concerns. Some of these events have led to improvements that will preclude these concerns from arising again. However, the end of the cold war and the expansion of the Laboratory mission have introduced the possibility of new vulnerabilities

  17. Addressing concerns related to geologic hazards at the site of the proposed Transuranic Waste Facility , TA-63, Los Alamos National Laboratory: focus on the current Los Alamos Seismic Network earthquake catalog, proximity of identified seismic events to the proposed facility , and evaluation of prev

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Peter M. [Los Alamos National Laboratory; Schultz-Fellenz, Emily S. [Los Alamos National Laboratory; Kelley, Richard E. [Los Alamos National Laboratory

    2012-04-02

    This technical paper presents the most recent and updated catalog of earthquakes measured by the Los Alamos Seismic Network at and around Los Alamos National Laboratory (LANL), with specific focus on the site of the proposed transuranic waste facility (TWF) at Technical Area 63 (TA-63). Any questions about the data presented herein, or about the Los Alamos Seismic Network, should be directed to the authors of this technical paper. LANL and the Los Alamos townsite sit atop the Pajarito Plateau, which is bounded on its western edge by the Pajarito fault system, a 35-mile-long system locally comprised of the down-to-the-east Pajarito fault (the master fault) and subsidiary down-to-the-west Rendija Canyon, Guaje Mountain, and Sawyer Canyon faults (Figure 1). This fault system forms the local active western margin of the Rio Grande rift near Los Alamos, and is potentially seismogenic (e.g., Gardner et al., 2001; Reneau et al., 2002; Lewis et al., 2009). The proposed TWF area at TA-63 is situated on an unnamed mesa in the north-central part of LANL between Twomile Canyon to the south, Ten Site Canyon to the north, and the headwaters of Canada del Buey to the east (Figure 2). The local bedrock is the Quaternary Bandelier Tuff, formed in two eruptive pulses from nearby Valles caldera, the eastern edge of which is located approximately 6.5 miles west-northwest of the technical area. The older member (Otowi Member) of the Bandelier Tuff has been dated at 1.61 Ma (Izett and Obradovich 1994). The younger member (Tshirege Member) of the Bandelier Tuff has been dated at 1.256 Ma (age from Phillips et al. 2007) and is widely exposed as the mesa-forming unit around Los Alamos. Several discrete cooling units comprise the Tshirege Member. Commonly accepted stratigraphic nomenclature for the Tshirege Member is described in detail by Broxton and Reneau (1995), Gardner et al. (2001), and Lewis et al. (2009). The Tshirege Member cooling unit exposed at the surface at TA-63 is Qbt3

  18. Modeling Aeolian Transport of Contaminated Sediments at Los Alamos National Laboratory, Technical Area 54, Area G: Sensitivities to Succession, Disturbance, and Future Climate

    International Nuclear Information System (INIS)

    The Technical Area 54 (TA-54) Area G disposal facility is used for the disposal of radioactive waste at Los Alamos National Laboratory (LANL). U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety and the environment. In compliance with that requirement, DOE field sites must prepare and maintain site-specific radiological performance assessments for facilities that receive waste after September 26, 1988. Sites are also required to conduct composite analyses for facilities that receive waste after this date; these analyses account for the cumulative impacts of all waste that has been (and will be) disposed of at the facilities and other sources of radioactive material that may interact with these facilities. LANL issued Revision 4 of the Area G performance assessment and composite analysis in 2008. In support of those analyses, vertical and horizontal sediment flux data were collected at two analog sites, each with different dominant vegetation characteristics, and used to estimate rates of vertical resuspension and wind erosion for Area G. The results of that investigation indicated that there was no net loss of soil at the disposal site due to wind erosion, and suggested minimal impacts of wind on the long-term performance of the facility. However, that study did not evaluate the potential for contaminant transport caused by the horizontal movement of soil particles over long time frames. Since that time, additional field data have been collected to estimate wind threshold velocities for initiating sediment transport due to saltation and rates of sediment transport once those thresholds are reached. Data such as these have been used in the development of the Vegetation Modified Transport (VMTran) model. This model is designed to estimate patterns and long-term rates of contaminant redistribution caused by winds at the site, taking into account the impacts of plant

  19. Modeling Aeolian Transport of Contaminated Sediments at Los Alamos National Laboratory, Technical Area 54, Area G: Sensitivities to Succession, Disturbance, and Future Climate

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J. [Los Alamos National Laboratory; Kirchner, Thomas B. [New Mexico State University; Breshears, David D. [University of Arizona; Field, Jason P. [University of Arizona

    2012-03-27

    The Technical Area 54 (TA-54) Area G disposal facility is used for the disposal of radioactive waste at Los Alamos National Laboratory (LANL). U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety and the environment. In compliance with that requirement, DOE field sites must prepare and maintain site-specific radiological performance assessments for facilities that receive waste after September 26, 1988. Sites are also required to conduct composite analyses for facilities that receive waste after this date; these analyses account for the cumulative impacts of all waste that has been (and will be) disposed of at the facilities and other sources of radioactive material that may interact with these facilities. LANL issued Revision 4 of the Area G performance assessment and composite analysis in 2008. In support of those analyses, vertical and horizontal sediment flux data were collected at two analog sites, each with different dominant vegetation characteristics, and used to estimate rates of vertical resuspension and wind erosion for Area G. The results of that investigation indicated that there was no net loss of soil at the disposal site due to wind erosion, and suggested minimal impacts of wind on the long-term performance of the facility. However, that study did not evaluate the potential for contaminant transport caused by the horizontal movement of soil particles over long time frames. Since that time, additional field data have been collected to estimate wind threshold velocities for initiating sediment transport due to saltation and rates of sediment transport once those thresholds are reached. Data such as these have been used in the development of the Vegetation Modified Transport (VMTran) model. This model is designed to estimate patterns and long-term rates of contaminant redistribution caused by winds at the site, taking into account the impacts of plant

  20. Introductory materials for committee members: 1) instructions for the Los Alamos National Laboratory fiscal year 2010 capability reviews 2) NPAC strategic capability planning 3) Summary self-assessment for the nuclear and particle physics, astrophysics an

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors.

  1. Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Robert [WPS: WASTE PROJECTS AND SERVICES

    2012-04-17

    The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call

  2. Structural health monitoring activities at National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C.R.; Doebling, S.W. [Los Alamos National Lab., NM (United States); James, G.H.; Simmermacher, T. [Sandia National Labs., Albuquerque, NM (United States)

    1997-09-01

    Sandia National Laboratories and Los Alamos National Laboratory have on-going programs to assess damage in structures and mechanical systems from changes in their dynamic characteristics. This paper provides a summary of how both institutes became involved with this technology, their experience in this field and the directions that their research in this area will be taking in the future.

  3. Final environmental impact statement. Los Alamos Scientific Laboratory Site, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    The statement assesses the potential cumulative environmental impacts associated with current, known future, and continuing activities at the Los Alamos Scientific Laboratory (LASL) site. This includes the adverse impacts from postulated accidents associated with the activities. Various effluents including radioactive ones are released to the environment. However, a continuing, comprehensive, monitoring program is carried out to assist in the control of hazardous effluents. Alternatives considered to current operation of LASL include: cessation or relocation of programs; continue activities as presently constituted; further limitation of adverse impacts by institutional or other improvements in various operations; and expansion of current activities

  4. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department's plutonium storage. Volume 2, Appendix B, Part 3: Los Alamos National Laboratory site assessment team report

    International Nuclear Information System (INIS)

    Environmental safety and health (ES and H) vulnerabilities are defined as conditions or weaknesses that may lead to unnecessary or increased radiation exposure of the workers, release of radioactive materials to the environment, or radiation exposure of the public. In response to the initiative by the Secretary of Energy, Los Alamos National Laboratory (LANL) has performed a self assessment of the ES and H vulnerabilities of plutonium inventories at the laboratory. The objective of this site-specific self assessment is to identify and report ES and H vulnerabilities associated with the storage, handling, and processing of plutonium and maintenance of plutonium-contaminated facilities. This self-assessment of ES and H vulnerabilities and validation by a peer group is not another compliance audit or fault-finding exercise. It has a fact finding mission to develop a database of potential environment, safety, and health vulnerabilities that may lead to unnecessary or increased radiation exposure of the workers, release of radioactive materials to the environment, or radiation exposure of the public

  5. Progress in inertial fusion research at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    The Los Alamos Scientific Laboratory Inertial Confinement Fusion Program is reviewed. Experiments using the Helios CO2 laser system delivering up to 6kJ on target are described. Because breakeven energy estimates for laser drivers of 1 μm and above have risen and there is a need for CO2 experiments in the tens-of-kJ regime as soon as practical, a first phase of Antares construction is now directed toward completion of two of the six original modules in 1983. These modules are designed to deliver 40kJ of CO2 laser light on target. (author)

  6. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Norris E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. Below is the transcript of his talk.

  7. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.

  8. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress

  9. Computer-assisted estimating for the Los Alamos Scientific Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Spooner, J.E.

    1976-02-01

    An analysis is made of the cost estimating system currently in use at the Los Alamos Scientific Laboratory (LASL) and the benefits of computer assistance are evaluated. A computer-assisted estimating system (CAE) is proposed for LASL. CAE can decrease turnaround and provide more flexible response to management requests for cost information and analyses. It can enhance value optimization at the design stage, improve cost control and change-order justification, and widen the use of cost information in the design process. CAE costs are not well defined at this time although they appear to break even with present operations. It is recommended that a CAE system description be submitted for contractor consideration and bid while LASL system development continues concurrently.

  10. Computer-assisted estimating for the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    An analysis is made of the cost estimating system currently in use at the Los Alamos Scientific Laboratory (LASL) and the benefits of computer assistance are evaluated. A computer-assisted estimating system (CAE) is proposed for LASL. CAE can decrease turnaround and provide more flexible response to management requests for cost information and analyses. It can enhance value optimization at the design stage, improve cost control and change-order justification, and widen the use of cost information in the design process. CAE costs are not well defined at this time although they appear to break even with present operations. It is recommended that a CAE system description be submitted for contractor consideration and bid while LASL system development continues concurrently

  11. Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lamont, Stephen Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-30

    Nuclear forensics assists in responding to any event where nuclear material is found outside of regulatory control; a response plan is presented and a nuclear forensics program is undergoing further development so that smugglers are sufficiently deterred.

  12. Los Alamos National Laboratory final report

    International Nuclear Information System (INIS)

    Five subtasks are reported on: laser ablation synthesis of nanophase ceramic powders (alumina, AlN), preparation of high-purity submicron MoSi2, microwave sintering of ceramics, synthesis of high-purity mullite, and scale-up of aerosol decomposition for ceramic powder production

  13. Sandia National Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 60 years, Sandia has delivered essential science and technology to resolve the nation[HTML_REMOVED]s most challenging security issues. Sandia National...

  14. Los Alamos Scientific Laboratory long-range alarm system

    International Nuclear Information System (INIS)

    The Los Alamos Scientific Laboratory (LASL) Long-Range Alarm System is described. The last few years have brought significant changes in the Department of Energy regulations for protection of classified documents and special nuclear material. These changes in regulations have forced a complete redesign of the LASL security alarm system. LASL covers many square miles of varying terrain and consists of separate technical areas connected by public roads and communications. A design study over a period of 2 years produced functional specifications for a distributed intelligence, expandable alarm system that will handle 30,000 alarm points from hundreds of data concentrators spread over a 250-km2 area. Emphasis in the design was on nonstop operation, data security, data communication, and upward expandability to incorporate fire alarms and the computer-aided dispatching of security and fire vehicles. All aspects of the alarm system were to be fault tolerant from the central computer system down to but not including the individual data concentrators. Redundant communications lines travel over public domain from the alarmed area to the central alarm station

  15. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B [Los Alamos National Laboratory; Christensen, Candace [Los Alamos National Laboratory; Jennings, Terry L [Los Alamos National Laboratory; Jaros, Christopher L [Los Alamos National Laboratory; Wykoff, David S [Los Alamos National Laboratory; Crowell, Kelly J [Los Alamos National Laboratory; Shuman, Rob [URS

    2008-01-01

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited on the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and

  16. Los Alamos National Laboratory thermal ionization mass spectrometry results from intercomparison study of inductively coupled plasma mass spectrometry, thermal ionization mass spectrometry, and fission track analysis of μBq quantities of 239Pu in synthetic urine (LA-UR-001698)

    International Nuclear Information System (INIS)

    In 1997, the Department of Energy, Office of International Health Programs (EH-63) contracted the National Institute of Standards and Technology (NIST) to perform an intercomparison to evaluate state-of-the-art analysis techniques for 239Pu in synthetic urine in μBq quantities. Sample preparation was performed by Yankee Atomic Environmental Laboratory. Five replicate samples at spike amounts of 3.7, 9.26, 29.6, and 55.6 μBq and a black amount were distributed to the participating laboratories in 200 g synthetic urine. Los Alamos National Laboratory (LANL) participated in the intercomparison using thermal ionization mass spectrometry (TIMS). LANL results, system improvements, and future intercomparisons are discussed. (author)

  17. An independent evaluation of plutonium body burdens in populations near Los Alamos Laboratory using human autopsy data.

    Science.gov (United States)

    Gaffney, Shannon H; Donovan, Ellen P; Shonka, Joseph J; Le, Matthew H; Widner, Thomas E

    2013-06-01

    In the mid-1940s, the United States began producing atomic weapon components at the Los Alamos National Laboratory (LANL). In an attempt to better understand historical exposure to nearby residents, this study evaluates plutonium activity in human tissue relative to residential location and length of time at residence. Data on plutonium activity in the lung, vertebrae, and liver of nearby residents were obtained during autopsies as a part of the Los Alamos Tissue Program. Participant residential histories and the distance from each residence to the primary plutonium processing buildings at LANL were evaluated in the analysis. Summary statistics, including Student t-tests and simple regressions, were calculated. Because the biological half-life of plutonium can vary significantly by organ, data were analyzed separately by tissue type (lung, liver, vertebrae). The ratios of plutonium activity (vertebrae:liver; liver:lung) were also analyzed in order to evaluate the importance of timing of exposure. Tissue data were available for 236 participants who lived in a total of 809 locations, of which 677 were verified postal addresses. Residents of Los Alamos were found to have higher plutonium activities in the lung than non-residents. Further, those who moved to Los Alamos before 1955 had higher lung activities than those who moved there later. These trends were not observed with the liver, vertebrae, or vertebrae:liver and liver:lung ratio data, however, and should be interpreted with caution. Although there are many limitations to this study, including the amount of available data and the analytical methods used to analyze the tissue, the overall results indicate that residence (defined as the year that the individual moved to Los Alamos) may have had a strong correlation to plutonium activity in human tissue. This study is the first to present the results of Los Alamos Autopsy Program in relation to residential status and location in Los Alamos.

  18. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  19. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    International Nuclear Information System (INIS)

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed

  20. Trends in instrumentation for environmental radiation measurements at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Recent instruments developed to fulfill radiation monitoring needs at Los Alamos Scientific Laboratory are described. Laboratory instruments that measure tritium gas effluents alone, or in the presence of activated air from D-T fusion reactors are discussed. Fully portable systems for gamma, x-ray, and alpha analyses in the field are described. Also included are descriptions of survey instruments that measure low levels of transuranic contaminants and that measure pulsed-neutron dose rates

  1. The National Fire Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The National Fire Research Laboratory (NFRL) is adding a unique facility that will serve as a center of excellence for fireperformance of structures ranging in size...

  2. PIGMI program at the Los Alamos Scientific Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, J.E.

    1980-09-01

    The PIGMI Program has completed 3-1/2 yr of a project to develop the technology for the optimal pion generator for medical irradiations (PIGMI). The major accomplishments under the program include completion of the injector beam measurements; completion of the 440-MHz radio-frequency (rf) power source; assembly and test of the alternating phase focusing accelerator section; development of the rf-quadrupole (RFQ) beam-dynamics program, PARMTEQ; design, fabrication, assembly, and test of the RFQ accelerator; final decision on low-energy configuration for PIGMI; assembly of the drift-tube linac section of the PIGMI Prototype; completion of sample set of permanent magnet quadrupoles; optimization of the disk-and-washer (DAW) cavity geometry; fabrication of model cavities of the DAW; final decision on DAW support geometry; acquisition of additional laboratory space for the DAW power test; partial assembly of the 1320-MHz rf power source for the DAW test; and pion channel design studies.

  3. A History of Building 828, Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Rebecca

    1999-08-01

    This report documents the history of Building 828 in Sandia National Laboratories' Technical Area I. Building 828 was constructed in 1946 as a mechanical test laboratory for Los Alamos' Z-Division (later Sandia) as it moved to Sandia Base. The building has undergone significant remodeling over the years and has had a variety of occupants. The building was evaluated in compliance with the National Historic Preservation Act, but was not eligible for the National Register of Historic Places. Nevertheless, for many Labs employees, it was a symbol of Sandia's roots in World War II and the Manhattan Project.

  4. The National Laboratory Gene Library Project

    Energy Technology Data Exchange (ETDEWEB)

    Deaven, L.L.; Van Dilla, M.A.

    1988-01-01

    The two National Laboratories at Livermore and Los Alamos have played a prominent role in the development and application of flow cytometry and sorting to chromosome classification and purification. Both laboratories began to receive numerous requests for specific human chromosomal types purified by flow sorting for gene library construction, but these requests were difficult to satisfy due to time and personnel constraints. The Department of Energy, through its Office of Health and Environmental Research, has a long-standing interest in the human genome in general and in the mutagenic and carcinogenic effects of energy-related environmental pollutants in particular. Hence, it was decided in 1983 to use the flow construct chromosome-specific gene libraries to be made available to the genetic research community. The National Laboratory Gene Library Project was envisioned as a practical way to deal with requests for sorted chromosomes, and also as a way to promote increased understanding of the human genome and the effects of mutagens and carcinogens on it. The strategy for the project was developed with the help of an advisory committee as well as suggestions and advice from many other geneticists. 4 refs., 2 tabs.

  5. Brookhaven National Laboratory

    Science.gov (United States)

    ... Sustainable Energy Technologies Environment, Biology, Nuclear Science & Nonproliferation Biology Environmental and Climate Sciences Department Nuclear Science and Technology Nonproliferation and National Security Nuclear & Particle Physics Collider-Accelerator Instrumentation Physics Superconducting ...

  6. Lawrence Livermore National Laboratory Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, P; Walter, K

    2007-05-24

    For the Laboratory and staff, 2006 was a year of outstanding achievements. As our many accomplishments in this annual report illustrate, the Laboratory's focus on important problems that affect our nation's security and our researchers breakthroughs in science and technology have led to major successes. As a national laboratory that is part of the Department of Energy's National Nuclear Security Administration (DOE/NNSA), Livermore is a key contributor to the Stockpile Stewardship Program for maintaining the safety, security, and reliability of the nation's nuclear weapons stockpile. The program has been highly successful, and our annual report features some of the Laboratory's significant stockpile stewardship accomplishments in 2006. A notable example is a long-term study with Los Alamos National Laboratory, which found that weapon pit performance will not sharply degrade from the aging effects on plutonium. The conclusion was based on a wide range of nonnuclear experiments, detailed simulations, theoretical advances, and thorough analyses of the results of past nuclear tests. The study was a superb scientific effort. The continuing success of stockpile stewardship enabled NNSA in 2006 to lay out Complex 2030, a vision for a transformed nuclear weapons complex that is more responsive, cost efficient, and highly secure. One of the ways our Laboratory will help lead this transformation is through the design and development of reliable replacement warheads (RRWs). Compared to current designs, these warheads would have enhanced performance margins and security features and would be less costly to manufacture and maintain in a smaller, modernized production complex. In early 2007, NNSA selected Lawrence Livermore and Sandia National Laboratories-California to develop ''RRW-1'' for the U.S. Navy. Design efforts for the RRW, the plutonium aging work, and many other stockpile stewardship accomplishments rely on computer

  7. Los Alamos Scientific Laboratory approach to hydrogeochemical and stream sediment reconnaissance for uranium in the United States

    International Nuclear Information System (INIS)

    The Los Alamos Scientific Laboratory of the United States is conducting a geochemical survey for uranium in the Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in Alaska. This survey is part of a national hydrogeochemical and stream sediment reconnaissance in which four Department of Energy laboratories will study the uranium resources of the United States to provide data for the National Uranium Resource Evaluation program. The reconnaissance will identify areas having higher than background concentrations of uranium in ground waters, surface waters, and water-transported sediments. The reconnaissance data will be combined with data from airborne radiometric surveys and geological and geophysical investigations to provide an improved estimate for the economics and availability of nuclear fuel resources in the United States and to make information available to industry for use in the exploration and development of uranium resources. Water samples are analyzed for uranium by fluorometry which has a 0.02 parts per billion lower limit of detection. Concentrations of 12 additional elements in water are determined by plasma-source emission spectrography. All sediments are analyzed for uranium by delayed-neutron counting and a 20 parts per billion lower limit of detection. Elemental concentrations in sediments are also determined by neutron activation analysis, x-ray fluorescence, and by arc-source emission spectrography. To date, all of four Rocky Mountain states and about 80% of Alaska have been sampled. About 220,000 samples have been collected from an area of nearly 2,500,000 km2. The philosophy, sampling methodology, analytical techniques, and progress of the reconnaissance are described in several published pilot study, reconnaissance, and technical reports. The Los Alamos program was designed to maximize the identification of uranium in terrains of varied geography, geology, and climate

  8. National strategic challenges and the role of Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ayat, R.A.; Chrzanowski, P.L.; Werne, R.W.

    1995-01-01

    The end of the Cold War was a water-shed event in history--an event that calls for re-evaluation of the basic assumptions and priorities of US national security that have gone essentially unchallenged for nearly 50 years. Central to this re-evaluation are the changing needs for federal Science and Technology (S and T) investment to underpin national and economic security and the role of the Department of Energy (DOE) national laboratories in fulfilling those needs. The three nuclear weapons laboratories-Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratory (SNL)-are major constituents of DOE`s national laboratory system. They helped win the Cold War, and will undoubtedly continue to support US security S and T requirements. This paper discusses of the role these three laboratories, and LLNL in particular, can play in supporting the nation`s S and T priorities. The paper also highlights some of the changes that are necessary for the laboratories to effectively support the national S and T and economic competitiveness agenda. These issues are important to DOE and laboratory managers responsible for the development of strategic direction and implementation plans.

  9. Risk-based prioritization of the Idaho National Engineering Laboratory Environmental Programs

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.G. [Los Alamos National Lab., NM (United States); Merkhofer, M.W.; Voth, M. [Applied Decision Analysis, Inc., Menlo Park, CA (United States); Sire, D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-03-01

    This paper describes an application of a formal prioritization system to help the Idaho National Engineering Laboratory (INEL) allocate funds for environmental projects. The system, known as the Laboratory Integration and Prioritization System (LIPS), was jointly developed by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), and the US Department of Energy (DOE). LIPS is based on a formal approach for multi-criteria decision-making known as multiattribute utility analysis. The system is designed to provide a logical, practical, and equitable means for estimating and comparing the benefits to be obtained from funding project work.

  10. Environmental surveillance at Los Alamos during 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance.

  11. Publications of Los Alamos research 1988

    International Nuclear Information System (INIS)

    This bibliography lists unclassified publications of work done at the Los Alamos National Laboratory for 1988. The entries, which are subdivided by broad subject categories, are cross-referenced with an author index and a numeric index

  12. Environmental surveillance at Los Alamos during 1994

    International Nuclear Information System (INIS)

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance

  13. Publications of Los Alamos research 1988

    Energy Technology Data Exchange (ETDEWEB)

    Varjabedian, K.; Dussart, S.A.; McClary, W.J.; Rich, J.A. (comps.)

    1989-12-01

    This bibliography lists unclassified publications of work done at the Los Alamos National Laboratory for 1988. The entries, which are subdivided by broad subject categories, are cross-referenced with an author index and a numeric index.

  14. Argonne National Laboratory 1985 publications

    Energy Technology Data Exchange (ETDEWEB)

    Kopta, J.A. (ED.); Hale, M.R. (comp.)

    1987-08-01

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index.

  15. Argonne National Laboratory 1985 publications

    International Nuclear Information System (INIS)

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index

  16. Lujan at Los Alamos Neutron Science Center (LANSCE)

    Data.gov (United States)

    Federal Laboratory Consortium — The Lujan Neutron Scattering Center (Lujan Center) at Los Alamos National Laboratory is an intense pulsed neutrons source operating at a power level of 80 -100 kW....

  17. Los Alamos National Laboratory JOWOG 31 Weapons Engineering Education & Training

    Energy Technology Data Exchange (ETDEWEB)

    Domzalski, Mark W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-03

    The objectives of this report are to recruit talented staff, invest in new and early/mid career staff, retain trained and talented staff and future leaders, and shorten the ~5-10 year time line to realize new Weaponeers.

  18. Los Alamos National Laboratory simulated sludge vitrification demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Cicero, C.A.; Bickford, D.F. [Westinghouse Savannah River Co., Aiken, SC (United States); Bennert, D.M.; Overcamp, T.J. [Clemson Univ., Anderson, SC (United States). Dept. of Environmental Systems Engineering

    1994-09-30

    Technologies are being developed to convert hazardous and mixed wastes to a form suitable for permanent disposal. Vitrification, which has been declared the Best Demonstrated Available Technology (BDAT) for high-level radioactive waste disposal by the EPA, is capable of producing a highly durable wasteform that minimizes disposal volumes through organic destruction, moisture evaporation, and porosity reduction. However, this technology must be demonstrated over a range of waste characteristics, including compositions, chemistries, moistures, and physical characteristics to ensure that it is suitable for hazardous and mixed waste treatment. This project plans to demonstrate vitrification of simulated wastes that are considered representatives of wastes found throughout the DOE complex. For the most part, the primary constituent of the wastes is flocculation aids, such as Fe(OH){sub 3}, and natural filter aids, such as diatomaceous earth and perlite. The filter aids consist mostly of silica, which serves as an excellent glass former; hence, the reason why vitrification is such a viable option. LANL is currently operating a liquid waste processing plant which produces an inorganic sludge similar to other waste water treatment streams. Since this waste has characteristics that make it suitable for vitrification and the likelihood of success is high, it shall be tested at CU. The objective of this task is to characterize the process behavior and glass product formed upon vitrification of simulated LANL sludge. The off-gases generated from the production runs will also be characterized to help further develop vitrification processes for mixed and low level wastes.

  19. Science-based stockpile stewardship at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Immele, J. [Los Alamos National Lab., NM (United States)

    1995-10-01

    I would like to start by working from Vic Reis`s total quality management diagram in which he began with the strategy and then worked through the customer requirements-what the Department of Defense (DoD) is hoping for from the science-based stockpile stewardship program. Maybe our customer`s requirements will help guide some of the issues that we should be working on. ONe quick answer to {open_quotes}why have we adopted a science-based strategy{close_quotes} is that nuclear weapons are a 50-year responsibility, not just a 5-year responsibility, and stewardship without testing is a grand challenge. While we can do engineering maintenance and turn over and remake a few things on the short time scale, without nuclear testing, without new weapons development, and without much of the manufacturing base that we had in the past, we need to learn better just how these weapons are actually working.

  20. Los Alamos National Laboratory Prototype Fabrication Division CNM Briefing

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, Stephen P. [Los Alamos National Laboratory; Keyser, Richard J. [Los Alamos National Laboratory

    2012-06-18

    Prototype Fabrication Division designs, programs, manufactures, and inspects on-site high quality, diverse material parts and components that can be delivered at the pace the customer needs to meet their mission. Our goal is to bring vision to reality in the name of science.

  1. Oak Ridge National Laboratory Review

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C.; Pearce, J.; Zucker, A. (eds.)

    1992-01-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  2. Photometrics at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, J.Y.; Hill, R.A.; Hughes, R.L. (eds.)

    1990-07-01

    This report highlights Sandia National Laboratories' work in the following areas: photometrics and optical development; still and time-lapse photography; real-time motion photography; high-speed photography; image-motion photography; schlieren photography; ultra-high-speed photography; electronic imaging; shuttered video and high-speed video; infrared imaging radiometry; exoatmospheric photography and videography; microdensitometry and image analysis; and optical system design and development.

  3. Lawrence Livermore National Laboratory Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, P; Walter, K

    2007-05-24

    For the Laboratory and staff, 2006 was a year of outstanding achievements. As our many accomplishments in this annual report illustrate, the Laboratory's focus on important problems that affect our nation's security and our researchers breakthroughs in science and technology have led to major successes. As a national laboratory that is part of the Department of Energy's National Nuclear Security Administration (DOE/NNSA), Livermore is a key contributor to the Stockpile Stewardship Program for maintaining the safety, security, and reliability of the nation's nuclear weapons stockpile. The program has been highly successful, and our annual report features some of the Laboratory's significant stockpile stewardship accomplishments in 2006. A notable example is a long-term study with Los Alamos National Laboratory, which found that weapon pit performance will not sharply degrade from the aging effects on plutonium. The conclusion was based on a wide range of nonnuclear experiments, detailed simulations, theoretical advances, and thorough analyses of the results of past nuclear tests. The study was a superb scientific effort. The continuing success of stockpile stewardship enabled NNSA in 2006 to lay out Complex 2030, a vision for a transformed nuclear weapons complex that is more responsive, cost efficient, and highly secure. One of the ways our Laboratory will help lead this transformation is through the design and development of reliable replacement warheads (RRWs). Compared to current designs, these warheads would have enhanced performance margins and security features and would be less costly to manufacture and maintain in a smaller, modernized production complex. In early 2007, NNSA selected Lawrence Livermore and Sandia National Laboratories-California to develop ''RRW-1'' for the U.S. Navy. Design efforts for the RRW, the plutonium aging work, and many other stockpile stewardship accomplishments rely on computer

  4. Proposal for a New Integrated Circuit and Electronics Neutron Experiment Source at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Phillip D [ORNL

    2009-01-01

    Government and customer specifications increasingly require assessments of the single event effects probability in electronics from atmospheric neutrons. The accelerator that best simulates this neutron spectrum is the WNR facility (Los Alamos), but it is underfunded and oversubscribed for present and future needs. A new beam-line is proposed at the Oak Ridge National Laboratory, as part of the Spallation Neutron Source (SNS).

  5. Argonne National Laboratory 1986 publications

    Energy Technology Data Exchange (ETDEWEB)

    Kopta, J.A.; Springer, C.J.

    1987-12-01

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index.

  6. Argonne National Laboratory 1986 publications

    International Nuclear Information System (INIS)

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index

  7. Los Alamos Scientific Laboratory approach to hydrogeochemical and stream sediment reconnaissance for uranium in the United States

    International Nuclear Information System (INIS)

    The Los Alamos Scientific Laboratory of the United States is conducting a geochemical survey for uranium in the Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in Alaska. This survey is part of a national hydrogeochemical and stream sediment reconnaissance in which four Department of Energy laboratories will study the uranium resources of the United States to provide data for the National Uranium Resource Evaluation program. The reconnaissance will identify areas having higher than background concentrations of uranium in ground waters, surface waters, and water-transported sediments. Water and sediment samples are collected at a nominal density of one sample location per 10 km2 except for lake areas of Alaska where the density is one sample location per 23 km2. Water samples are analyzed for uranium by fluorometry which has a 0.02 parts per billion lower limit of detection. Concentrations of 12 additional elements in water are determined by plasma-source emission spectrography. All sediments are analyzed for uranium by delayed-neutron counting with a 20 parts per billion lower limit of detection, which is well below the range of uranium concentrations in natural sediment samples. Elemental concentrations in sediments are also determined by neutron activation analysis for 31 elements by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. The multielement analyses provide valuable data for studies concerning pathfinder elements, environmental pollution, elemental distributions, dispersion halos, and economic ore deposits other than uranium. To date, all of four Rocky Mountain states and about 80% of Alaska have been sampled. About 220,000 samples have been collected from an area of nearly 2,500,000 km2

  8. Frederick National Laboratory for Cancer Research

    Data.gov (United States)

    Federal Laboratory Consortium — Among the many cancer research laboratories operated by NCI, the Frederick National Laboratory for Cancer Research(FNLCR) is unique in that it is a Federally Funded...

  9. Forced oscillations of the Los Alamos Scientific Laboratory's dry hot rock geothermal reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Y.C.

    1975-11-01

    Equations of motion are derived for the Los Alamos Scientific Laboratory's geothermal reservoir consisting of an elastic half-space (rock), with an open vertical pipe from the surface connected at depth with a vertical penny-shaped fracture. This reservoir, which is filled with water (laminar flow through a pipe), is subjected to seismic waves and/or blast-like impulses applied downhole. Oscillations (responses) of the water column, of the downhole internal net pressure required to keep the fracture open, and of the fracture itself, are found for the reservoir. If the fracture is continuously oscillated subject to pressure waves applied downhole and failure of the fracture surface occurs, it is usually through fatigue after a long period of time. Of concern next is transient oscillation of the fracture when down-hole blast-like impulses are applied. Of particular concern is the maximum amplitude, G/sub max/, of the fracture (crack) oscillation in early cycles. Generally, failure due to G/sub max/ is attributed singly to the strength of the fractured rock being exceeded. Since the period, tau, of the oscillations is sensitive to the radius, R, of the fracture, experimental determination of tau, in conjunction with Eq. (20), will permit R to be evaluated accurately. (auth)

  10. Publications of Los Alamos research, 1985

    International Nuclear Information System (INIS)

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1985, including laboratory reports, papers released as non-laboratory reports, journal articles, books, conference papers, papers published in congrssional hearings, theses, and US patents

  11. 1994 Northern Goshawk inventory on portions of Los Alamos National Laboratory, Los Alamos, NM

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, D.T.; Kennedy, P.L. [Colorado State Univ., Fort Collins, CO (United States)

    1995-01-01

    Northern goshawks (Accipiter gentilis) (hereafter referred to as goshawk) are large forest dwelling hawks. They are the largest species of the Accipiter genus which also includes sharp-shinned hawks (A. striatus) and the Cooper`s hawk (A. cooperii). Goshawks are holarctic in distribution and nest in coniferous, deciduous, and mixed species forests. In the southwest they primarily nest in ponderosa pine (Pinus ponderosa), mixed species, and spruce-fir forests. Goshawks may be declining in population and reproduction in the southwestern United States. In 1982 the USDA-Forest Service listed the goshawk as a {open_quotes}sensitive species{close_quotes} and in 1992 the U.S. Fish and Wildlife Service listed the goshawk as a {open_quotes}Category 2 species{close_quotes} in accordance with the Endangered Species Act. Reasons for the possible decline in goshawk populations include timber harvesting resulting in the loss of nesting habitat, toxic chemicals, and the effects of drought, fire, and disease. Thus, there is a need to determine their population status and assess impacts of management activities in potential goshawk habitat. Goshawk inventory was conducted during the 1993 nesting season with no adult goshawk responses detected within the LANL survey area. As noted by Sinton and Kennedy, these results may be interpreted in several ways: (1) no goshawk territory(ies) occur in the inventoried area; (2) goshawk territory(ies) exist but have failed prior to the survey and thus were not detected; or (3) territory(ies) exist and were successful but the goshawks did not respond to tapes or their responses were undetected by the observer. For those reasons, a goshawk inventory was conducted in 1994. This report summarizes the results of this inventory.

  12. Decommissioning the Los Alamos Molten Plutonium Reactor Experiment (LAMPRE I)

    International Nuclear Information System (INIS)

    The Los Alamos Molten Plutonium Reactor Experiment (LAMPRE I) was decommissioned at the Los Alamos National Laboratory, Los Alamos, New Mexico, in 1980. The LAMPRE I was a sodium-cooled reactor built to develop plutonium fuels for fast breeder applications. It was retired in the mid-1960s. This report describes the decommissioning procedures, the health physics programs, the waste management, and the costs for the operation

  13. Los Alamos National Laboratory and Lawrence Livermore National Laboratory Plutonium Sustainment Monthly Program Report September 2012

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, Anastasia Dawn [Los Alamos National Laboratory; Storey, Bradford G. [Los Alamos National Laboratory; Bowidowicz, Martin [Los Alamos National Laboratory; Robertson, William G. [Los Alamos National Laboratory; Hobson, Beverly F. [Los Alamos National Laboratory

    2012-10-22

    In March of 2012 the Plutonium Sustainment program at LANL completed or addressed the following high-level activities: (1) Delivered Revision 2 of the Plutonium Sustainment Manufacturing Study, which incorporated changes needed due to the release of the FY2013 President's Budget and the delay in the Chemistry and Metallurgy Research Replacement Nuclear Facility (CMRRNF). (2) W87 pit type development activities completed a detailed process capability review for the flowsheet in preparation for the Engineering Development Unit Build. (3) Completed revising the Laser Beam Welding schedule to address scope and resource changes. (4) Completed machining and inspecting the first set of high-fidelity cold parts on Precitech 2 for Gemini. (5) The Power Supply Assembly Area started floor cutting with a concrete saw and continued legacy equipment decommissioning. There are currently no major issues associated with achieving MRT L2 Milestones 4195-4198 or the relevant PBIs associated with Plutonium Sustainment. There are no budget issues associated with FY12 final budget guidance. Table 1 identifies all Baseline Change Requests (BCRs) that were initiated, in process, or completed during the month. The earned value metrics overall for LANL are within acceptable thresholds, so no high-level recovery plan is required. Each of the 5 major LANL WBS elements is discussed in detail.

  14. BROOKHAVEN NATIONAL LABORATORY WILDLIFE MANAGEMENT PLAN.

    Energy Technology Data Exchange (ETDEWEB)

    NAIDU,J.R.

    2002-10-22

    The purpose of the Wildlife Management Plan (WMP) is to promote stewardship of the natural resources found at the Brookhaven National Laboratory (BNL), and to integrate their protection with pursuit of the Laboratory's mission.

  15. The Climate at Los Alamos; Are we measurement changes?

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-16

    A new report shows new graphic displays of the weather trends in Los Alamos, New Mexico, and at the Los Alamos National Laboratory (LANL). The graphs show trends of average, minimum average, and maximum average temperature for summer and winter months going back decades. Records of summer and winter precipitation are also included in the report.

  16. Explosive Flux Compression: 50 Years of Los Alamos Activities

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, C.M.; Thomson, D.B.; Garn, W.B.

    1998-10-18

    Los Alamos flux compression activities are surveyed, mainly through references in view of space limitations. However, two plasma physics programs done with Sandia National Laboratory are discussed in more detail.

  17. Los Alamos Scientific Laboratory energy-related history, research, managerial reorganization proposals, actions taken, and results. History report, 1945--1979

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, E.F.

    1997-03-01

    This report documents the development of major energy-related programs at the Los Alamos Scientific Laboratory between 1945 and 1979. Although the Laboratory`s primary mission during that era was the design and development of nuclear weapons and most of the Laboratory`s funding came from a single source, a number of factors were at work that led to the development of these other programs. Some of those factors were affected by the Laboratory`s internal management structure and organization; others were the result of increasing environmental awareness within the general population and the political consequences of that awareness; still others were related to the increasing demand for energy and the increasing turmoil in the energy-rich Middle East. This report also describes the various activities in Los Alamos, in Washington, and in other areas of the world that contributed to the development of major energy-related programs at Los Alamos. The author has a unique historical perspective because of his involvement as a scientist and manager at the Los Alamos Scientific Laboratory during the time period described within the report. In addition, in numerous footnotes and references, he cites a large body of documents that include the opinions and perspectives of many others who were involved at one time or another in these programs. Finally the report includes a detailed chronology of geopolitical events that led to the development of energy-related programs at Los Alamos.

  18. Water supply at Los Alamos during 1991

    Energy Technology Data Exchange (ETDEWEB)

    Purtymun, W.D.; McLin, S.G.; Stoker, A.K.; Maes, M.N.

    1994-06-01

    This report summarizes production and aquifer conditions for water wells in the Los Alamos, Guaje, and Pajarito Well Fields . The wells supply all of the potable water used for municipal and some industrial purposes in Los Alamos County and the Los Alamos National Laboratory. The spring gallery in Water Canyon supplies nonpotable water for industrial use while the rest of the nonpotable water supply used for irrigation is surface water from the Guaje and Los Alamos Reservoirs. Included is a section on the chemical and radiochemical quality of water from the supply wells, gallery in Water Canyon and the reservoirs in Guaje and Los Alamos Canyons. A section on the quality of water with reference to compliance with state and federal regulations is included in the report.

  19. The Energy Science and Technology Database on a local library system: A case study at the Los Alamos National Research Library

    Energy Technology Data Exchange (ETDEWEB)

    Holtkamp, I.S.

    1994-10-01

    This paper presents an overview of efforts at Los Alamos National Laboratory to acquire and mount the Energy Science and Technology Database (EDB) as a citation database on the Research Library`s Geac Advance system. The rationale for undertaking this project and expected benefits are explained. Significant issues explored are loading non-USMARC records into a MARC-based library system, the use of EDB records to replace or supplement in-house cataloging of technical reports, the impact of different cataloging standards and database size on searching and retrieval, and how integrating an external database into the library`s online catalog may affect staffing and workflow.

  20. Los Alamos science. Volume 4, No. 7

    International Nuclear Information System (INIS)

    A history of the Los Alamos National Laboratory over its 40 years is presented. The evolution of the laboratory is broken down into the Oppenheimer years, the Bradbury years, the Agnew years and the Kerr years. The weapons program is described including nuclear data, early reactors, computing and computers, plutonium, criticality, weapon design and field testing

  1. Publications of Los Alamos research 1980

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, C.A.; Willis, J.K. (comps.)

    1981-09-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1980. Papers published in 1980 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted-even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was pubished more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-laboratory reports, journal articles, books, chapters of books, conference papers published either separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  2. Publications of Los Alamos Research, 1983

    International Nuclear Information System (INIS)

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1983. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers publishd in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them

  3. Publications of Los Alamos Research, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, C.J.; McClary, W.J.; Rich, J.A.; Rodriguez, L.L. (comps.)

    1984-10-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1983. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers publishd in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  4. Comparison of Uncertainty of Two Precipitation Prediction Models at Los Alamos National Lab Technical Area 54

    Energy Technology Data Exchange (ETDEWEB)

    Shield, Stephen Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dai, Zhenxue [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-18

    Meteorological inputs are an important part of subsurface flow and transport modeling. The choice of source for meteorological data used as inputs has significant impacts on the results of subsurface flow and transport studies. One method to obtain the meteorological data required for flow and transport studies is the use of weather generating models. This paper compares the difference in performance of two weather generating models at Technical Area 54 of Los Alamos National Lab. Technical Area 54 is contains several waste pits for low-level radioactive waste and is the site for subsurface flow and transport studies. This makes the comparison of the performance of the two weather generators at this site particularly valuable.

  5. National Standard on Laboratory Biosafety Officially Promulgated

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ On May 28, a press conference on national standards of the General Requirements on Laboratory Biosafety, which was sponsored by the Standardization Administration of China (SAC) and the Certification and Accreditation Administration of the People's Republic of China (CNCA) and undertaken by China National Accreditation Board for Laboratories, was held in Beijing.

  6. Technology transfer at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M.S.; Arvizu, D.E.

    1993-10-01

    Transferring technology to the private sector to help improve the competitiveness of key US industries is now an official mission of the US Department of Energy`s (DOE) defense program national laboratories. We believe that national laboratories can play an important role in addressing US industrial competitiveness. Sandia is seeking to match laboratory strengths with industry-defined market needs in targeted industrial sectors. Sandia, like other national and federal laboratories, is developing an aggressive technology transfer program. This paper provides a brief review of our program and provides a snap-shot of where we are at today.

  7. Progress in inertial fusion research at the Los Alamos Scientific Laboratory. Paper No. IAEA-CN-38/B-2

    International Nuclear Information System (INIS)

    The Los Alamos Scientific Laboratory Inertial Confinement Fusion Program is reviewed. Experiments using the Helios CO2 laser system delivering up to 6 kJ on target are described. Because breakeven energy estimates for laser drivers of 1 μm and above have risen and there is a need for CO2 experiments in the tens-of-kilojoule regime as soon as practical, a first phase of Antares construction is now directed toward completion of two of the six original modules in 1983. These modules are designed to deliver 40 kJ of CO2 laser light on target

  8. Bridging the Cold War and the 21st century: chronicling the history of Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Mora, C.J.

    1997-04-01

    A historical perspective is given for Sandia National Laboratories from its beginnings as a small engineering group at an offshoot of Los Alamos Laboratory to a facility of 7000 people at its main facility in Albuquerque, another 1000 people in Livermore, California and test ranges in Tonopah, Nevada and Kauai, Hawaii. The Sandia army base became the Z division of Los Alamos and $25 million construction program began the structures that would carry out a test program for nuclear weapons during the cold war. Bell System/AT&T stewardship of the site continued from 1949 to 1993, when Martin Marietta (now Lockheed Martin) was chosen as the new contractor. Management decisions, personnel, and political aspects of the Laboratory are presented up to 1997 and forecasts are given for future policy and programs of Sandia.

  9. Los Alamos Scientific Laboratory energy-related history, research, managerial reorganization proposals, actions taken, and results. History report, 1945--1979

    International Nuclear Information System (INIS)

    This report documents the development of major energy-related programs at the Los Alamos Scientific Laboratory between 1945 and 1979. Although the Laboratory's primary mission during that era was the design and development of nuclear weapons and most of the Laboratory's funding came from a single source, a number of factors were at work that led to the development of these other programs. Some of those factors were affected by the Laboratory's internal management structure and organization; others were the result of increasing environmental awareness within the general population and the political consequences of that awareness; still others were related to the increasing demand for energy and the increasing turmoil in the energy-rich Middle East. This report also describes the various activities in Los Alamos, in Washington, and in other areas of the world that contributed to the development of major energy-related programs at Los Alamos. The author has a unique historical perspective because of his involvement as a scientist and manager at the Los Alamos Scientific Laboratory during the time period described within the report. In addition, in numerous footnotes and references, he cites a large body of documents that include the opinions and perspectives of many others who were involved at one time or another in these programs. Finally the report includes a detailed chronology of geopolitical events that led to the development of energy-related programs at Los Alamos

  10. Job cuts loom at National Physical Laboratory

    Science.gov (United States)

    Extance, Andy

    2016-09-01

    The UK's National Physical Laboratory (NPL) – the country's standards lab – is consulting on making up to 50 compulsory redundancies as it prepares to shift its research priorities towards quantum technologies and big data.

  11. The Pajarito Site operating procedures for the Los Alamos Critical Experiments Facility

    International Nuclear Information System (INIS)

    Operating procedures consistent with DOE Order 5480.6, and the American National Standard Safety Guide for the Performance of Critical Experiments are defined for the Los Alamos Critical Experiments Facility (LACEF) of the Los Alamos National Laboratory. These operating procedures supersede and update those previously published in 1983 and apply to any criticality experiment performed at the facility. 11 refs

  12. Oak Ridge National Laboratory Next Generation Safeguards Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Bernadette Lugue [ORNL; Eipeldauer, Mary D [ORNL; Whitaker, J Michael [ORNL

    2011-12-01

    with several DOE laboratories such as Pacific Northwest National Laboratory (PNNL), Lawrence Livermore National Laboratory (LLNL), Brookhaven National Laboratory (BNL), and Los Alamos National Laboratory (LANL). In particular, ORNL's participation encompasses student internships, postdoctoral appointments, collaboration with universities in safeguards curriculum development, workshops, and outreach to professional societies through career fairs.

  13. Feasibility study of medical isotope production at Sandia National Laboratories

    International Nuclear Information System (INIS)

    In late 1994, Sandia National Laboratories in Albuquerque, New Mexico, (SNL/NM), was instructed by the Department of Energy (DOE) Isotope Production and Distribution Program (IPDP) to examine the feasibility of producing medically useful radioisotopes using the Annular Core Research Reactor (ACRR) and the Hot Cell Facility (HCF). Los Alamos National Laboratory (LANL) would be expected to supply the targets to be irradiated in the ACRR. The intent of DOE would be to provide a capability to satisfy the North American health care system demand for 99Mo, the parent of 99mTc, in the event of an interruption in the current Canadian supply. 99mTc is used in 70 to 80% of all nuclear medicine procedures in the US. The goal of the SNL/NM study effort is to determine the physical plant capability, infrastructure, and staffing necessary to meet the North American need for 99Mo and to identify and examine all issues with potential for environmental impact

  14. Feasibility study of medical isotope production at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Massey, C.D.; Miller, D.L.; Carson, S.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Regulatory Assessment Dept.] [and others

    1995-12-01

    In late 1994, Sandia National Laboratories in Albuquerque, New Mexico, (SNL/NM), was instructed by the Department of Energy (DOE) Isotope Production and Distribution Program (IPDP) to examine the feasibility of producing medically useful radioisotopes using the Annular Core Research Reactor (ACRR) and the Hot Cell Facility (HCF). Los Alamos National Laboratory (LANL) would be expected to supply the targets to be irradiated in the ACRR. The intent of DOE would be to provide a capability to satisfy the North American health care system demand for {sup 99}Mo, the parent of {sup 99m}Tc, in the event of an interruption in the current Canadian supply. {sup 99m}Tc is used in 70 to 80% of all nuclear medicine procedures in the US. The goal of the SNL/NM study effort is to determine the physical plant capability, infrastructure, and staffing necessary to meet the North American need for {sup 99}Mo and to identify and examine all issues with potential for environmental impact.

  15. Lawrence Livermore National Laboratory Working Reference Material Production Pla

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Amy; Thronas, Denise; Marshall, Robert

    1998-11-04

    This Lawrence Livermore National Laboratory (LLNL) Working Reference Material Production Plan was written for LLNL by the Los Alamos National Laboratory to address key elements of producing seven Pu-diatomaceous earth NDA Working Reference Materials (WRMS). These WRMS contain low burnup Pu ranging in mass from 0.1 grams to 68 grams. The composite Pu mass of the seven WRMS was designed to approximate the maximum TRU allowable loading of 200 grams Pu. This document serves two purposes: first, it defines all the operations required to meet the LLNL Statement of Work quality objectives, and second, it provides a record of the production and certification of the WRMS. Guidance provided in ASTM Standard Guide C1128-89 was used to ensure that this Plan addressed all the required elements for producing and certifying Working Reference Materials. The Production Plan was written to provide a general description of the processes, steps, files, quality control, and certification measures that were taken to produce the WRMS. The Plan identifies the files where detailed procedures, data, quality control, and certification documentation and forms are retained. The Production Plan is organized into three parts: a) an initial section describing the preparation and characterization of the Pu02 and diatomaceous earth materials, b) middle sections describing the loading, encapsulation, and measurement on the encapsulated WRMS, and c) final sections describing the calculations of the Pu, Am, and alpha activity for the WRMS and the uncertainties associated with these quantities.

  16. Sandia National Laboratories 1979 environmental monitoring report

    International Nuclear Information System (INIS)

    Sandia National Laboratories in Albuquerque is located south of the city on two broad mesas. The local climate is arid continental. Radionuclides are released from five technical areas from the Laboratories' resarch activities. Sandia's environmental monitoring program searches for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. No activity was found in public areas in excess of local background in 1979. The Albuquerque population receives only 0.076 person-rem (estimated) from airborne radioactive releases. While national security research is the laboratories' major responsibility, energy research is a major area of activity. Both these research areas cause radioactive releases

  17. Los Alamos Critical Assemblies Facility

    International Nuclear Information System (INIS)

    The Critical Assemblies Facility of the Los Alamos National Laboratory has been in existence for thirty-five years. In that period, many thousands of measurements have been made on assemblies of 235U, 233U, and 239Pu in various configurations, including the nitrate, sulfate, fluoride, carbide, and oxide chemical compositions and the solid, liquid, and gaseous states. The present complex of eleven operating machines is described, and typical applications are presented

  18. Brookhaven highlights - Brookhaven National Laboratory 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report highlights research conducted at Brookhaven National Laboratory in the following areas: alternating gradient synchrotron; physics; biology; national synchrotron light source; department of applied science; medical; chemistry; department of advanced technology; reactor; safety and environmental protection; instrumentation; and computing and communications.

  19. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberg, Kurt F [Los Alamos National Laboratory

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  20. LOS ALAMOS: Reorganization

    International Nuclear Information System (INIS)

    Full text: A few months ago Los Alamos National Laboratory embarked on a major reorganization. All upper management was invited to submit their resignations and reapply for new positions, of which there are only about one third as many. This action was coordinated with an attractive early retirement incentive so that displaced managers, as well as any other employee, could choose to retire if they were unhappy with the reorganization, or for any other reason. About 850 of the Lab's 7,700 employees have chosen retirement. MP (Meson or Medium Energy Physics) and AT (Accelerator Technology) Divisions have been combined into the AOT (Accelerator Operations and Technology) Division. Stanley O. Schriber is its new Director. AOT Division is responsible for operations and improvements at the Los Alamos Meson Physics Facility (LAMPF) and supports traditional users, LANSCE (the Los Alamos Neutron Scattering Center), and the emerging neutron applications community. Advanced accelerator development, including beam transport theory, instrumentation, free electron laser technology, and engineering for research, defence, industrial, and medical applications will be a major focus

  1. Idaho National Laboratory Research & Development Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, Nicole [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  2. Red laser initiative at Los Alamos

    International Nuclear Information System (INIS)

    Several solid state lasers systems tunable between 0.70 and 0.95 μm have been the subject of studies to identify new lasers for various programs at the Los Alamos National Laboratory. These solid state lasers include Cr:GSGG, Cr:GSAG and Ti:Sapphire. Both laser pumped flashlamp pumped results are described in the following sections

  3. Database activities at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Brookhaven National Laboratory is a multi-disciplinary lab in the DOE system of research laboratories. Database activities are correspondingly diverse within the restrictions imposed by the dominant relational database paradigm. The authors discuss related activities and tools used in RHIC and in the other major projects at BNL. The others are the Protein Data Bank being maintained by the Chemistry department, and a Geographical Information System (GIS)--a Superfund sponsored environmental monitoring project under development in the Office of Environmental Restoration

  4. ISO 14001 IMPLEMENTATION AT A NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    BRIGGS,S.L.K.

    2001-06-01

    After a tumultuous year discovering serious lapses in environment, safety and health management at Brookhaven National Laboratory, the Department of Energy established a new management contract. It called for implementation of an IS0 14001 Environmental Management System and registration of key facilities. Brookhaven Science Associates, the managing contractor for the Laboratory, designed and developed a three-year project to change culture and achieve the goals of the contract. The focus of its efforts were to use IS0 14001 to integrate environmental stewardship into all facets of the Laboratory's mission, and manage its programs in a manner that protected the ecosystem and public health. A large multidisciplinary National Laboratory with over 3,000 employees and 4,000 visiting scientists annually posed significant challenges for IS0 14001 implementation. Activities with environmental impacts varied from regulated industrial waste generation, to soil activation from particle accelerator operations, to radioactive groundwater contamination from research reactors. A project management approach was taken to ensure project completion on schedule and within budget. The major work units for the Environmental Management System Project were as follows: Institutional EMS Program Requirements, Communications, Training, Laboratory-wide Implementation, and Program Assessments. To minimize costs and incorporate lessons learned before full-scale deployment throughout the Laboratory, a pilot process was employed at three facilities. Brookhaven National Laboratory has completed its second year of the project in the summer of 2000, successfully registering nine facilities and self-declaring conformance in all remaining facilities. Project controls, including tracking and reporting progress against a model, have been critical to the successful implementation. Costs summaries are lower than initial estimates, but as expected legal requirements, training, and assessments are key

  5. ORNL [Oak Ridge National Laboratory] 89

    International Nuclear Information System (INIS)

    This is the inaugural issues of an annual publication about the Oak Ridge National Laboratory. Here you will find a brief overview of ORNL, a sampling of our recent research achievements, and a glimpse of the directions we want to take over the next 15 years. A major purpose of ornl 89 is to provide the staff with a sketch of the character and dynamics of the Laboratory

  6. ORNL (Oak Ridge National Laboratory) 89

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.D.; Appleton, B.R.; Jefferson, J.W.; Merriman, J.R.; Mynatt, F.R.; Richmond, C.R.; Rosenthal, M.W.

    1989-01-01

    This is the inaugural issues of an annual publication about the Oak Ridge National Laboratory. Here you will find a brief overview of ORNL, a sampling of our recent research achievements, and a glimpse of the directions we want to take over the next 15 years. A major purpose of ornl 89 is to provide the staff with a sketch of the character and dynamics of the Laboratory.

  7. Analysis results from the Los Alamos 2D/3D program

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory is a participant in the 2D/3D program. Activities conducted at Los Alamos National Laboratory in support of 2D/3D program goals include analysis support of facility design, construction, and operation; provision of boundary and initial conditions for test-facility operations based on analysis of pressurized water reactors; performance of pretest and posttest predictions and analyses; and use of experimental results to validate and assess the single- and multi-dimensional, nonequilibrium features in the Transient Reactor Analysis Code (TRAC). During fiscal year 1987, Los Alamos conducted analytical assessment activities using data from the Slab Core Test Facility, The Cylindrical Core Test Facility, and the Upper Plenum Test Facility. Finally, Los Alamos continued work to provide TRAC improvements. In this paper, Los Alamos activities during fiscal year 1987 will be summarized; several significant accomplishments will be described in more detail to illustrate the work activities at Los Alamos

  8. Analysis results from the Los Alamos 2D/3D program

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory is a participant in the 2D/3D program. Activities conducted at Los Alamos National Laboratory in support of 2D/3D program goals include analysis support of facility design, construction, and operation; provision of boundary and initial conditions for test-facility operations based on analysis of pressurized water reactors; performance of pretest and post-test predictions and analyses; and use of experimental results to validate and assess the single- and multi-dimensional, nonequilibrium features in the Transient Reactor Analysis Code (TRAC). During fiscal year 1987, Los Alamos conducted analytical assessment activities using data from the Slab Core Test Facility, the Cylindrical Core Test Facility, and the Upper Plenum Test Facility. Finally, Los Alamos continued work to provide TRAC improvements. In this paper, Los Alamos activities during fiscal year 1987 are summarized; several significant accomplishments are described in more detail to illustrate the work activities at Los Alamos

  9. Ventilation design modifications at Los Alamos Scientific Laboratory major plutonium operational areas

    International Nuclear Information System (INIS)

    Major ventilation design modifications in plutonium operational areas at Los Alamos have occurred during the past two years. An additional stage of HEPA filters has been added to DP West glove-box process exhaust resulting in significant effluent reductions. The additional stage of HEPA filters is unique in that each filter may be individually DOP tested. Radiological filter efficiencies of each process exhaust stage is presented. DP West room air ventilation systems have been modified to incorporate a single stage of HEPA filters in contrast to a previous American Air Filter PL-24 filtration system. Plutonium effluent reductions of 102 to 103 have resulted in these new systems. Modified DOP testing procedures for room air filtration systems are discussed. Major plutonium areas of the CMR Building utilizing Aerosolve 95 process exhaust filtration systems have been upgraded with two stages of HEPA filters. Significant reductions in effluent are evident. A unique method of DOP testing each bank of HEPA filters is discussed. Radiological efficiencies of both single and two-stage filters are discussed. (U.S.)

  10. New Generation of Los Alamos Opacity Tables

    Science.gov (United States)

    Colgan, James; Kilcrease, D. P.; Magee, N. H.; Sherrill, M. E.; Abdallah, J.; Hakel, P.; Fontes, C. J.; Guzik, J. A.; Mussack, K. A.

    2016-05-01

    We present a new generation of Los Alamos OPLIB opacity tables that have been computed using the ATOMIC code. Our tables have been calculated for all 30 elements from hydrogen through zinc and are publicly available through our website. In this poster we discuss the details of the calculations that underpin the new opacity tables. We also show several recent applications of the use of our opacity tables to solar modeling and other astrophysical applications. In particular, we demonstrate that use of the new opacities improves the agreement between solar models and helioseismology, but does not fully resolve the long-standing `solar abundance' problem. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  11. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  12. Lawrence Livermore National Laboratory Summer Employment Summary

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A J

    2002-08-06

    This document will serve as a summary of my work activities as a summer employee for the Lawrence Livermore National Laboratory (LLNL). The intent of this document is to provide an overview of the National Ignition Facility (NIF) project, to explain the role of the department that I am working for, and to discuss my specific assigned tasks and their impact on the NIF project as a whole.

  13. Biomedical engineering at Sandia National Laboratories

    Science.gov (United States)

    Zanner, Mary Ann

    1994-12-01

    The potential exists to reduce or control some aspects of the U.S. health care expenditure without compromising health care delivery by developing carefully selected technologies which impact favorably on the health care system. A focused effort to develop such technologies is underway at Sandia National Laboratories. As a DOE National Laboratory, Sandia possesses a wealth of engineering and scientific expertise that can be readily applied to this critical national need. Appropriate mechanisms currently exist to allow transfer of technology from the laboratory to the private sector. Sandia's Biomedical Engineering Initiative addresses the development of properly evaluated, cost-effective medical technologies through team collaborations with the medical community. Technology development is subjected to certain criteria including wide applicability, earlier diagnoses, increased efficiency, cost-effectiveness and dual-use. Examples of Sandia's medical technologies include a noninvasive blood glucose sensor, computer aided mammographic screening, noninvasive fetal oximetry and blood gas measurement, burn diagnostics and laser debridement, telerobotics and ultrasonic scanning for prosthetic devices. Sandia National Laboratories has the potential to aid in directing medical technology development efforts which emphasize health care needs, earlier diagnosis, cost containment and improvement of the quality of life.

  14. Applied programs at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This document overviews the areas of current research at Brookhaven National Laboratory. Technology transfer and the user facilities are discussed. Current topics are presented in the areas of applied physics, chemical science, material science, energy efficiency and conservation, environmental health and mathematics, biosystems and process science, oceanography, and nuclear energy. (GHH)

  15. Lawrence Livermore National Laboratory Environmental Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dibley, V. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doman, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heidecker, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumamoto, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montemayor, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, H. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Veseliza, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-01

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security, LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  16. PYROPROCESSING PROGRESS AT IDAHO NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Chuck; B. R. Westphal; Johnson, T.; Li, S.; Marsden, K.; Goff, K. M.

    2007-09-01

    At the end of May 2007, 830 and 2600 kilograms of EBR-II driver and blanket metal fuel have been treated by a pyroprocess since spent fuel operations began in June 1996. A new metal waste furnace has completed out-of-cell testing and is being installed in the Hot Fuel Examination Facility. Also, ceramic waste process development and qualification is progressing so integrated nuclear fuel separations and high level waste processes will exist at Idaho National Laboratory. These operations have provided important scale-up and performance data on engineering scale operations. Idaho National Laboratory is also increasing their laboratory scale capabilities so new process improvements and new concepts can be tested before implementation at engineering scale. This paper provides an overview of recent achievements and provides the interested reader references for more details.

  17. Scientific Openness and National Security at the National Laboratories

    Science.gov (United States)

    McTague, John

    2000-04-01

    The possible loss to the People's Republic of China of important U.S. nuclear-weapons-related information has aroused concern about interactions of scientists employed by the national laboratories with foreign nationals. As a result, the National Academies assembled a committee to examine the roles of the national laboratories, the contribution of foreign interactions to the fulfillment of those roles, the risks and benefits of scientific openness in this context, and the merits and liabilities of the specific policies being implemented or proposed with respect to contacts with foreign nationals. The committee concluded that there are many aspects of the work at the laboratories that benefit from or even demand the opportunity for foreign interactions. The committee recommended five principles for guiding policy: (1) Maintain balance. Policy governing international dialogue by laboratory staff should seek to encourage international engagement in some areas, while tightly controlling it in others. (2) Educate staff. Security procedures should be clear, easy to follow, and serve an understandable purpose. (3) Streamline procedures. Good science is compatible with good security if there is intelligent line management both at the labs and in Washington, which applies effective tools for security in a sensible fashion. (4) Focus efforts. DOE should focus its efforts governing tightened security for information. The greatest attention should obviously be provided to the protection of classified information by appropriate physical and cybersecurity measures, and by personnel procedures and training. (5) Beware of prejudice against foreigners. Over the past half-century foreign-born individuals have contributed broadly and profoundly to national security through their work at the national laboratories.

  18. Chemical research at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  19. NM - Risk and injury assessment of radionuclides to Los Alamos fauna

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is an assessment of environmental contaminants associated with the Los Alamos National Laboratory. One objective of the study is to determine if a significant...

  20. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun Williams

    2013-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices

  1. Pellet injector development at ORNL [Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Advanced plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range by either pneumatic (light-gas gun) or mechanical (centrifugal force) techniques. ORNL has recently provided a centrifugal pellet injector for the Tore Supra tokamak and a new, simplified, eight-shot pneumatic injector for the Advanced Toroidal Facility stellarator at ORNL. Hundreds of tritium and DT pellets were accelerated at the Tritium Systems Test Assembly facility at Los Alamos in 1988--89. These experiments, done in a single-shot pipe-gun system, demonstrated the feasibility of forming and accelerating tritium pellets at low 3He levels. A new, tritium-compatible extruder mechanism is being designed for longer-pulse DT applications. Two-stage light-gas guns and electron beam rocket accelerators for speeds of the order of 2--10 km/s are also under development. Recently, a repeating, two-stage light-gas gun accelerated 10 surrogate pellets at a 1-Hz repetition rate to speeds in the range of 2--3 km/s; and the electron beam rocket accelerator completed initial feasibility and scaling experiments. ORNL has also developed conceptual designs of advanced plasma fueling systems for the Compact Ignition Tokamak and the International Thermonuclear Experimental Reactor

  2. Sandia National Laboratories analysis code data base

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, C.W.

    1994-11-01

    Sandia National Laboratories, mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The Laboratories` strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia`s technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code ``ownership`` and release status, and references describing the physical models and numerical implementation.

  3. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  4. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2011-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  5. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  6. Environmental report 1997, Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    This report summarizes the environmental program activities at the Lawrence Livermore National Laboratory (LLNL) for 1997. This report accurately summarizes the results of environmental monitoring, compliance, impacts assessment, and the restoration program at LLNL. It features individual chapters on monitoring of air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation. It also contains chapters on site overview, environmental program information, radiological dose assessment, and quality assurance

  7. The Dalian National Laboratory for Clean Energy.

    Science.gov (United States)

    Zhang, Tao; Li, Can; Bao, Xinhe

    2012-05-01

    The Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences conducts fundamental and applied research towards chemistry and chemical engineering, with strong competence in the development of new technologies. The research in this special issue, containing 19 papers, features some of the DICP's best work on sustainable energy, use of environmental resources, and advanced materials within the framework of the Dalian National Laboratory for Clean Energy (DNL). PMID:22573532

  8. Frederick National Laboratory Celebrates 40 Years | Poster

    Science.gov (United States)

    By Ashley DeVine, Staff Writer Forty years ago, what we now call the Frederick National Laboratory for Cancer Research was born. Here are some highlights in the facility’s history. October 19, 1971 – President Richard Nixon announced that Fort Detrick would be converted from a biological warfare facility to a cancer research center (Covert, Norman M., Cutting Edge: A History of Fort Detrick, Maryland, 1943–1993, pp. 85–87).

  9. Environmental report 1996, Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    This report summarizes the environmental program activities at the Lawrence Livermore National Laboratory (LLNL) for 1996. This report accurately summarizes the results of environmental monitoring, compliance, impacts assessment, and the restoration program at LLNL. It features individual chapters on monitoring of air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation. It also contains chapters on site overview, environmental program information, radiological dose assessment, and quality assurance

  10. The Dalian National Laboratory for Clean Energy.

    Science.gov (United States)

    Zhang, Tao; Li, Can; Bao, Xinhe

    2012-05-01

    The Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences conducts fundamental and applied research towards chemistry and chemical engineering, with strong competence in the development of new technologies. The research in this special issue, containing 19 papers, features some of the DICP's best work on sustainable energy, use of environmental resources, and advanced materials within the framework of the Dalian National Laboratory for Clean Energy (DNL).

  11. Oak Ridge National Laboratory Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  12. Publications of Los Alamos research, 1977-1981

    International Nuclear Information System (INIS)

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1977-1981. Papers published in those years are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them

  13. Publications of Los Alamos research, 1977-1981

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, C.J.; Garcia, C.A. (comps.)

    1983-03-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1977-1981. Papers published in those years are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  14. Lawrence Livermore National Laboratory 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, P; Walter, K

    2008-04-25

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that

  15. Oak Ridge National Laboratory Core Competencies

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, J.B.; Anderson, T.D.; Berven, B.A.; Hildebrand, S.G.; Hartman, F.C.; Honea, R.B.; Jones, J.E. Jr.; Moon, R.M. Jr.; Saltmarsh, M.J.; Shelton, R.B. [and others

    1994-12-01

    A core competency is a distinguishing integration of capabilities which enables an organization to deliver mission results. Core competencies represent the collective learning of an organization and provide the capacity to perform present and future missions. Core competencies are distinguishing characteristics which offer comparative advantage and are difficult to reproduce. They exhibit customer focus, mission relevance, and vertical integration from research through applications. They are demonstrable by metrics such as level of investment, uniqueness of facilities and expertise, and national impact. The Oak Ridge National Laboratory (ORNL) has identified four core competencies which satisfy the above criteria. Each core competency represents an annual investment of at least $100M and is characterized by an integration of Laboratory technical foundations in physical, chemical, and materials sciences; biological, environmental, and social sciences; engineering sciences; and computational sciences and informatics. The ability to integrate broad technical foundations to develop and sustain core competencies in support of national R&D goals is a distinguishing strength of the national laboratories. The ORNL core competencies are: 9 Energy Production and End-Use Technologies o Biological and Environmental Sciences and Technology o Advanced Materials Synthesis, Processing, and Characterization & Neutron-Based Science and Technology. The distinguishing characteristics of each ORNL core competency are described. In addition, written material is provided for two emerging competencies: Manufacturing Technologies and Computational Science and Advanced Computing. Distinguishing institutional competencies in the Development and Operation of National Research Facilities, R&D Integration and Partnerships, Technology Transfer, and Science Education are also described. Finally, financial data for the ORNL core competencies are summarized in the appendices.

  16. Lawrence Livermore National Laboratory 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, P; Walter, K

    2008-04-25

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that

  17. National Storage Laboratory: a collaborative research project

    Science.gov (United States)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  18. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.R.

    1993-12-31

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards.

  19. Hydraulics national laboratory; Laboratoire national d`hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Chabard, J.P.

    1995-12-31

    The hydraulics national laboratory is a department of the service of applications of electric power and environment from the direction of studies and researches of Electricite de France. It has to solve the EDF problems concerning the fluids mechanics and hydraulics. Problems in PWR type reactors, fossil fuel power plants, circulating fluidized bed power plants, hydroelectric power plants relative to fluid mechanics and hydraulics studied and solved in 1995 are explained in this report. (N.C.)

  20. Idaho national laboratory - a nuclear research center

    International Nuclear Information System (INIS)

    Full text: The Idaho National Laboratory (INL) is committed to providing international nuclear leadership for the 21st Century, developing and demonstrating compelling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multi program national laboratories. INL runs three major programs - Nuclear, Security and Science. Nuclear programs covers the Advanced test reactor, Six Generation IV technology concepts selected for Rand D, targeting tumors - Boron Neutron Capture therapy. Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (INSE) under the Center for Advanced Energy Studies (CAES) and the Idaho State University (ISU). INSE will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer INSE is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'. (author)

  1. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  2. Idaho National Engineering Laboratory site development plan

    International Nuclear Information System (INIS)

    This plan briefly describes the 20-year outlook for the Idaho National Engineering Laboratory (INEL). Missions, workloads, worker populations, facilities, land, and other resources necessary to fulfill the 20-year site development vision for the INEL are addressed. In addition, the plan examines factors that could enhance or deter new or expanded missions at the INEL. And finally, the plan discusses specific site development issues facing the INEL, possible solutions, resources required to resolve these issues, and the anticipated impacts if these issues remain unresolved

  3. The National High Magnetic Field Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schneider-Muntau, H.J.; Brandt, B.L.; Brunel, L.C.; Cross, T.A.; Edison, A.S.; Marshall, A.G.; Reyes, A.P

    2004-04-30

    We describe two of the main user facilities of the National High Magnetic Field Laboratory (NHMFL): (a) the General Purpose DC Field Facility with nine resistive and hybrid magnet stations with continuous fields between 20 and 45 T, and (b) the CIMAR Facilities with 17 spectrometers for the NMR Spectroscopy and Imaging Program, the Fourier Transform ICR Mass Spectrometry Program and the Electron Magnetic Resonance Spectroscopy Program. The facilities are located in Tallahassee, and Gainesville, FL. Members of the worldwide science and engineering communities can access NHMFL facilities, generally without cost, through a peer-reviewed proposal process.

  4. National Renewable Energy Laboratory 2005 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

    2006-06-01

    Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

  5. Lawrence Livermore National Laboratory Environmental Report 2014

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buscheck, W. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Byrne, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bish, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratanduono, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montemayor, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, H. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Swanson, K. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-29

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2014 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  6. National Environmental Policy Act (NEPA) Compliance Guide, Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1995-08-01

    This report contains a comprehensive National Environmental Policy Act (NEPA) Compliance Guide for the Sandia National Laboratories. It is based on the Council on Environmental Quality (CEQ) NEPA regulations in 40 CFR Parts 1500 through 1508; the US Department of Energy (DOE) N-EPA implementing procedures in 10 CFR Part 102 1; DOE Order 5440.1E; the DOE ``Secretarial Policy Statement on the National Environmental Policy Act`` of June 1994- Sandia NEPA compliance procedures-, and other CEQ and DOE guidance. The Guide includes step-by-step procedures for preparation of Environmental Checklists/Action Descriptions Memoranda (ECL/ADMs), Environmental Assessments (EAs), and Environmental Impact Statements (EISs). It also includes sections on ``Dealing With NEPA Documentation Problems`` and ``Special N-EPA Compliance Issues.``

  7. Brookhaven National Laboratory site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A. [eds.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory.

  8. Pressure safety program Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Borzileri, C.; Traini, M.

    1992-10-01

    The Lawrence Livermore National Laboratory (LLNL) is a Research and Development facility. Programs include research in: nuclear weapons, energy, environmental, biomedical, and other DOE funded programs. LLNL is managed by the University of California for the Department of Energy. Many research and development programs require the use of pressurized fluid systems. In the early 1960`s, courses were developed to train personnel to safely work with pressurized systems. These courses served as a foundation for the Pressure Safety Program. The Pressure Safety Program is administered by the Pressure Safety Manager through the Hazards Control Department, and responsibilities include: (1) Pressure Safety course development and training, (2) Equipment documentation, tracking and inspections/retests, (3) Formal and informal review of pressure systems. The program uses accepted codes and standards and closely follows the DOE Pressure Safety Guidelines Manual. This manual was developed for DOE by Lawrence Livermore National Laboratory. The DOE Pressure Safety Guidelines Manual defines five (5) basic elements which constitute this Pressure Safety Program. These elements are: (1) A Pressure Safety Manual, (2) A Safety Committee, (3) Personnel who are trained and qualified, (4) Documentation and accountability for each pressure vessel or system, (5) Control of the selection and the use of high pressure hardware.

  9. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  10. Oak Ridge National Laboratory Technology Logic Diagram

    International Nuclear Information System (INIS)

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram; and Vol. 3, Technology Evaluation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D ampersand D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B,and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D ampersand D, RA, and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2. The data sheets are arranged alphanumerically by the TEDS code number in the upper right comer of each sheet

  11. Los Alamos National Laboratory use study phase II : Toxicity testing of surface waters and sediment pore waters at Los Alamos National Laboratory

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The U.S. Fish and Wildlife Service New Mexico Ecological Services Field Office (Service) submitted a Use Study Proposal (USFWS 1996) in response to the settlement...

  12. The case for National Environmental Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    1970-02-01

    We suggest the establishment of several large generalized National Environmental Laboratories (NELs), each containing interacting groups of natural and social scientists, engineers, and information specialists. The field of action is the whole environment, both urban and rural, both present and future. By their organization and outlook, NELs would take a different cut across the fabric of environmental problems than has been possible hitherto. However, we must realize that NELs will not per se create instant Paradise; all we propose are instrumentalities designed to match the true scope of problems and perhaps stimulate a willing and charitable spirit. The tasks hitherto separately considered -- the retrospective ones of restoring and preserving the environment and the prospective one of future technology assessment -- are joined in NELS, because (1) environmental restoration and preservation involve prior and present technology decisions; assessment of future technology is the forward equivalent; (2) one of the activities tends to be conservationist, the other expansionist, and the two provide useful balance. We believe that these structures and roles are what is really required to implement both the recommendations of the National Academy of Sciences Panel on Technology Assessment, and the requirements implicit in the National Environmental Policy Act.

  13. Oak Ridge National Laboratory Institutional Plan, FY 1995--FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years (1995-2000). Included in this report are the: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; and resource projections.

  14. Nuclear Accident Dosimetry at Argonne National Laboratory

    International Nuclear Information System (INIS)

    This report summarizes current planning at Argonne National Laboratory with respect to dose determination following a criticality incident. The discussion relates chiefly to two types of commercially obtained dosimeter packages, and includes the results of independent calibrations performed at the Laboratory. The primary dosimeter system incorporates threshold detectors developed at Oak Ridge National Laboratory for neutron spectrum measurement. Fission foil decay calibration curves have been determined experimentally for scintillation counting equipment routinely used at Argonne. This equipment also has been calibrated for determination of sodium-24 activity in blood. Dosimeter units of the type designed at Savannah River Laboratory are deployed as secondary stations. Data from the neutron activation components of these units will be used to make corrections to, the neutron spectrum for intermediate as well as thermal energies. The epicadmium copper foil activation, for a given fluence of intermediate energy neutrons, has been shown relatively insensitive to neutron spectrum variations within the region, and a meaningful average of copper cross-section has been determined. Counter calibration factors determined at Argonne are presented for the copper, indium, and sulphur components. The total neutron fluence is computed using the corrected spectrum in conjunction with a capture probability function and the blood sodium result. One or more specifications of neutron dose then may be calculated by applying the spectral information to the appropriate conversion function. The gamma portion of the primary dosimeter package contains fluorescent rods and a thermoluminescent dosimeter in addition to a two-phase chemical dosimeter. The gamma dosimeter in the secondary package is a polyacrylamide solution which is degraded by exposure to gamma radiation. The absorbed dose is derived from a measured change insolution viscosity. Difficulties in evaluation, placement, and

  15. Amphibians and Reptiles of Los Alamos County

    Energy Technology Data Exchange (ETDEWEB)

    Teralene S. Foxx; Timothy K. Haarmann; David C. Keller

    1999-10-01

    Recent studies have shown that amphibians and reptiles are good indicators of environmental health. They live in terrestrial and aquatic environments and are often the first animals to be affected by environmental change. This publication provides baseline information about amphibians and reptiles that are present on the Pajarito Plateau. Ten years of data collection and observations by researchers at Los Alamos National Laboratory, the University of New Mexico, the New Mexico Department of Game and Fish, and hobbyists are represented.

  16. Idaho National Laboratory Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Joanne L. Knight

    2008-04-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  17. Idaho National Laboratory Site Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Joanne L. Knight

    2010-10-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  18. Fleet Tools; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-04-01

    From beverage distributors to shipping companies and federal agencies, industry leaders turn to the National Renewable Energy Laboratory (NREL) to help green their fleet operations. Cost, efficiency, and reliability are top priorities for fleets, and NREL partners know the lab’s portfolio of tools can pinpoint fuel efficiency and emissions-reduction strategies that also support operational the bottom line. NREL is one of the nation’s foremost leaders in medium- and heavy-duty vehicle research and development (R&D) and the go-to source for credible, validated transportation data. NREL developers have drawn on this expertise to create tools grounded in the real-world experiences of commercial and government fleets. Operators can use this comprehensive set of technology- and fuel-neutral tools to explore and analyze equipment and practices, energy-saving strategies, and other operational variables to ensure meaningful performance, financial, and environmental benefits.

  19. Adaptive Optics at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gavel, D T

    2003-03-10

    Adaptive optics enables high resolution imaging through the atmospheric by correcting for the turbulent air's aberrations to the light waves passing through it. The Lawrence Livermore National Laboratory for a number of years has been at the forefront of applying adaptive optics technology to astronomy on the world's largest astronomical telescopes, in particular at the Keck 10-meter telescope on Mauna Kea, Hawaii. The technology includes the development of high-speed electrically driven deformable mirrors, high-speed low-noise CCD sensors, and real-time wavefront reconstruction and control hardware. Adaptive optics finds applications in many other areas where light beams pass through aberrating media and must be corrected to maintain diffraction-limited performance. We describe systems and results in astronomy, medicine (vision science), and horizontal path imaging, all active programs in our group.

  20. Push technology at Argonne National Laboratory.

    Energy Technology Data Exchange (ETDEWEB)

    Noel, R. E.; Woell, Y. N.

    1999-04-06

    Selective dissemination of information (SDI) services, also referred to as current awareness searches, are usually provided by periodically running computer programs (personal profiles) against a cumulative database or databases. This concept of pushing relevant content to users has long been integral to librarianship. Librarians traditionally turned to information companies to implement these searches for their users in business, academia, and the science community. This paper describes how a push technology was implemented on a large scale for scientists and engineers at Argonne National Laboratory, explains some of the challenges to designers/maintainers, and identifies the positive effects that SDI seems to be having on users. Argonne purchases the Institute for Scientific Information (ISI) Current Contents data (all subject areas except Humanities), and scientists no longer need to turn to outside companies for reliable SDI service. Argonne's database and its customized services are known as ACCESS (Argonne-University of Chicago Current Contents Electronic Search Service).

  1. Solar activities at Sandia National Laboratories

    Science.gov (United States)

    Klimas, Paul C.; Hasti, David E.

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

  2. Idaho National Laboratory Site Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Joanne L. Knight

    2012-08-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  3. Idaho National Laboratory Quarterly Occurrence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 85 reportable events (18 from the 4th Qtr FY-15 and 67 from the prior three reporting quarters), as well as 25 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (8 from this quarter and 17 from the prior three quarters).

  4. Idaho National Engineering Laboratory installation roadmap document

    International Nuclear Information System (INIS)

    The roadmapping process was initiated by the US Department of Energy's office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included

  5. National Laboratory of Hydraulics. 1996 progress report

    International Nuclear Information System (INIS)

    This progress report of the National Laboratory of Hydraulics (LNH) of Electricite de France (EdF) summarizes, first, the research and development studies carried out in 1996 for the development of research tools for industrial fluid mechanics and environmental hydraulics and for the development of computer tools (computer codes and softwares for fluid mechanics modeling, modeling of reactive, compressible, two-phase and turbulent flows and of complex chemical kinetics using finite elements and finite volume methods). A second parts describes the research studies performed for other services of EdF, concerning: the functioning of nuclear reactors (thermohydraulic studies of the reactor vessel and of the primary coolant circuit, gas flows following severe accidents, fluid-structure thermal coupling etc...), fossil fuel power plants, the equipment and operation of thermal power plants and hydraulic power plants, the use of electric power. A third part summarizes the river and marine hydraulic studies carried out for other companies. (J.S.)

  6. Idaho National Laboratory Quarterly Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lisbeth Mitchell

    2014-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INL from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.

  7. Neutronics Code Development at Argonne National Laboratory

    International Nuclear Information System (INIS)

    As part of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program of U.S. DOE, a suite of modern fast reactor simulation tools is being developed at Argonne National Laboratory. The general goal is to reduce the uncertainties and biases in various areas of reactor design activities by providing enhanced prediction capabilities. Under this fast reactor simulation program, a high-fidelity deterministic neutron transport code named UNIC is being developed. The end goal of this development is to produce an integrated neutronics code that enables the high fidelity description of a nuclear reactor and simplifies the multi-step design process by direct and accurate coupling with thermal-hydraulics and structural mechanics calculations. (author)

  8. Brookhaven National Laboratory site environmental report for calendar year 1994

    International Nuclear Information System (INIS)

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory's operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory

  9. Oak Ridge National Laboratory Technology Logic Diagram

    International Nuclear Information System (INIS)

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D ampersand D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D ampersand D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D ampersand D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2

  10. Oak Ridge National Laboratory Technology Logic Diagram

    International Nuclear Information System (INIS)

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D ampersand D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D ampersand D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA

  11. Oak Ridge National Laboratory's isotope enrichment program

    International Nuclear Information System (INIS)

    The Isotope Enrichment Program (IEP) at Oak Ridge National Laboratory (ORNL) is responsible for the production and distribution of ∼225 enriched stable isotopes from 50 multi-isotopic elements. In addition, ORNL distributes enriched actinide isotopes and provides extensive physical- and chemical-form processing of enriched isotopes to meet customer requirements. For more than 50 yr, ORNL has been a major provider of enriched isotopes and isotope-related services to research, medical, and industrial institutions throughout the world. Consolidation of the Isotope Distribution Office (IDO), the Isotope Research Materials Laboratory (IRML), and the stable isotope inventories in the Isotope Enrichment Facility (IEF) have improved operational efficiencies and customer services. Recent changes in the IEP have included adopting policies for long-term contracts, which offer program stability and pricing advantages for the customer, and prorated service charges, which greatly improve pricing to the small research users. The former U.S. Department of Energy (DOE) Loan Program has been converted to a lease program, which makes large-quantity or very expensive isotopes available for nondestructive research at a nominal cost. Current efforts are being pursued to improve and expand the isotope separation capabilities as well as the extensive chemical- and physical-form processing that now exists. The IEF's quality management system is ISO 9002 registered and accredited in the United States, Canada, and Europe

  12. Idaho National Laboratory Site Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Jenifer Nordstrom

    2014-02-01

    This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Nonroutine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

  13. Brookhaven National Laboratory site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, G.L.; Paquette, D.E.; Naidu, J.R.; Lee, R.J.; Briggs, S.L.K.

    1998-01-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1996. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and non-radiological emissions and effluents to the environment.

  14. Power source evaluation capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  15. Oak Ridge National Laboratory institutional plan, FY 1996--FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years. Included in the report are: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory strategic plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; resource projections; appendix which contains data for site and facilities, user facility, science and mathematic education and human resources; and laboratory organization chart.

  16. Cost and schedule estimate to construct the tunnel and shaft remedial shielding concept, Los Alamos Meson Physics Facility, Los Alamos National Laboratory, Los Alamos, New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-30

    The report provides an estimate of the cost and associated schedule to construct the tunnel and shaft remedial shielding concept. The cost and schedule estimate is based on a preliminary concept intended to address the potential radiation effects on Line D and Line Facilities in event of a beam spill. The construction approach utilizes careful tunneling methods based on available excavation and ground support technology. The tunneling rates and overall productivity on which the cost and project schedule are estimated are based on conservative assumptions with appropriate contingencies to address the uncertainty associated with geological conditions. The report is intended to provide supplemental information which will assist in assessing the feasibility of the tunnel and shaft concept and justification for future development of this particular aspect of remedial shielding for Line D and Line D Facilities.

  17. Simulation information regarding Sandia National Laboratories%3CU%2B2019%3E trinity capability improvement metric.

    Energy Technology Data Exchange (ETDEWEB)

    Agelastos, Anthony Michael; Lin, Paul T.

    2013-10-01

    Sandia National Laboratories, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory each selected a representative simulation code to be used as a performance benchmark for the Trinity Capability Improvement Metric. Sandia selected SIERRA Low Mach Module: Nalu, which is a uid dynamics code that solves many variable-density, acoustically incompressible problems of interest spanning from laminar to turbulent ow regimes, since it is fairly representative of implicit codes that have been developed under ASC. The simulations for this metric were performed on the Cielo Cray XE6 platform during dedicated application time and the chosen case utilized 131,072 Cielo cores to perform a canonical turbulent open jet simulation within an approximately 9-billion-elementunstructured- hexahedral computational mesh. This report will document some of the results from these simulations as well as provide instructions to perform these simulations for comparison.

  18. Lawrence Livermore National Laboratory Environmental Report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H E; Bertoldo, N A; Campbell, C G; Cerruti, S J; Coty, J D; Dibley, V R; Doman, J L; Grayson, A R; MacQueen, D H; Wegrecki, A M; Armstrong, D H; Brigdon, S L; Heidecker, K R; Hollister, R K; Khan, H N; Lee, G S; Nelson, J C; Paterson, L E; Salvo, V J; Schwartz, W W; Terusaki, S H; Wilson, K R; Woods, J M; Yimbo, P O; Gallegos, G M; Terrill, A A; Revelli, M A; Rosene, C A; Blake, R G; Woollett, J S; Kumamoto, G

    2011-09-14

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff

  19. Fifty-one years of Los Alamos Spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-04

    From 1963 to 2014, the Los Alamos National Laboratory was involved in at least 233 spacecraft. There are probably only one or two institutions in the world that have been involved in so many spacecraft. Los Alamos space exploration started with the Vela satellites for nuclear test detection, but soon expanded to ionospheric research (mostly barium releases), radioisotope thermoelectric generators, solar physics, solar wind, magnetospheres, astrophysics, national security, planetary physics, earth resources, radio propagation in the ionosphere, and cubesats. Here, we present a list of the spacecraft, their purpose, and their launch dates for use during RocketFest

  20. Transportation Deployment; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    Automakers, commercial fleet operators, component manufacturers, and government agencies all turn to the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) to help put more green vehicles on the road. The lab’s independent analysis and evaluation pinpoint fuel-efficient and low-emission strategies to support economic and operational goals, while breaking down barriers to widespread adoption. Customized assessment of existing equipment and practices, energy-saving alternatives, operational considerations, and marketplace realities factor in the multitude of variables needed to ensure meaningful performance, financial, and environmental benefits. NREL provides integrated, unbiased, 360-degree sustainable transportation deployment expertise encompassing alternative fuels, advanced vehicles, and related infrastructure. Hands-on support comes from technical experts experienced in advanced vehicle technologies, fleet operations, and field data collection coupled with extensive modeling and analysis capabilities. The lab’s research team works closely with automakers and vehicle equipment manufacturers to test, analyze, develop, and evaluate high-performance fuel-efficient technologies that meet marketplace needs.

  1. Sandia National Laboratories Medical Isotope Reactor concept.

    Energy Technology Data Exchange (ETDEWEB)

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-04-01

    This report describes the Sandia National Laboratories Medical Isotope Reactor and hot cell facility concepts. The reactor proposed is designed to be capable of producing 100% of the U.S. demand for the medical isotope {sup 99}Mo. The concept is novel in that the fuel for the reactor and the targets for the {sup 99}Mo production are the same. There is no driver core required. The fuel pins that are in the reactor core are processed on a 7 to 21 day irradiation cycle. The fuel is low enriched uranium oxide enriched to less than 20% {sup 235}U. The fuel pins are approximately 1 cm in diameter and 30 to 40 cm in height, clad with Zircaloy (zirconium alloy). Approximately 90 to 150 fuel pins are arranged in the core in a water pool {approx}30 ft deep. The reactor power level is 1 to 2 MW. The reactor concept is a simple design that is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days. The fuel fabrication, reactor design and operation, and {sup 99}Mo production processing use well-developed technologies that minimize the technological and licensing risks. There are no impediments that prevent this type of reactor, along with its collocated hot cell facility, from being designed, fabricated, and licensed today.

  2. Vircator studies at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    A high power, pulsed microwave generator is in operation of Lawrence Livermore National Laboratory. The microwave source uses a Virtual Cathode Oscillator (VIRCATOR) which is driven by a 500 kV, 11 ohm electron beam diode. In a VIRCATOR, an electron beam, having a current well above the space charge limiting current, is injected into a drift tube. A virtual cathode forms due to the electron space charge and electrons are reflected back towards the diode. This action couples electron energy into microwave energy. At present, the authors have obtained a microwave output of 600 MW in the range of 5.5 GHz to 15 GHz (an efficiency of 2.5%) and 300 MW between 6.75 and 7.25 GHz. Microwave diagnostics include a calorimeter for power measurements and D field probes for frequency measurements. Diagnostics are calibrated using a low power CW microwave source. In order to further understand basic VIRCATOR operation, tests are being done to determine the effects of beam emittance, beam voltage and anode material on the microwave frequency spectrum and power output

  3. Geothermal materials development at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E. [Brookhaven National Lab., Upton, NY (United States)

    1997-12-31

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R&D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O&M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R&D, most of which is performed as cost-shared efforts with U.S. geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  4. Impact of Recent Constraints on Intellectual Freedom on Science and Technology at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, J

    2000-11-12

    The Lawrence Livermore National Laboratory (LLNL) was created in 1952 to meet the nation's need for an expanded nuclear weapons research and development (R&D) capability. LLNL quickly grew to become a full-fledged nuclear weapons design laboratory with a broad range of technical capabilities similar to those of our sister laboratory--Los Alamos--with which we shared mission responsibilities. By its very nature, nuclear weapons R&D requires some of the most advanced science and technology (S&T). Accordingly, there is an obvious need for careful attention to ensure that appropriate security measures exist to deal with the sensitive aspects of nuclear weapons development. The trade-off between advancing S&T at the Laboratory and the need for security is a complex issue that has always been with us, As Edward Teller noted in a recent commentary in a May, 1999 editorial in the New York Times: ''The reaction of President Harry Truman to the leaking of information is well known. He imposed no additional measures for security. Instead, we have clear knowledge that the disclosures by (Klaus) Fuchs caused Truman to call for accelerated work on all aspects of nuclear weapons. The right prescription for safety is not reaction to dangers that are arising, but rather action leading to more knowledge and, one hopes, toward positive interaction between nations.'' To explore the issue of intellectual freedom at a national security laboratory such as LLNL, one must understand the type of activities we pursue and how our research portfolio has evolved since the Laboratory was established. Our mission affects the workforce skills, capabilities, and security measures that the Laboratory requires. The national security needs of the US have evolved, along with the S&T community in which the Laboratory resides and to which it contributes. These factors give rise to a greater need for the Laboratory to interact with universities, industry, and other national

  5. Partnering at the National Laboratories: Catalysis as a Case Study

    Energy Technology Data Exchange (ETDEWEB)

    JACKSON,NANCY B.

    1999-09-14

    The role of the national laboratories, particularly the defense program laboratories, since the end of the cold war, has been a topic of continuing debate. The relationship of national laboratories to industry spurred debate which ranged from designating the labs as instrumental to maintaining U.S. economic competitiveness to concern over the perception of corporate welfare to questions regarding the industrial globalization and the possibility of U.S. taxpayer dollars supporting foreign entities. Less debated, but equally important, has been the national laboratories' potential competition with academia for federal research dollars and discussions detailing the role of each in the national research enterprise.

  6. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Todd Randall [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Virginia Latta [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  7. Idaho National Engineering Laboratory: Annual report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The INEL underwent a year of transition in 1986. Success with new business initiatives, the prospects of even better things to come, and increased national recognition provided the INEL with a glimpse of its promising and exciting future. Among the highlights were: selection of the INEL as the preferred site for the Special Isotope Separation Facility (SIS); the first shipments of core debris from the Three Mile Island Unit 2 reactor to the INEL; dedication of three new facilities - the Fluorinel Dissolution Process, the Remote Analytical Laboratory, and the Stored Waste Experimental Pilot Plant; groundbreaking for the Fuel Processing Restoration Facility; and the first IR-100 award won by the INEL, given for an innovative machine vision system. The INEL has been assigned project management responsibility for the SDI Office-sponsored Multimegawatt Space Reactor and the Air Force-sponsored Multimegawatt Terrestrial Power Plant Project. New Department of Defense initiatives have been realized in projects involving development of prototype defense electronics systems, materials research, and hazardous waste technology. While some of our major reactor safety research programs have been completed, the INEL continues as a leader in advanced reactor technologies development. In April, successful tests were conducted for the development of the Integral Fast Reactor. Other 1986 highlights included the INEL's increased support to the Office of Civilian Radioactive Waste Management for complying with the Nuclear Waste Policy Act of 1982. Major INEL activities included managing a cask procurement program, demonstrating fuel assembly consolidation, and testing spent fuel storage casks. In addition, the INEL supplied the Tennessee Valley Authority with management and personnel experienced in reactor technology, increased basic research programs at the Idaho Research Center, and made numerous outreach efforts to assist the economies of Idaho communities.

  8. Idaho National Engineering Laboratory: Annual report, 1986

    International Nuclear Information System (INIS)

    The INEL underwent a year of transition in 1986. Success with new business initiatives, the prospects of even better things to come, and increased national recognition provided the INEL with a glimpse of its promising and exciting future. Among the highlights were: selection of the INEL as the preferred site for the Special Isotope Separation Facility (SIS); the first shipments of core debris from the Three Mile Island Unit 2 reactor to the INEL; dedication of three new facilities - the Fluorinel Dissolution Process, the Remote Analytical Laboratory, and the Stored Waste Experimental Pilot Plant; groundbreaking for the Fuel Processing Restoration Facility; and the first IR-100 award won by the INEL, given for an innovative machine vision system. The INEL has been assigned project management responsibility for the SDI Office-sponsored Multimegawatt Space Reactor and the Air Force-sponsored Multimegawatt Terrestrial Power Plant Project. New Department of Defense initiatives have been realized in projects involving development of prototype defense electronics systems, materials research, and hazardous waste technology. While some of our major reactor safety research programs have been completed, the INEL continues as a leader in advanced reactor technologies development. In April, successful tests were conducted for the development of the Integral Fast Reactor. Other 1986 highlights included the INEL's increased support to the Office of Civilian Radioactive Waste Management for complying with the Nuclear Waste Policy Act of 1982. Major INEL activities included managing a cask procurement program, demonstrating fuel assembly consolidation, and testing spent fuel storage casks. In addition, the INEL supplied the Tennessee Valley Authority with management and personnel experienced in reactor technology, increased basic research programs at the Idaho Research Center, and made numerous outreach efforts to assist the economies of Idaho communities

  9. Environmental surveillance at Los Alamos during 1995

    International Nuclear Information System (INIS)

    This report describes the environmental surveillance program at Los Alamos National Laboratory (LANL or the Laboratory) during 1995. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring result to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1995 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, Laboratory employees, or the environment

  10. Environmental surveillance at Los Alamos during 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory (LANL or the Laboratory) during 1995. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring result to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1995 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, Laboratory employees, or the environment.

  11. 60 Years of Great Science (Oak Ridge National Laboratory)

    Science.gov (United States)

    2003-01-01

    This issue of Oak Ridge National Laboratory Review (vol. 36, issue 1) highlights Oak Ridge National Laboratory's contributions in more than 30 areas of research and related activities during the past 60 years and provides glimpses of current activities that are carrying on this heritage.

  12. National Bio-fuel Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jezierski, Kelly

    2010-12-27

    The National Biofuel Energy Laboratory or NBEL was a consortia consisting of non-profits, universities, industry, and OEM’s. NextEnergy Center (NEC) in Detroit, Michigan was the prime with Wayne State University as the primary subcontractor. Other partners included: Art Van Furniture; Biodiesel Industries Inc. (BDI); Bosch; Clean Emission Fluids (CEF); Delphi; Oakland University; U.S. TARDEC (The Army); and later Cummins Bridgeway. The program was awarded to NextEnergy by U.S. DOE-NREL on July 1, 2005. The period of performance was about five (5) years, ending June 30, 2010. This program was executed in two phases: 1.Phase I focused on bench-scale R&D and performance-property-relationships. 2.Phase II expanded those efforts into further engine testing, emissions testing, and on-road fleet testing of biodiesel using additional types of feedstock (i.e., corn, and choice white grease based). NextEnergy – a non-profit 501(c)(3) organization based in Detroit was originally awarded a $1.9 million grant from the U.S. Dept. of Energy for Phase I of the NBEL program. A few years later, NextEnergy and its partners received an additional $1.9MM in DOE funding to complete Phase II. The NBEL funding was completely exhausted by the program end date of June 30, 2010 and the cost share commitment of 20% minimum has been exceeded nearly two times over. As a result of the work performed by the NBEL consortia, the following successes were realized: 1.Over one hundred publications and presentations have been delivered by the NBEL consortia, including but not limited to: R&D efforts on algae-based biodiesel, novel heterogeneous catalysis, biodiesel properties from a vast array of feedstock blends, cold flow properties, engine testing results (several Society of Automotive Engineers [SAE] papers have been published on this research), emissions testing results, and market quality survey results. 2.One new spinoff company (NextCAT) was formed by two WSU Chemical Engineering professors

  13. Californium Electrodepositions at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boll, Rose Ann [ORNL

    2015-01-01

    Electrodepositions of californium isotopes were successfully performed at Oak Ridge National Laboratory (ORNL) during the past year involving two different types of deposition solutions, ammonium acetate (NH4C2H3O2) and isobutanol ((CH3)2CHCH2OH). A californium product that was decay enriched in 251Cf was recovered for use in super-heavy element (SHE) research. This neutron-rich isotope, 251Cf, provides target material for SHE research for the potential discovery of heavier isotopes of Z=118. The californium material was recovered from aged 252Cf neutron sources in storage at ORNL. These sources have decayed for over 30 years, thus providing material with a very high 251Cf-to-252Cf ratio. After the source capsules were opened, the californium was purified and then electrodeposited using the isobutanol method onto thin titanium foils for use in an accelerator at the Joint Institute for Nuclear Research in Dubna, Russia. Another deposition method, ammonium acetate, was used to produce a deposition containing 1.7 0.1 Ci of 252Cf onto a stainless steel substrate. This was the largest single electrodeposition of 252Cf ever prepared. The 252Cf material was initially purified using traditional ion exchange media, such as AG50-AHIB and AG50-HCl, and further purified using a TEVA-NH4SCN system to remove any lanthanides, resulting in the recovery of 3.6 0.1 mg of purified 252Cf. The ammonium acetate deposition was run with a current of 1.0 amp, resulting in a 91.5% deposition yield. Purification and handling of the highly radioactive californium material created additional challenges in the production of these sources.

  14. Idaho National Laboratory Site Pollution Prevention Plan

    Energy Technology Data Exchange (ETDEWEB)

    E. D. Sellers

    2007-03-01

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively

  15. Idaho National Laboratory Site Pollution Prevention Plan

    International Nuclear Information System (INIS)

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively

  16. Pacific Northwest National Laboratory Institutional Plan FY 2004-2008

    Energy Technology Data Exchange (ETDEWEB)

    Quadrel, Marilyn J.

    2004-04-15

    This Institutional Plan for FY 2004-2008 is the principal annual planning document submitted to the Department of Energy's Office of Science by Pacific Northwest National Laboratory in Richland, Washington. This plan describes the Laboratory's mission, roles, and technical capabilities in support of Department of Energy priorities, missions, and plans. It also describes the Laboratory strategic plan, key planning assumptions, major research initiatives, and program strategy for fundamental science, energy resources, environmental quality, and national security.

  17. ELECTRONICS UPGRADE TO THE SAVANNAH RIVER NATIONAL LABORATORY COULOMETER FOR PLUTONIUM AND NEPTUNIUM ASSAY

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, J.; Holland, M.; Reeves, G.; Nichols, S.; Kruzner, A.

    2011-07-08

    The Savannah River Site (SRS) has the analytical measurement capability to perform high-precision plutonium concentration measurements by controlled-potential coulometry. State-of-the-art controlled-potential coulometers were designed and fabricated by the Savannah River National Laboratory and installed in the Analytical Laboratories process control laboratory. The Analytical Laboratories uses coulometry for routine accountability measurements of and for verification of standard preparations used to calibrate other plutonium measurement systems routinely applied to process control, nuclear safety, and other accountability applications. The SRNL Coulometer has a demonstrated measurement reliability of {approx}0.05% for 10 mg samples. The system has also been applied to the characterization of neptunium standard solutions with a comparable reliability. The SRNL coulometer features: a patented current integration system; continuous electrical calibration versus Faraday's Constants and Ohm's Law; the control-potential adjustment technique for enhanced application of the Nernst Equation; a wide operating room temperature range; and a fully automated instrument control and data acquisition capability. Systems have been supplied to the International Atomic Energy Agency (IAEA), Russia, Japanese Atomic Energy Agency (JAEA) and the New Brunswick Laboratory (NBL). The most recent vintage of electronics was based on early 1990's integrated circuits. Many of the components are no longer available. At the request of the IAEA and the Department of State, SRNL has completed an electronics upgrade of their controlled-potential coulometer design. Three systems have built with the new design, one for the IAEA which was installed at SAL in May 2011, one system for Los Alamos National Laboratory, (LANL) and one for the SRS Analytical Laboratory. The LANL and SRS systems are undergoing startup testing with installation scheduled for this summer.

  18. Progress at LAMPF [Los Alamos Meson Physics Facility], January-December 1987

    International Nuclear Information System (INIS)

    This report is the annual progress report of MP Division of the Los Alamos National Laboratory. Included are brief reports on research done at LAMPF by researchers from other institutions and other Los Alamos Divisions. These reports included the following topics: Nuclear and particle physics; Atomic and molecular physics; Materials science; Radiation-effects studies; Biomedical research and instrumentation; Nuclear chemistry; Radioisotope production and accelerator facilities development and operation

  19. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.

    2000-10-01

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure success in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.

  20. Establishment of national laboratory standards in public and private hospital laboratories.

    Science.gov (United States)

    Anjarani, Soghra; Safadel, Nooshafarin; Dahim, Parisa; Amini, Rana; Mahdavi, Saeed; Mirab Samiee, Siamak

    2013-01-01

    In September 2007 national standard manual was finalized and officially announced as the minimal quality requirements for all medical laboratories in the country. Apart from auditing laboratories, Reference Health Laboratory has performed benchmarking auditing of medical laboratory network (surveys) in provinces. 12(th) benchmarks performed in Tehran and Alborz provinces, Iran in 2010 in three stages. We tried to compare different processes, their quality and accordance with national standard measures between public and private hospital laboratories. The assessment tool was a standardized checklist consists of 164 questions. Analyzing process show although in most cases implementing the standard requirements are more prominent in private laboratories, there is still a long way to complete fulfillment of requirements, and it takes a lot of effort. Differences between laboratories in public and private sectors especially in laboratory personnel and management process are significant. Probably lack of motivation, plays a key role in obtaining less desirable results in laboratories in public sectors.

  1. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  2. Process Modeling and Analysis for Radioactive Solid Waste Management at Los Alamos

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory has created a discrete-event simulation model of the nuclear waste drum characterization operations the 'processing/inspection - Los Alamos model of drums equivalent' (π a la mode). This model takes drum inventory data, process-related information, and planned processing priorities related to the solid-waste management operations at Los Alamos to assess the resulting characterization process and resulting schedule for drum shipments to the Waste Isolation Pilot Plant. The model tracks the drum inventory, material inventory, and equipment as a function of time. Data from the model and some sample results are presented in this paper. (authors)

  3. Prioritization methodology using hazard analysis results at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sasser, M.K.; Hall, M.; Stack, D. [Los Alamos National Lab., NM (United States); Brooks, D.G. [Arizona State Univ. (United States)

    1995-09-01

    Risk management activities, such as prioritizing risk-reducing projects, often are commissioned for facilities as special tasks supported by special task forces and conducted independently of other on-going risk assessment and risk management activities. Many DOE facilities have completed hazard analyses (HAs) as part of their efforts to upgrade their SARs to meet the new DOE standard that was issued in 1994. Although a complete SAR would contain more resource allocation information than the HA, the HA usually is completed before the SAR. This paper describes how SAR results, and particularly HA results, can be used directly to support managers` risk-based prioritization of project funding. This can reduce the time to conduct prioritization modeling, increase the quality of the results, and, perhaps most importantly, integrate the results into the on-going risk management activities of the site.

  4. Evaluation of Tower Shadowing on Anemometer Measurements at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-14

    The objective of this study is to evaluate the effect of tower shadowing from the meteorology towers at LANL during 2014. This study is in response to the Department of Energy Meteorological Coordinating Council visit in 2015 that recommended an evaluation of any biases in the wind data introduced by the tower and boom alignment at all meteorology towers.

  5. Analyze imagery and other data collected at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    David, N. [Environmental Research Institute of Michigan, Santa Fe, NM (United States); Ginsberg, I. [Environmental Research Institute of Michigan, Ann Arbor, MI (United States)

    1995-10-01

    Unfortunately, areas of waste disposal at DOE sites are not all documented and located, There are a number of reasons for this situation: records have been lost or destroyed, the location were not documented, and memories have been lost. The search of large areas at these sites for buried waste and buried-waste containers is a difficult and expensive problem when using conventional, ground-based methods. Typical conventional methods involve the drilling of wells/boreholes (point sampling), and interpolation is required to obtain the needed areal information. Drilling for buried waste is expensive, potentially hazardous, and time-consuming, yet accurate interpolation can require a large number of holes per-unit-area. A similar problem is encountered in gaining current information about: the boundaries of toxic waste plumes in the ground, transport pathways, and the composition and concentration of toxic materials. The purpose of this effort is to analyze existing imagery data collected under various Department of Energy and other programs. This analyses will be useful for screening, characterization, and monitoring work in the waste site remediation process.

  6. Los Alamos National Laboratory corregated metal pipe saw facility preliminary safety analysis report. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-09-19

    This Preliminary Safety Analysis Report addresses site assessment, facility design and construction, and design operation of the processing systems in the Corrugated Metal Pipe Saw Facility with respect to normal and abnormal conditions. Potential hazards are identified, credible accidents relative to the operation of the facility and the process systems are analyzed, and the consequences of postulated accidents are presented. The risk associated with normal operations, abnormal operations, and natural phenomena are analyzed. The accident analysis presented shows that the impact of the facility will be acceptable for all foreseeable normal and abnormal conditions of operation. Specifically, under normal conditions the facility will have impacts within the limits posted by applicable DOE guidelines, and in accident conditions the facility will similarly meet or exceed the requirements of all applicable standards. 16 figs., 6 tabs.

  7. Development of the Los Alamos National Laboratory Plutonium Facility decontamination room

    International Nuclear Information System (INIS)

    For several years the Health Protection Group attempted to remedy the problem of a facility to adequately handle personnel plutonium contamination incidents. Through the efforts of our Quality Circle a presentation was made to management, which immediately appropriated space and funds for the construction of a complete decontamination facility. 9 refs

  8. Los Alamos National Laboratory Modular Pumped Hydro Feasibility Study for Santa Fe Community College

    Energy Technology Data Exchange (ETDEWEB)

    Bibeault, Mark Leonide [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-21

    Report on the Economic Energy Assessment for a community college in Santa Fe, New Mexico. Report shows graphically the demand for energy in the month of September, and illustrates the production of electricity as it goes onto the grid for use.

  9. An analysis of radioactive waste minimization efforts at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Voit, S.L.; Boerigter, S.T.

    1997-09-30

    LANL will be the primary DOE facility for plutonium research and development and plutonium processing. A summary of the currently generated waste types, volumes, generating facilities or programs, and disposal costs are given in this report along with future waste generation projections. Several key existing technologies have been identified that could be introduced to reduce the generated waste at LANL. Four of these are discussed in detail in this report: (1) electrolytic surface decontamination, (2) electrochemical treatment of mixed wastes, (3) Long Range Alpha Detection (LRAD), and (4) Segmented Gate and Containerized Vat Leach System (SGS/CVL). These technologies may be implemented as modifications in upstream processes as well as more efficient volume reduction and segregation. The four technologies are mature enough to be implemented in the next two to three years and can be done so with the support for capital and operational costs. Also discussed in this report is a small sample of some of the recent waste minimization success stories that have been implemented. Several technologies are presented that are either currently being investigated or on hold due to lack of funding at LANL but show potential for making significant gains in waste minimization. This report is intended to provide a review of the waste minimization issues and analysis of the impact of implementing a few of these technologies.

  10. Los Alamos National Laboratory Tritium Technology Deployments Large Scale Demonstration and Deployment Project

    Energy Technology Data Exchange (ETDEWEB)

    McFee, J.; Blauvelt, D.; Stallings, E.; Willms, S.

    2002-02-26

    This paper describes the organization, planning and initial implementation of a DOE OST program to deploy proven, cost effective technologies into D&D programs throughout the complex. The primary intent is to accelerate closure of the projects thereby saving considerable funds and at the same time being protective of worker health and the environment. Most of the technologies in the ''toolkit'' for this program have been demonstrated at a DOE site as part of a Large Scale Demonstration and Deployment Project (LSDDP). The Mound Tritium D&D LSDDP served as the base program for the technologies being deployed in this project but other LSDDP demonstrated technologies or ready-for-use commercial technologies will also be considered. The project team will evaluate needs provided by site D&D project managers, match technologies against those needs and rank deployments using a criteria listing. After selecting deployments the project will purchase the equipment and provide a deployment engineer to facilitate the technology implementation. Other cost associated with the use of the technology will be borne by the site including operating staff, safety and health reviews etc. A cost and performance report will be prepared following the deployment to document the results.

  11. Characterization of radioactive and hazardous waste at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Radioactive and hazardous waste from actinide processing in nuclear facilities must be characterized in order to ensure safe and regulatory compliant disposal. Nondestructive assay techniques are used to determine nuclear material content and analytical chemistry methods are used to establish composition, but these activities are time-consuming and expensive. Regulations allow acceptable knowledge to be used in order to reduce analytical requirements, provided the integrity of documentation can be demonstrated. The viability of the program is based upon record management and traceability and must withstand the rigors of audit. Electronic inventory and data-gathering systems are implemented to reduce record management and reporting burdens. (author)

  12. 2007 Los Alamos National Laboratory Annual Illness and Injury Surveillance Report

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

    2009-06-30

    The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  13. 2006 Los Alamos National Laboratory Annual Illness and Injury Surveillance Report

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

    2008-06-13

    The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.

  14. Experimental Studies of Engineered Barrier Systems Conducted at Los Alamos National Laboratory (FY16)

    Energy Technology Data Exchange (ETDEWEB)

    Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Norskog, Katherine Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maner, James [Univ. of Oklahoma, Norman, OK (United States). School of Geology and Geophysics; Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Palaich, Sarah [Univ. of California, Los Angeles, CA (United States). Dept. of Earth, Planetary, and Space Sciences; Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cheshire, Michael C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-04

    Over the past five years the Used Fuel Campaign has investigated Engineered Barrier Systems (EBS) at higher heat loads (up to 300 ̊C) and pressure (150 bar). This past year experimental work was hindered due to a revamping of the hydrothermal lab. Regardless, two experiments were run this past year, EBS-18 and EBS-19. EBS-18 was run using Low Carbon Steel (LCS) and opalinus clay in addition to the bentonite and opalinus brine. Many of the past results were confirmed in EBS-18 such as the restriction of illite formation due to the bulk chemistry, pyrite degradation, and zeolite formation dependent on the bentonite and opalinus clay. The LCS show vast amounts of pit corrosion over 100μm of corrosion in six weeks, leading a corrosion rate of 1083 μm/year. In addition, a mineral goethite, an iron bearing hydroxide, formed in the pits of the LCS. Preliminary results from EBS-19 water chemistry are included but SEM imaging, micro probe and XRD are still needed for further results. Copper corrosion was investigated further and over 850 measurements were taken. It was concluded that pitting and pyrite degradation drastically increase the corrosion rate from 0.12 to 0.39 μm/day. However, the growth of a layer of the mineral chalcocite is thought to subdue the corrosion rate to 0.024 μm/day as observed in the EBS-13 a sixth month experiment. This document presents the findings of this past year.

  15. Future directions in controlling the LAMPF-PSR accelerator complex at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Four interrelated projects are underway whose purpose is to migrate the LAMPF-PSR Accelerator Complex control systems to a system with a common set of hardware and software components. Project goals address problems in performance, maintenance and growth potential. Front-end hardware, operator interface hardware and software, computer systems, network systems and data system software are being simultaneously upgraded as part of these efforts. The efforts are being coordinated to provide for a smooth and timely migration to a client-server model-based data acquisition and control system. An increased use of distributed intelligence at both the front-end and the operator interface is a key element of the projects. (author)

  16. Future directions in controlling the LAMPF-PSR Accelerator Complex at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Four interrelated projects are underway whose purpose is to migrate the LAMPF-PSR Accelerator Complex control systems to a system with a common set of hardware and software components. Project goals address problems in performance, maintenance and growth potential. Front-end hardware, operator interface hardware and software, computer systems, network systems and data system software are being simultaneously upgraded as part of these efforts. The efforts are being coordinated to provide for a smooth and timely migration to a client-sever model-based data acquisition and control system. An increased use of the distributed intelligence at both the front-end and operator interface is a key element of the projects. 2 refs., 2 figs

  17. Next Generation Safeguards Initiative Efforts at Los Alamos National Laboratory: Developing Our Human Capital FY2015

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Rebecca S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hawkins Erpenbeck, Heather [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    This report documents the accomplishments of the Safeguards HCD Fiscal Year 2015 (FY15) Project Work Plan, highlighting LANL’s work as well as the accomplishments of our NGSI-sponsored students, graduate and postdoctoral fellows, and mid-career professionals during this past year. While fiscal year 2015 has been a year of transition in the Human Capital Development area for LANL, we are working to revitalize our efforts to promote and develop Human Capital in Safeguards and Non-proliferation and are looking forward to implementing new initiatives in the coming fiscal year and continuing to transition the knowledge of staff who have been on assignment at IAEA and Headquarters to improve our support to HCD.

  18. Experimental Studies of Engineered Barrier Systems Conducted at Los Alamos National Laboratory (FY16)

    Energy Technology Data Exchange (ETDEWEB)

    Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Norskog, Katherine Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maner, James [Univ. of Oklahoma, Norman, OK (United States). School of Geology and Geophysics; Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Palaich, Sarah [Univ. of California, Los Angeles, CA (United States). Dept. of Earth, Planetary, and Space Sciences; Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cheshire, Michael C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-04

    Over the past five years the Used Fuel Campaign has investigated Engineered Barrier Systems (EBS) at higher heat loads (up to 300°C) and pressure (150 bar). This past year experimental work was hindered due to a revamping of the hydrothermal lab. Regardless, two experiments were run this past year, EBS-18 and EBS-19. EBS-18 was run using Low Carbon Steel (LCS) and opalinus clay in addition to the bentonite and opalinus brine. Many of the past results were confirmed in EBS-18 such as the restriction of illite formation due to the bulk chemistry, pyrite degradation, and zeolite formation dependent on the bentonite and opalinus clay. The LCS show vast amounts of pit corrosion over 100μm of corrosion in six weeks, leading a corrosion rate of 1083 μm/year. In addition, a mineral goethite, an iron bearing hydroxide, formed in the pits of the LCS. Preliminary results from EBS-19 water chemistry are included but SEM imaging, micro probe and XRD are still needed for further results. Copper corrosion was investigated further and over 850 measurements were taken. It was concluded that pitting and pyrite degradation drastically increase the corrosion rate from 0.12 to 0.39 μm/day. However, the growth of a layer of the mineral chalcocite is thought to subdue the corrosion rate to 0.024 μm/day as observed in the EBS-13 a sixth month experiment. This document presents the findings of this past year.

  19. 2016 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Runnels, Scott Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bachrach, Harrison Ian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carlson, Nils [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Collier, Angela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dumas, William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fankell, Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ferris, Natalie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzalez, Francisco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Griffith, Alec [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guston, Brandon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kenyon, Connor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Benson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mookerjee, Adaleena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parkinson, Christian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peck, Hailee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peters, Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poondla, Yasvanth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, Brandon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shaffer, Nathaniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trettel, Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Valaitis, Sonata Mae [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Venzke, Joel Aaron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Black, Mason [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Demircan, Samet [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holladay, Robert Tyler [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-22

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transport and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it.

  20. 2015 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Runnels, Scott Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caldwell, Wendy [Arizona State Univ., Mesa, AZ (United States); Brown, Barton Jed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pederson, Clark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Justin [Univ. of California, Santa Cruz, CA (United States); Burrill, Daniel [Univ. of Vermont, Burlington, VT (United States); Feinblum, David [Univ. of California, Irvine, CA (United States); Hyde, David [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Levick, Nathan [Univ. of New Mexico, Albuquerque, NM (United States); Lyngaas, Isaac [Florida State Univ., Tallahassee, FL (United States); Maeng, Brad [Univ. of Michigan, Ann Arbor, MI (United States); Reed, Richard LeRoy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sarno-Smith, Lois [Univ. of Michigan, Ann Arbor, MI (United States); Shohet, Gil [Univ. of Illinois, Urbana-Champaign, IL (United States); Skarda, Jinhie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Josey [Missouri Univ. of Science and Technology, Rolla, MO (United States); Zeppetello, Lucas [Columbia Univ., New York, NY (United States); Grossman-Ponemon, Benjamin [Stanford Univ., CA (United States); Bottini, Joseph Larkin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Loudon, Tyson Shane [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); VanGessel, Francis Gilbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nagaraj, Sriram [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Price, Jacob [Univ. of Washington, Seattle, WA (United States)

    2015-10-15

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transport and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it. This report includes both the background for the program and the reports from the students.

  1. Customer service model for waste tracking at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The goal is to transition from five legacy database systems that have reached end-of-life to a single inventory system that supports workflow, data, and reporting for all waste streams. Plutonium Processing Facility (TA-55) Waste Team provides a high quality system that insures safe, efficient and compliant management of all radioactive and hazardous wastes generated, including waste characterization and repackaging of Transuranic Waste (TRU) and TRU mixed waste for shipment to the Waste Isolation Pilot Plant (WIPP).

  2. Technical Assistance Guide: Working with DOE National Laboratories (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    A fact sheet that provides an overview of FEMP's technical assistance through the Department of Energy's National Laboratories. The Federal Energy Management Program (FEMP) facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. To advance that mission, FEMP fosters collaboration between Federal agencies and U.S. Department of Energy (DOE) national laboratories. This guide outlines technical assistance capabilities and expertise at DOE national laboratories. Any laboratory assistance must be in accordance with Federal Acquisition Regulation (FAR) Subpart 35.017 requirements and the laboratory's designation as Federal Funded Research and Development Center (FFRDC) facilities.

  3. Accreditation of testing laboratories in CNEA (National Atomic Energy Commission)

    International Nuclear Information System (INIS)

    The recognition of the technical capability of a testing laboratory is carried out by Laboratory Accreditation Bodies as the result of a satisfactory evaluation and the systematic follow up of the certified qualification. In Argentina the creation of a National Center for the Accreditation of Testing Laboratories, as a first step to assess a National Accreditation System is currently projected. CNEA, as an institution involved in technological projects and in the development and production of goods and services, has adopted since a long time ago quality assurance criteria. One of their requirements is the qualification of laboratories. Due to the lack of a national system, a Committee for the Qualification of Laboratories was created jointly by the Research and Development and Nuclear Fuel Cycle Areas with the responsibility of planning and management of the system evaluation and the certification of the quality of laboratories. The experience in the above mentioned topics is described in this paper. (author)

  4. Environmental surveillance at Los Alamos during 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kohen, K.; Stoker, A.; Stone, G. [and others

    1994-07-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory during 1992. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring results to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1992 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, laboratory employees, or the environment.

  5. Environmental surveillance at Los Alamos during 1985

    International Nuclear Information System (INIS)

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1985. Routine monitoring for radiation and radioactive or chemical substances is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of possible undesirable trends. Results and interpretation of data for 1985 cover: external penetrating radiation; chemical and radiochemical quality of ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; quantities of airborne emissions and liquid effluents; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels from natural or other non-Laboratory sources provide the basis for concluding that environmental effects attributable to Laboratory operations are insignificant and are not considered hazardous to the population of the area or Laboratory employees

  6. Environmental surveillance at Los Alamos during 1983

    International Nuclear Information System (INIS)

    This report documents the environmental surveillance program conducted by the Los Alamos National Laboratory during 1983. Routine monitoring for radiation and radioactive or chemical substances is conducted on the Laboratory site and in the surrounding region to determine compliance with appropriate standards and permit early identification of possible undesirable trends. Results and interpretation of data for 1983 are included on external penetrating radiation; on the chemical and radiochemical quality of ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and on the quantities of airborne emissions and liquid effluents. Comparisons with appropriate standards, regulations, and background levels from natural or other non-Laboratory sources provide a basis for concluding that environmental effects attributable to Laboratory operations are insignificant and are not considered hazardous to the population of the area of Laboratory employees. 61 references, 34 figures, 22 tables

  7. Environmental surveillance at Los Alamos during 1981

    International Nuclear Information System (INIS)

    This report documents the environmental surveillance program conducted by the Los Alamos National Laboratory during 1981. Routine monitoring for radiation and radioactive or chemical substances is conducted on the Laboratory site and in the surrounding region to determine compliance with appropriate standards and permit early identification of possible undesirable trends. Results and interpretation of data for 1981 are included on penetrating radiation; on the chemical and radiochemical quality of ambient air, surface and ground water, municipal water supply, soil and sediments, and food; and on the quantities of airborne emissions and liquid effluents. Comparisons with appropriate standards and regulations or with background levels from natural or other non-Laboratory sources provide a basis for concluding that environmental effects attributable to Laboratory operations are insignificant and are not considered hazardous to the population of the area. Results of several special studies describe some unique environmental conditions in the Laboratory environs

  8. Environmental surveillance at Los Alamos during 1992

    International Nuclear Information System (INIS)

    This report describes the environmental surveillance program at Los Alamos National Laboratory during 1992. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring results to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1992 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, laboratory employees, or the environment

  9. Environmental surveillance at Los Alamos during 1984

    International Nuclear Information System (INIS)

    This report describes the environmental surveillance program conducted by the Los Alamos National Laboratory during 1984. Routine monitoring for radiation and radioactive or chemical substances is conducted on the Laboratory site and in the surrounding region to determine compliance with appropriate standards and permit early identification of possible undesirable trends. Results and interpretation of data for 1984 are included on external penetrating radiation; on the chemical and radiochemical quality of ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and on the quantities of airborne emissions and liquid effluents. Comparisons with appropriate standards, regulations, and background levels from natural or other non-Laboratory sources provide a basis for concluding that environmental effects attributable to Laboratory operations are insignificant and are not considered hazardous to the population of the area or Laboratory employees. 8 refs., 38 figs., 57 tabs

  10. Result of China National Accreditation for Laboratories Achieving Good Credit

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ With the efforts of the past 10 years, the accreditation system for laboratories, which is complete in range, integrate on function and normative on operation, has been set up in China, and has achieved good reputation home and abroad. The result of laboratories accreditation is widely admitted and used in the international. Since the China national accreditation system for laboratories entering the international multilateral mutual recognition arrangement, the accreditation for laboratories has been playing an increasingly important role in the international trade. The testing result provided by the accreditation laboratories is required by many international-famous enterprises when they purchase in China, and there have been 37 economic systems admitting the result of China national accreditation for laboratories. More and more governmental departments require using accreditation for laboratories in the administrative management and law enforcement.

  11. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories' operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment

  12. Ice Cores of the National Ice Core Laboratory

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. National Ice Core Laboratory (NICL) is a facility for storing, curating, and studying ice cores recovered from the polar regions of the world. It provides...

  13. Former Fermilab boss to lead Lawrence Berkeley National Laboratory

    Science.gov (United States)

    Gwynne, Peter

    2016-03-01

    Particle physicist Michael Witherell - current vice-chancellor for research at the University of California, Santa Barbara (UCSB) - has been appointed the next director of the Lawrence Berkeley National Laboratory (LBL).

  14. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Culp, T.; Cox, W.; Hwang, H.; Irwin, M.; Jones, A.; Matz, B.; Molley, K.; Rhodes, W.; Stermer, D.; Wolff, T.

    1993-09-01

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories` operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment.

  15. NATIONAL ENVIRONMENTAL LABORATORY ACCREDITATION CONFERENCE (NELAC): CONSTITUTION, BYLAWS, AND STANDARDS

    Science.gov (United States)

    The principles and operating procedures for the National Environmental Laboratory Accreditation Conference (NELAC) are contained in the NELAC Constitution and Bylaws. The major portion of this document (standards) contains detailed requirements for accrediting environmental labo...

  16. 1993 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    This 1993 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0016 millirem. The total population within a 50-mile (80 kilometer) radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.027 person-rem during 1993 from the laboratories operations, As in the previous year, the 1993 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1

  17. DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

  18. 60 years of great science [Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-01-01

    This issue highlights Oak Ridge National Laboratory's contributions in more than 30 areas of research and related activities during the past 60 years and provides glimpses of current activities that are carrying on this heritage.

  19. 1993 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Culp, T.A.; Cheng, C.F.; Cox, W.; Durand, N.; Irwin, M.; Jones, A.; Lauffer, F.; Lincoln, M.; McClellan, Y.; Molley, K. [and others

    1994-11-01

    This 1993 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0016 millirem. The total population within a 50-mile (80 kilometer) radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.027 person-rem during 1993 from the laboratories operations, As in the previous year, the 1993 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1.

  20. Argonne National Laboratory research offers clues to Alzheimer's plaques

    CERN Multimedia

    2003-01-01

    Researchers from Argonne National Laboratory and the University of Chicago have developed methods to directly observe the structure and growth of microscopic filaments that form the characteristic plaques found in the brains of those with Alzheimer's Disease (1 page).