WorldWideScience

Sample records for alamos life sciences

  1. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G. (comps.)

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  2. Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-08

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, and provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.

  3. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K. (comps.)

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  4. The Los Alamos Science Pillars The Science of Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Joshua E. [Los Alamos National Laboratory; Peterson, Eugene J. [Los Alamos National Laboratory

    2012-09-13

    As a national security science laboratory, Los Alamos is often asked to detect and measure the characteristics of complex systems and to use the resulting information to quantify the system's behavior. The Science of Signatures (SoS) pillar is the broad suite of technical expertise and capability that we use to accomplish this task. With it, we discover new signatures, develop new methods for detecting or measuring signatures, and deploy new detection technologies. The breadth of work at Los Alamos National Laboratory (LANL) in SoS is impressive and spans from the initial understanding of nuclear weapon performance during the Manhattan Project, to unraveling the human genome, to deploying laser spectroscopy instrumentation on Mars. Clearly, SoS is a primary science area for the Laboratory and we foresee that as it matures, new regimes of signatures will be discovered and new ways of extracting information from existing data streams will be developed. These advances will in turn drive the development of sensing instrumentation and sensor deployment. The Science of Signatures is one of three science pillars championed by the Laboratory and vital to supporting our status as a leading national security science laboratory. As with the other two pillars, Materials for the Future and Information Science and Technology for Predictive Science (IS&T), SoS relies on the integration of technical disciplines and the multidisciplinary science and engineering that is our hallmark to tackle the most difficult national security challenges. Over nine months in 2011 and 2012, a team of science leaders from across the Laboratory has worked to develop a SoS strategy that positions us for the future. The crafting of this strategy has been championed by the Chemistry, Life, and Earth Sciences Directorate, but as you will see from this document, SoS is truly an Institution-wide effort and it has engagement from every organization at the Laboratory. This process tapped the insight and

  5. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Wender, Steve [Los Alamos National Laboratory

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  6. The Los Alamos Space Science Outreach (LASSO) Program

    Science.gov (United States)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  7. Life sciences

    Energy Technology Data Exchange (ETDEWEB)

    Day, L. (ed.)

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs. (MHB)

  8. Operational status of the Los Alamos neutron science center (LANSCE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin W [Los Alamos National Laboratory; Erickson, John L [Los Alamos National Laboratory; Schoenberg, Kurt F [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources; the thermal and cold source for the Manuel Lujan Jr. Neutron Scattering Center, the Weapons Neutron Research (WNR) high-energy neutron source, and a pulsed Ultra-Cold Neutron Source. These three sources are the foundation of strong and productive multi-disciplinary research programs that serve a diverse and robust user community. The facility also provides multiplexed beams for the production of medical radioisotopes and proton radiography of dynamic events. The recent operating history of these sources will be reviewed and plans for performance improvement will be discussed, together with the underlying drivers for the proposed LANSCE Refurbishment project. The details of this latter project are presented in a separate contribution.

  9. Priorities and strategies, Los Alamos computer science institute.

    Energy Technology Data Exchange (ETDEWEB)

    Oldehoeft, R. R. (Rodney R.)

    2004-01-01

    On March 18-19, 2002 the Los Alamos Computer Science Institute (LACSI) Executive Committee and Principal Investigators met to discuss methods of addressing issues raised in the 2001 LACSI Contract Review. The body was tasked to develop priorities and strategies to meet future programmatic and LANL computer science needs. A framework was developed to address long-term strategic thrust areas. Specific objectives were called out as near-term priorities. The objectives were folded into the framework to form a coherent planning view. On both April 8-9, 2003 and February 19-20, 2004, the LACSI Executive Committee and Principal Investigators met with senior LANL personnel to revise the framework, priorities, and strategies established at the planning meeting in 2002. The current framework outlines five strategic thrust areas: Components, Systems, Computational Science, Application and System Performance, and Computer Science Community Interaction. This document presents the research vision and implementation strategy in each of these areas. The goal of the component architectures effort is to make application development easier through the use of modular codes that integrate powerful components at a high level of abstraction. Through modularization and the existence of well-defined component boundaries (specified by programming interfaces), components allow scientists and software developers to focus on a their own areas of expertise. For example, components and modern scripting languages enable physicists to program at a high level of abstraction (by composing off-the-shelf components into an application), leaving the development of components to expert programmers. In addition, because components foster a higher level of code reuse, components provide an increased economy of scale, making it possible for resources to be shifted to areas such as performance, testing, and platform dependencies, thus improving software quality, portability, and application performance. A

  10. Los Alamos National Laboratory Science Education Programs. Quarterly progress report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.

    1995-09-01

    This report is quarterly progress report on the Los Alamos National Laboratory Science Education Programs. Included in the report are dicussions on teacher and faculty enhancement, curriculum improvement, student support, educational technology, and institutional improvement.

  11. Lujan at Los Alamos Neutron Science Center (LANSCE)

    Data.gov (United States)

    Federal Laboratory Consortium — The Lujan Neutron Scattering Center (Lujan Center) at Los Alamos National Laboratory is an intense pulsed neutrons source operating at a power level of 80 -100 kW....

  12. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N G; Shea, N [eds.

    1992-01-01

    This article provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  13. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Science.gov (United States)

    Cooper, N. G.; Shea, N. eds.

    1992-01-01

    This document provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  14. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N.G. [ed.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  15. Life Sciences Division annual report, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, B.L.; Cram, L.S. (comps.)

    1989-04-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  16. Los Alamos neutron science user facility - control system risk mitigation & updates

    Energy Technology Data Exchange (ETDEWEB)

    Pieck, Martin [Los Alamos National Laboratory

    2011-01-05

    LANSCE User Facility is seeing continuing support and investments. The investment will sustain reliable facility operations well into the next decade. As a result, the LANSCE User Facility will continue to be a premier Neutron Science Facility at the Los Alamos National Laboratory.

  17. Quantum Man: Richard Feynman's Life in Science

    CERN Document Server

    CERN. Geneva

    2011-01-01

    It took a man who was willing to break all the rules to tame a theory that breaks all the rules. This talk will be based on my new book Quantum Man: Richard Feynman's life in science. I will try and present a scientific overview of the contributions of Richard Feynman, as seen through the arc of his fascinating life. From Quantum Mechanics to Antiparticles, from Rio de Janeiro to Los Alamos, a whirlwind tour will provide insights into the character, life and accomplishments of one of the 20th centuries most important scientists, and provide an object lesson in scientific integrity.

  18. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, D.M.; Boring, A.M. [comps.

    1991-10-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

  19. Los Alamos National Laboratory A National Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, Mark B. [Los Alamos National Laboratory

    2012-07-20

    Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national security challenges.

  20. Science-based stockpile stewardship at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Immele, J. [Los Alamos National Lab., NM (United States)

    1995-10-01

    I would like to start by working from Vic Reis`s total quality management diagram in which he began with the strategy and then worked through the customer requirements-what the Department of Defense (DoD) is hoping for from the science-based stockpile stewardship program. Maybe our customer`s requirements will help guide some of the issues that we should be working on. ONe quick answer to {open_quotes}why have we adopted a science-based strategy{close_quotes} is that nuclear weapons are a 50-year responsibility, not just a 5-year responsibility, and stewardship without testing is a grand challenge. While we can do engineering maintenance and turn over and remake a few things on the short time scale, without nuclear testing, without new weapons development, and without much of the manufacturing base that we had in the past, we need to learn better just how these weapons are actually working.

  1. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER`s mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  2. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  3. Los Alamos National Laboratory Science Education Program. Annual progress report, October 1, 1995--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.H.

    1997-01-01

    The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours for the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.

  4. Life of Science

    DEFF Research Database (Denmark)

    Engelhardt, Robin; Margot Ricard, Lykke

    Learning Lab Denmark, København. 2003 Short description: In connection to the conference Changes and Challenges the White Book "Life of Science" was published. Member states of the European Union as well as applying countries were invited to contribute to the book with texts in order to present...... inspiring cases of concrete educational strategies for improving learning, teaching and recruitment in the fields of science and technology. Abstract: The aim of this white book is to present some of the most inspiring examples of Science and Technology Education in Europe. In creating the white book, we...

  5. Defense, basic, and industrial research at the Los Alamos Neutron Science Center: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Longshore, A.; Salgado, K. [comps.

    1995-10-01

    The Workshop on Defense, Basic, and Industrial Research at the Los Alamos Neutron Science Center gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss the use of neutrons in science-based stockpile stewardship, The workshop began with presentations by government officials, senior representatives from the three weapons laboratories, and scientific opinion leaders. Workshop participants then met in breakout sessions on the following topics: materials science and engineering; polymers, complex fluids, and biomaterials; fundamental neutron physics; applied nuclear physics; condensed matter physics and chemistry; and nuclear weapons research. They concluded that neutrons can play an essential role in science-based stockpile stewardship and that there is overlap and synergy between defense and other uses of neutrons in basic, applied, and industrial research from which defense and civilian research can benefit. This proceedings is a collection of talks and papers from the plenary, technical, and breakout session presentations. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  6. Work flows in life science

    NARCIS (Netherlands)

    Wassink, Ingo

    2010-01-01

    The introduction of computer science technology in the life science domain has resulted in a new life science discipline called bioinformatics. Bioinformaticians are biologists who know how to apply computer science technology to perform computer based experiments, also known as in-silico or dry lab

  7. Commissioning of the upgraded ultracold neutron source at Los Alamos Neutron Science Center

    Science.gov (United States)

    Pattie, Robert; LANL-UCN Team Team

    2016-09-01

    The spallation-driven solid-deuterium ultracold neutron (UCN) source at Los Alamos Neutron Science Center (LANSCE) has provided a facility for precision measurements of fundamental symmetries via the decay observables from neutron beta decay for nearly a decade. In preparation for a new room temperature neutron electric dipole moment (nEDM) experiment and to increase the statistical sensitivity of all experiments using the source an effort to upgrade the existing source has been carried out during 2016. This upgrade includes installing a redesigned cold neutron moderator and with optimized UCN converter geometries, improved coupling and nickel-phosphorus coating of the UCN transport system through the biological shielding, optimization of beam timing structure, and increase of the proton beam current. We will present the result of the commissioning run of the new source.

  8. Space shuttle and life sciences

    Science.gov (United States)

    Mason, J. A.

    1977-01-01

    During the 1980's, some 200 Spacelab missions will be flown on space shuttle in earth-orbit. Within these 200 missions, it is planned that at least 20 will be dedicated to life sciences research, projects which are yet to be outlined by the life sciences community. Objectives of the Life Sciences Shuttle/Spacelab Payloads Program are presented. Also discussed are major space life sciences programs including space medicine and physiology, clinical medicine, life support technology, and a variety of space biology topics. The shuttle, spacelab, and other life sciences payload carriers are described. Concepts for carry-on experiment packages, mini-labs, shared and dedicated spacelabs, as well as common operational research equipment (CORE) are reviewed. Current NASA planning and development includes Spacelab Mission Simulations, an Announcement of Planning Opportunity for Life Sciences, and a forthcoming Announcement of Opportunity for Flight Experiments which will together assist in forging a Life Science Program in space.

  9. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberg, Kurt F [Los Alamos National Laboratory

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  10. Science for Life and Living.

    Science.gov (United States)

    Bybee, Rodger W.; Landes, Nancy M.

    1990-01-01

    Described is an elementary school science program developed by the Biological Sciences Curriculum Study entitled "Science for Life and Living: Integrating Science, Technology and Health." Discussed are the rationale, unifying themes, organization, teaching model, implementation, development, production, and support for this program. (CW)

  11. Upgrades to the ultracold neutron source at the Los Alamos Neutron Science Center

    Science.gov (United States)

    Pattie, Robert; LANL-nEDM Collaboration

    2015-10-01

    The spallation-driven solid deutrium-based ultracold neutron (UCN) source at the Los Alamos Neutron Science Center (LANSCE) has provided a facility for precision measurements of fundamental symmetries via the decay observables from neutron beta decay for nearly a decade. In preparation for a new room temperature neutron electric dipole moment (nEDM) experiment and to increase the statistical sensitivity of all experiments using the source an effort to increase the UCN output is underway. The ultimate goal is to provide a density of 100 UCN/cc or greater in the nEDM storage cell. This upgrade includes redesign of the cold neutron moderator and UCN converter geometries, improved coupling and coating of the UCN transport system through the biological shielding, optimization of beam timing structure, and increase of the proton beam current. We will present the results of the MCNP and UCN transport simulations that led to the new design, which will be installed spring 2016, and UCN guide tests performed at LANSCE and the Institut Laue-Langevin to study the UCN transport properties of a new nickel-based guide coating.

  12. Klystron Modulator Design for the Los Alamos Neutron Science Center Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Reass, William A. [Los Alamos National Laboratory; Baca, David M. [Los Alamos National Laboratory; Partridge, Edward R. [retired; Rees, Daniel E. [Los Alamos National Laboratory

    2012-06-22

    This paper will describe the design of the 44 modulator systems that will be installed to upgrade the Los Alamos Neutron Science Center (LANSCE) accelerator RF system. The klystrons can operate up to 86 kV with a nominal 32 Amp beam current with a 120 Hz repetition rate and 15% duty cycle. The klystrons are a mod-anode design. The modulator is designed with analog feedback control to ensure the klystron beam current is flat-top regulated. To achieve fast switching while maintaining linear feedback control, a grid-clamp, totem-pole modulator configuration is used with an 'on' deck and an 'off' deck. The on and off deck modulators are of identical design and utilize a cascode connected planar triode, cathode driven with a high speed MOSFET. The derived feedback is connected to the planar triode grid to enable the flat-top control. Although modern design approaches suggest solid state designs may be considered, the planar triode (Eimac Y-847B) is very cost effective, is easy to integrate with the existing hardware, and provides a simplified linear feedback control mechanism. The design is very compact and fault tolerant. This paper will review the complete electrical design, operational performance, and system characterization as applied to the LANSCE installation.

  13. Life Sciences and employability

    Directory of Open Access Journals (Sweden)

    Wynand J. Boshoff

    2012-03-01

    Full Text Available This article addresses unemployment in rural areas. South Africa is also characterised by skills shortage and high unemployment figures, especially in rural areas as compared to urban areas. The institutional reality of education is that every rural village hosts a high school which is primarily engaged in preparing learners for further studies, whilst the Further Training Colleges (previously known as technical colleges are mainly located in the larger centres. It is with this scenario as a backdrop that the possible role of high schools to alleviate the problem is being argued. It is clear that rural employers do not expect from school leavers to be in possession of applicable knowledge, but rather to be in possession of the ability as well as certain personal characteristics that would make them employable. Unfortunately, however, this is not always found in young persons who have completed their schooling successfully. Life Sciences educators can render a valuable service should certain nontraditional approaches be incorporated into the teaching practice. This will enable them to contribute to solving one of South Africa’s serious problems.

  14. Physics of the Life Sciences

    CERN Document Server

    Newman, Jay

    2008-01-01

    Originally developed for the author's course at Union College, this text is designed for life science students who need to understand the connections of fundamental physics to modern biology and medicine. Almost all areas of modern life sciences integrally involve physics in both experimental techniques and in basic understanding of structure and function. Physics of the Life Sciences is not a watered-down, algebra-based engineering physics book with sections on relevant biomedical topics added as an afterthought. This authoritative and engaging text, which is designed to be covered in a two-semester course, was written with a thoroughgoing commitment to the needs and interests of life science students. Although covering most of the standard topics in introductory physics in a more or less traditional sequence, the author gives added weight and space to concepts and applications of greater relevance to the life sciences. Students benefit from occasional sidebars using calculus to derive fundamental relations,...

  15. Life Sciences Data Archive (LSDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Life Sciences Data Archive (LSDA) is an active archive that provides information and data from 1961 (Mercury Project) through current flight and flight analog...

  16. Breathing fresh life into life science education.

    Science.gov (United States)

    Martin, Cyrus

    2014-12-15

    In the US, higher education in the life sciences is being overhauled. There is now a move both to change the way we teach biology students, emphasizing more engaging approaches, and to clearly define what it is a student should know. And for advanced degrees, there is a push to prepare students for a range of possible career paths, not just the tenure track. Cyrus Martin reports.

  17. Life Sciences Division and Center for Human Genome Studies 1994

    Energy Technology Data Exchange (ETDEWEB)

    Cram, L.S.; Stafford, C. [comp.

    1995-09-01

    This report summarizes the research and development activities of the Los Alamos National Laboratory`s Life Sciences Division and the biological aspects of the Center for Human Genome Studies for the calendar year 1994. The technical portion of the report is divided into two parts, (1) selected research highlights and (2) research projects and accomplishments. The research highlights provide a more detailed description of a select set of projects. A technical description of all projects is presented in sufficient detail so that the informed reader will be able to assess the scope and significance of each project. Summaries useful to the casual reader desiring general information have been prepared by the group leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  18. Spacelab Life Sciences 1 results

    Science.gov (United States)

    Seddon, Rhea

    1992-01-01

    Results are presented from the experiments conducted by the first Shuttle/Spacelab mission dedicated entirely to the life sciences, the Spacelab Life Sciences 1, launched on June 5, 1991. The experiments carried out during the 9-day flight included investigations of changes in the human cardiovascular, pulmonary, renal/endocrine, blood, and vestibular systems that were brought about by microgravity. Results were also obtained from the preflight and postflight complementary experiments performed on rats, which assessed the suitability of rodents as animal models for humans. Most results verified, or expanded on, the accepted theories of adaptation to zero gravity.

  19. LOS ALAMOS NEUTRON SCIENCE CENTER CONTRIBUTIONS TO THE DEVELOPMENT OF FUTURE POWER REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    GAVRON, VICTOR I. [Los Alamos National Laboratory; HILL, TONY S. [Los Alamos National Laboratory; PITCHER, ERIC J. [Los Alamos National Laboratory; TOVESSON, FREDERIK K. [Los Alamos National Laboratory

    2007-01-09

    The Los Alamos Neutron Science Center (LANSCE) is a large spallation neutron complex centered around an 800 MeV high-currently proton accelerator. Existing facilities include a highly-moderated neutron facility (Lujan Center) where neutrons between thermal and keV energies are produced, and the Weapons Neutron Research Center (WNR), where a bare spallation target produces neutrons between 0.1 and several hundred MeV.The LANSCE facility offers a unique capability to provide high precision nuclear data over a large energy region, including that for fast reactor systems. In an ongoing experimental program the fission and capture cross sections are being measured for a number of minor actinides relevant for Generation-IV reactors and transmutation technology. Fission experiments makes use of both the highly moderated spallation neutron spectrum at the Lujan Center, and the unmoderated high energy spectrum at WNR. By combininb measurements at these two facilities the differential fission cross section is measured relative to the {sup 235}U(n,f) standard from subthermal energies up to about 200 MeV. An elaborate data acquisition system is designed to deal with all the different types of background present when spanning 10 energy decades. The first isotope to be measured was {sup 237}Np, and the results were used to improve the current ENDF/B-VII evaluation. Partial results have also been obtained for {sup 240}Pu and {sup 242}Pu, and the final results are expected shortly. Capture cross sections are measured at LANSCE using the Detector for Advanced Neutron Capture Experiments (DANCE). This unique instrument is highly efficient in detecting radiative capture events, and can thus handle radioactive samples of half-lives as low as 100 years. A number of capture cross sections important to fast reaction applications have been measured with DANCE. The first measurement was on {sup 237}Np(n,{gamma}), and the results have been submitted for publication. Other capture

  20. The Los Alamos, Sandia, and Livermore Laboratories: Integration and collaboration solving science and technology problems for the nation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    More than 40 years ago, three laboratories were established to take on scientific responsibility for the nation`s nuclear weapons - Los Alamos, Sandia, and Livermore. This triad of laboratories has provided the state-of-the-art science and technology to create America`s nuclear deterrent and to ensure that the weapons are safe, secure, and to ensure that the weapons are safe, secure, and reliable. These national security laboratories carried out their responsibilities through intense efforts involving almost every field of science, engineering, and technology. Today, they are recognized as three of the world`s premier research and development laboratories. This report sketches the history of the laboratories and their evolution to an integrated three-laboratory system. The characteristics that make them unique are described and some of the major contributions they have made over the years are highlighted.

  1. Informal science education: lifelong, life-wide, life-deep.

    Science.gov (United States)

    Sacco, Kalie; Falk, John H; Bell, James

    2014-11-01

    Informal Science Education: Lifelong, Life-Wide, Life-Deep Informal science education cultivates diverse opportunities for lifelong learning outside of formal K-16 classroom settings, from museums to online media, often with the help of practicing scientists.

  2. Los Alamos National Laboratory Science Education Programs. Progress report, October 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.H.

    1995-02-01

    During the 1994 summer institute NTEP teachers worked in coordination with LANL and the Los Alamos Middle School and Mountain Elementary School to gain experience in communicating on-line, to gain further information from the Internet and in using electronic Bulletin Board Systems (BBSs) to exchange ideas with other teachers. To build on their telecommunications skills, NTEP teachers participated in the International Telecommunications In Education Conference (Tel*ED `94) at the Albuquerque Convention Center on November 11 & 12, 1994. They attended the multimedia keynote address, various workshops highlighting many aspects of educational telecommunications skills, and the Telecomm Rodeo sponsored by Los Alamos National Laboratory. The Rodeo featured many presentations by Laboratory personnel and educational institutions on ways in which telecommunications technologies can be use din the classroom. Many were of the `hands-on` type, so that teachers were able to try out methods and equipment and evaluate their usefulness in their own schools and classrooms. Some of the presentations featured were the Geonet educational BBS system, the Supercomputing Challenge, and the Sunrise Project, all sponsored by LANL; the `CU-seeMe` live video software, various simulation software packages, networking help, and many other interesting and useful exhibits.

  3. Stripping of H- beams by residual gas in the linac at the Los Alamos neutron science center

    Energy Technology Data Exchange (ETDEWEB)

    Mccrady, Rodney C [Los Alamos National Laboratory; Ito, Takeyasu [Los Alamos National Laboratory; Cooper, Martin D [Los Alamos National Laboratory; Alexander, Saunders [Los Alamos National Laboratory

    2010-09-07

    The linear accelerator at the Los Alamos Neutron Science Center (LANSCE) accelerates both protons and H{sup -} ions using Cockroft-Walton-type injectors, a drift-tube linac and a coupled-cavity linac. The vacuum is maintained in the range of 10{sup -6} to 10{sup -7} Torr; the residual gas in the vacuum system results in some stripping of the electrons from the H{sup -} ions resulting in beam spill and the potential for unwanted proton beams delivered to experiments. We have measured the amount of fully-stripped H{sup -} beam (protons) that end up at approximately 800 MeV in the beam switchyard at LANSCE using image plates as very sensitive detectors. We present here the motivation for the measurement, the measurement technique and results.

  4. Microfluidics and the life sciences.

    Science.gov (United States)

    Becker, Holger; Gärtner, Claudia

    2012-01-01

    The field of microfluidics, often also referred to as "Lab-on-a-Chip" has made significant progress in the last 15 years and is an essential tool in the development of new products and protocols in the life sciences. This article provides a broad overview on the developments on the academic as well as the commercial side. Fabrication technologies for polymer-based devices are presented and a strategy for the development of complex integrated devices is discussed, together with an example on the use of these devices in pathogen detection.

  5. Richard Feynman a life in science

    CERN Document Server

    Gribbin, John

    1998-01-01

    This text is a portrayal of one of the greatest scientists of the late 20th-century, which also provides a picture of the significant physics of the period. It combines personal anecdotes, writings and recollections with narrative. Richard Feynman's career included: war-time work on the atomic bomb at Los Alamos; a theory of quantum mechanics for which he won the Nobel prize; and major contributions to the sciences of gravity, nuclear physics and particle theory. In 1986, he was able to show that the Challenger disaster was due to the effect of cold on the booster rocket rubber sealings.

  6. Life Sciences Division Spaceflight Hardware

    Science.gov (United States)

    Yost, B.

    1999-01-01

    The Ames Research Center (ARC) is responsible for the development, integration, and operation of non-human life sciences payloads in support of NASA's Gravitational Biology and Ecology (GB&E) program. To help stimulate discussion and interest in the development and application of novel technologies for incorporation within non-human life sciences experiment systems, three hardware system models will be displayed with associated graphics/text explanations. First, an Animal Enclosure Model (AEM) will be shown to communicate the nature and types of constraints physiological researchers must deal with during manned space flight experiments using rodent specimens. Second, a model of the Modular Cultivation System (MCS) under development by ESA will be presented to highlight technologies that may benefit cell-based research, including advanced imaging technologies. Finally, subsystems of the Cell Culture Unit (CCU) in development by ARC will also be shown. A discussion will be provided on candidate technology requirements in the areas of specimen environmental control, biotelemetry, telescience and telerobotics, and in situ analytical techniques and imaging. In addition, an overview of the Center for Gravitational Biology Research facilities will be provided.

  7. Life Sciences Division and Center for Human Genome Studies

    Energy Technology Data Exchange (ETDEWEB)

    Spitzmiller, D.; Bradbury, M.; Cram, S. (comps.)

    1992-05-01

    This report summarizes the research and development activities of Los Alamos National Laboratories Life Sciences Division and biological aspects of the Center for Human Genome Studies for the calendar year 1991. Selected research highlights include: yeast artificial chromosome libraries from flow sorted human chromosomes 16 and 21; distances between the antigen binding sites of three murine antibody subclasses measured using neutron and x-ray scattering; NFCR 10th anniversary highlights; kinase-mediated differences found in the cell cycle regulation of normal and transformed cells; and detecting mutations that cause Gaucher's disease by denaturing gradient gel electrophoresis. Project descriptions include: genomic structure and regulation, molecular structure, cytometry, cell growth and differentiation, radiation biology and carcinogenesis, and pulmonary biology.

  8. Life sciences on the moon

    Science.gov (United States)

    Horneck, G.

    Despite of the fact that the lunar environment lacks essential prerequisites for supporting life, lunar missions offer new and promising opportunities to the life sciences community. Among the disciplines of interest are exobiology, radiation biology, ecology and human physiology. In exobiology, the Moon offers an ideal platform for studies related to the understanding of the principles, leading to the origin, evolution and distribution of life. These include the analysis of lunar samples and meteorites in relatively pristine conditions, radioastronomical search for other planetary systems or Search for Extra-Terrestrial Intelligence (SETI), and studies on the role of radiation in evolutionary processes and on the environmental limits for life. For radiation biology, the Moon provides an unique laboratory with built-in sources for optical as well as ionising radiation to investigate the biological importance of the various components of cosmic and solar radiation. Before establishing a lunar base, precursor missions will provide a characterisation of the radiation field, determination of depth dose distributions in different absorbers, the installation of a solar flare alert system, and a qualification of the biological efficiency of the mixed radiation environment. One of the most challenging projects falls into the domain of ecology with the establishment for the first time of an artificial ecosystem on a celestial body beyond the Earth. From this venture, a better understanding of the dynamics regulating our terrestrial biosphere is expected. It will also serve as a precursor of bioregenerative life support systems for a lunar base. The establishment of a lunar base with eventually long-term human presence will raise various problems in the fields of human physiology and health care, psychology and sociology. Protection guidelines for living in this hostile environment have to be established.

  9. Welcome to Los Alamos National Laboratory: A premier national security science laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Terry [Los Alamos National Laboratory

    2012-06-25

    Dr Wallace presents visitors with an overview of LANL's national security science mission: stockpile stewardship, protecting against the nuclear threat, and energy security & emerging threats, which are underpinned by excellence in science/technology/engineering capabilities. He shows visitors a general Lab overview of budget, staff, and facilities before providing a more in-depth look at recent Global Security accomplishments and current programs.

  10. John Greenleaf's life of science.

    Science.gov (United States)

    Watenpaugh, Donald E

    2012-12-01

    This article summarizes the life and career of John E. Greenleaf, PhD. It complements an interview of Dr. Greenleaf sponsored by the American Physiological Society Living History Project found on the American Physiological Society website. Dr. Greenleaf is a "thought leader" and internationally renowned physiologist, with extensive contributions in human systems-level environmental physiology. He avoided self-aggrandizement and believed that deeds rather than words define one's legacy. Viewed another way, however, Greenleaf's words define his deeds: 48% of his 185 articles are first author works, which is an unusually high proportion for a scientist of his stature. He found that writing a thorough and thoughtful discussion section often led to novel ideas that drove future research. Beyond Greenleaf's words are the many students, postdocs, and collaborators lucky enough to have worked with him and thus learn and carry on his ways of science. His core principles included the following: avoid research "fads," embrace diversity, be the first subject in your own research, adhere to rules of fiscal responsibility, and respect administrative forces-but never back down from them when you know you are right. Greenleaf's integrity ensured he was usually right. He thrived on the axiom of many successful scientists: avoid falling in love with hypotheses, so that when unexpected findings appear, they arouse curiosity instead of fear. Dr. Greenleaf's legacy will include the John and Carol Greenleaf Award for prolific environmental and exercise-related publication in the Journal of Applied Physiology.

  11. Science gateways for semantic-web-based life science applications.

    Science.gov (United States)

    Ardizzone, Valeria; Bruno, Riccardo; Calanducci, Antonio; Carrubba, Carla; Fargetta, Marco; Ingrà, Elisa; Inserra, Giuseppina; La Rocca, Giuseppe; Monforte, Salvatore; Pistagna, Fabrizio; Ricceri, Rita; Rotondo, Riccardo; Scardaci, Diego; Barbera, Roberto

    2012-01-01

    In this paper we present the architecture of a framework for building Science Gateways supporting official standards both for user authentication and authorization and for middleware-independent job and data management. Two use cases of the customization of the Science Gateway framework for Semantic-Web-based life science applications are also described.

  12. JPRS Report, Science & Technology, USSR: Life Sciences

    Science.gov (United States)

    2007-11-02

    Melnikov, Laboratory of Bionic Research (Headed by Candidate of Biological Sciences A. A. Kuzmin), Pacific Scientific Research Institute of... architecture have a great deal in common with the arterial systems of whales described earlier. Figures 2, references 14: 6 Russian, 8 Western

  13. Life sciences: Lawrence Berkeley Laboratory, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs.

  14. JPRS Report, Science & Technology, USSR: Life Sciences

    Science.gov (United States)

    1989-01-05

    Treatment and Consultation] for homeopathy ): "Why did the hospital become part of a cooperative? Life itself brought this about. Let’s look at the...need to do whatever it takes to deal with a patient properly. As far as homeopathy goes, the cooperative is devoting considerable means to scientific

  15. Life Sciences in the 21 st Century

    Institute of Scientific and Technical Information of China (English)

    Zou Chenglu (C. L. Tsou)

    2001-01-01

    This article presents a retrospective of the achievements of life sciences in the 20th century and a prospective in the 21 st century.primarily,because of the emergence of molecular biology in the 20th cetury,life sciences have grown up from a descriptive discipline to an exact science.Biology in the 21st century features a unification between analysis and integration,i.e.the unification of analysis and func-tional research.More and more interdisciplinary integration will be based on works of penetrating analyses.Secondly.the deeper understanding of all living phenomena will lead to a unified connition of the essence of life so that general biology in the genuine sese of the term will come into being.finally,basic research on the life sciences will produce an unprecedented influence on all aspects of human life.

  16. Launching the CUSBEA Article Series in SCIENCE CHINA Life Sciences

    Institute of Scientific and Technical Information of China (English)

    CHANG ZengYi

    2010-01-01

    @@ As a CUSBEA (China-United States Biochemistry Examination and Administration) Program fellow of Class Ⅳ (1985), I am very excited to announce the official launch of the CUSBEA Article Series in SCIENCE CHINA Life Sciences, a journal in which I am currently serving as Executive Vice-Editor-in-Chief.A couple of months ago, I initially proposed this idea to the Editor-in-Chief of SCIENCE CHINA Life Sciences, Professor Wang Da-Cheng and to the Editor General of SCIENCE CHINA Life Sciences, Professor Zhu Zuoyan, both of whom responded very positively.The article contributed by Dr.Luo Liqun [1],CUSBEA fellow of Class Ⅵ (1987) and currently professor in the Department of Biology at Stanford University, as well as Investigator at the Howard Hughes Medical Institute, marks the official beginning of this series.

  17. JPRS Report Science & Technology USSR: Life Sciences.

    Science.gov (United States)

    1990-07-09

    Traumatology, Orthopedy and Field Surgery (head—professor M. F. Durov) and Chair of VK and LFK (head— docent P. G. Koynosov) of Tyumen Medical...Yu. D., Los, I. P and Popovich, V. M., "Fiziko-matematicheskaya problema deystviya elektro- magnitnykh poley i ionizatsii vozdukha" [The Physico...Article by S. I. Leonovich, docent , and Yu. M. Gain, candidate of medical science, Minsk] [Abstract] An international symposium on lasers in surgery

  18. MATLAB for Engineering and the Life Sciences

    CERN Document Server

    Tranquillo, Joseph

    2011-01-01

    In recent years, the life sciences have embraced simulation as an important tool in biomedical research. Engineers are also using simulation as a powerful step in the design process. In both arenas, Matlab has become the gold standard. It is easy to learn, flexible, and has a large and growing userbase. MATLAB for Engineering and the Life Sciences is a self-guided tour of the basic functionality of MATLAB along with the functions that are most commonly used in biomedical engineering and other life sciences. Although the text is written for undergraduates, graduate students and academics, those

  19. JPRS Report, Science & Technology, USSR: Life Sciences.

    Science.gov (United States)

    2007-11-02

    PARAZITARNYYE BOLEZNI, No 3, May-Jun 86) 22 Detection Rate of Virus Hepatitis B Markers in Patients in Hemodialysis Department (V, I. Vasilyeva, A...derivation of valuable products essential to human life. There is not yet, in our opinion, a precise definition of...with a preoccupation with microorganisms and cell cultures. We will, therefore, adhere to a definition that places biotechnology in a division of

  20. JPRS Report, Science & Technology, USSR: Life Sciences

    Science.gov (United States)

    1988-04-15

    Lepidoptera . A toxin isolated from H. hebetor homogenate with a molecular weight of 18,000 daltons possesses analogous biological properties. The...healthy way of life. More than two-thirds of the population is involved in no systematic physical exercise program or in athletics, as much as 30...a consolidated system for evaluating and systematically observing the state of health of the Soviet citizen and the society as a whole. Relying on

  1. Breathing Life into Engineering: A Lesson Study Life Science Lesson

    Science.gov (United States)

    Lawrence, Maria; Yang, Li-Ling; Briggs, May; Hession, Alicia; Koussa, Anita; Wagoner, Lisa

    2016-01-01

    A fifth grade life science lesson was implemented through a lesson study approach in two fifth grade classrooms. The research lesson was designed by a team of four elementary school teachers with the goal of emphasizing engineering practices consistent with the "Next Generation Science Standards" (NGSS) (Achieve Inc. 2013). The fifth…

  2. More Life-Science Experiments For Spacelab

    Science.gov (United States)

    Savage, P. D., Jr.; Dalton, B.; Hogan, R.; Leon, H.

    1991-01-01

    Report describes experiments done as part of Spacelab Life Sciences 2 mission (SLS-2). Research planned on cardiovascular, vestibular, metabolic, and thermal responses of animals in weightlessness. Expected to shed light on effects of prolonged weightlessness on humans.

  3. Recent CAS Achievements in Life Sciences

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ Recent years have witnessed remarkable progress scored by CAS researchers along with the smooth development of the knowledge innovation program piloted at CAS. The follow-ings are just recent examples of CAS research achievements in life sciences.

  4. McNamara Life Sciences Building

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: General purpose laboratory test building The McNamara Life Sciences building allows scientists to manage and execute the Department of Defense...

  5. Launching the CUSBEA Article Series in SCIENCE CHINA Life Sciences

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As a CUSBEA (China-United States Biochemistry Examination and Administration) Program fellow of Class IV (1985), I am very excited to announce the official launch of the CUSBEA Article Series in SCIENCE CHINA Life

  6. Physical and Life Sciences 2008 Science & Technology Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Correll, D L; Hazi, A U

    2009-05-06

    This document highlights the outstanding research and development activities in the Physical and Life Sciences Directorate that made news in 2008. It also summarizes the awards and recognition received by members of the Directorate in 2008.

  7. The Energy Science and Technology Database on a local library system: A case study at the Los Alamos National Research Library

    Energy Technology Data Exchange (ETDEWEB)

    Holtkamp, I.S.

    1994-10-01

    This paper presents an overview of efforts at Los Alamos National Laboratory to acquire and mount the Energy Science and Technology Database (EDB) as a citation database on the Research Library`s Geac Advance system. The rationale for undertaking this project and expected benefits are explained. Significant issues explored are loading non-USMARC records into a MARC-based library system, the use of EDB records to replace or supplement in-house cataloging of technical reports, the impact of different cataloging standards and database size on searching and retrieval, and how integrating an external database into the library`s online catalog may affect staffing and workflow.

  8. Database Selection in the Life Sciences.

    Science.gov (United States)

    Snow, Bonnie

    1985-01-01

    Focuses on indexing refinements in major life science databases--those specializing in biological/biomedical literature coverage--which influence cross-life searching decisions. Tables included highlight database descriptions, comparisons in coverage, ease of access (indexing of secondary concepts or search modifiers), chemical substance indexing…

  9. Physics transforming the life sciences.

    Science.gov (United States)

    Onuchic, José N

    2014-10-08

    Biological physics is clearly becoming one of the leading sciences of the 21st century. This field involves the cross-fertilization of ideas and methods from biology and biochemistry on the one hand and the physics of complex and far from equilibrium systems on the other. Here I want to discuss how biological physics is a new area of physics and not simply applications of known physics to biological problems. I will focus in particular on the new advances in theoretical physics that are already flourishing today. They will become central pieces in the creation of this new frontier of science.

  10. Science Education in Second Life

    Science.gov (United States)

    Merchant, Zahira

    2010-01-01

    The purpose of the observational study was to investigate whether spaces in Second Life (SL) displaying interactive scientific exhibits can become potential avenues to promote inquiry in teaching scientific concepts. 42 SL spaces (islands) were selected using inclusion/exclusion criteria out of 155 spaces that were found using three different…

  11. Pilot Project on Women and Science. A report on women scientists at the University of New Mexico and Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Salvaggio, R. [New Mexico Univ., Albuquerque, NM (United States)

    1993-08-01

    In the fall of 1991, through the coordinating efforts of the University of New Mexico and Los Alamos National Laboratory, the Pilot Project on Women and Science was initiated as a year-long study of women scientists at both the university and the laboratory. Its purpose was to gather information directly from women scientists in an attempt to analyze and make recommendations concerning the professional and cultural environment for women in the sciences. This report is an initial attempt to understand the ways in which women scientists view themselves, their profession, and the scientific culture they inhabit. By recording what these women say about their backgrounds and educational experiences, their current positions, the difficult negotiations many have made between their personal and professional lives, and their relative positions inside and outside the scientific community, the report calls attention both to the individual perspectives offered by these women and to the common concerns they share.

  12. Life sciences space biology project planning

    Science.gov (United States)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  13. USSR Report, Life Sciences Biomedical and Behavioral Sciences.

    Science.gov (United States)

    1987-05-13

    1880Ü JPRS-UBB-87-OlO 13 MAY 1987 USSR Report LIFE SCIENCES BIOMEDICAL AND BEHAVIORAL SCIENCES DISTRIBUTION STATEMENT I App*w#d lot pubfe...Preirradiation Status and Site of Irradiation (N.P. Didenko, V.M. Perelmuter, et al.; BIOFIZIKA, No 5, Sep-Oct 86) 41 Effects of Nonionizing Microwave ...20026 radiometer (GDR) as a scaling unit. Regression equations were calculated for the controlr and experimental groups were calculated based on

  14. Nonautonomous dynamical systems in the life sciences

    CERN Document Server

    Pötzsche, Christian

    2013-01-01

    Nonautonomous dynamics describes the qualitative behavior of evolutionary differential and difference equations, whose right-hand side is explicitly time dependent. Over recent years, the theory of such systems has developed into a highly active field related to, yet recognizably distinct from that of classical autonomous dynamical systems. This development was motivated by problems of applied mathematics, in particular in the life sciences where genuinely nonautonomous systems abound. The purpose of this monograph is to indicate through selected, representative examples how often nonautonomous systems occur in the life sciences and to outline the new concepts and tools from the theory of nonautonomous dynamical systems that are now available for their investigation.

  15. Life sciences and biotechnology in China

    OpenAIRE

    Chen, Zhu; Wang, Hong-Guang; Wen, Zhao-Jun; Wang, Yihuang

    2007-01-01

    Life science and biotechnology have become a top priority in research and development in many countries as the world marches into the new century. China as a developing country with a 1.3 billion population and booming economy is actively meeting the challenge of a new era in this area of research. Owing to support from the government and the scientific community, and reform to improve the infrastructure, recent years have witnessed a rapid progress in some important fields of life science an...

  16. Introductory mathematics for the life sciences

    CERN Document Server

    Phoenix, David

    2002-01-01

    Introductory Mathematics for the Life Sciences offers a straightforward introduction to the mathematical principles needed for studies in the life sciences. Starting with the basics of numbers, fractions, ratios, and percentages, the author explains progressively more sophisticated concepts, from algebra, measurement, and scientific notation through the linear, power, exponential, and logarithmic functions to introductory statistics. Worked examples illustrate concepts, applications, and interpretations, and exercises at the end of each chapter help readers apply and practice the skills they develop. Answers to the exercises are posted at the end of the text.

  17. Ethical challenges for the life sciences

    NARCIS (Netherlands)

    Korthals, M.J.J.A.A.

    2004-01-01

    In this book we will first discuss broader issues of ethics of the life sciences, which enable us later on to focus on the more specific issues. Therefore, we begin with two contributions on the ethical issues of working in organizations. A fruitful side effect of this start is that it gives a good

  18. Skylab experiments. Volume 4: Life sciences

    Science.gov (United States)

    1973-01-01

    The life sciences experiments conducted during Skylab missions are discussed. The general categories of the experiments are as follows: (1) mineral and hormonal balance, (2) hematology and immunology, (3) cardiovascular status, (4) energy expenditure, (5) neurophysiology, and (7) biology. Each experiment within the general category is further identified with respect to the scientific objectives, equipment used, performance, and data to be obtained.

  19. OBML - Ontologies in Biomedicine and Life Sciences.

    Science.gov (United States)

    Herre, Heinrich; Hoehndorf, Robert; Kelso, Janet; Loebe, Frank; Schulz, Stefan

    2011-08-09

    The OBML 2010 workshop, held at the University of Mannheim on September 9-10, 2010, is the 2nd in a series of meetings organized by the Working Group "Ontologies in Biomedicine and Life Sciences" of the German Society of Computer Science (GI) and the German Society of Medical Informatics, Biometry and Epidemiology (GMDS). Integrating, processing and applying the rapidly expanding information generated in the life sciences - from public health to clinical care and molecular biology - is one of the most challenging problems that research in these fields is facing today. As the amounts of experimental data, clinical information and scientific knowledge increase, there is a growing need to promote interoperability of these resources, support formal analyses, and to pre-process knowledge for further use in problem solving and hypothesis formulation.The OBML workshop series pursues the aim of gathering scientists who research topics related to life science ontologies, to exchange ideas, discuss new results and establish relationships. The OBML group promotes the collaboration between ontologists, computer scientists, bio-informaticians and applied logicians, as well as the cooperation with physicians, biologists, biochemists and biometricians, and supports the establishment of this new discipline in research and teaching. Research topics of OBML 2010 included medical informatics, Semantic Web applications, formal ontology, bio-ontologies, knowledge representation as well as the wide range of applications of biomedical ontologies to science and medicine. A total of 14 papers were presented, and from these we selected four manuscripts for inclusion in this special issue.An interdisciplinary audience from all areas related to biomedical ontologies attended OBML 2010. In the future, OBML will continue as an annual meeting that aims to bridge the gap between theory and application of ontologies in the life sciences. The next event emphasizes the special topic of the ontology

  20. Computational thinking in life science education.

    Science.gov (United States)

    Rubinstein, Amir; Chor, Benny

    2014-11-01

    We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1) devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2) focus on discrete notions, rather than on continuous ones, and (3) have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  1. Computational thinking in life science education.

    Directory of Open Access Journals (Sweden)

    Amir Rubinstein

    2014-11-01

    Full Text Available We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1 devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2 focus on discrete notions, rather than on continuous ones, and (3 have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  2. USSR Space Life Sciences Digest, issue 28

    Science.gov (United States)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-eighth issue of NASA's Space Life Sciences Digest. It contains abstracts of 60 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, aviation medicine, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, hematology, human performance, immunology, life support systems, mathematical modeling, musculoskeletal system, neurophysiology, personnel selection, psychology, radiobiology, reproductive system, and space medicine.

  3. JPRS Report, Science & Technology, Central Eurasia: Life Sciences.

    Science.gov (United States)

    2007-11-02

    30 December 1992 2 Central Eurasia: Life Sciences Epidemic Manifestation of Natural Foci of Tick-Borne Encephalitis in the Maritime Kray. Report 2...Epidemic Activation of the Natural Focus of Zoonotic Cutaneous Leishmaniasis in Locales of Sympatric Incidence of Leishmania Major, L. Turanica, and L...50 Taurine Modulation of Neuronal Potassium Ion Currents [A.I. Vislobokov, A.G. Kopylov, et al.; VESTNIK LENINGRADSKOGO UNIVERSITETA

  4. "Physics and Life" for Europe's Science Teachers

    Science.gov (United States)

    2003-04-01

    interest in science and current scientific research. The goals of "Physics On Stage 3" [EWST Logo] "Physics on Stage 3" also aims to facilitate the exchange of good practice and innovative ideas among Europe's science teachers and to provide a forum for a broad debate among educators, administrators and policy-makers about the key problems in science education today. Moreover, it will make available the considerable, combined expertise of the EIROforum organisations to the European scientific teaching community, in order to promote the introduction of "fresh" science into the curricula and thus to convey a more realistic image of modern science to the pupils. "Physics on Stage 3" is concerned with basic science and also with the cross-over between different science disciplines - a trend becoming more and more important in today's science, which is not normally reflected in school curricula. A key element of the programme is to give teachers an up-to-date "insiders'" view of what is happening in science and to tell them about new, highly-diverse and interesting career opportunities for their pupils. Theme of the activities The theme of "Physics on Stage" this year is "Physics and Life" , reflecting the decision to broaden the Physics on Stage activities to encompass all the natural sciences. Including other sciences will augment the already successful concept, introducing a mixture of cross-over projects that highlight the multidisciplinary aspects of modern science. Among the many subjects to be presented are radiation, physics and the environment, astrobiology (the search for life beyond earth), complex systems, self-organising systems, sports science, the medical applications of physics, mathematics and epidemiology, etc. The main elements National activities "Physics on Stage 3" has already started and National Steering Committees in 22 countries, composed of eminent science teachers, scientists, administrators and others involved in setting school curricula, are now

  5. Breathing new life into cognitive science

    Directory of Open Access Journals (Sweden)

    Tom Froese

    2011-08-01

    Full Text Available In this article I take an unusual starting point from which to argue for a unified cognitive science, namely a position defined by what is sometimes called the ‘life-mind continuity thesis’. Accordingly, rather than taking a widely accepted starting point for granted and using it in order to propose answers to some well defined questions, I must first establish that the idea of life-mind continuity can amount to a proper starting point at all. To begin with, I therefore assess the conceptual tools which are available to construct a theory of mind on this basis. By drawing on insights from a variety of disciplines, especially from a combination of existential phenomenology and organism-centered biology, I argue that mind can indeed be conceived as rooted in life, but only if we accept at the same time that social interaction plays a constitutive role for our cognitive capacities.

  6. Brilliant Light in Life and Material Sciences

    CERN Document Server

    Tsakanov, Vasili

    2007-01-01

    The present book contains an excellent overview of the status and highlights of brilliant light facilities and their applications in biology, chemistry, medicine, materials and environmental sciences. Overview papers on diverse fields of research by leading experts are accompanied by the highlights in the near and long-term perspectives of brilliant X-Ray photon beam usage for fundamental and applied research. The book includes advanced topics in the fields of high brightness photon beams, instrumentation, the spectroscopy, microscopy, scattering and imaging experimental techniques and their applications. The book is strongly recommended for students, engineers and scientists in the field of accelerator physics, X-ray optics and instrumentation, life, materials and environmental sciences, bio and nanotechnology.

  7. SPACE LIFE SCIENCE IN 2000-2001

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Chinese scientists studied some of the problems in the field of space life science and achieved success in the area during 2000-2001. Space biological experi ments were carried out in the orbit and the results of ground studies on protein crystallization, space radiation, space motion sickness were introduced in this paper. The influences of simulated weightlessness on the brain-function, the car diovascular, endocrine hormones, immunity, skeletal and muscle systems were presented. In addition, gravity medicine and space environment medicine, as well as countermeasures to space deconditioning, such as the traditional Chinese medicine, were also reported.

  8. USSR Space Life Sciences Digest, issue 29

    Science.gov (United States)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1991-01-01

    This is the twenty-ninth issue of NASA's Space Life Sciences Digest. It is a double issue covering two issues of the Soviet Space Biology and Aerospace Medicine Journal. Issue 29 contains abstracts of 60 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a book on environmental hygiene and a list of papers presented at a Soviet conference on space biology and medicine are also included. The materials in this issue were identified as relevant to 28 areas of space biology and medicine. The areas are: adaptation, aviation medicine, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, digestive system, endocrinology, equipment and instrumentation, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, personnel selection, psychology, radiobiology, reproductive system, space biology and medicine, and the economics of space flight.

  9. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    Science.gov (United States)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  10. Mobile Robot for Life Science Automation

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2013-07-01

    Full Text Available The paper presents a control system for mobile robots in distributed life science laboratories. The system covers all technical aspects of laboratory mobile robotics. In this system: (a to get an accurate and low-cost robot localization, a method using a StarGazer module with a number of ceiling landmarks is utilized; (b to have an expansible communication network, a standard IEEE 802.11g wireless network is adopted and a XML-based command protocol is designed for the communication between the remote side and the robot board side; (c to realize a function of dynamic obstacle measurement and collision avoidance, an artificial potential field method based on a Microsoft Kinect sensor is used; and (d to determine the shortest paths for transportation tasks, a hybrid planning strategy based on a Floyd algorithm and a Genetic Algorithm (GA is proposed. Additionally, to make the traditional GA method suitable for the laboratory robot’s routing, a series of optimized works are also provided in detail. Two experiments show that the proposed system and its control strategy are effective for a complex life science laboratory.

  11. Life Sciences Division and Center for Human Genome Studies. Annual report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Spitzmiller, D.; Bradbury, M.; Cram, S. [comps.

    1992-05-01

    This report summarizes the research and development activities of Los Alamos National Laboratories Life Sciences Division and biological aspects of the Center for Human Genome Studies for the calendar year 1991. Selected research highlights include: yeast artificial chromosome libraries from flow sorted human chromosomes 16 and 21; distances between the antigen binding sites of three murine antibody subclasses measured using neutron and x-ray scattering; NFCR 10th anniversary highlights; kinase-mediated differences found in the cell cycle regulation of normal and transformed cells; and detecting mutations that cause Gaucher`s disease by denaturing gradient gel electrophoresis. Project descriptions include: genomic structure and regulation, molecular structure, cytometry, cell growth and differentiation, radiation biology and carcinogenesis, and pulmonary biology.

  12. Spacelab J: Microgravity and life sciences

    Science.gov (United States)

    Spacelab J is a joint venture between NASA and the National Space Development Agency of Japan (NASDA). Using a Spacelab pressurized long module, 43 experiments will be performed in the areas of microgravity and life sciences. These experiments benefit from the microgravity environment available on an orbiting Shuttle. Removed from the effects of gravity, scientists will seek to observe processes and phenomena impossible to study on Earth, to develop new and more uniform mixtures, to study the effects of microgravity and the space environment on living organisms, and to explore the suitability of microgravity for certain types of research. Mission planning and an overview of the experiments to be performed are presented. Orbital research appears to hold many advantages for microgravity science investigations, which on this mission include electronic materials, metals and alloys, glasses and ceramics, fluid dynamics and transport phenomena, and biotechnology. Gravity-induced effects are eliminated in microgravity. This allows the investigations on Spacelab J to help scientists develop a better understanding of how these gravity-induced phenomena affect both processing and products on Earth and to observe subtle phenomena that are masked in gravity. The data and samples from these investigations will not only allow scientists to better understand the materials but also will lead to improvements in the methods used in future experiments. Life sciences research will collect data on human adaptation to the microgravity environment, investigate ways of assisting astronauts to readapt to normal gravity, explore the effects of microgravity and radiation on living organisms, and gather data on the fertilization and development of organisms in the absence of gravity. This research will improve crew comfort and safety on future missions while helping scientists to further understand the human body.

  13. James Clerk Maxwell: Life and science

    Science.gov (United States)

    Marston, Philip L.

    2016-07-01

    Maxwell's life and science are presented with an account of the progression of Maxwell's research on electromagnetic theory. This is appropriate for the International Year of Light and Light-based Technologies, 2015. Maxwell's own confidence in his 1865 electromagnetic theory of light is examined, along with some of the difficulties he faced and the difficulties faced by some of his followers. Maxwell's interest in radiation pressure and electromagnetic stress is addressed, as well as subsequent developments. Some of Maxwell's other contributions to physics are discussed with an emphasis on the kinetic and molecular theory of gases. Maxwell's theistic perspective on science is illustrated, accompanied by examples of perspectives on Maxwell and his science provided by his peers and accounts of his interactions with those peers. Appendices examine the peer review of Maxwell's 1865 electromagnetic theory paper and the naming of the Maxwell Garnett effective media approximation and provide various supplemental perspectives. From Maxwell's publications and correspondence there is evidence he had a high regard for Michael Faraday. Examples of Maxwell's contributions to electromagnetic terminology are noted.

  14. Empowering pharmacoinformatics by linked life science data

    Science.gov (United States)

    Goldmann, Daria; Zdrazil, Barbara; Digles, Daniela; Ecker, Gerhard F.

    2016-11-01

    With the public availability of large data sources such as ChEMBLdb and the Open PHACTS Discovery Platform, retrieval of data sets for certain protein targets of interest with consistent assay conditions is no longer a time consuming process. Especially the use of workflow engines such as KNIME or Pipeline Pilot allows complex queries and enables to simultaneously search for several targets. Data can then directly be used as input to various ligand- and structure-based studies. In this contribution, using in-house projects on P-gp inhibition, transporter selectivity, and TRPV1 modulation we outline how the incorporation of linked life science data in the daily execution of projects allowed to expand our approaches from conventional Hansch analysis to complex, integrated multilayer models.

  15. BIOINFORMATICS FOR UNDERGRADUATES OF LIFE SCIENCE COURSES

    Directory of Open Access Journals (Sweden)

    J.F. De Mesquita

    2007-05-01

    Full Text Available In the recent years, Bioinformatics has emerged as an important research tool. Theability to mine large databases for relevant information has become essential fordifferent life science fields. On the other hand, providing education in bioinformatics toundergraduates is challenging from this multidisciplinary perspective. Therefore, it isimportant to introduced undergraduate students to the available information andcurrent methodologies in Bioinformatics. Here we report the results of a course usinga computer-assisted and problem -based learning model. The syllabus was comprisedof theoretical lectures covering different topics within bioinformatics and practicalactivities. For the latter, we developed a set of step-by-step tutorials based on casestudies. The course was applied to undergraduate students of biological andbiomedical courses. At the end of the course, the students were able to build up astep-by-step tutorial covering a bioinformatics issue.

  16. Empowering pharmacoinformatics by linked life science data.

    Science.gov (United States)

    Goldmann, Daria; Zdrazil, Barbara; Digles, Daniela; Ecker, Gerhard F

    2016-11-09

    With the public availability of large data sources such as ChEMBLdb and the Open PHACTS Discovery Platform, retrieval of data sets for certain protein targets of interest with consistent assay conditions is no longer a time consuming process. Especially the use of workflow engines such as KNIME or Pipeline Pilot allows complex queries and enables to simultaneously search for several targets. Data can then directly be used as input to various ligand- and structure-based studies. In this contribution, using in-house projects on P-gp inhibition, transporter selectivity, and TRPV1 modulation we outline how the incorporation of linked life science data in the daily execution of projects allowed to expand our approaches from conventional Hansch analysis to complex, integrated multilayer models.

  17. Nanosystem Characterization Tools in the Life Sciences

    Science.gov (United States)

    Kumar, Challa S. S. R.

    2006-01-01

    This first dedicated, all-encompassing text characterizes nanomaterials intended for biological or physiological environments and biomedical applications, in particular for medicine, healthcare, pharmaceuticals and human wellness. It finally fills the gap for a concise overview of a wide range of different characterization techniques and how to best employ them in the context of nanoscale life science research. It thus serves as a single source of information gathering up the knowledge otherwise spread over many journal articles, and provides an overall picture to members of all the disciplines involved. This handy volume covers all important probing techniques, including nuclear and electron spin resonance, light scattering, infrared and Raman spectroscopy, atomic force microscopy, magnetic resonance, tomography, x-ray techniques, and microbalance measurement of antibody binding. Biochemists, biologists, chemists, materials scientists, and materials engineers as well as all others working in the pharmaceutical and chemical industries or at related research institutions will here a book of great value and importance.

  18. Life sciences today and tomorrow: emerging biotechnologies.

    Science.gov (United States)

    Williamson, E Diane

    2016-07-03

    The purpose of this review is to survey current, emerging and predicted future biotechnologies which are impacting, or are likely to impact in the future on the life sciences, with a projection for the coming 20 years. This review is intended to discuss current and future technical strategies, and to explore areas of potential growth during the foreseeable future. Information technology approaches have been employed to gather and collate data. Twelve broad categories of biotechnology have been identified which are currently impacting the life sciences and will continue to do so. In some cases, technology areas are being pushed forward by the requirement to deal with contemporary questions such as the need to address the emergence of anti-microbial resistance. In other cases, the biotechnology application is made feasible by advances in allied fields in biophysics (e.g. biosensing) and biochemistry (e.g. bio-imaging). In all cases, the biotechnologies are underpinned by the rapidly advancing fields of information systems, electronic communications and the World Wide Web together with developments in computing power and the capacity to handle extensive biological data. A rationale and narrative is given for the identification of each technology as a growth area. These technologies have been categorized by major applications, and are discussed further. This review highlights: Biotechnology has far-reaching applications which impinge on every aspect of human existence. The applications of biotechnology are currently wide ranging and will become even more diverse in the future. Access to supercomputing facilities and the ability to manipulate large, complex biological datasets, will significantly enhance knowledge and biotechnological development.

  19. Life sciences - On the critical path for missions of exploration

    Science.gov (United States)

    Sulzman, Frank M.; Connors, Mary M.; Gaiser, Karen

    1988-01-01

    Life sciences are important and critical to the safety and success of manned and long-duration space missions. The life science issues covered include gravitational physiology, space radiation, medical care delivery, environmental maintenance, bioregenerative systems, crew and human factors within and outside the spacecraft. The history of the role of life sciences in the space program is traced from the Apollo era, through the Skylab era to the Space Shuttle era. The life science issues of the space station program and manned missions to the moon and Mars are covered.

  20. Open life science research, open software and the open century

    Institute of Scientific and Technical Information of China (English)

    Youhua Chen

    2015-01-01

    At the age of knowledge explosion and mass scientific information, I highlighted the importance of conducting open science in life and medical researches through the extensive usage of open software and documents. The proposal of conducting open science is to reduce the limited repeatability of researches in life science. I outlined the essential steps for conducting open life science and the necessary standards for creating, reusing and reproducing open materials. Different Creative Commons licenses were presented and compared of their usage scope and restriction. As a conclusion, I argued that open materials should be widely adopted in doing life and medical researches.

  1. Natural products in modern life science.

    Science.gov (United States)

    Bohlin, Lars; Göransson, Ulf; Alsmark, Cecilia; Wedén, Christina; Backlund, Anders

    2010-06-01

    questions in Nature can be of value to increase the attraction for young students in modern life science.

  2. NASDA life science experiment facilities for ISS

    Science.gov (United States)

    Tanigaki, F.; Masuda, D.; Yano, S.; Fujimoto, N.; Kamigaichi, S.

    National Space Development Agency of Japan (NASDA) has been developing various experiment facilities to conduct space biology researches in KIBO (JEM). The Cell Biology Experiment Facility (CBEF) and the Clean Bench (CB) are installed into JEM Life Science Rack. The Biological Experiment Units (BEU) are operated in the CBEF and the CB for many kinds of experiments on cells, tissues, plants, microorganisms, or small animals. It is possible for all researchers to use these facilities under the system of the International Announcement of Opportunity. The CBEF is a CO2 incubator to provide a controlled environment (temperature, humidity, and CO2 concentration), in which a rotating table is equipped to make variable gravity (0-2g) for reference experiments. The containers called "Canisters" can be used to install the BEU in the CBEF. The CBEF supplies power, command, sensor, and video interfaces for the BEU through the utility connectors of Canisters. The BEU is a multiuser system consisting of chambers and control segments. It is operated by pre-set programs and by commands from the ground. NASDA is currently developing three types of the BEU: the Plant Experiment Unit (PEU) for plant life cycle observations and the Cell Experiment Unit (CEU1&2) for cell culture experiments. The PEU has an automated watering system with a water sensor, an LED matrix as a light source, and a CCD camera to observe the plant growth. The CEUs have culture chambers and an automated cultural medium exchange system. Engineering models of the PEU and CEU1 have been accomplished. The preliminary design of CEU2 is in progress. The design of the BEU will be modified to meet science requirements of each experiment. The CB provides a closed aseptic work-space (Operation Chamber) with gloves for experiment operations. Samples and the BEU can be manually handled in the CB. The CB has an air lock (Disinfection Chamber) to prevent contamination, and HEPA filters to make class-100-equivalent clean air

  3. The Presentation of Science in Everyday Life: The Science Show

    Science.gov (United States)

    Watermeyer, Richard

    2013-01-01

    This paper constitutes a case-study of the "science show" model of public engagement employed by a company of science communicators focused on the popularization of science, technology, engineering and mathematics (STEM) subject disciplines with learner constituencies. It examines the potential of the science show to foster the interest…

  4. Software Ecosystems for the Life Sciences Application Domains

    NARCIS (Netherlands)

    Tekinerdogan, B.; Scholten, H.

    2015-01-01

    Software ecosystems (SECOs) are gaining importance in and have been applied to different application domains. In this paper we focus on the needs for SECOs for the life science application domains. Similar to other domains the life science application domains also witnesses the emergence and applica

  5. Signal and image analysis for biomedical and life sciences

    CERN Document Server

    Sun, Changming; Pham, Tuan D; Vallotton, Pascal; Wang, Dadong

    2014-01-01

    With an emphasis on applications of computational models for solving modern challenging problems in biomedical and life sciences, this book aims to bring collections of articles from biologists, medical/biomedical and health science researchers together with computational scientists to focus on problems at the frontier of biomedical and life sciences. The goals of this book are to build interactions of scientists across several disciplines and to help industrial users apply advanced computational techniques for solving practical biomedical and life science problems. This book is for users in t

  6. Workshop on Life sciences and radiation

    CERN Document Server

    Life Sciences and Radiation : Accomplishments and Future Directions

    2004-01-01

    Scope and ideas of the workshop The workshop which took place at the University of Giessen from Oct. 3 to Oct. 7, 2002 and whose proceedings are collected in this volume started from the idea to convene a number of scientists with the aim to outline their ”visions” for the future of radiation research on the basis of their expertise. As radiation research is a very wide field restrictions were unavoidable. It was decided to concentrate this time mainly on molecular and cellular biology because it was felt that here action is par-ticularly needed. This did not exclude contributions from neighbouring fields as may be seen from the table of contents. It was clearly not planned to have a c- prehensive account of the present scientif fic achievements but the results presented should only serve as a starting point for the discussion of future lines of research, with the emphasis on the ”outreach” to other parts of life sciences. If you are interested in the future ask the young – we attempted, therefore, ...

  7. The Dutch Techcentre for Life Sciences: Enabling data-intensive life science research in the Netherlands.

    Science.gov (United States)

    Eijssen, Lars; Evelo, Chris; Kok, Ruben; Mons, Barend; Hooft, Rob

    2015-01-01

    We describe the Data programme of the Dutch Techcentre for Life Sciences (DTL, www.dtls.nl). DTL is a new national organisation in scientific research that facilitates life scientists with technologies and technological expertise in an era where new projects often are data-intensive, multi-disciplinary, and multi-site. It is run as a lean not-for-profit organisation with research organisations (both academic and industrial) as paying members. The small staff of the organisation undertakes a variety of tasks that are necessary to perform or support modern academic research, but that are not easily undertaken in a purely academic setting. DTL Data takes care of such tasks related to data stewardship, facilitating exchange of knowledge and expertise, and brokering access to e-infrastructure. DTL also represents the Netherlands in ELIXIR, the European infrastructure for life science data. The organisation is still being fine-tuned and this will continue over time, as it is crucial for this kind of organisation to adapt to a constantly changing environment. However, already being underway for several years, our experiences can benefit researchers in other fields or other countries setting up similar initiatives.

  8. Semantic Web technologies for the big data in life sciences.

    Science.gov (United States)

    Wu, Hongyan; Yamaguchi, Atsuko

    2014-08-01

    The life sciences field is entering an era of big data with the breakthroughs of science and technology. More and more big data-related projects and activities are being performed in the world. Life sciences data generated by new technologies are continuing to grow in not only size but also variety and complexity, with great speed. To ensure that big data has a major influence in the life sciences, comprehensive data analysis across multiple data sources and even across disciplines is indispensable. The increasing volume of data and the heterogeneous, complex varieties of data are two principal issues mainly discussed in life science informatics. The ever-evolving next-generation Web, characterized as the Semantic Web, is an extension of the current Web, aiming to provide information for not only humans but also computers to semantically process large-scale data. The paper presents a survey of big data in life sciences, big data related projects and Semantic Web technologies. The paper introduces the main Semantic Web technologies and their current situation, and provides a detailed analysis of how Semantic Web technologies address the heterogeneous variety of life sciences big data. The paper helps to understand the role of Semantic Web technologies in the big data era and how they provide a promising solution for the big data in life sciences.

  9. Science China Life Sciences in2010:a New Name Marking a New Start%Science China Life Sciences in 2010: a New Name Marking a New Start

    Institute of Scientific and Technical Information of China (English)

    CHANG Zeng-Yi

    2011-01-01

    The year 2010 marks the sixtieth anniversary for the publication of Science in China series journals,and meanwhile the Science in China Series C:Life Sciences took a new name as Science China Life Sciences(SCLS in short).Simultaneously,it has been reformed to make a new start for this journal in its long history.The journal has appeared with a new face to the readers and authors in both the novel publishing style and the highly qualified articles.An extensive review was given to the journal's specific progress in the year 2010 by highlightingsome of the representative publications.%The year 2010 marks the sixtieth anniversary for the publication of Seience in China series journals,and meanwhile the Science in China Series C:Life Sciences took a new name as Science China Life Sciences (SCLS in short).Simultaneously,it has been reformed to make a new start for this journal in its long history.The journal has appeared with a new face to the readers and authors in both the novel publishing style and the highly qualified articles.An extensive review was given to the journal's specific progress in the year 2010 by highlighting some of the representative publications.

  10. A Kinesthetic Learning Approach to Earth Science for 3rd and 4th Grade Students on the Pajarito Plateau, Los Alamos, NM

    Science.gov (United States)

    Wershow, H. N.; Green, M.; Stocker, A.; Staires, D.

    2010-12-01

    Current efforts towards Earth Science literacy in New Mexico are guided by the New Mexico Science Benchmarks [1]. We are geoscience professionals in Los Alamos, NM who believe there is an important role for non-traditional educators utilizing innovative teaching methods. We propose to further Earth Science literacy for local 3rd and 4th grade students using a kinesthetic learning approach, with the goal of fostering an interactive relationship between the students and their geologic environment. We will be working in partnership with the Pajarito Environmental Education Center (PEEC), which teaches the natural heritage of the Pajarito Plateau to 3rd and 4th grade students from the surrounding area, as well as the Family YMCA’s Adventure Programs Director. The Pajarito Plateau provides a remarkable geologic classroom because minimal structural features complicate the stratigraphy and dramatic volcanic and erosional processes are plainly on display and easily accessible. Our methodology consists of two approaches. First, we will build an interpretive display of the local geology at PEEC that will highlight prominent rock formations and geologic processes seen on a daily basis. It will include a simplified stratigraphic section with field specimens and a map linked to each specimen’s location to encourage further exploration. Second, we will develop and implement a kinesthetic curriculum for an exploratory field class. Active engagement with geologic phenomena will take place in many forms, such as a scavenger hunt for precipitated crystals in the vesicles of basalt flows and a search for progressively smaller rhyodacite clasts scattered along an actively eroding canyon. We believe students will be more receptive to origin explanations when they possess a piece of the story. Students will be provided with field books to make drawings of geologic features. This will encourage independent assessment of phenomena and introduce the skill of scientific observation. We

  11. Kant on anatomy and the status of the life sciences.

    Science.gov (United States)

    Olson, Michael J

    2016-08-01

    This paper contributes to recent interest in Kant's engagement with the life sciences by focusing on one corner of those sciences that has received comparatively little attention: physical and comparative anatomy. By attending to remarks spread across Kant's writings, we gain some insight into Kant's understanding of the disciplinary limitations but also the methodological sophistication of the study of anatomy and physiology. Insofar as Kant highlights anatomy as a paradigmatic science guided by the principle of teleology in the Critique of the Power of Judgment, a more careful study of Kant's discussions of anatomy promises to illuminate some of the obscurities of that text and of his understanding of the life sciences more generally. In the end, it is argued, Kant's ambivalence with regard to anatomy gives way to a pessimistic conclusion about the possibility that anatomy, natural history, and, by extension, the life sciences more generally might one day become true natural sciences.

  12. Science underground (Los Alamos, 1982)

    Energy Technology Data Exchange (ETDEWEB)

    Nieto, M.M.; Haxton, W.C.; Hoffman, C.M.; Kolb, E.W.; Sandberg, V.D.; Toevs, J.W. (eds.)

    1983-01-01

    Topics covered include solar neutrinos, proton decay, cosmic rays, geophysics, gravity waves, double beta decay, and possible future research directions with underground detectors. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)

  13. Los Alamos science, Number 14

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Nine authored articles are included covering: natural heat engine, photoconductivity, the Caribbean Basin, energy in Central America, peat, geothermal energy, and the MANIAC computer. Separate abstracts were prepared for the articles. (DLC)

  14. Home | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us ...s even true for databases with high-quality datasets. The Life Science Database Archiv...te as national public goods. The Archive makes it easier for many people to search datasets by metadata (des...s with clear terms of use (see here for detailed descriptions). In addition, the Archive provides datasets i...r contribution of each research to life science. Lifescience Database Archive Archiv

  15. USSR Report, Life Sciences Biomedical and Behavioral Sciences

    Science.gov (United States)

    2007-11-02

    academician, Ukrainian SSSR Academy of Sciences, Physicochemical Institute, Ukrainian SSR Academy of Sciences, Odessa [Abstract] Polyacrylamide gel (PAAG...the canned chicken and beef products. For example, it has been demonstrated that one of the common additives in pediatric products, starch ... starch products may react with proteins leading to the formation of polycondensation products and eliminating 20-50% of the free amino acids in the

  16. Thinking Connections: Concept Maps for Life Science. Book B.

    Science.gov (United States)

    Burggraf, Frederick

    The concept maps contained in this book (for grades 7-12) span 35 topics in life science. Topics were chosen using the National Science Education Standards as a guide. The practice exercise in concept mapping is included to give students an idea of what the tasks ahead will be in content rich maps. Two levels of concept maps are included for each…

  17. Bioinformatics: Current Practice and Future Challenges for Life Science Education

    Science.gov (United States)

    Hack, Catherine; Kendall, Gary

    2005-01-01

    It is widely predicted that the application of high-throughput technologies to the quantification and identification of biological molecules will cause a paradigm shift in the life sciences. However, if the biosciences are to evolve from a predominantly descriptive discipline to an information science, practitioners will require enhanced skills in…

  18. Los Alamos National Laboratory strategic directions

    Energy Technology Data Exchange (ETDEWEB)

    Hecker, S. [Los Alamos National Lab., NM (United States)

    1995-10-01

    It is my pleasure to welcome you to Los Alamos. I like the idea of bringing together all aspects of the research community-defense, basic science, and industrial. It is particularly important in today`s times of constrained budgets and in fields such as neutron research because I am convinced that the best science and the best applications will come from their interplay. If we do the science well, then we will do good applications. Keeping our eye focused on interesting applications will spawn new areas of science. This interplay is especially critical, and it is good to have these communities represented here today.

  19. Life and Biomedical Sciences and Applications Advisory Subcommittee Meeting

    Science.gov (United States)

    1996-01-01

    The proceedings of the August 1995 meeting of the Life and Biomedical Sciences and Applications Advisory Subcommittee (LBSAAS) are summarized. The following topics were addressed by the Subcommittee members: the activities and status of the LBSA Division; program activities of the Office of Life and Microgravity Sciences and Applications (OLMSA); the medical Countermeasures Program; and the Fettman Report on animal research activities at ARC. Also presented were a history and overview of the activities of the Space Station Utilization Advisory Committee and the Advanced Life Support Program (ALSP). The meeting agenda and a list of the Subcommittee members and meeting attendees are included as appendices.

  20. Photons in Natural and Life Sciences An Interdisciplinary Approach

    CERN Document Server

    Lewerenz, Hans-Joachim

    2012-01-01

    The book describes first the principle photon generation processes from nuclear reactions, electron motion and from discrete quantum transitions. It then focuses on the use of photons in various selected fields of modern natural and life sciences. It bridges disciplines such as physics, chemistry, earth- and materials science, proteomics, information technology, photoelectrochemistry, photosynthesis and spintronics. Advanced light sources and their use in natural and life sciences are emphasized and the effects related to the quantum nature of photons (quantum computing, teleportation) are described. The content encompasses among many other examples the role of photons on the origin of life and on homochirality in biology, femtosecond laser slicing, photothermal cancer therapy, the use of gamma rays in materials science, photoelectrochemical surface conditioning, quantum information aspects and photo-spintronics. The book is written for scientists and graduate students from all related disciplines who are int...

  1. Life science teachers' decision making on sex education

    Science.gov (United States)

    Gill, Puneet Singh

    The desires of young people and especially young bodies are constructed at the intersections of policies that set the parameters of sex education policies, the embodied experiences of students in classrooms, and the way bodies are discussed in the complex language of science. Moreover, more research points to the lack of scientifically and medically accurate information about sex education. Through this research, I hope to extend the discussion about sex education to life science classrooms, where youth can discuss how sex occurs according to scientific concepts and processes. However, science classrooms are caught in a double bind: They maintain positivist methods of teaching science while paying little attention to the nature of science or the nature and function of science that offer explanations of scientific phenomena. In this study, I describe how science teachers made decisions about what to include or not include about sexuality in a life science classroom and the discursive frameworks that shaped these decisions. I also analyzed the ways that these relationships functioned to produce certain truths, or discourses. The current trends in research concerning SSI are pointing to understanding how controversial issues are framed according to personal philosophies, identities, and teaching approaches. If we can understand science teachers' inner aspects as they relate to sexuality education, we can also understand the deep-seeded motivations behind how these specific issues are being taught. In science classrooms where a discussion of the body is part of the curriculum, specific discourses of the body and sex/sexuality are excluded. In this study, I describe how science teachers made decisions about what to include or not include about sexuality in a life science classroom and the discursive practices that shaped these decisions.

  2. Scientific report training workshop interdisciplinary life sciences

    NARCIS (Netherlands)

    Rens, E.G.; Merks, R.M.H.; Boas, S.E.M.; Rens, E.G.; Merks, R.M.H.; et al, not CWI

    2014-01-01

    This preprint is the outcome of the “Training Workshop Interdisciplinary Life Sciences”, held in October 2013 in the Lorentz Center, Leiden, The Netherlands. The motivation to organize this event stems from the following considerations: The enormous progress in laboratory techniques and facilities l

  3. Scientific Collaboration and Coauthors in Life Science Journal Articles

    Directory of Open Access Journals (Sweden)

    Ya-hsiu Fu

    2002-12-01

    Full Text Available It is common to conduct collaborative research in science and technology. In particular, the development of big science, Internet, and globalization facilitated the scientific collaboration. This study used two databases, Web of Science and Journal Citation Reports as data sources. From the analysis of 320 papers in 16 journals in life sciences, the results showed that there is no significant correlation between the impact factor of journals and the number of authors. Moreover, there is no correlation of authors and the cited times, either. The number of authors and cited times in most papers are under 10 persons and 25 times, respectively.[Article content in Chinese

  4. Los Alamos Programming Models

    Energy Technology Data Exchange (ETDEWEB)

    Bergen, Benjamin Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-07

    This is the PDF of a powerpoint presentation from a teleconference on Los Alamos programming models. It starts by listing their assumptions for the programming models and then details a hierarchical programming model at the System Level and Node Level. Then it details how to map this to their internal nomenclature. Finally, a list is given of what they are currently doing in this regard.

  5. Gerhard Herzberg an illustrious life in science

    CERN Document Server

    Stoicheff, Boris

    2002-01-01

    Gerhard Herzberg (1904-1999) was one of the greatest scientists of the last century. Born and educated in Germany, he started his research just as the exciting discovery of quantum mechanics began unraveling the mysteries of the microscopic world. Herzberg chose to study spectroscopy, the light emitted and absorbed by atoms and molecules, which has played a central role in the development of modern science.

  6. USSR Report, Life Sciences Biomedical and Behavioral Sciences.

    Science.gov (United States)

    2007-11-02

    Poliomyelitis and Viral Encephalitides, USSR Academy of Medical Sciences, Moscow [Abstract] A study was made of the influence of tahyna virus on the...Suppression of Muscle Macrophage Function in Experimental Tahyna Virus Infection (V. V. Vargin, B. F. Semenov; VOPROSY VIRUSOLOGII, No 2, Mar-Apr 83) 14...Tick-Borne Encephalitis Virus Genome DNA-Copies Into Cellular DNA (I. D. Drynov, et al.; VOPROSY VIRUSOLOGII, No 2, Mar-Apr 83) 32 "Strict

  7. USSR Report, Life Sciences Biomedical and Behavioral Sciences

    Science.gov (United States)

    2007-11-02

    Studies) p 116 MARKYAVICHYUS, V. Yu., Institute of Botany , LiSSR Academy of Sciences, Nilnius [Abstract] Three species of mold of the genus Septoria...Jul-Sep 83 (manuscript received 19 Nov 82) pp 15-17 ZVYAGIN, V. N., Scientific Research Institute of Forensic Medicine (director- A. P. Gromov...received 2 Nov 82) pp 29-31 BOYKOVA, N. V., ZARAF’YANTS, G. N., KRAVTSOVA, G. B. and PETRACHKOVA, T. V., Chair of Forensic Medicine, Toxic Chemicals

  8. The oblique perspective: philosophical diagnostics of contemporary life sciences research.

    Science.gov (United States)

    Zwart, Hub

    2017-12-01

    This paper indicates how continental philosophy may contribute to a diagnostics of contemporary life sciences research, as part of a "diagnostics of the present" (envisioned by continental thinkers, from Hegel up to Foucault). First, I describe (as a "practicing" philosopher) various options for an oblique (or symptomatic) reading of emerging scientific discourse, bent on uncovering the basic "philosophemes" of science (i.e. the guiding ideas, the basic conceptions of nature, life and technology at work in contemporary life sciences research practices). Subsequently, I outline a number of radical transformations occurring both at the object-pole and at the subject-pole of the current knowledge relationship, namely the technification of the object and the anonymisation or collectivisation of the subject, under the sway of automation, ICT and big machines. Finally, I further elaborate the specificity of the oblique perspective with the help of Lacan's theorem of the four discourses. Philosophical reflections on contemporary life sciences concur neither with a Master's discourse (which aims to strengthen the legitimacy and credibility of canonical sources), nor with university discourse (which aims to establish professional expertise), nor with what Lacan refers to as hysterical discourse (which aims to challenge representatives of the power establishment), but rather with the discourse of the analyst, listening with evenly-poised attention to the scientific files in order to bring to the fore the cupido sciendi (i.e. the will to know, but also to optimise and to control) which both inspires and disrupts contemporary life sciences discourse.

  9. When Cognitive Sciences Meet Real Life

    DEFF Research Database (Denmark)

    Smith, Viktor; Selsøe Sørensen, Henrik; Nissilä, Niina

    2012-01-01

    with his/her existing knowledge, expectations and buying motivations. A cross-disciplinary Danish research project provides a new, shared frame of reference for food manufacturers, authorities, and consumer organisations for assessing in-store food-to-consumer communication from a fairness perspective......Consumers in general pay little attention to food labels. The study of expert-to-layperson communication related to food labels integrates many aspects of what cognitive sciences are about: Knowledge modelling and knowledge transfer, termhood and precision as well as fuzziness, interaction between...

  10. Los Alamos National Laboratory Facility Review

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-05

    This series of slides depicts the Los Alamos Neutron Science Center (LANSCE). The Center's 800-MeV linac produces H+ and H- beams as well as beams of moderated (cold to 1 MeV) and unmoderated (0.1 to 600 MeV) neutrons. Experimental facilities and their capabilities and characteristics are outlined. Among these are LENZ, SPIDER, and DANCE.

  11. Bringing Climate Change into the Life Science Classroom: Essentials, Impacts on Life, and Addressing Misconceptions

    Science.gov (United States)

    Hawkins, Amy J.; Stark, Louisa A.

    2016-01-01

    Climate change is at the forefront of our cultural conversation about science, influencing everything from presidential debates to Leonardo DiCaprio's 2016 Oscar acceptance speech. The topic is becoming increasingly socially and scientifically relevant but is no closer to being resolved. Most high school students take a life science course but…

  12. International Conference for Innovation in Biomedical Engineering and Life Sciences

    CERN Document Server

    Usman, Juliana; Mohktar, Mas; Ahmad, Mohd

    2016-01-01

    This volumes presents the proceedings of ICIBEL 2015, organized by the Centre for Innovation in Medical Engineering (CIME) under Innovative Technology Research Cluster, University of Malaya. It was held in Kuala Lumpur, Malaysia, from 6-8 December 2015. The ICIBEL 2015 conference promotes the latest researches and developments related to the integration of the Engineering technology in medical fields and life sciences. This includes the latest innovations, research trends and concerns, challenges and adopted solution in the field of medical engineering and life sciences. .

  13. The LAILAPS search engine: relevance ranking in life science databases.

    Science.gov (United States)

    Lange, Matthias; Spies, Karl; Bargsten, Joachim; Haberhauer, Gregor; Klapperstück, Matthias; Leps, Michael; Weinel, Christian; Wünschiers, Röbbe; Weissbach, Mandy; Stein, Jens; Scholz, Uwe

    2010-01-15

    Search engines and retrieval systems are popular tools at a life science desktop. The manual inspection of hundreds of database entries, that reflect a life science concept or fact, is a time intensive daily work. Hereby, not the number of query results matters, but the relevance does. In this paper, we present the LAILAPS search engine for life science databases. The concept is to combine a novel feature model for relevance ranking, a machine learning approach to model user relevance profiles, ranking improvement by user feedback tracking and an intuitive and slim web user interface, that estimates relevance rank by tracking user interactions. Queries are formulated as simple keyword lists and will be expanded by synonyms. Supporting a flexible text index and a simple data import format, LAILAPS can easily be used both as search engine for comprehensive integrated life science databases and for small in-house project databases. With a set of features, extracted from each database hit in combination with user relevance preferences, a neural network predicts user specific relevance scores. Using expert knowledge as training data for a predefined neural network or using users own relevance training sets, a reliable relevance ranking of database hits has been implemented. In this paper, we present the LAILAPS system, the concepts, benchmarks and use cases. LAILAPS is public available for SWISSPROT data at http://lailaps.ipk-gatersleben.de.

  14. 76 FR 17621 - Biotech Life Science Trade Mission to China

    Science.gov (United States)

    2011-03-30

    ... issues and biotechnology to discuss industry developments, opportunities, and sales strategies... consumer base and impressive economic growth further reinforce the importance of the market for U.S. firms... trials in Asia. The Biotech Life Science Sector Despite the global financial crisis, China's GDP...

  15. TÜV - Zertifizierungen in der Life Science Branche

    Science.gov (United States)

    Schaff, Peter; Gerbl-Rieger, Susanne; Kloth, Sabine; Schübel, Christian; Daxenberger, Andreas; Engler, Claus

    Life Sciences [1] (Lebenswissenschaften) sind ein globales Innovationsfeld mit Anwendungen der Bio- und Medizinwissenschaften, der Pharma-, Chemie-, Kosmetik- und Lebensmittelindustrie. Diese Branche zeichnet sich durch eine stark interdisziplinäre Ausrichtung aus, mit Anwendung wissenschaftlicher Erkenntnisse und Einsatz von Ausgangsstoffen aus der modernen Biologie, Chemie und Humanmedizin sowie gezielter marktwirtschaftlich orientierter Arbeit.

  16. Assessment of a Bioinformatics across Life Science Curricula Initiative

    Science.gov (United States)

    Howard, David R.; Miskowski, Jennifer A.; Grunwald, Sandra K.; Abler, Michael L.

    2007-01-01

    At the University of Wisconsin-La Crosse, we have undertaken a program to integrate the study of bioinformatics across the undergraduate life science curricula. Our efforts have included incorporating bioinformatics exercises into courses in the biology, microbiology, and chemistry departments, as well as coordinating the efforts of faculty within…

  17. Politics and the life sciences: an unfinished revolution.

    Science.gov (United States)

    Johnson, Gary R

    2011-01-01

    Politics and the life sciences--also referred to as biopolitics--is a field of study that seeks to advance knowledge of politics and promote better policymaking through multidisciplinary analysis that draws on the life sciences. While the intellectual origins of the field may be traced at least into the 1960s, a broadly organized movement appeared only with the founding of the Association for Politics and the Life Sciences (APLS) in 1980 and the establishment of its journal, Politics and the Life Sciences ( PLS ), in 1982. This essay--contributed by a past journal editor and association executive director--concludes a celebration of the association's thirtieth anniversary. It reviews the founding of the field and the association, as well as the contributions of the founders. It also discusses the nature of the empirical work that will advance the field, makes recommendations regarding the identity and future of the association, and assesses the status of the revolution of which the association is a part. It argues that there is progress to celebrate, but that this revolution--the last of three great scientific revolutions--is still in its early stages. The revolution is well-started, but remains unfinished.

  18. Improving Reuse in Software Development for the Life Sciences

    Science.gov (United States)

    Iannotti, Nicholas V.

    2013-01-01

    The last several years have seen unprecedented advancements in the application of technology to the life sciences, particularly in the area of data generation. Novel scientific insights are now often driven primarily by software development supporting new multidisciplinary and increasingly multifaceted data analysis. However, despite the…

  19. Introduction to Life Science (Introduccion a la Ciencia Biologica).

    Science.gov (United States)

    Barnhard, Diana; And Others

    These materials were developed to meet an expressed need for bilingual materials for a secondary school Life Science Course. Eight units were prepared. These include the following topics: (1) Introduction to the Scientific Method; (2) The Microscope; (3) The Cell; (4) Single-celled Protists, Plants, and Animals; (5) Multicellular Living Things;…

  20. Photoelectron microscopy in the life sciences: Imaging neuron networks

    Energy Technology Data Exchange (ETDEWEB)

    Mercanti, D. (Istituto di Neurobiologia del CNR, Viale Marx 15, 00100 Roma (Italy)); De Stasio, G. (ISM-CNR, Via E. Fermi 38, 00044 Frascati, Roma (Italy)); Ciotti, M.T. (Istituto di Neurobiologia del CNR, Viale Marx 15, 00100 Roma (Italy)); Capasso, C.; Ng, W.; Ray-Chaudhuri, A.K.; Liang, S.H.; Cole, R.K.; Guo, Z.Y.; Wallace, J. (Department of Physics, University of Wisconsin, Madison, WI (USA) Electrical and Computer Engineering, University of Wisconsin, Madison, WI (USA)); Margaritondo, G. (Institut de Physique Appliquee, Ecole Polytechnique Federale de Lausanne, Ecublens (Switzerland)); Cerrina, F. (Departments of Physics, University of Wisconsin, Madison, WI (USA) Electrical and Computer Engineering, University of Wisconsin, Madison, WI (USA)); Underwood, J.; Perera, R.; Kortright, J. (Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, CA 94720 (USA))

    1991-05-01

    Photoemission techniques like electron spectroscopy for chemical analysis are the leading electronic probes in materials science---but their impact in the life sciences has been minimal. A critical problem is that the lateral resolution in ordinary photoemission does not exceed a few tenths of a millimeter. This space-averaged probe is nearly useless for most of the fundamental problems in biophysics and biochemistry, which deal with microstructures in the submicron range or smaller. This limit is being overcome with photoemission microscopes, such as our scanning instrument MAXIMUM. The first scanning photoelectron micrographs of a cellular system with submicron resolution are presented. Minute details of neuron networks are imaged on MAXIMUM, thereby opening the way to novel applications of photoemission in the life sciences. The details include individual neurons, axons, dendrites, and synapses, and composite large-area scanning micrographs were routinely produced with a lateral resolution of 0.5 {mu}m.

  1. Life sciences research on the space station: An introduction

    Science.gov (United States)

    1985-01-01

    The Space Station will provide an orbiting, low gravity, permanently manned facility for scientific research, starting in the 1990s. The facilities for life sciences research are being designed to allow scientific investigators to perform research in Space Medicine and Space Biology, to study the consequences of long-term exposure to space conditions, and to allow for the permanent presence of humans in space. This research, using humans, animals, and plants, will provide an understanding of the effects of the space environment on the basic processes of life. In addition, facilities are being planned for remote observations to study biologically important elements and compounds in space and on other planets (exobiology), and Earth observations to study global ecology. The life sciences community is encouraged to plan for participation in scientific research that will be made possible by the Space Station research facility.

  2. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    Science.gov (United States)

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key

  3. Social science in a stem cell laboratory: what happened when social and life sciences met.

    Science.gov (United States)

    Stacey, Glyn; Stephens, Neil

    2012-01-01

    We describe the experience of conducting intensive social science research at the UK Stem Cell Bank from the viewpoint of both the person conducting the social science research and the Director of the Bank. We detail the initial misunderstandings and concerns held by both and the problems these caused. Then we describe how the relationship developed as the project progressed and shared benefits became apparent. Finally, while acknowledging potential areas of tension between the life and social sciences, we suggest further interaction between the disciplines would prove beneficial for both and speculate as to how this may be achieved. In the discussion we identify a set of learning points from our experience and definitions of social science terminology that may help to inform future engagements between life and social scientists.

  4. Venture Capital Investment in the Life Sciences in Switzerland.

    Science.gov (United States)

    Hosang, Markus

    2014-12-01

    Innovation is one of the main driving factors for continuous and healthy economic growth and welfare. Switzerland as a resource-poor country is particularly dependent on innovation, and the life sciences, which comprise biotechnologies, (bio)pharmaceuticals, medical technologies and diagnostics, are one of the key areas of innovative strength of Switzerland. Venture capital financing and venture capitalists (frequently called 'VCs') and investors in public equities have played and still play a pivotal role in financing the Swiss biotechnology industry. In the following some general features of venture capital investment in life sciences as well as some opportunities and challenges which venture capital investors in Switzerland are facing are highlighted. In addition certain means to counteract these challenges including the 'Zukunftsfonds Schweiz' are discussed.

  5. Knowledge-Based Systems in Biomedicine and Computational Life Science

    CERN Document Server

    Jain, Lakhmi

    2013-01-01

    This book presents a sample of research on knowledge-based systems in biomedicine and computational life science. The contributions include: ·         personalized stress diagnosis system ·         image analysis system for breast cancer diagnosis ·         analysis of neuronal cell images ·         structure prediction of protein ·         relationship between two mental disorders ·         detection of cardiac abnormalities ·         holistic medicine based treatment ·         analysis of life-science data  

  6. Kierkegaard and psychology as the science of the "multifarious life".

    Science.gov (United States)

    Klempe, Sven Hroar

    2013-09-01

    The aim of this paper is to demonstrate the actuality of some considerations around psychology made by the Danish philosopher Søren Kierkegaard (1813-1855). According to him psychology is about the "multifarious" life, which is a term that pinpoints the challenges psychology still have when it comes to including changes and genetic perspectives on its understanding of actual living. Yet Kierkegaard discusses psychology in relationship to metaphysics, which is an almost forgotten perspective. His understanding opens up for narrowing the definition of psychology down to the science of subjectivity, which at the same time elevates psychology to being the only science that focuses on the actual human life. Yet Kierkegaard's most important contribution to psychology is to maintain a radical distinction between subjectivity and objectivity, and in this respect the psychology of today is challenged.

  7. A Practical Guide to Photoacoustic Tomography in the Life Sciences

    Science.gov (United States)

    Wang, Lihong V.; Yao, Junjie

    2016-01-01

    The life sciences can benefit greatly from imaging technologies that connect microscopic discoveries with macroscopic observations. Photoacoustic tomography (PAT), a highly sensitive modality for imaging rich optical absorption contrast over a wide range of spatial scales at high speed, is uniquely positioned for this need. In PAT, endogenous contrast reveals tissue’s anatomical, functional, metabolic, and histologic properties, and exogenous contrast provides molecular and cellular specificity. The spatial scale of PAT covers organelles, cells, tissues, organs, and small-animal organisms. Consequently, PAT is complementary to other imaging modalities in contrast mechanism, penetration, spatial resolution, and temporal resolution. We review the fundamentals of PAT and provide practical guidelines to the broad life science community for matching PAT systems with research needs. We also summarize the most promising biomedical applications of PAT, discuss related challenges, and envision its potential to lead to further breakthroughs. PMID:27467726

  8. Knowledge sharing in public-private partnerships in life science: An open science perspective

    OpenAIRE

    Sánchez Jiménez, Óscar David; Aibar Puentes, Eduard

    2016-01-01

    Resultados preliminares sobre la adopción de prácticas de ciencia abierta en partenariados público-privados en Ciencias de la Vida. Resultats preliminars sobre l'adopció de pràctiques de ciència oberta a partenariats publico-privats en Ciències de la Vida. Preliminary results on the adoption of open science practices in public-private partnerships in Life Sciences.

  9. Los Alamos Climatology 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-10

    The Los Alamos National Laboratory (LANL or the Laboratory) operates a meteorology monitoring network to support LANL emergency response, engineering designs, environmental compliance, environmental assessments, safety evaluations, weather forecasting, environmental monitoring, research programs, and environmental restoration. Weather data has been collected in Los Alamos since 1910. Bowen (1990) provided climate statistics (temperature and precipitation) for the 1961– 1990 averaging period, and included other analyses (e.g., wind and relative humidity) based on the available station locations and time periods. This report provides an update to the 1990 publication Los Alamos Climatology (Bowen 1990).

  10. Hiroshima University Research and Technology Guide 2012 Version : Life Science

    OpenAIRE

    Center for Collaborative Research & Community Cooperation,

    2012-01-01

    I Life ScienceDevelopment of Treatment Strategy for Hepatocellular Carcinoma to Improve the Long Term Prognosis / Hiroshi AIKATA...2Development of Revolutional Apatite-implant Complex with Simultaneous Bone Augmentation and Osseointegration / Yasumasa AKAGAWA...3How Do Patients with Alzheimer’s Disease Experience Memory Impairments? / Sawako ARAI...4Development of New Therapies for Chronic Viral Hepatitis Using Human Hepatocyte Chimeric Mice / Kazuaki CHAYAMA...5Identification of High Risk Pa...

  11. European Bioinformatics Institute: Research Infrastructure needed for Life Science

    CERN Document Server

    CERN. Geneva

    2015-01-01

    The life science community is an ever increasing source of data from increasing diverse range of instruments and sources. EMBL-EBI has a remit to store and exploit this data, collected and made available openly across the world, for the benefit of the whole research community. The research infrastructure needed to support the big data analysis around this mission encompasses high performance networks, high-throughput computing, and a range of cloud and storage solutions - and will be described in the presentation.

  12. Reconstruction of biological networks based on life science data integration

    OpenAIRE

    Kormeier, Benjamin; Hippe, Klaus; Arrigo, Patrizio; Töpel, Thoralf; Janowski, Sebastian; Hofestädt, Ralf

    2010-01-01

    For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH - an integration toolkit for building life science data warehouses, CardioVINEdb - a information system for biological data in cardiovascular-disease and V...

  13. Microfluidics: an enabling technology for the life sciences

    OpenAIRE

    Zengerle, Roland; Koltay, P.; Ducrée, Jens

    2004-01-01

    During the last year we have investigated existing and future markets, products and technologies for microfluidics in the life sciences. Within this paper we present some of the findings and discuss a major trend identified within this project: the development of microfluidic platforms for flexible design of application specific integrated microfluidic systems. We discuss two platforms in detail which are currently under development in our lab: microfluidics on a rotating CD ("Lab-CD") as wel...

  14. Los Alamos low-level waste performance assessment status

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, W.J.; Purtymun, W.D.; Dewart, J.M.; Rodgers, J.E. (comps.)

    1986-06-01

    This report reviews the documented Los Alamos studies done to assess the containment of buried hazardous wastes. Five sections logically present the environmental studies, operational source terms, transport pathways, environmental dosimetry, and computer model development and use. This review gives a general picture of the Los Alamos solid waste disposal and liquid effluent sites and is intended for technical readers with waste management and environmental science backgrounds but without a detailed familiarization with Los Alamos. The review begins with a wide perspective on environmental studies at Los Alamos. Hydrology, geology, and meteorology are described for the site and region. The ongoing Laboratory-wide environmental surveillance and waste management environmental studies are presented. The next section describes the waste disposal sites and summarizes the current source terms for these sites. Hazardous chemical wastes and liquid effluents are also addressed by describing the sites and canyons that are impacted. The review then focuses on the transport pathways addressed mainly in reports by Healy and Formerly Utilized Sites Remedial Action Program. Once the source terms and potential transport pathways are described, the dose assessment methods are addressed. Three major studies, the waste alternatives, Hansen and Rogers, and the Pantex Environmental Impact Statement, contributed to the current Los Alamos dose assessment methodology. Finally, the current Los Alamos groundwater, surface water, and environmental assessment models for these mesa top and canyon sites are described.

  15. NASA space life sciences research and education support program

    Science.gov (United States)

    Jones, Terri K.

    1995-01-01

    USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.

  16. Improving life sciences information retrieval using semantic web technology.

    Science.gov (United States)

    Quan, Dennis

    2007-05-01

    The ability to retrieve relevant information is at the heart of every aspect of research and development in the life sciences industry. Information is often distributed across multiple systems and recorded in a way that makes it difficult to piece together the complete picture. Differences in data formats, naming schemes and network protocols amongst information sources, both public and private, must be overcome, and user interfaces not only need to be able to tap into these diverse information sources but must also assist users in filtering out extraneous information and highlighting the key relationships hidden within an aggregated set of information. The Semantic Web community has made great strides in proposing solutions to these problems, and many efforts are underway to apply Semantic Web techniques to the problem of information retrieval in the life sciences space. This article gives an overview of the principles underlying a Semantic Web-enabled information retrieval system: creating a unified abstraction for knowledge using the RDF semantic network model; designing semantic lenses that extract contextually relevant subsets of information; and assembling semantic lenses into powerful information displays. Furthermore, concrete examples of how these principles can be applied to life science problems including a scenario involving a drug discovery dashboard prototype called BioDash are provided.

  17. Data life cycle: a perspective from the Information Science

    Directory of Open Access Journals (Sweden)

    Ricardo César Gonçalves Sant’Ana

    2016-08-01

    Full Text Available Introduction: Access and use of data as a key factor has been extended to several areas of knowledge of today's society. It’s necessary to develop a new perspective that presents phases and factors involved in these processes, providing an initial analysis structure, allowing the efforts, skills and actions organization related to the data life cycle. Purpose: This article is a proposal for a new look at the data life cycle, that assumes, as a central element, the data itself, supporting itself on the concepts and contributions that Information Science can provide, without giving up the reflections on the role of other key areas such as Computer Science. Methodology: The methodological procedures consisted of bibliographic research and content analysis to describe the phases and factors related to the Data Life Cycle, developing reflections and considerations from context already consolidated in the development of systems that can corroborate the idea of centrality of data. Results: The results describe the phases of: collect, storage, recovery and discard, permeated by transverse factors: privacy, integration, quality, copyright, dissemination and preservation, composing a Data Life Cycle. Conclusions: The current context of the availability of large volumes of data, with great variety and at speeds that provide access in real time, setting the so-called Big Data that requires new concerns about access and use processes of data. The Information Science may offer a new approach, now centered in the data, and contribute to the optimization of Data Life Cycle as a whole, extending bridges between users and the data they need.

  18. Crafting a science life: Learning from twentieth century women

    Science.gov (United States)

    Lenz, Michele Ann

    This study examined how women in the field of science craft a science life. Within a historical and cultural framework, the study analyzed the autobiographies, biographies, and other written works of five noted women scientists who lived during the time period of 1878 through 1992. The women scientists chosen for the study were Lise Meitner, Florence Seibert, Barbara McClintock, Rita Levi-Montalcini, and Rosalind Franklin. Together they represented the three major science disciplines of biology, chemistry and physics. I attempted to make sense of my own science life using the stories of the women scientists as a framework. Situating my experiences within the context of the lives of the women scientists allowed me to use a phenomenological approach to discern commonalities within their lives and my own. The results indicated that the women scientists and myself encountered multiple obstacles in terms of access and equity. However, it was also indicated that all of the women in the study developed a variety of techniques, including resistance and accommodation, in order to navigate these obstacles while still being able to pursue their chosen career path. These women did, however, make great sacrifices that cost them personally, emotionally, financially, and even in terms of their career advancement. Their success was closely tied to their ability to forge their own path, to create their own way of living, and to accept themselves as nonconformists.

  19. Science, culture and the search for life on other worlds

    CERN Document Server

    Traphagan, John W

    2016-01-01

    This book explores humanity’s thoughts and ideas about extraterrestrial life, paying close attention to the ways science and culture interact with one another to create a context of imagination and discovery related to life on other worlds. Despite the recent explosion in our knowledge of other planets and the seeming era of discovery in which we live, to date we have found no concrete evidence that we are not alone. Our thinking about life on other worlds has been and remains the product of a combination of scientific investigation and human imagination shaped by cultural values--particularly values of exploration and discovery connected to American society. The rapid growth in our awareness of other worlds makes this a crucial moment to think about and assess the influence of cultural values on the scientific search for extraterrestrial life. Here the author considers the junction of science and culture with a focus on two main themes: (1) the underlying assumptions, many of which are tacitly based upon c...

  20. Phenomenology and the life sciences: Clarifications and complementarities.

    Science.gov (United States)

    Sheets-Johnstone, Maxine

    2015-12-01

    This paper first clarifies phenomenology in ways essential to demonstrating its basic concern with Nature and its recognition of individual and cultural differences as well as commonalities. It furthermore clarifies phenomenological methodology in ways essential to understanding the methodology itself, its purpose, and its consequences. These clarifications show how phenomenology, by hewing to the dynamic realities of life itself and experiences of life itself, counters reductive thinking and "embodiments" of one kind and another. On the basis of these clarifications, the paper then turns to detailing conceptual complementarities between phenomenology and the life sciences, particularly highlighting studies in coordination dynamics. In doing so, it brings to light fundamental relationships such as those between mind and motion and between intrinsic dynamics and primal animation. It furthermore highlights the common concern with origins in both phenomenology and evolutionary biology: the history of how what is present is related to its inception in the past and to its transformations from past to present.

  1. Inspiring the Next Generation in Space Life Sciences

    Science.gov (United States)

    Hayes, Judith

    2010-01-01

    Competitive summer internships in space life sciences at NASA are awarded to college students every summer. Each student is aligned with a NASA mentor and project that match his or her skills and interests, working on individual projects in ongoing research activities. The interns consist of undergraduate, graduate, and medical students in various majors and disciplines from across the United States. To augment their internship experience, students participate in the Space Life Sciences Summer Institute (SLSSI). The purpose of the Institute is to offer a unique learning environment that focuses on the current biomedical issues associated with human spaceflight; providing an introduction of the paradigms, problems, and technologies of modern spaceflight cast within the framework of life sciences. The Institute faculty includes NASA scientists, physicians, flight controllers, engineers, managers, and astronauts; and fosters a multi-disciplinary science approach to learning with a particular emphasis on stimulating experimental creativity and innovation within an operational environment. This program brings together scientists and students to discuss cutting-edge solutions to problems in space physiology, environmental health, and medicine; and provides a familiarization of the various aspects of space physiology and environments. In addition to the lecture series, behind-the-scenes tours are offered that include the Neutral Buoyancy Laboratory, Mission Control Center, space vehicle training mockups, and a hands-on demonstration of the Space Shuttle Advanced Crew Escape Suit. While the SLSSI is managed and operated at the Johnson Space Center in Texas, student interns from the other NASA centers (Glenn and Ames Research Centers, in Ohio and California) also participate through webcast distance learning capabilities.

  2. Science at the supermarket: multiplication, personalization and consumption of science in everyday life.

    Science.gov (United States)

    Tateo, Luca

    2014-06-01

    Which is the kind science's psychological guidance upon everyday life? I will try to discuss some issues about the role that techno-scientific knowledge plays in sense-making and decision making about practical questions of life. This relation of both love and hate, antagonism and connivance is inscribable in a wider debate between a trend of science to intervene in fields that are traditionally prerogative of political, religious or ethical choices, and, on the other side, the position of those who aim at stemming "technocracy" and governing these processes. I argue that multiplication, personalization and consumption are the characteristics of the relationship between science, technology and society in the age of "multiculturalism" and "multi-scientism". This makes more difficult but intriguing the study and understanding of the processes through which scientific knowledge is socialized. Science topics, like biotech, climate change, etc. are today an unavoidable reference frame. It is not possible to not know them and to attach them to the most disparate questions. Like in the case of Moscovici's "Freud for all seasons", the fact itself that the members of a group or a society believe in science as a reference point for others, roots its social representation and the belief that it can solve everyday life problems.

  3. Engineering and simulation of life sciences Spacelab experiments.

    Science.gov (United States)

    Johnston, R S; Bush, W H; Rummel, J A; Alexander, W C

    1979-10-01

    The third in a series of Spacelab Mission Development tests was conducted at the Johnson (correction of Johnston) Space Center as a part of the development of Life Sciences experiments for the Space Shuttle era. The latest test was a joint effort of the Ames Research and Johnson Space Centers and utilized animals and men for study. The basic objective of this test was to evaluate the operational concepts planned for the Space Shuttle life science payloads program. A three-man crew (Mission Specialist and two Payload Specialists) conducted 26 experiments and 12 operational tests, which were selected for this 7-day mission simulation. The crew lived on board a simulated Orbiter/Spacelab mockup 24 hr a day. The Orbiter section contained the mid deck crew quarters area, complete with sleeping, galley and waste management provisions. The Spacelab was identical in geometry to the European Space Agency Spacelab design, complete with removable rack sections and stowage provisions. Communications between the crewmen and support personnel were configured and controlled as currently planned for operational shuttle flights. For this test a Science Operations Remote Center was manned at the Ames Research Center and was managed by simulated Mission Control and Payload Operation Control Centers at the Johnson Space Center. This paper presents the test objectives, description of the facilities and test program, and the results of this test.

  4. Arnold Sommerfeld science, life and turbulent times : 1868-1951

    CERN Document Server

    Eckert, Michael

    2013-01-01

    Arnold Sommerfeld (1868-1951) belongs with Max Planck (1858-1947), Albert Einstein (1879-1955) and Niels Bohr (1885-1962) among the founders of modern theoretical physics, a science that developed into a budding discipline during his lifetime. Sommerfeld witnessed many of the most dramatic scientific, cultural and political events of this era. His correspondence with his family offers a vivid testament to the challenges and joys of a life in science. This biography attempts to reconstruct Sommerfeld’s life and work not only from the perspective of his achievements in theoretical physics but also with the goal of portraying the career of a scientist within the social and political environment in which it evolved. It is based to a large extent on Sommerfeld’s voluminous correspondence, which sheds light both on his private and scientific life. Furthermore, it provides an authentic view on the circumstances that shaped Sommerfeld’s career in different places – Königsberg, Göttingen, Clausthal, Aachen, ...

  5. [From human genome to man-made life: J. Craig Venter leads the life sciences].

    Science.gov (United States)

    Sun, Mingwei; Li, Yin; Gao, George F

    2010-06-01

    For the first time ever, the scientists of J. Craig Venter team have created actual self-replicating synthetic life. The research was just published in the Journal of Science on May 20, 2010. Although this news immediately brings the worry about the possible potential threat to biosecurity and biosafety as well as the ethical disputes, it yet indicates that mankind have made a new step forward in synthetic biology. In the time of post-genome era, we believe the advancement of synthetic biology that might affect or change the future life of human being will be widely used in energy, environment, materials, medication and many other fields.

  6. Physical sciences and engineering advances in life sciences and oncology a WTEC global assessment

    CERN Document Server

    Fletcher, Daniel; Gerecht, Sharon; Levine, Ross; Mallick, Parag; McCarty, Owen; Munn, Lance; Reinhart-King, Cynthia

    2016-01-01

    This book presents an Assessment of Physical Sciences and Engineering Advances in Life Sciences and Oncology (APHELION) by a panel of experts. It covers the status and trends of applying physical sciences and engineering principles to oncology research in leading laboratories and organizations in Europe and Asia. The book elaborates on the six topics identified by the panel that have the greatest potential to advance understanding and treatment of cancer, each covered by a chapter in the book. The study was sponsored by the National Cancer Institute (NCI) at the National Institute of Health (NIH), the National Science Foundation (NSF) and the National Institute of Biomedical Imaging and Bioengineering at the NIH in the US under a cooperative agreement with the World Technology Evaluation Center (WTEC).

  7. Vision and change in introductory physics for the life sciences

    CERN Document Server

    Mochrie, S G J

    2015-01-01

    Since 2010, the Yale physics department has offered a novel calculus-based introductory physics for the life science (IPLS) sequence, that re-imagines the IPLS syllabus to include a selection of biologically and medically relevant topics, that are highly meaningful to its audience of biological science and premedical undergraduates. The first semester, in particular, differs considerably from traditional first-semester introductory physics. Here, we highlight the novel aspects of Yale's first-semester course, and describe student feedback about the course, including a comparison between how students evaluate the course and how they evaluate courses with a traditional syllabus, and how students' perceptions of the relevance of physics to biology and medicine are affected by having taken the course.

  8. The why of things: causality in science, medicine, and life

    CERN Document Server

    Rabins, Peter V.

    2013-01-01

    Why was there a meltdown at the Fukushima power plant? Why do some people get cancer and not others? Why is global warming happening? Why does one person get depressed in the face of life's vicissitudes while another finds resilience? Questions like these -- questions of causality -- form the basis of modern scientific inquiry, posing profound intellectual and methodological challenges for researchers in the physical, natural, biomedical, and social sciences. In this groundbreaking book, noted psychiatrist and author Peter Rabins offers a conceptual framework for analyzing daunting questions of causality. Navigating a lively intellectual voyage between the shoals of strict reductionism and relativism, Rabins maps a three-facet model of causality and applies it to a variety of questions in science, medicine, economics, and more. Throughout this book, Rabins situates his argument within relevant scientific contexts, such as quantum mechanics, cybernetics, chaos theory, and epigenetics. A renowned communicator o...

  9. Introduction to statistical data analysis for the life sciences

    CERN Document Server

    Ekstrom, Claus Thorn

    2014-01-01

    This text provides a computational toolbox that enables students to analyze real datasets and gain the confidence and skills to undertake more sophisticated analyses. Although accessible with any statistical software, the text encourages a reliance on R. For those new to R, an introduction to the software is available in an appendix. The book also includes end-of-chapter exercises as well as an entire chapter of case exercises that help students apply their knowledge to larger datasets and learn more about approaches specific to the life sciences.

  10. Life sciences biomedical research planning for Space Station

    Science.gov (United States)

    Primeaux, Gary R.; Michaud, Roger; Miller, Ladonna; Searcy, Jim; Dickey, Bernistine

    1987-01-01

    The Biomedical Research Project (BmRP), a major component of the NASA Life Sciences Space Station Program, incorporates a laboratory for the study of the effects of microgravity on the human body, and the development of techniques capable of modifying or counteracting these effects. Attention is presently given to a representative scenario of BmRP investigations and associated engineering analyses, together with an account of the evolutionary process by which the scenarios and the Space Station design requirements they entail are identified. Attention is given to a tether-implemented 'variable gravity centrifuge'.

  11. Professional Networks in the Life Sciences: Linking the Linked

    Directory of Open Access Journals (Sweden)

    Thomas S. Deisboeck

    2010-08-01

    Full Text Available The world wide web has furthered the emergence of a multitude of online expert communities. Continued progress on many of the remaining complex scientific questions requires a wide ranging expertise spectrum with access to a variety of distinct data types. Moving beyond peer-to-peer to community-to-community interaction is therefore one of the biggest challenges for global interdisciplinary Life Sciences research, including that of cancer. Cross-domain data query, access, and retrieval will be important innovation areas to enable and facilitate this interaction in the coming years.

  12. Progress Report of Space Life Science in China

    Institute of Scientific and Technical Information of China (English)

    CHEN Shanguang; LI Yinghui

    2008-01-01

    In the past two years, space life sciences research in China is characterized by a tendency toward integration of scientific and engineering resources in preparing and implementing advanced space programs. In the field of operational medicine, we carried out an international cooperated Head-Down Bed Rest (HDBR) experiment and investigated the effects of Chinese herbs compounds on astronaut's physiological functions. The effect of microgravity and its mechanisms were further studied from the level of physiology and biology. At the same time, state-level platform for ground and space experiment was established.

  13. At the dawn of a new revolution in life sciences

    Institute of Scientific and Technical Information of China (English)

    Frantiek; Baluka; Guenther; Witzany

    2013-01-01

    In a recently published article Sydney Brenner argued that the most relevant scientific revolution in biology at his time was the breakthrough of the role of "information" in biology.The fundamental concept that integrates this new biological "information" with matter and energy is the universal Turing machine and von Neumann’s self-reproducing machines.In this article we demonstrate that in contrast to Turing/von Neumann machines living cells can really reproduce themselves.Additionally current knowledge on the roles of noncoding RNAs indicates a radical violation of the central dogma of molecular biology and opens the way to a new revolution in life sciences.

  14. Spatial Health and Life Sciences Business Ecosystems: Research Frame

    Directory of Open Access Journals (Sweden)

    Jukka Majava

    2014-12-01

    Full Text Available Industry competition is moving from the company-level towards business ecosystems, where organizations must develop mutually beneficial relationships with each other. This paper studies business ecosystem phenomena, focusing especially on the spatial (geographical context within the health and life sciences industry. In addition, business ecosystem evolution and change dynamics are addressed. This study is literature-based; the findings and analysis provide a research frame for forthcoming empirical studies. Despite increasing attention, business ecosystem literature is still relatively immature, and previous studies have mostly focused on software and the information technology (it industries. Hence, this paper provides new insights into the business ecosystem concept in a novel context.

  15. 08301 Final Report -- Group Testing in the Life Sciences

    OpenAIRE

    2008-01-01

    Group testing AKA smart-pooling is a general strategy for minimizing the number of tests necessary for identifying positives among a large collection of items. It has the potential to efficiently identify and correct for experimental errors (false–positives and false–negatives). It can be used whenever tests can detect the presence of a positive in a group (or pool) of items, provided that positives are rare. Group testing has numerous applications in the life sciences, such as physical ma...

  16. Life sciences research in space: The requirement for animal models

    Science.gov (United States)

    Fuller, C. A.; Philips, R. W.; Ballard, R. W.

    1987-01-01

    Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.

  17. Philosophical Approaches towards Sciences of Life in Early Cybernetics

    Science.gov (United States)

    Montagnini, Leone

    2008-07-01

    The article focuses on the different conceptual and philosophical approaches towards the sciences of life operating in the backstage of Early Cybernetics. After a short reconstruction of the main steps characterizing the origins of Cybernetics, from 1940 until 1948, the paper examines the complementary conceptual views between Norbert Wiener and John von Neumann, as a "fuzzy thinking" versus a "logical thinking", and the marked difference between the "methodological individualism" shared by both of them versus the "methodological collectivism" of most of the numerous scientists of life and society attending the Macy Conferences on Cybernetics. The main thesis sustained here is that these different approaches, quite invisible to the participants, were different, maybe even opposite, but they could provoke clashes, as well as cooperate in a synergic way.

  18. Large-scale networks in engineering and life sciences

    CERN Document Server

    Findeisen, Rolf; Flockerzi, Dietrich; Reichl, Udo; Sundmacher, Kai

    2014-01-01

    This edited volume provides insights into and tools for the modeling, analysis, optimization, and control of large-scale networks in the life sciences and in engineering. Large-scale systems are often the result of networked interactions between a large number of subsystems, and their analysis and control are becoming increasingly important. The chapters of this book present the basic concepts and theoretical foundations of network theory and discuss its applications in different scientific areas such as biochemical reactions, chemical production processes, systems biology, electrical circuits, and mobile agents. The aim is to identify common concepts, to understand the underlying mathematical ideas, and to inspire discussions across the borders of the various disciplines.  The book originates from the interdisciplinary summer school “Large Scale Networks in Engineering and Life Sciences” hosted by the International Max Planck Research School Magdeburg, September 26-30, 2011, and will therefore be of int...

  19. Darwin and the origin of life: public versus private science.

    Science.gov (United States)

    Strick, James E

    2009-12-01

    In the first twenty years after the publication of Darwin's On the Origin of Species, an intense debate took place within the ranks of Darwin's supporters over exactly what his theory implied about the means by which the original living organism formed on Earth. Many supporters of evolutionary science also supported the doctrine of spontaneous generation: life forming from nonliving material not just once but many times up to the present day. Darwin was ambivalent on this topic. He feared its explosive potential to drive away liberal-minded Christians who might otherwise be supporters. His ambivalent wording created still more confusion, both among friends and foes, about what Darwin actually believed about the origin of life. A famous lecture by Thomas H. Huxley in 1870 set forth what later became the 'party line' Darwinian position on the subject.

  20. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.

  1. Factors in life science textbooks that may deter girls' interest in science

    Science.gov (United States)

    Potter, Ellen F.; Rosser, Sue V.

    In order to examine factors that may deter girls' interest in science, five seventh-grade life science textbooks were analyzed for sexism in language, images, and curricular content, and for features of activities that have been found to be useful for motivating girls. Although overt sexism was not apparent, subtle forms of sexism in the selection of language, images, and curricular content were found. Activities had some features useful to girls, but other features were seldom included. Teachers may wish to use differences that were found among texts as one basis for text selection.

  2. Los Alamos National Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Lab has a proud history and heritage of almost 70 years of science and innovation. The people at the Laboratory work on advanced technologies to provide the best...

  3. Design concepts for the Centrifuge Facility Life Sciences Glovebox

    Science.gov (United States)

    Sun, Sidney C.; Horkachuck, Michael J.; Mckeown, Kellie A.

    1989-01-01

    The Life Sciences Glovebox will provide the bioisolated environment to support on-orbit operations involving non-human live specimens and samples for human life sceinces experiments. It will be part of the Centrifuge Facility, in which animal and plant specimens are housed in bioisolated Habitat modules and transported to the Glovebox as part of the experiment protocols supported by the crew. At the Glovebox, up to two crew members and two habitat modules must be accommodated to provide flexibility and support optimal operations. This paper will present several innovative design concepts that attempt to satisfy the basic Glovebox requirements. These concepts were evaluated for ergonomics and ease of operations using computer modeling and full-scale mockups. The more promising ideas were presented to scientists and astronauts for their evaluation. Their comments, and the results from other evaluations are presented. Based on the evaluations, the authors recommend designs and features that will help optimize crew performance and facilitate science accommodations, and specify problem areas that require further study.

  4. Life Science Professional Societies Expand Undergraduate Education Efforts

    Science.gov (United States)

    Matyas, Marsha Lakes; Ruedi, Elizabeth A.; Engen, Katie; Chang, Amy L.

    2017-01-01

    The Vision and Change in Undergraduate Biology Education reports cite the critical role of professional societies in undergraduate life science education and, since 2008, have called for the increased involvement of professional societies in support of undergraduate education. Our study explored the level of support being provided by societies for undergraduate education and documented changes in support during the Vision and Change era. Society representatives responded to a survey on programs, awards, meetings, membership, teaching resources, publications, staffing, finances, evaluation, and collaborations that address undergraduate faculty and students. A longitudinal comparison group of societies responded to surveys in both 2008 and 2014. Results indicate that life science professional societies are extensively engaged in undergraduate education in their fields, setting standards for their discipline, providing vetted education resources, engaging students in both research and education, and enhancing professional development and recognition/status for educators. Societies are devoting funding and staff to these efforts and engaging volunteer leadership. Longitudinal comparison group responses indicate there have been significant and quantifiable expansions of undergraduate efforts in many areas since 2008. These indicators can serve as a baseline for defining, aligning, and measuring how professional societies can promote sustainable, evidence-based support of undergraduate education initiatives. PMID:28130272

  5. The International Space Station human life sciences experiment implementation process

    Science.gov (United States)

    Miller, L. J.; Haven, C. P.; McCollum, S. G.; Lee, A. M.; Kamman, M. R.; Baumann, D. K.; Anderson, M. E.; Buderer, M. C.

    2001-01-01

    The selection, definition, and development phases of a Life Sciences flight research experiment has been consistent throughout the past decade. The implementation process, however, has changed significantly within the past two years. This change is driven primarily by the shift from highly integrated, dedicated research missions on platforms with well defined processes to self contained experiments with stand alone operations on platforms which are being concurrently designed. For experiments manifested on the International Space Station (ISS) and/or on short duration missions, the more modular, streamlined, and independent the individual experiment is, the more likely it is to be successfully implemented before the ISS assembly is completed. During the assembly phase of the ISS, science operations are lower in priority than the construction of the station. After the station has been completed, it is expected that more resources will be available to perform research. The complexity of implementing investigations increases with the logistics needed to perform the experiment. Examples of logistics issues include- hardware unique to the experiment; large up and down mass and volume needs; access to crew and hardware during the ascent or descent phases; maintenance of hardware and supplies with a limited shelf life,- baseline data collection schedules with lengthy sessions or sessions close to the launch or landing; onboard stowage availability, particularly cold stowage; and extensive training where highly proficient skills must be maintained. As the ISS processes become better defined, experiment implementation will meet new challenges due to distributed management, on-orbit resource sharing, and adjustments to crew availability pre- and post-increment. c 2001. Elsevier Science Ltd. All rights reserved.

  6. Ninth Graders' Learning Interests, Life Experiences and Attitudes towards Science & Technology

    Science.gov (United States)

    Chang, Shu-Nu; Yeung, Yau-Yuen; Cheng, May Hung

    2009-01-01

    Students' learning interests and attitudes toward science have both been studied for decades. However, the connection between them with students' life experiences about science and technology has not been addressed much. The purpose of this study is to investigate students' learning interests and life experiences about science and technology, and…

  7. Los Alamos National Laboratory: 21st century solutions to urgent national challenges

    Energy Technology Data Exchange (ETDEWEB)

    Mcbranch, Duncan [Los Alamos National Laboratory

    2008-01-01

    Los Alamos National Laboratory has been called upon to meet urgent national challenges for more than 65 years. The people, tools, and technologies at Los Alamos are a world class resource that has proved decisive through our history, and are needed in the future. We offer expertise in nearly every science, technology, and engineering discipline, a unique integrated capability for large-scale computing and experimentation, and the proven ability to deliver solutions involving the most complex and difficult technical systems. This white paper outlines some emerging challenges and why the nation needs Los Alamos, the premier National Security Science Laboratory, to meet these challenges.

  8. Incorporating Genomics and Bioinformatics across the Life Sciences Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Ditty, Jayna L.; Kvaal, Christopher A.; Goodner, Brad; Freyermuth, Sharyn K.; Bailey, Cheryl; Britton, Robert A.; Gordon, Stuart G.; Heinhorst, Sabine; Reed, Kelynne; Xu, Zhaohui; Sanders-Lorenz, Erin R.; Axen, Seth; Kim, Edwin; Johns, Mitrick; Scott, Kathleen; Kerfeld, Cheryl A.

    2011-08-01

    Undergraduate life sciences education needs an overhaul, as clearly described in the National Research Council of the National Academies publication BIO 2010: Transforming Undergraduate Education for Future Research Biologists. Among BIO 2010's top recommendations is the need to involve students in working with real data and tools that reflect the nature of life sciences research in the 21st century. Education research studies support the importance of utilizing primary literature, designing and implementing experiments, and analyzing results in the context of a bona fide scientific question in cultivating the analytical skills necessary to become a scientist. Incorporating these basic scientific methodologies in undergraduate education leads to increased undergraduate and post-graduate retention in the sciences. Toward this end, many undergraduate teaching organizations offer training and suggestions for faculty to update and improve their teaching approaches to help students learn as scientists, through design and discovery (e.g., Council of Undergraduate Research [www.cur.org] and Project Kaleidoscope [www.pkal.org]). With the advent of genome sequencing and bioinformatics, many scientists now formulate biological questions and interpret research results in the context of genomic information. Just as the use of bioinformatic tools and databases changed the way scientists investigate problems, it must change how scientists teach to create new opportunities for students to gain experiences reflecting the influence of genomics, proteomics, and bioinformatics on modern life sciences research. Educators have responded by incorporating bioinformatics into diverse life science curricula. While these published exercises in, and guidelines for, bioinformatics curricula are helpful and inspirational, faculty new to the area of bioinformatics inevitably need training in the theoretical underpinnings of the algorithms. Moreover, effectively integrating bioinformatics

  9. Toward an Ecosystem for Innovation in a Newly Industrialized Economy: Singapore and the Life Sciences

    Science.gov (United States)

    Wong, Poh-Kam

    2006-01-01

    In the late 1990s the Singapore government embarked on a set of far-reaching strategies intended to develop the city-state into one of the major life science R&D and industrial clusters in Asia. Besides efforts to attract leading overseas life science companies to establish operations in Singapore, the government has developed new life science…

  10. Paul Scherrer Institute Scientific Report 1998. Volume II: Life Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Gschwend, Beatrice; Jaussi, Rolf [eds.

    1999-09-01

    The Department of Life Sciences, is aiming to perform high quality research in biosciences focused primarily on oncology and in close interaction with the technical facilities at PSI e.g. proton therapy, SINQ, SLS, and the national and international bioscience community. Within this department, the Division of Radiation Protection and Radioactive Waste Treatment is responsible for the radiological safety of the personnel, the installations and the environment at PSI, and it is charged with dismantling obsolete nuclear installations at PSI. The principal research and development activities of this division concern novel methods for neutron dosimetry, and the study of presence and pathways of natural and man made radioactivity in humans and in the environment. (author) figs., tabs., refs.

  11. 5th International Conference on Optics Within Life Sciences

    CERN Document Server

    Papazoglou, Theodore; Kalpouzos, Costas

    2000-01-01

    Following to previous OWLS conferences devoted to widespread applications of optics in life sciences, this 5th OWLS Conference focuses on recent achievements in applying lasers and optics in biomedicine and the preservation of our cultural heritage. Particular attention is paid to laser diagnostics in medicine, interaction of laser radiation with biological tissue, aspects of the preservation of cultural heritage, and the development of new systems for these studies. The contributors to this volume cover international research activities in the following areas: Laser-tissue interactions and tissue optics - photon migration in tissue; Medical sensors - fiber optics; Clinical use of lasers (dermatology, ENT, cardiology, etc.); Laser-based techniques in art conservation (cleaning, diagnostics, analytical applications); Imaging techniques and lasers in archaeology; Laser technologies in contemporary art (holography, marking, etc.); and New laser and opto-electronic systems for biomedical and art-related studies.

  12. First-principles quantum chemistry in the life sciences.

    Science.gov (United States)

    van Mourik, Tanja

    2004-12-15

    The area of computational quantum chemistry, which applies the principles of quantum mechanics to molecular and condensed systems, has developed drastically over the last decades, due to both increased computer power and the efficient implementation of quantum chemical methods in readily available computer programs. Because of this, accurate computational techniques can now be applied to much larger systems than before, bringing the area of biochemistry within the scope of electronic-structure quantum chemical methods. The rapid pace of progress of quantum chemistry makes it a very exciting research field; calculations that are too computationally expensive today may be feasible in a few months' time! This article reviews the current application of 'first-principles' quantum chemistry in biochemical and life sciences research, and discusses its future potential. The current capability of first-principles quantum chemistry is illustrated in a brief examination of computational studies on neurotransmitters, helical peptides, and DNA complexes.

  13. Environmental control and life support systems analysis for a Space Station life sciences animal experiment

    Science.gov (United States)

    So, Kenneth T.; Hall, John B., Jr.; Thompson, Clifford D.

    1987-01-01

    NASA's Langley and Goddard facilities have evaluated the effects of animal science experiments on the Space Station's Environmental Control and Life Support System (ECLSS) by means of computer-aided analysis, assuming an animal colony consisting of 96 rodents and eight squirrel monkeys. Thirteen ECLSS options were established for the reclamation of metabolic oxygen and waste water. Minimum cost and weight impacts on the ECLSS are found to accrue to the system's operation in off-nominal mode, using electrochemical CO2 removal and a static feed electrolyzer for O2 generation.

  14. The international space station human life sciences experiment implementation process

    Science.gov (United States)

    Miller, LadonnaJ.; Haven, CynthiaP.; McCollum, SuzanneG.; Lee, AngeleneM.; Kamman, MichelleR.; Baumann, DavidK.; Anderson, MarkE.; Buderer, MelvinC.

    2001-08-01

    The selection, definition, and development phases of a Life Sciences flight research experiment has been consistent throughout the past decade. The implementation process, however, has changed significantly within the past two years. This change is driven primarily by the shift from highly integrated, dedicated research missions on platforms with well defined processes to self contained experiments with stand alone operations on platforms which are being concurrently designed. For experiments manifested on the International Space Station (ISS) and / or on short duration missions, the more modular, streamlined, and independent the individual experiment is, the more likely it is to be successfully implemented before the ISS assembly is completed. During the assembly phase of the ISS, science operations are lower in priority than the construction of the station. After the station has been completed, it is expected that more resources will be available to perform research. The complexity of implementing investigations increases with the logistics needed to perform the experiment. Examples of logistics issues include: hardware unique to the experiment; large up and down mass and volume needs; access to crew and hardware during the ascent or descent phases; maintenance of hardware and supplies with a limited shelf life; baseline data collection schedules with lengthy sessions or sessions close to the launch or landing; onboard stowage availability, particularly cold stowage; and extensive training where highly proficient skills must be maintained. As the ISS processes become better defined, experiment implementation will meet new challenges due to distributed management, on-orbit resource sharing, and adjustments to crew availability pre- and post-increment.

  15. The International Space Station human life sciences experiment implementation process.

    Science.gov (United States)

    Miller, L J; Haven, C P; McCollum, S G; Lee, A M; Kamman, M R; Baumann, D K; Anderson, M E; Buderer, M C

    2001-01-01

    The selection, definition, and development phases of a Life Sciences flight research experiment has been consistent throughout the past decade. The implementation process, however, has changed significantly within the past two years. This change is driven primarily by the shift from highly integrated, dedicated research missions on platforms with well defined processes to self contained experiments with stand alone operations on platforms which are being concurrently designed. For experiments manifested on the International Space Station (ISS) and/or on short duration missions, the more modular, streamlined, and independent the individual experiment is, the more likely it is to be successfully implemented before the ISS assembly is completed. During the assembly phase of the ISS, science operations are lower in priority than the construction of the station. After the station has been completed, it is expected that more resources will be available to perform research. The complexity of implementing investigations increases with the logistics needed to perform the experiment. Examples of logistics issues include- hardware unique to the experiment; large up and down mass and volume needs; access to crew and hardware during the ascent or descent phases; maintenance of hardware and supplies with a limited shelf life,- baseline data collection schedules with lengthy sessions or sessions close to the launch or landing; onboard stowage availability, particularly cold stowage; and extensive training where highly proficient skills must be maintained. As the ISS processes become better defined, experiment implementation will meet new challenges due to distributed management, on-orbit resource sharing, and adjustments to crew availability pre- and post-increment.

  16. Chemical energy in an introductory physics course for the life sciences

    OpenAIRE

    2013-01-01

    Energy is a complex idea that cuts across scientific disciplines. For life science students, an approach to energy that incorporates chemical bonds and chemical reactions is better equipped to meet the needs of life sciences students than a traditional introductory physics approach that focuses primarily on mechanical energy. We present a curricular sequence, or thread, designed to build up students' understanding of chemical energy in an introductory physics course for the life sciences. Thi...

  17. Evaluation of an international doctoral educational program in space life sciences: The Helmholtz Space Life Sciences Research School (SpaceLife) in Germany

    Science.gov (United States)

    Hellweg, C. E.; Spitta, L. F.; Kopp, K.; Schmitz, C.; Reitz, G.; Gerzer, R.

    2016-01-01

    Training young researchers in the field of space life sciences is essential to vitalize the future of spaceflight. In 2009, the DLR Institute of Aerospace Medicine established the Helmholtz Space Life Sciences Research School (SpaceLife) in cooperation with several universities, starting with 22 doctoral candidates. SpaceLife offered an intensive three-year training program for early-stage researchers from different fields (biology, biomedicine, biomedical engineering, physics, sports, nutrition, plant and space sciences). The candidates passed a multistep selection procedure with a written application, a self-presentation to a selection committee, and an interview with the prospective supervisors. The selected candidates from Germany as well as from abroad attended a curriculum taught in English. An overview of space life sciences was given in a workshop with introductory lectures on space radiation biology and dosimetry, space physiology, gravitational biology and astrobiology. The yearly Doctoral Students' Workshops were also interdisciplinary. During the first Doctoral Students' Workshop, every candidate presented his/her research topic including hypothesis and methods to be applied. The progress report was due after ∼1.5 years and a final report after ∼3 years. The candidates specialized in their subfield in advanced lectures, Journal Clubs, practical trainings, lab exchanges and elective courses. The students attended at least one transferable skills course per year, starting with a Research Skills Development course in the first year, a presentation and writing skills course in the second year, and a career and leadership course in the third year. The whole program encompassed 303 h and was complemented by active conference participation. In this paper, the six years' experience with this program is summarized in order to guide other institutions in establishment of structured Ph.D. programs in this field. The curriculum including elective courses is

  18. Ames Life Science Data Archive: Translational Rodent Research at Ames

    Science.gov (United States)

    Wood, Alan E.; French, Alison J.; Ngaotheppitak, Ratana; Leung, Dorothy M.; Vargas, Roxana S.; Maese, Chris; Stewart, Helen

    2014-01-01

    The Life Science Data Archive (LSDA) office at Ames is responsible for collecting, curating, distributing and maintaining information pertaining to animal and plant experiments conducted in low earth orbit aboard various space vehicles from 1965 to present. The LSDA will soon be archiving data and tissues samples collected on the next generation of commercial vehicles; e.g., SpaceX & Cygnus Commercial Cargo Craft. To date over 375 rodent flight experiments with translational application have been archived by the Ames LSDA office. This knowledge base of fundamental research can be used to understand mechanisms that affect higher organisms in microgravity and help define additional research whose results could lead the way to closing gaps identified by the Human Research Program (HRP). This poster will highlight Ames contribution to the existing knowledge base and how the LSDA can be a resource to help answer the questions surrounding human health in long duration space exploration. In addition, it will illustrate how this body of knowledge was utilized to further our understanding of how space flight affects the human system and the ability to develop countermeasures that negate the deleterious effects of space flight. The Ames Life Sciences Data Archive (ALSDA) includes current descriptions of over 700 experiments conducted aboard the Shuttle, International Space Station (ISS), NASA/MIR, Bion/Cosmos, Gemini, Biosatellites, Apollo, Skylab, Russian Foton, and ground bed rest studies. Research areas cover Behavior and Performance, Bone and Calcium Physiology, Cardiovascular Physiology, Cell and Molecular Biology, Chronobiology, Developmental Biology, Endocrinology, Environmental Monitoring, Gastrointestinal Physiology, Hematology, Immunology, Life Support System, Metabolism and Nutrition, Microbiology, Muscle Physiology, Neurophysiology, Pharmacology, Plant Biology, Pulmonary Physiology, Radiation Biology, Renal, Fluid and Electrolyte Physiology, and Toxicology. These

  19. Convergence facilitating transdisciplinary integration of life sciences, physical sciences, engineering, and beyond

    CERN Document Server

    2014-01-01

    Convergence of the life sciences with fields including physical, chemical, mathematical, computational, engineering, and social sciences is a key strategy to tackle complex challenges and achieve new and innovative solutions. However, institutions face a lack of guidance on how to establish effective programs, what challenges they are likely to encounter, and what strategies other organizations have used to address the issues that arise. This advice is needed to harness the excitement generated by the concept of convergence and channel it into the policies, structures, and networks that will enable it to realize its goals. Convergence investigates examples of organizations that have established mechanisms to support convergent research. This report discusses details of current programs, how organizations have chosen to measure success, and what has worked and not worked in varied settings. The report summarizes the lessons learned and provides organizations with strategies to tackle practical needs and imple...

  20. Future opportunities and future trends for e-infrastructures and life sciences: going beyond grid to enable life science data analysis

    Directory of Open Access Journals (Sweden)

    Fotis ePsomopoulos

    2015-06-01

    Full Text Available With the increasingly rapid growth of data in Life Sciences we are witnessing a major transition in the way research is conducted, from hypothesis-driven studies to data-driven simulations of whole systems. In the context of the European Grid Infrastructure Community Forum 2014 (Helsinki, 19–23 May 2014, a workshop was held aimed at understanding the state of the art of Grid/Cloud computing in EU research as viewed from within the field of Life Sciences. The workshop brought together Life Science researchers and infrastructure providers from around Europe and facilitated networking between them within the context of EGI. The first part of the workshop included talks from key infrastructures and projects within the Life Sciences community. This was complemented by technical talks that established the key aspects present in major research approaches. Finally, the discussion phase provided significant insights into the road ahead with proposals for possible collaborations and suggestions for future actions.

  1. Discourse in science communities: Issues of language, authority, and gender in a life sciences laboratory

    Science.gov (United States)

    Conefrey, Theresa Catherine

    Government-sponsored and private research initiatives continue to document the underrepresentation of women in the sciences. Despite policy initiatives, women's attrition rates each stage of their scientific careers remain higher than those of their male colleagues. In order to improve retention rates more information is needed about why many drop out or do not succeed as well as they could. While broad sociological studies and statistical surveys offer a valuable overview of institutional practices, in-depth qualitative analyses are needed to complement these large-scale studies. This present study goes behind statistical generalizations about the situation of women in science to explore the actual experience of scientific socialization and professionalization. Beginning with one reason often cited by women who have dropped out of science: "a bad lab experience," I explore through detailed observation in a naturalistic setting what this phrase might actually mean. Using ethnographic and discourse analytic methods, I present a detailed analysis of the discourse patterns in a life sciences laboratory group at a large research university. I show how language accomplishes the work of indexing and constituting social constraints, of maintaining or undermining the hierarchical power dynamics of the laboratory, of shaping members' presentation of self, and of modeling social and professional skills required to "do science." Despite the widespread conviction among scientists that "the mind has no sex," my study details how gender marks many routine interactions in the lab, including an emphasis on competition, a reinforcement of sex-role stereotypes, and a conversational style that is in several respects more compatible with men's than women's forms of talk.

  2. Paul Scherrer Institute Scientific Report 1999. Volume II: Life Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Jaussi, Rolf; Gschwend, Beatrice [eds.

    2000-07-01

    The existing activities of the Department of Life Sciences have grown out of the specific know how and the unique experimental possibilities available at PSI. Primarily, these have been and are complex facilities for using particle beams (protons, neutrons) on the one hand and know how in the production, handling and chemistry of radionuclides on the other. The common theme of the department has thus been the study and use of various types of radiation in therapy and diagnostics of human disease and in particular of cancer. The four units active in this area are: The major activity in the Radiation Medicine unit is Proton Therapy, which aims to further develop and optimise the world-wide unique spot scanning facility for irradiating malignant tumours with minimal damage to surrounding healthy tissues, including the established OPTIS program for the treatment of eye tumours. The Centre for Radiopharmaceutical Science represents a joint activity of PSI with the Swiss Federal Institute of Technology (ETHZ) and the University of Zurich. Its major goals are the development of novel tumour targeted radioconjugates for cancer diagnosis and therapy and the production and evaluation of new PET (positron emission tomography) radiotracers for various applications in neuro physiology and drug development. The Institute of Medical Radiobiology analyses questions of the molecular biology of DNA repair. It is a joint activity of PSI and the University of Zurich. The Structural Biology unit is currently being established. A strong in-house research activity in macromolecular crystallography will complement the more user-oriented protein crystallography beam line, which is being built at the Swiss Light Source (SLS). In particular, tumour targeting by molecular vehicles and DNA repair are areas where structural information can provide important insights. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided.

  3. Paul Scherrer Institute Scientific Report 2000. Volume II: Life Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Jaussi, Rolf; Gschwend, Beatrice [eds.

    2001-07-01

    The existing activities of the Department of Life Sciences have grown out of the specific know-how and the unique experimental possibilities available at PSI. Primarily, these have been and are complex facilities for using particle beams (protons, neutrons) on the one hand and know-how in the production, handling and chemistry of radionuclides on the other. The common theme of the department has thus been the study and use of various types of radiation in therapy and diagnostics of human disease and in particular of cancer. The four units active in this area are: The major activity in the Radiation Medicine unit is Proton Therapy, which aims to further develop and optimise the world-wide unique spot scanning facility for irradiating malignant tumours with minimal damage to surrounding healthy tissues, including the established OPTIS program for the treatment of eye tumours. The Centre for Radiopharmaceutical Science represents a joint activity of PSI with the Swiss Federal Institute of Technology (ETHZ) and the University of Zurich. Its major goals are the development of novel tumour targeted radioconjugates for cancer diagnosis and therapy and the production and evaluation of new PET (positron emission tomography) radiotracers for various applications in neuro physiology and drug development. The Institute of Medical Radiobiology analyses questions of the molecular biology of DNA repair. It is a joint activity of PSI and the University of Zurich. The newly established Structural Biology group is still in the build-up phase. A strong in-house research activity in macromolecular crystallography will complement the more user-oriented protein crystallography beam line, which is being built at the Swiss Light Source (SLS). In particular, tumour targeting by molecular vehicles and DNA repair are areas where structural information can provide important insights. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2000

  4. Spacelab Life Sciences (SLS) echocardiograph in mockup rack in JSC's Bldg 36

    Science.gov (United States)

    1987-01-01

    Spacelab Life Sciences (SLS) life sciences laboratory equipment (LSLE) echocardiograph is documented in the JSC Bioengineering and Test Support Facility Bldg 36. Displayed on the echocardiograph monitor is a heart image. The echocardiograph equipment is located in Rack 6 and will be used in conjunction with Experiment No. 294 Cardiovascular Adaptation to Zero Gravity during the STS-40 SLS-1 mission.

  5. Changing Lives: The Baltimore City Community College Life Sciences Partnership with the University of Maryland, Baltimore

    Science.gov (United States)

    Carroll, Vanessa G.; Harris-Bondima, Michelle; Norris, Kathleen Kennedy; Williams, Carolane

    2010-01-01

    Baltimore City Community College (BCCC) leveraged heightened student interest and enrollment in the sciences and allied health with Maryland's world-leading biotechnology industry to build a community college life sciences learning and research center right on the University of Maryland, Baltimore's downtown BioPark campus. The BCCC Life Sciences…

  6. Possibilities, Intentions and Threats: Dual Use in the Life Sciences Reconsidered

    NARCIS (Netherlands)

    Van der Bruggen, K.

    2011-01-01

    Due to the terrorist attacks of 9/11 and the anthrax letters of a few weeks later, the concept of dual use has spread widely in the life sciences during the past decade. This article is aimed at a clarification of the dual use concept and its scope of application for the life sciences. Such a clarif

  7. Analogical reflection as a source for the science of life: Kant and the possibility of the biological sciences.

    Science.gov (United States)

    Nassar, Dalia

    2016-08-01

    In contrast to the previously widespread view that Kant's work was largely in dialogue with the physical sciences, recent scholarship has highlighted Kant's interest in and contributions to the life sciences. Scholars are now investigating the extent to which Kant appealed to and incorporated insights from the life sciences and considering the ways he may have contributed to a new conception of living beings. The scholarship remains, however, divided in its interest: historians of science are concerned with the content of Kant's claims, and the ways in which they may or may not have contributed to the emerging science of life, while historians of philosophy focus on the systematic justifications for Kant's claims, e.g., the methodological and theoretical underpinnings of Kant's statement that living beings are mechanically inexplicable. My aim in this paper is to bring together these two strands of scholarship into dialogue by showing how Kant's methodological concerns (specifically, his notion of reflective judgment) contributed to his conception of living beings and to the ontological concern with life as a distinctive object of study. I argue that although Kant's explicit statement was that biology could not be a science, his implicit and more fundamental claim was that the study of living beings necessitates a distinctive mode of thought, a mode that is essentially analogical. I consider the implications of this view, and argue that it is by developing a new methodology for grasping organized beings that Kant makes his most important contribution to the new science of life.

  8. Multi-copter application to life sciences in partial gravity.

    Science.gov (United States)

    Hasegawa, Katsuya; Kumei, Yasuhiro; Atomi, Yoriko

    Although parabolic flight is a well-defined experimental platform to simulate microgravity conditions, it has not been used extensively for pure scientific purposes due to many limitations in accessibility and reproducibility as well as the high cost. To overcome this problem, we have developed a brand-new low-gravity simulation system that is operated by a radio-controlled multi-copter. The outline of the new multi-copter is, 1) dimension and weight:Width 800mm,5kg, 2) low-gravity generation: 1/6 ~1G for 5 seconds, 3) payloads: up to 30 kg, 4) measurable instrument: G-sensor, 5) observational instruments: high speed camera, high-definition camera, zoom camera, video recorder, 6) data collection: analog data 128ch memory. We can conduct the experiments 10 times a day without any cost, and get an enough number of samples for statistical analysis. The newly developed multi-copter system enables physical, chemical, and basic life sciences with graded levels of low gravities as an experimental parameter.

  9. The first dedicated life sciences mission - Spacelab 4

    Science.gov (United States)

    Cramer, D. R.; Reid, D. H.; Klein, H. P.

    1983-01-01

    The details of the payload and the experiments in Spacelab 4, the first Spacelab mission dedicated entirely to the life sciences, are discussed. The payload of Spacelab 4, carried in the bay of the Shuttle Orbiter, consists of 25 tentatively selected investigations combined into a comprehensive integrated exploration of the effects of acute weightlessness on living systems. The payload contains complementary designs in the human and animal investigations in order to validate animal models of human physiology in weightlessness. Animals used as experimental subjects will include squirrel monkeys, laboratory rats, several species of plants, and frog eggs. The main scientific objectives of the investigations include the study of the acute cephalic fluid shift, cardiovascular adaptation to weightlessness, including postflight reductions in orthostatic tolerance and exercise capacity, and changes in vestibular function, including space motion sickness, associated with weightlessness. Other scientific objective include the study of red cell mass reduction, negative nitrogen balance, altered calcium metabolism, suppressed in vitro lymphocyte reactivity, gravitropism and photropism in plants, and fertilization and early development in frog eggs.

  10. Translating complex science into life-course health promoting strategies.

    Science.gov (United States)

    Buttriss, Judith L

    2011-02-01

    These days, we are bombarded with nutrition information from diverse sources and of varying quality. There has been a dramatic increase in communication channels, including more television channels with airtime to fill, and the emergence of the Internet and 'new media' such as social networking sites. Part of this culture is to deliver ever changing and novel angles. The background 'noise' that this creates can make delivery of evidence-based advice about healthy eating that generally carries less novelty value, a huge challenge. This paper illustrates ways in which complex scientific information can be translated into meaningful health promoting strategies that can be applied across the life course. The examples used are nutrition in the context of healthy ageing, communicating the concept of energy density in the context of satiety, healthy hydration, health effects of probiotics and resources for use by teachers in the classroom. This selection of examples demonstrates the processes adopted at the British Nutrition Foundation to identify the evidence base for a particular topic and then to communicate this information to various target audiences. The British Nutrition Foundation's approach typically starts with preparation of a detailed review of the evidence, often with the involvement of external expertise, followed by peer review. For much of this work conventional science communication routes are used, but use is also made of the Internet and various forms of new media.

  11. Analysis of debris from Spacelab Space Life Sciences-1

    Science.gov (United States)

    Caruso, S. V.; Rodgers, E. B.; Huff, T. L.

    1992-07-01

    Airborne microbiological and particulate contamination generated aboard Spacelab modules is a potential safety hazard. In order to shed light on the characteristics of these contaminants, microbial and chemical/particulate analyses were performed on debris vacuumed from cabin and avionics air filters in the Space Life Sciences-1 (SLS-1) module of the Space Transportation System 40 (STS-40) mission 1 month after landing. The debris was sorted into categories (e.g., metal, nonmetal, hair/fur, synthetic fibers, food particles, insect fragments, etc.). Elemental analysis of particles was done by energy dispersive analysis of x rays (metals) and Fourier transform infrared spectroscopy (nonmetals). Scanning electron micrographs were done of most particles. Microbiological samples were grown on R2A culture medium and identified. Clothing fibers dominated the debris by volume. Other particles, all attributed to the crew, resulted from abrasions and impacts during missions operations (e.g., paint chips, plastic, electronic scraps and clothing fibers). All bacterial species identified are commonly found in the atmosphere or on the human body. Bacillus sp. was the most frequently seen bacterium. One of the bacterial species, Enterobacter agglomerans, could cause illness in crew members with depressed immune systems.

  12. Influence of an Intensive, Field-Based Life Science Course on Preservice Teachers' Self-Efficacy for Environmental Science Teaching

    Science.gov (United States)

    Trauth-Nare, Amy

    2015-01-01

    Personal and professional experiences influence teachers' perceptions of their ability to implement environmental science curricula and to positively impact students' learning. The purpose of this study was twofold: to determine what influence, if any, an intensive field-based life science course and service learning had on preservice teachers'…

  13. Longitudinal effects of college type and selectivity on degrees conferred upon undergraduate females in physical science, life science, math and computer science, and social science

    Science.gov (United States)

    Stevens, Stacy Mckimm

    There has been much research to suggest that a single-sex college experience for female undergraduate students can increase self-confidence and leadership ability during the college years and beyond. The results of previous studies also suggest that these students achieve in the workforce and enter graduate school at higher rates than their female peers graduating from coeducational institutions. However, some researchers have questioned these findings, suggesting that it is the selectivity level of the colleges rather than the comprised gender of the students that causes these differences. The purpose of this study was to justify the continuation of single-sex educational opportunities for females at the post-secondary level by examining the effects that college selectivity, college type, and time have on the rate of undergraduate females pursuing majors in non-traditional fields. The study examined the percentage of physical science, life science, math and computer science, and social science degrees conferred upon females graduating from women's colleges from 1985-2001, as compared to those at comparable coeducational colleges. Sampling for this study consisted of 42 liberal arts women's (n = 21) and coeducational (n = 21) colleges. Variables included the type of college, the selectivity level of the college, and the effect of time on the percentage of female graduates. Doubly multivariate repeated measures analysis of variance testing revealed significant main effects for college selectivity on social science graduates, and time on both life science and math and computer science graduates. Significant interaction was also found between the college type and time on social science graduates, as well as the college type, selectivity level, and time on math and computer science graduates. Implications of the results and suggestions for further research are discussed.

  14. Los Alamos Science, Fall 1983 No. 9

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N G [ed.

    1983-10-01

    Topics covered in this issue include: cellular automata, gene expression, gen-bank and its promise for molecular genetics, and frontiers of supercomputing. Abstracts have been prepared for the individual items. (GHT)

  15. Life satisfaction, health, self-evaluation and sexuality in current university students of sport sciences, education and natural sciences

    Directory of Open Access Journals (Sweden)

    Martin Sigmund

    2014-12-01

    Full Text Available Background: Lifestyle and health of an individual are influenced by many factors; a significant factor is life satisfaction. Life satisfaction is understood as a multidimensional construct closely related to the area of personal wellbeing and quality of life. Life satisfaction in university students represents one of the determinants of good health, high motivation for studying, work productivity, satisfactory interpersonal relationships and overall healthy lifestyle. Objective: The main objective of the present study is to identify and compare the level of overall life satisfaction and selected components of health, self-evaluation and sexuality in current university students with respect to their study specialization. Methods: The study included a total of 522 students from Palacký University. These were students from the Faculty of Physical Culture (n = 118, Faculty of Education (n = 218 and Faculty of Science (n = 186. In terms of age, the study focused on young adults aged 19 to 26. To assess the current level of life satisfaction, the research study used a standardized psychodiagnostic tool - Life Satisfaction Questionnaire (LSQ. The used diagnostic methods are fully standardized and contain domestic normative values. Statistical result processing was conducted using the Statistica programme v10.0. Results: The highest level of overall life satisfaction was revealed in university students of sport sciences. In comparison with the students of education and students of natural sciences the difference is significant. Satisfaction with health among the students of sport sciences is significantly higher than in the students of education (p ≤ .001; d = 0.53 and the students of natural sciences (p ≤ .05; d = 0.38. Similar results were found in the area of satisfaction with own person and self-evaluation, where the values of the students of sport sciences were significantly higher compared with the students of education (p

  16. Life sciences flight hardware development for the International Space Station

    Science.gov (United States)

    Kern, V. D.; Bhattacharya, S.; Bowman, R. N.; Donovan, F. M.; Elland, C.; Fahlen, T. F.; Girten, B.; Kirven-Brooks, M.; Lagel, K.; Meeker, G. B.; Santos, O.

    During the construction phase of the International Space Station (ISS), early flight opportunities have been identified (including designated Utilization Flights, UF) on which early science experiments may be performed. The focus of NASA's and other agencies' biological studies on the early flight opportunities is cell and molecular biology; with UF-1 scheduled to fly in fall 2001, followed by flights 8A and UF-3. Specific hardware is being developed to verify design concepts, e.g., the Avian Development Facility for incubation of small eggs and the Biomass Production System for plant cultivation. Other hardware concepts will utilize those early research opportunities onboard the ISS, e.g., an Incubator for sample cultivation, the European Modular Cultivation System for research with small plant systems, an Insect Habitat for support of insect species. Following the first Utilization Flights, additional equipment will be transported to the ISS to expand research opportunities and capabilities, e.g., a Cell Culture Unit, the Advanced Animal Habitat for rodents, an Aquatic Facility to support small fish and aquatic specimens, a Plant Research Unit for plant cultivation, and a specialized Egg Incubator for developmental biology studies. Host systems (Figure 1A, B), e.g., a 2.5 m Centrifuge Rotor (g-levels from 0.01-g to 2-g) for direct comparisons between μg and selectable g levels, the Life Sciences Glove☐ for contained manipulations, and Habitat Holding Racks (Figure 1B) will provide electrical power, communication links, and cooling to the habitats. Habitats will provide food, water, light, air and waste management as well as humidity and temperature control for a variety of research organisms. Operators on Earth and the crew on the ISS will be able to send commands to the laboratory equipment to monitor and control the environmental and experimental parameters inside specific habitats. Common laboratory equipment such as microscopes, cryo freezers, radiation

  17. Nanocrystalline diamond--an excellent platform for life science applications.

    Science.gov (United States)

    Kloss, Frank R; Najam-Ul-Haq, Muhammed; Rainer, Matthias; Gassner, Robert; Lepperdinger, Günter; Huck, Christian W; Bonn, Günther; Klauser, Frederik; Liu, Xianjie; Memmel, Norbert; Bertel, Erminald; Garrido, Jose A; Steinmüller-Nethl, Doris

    2007-12-01

    Nanocrystalline diamond (NCD) has recently been successfully utilized in a variety of life science applications. NCD films are favorable and salubrious substrates for cells during cultivation. Therefore NCD has also been employed in tissue engineering strategies. NCD as reported in this contribution was grown by means of a modified hot-filament chemical vapor deposition technique, which results in less than 3% sp2-hybridization and yields grain sizes of 5-20 nm. After production the NCD surface was rather hydrophobic, however it could be efficiently refined to exhibit more hydrophilic properties. Changing of the surface structure was found to be an efficient means to influence growth and differentiation capacity of a variety of cells. The particular needs for any given cell type has to be proven empirically. Yet flexible features of NCD appear to be superior to plastic surfaces which can be hardly changed in quality. Besides its molecular properties, crystal structural peculiarities of NCD appear to influence cell growth as well. In our attempt to facilitate, highly specialized applications in biomedicine, we recently discovered that growth factors can be tightly bound to NCD by mere physisorption. Hence, combination of surface functionalization together with further options to coat NCD with any kind of three-dimensional structure opens up new avenues for many more applications. In fact, high through-put protein profiling of early disease stages may become possible from serum samples, because proteins bound to NCD can now be efficiently analyzed by MALDI/TOF-MS. Given these results, it is to be presumed that the physical properties and effective electrochemical characteristics of NCD will allow tailoring devices suitable for many more diagnostic as well as therapeutic applications.

  18. Bioclipse 2: A scriptable integration platform for the life sciences

    Directory of Open Access Journals (Sweden)

    Wagener Johannes

    2009-12-01

    Full Text Available Abstract Background Contemporary biological research integrates neighboring scientific domains to answer complex questions in fields such as systems biology and drug discovery. This calls for tools that are intuitive to use, yet flexible to adapt to new tasks. Results Bioclipse is a free, open source workbench with advanced features for the life sciences. Version 2.0 constitutes a complete rewrite of Bioclipse, and delivers a stable, scalable integration platform for developers and an intuitive workbench for end users. All functionality is available both from the graphical user interface and from a built-in novel domain-specific language, supporting the scientist in interdisciplinary research and reproducible analyses through advanced visualization of the inputs and the results. New components for Bioclipse 2 include a rewritten editor for chemical structures, a table for multiple molecules that supports gigabyte-sized files, as well as a graphical editor for sequences and alignments. Conclusion Bioclipse 2 is equipped with advanced tools required to carry out complex analysis in the fields of bio- and cheminformatics. Developed as a Rich Client based on Eclipse, Bioclipse 2 leverages on today's powerful desktop computers for providing a responsive user interface, but also takes full advantage of the Web and networked (Web/Cloud services for more demanding calculations or retrieval of data. The fact that Bioclipse 2 is based on an advanced and widely used service platform ensures wide extensibility, making it easy to add new algorithms, visualizations, as well as scripting commands. The intuitive tools for end users and the extensible architecture make Bioclipse 2 ideal for interdisciplinary and integrative research. Bioclipse 2 is released under the Eclipse Public License (EPL, a flexible open source license that allows additional plugins to be of any license. Bioclipse 2 is implemented in Java and supported on all major platforms; Source code

  19. Database Description - DMPD | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available hage Pathway CSML Database Creator Creator Name: Masao Nagasaki Creator Affiliation: The Institute of Medical Science, The University... The Institute of Medical Science, The University of Tokyo Creator Name: Andre Fujita Creator Affiliation: T...he Institute of Medical Science, The University of Tokyo Creator Name: Kazuko Ueno Creator Affiliation: The ...Institute of Medical Science, The University of Tokyo Creator Name: Emi Ikeda Cre...ator Affiliation: The Institute of Medical Science, The University of Tokyo Creator Name: Euna Jeong Creator

  20. The late Husserl’s project of science of the life-world

    Directory of Open Access Journals (Sweden)

    Layla Siavoshi

    2016-08-01

    Full Text Available The purpose of this article is to representthe obvious understanding of the challenging concept of a science of the life-world in The Crisis of European Sciences and Transcendental Phenomenology and meaning of this project by Husserl. Hereof, first is very important to perpend distinction and yet relationship between the objective science and the life-world then it seems inevitable to reflect on steps to this transcendental science including epochs of the objective science, epochs ofa science of the life-world and transcendental reduction. Here, the main focus lays onthe possibility of a science of the life-world project with tow attitude a reflective and a non-reflective. In the first attitude be accomplished the universal structures of the life-world in format of anontologyofthe life-world and in the second attitude be discovered on Husserl's transcendental turn on the life-world and its manner-of-givenness the transcendental solidarity between the world and the world consciousness.

  1. NASA - selected life science experiments for the first NASA/ESA Spacelab flight 1980

    Science.gov (United States)

    Larson, C. A.

    1977-01-01

    Spacelab 1 will carry 17 NASA-sponsored research projects. Seven of these investigations will concern the life sciences. Because of NASA's interest in space motion sickness, two vestibular studies will be conducted. Two other experiments will be concerned with the effects of spaceflight on the hematologic system. The fifth life science study will involve nutations in plant organs. The sixth investigation will examine the effects of the Spacelab environment on circadian rhythms in microorganisms. Finally, cosmic radiation inside the Spacelab will be mapped. These seven life science experiments represent both basic and applied areas of research.

  2. Alien To Me? Science in Search for Life Beyond Earth and Perceptions of Alien Life in Popular Culture

    Science.gov (United States)

    Capova, K. A.

    2013-09-01

    The paper will introduce an original piece of research that is devoted to the socio-cultural aspects of scientifi c search for life in outer space and it draws from doctoral research in anthropology of science. In this piece of research the extraterrestrial life hypothesis is conceptualized as a significant part of the general world-view, constantly shaped by the work and discoveries of science. The paper presents data from qualitative ethnographic fieldwork conducted in the UK as well as uses quantitative data from public from the USA, UK and other countries.

  3. ICP-MS and elemental tags for the life sciences

    Energy Technology Data Exchange (ETDEWEB)

    Giesen, Charlotte

    2012-08-07

    Inductively coupled plasma mass spectrometry (ICP-MS) has been applied for the analysis of biomolecules due to its high sensitivity, wide linear dynamic range, and multielement capabilities. However, outside the elemental MS community the potential of this technique, e.g. for life sciences applications, is not yet fully exploited. Thus, the development of ICP-MS-based (immuno) assays for a wide range of medical (cancer diagnostics, cisplatin toxicity studies), biochemical (DNA microarray, single cell analysis), and environmental (analysis of comestible goods) applications was accomplished by utilization of chemical labels. Laser ablation (LA)-ICP-MS was employed for the direct analysis of solid samples like microarrays and thin tissue sections. An immunoassay was developed for ochratoxin A (OTA) determination in wine, and ICP-MS detection was compared to conventional photometry by gold nanoparticle tagging and horseradish peroxidase, respectively. Detection limits of the assay were optimized to 0.003 {mu}g L{sup -1}, and the quantification range was 0.01-1 {mu}g L{sup -1} for both methods. For LA-ICP-MS-based DNA microarray detection, gold nanoparticle tags were specifically introduced via a streptavidin-biotin linkage. In immunohistochemistry (IHC), up to 20 tumor markers are routinely evaluated for one patient and thus, a common analysis results in a series of time consuming staining procedures. Hence, LA-ICP-MS was elaborated as a detection tool for a novel, multiplexed IHC analysis of tissue sections. Different lanthanides were employed for the simultaneous detection of up to three tumor markers (Her 2, CK 7, and MUC 1) in a breast cancer tissue. Additionally, iodine was employed as a labeling reagent, and a new LA-ICP-MS method for single cell and cell nucleus imaging was developed at 4 {mu}m laser spot size. Iodine was also applied as a new internal standard for tissue samples. Moreover, Pt-protein complexes separated by an optimized 1D and 2D gel

  4. Educational challenges of molecular life science: Characteristics and implications for education and research.

    Science.gov (United States)

    Tibell, Lena A E; Rundgren, Carl-Johan

    2010-01-01

    Molecular life science is one of the fastest-growing fields of scientific and technical innovation, and biotechnology has profound effects on many aspects of daily life-often with deep, ethical dimensions. At the same time, the content is inherently complex, highly abstract, and deeply rooted in diverse disciplines ranging from "pure sciences," such as math, chemistry, and physics, through "applied sciences," such as medicine and agriculture, to subjects that are traditionally within the remit of humanities, notably philosophy and ethics. Together, these features pose diverse, important, and exciting challenges for tomorrow's teachers and educational establishments. With backgrounds in molecular life science research and secondary life science teaching, we (Tibell and Rundgren, respectively) bring different experiences, perspectives, concerns, and awareness of these issues. Taking the nature of the discipline as a starting point, we highlight important facets of molecular life science that are both characteristic of the domain and challenging for learning and education. Of these challenges, we focus most detail on content, reasoning difficulties, and communication issues. We also discuss implications for education research and teaching in the molecular life sciences.

  5. Stopping to Squell the "Rhosus": Bringing Science Vocabulary to Life

    Science.gov (United States)

    Shore, Rebecca

    2015-01-01

    A research study conducted in an urban district middle school setting applies cognitive science principles to science vocabulary. Within the context of a personal story told by the lead investigator, the results of the study are shared and suggest that more active, engaging strategies with complex core curriculum may improve retention and…

  6. After the Resistance: The Alamo Today

    Centers for Disease Control (CDC) Podcasts

    2014-09-23

    Byron Breedlove reads his essay After the Resistance: The Alamo Today about the Alamo and emerging disease resistance.  Created: 9/23/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 10/20/2014.

  7. From darwin to the census of marine life: marine biology as big science.

    Directory of Open Access Journals (Sweden)

    Niki Vermeulen

    Full Text Available With the development of the Human Genome Project, a heated debate emerged on biology becoming 'big science'. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international 'Census of Marine Life' (CoML making an inventory of life in the world's oceans. Discussing various aspects of collaboration--including size, internationalisation, research practice, technological developments, application, and public communication--I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different 'collective ways of knowing'.

  8. From darwin to the census of marine life: marine biology as big science.

    Science.gov (United States)

    Vermeulen, Niki

    2013-01-01

    With the development of the Human Genome Project, a heated debate emerged on biology becoming 'big science'. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international 'Census of Marine Life' (CoML) making an inventory of life in the world's oceans. Discussing various aspects of collaboration--including size, internationalisation, research practice, technological developments, application, and public communication--I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different 'collective ways of knowing'.

  9. Technology Dynamics, Network Dynamics and Partnering. The Case of Dutch Dedicated Life Sciences Firms

    NARCIS (Netherlands)

    Valk, Tessa van der

    2007-01-01

    Organisations active in the life sciences make use of developments in modern biotechnology. Modern biotechnology constitutes a broad field of enabling technologies impacting different industrial sectors. Due to the potentially pervasive character of this set of enabling technologies, their developme

  10. Life Science Research Sample Transfer Technology for On Orbit Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Traditionally spaceflight life science experiments require the return of samples to earth for analysis, which is frequently a challenge to the success of...

  11. Database Description - TP Atlas | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available abolic and Signaling Pathways Organism Homo sapiens, bac...ural Life Science Research Organization of Information and Systems National Institute of Genetics E mail: Database classification Met

  12. Excel 2016 for biological and life sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical biological and life science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel is an effective learning tool for quantitative analyses in biological and life sciences courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Biological and Life Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel 2016 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand biological and life science problems. Practice problems are provided...

  13. Gravitational biology and space life sciences: current status and implications for the Indian space programme.

    Science.gov (United States)

    Dayanandan, P

    2011-12-01

    This paper is an introduction to gravitational and space life sciences and a summary of key achievements in the field. Current global research is focused on understanding the effects of gravity/microgravity onmicrobes, cells, plants, animals and humans. It is now established that many plants and animals can progress through several generations in microgravity. Astrobiology is emerging as an exciting field promoting research in biospherics and fabrication of controlled environmental life support systems. India is one of the 14-nation International Space Exploration Coordination Group (2007) that hopes that someday humans may live and work on other planets within the Solar System. The vision statement of the Indian Space Research Organization (ISRO) includes planetary exploration and human spaceflight. While a leader in several fields of space science, India is yet to initiate serious research in gravitational and life sciences. Suggestions are made here for establishing a full-fledged Indian space life sciences programme.

  14. Defining a Mechanism of Educational Interface Between NASA Life Sciences the Nation's Students

    Science.gov (United States)

    Chamberland, D.; Dreschel, T.; Coulter, G.

    1995-01-01

    Harnessing our greatest national resource, as represented by the nation's students, will require a thoughtful, well developed and administered program that includes precise, executable strategies and valid evaluation tools. Responding to a national education outreach priority, the National Aeronautics and Space Administration's Life and Biomedical Sciences and Applications Division has initiated a process or organizing and implementing various strategies through a steering committee that includes representatives from Headquarters and three field centers with major Life Sciences programs. The mandate of the Life Sciences Education Outreach Steering Committee is to develop ways of communicating space life science issues to America's students through the nation's teachers by curriculum enhancement and direct participation in the education process with an emphasis in the primary and secondary schools. Metrics are also developed for each individually defined process so that the mechanis can be continuously refined and improved.

  15. Multi-Specimen Variable-G Facility for Life and Microgravity Sciences Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Techshot, Inc. proposes to develop a Multi-specimen Variable-G Facility (MVF) for life and microgravity sciences research. The MVF incorporates a generic...

  16. Multi-Specimen Variable-G Facility for Life and Microgravity Sciences Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Multi-specimen Variable-G Facility (MVF) is a single locker sized centrifuge facility for life and microgravity sciences research on the International Space...

  17. Gravitational biology and space life sciences: Current status and implications for the Indian space programme

    Indian Academy of Sciences (India)

    P Dayanandan

    2011-12-01

    This paper is an introduction to gravitational and space life sciences and a summary of key achievements in the field. Current global research is focused on understanding the effects of gravity/microgravity onmicrobes, cells, plants, animals and humans. It is now established that many plants and animals can progress through several generations in microgravity. Astrobiology is emerging as an exciting field promoting research in biospherics and fabrication of controlled environmental life support systems. India is one of the 14-nation International Space Exploration Coordination Group (2007) that hopes that someday humans may live and work on other planets within the Solar System. The vision statement of the Indian Space Research Organization (ISRO) includes planetary exploration and human spaceflight. While a leader in several fields of space science, India is yet to initiate serious research in gravitational and life sciences. Suggestions are made here for establishing a full-fledged Indian space life sciences programme.

  18. Gold Medal Award for Life Achievement in the Science of Psychology

    Science.gov (United States)

    American Psychologist, 2007

    2007-01-01

    This article announces the 2007 recipient of the Gold Medal Award for Life Achievement in the Science of Psychology: Irving I. Gottesman. A brief biography, highlighting areas of special focus in Gottesman's work, is provided.

  19. Homo Politicus meets Homo Ludens: Public participation in serious life science games.

    Science.gov (United States)

    Radchuk, Olga; Kerbe, Wolfgang; Schmidt, Markus

    2016-06-13

    Public participation in science and gamification of science are two strong contemporary trends, especially in the area of emerging techno-sciences. Involvement of the public in research-related activities is an integral part of public engagement with science and technologies, which can be successfully achieved through a participatory game design. Focusing on the participatory dimension of educational games, we have reviewed a number of existing participation heuristics in light of their suitability to characterize available mobile and browser science games. We analyzed 87 games with respect to their participatory and motivational elements and demonstrated that the majority of mobile games have only basic participative features. This review of the landscape of participative science games in the domain of life sciences highlights a number of major challenges present in the design of such applications. At the same time, it reveals a number of opportunities to enhance public engagement using science games.

  20. Los Alamos National Laboratory W76 Pit Tube Lifetime Study

    Energy Technology Data Exchange (ETDEWEB)

    Abeln, Terri G. [Los Alamos National Laboratory

    2012-04-25

    A metallurgical study was requested as part of the Los Alamos National Laboratory (LANL) W76-1 life-extension program (LEP) involving a lifetime analysis of type 304 stainless steel pit tubes subject to repeat bending loads during assembly and disassembly operations at BWXT/Pantex. This initial test phase was completed during the calendar years of 2004-2006 and the report not issued until additional recommended tests could be performed. These tests have not been funded to this date and therefore this report is considered final. Tubes were reportedly fabricated according to Rocky Flats specification P14548 - Seamless Type 304 VIM/VAR Stainless Steel Tubing. Tube diameter was specified as 0.125 inches and wall thickness as 0.028 inches. A heat treat condition is not specified and the hardness range specification can be characteristic of both 1/8 and 1/4 hard conditions. Properties of all tubes tested were within specification. Metallographic analysis could not conclusively determine a specified limit to number of bends allowable. A statistical analysis suggests a range of 5-7 bends with a 99.95% confidence limit. See the 'Statistical Analysis' section of this report. The initial phase of this study involved two separate sets of test specimens. The first group was part of an investigation originating in the ESA-GTS [now Gas Transfer Systems (W-7) Group]. After the bend cycle test parameters were chosen (all three required bends subjected to the same amount of bend cycles) and the tubes bent, the investigation was transferred to Terri Abeln (Metallurgical Science and Engineering) for analysis. Subsequently, another limited quantity of tubes became available for testing and were cycled with the same bending fixture, but with different test parameters determined by T. Abeln.

  1. Being the Pioneer of Life Sciences in China--Introduction to Beijing Genomics Institute

    Institute of Scientific and Technical Information of China (English)

    Beijing Genomics Institute; Xin Zhang

    2004-01-01

    @@ The Beijing Genomics Institute (BGI) of Chinese Academy of Sciences (CAS) was officially founded in December 2003. Its predecessor, Beijing Huada Genomics Research Center, has presented significant contributions to the development of life sciences in China by its excellent scientific innovations and achievements in the last five years.

  2. Spacelab 1 - Scientific objectives, life sciences, space plasma physics, astronomy and solar physics

    Science.gov (United States)

    Chappell, C. R.

    1985-01-01

    A general overview of the accomplishments of the Spacelab 1 complement to the Shuttle mission of Nov. 28, 1983, is presented. Consideration is given to scientific results in the fields of life sciences, materials sciences, atmospheric physics, and earth observations. A table is given which lists the scientific objectives and the percentage of objectives accomplished in each field.

  3. Physical Sciences Preservice Teachers' Religious and Scientific Views Regarding the Origin of the Universe and Life

    Science.gov (United States)

    Govender, Nadaraj

    2017-01-01

    This paper explores final-year physical sciences preservice teachers' religious and scientific views regarding the origin of the universe and life. Data was obtained from 10 preservice teachers from individual in-depth interviews conducted at the end of the Science Method module. Their viewpoints were analyzed using coding, sorting, and…

  4. Gold Medal Award for Life Achievement in the Science of Psychology.

    Science.gov (United States)

    2014-01-01

    The American Psychological Foundation (APF) Gold Medal Awards recognize distinguished and enduring records of accomplishment in four areas of psychology: the application of psychology, the practice of psychology, psychology in the public interest, and the science of psychology. The 2014 recipient of the Gold Medal Award for Life Achievement in the Science of Psychology is Thomas J. Bouchard Jr.

  5. Proton Radiography at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-28

    The proton radiography (pRad) facility at Los Alamos National Lab uses high energy protons to acquire multiple frame flash radiographic sequences at megahertz speeds: that is, it can make movies of the inside of explosions as they happen. The facility is primarily used to study the damage to and failure of metals subjected to the shock forces of high explosives as well as to study the detonation of the explosives themselves. Applications include improving our understanding of the underlying physical processes that drive the performance of the nuclear weapons in the United States stockpile and developing novel armor technologies in collaboration with the Army Research Lab. The principle and techniques of pRad will be described, and examples of some recent results will be shown.

  6. The influence of an advanced agriculture & life science course on students' views of the nature of science

    Science.gov (United States)

    Anderson, Megan N.

    One of the goals in today's society is to ensure that students exiting school have the ability to understand, develop, and comprehend scientific information. For students to be able to meet these goals, it is imperative that they become scientifically literate and understand the concept of the Nature of Science (NOS). The discipline of Agricultural Education has strong connections with science and today many students are earning science credit and developing science understanding through Agricultural Education courses. If students are continuing to gain science mastery through their Agricultural Education courses, they should also be gaining adequate conceptions of science and the NOS. Overall, many studies have indicated that students exiting the K-12 education system lack these vital skills and understanding. The purpose of this study was to explore the conceptions of the NOS of advanced agriculture students in Indiana. This study explored the conceptions of agricultural science students before and after taking a semester of an advanced life science course (N=48). Conceptions were explored through a qualitative case study utilizing the VNOS-C questionnaire. Responses were coded into one of three categories: Naive, Emerging, or Informed. Demographic data were also collected and analyzed. Overall, results of this study indicate that students in advanced agricultural science courses lack NOS understanding. The study's conclusions are discussed along with implications for theory, research and practice in addition to future directions for research.

  7. Learning, Unlearning and Relearning--Knowledge Life Cycles in Library and Information Science Education

    Science.gov (United States)

    Bedford, Denise A. D.

    2015-01-01

    The knowledge life cycle is applied to two core capabilities of library and information science (LIS) education--teaching, and research and development. The knowledge claim validation, invalidation and integration steps of the knowledge life cycle are translated to learning, unlearning and relearning processes. Mixed methods are used to determine…

  8. A "Second Life" for Gross Anatomy: Applications for Multiuser Virtual Environments in Teaching the Anatomical Sciences

    Science.gov (United States)

    Richardson, April; Hazzard, Matthew; Challman, Sandra D.; Morgenstein, Aaron M.; Brueckner, Jennifer K.

    2011-01-01

    This article describes the emerging role of educational multiuser virtual environments, specifically Second Life[TM], in anatomical sciences education. Virtual worlds promote inquiry-based learning and conceptual understanding, potentially making them applicable for teaching and learning gross anatomy. A short introduction to Second Life as an…

  9. Non-Stop Lab Week: A Real Laboratory Experience for Life Sciences Postgraduate Courses

    Science.gov (United States)

    Freitas, Maria João; Silva, Joana Vieira; Korrodi-Gregório, Luís; Fardilha, Margarida

    2016-01-01

    At the Portuguese universities, practical classes of life sciences are usually professor-centered 2-hour classes. This approach results in students underprepared for a real work environment in a research/clinical laboratory. To provide students with a real-life laboratory environment, the Non-Stop Lab Week (NSLW) was created in the Molecular…

  10. Animal Life Cycles. Animal Life in Action[TM]. Schlessinger Science Library. [Videotape].

    Science.gov (United States)

    2000

    This 23-minute videotape for grades 5-8, presents the myriad of animal life that exists on the planet. Students can view and perform experiments and investigations that help explain animal traits and habits. The stages of life that animals pass through--birth, growth, maturation, reproduction, and death--make up the life cycle. Students learn…

  11. Evaluation of means used to access the impacts of energy production on human health. LASL third life sciences symposium, Los Alamos, New Mexico, October 15--17, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E.C.; Sullivan, E.M. (eds.)

    1976-01-01

    The symposium explored the various techniques and methods available to study the potential effects that various energy-producing industries may have on human health. Three papers presented at Session I dealt with national energy needs, resources, and future developments; responsibilities and capabilities in ERDA as related to the health and environmental impacts of energy productions; and health hazards associated with alternate energy sources. Four papers presented at Session II reviewed standards setting for the worker and for the public; the radiation experience; and developing health policies and standards as the responsibility of the scientist. Eight papers in Sessions III and IV, Sources of Information, dealt with developing a health standard from epidemiological and clinical data and from laboratory animal data; carcinogenesis, mutagenesis, teratogenesis, and behavior changes as end points in health impact assessments; new methods and approaches to health impact assessment; problems in sampling for health impact; and the application of scientific data to worker/workplace health decision making. Two papers at Session V covered bases for the application of scientific data to health standards and health and environmental standards from a legal viewpoint. A final discussion, Room for Controversy, was conducted by four panelists. (MCW)

  12. Perspectives on the Origins of Life in Science Textbooks from a Christian Publisher: Implications for Teaching Science

    Science.gov (United States)

    Santos Baptista, Geilsa Costa; da Silva Santos, Rodrigo; Cobern, William W.

    2016-01-01

    This paper presents the results of research regarding approaches to the origin of life featured in science textbooks produced by an Evangelical publisher. The research nature was qualitative with document analysis and an interpretive framework based on Epistemological Pluralism. Overall, the results indicate that there are four perspectives on the…

  13. NARRATIVE: A short history of my life in science A short history of my life in science

    Science.gov (United States)

    Manson, Joseph R.

    2010-08-01

    I was certainly surprised, and felt extremely honored, when Salvador Miret-Artés suggested that he would like to organize this festschrift. Before that day I never anticipated that such an honor would come to me. I would like to thank Salvador for the large amount of time and work he has expended in organizing this special issue, the Editors of Journal of Physics: Condensed Matter for making it possible, and also the contributing authors for their efforts. My family home was outside of Petersburg, Virginia in Dinwiddie County in an area that was, during my youth, largely occupied by small farms. This is a region rich in American history and our earliest ancestors on both sides of the family settled in this area, beginning in the decade after the first Virginia settlement in Jamestown. My father was an engineer and my mother was a former school teacher, and their parents were small business owners. From earliest memories I recall being interested in finding out how things worked and especially learning about the wonders of nature. These interests were fostered by my parents who encouraged such investigations during long walks, visits to friends and relatives, and trips to museums. However, my earliest memory of wanting to become a scientist is associated with a Christmas gift of a chemistry set when I was about ten years old. I was absolutely fascinated by the amazing results that could be achieved with simple chemical reactions and realized then that I wanted to do something in life that would be associated with science. The gift of that small chemistry set developed over the next few years into a serious interest in chemistry, and throughout my junior high-school years I spent nearly all the money I earned doing odd jobs for neighbors on small laboratory equipment and chemical supplies, eventually taking over our old abandoned chicken house and turning it into a small chemistry lab. I remember being somewhat frustrated at the limits, mainly financial, that kept

  14. Overview of laser technology at Los Alamos National Laboratory

    Science.gov (United States)

    Lewis, G. K.; Cremers, D. A.

    Los Alamos National Laboratory has had a long history of involvement in laser sciences and has been recognized both for its large laser programs and smaller scale developments in laser technology and applications. The first significant program was with the Rover nuclear-based rocket propulsion system in 1968 to study laser initiated fusion. From here applications spread to programs in laser isotope separation and development of large lasers for fusion. These programs established the technological human resource base of highly trained laser physicists, engineers, and chemists that remain at the Laboratory today. Almost every technical division at Los Alamos now has some laser capability ranging from laser development, applications, studies on nonlinear processes, modeling and materials processing. During the past six years over eight R&D-100 Awards have been received by Los Alamos for development of laser-based techniques and instrumentation. Outstanding examples of technology developed include LIDAR applications to environmental monitoring, single molecule detection using fluorescence spectroscopy, a laser-based high kinetic energy source of oxygen atoms produced by a laser-sustained plasma, laser-induced breakdown spectroscopy (LIBS) for compositional, analysis, thin film high temperature superconductor deposition, multi-station laser welding, and direct metal deposition and build-up of components by fusing powder particles with a laser beam.

  15. Ninth Graders' Learning Interests, Life Experiences and Attitudes Towards Science & Technology

    Science.gov (United States)

    Chang, Shu-Nu; Yeung, Yau-Yuen; Cheng, May Hung

    2009-10-01

    Students' learning interests and attitudes toward science have both been studied for decades. However, the connection between them with students' life experiences about science and technology has not been addressed much. The purpose of this study is to investigate students' learning interests and life experiences about science and technology, and also their attitudes toward technology. A total of 942 urban ninth graders in Taiwan were invited to participate in this study. A Likert scale questionnaire, which was developed from an international project, ROSE, was adapted to collect students' ideas. The results indicated that boys showed higher learning interests in sustainability issues and scientific topics than girls. However, girls recalled more life experiences about science and technology in life than boys. The data also presented high values of Pearson correlation about learning interests and life experiences related to science and technology, and in the perspective on attitudes towards technology. Ways to promote girls' learning interests about science and technology and the implications of teaching and research are discussed as well.

  16. Interactive Processing and Visualization of Image Data forBiomedical and Life Science Applications

    Energy Technology Data Exchange (ETDEWEB)

    Staadt, Oliver G.; Natarjan, Vijay; Weber, Gunther H.; Wiley,David F.; Hamann, Bernd

    2007-02-01

    Background: Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. Results: We show that new data processing tools and visualization systems can be used successfully in biomedical and life science applications. We present an adaptive high-resolution display system suitable for biomedical image data, algorithms for analyzing and visualization protein surfaces and retinal optical coherence tomography data, and visualization tools for 3D gene expression data. Conclusion: We demonstrated that interactive processing and visualization methods and systems can support scientists in a variety of biomedical and life science application areas concerned with massive data analysis.

  17. Vocabulary Learning Strategies of Japanese Life Science Students

    Science.gov (United States)

    Little, Andrea; Kobayashi, Kaoru

    2015-01-01

    This study investigates vocabulary learning strategy (VLS) preferences of lower and higher proficiency Japanese university science students studying English as a foreign language. The study was conducted over a 9-week period as the participants received supplemental explicit VLS instruction on six strategies. The 38 participants (14 males and 24…

  18. Seven Risks Emerging from Life Patents and Corporate Science

    Science.gov (United States)

    Ekberg, Merryn

    2005-01-01

    This article examines some of the controversial issues emerging from the privatization of biomedical research and commercialization of biotechnology. The aim is to identify the dominant social, political, and ethical risks associated with the recent shift from academic to corporate science and from the increasing emphasis on investing in research…

  19. Life Science Teachers' Decision Making on Sex Education

    Science.gov (United States)

    Gill, Puneet Singh

    2013-01-01

    The desires of young people and especially young bodies are constructed at the intersections of policies that set the parameters of sex education policies, the embodied experiences of students in classrooms, and the way bodies are discussed in the complex language of science. Moreover, more research points to the lack of scientifically and…

  20. Operational plans for life science payloads - From experiment selection through postflight reporting

    Science.gov (United States)

    Mccollum, G. W.; Nelson, W. G.; Wells, G. W.

    1976-01-01

    Key features of operational plans developed in a study of the Space Shuttle era life science payloads program are presented. The data describes the overall acquisition, staging, and integration of payload elements, as well as program implementation methods and mission support requirements. Five configurations were selected as representative payloads: (a) carry-on laboratories - medical emphasis experiments, (b) mini-laboratories - medical/biology experiments, (c) seven-day dedicated laboratories - medical/biology experiments, (d) 30-day dedicated laboratories - Regenerative Life Support Evaluation (RLSE) with selected life science experiments, and (e) Biomedical Experiments Scientific Satellite (BESS) - extended duration primate (Type I) and small vertebrate (Type II) missions. The recommended operational methods described in the paper are compared to the fundamental data which has been developed in the life science Spacelab Mission Simulation (SMS) test series. Areas assessed include crew training, experiment development and integration, testing, data-dissemination, organization interfaces, and principal investigator working relationships.

  1. Genome Island: A Virtual Science Environment in Second Life

    Science.gov (United States)

    Clark, Mary Anne

    2009-01-01

    Mary Anne CLark describes the organization and uses of Genome Island, a virtual laboratory complex constructed in Second Life. Genome Island was created for teaching genetics to university undergraduates but also provides a public space where anyone interested in genetics can spend a few minutes, or a few hours, interacting with genetic…

  2. License - RMG | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us RMG License Lice...ith the terms and conditions of the license described below. The license specifies the license terms regardi...ng the use of this database and the requirements you must follow in using this database. The lice.... If you use data from this database, please be sure attribute this database as follows: Rice Mitochondrial ...Genome © National Institute of Agrobiological Sciences licensed under CC Attribut

  3. Database Description - RMG | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us RMG Database... Description General information of database Database name RMG Alternative name Rice Mitochondri...ational Institute of Agrobiological Sciences E-mail : Database classification Nucleotide Sequence Databases ...Organism Taxonomy Name: Oryza sativa Japonica Group Taxonomy ID: 39947 Database description This database co...e of rice mitochondrial genome and information on the analysis results. Features and manner of utilization of database

  4. Research for the soldier: bringing science fiction medicine to life.

    Science.gov (United States)

    Lam, David M; Curley, Kenneth C

    2006-08-01

    Through means of a science fiction vignette, this paper presents and discusses many of the current research projects ongoing to enable the U.S. military medical services to provide an outstanding level of care in future conflicts. The research capabilities and programs of the U.S. Army Telemedicine and Advanced Technology Research Center (TATRC) are discussed, as are the partnerships between the TATRC and its collaborating researchers.

  5. Life Sciences at the University of Yachay Tech in Ecuador

    OpenAIRE

    Graciela Salum; Si Amar Dahoumane; Agathos, Spiros N.

    2016-01-01

    Yachay Tech University, home for more than 900 students and growing, has entered a new era and made a step forward in its development and fulfillment of the hopes placed on it. Indeed, its Schools have launched their careers offering the students a wide range of choices among programs of high academic level. The School of Biological Sciences and Engineering has started its two careers. The first one, coined "Biology," is designed for students aiming to gain knowledge either in "Organism...

  6. Life Sciences at the University of Yachay Tech in Ecuador

    Directory of Open Access Journals (Sweden)

    Graciela Salum

    2016-09-01

    Full Text Available Yachay Tech University, home for more than 900 students and growing, has entered a new era and made a step forward in its development and fulfillment of the hopes placed on it. Indeed, its Schools have launched their careers offering the students a wide range of choices among programs of high academic level. The School of Biological Sciences and Engineering has started its two careers. The first one, coined "Biology," is designed for students aiming to gain knowledge either in "Organisms, Ecology and Evolution" or "Molecular and Cellular Biology." The second path, referred to as "Biomedical Engineering", is the first program of its type in Ecuador and is intended for students wishing to apply the principles and problem-solving techniques of Engineering to Biology and Medicine. These students will be able to acquire knowledge at the interface between Biology and Medicine, on one side, and Natural Sciences, such as Physics and Chemistry, and Engineering sciences, such as Flow Dynamics, Informatics and Electronics, on the other side.

  7. 76 FR 59145 - Submission for OMB Review; Comment Request; NINR End-of-Life and Palliative Care Science Needs...

    Science.gov (United States)

    2011-09-23

    ...-Life and Palliative Care Science Needs Assessment: Funding Source (Survey of Authors) Summary: Under... Care Science Needs Assessment: Funding Source (Survey of Authors). Type of Information Collection Request: NEW. Need and Use of Information Collection: The NINR End-of-Life Science Palliative Care (EOL...

  8. A new chapter in doctoral candidate training: The Helmholtz Space Life Sciences Research School (SpaceLife)

    Science.gov (United States)

    Hellweg, C. E.; Gerzer, R.; Reitz, G.

    2011-05-01

    In the field of space life sciences, the demand of an interdisciplinary and specific training of young researchers is high due to the complex interaction of medical, biological, physical, technical and other questions. The Helmholtz Space Life Sciences Research School (SpaceLife) offers an excellent interdisciplinary training for doctoral students from different fields (biology, biochemistry, biotechnology, physics, psychology, nutrition or sports sciences and related fields) and any country. SpaceLife is coordinated by the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne. The German Universities in Kiel, Bonn, Aachen, Regensburg, Magdeburg and Berlin, and the German Sports University (DSHS) in Cologne are members of SpaceLife. The Universities of Erlangen-Nürnberg, Frankfurt, Hohenheim, and the Beihang University in Beijing are associated partners. In each generation, up to 25 students can participate in the three-year program. Students learn to develop integrated concepts to solve health issues in human spaceflight and in related disease patterns on Earth, and to further explore the requirements for life in extreme environments, enabling a better understanding of the ecosystem Earth and the search for life on other planets in unmanned and manned missions. The doctoral candidates are coached by two specialist supervisors from DLR and the partner university, and a mentor. All students attend lectures in different subfields of space life sciences to attain an overview of the field: radiation and gravitational biology, astrobiology and space physiology, including psychological aspects of short and long term space missions. Seminars, advanced lectures, laboratory courses and stays at labs at the partner institutions or abroad are offered as elective course and will provide in-depth knowledge of the chosen subfield or allow to appropriate innovative methods. In Journal Clubs of the participating working groups, doctoral students learn

  9. Publications of Los Alamos research 1988

    Energy Technology Data Exchange (ETDEWEB)

    Varjabedian, K.; Dussart, S.A.; McClary, W.J.; Rich, J.A. (comps.)

    1989-12-01

    This bibliography lists unclassified publications of work done at the Los Alamos National Laboratory for 1988. The entries, which are subdivided by broad subject categories, are cross-referenced with an author index and a numeric index.

  10. Environmental surveillance at Los Alamos during 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance.

  11. Georges Lemaître Life, Science and Legacy

    CERN Document Server

    Mitton, Simon

    2012-01-01

    The year 2011 marked the 80th anniversary of Georges Lemaître’s primeval atom model of the universe, forerunner of the modern day Big Bang theory. Prompted by this momentous anniversary the Royal Astronomical Society decided to publish a volume of essays on the life, work and faith of this great cosmologist, who was also a Roman Catholic priest. The papers presented in this book examine in detail the historical, cosmological, philosophical and theological issues surrounding the development of the Big Bang theory from its beginnings in the pioneering work of Lemaître through to the modern day. This book offers the best account in English of Lemaître’s life and work. It will be appreciated by professionals and graduate students interested in the history of cosmology.

  12. Inquiry learning for gender equity using History of Science in Life and Earth Sciences’ learning environments

    Directory of Open Access Journals (Sweden)

    C. Sousa

    2016-03-01

    Full Text Available The main objective of the present work is the selection and integration of objectives and methods of education for gender equity within the Life and Earth Sciences’ learning environments in the current portuguese frameworks of middle and high school. My proposal combines inquiry learning-teaching methods with the aim of promoting gender equity, mainly focusing in relevant 20th century women-scientists with a huge contribute to the History of Science. The hands-on and minds-on activities proposed for high scholl students of Life and Earth Sciences onstitute a learnig environment enriched in features of science by focusing on the work of two scientists: Lynn Margulis (1938-2011  and her endosymbiosis theory of the origin of life on Earth and Inge Leehman (1888-1993 responsible for a breakthrough regarding the internal structure of Earth, by caracterizing a discontinuity within the nucleus, contributing to the current geophysical model. For middle scholl students the learning environment includes Inge Leehman and Mary Tharp (1920-2006 and her first world map of the ocean floor. My strategy includes features of science, such as: theory-laden nature of scientific knowledge, models, values and socio-scientific issues, technology contributes to science and feminism.  In conclusion, I consider that this study may constitute an example to facilitate the implementation, by other teachers, of active inquiry strategies focused on features of science within a framework of social responsibility of science, as well as the basis for future research.

  13. Learning developmental biology has priority in the life sciences curriculum in Singapore.

    Science.gov (United States)

    Lim, Tit-Meng

    2003-01-01

    Singapore has embraced the life sciences as an important discipline to be emphasized in schools and universities. This is part of the nation's strategic move towards a knowledge-based economy, with the life sciences poised as a new engine for economic growth. In the life sciences, the area of developmental biology is of prime interest, since it is not just intriguing for students to know how a single cell can give rise to a complex, coordinated, functional life that is multicellular and multifaceted, but more importantly, there is much in developmental biology that can have biomedical implications. At different levels in the Singapore educational system, students are exposed to various aspects of developmental biology. The author has given many guest lectures to secondary (ages 12-16) and high school (ages 17-18) students to enthuse them about topics such as embryo cloning and stem cell biology. At the university level, some selected topics in developmental biology are part of a broader course which caters for students not majoring in the life sciences, so that they will learn to comprehend how development takes place and the significance of the knowledge and impacts of the technologies derived in the field. For students majoring in the life sciences, the subject is taught progressively in years two and three, so that students will gain specialist knowledge in developmental biology. As they learn, students are exposed to concepts, principles and mechanisms that underlie development. Different model organisms are studied to demonstrate the rapid advances in this field and to show the interconnectivity of developmental themes among living things. The course inevitably touches on life and death matters, and the social and ethical implications of recent technologies which enable scientists to manipulate life are discussed accordingly, either in class, in a discussion forum, or through essay writing.

  14. License - RGP caps | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us RGP caps License Lice...nce with the terms and conditions of the license described below. The license specifies the license terms re...garding the use of this database and the requirements you must follow in using this database. The lice...based genetic markers on rice chromosomes © National Institute of Agrobiological Sciences lice...on-Share Alike 2.1 Japan is found here . With regard to this database, you are licensed to: freely access pa

  15. License - PLACE | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us PLACE License Lice... with the terms and conditions of the license described below. The license specifies the license terms regar...ding the use of this database and the requirements you must follow in using this database. The lice... Institute of Agrobiological Sciences licensed under CC Attribution-Share Alike 2... to this database, you are licensed to: freely access part or whole of this database, and acquire data; free

  16. License - KOME | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us KOME License Lice...with the terms and conditions of the license described below. The license specifies the license terms regard...ing the use of this database and the requirements you must follow in using this database. The lice...uchi (National Institute of Agrobiological Sciences) licensed under CC Attributio...e . With regard to this database, you are licensed to: freely access part or whole of this database, and acq

  17. License - RPSD | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us RPSD License Lice...with the terms and conditions of the license described below. The license specifies the license terms regard...ing the use of this database and the requirements you must follow in using this database. The lice...on of Protein © National Institute of Agrobiological Sciences licensed under CC A...found here . With regard to this database, you are licensed to: freely access part or whole of this database

  18. License - RGP gmap | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us RGP gmap License Lice...nce with the terms and conditions of the license described below. The license specifies the license terms re...garding the use of this database and the requirements you must follow in using this database. The lice...NETIC MAP IN NATURE GENETICS © National Institute of Agrobiological Sciences lice...e 2.1 Japan is found here . With regard to this database, you are licensed to: freely access part or whole o

  19. Improving discovery in the life sciences using semantic Web technologies and linked data: design principles for life sciences knowledge organization systems

    OpenAIRE

    2011-01-01

    Dissertation presented to obtain the Ph.D degree in Bioinformatics The data deluge in biology resulting from wide adoption of highthroughput technologies, coupled with the increasing reliance on web technologies for knowledge organization, sharing and discovery, has created unprecedented opportunities, and challenges, for knowledge engineering in Life Sciences domains. The Semantic Web technologies correspond to a set of standards and best practices for improving data sha...

  20. Life Science: Innovation and prosperity-commemorating the 60th anniversary of the Chinese Academy of Sciences

    Institute of Scientific and Technical Information of China (English)

    LI JiaYang

    2010-01-01

    @@ In tandem with the birth and growth of the People's Republic of China (PRC), the Chinese Academy of Sciences (CAS) passed through six decades by the year of 2009.In the past 60 years, the CAS researchers in life sciences witnessed hardships in the early years of establishment, difficulties in the extremist period of the Cultural Revolution, efforts to revitalize research since China adopted the' reform and opening-up policy, and great progress after the CAS initiated the Knowledge Innovation Program.Through the unremitting hard work and unwaveringly effort of several generations, the CAS carried forward the spirit of bravely innovating and honestly seeking truth.

  1. Astrobiology in culture: the search for extraterrestrial life as "science".

    Science.gov (United States)

    Billings, Linda

    2012-10-01

    This analysis examines the social construction of authority, credibility, and legitimacy for exobiology/astrobiology and, in comparison, the search for extraterrestrial intelligence (SETI), considering English-language conceptions of these endeavors in scientific culture and popular culture primarily in the United States. The questions that define astrobiology as a scientific endeavor are multidisciplinary in nature, and this endeavor is broadly appealing to public audiences as well as to the scientific community. Thus, it is useful to examine astrobiology in culture-in scientific culture, official culture, and popular culture. A researcher may explore science in culture, science as culture, by analyzing its rhetoric, the primary means that people use to construct their social realities-their cultural environment, as it were. This analysis follows this path, considering scientific and public interest in astrobiology and SETI and focusing on scientific and official constructions of the two endeavors. This analysis will also consider whether and how scientific and public conceptions of astrobiology and SETI, which are related but at the same time separate endeavors, converge or diverge and whether and how these convergences or divergences affect the scientific authority, credibility, and legitimacy of these endeavors.

  2. Dice world science and life in a random universe

    CERN Document Server

    Clegg, Brian

    2013-01-01

    For centuries scientists believed that the universe was a vast machine ? with enough detail, you could predict exactly what would happen. Admittedly real life wasn’t like that. But only, they argued, because we didn’t have enough data to be certain. Then the cracks began to appear. It proved impossible to predict exactly how three planets orbiting each other would move. Meteorologists discovered that the weather was truly chaotic ? so dependent on small variations that it could never be predicted for more than a few days out. And the final nail in the coffin was quantum theory,

  3. A New Robust Method for Mobile Robot Multifloor Navigation in Distributed Life Science Laboratories

    Directory of Open Access Journals (Sweden)

    Ali A. Abdulla

    2016-01-01

    Full Text Available A new robust method is proposed for multifloor navigation in distributed Life Science Laboratories. This method proposes a solution for many technical issues including (a mapping and localization with ceiling landmarks and a StarGazer module for achieving an accurate and low cost multifloor navigation system, (b a new method for path planning to navigate across multiple floor environments called backbone method and embedded transportation management system, (c elevator environment handler with the necessary procedures to interact with the elevator presenting a new approach for elevator entry button and internal buttons detection, and (d communication system to get an expandable network; this method utilizes a TCP/IP network for the communication. Many experiments in real Life Science Laboratories proved the efficient performance of the developed multifloor navigation system in life science environment.

  4. Chemical energy in an introductory physics course for the life sciences

    CERN Document Server

    Dreyfus, Benjamin W; Geller, Benjamin D; Sawtelle, Vashti; Turpen, Chandra; Redish, Edward F

    2013-01-01

    Energy is a complex idea that cuts across scientific disciplines. For life science students, an approach to energy that incorporates chemical bonds and chemical reactions is better equipped to meet the needs of life sciences students than a traditional introductory physics approach that focuses primarily on mechanical energy. We present a curricular sequence, or thread, designed to build up students' understanding of chemical energy in an introductory physics course for the life sciences. This thread is designed to connect ideas about energy from physics, biology, and chemistry. We describe the kinds of connections among energetic concepts that we intended to develop to build interdisciplinary coherence, and present some examples of curriculum materials and student data that illustrate our approach.

  5. The biological universe. The twentieth century extraterrestrial life debate and the limits of science.

    Science.gov (United States)

    Dick, S. J.

    Throughout the twentieth century, from the furor over Percival Lowell's claim of canals on Mars to the sophisticated Search for Extraterrestrial Intelligence, otherworldly life has often intrigued and occasionally consumed science and the public. Does 'biological law' reign throughout the universe? Are there other histories, religions, and philosophies outside of those on Earth? Do extraterrestrial minds ponder the mysteries of the universe? The attempts to answer these often asked questions form one of the most interesting chapters in the history of science and culture, and this is the first book to provide a rich and colorful history of those attempts during the twentieth century. Covering a broad range of topics, including the search for life in the solar system, the origins of life, UFOs, and aliens in science fiction, the author shows how the concept of extraterrestrial intelligence is a world view of its own, a 'biophysical cosmology' that seeks confirmation no less than physical views of the universe.

  6. The biological universe: the twentieth-century extraterrestrial life debate and the limits of science

    Science.gov (United States)

    Dick, Steven J.

    Throughout the twentieth century, from the furor over Percival Lowell's claim of canals on Mars to the sophisticated Search for Extraterrestrial Intelligence, otherworldly life has often intrigued and occasionally consumed science and the public. Does `biological law' reign throughout the universe? Are there other histories, religions, and philosophies outside of those on Earth? Do extraterrestrial minds ponder the mysteries of the universe? The attempts toanswer these often asked questions form one of the most interesting chapters in the history of science and culture, and The Biological Universe is the first book to provide a rich and colorful history of those attempts during the twentieth century. Covering a broad range of topics, including the search for life in the solar system, the origins of life, UFOs, and aliens in science fiction, Steven J. Dick shows how the concept of extraterrestrial intelligence is a world view of its own, a `biophysical cosmology' that seeks confirmation no less than physical views of the universe.

  7. Towards virtual knowledge broker services for semantic integration of life science literature and data sources.

    Science.gov (United States)

    Harrow, Ian; Filsell, Wendy; Woollard, Peter; Dix, Ian; Braxenthaler, Michael; Gedye, Richard; Hoole, David; Kidd, Richard; Wilson, Jabe; Rebholz-Schuhmann, Dietrich

    2013-05-01

    Research in the life sciences requires ready access to primary data, derived information and relevant knowledge from a multitude of sources. Integration and interoperability of such resources are crucial for sharing content across research domains relevant to the life sciences. In this article we present a perspective review of data integration with emphasis on a semantics driven approach to data integration that pushes content into a shared infrastructure, reduces data redundancy and clarifies any inconsistencies. This enables much improved access to life science data from numerous primary sources. The Semantic Enrichment of the Scientific Literature (SESL) pilot project demonstrates feasibility for using already available open semantic web standards and technologies to integrate public and proprietary data resources, which span structured and unstructured content. This has been accomplished through a precompetitive consortium, which provides a cost effective approach for numerous stakeholders to work together to solve common problems.

  8. The LAILAPS search engine: a feature model for relevance ranking in life science databases.

    Science.gov (United States)

    Lange, Matthias; Spies, Karl; Colmsee, Christian; Flemming, Steffen; Klapperstück, Matthias; Scholz, Uwe

    2010-03-25

    Efficient and effective information retrieval in life sciences is one of the most pressing challenge in bioinformatics. The incredible growth of life science databases to a vast network of interconnected information systems is to the same extent a big challenge and a great chance for life science research. The knowledge found in the Web, in particular in life-science databases, are a valuable major resource. In order to bring it to the scientist desktop, it is essential to have well performing search engines. Thereby, not the response time nor the number of results is important. The most crucial factor for millions of query results is the relevance ranking. In this paper, we present a feature model for relevance ranking in life science databases and its implementation in the LAILAPS search engine. Motivated by the observation of user behavior during their inspection of search engine result, we condensed a set of 9 relevance discriminating features. These features are intuitively used by scientists, who briefly screen database entries for potential relevance. The features are both sufficient to estimate the potential relevance, and efficiently quantifiable. The derivation of a relevance prediction function that computes the relevance from this features constitutes a regression problem. To solve this problem, we used artificial neural networks that have been trained with a reference set of relevant database entries for 19 protein queries. Supporting a flexible text index and a simple data import format, this concepts are implemented in the LAILAPS search engine. It can easily be used both as search engine for comprehensive integrated life science databases and for small in-house project databases. LAILAPS is publicly available for SWISSPROT data at http://lailaps.ipk-gatersleben.de.

  9. Nanoparticles: synthesis and applications in life science and environmental technology

    Science.gov (United States)

    Luong Nguyen, Hoang; Nguyen, Hoang Nam; Hai Nguyen, Hoang; Quynh Luu, Manh; Hieu Nguyen, Minh

    2015-03-01

    This work focuses on the synthesis, functionalization, and application of gold and silver nanoparticles, magnetic nanoparticles Fe3O4, combination of 4-ATP-coated silver nanoparticles and Fe3O4 nanoparticles. The synthesis methods such as chemical reduction, seeding, coprecipitation,and inverse microemulsion will be outlined. Silica- and amino-coated nanoparticles are suitable for several applications in biomedicine and the environment. The applications of the prepared nanoparticles for early detection of breast cancer cells, basal cell carcinoma, antibacterial test, arsenic removal from water, Herpes DNA separation, CD4+ cell separation and isolation of DNA of Hepatitis virus type B (HBV) and Epstein-Barr virus (EBV) are discussed. Finally, some promising perspectives will be pointed out. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  10. NANOTECHNOLOGY REVOLUTION: RESPIROCYTES AND ITS APPLICATION IN LIFE SCIENCES

    Directory of Open Access Journals (Sweden)

    Arpita Rakeshbhai Jaiswal

    2013-05-01

    Full Text Available ABSTRACT: “Necessity is the mother of invention”. This necessity has made human now to stand at the verge of science. Nano technology is termed as application of science and technology at the nano level. From the many conditions which can do harm to the human body, one of the most fundamental and fast acting is a lack of perfusion of oxygen to the tissue. Insufficient oxygenation can be accoutred by problems with oxygen uptake in the lungs, problems with blood flow in the arteries due to obstruction or problems with oxygen transportation, as with anaemia. Heart attack is the death of part of the heart muscle due to its sudden loss of blood supply. Typically, the loss of blood supply is caused by a complete blockage of a coronary artery by a blood clot .To overcome this, respirocytes are proposed. An artificial nano-medical erythrocyte, or "respirocytes" --intended to duplicate all of the important functions of the red blood cell - provides treatment for anaemia, heart attack, choking, lung diseases, asphyxia, and other respiratory problems. These nano-robots, will be able to keep a patient's tissues safely oxygenated for up to about 4 hours (at maximum dosage if their heart has stopped beating in case of a heart attack. The simplest possible design for an artificial respirocyte is a microscopic pressure vessel, spherical in shape for maximum compactness made from flawless diamond or sapphire constructed atom by atom. Key words: nano technology, oxygen uptake, artificial red blood cells- respirocytes, pressure.   

  11. Intersections of life histories and science identities: the stories of three preservice elementary teachers

    Science.gov (United States)

    Avraamidou, Lucy

    2016-03-01

    Grounded within Connelly and Clandinin's conceptualization of teachers' professional identity in terms of 'stories to live by' and through a life-history lens, this multiple case study aimed to respond to the following questions: (a) How do three preservice elementary teachers view themselves as future science teachers? (b) How have the participants' life histories shaped their science identity trajectories? In order to characterize the participants' formation of science identities over time, various data regarding their life histories in relation to science were collected: science biographies, self-portraits, interviews, reflective journals, lesson plans, and classroom observations. The analysis of the data illustrated how the three participants' identities have been in formation from the early years of their lives and how various events, experiences, and interactions had shaped their identities through time and across contexts. These findings are discussed alongside implications for theory, specifically, identity and life-history intersections, for teacher preparation, and for research related to explorations of beginning elementary teachers' identity trajectories.

  12. Promoting Leapfrog Development of Life Sciences to Meet the National Strategic Needs

    Institute of Scientific and Technical Information of China (English)

    Kang Le

    2004-01-01

    @@ Life sciences & bio-technology have a direct bearing on social development, economic growth,food security, the improvement of the people's health and living quality both in urban and rural areas. This article gives an analytic exposition of the nationwide strategic demands and current situation of S&T growth, elucidating the competitive status and developmental dynamics of life sciences and bio-technology at CAS. Based on these, it suggests strategic steps for nurturing a leapfrog development in the aspects of disciplinary layout, construction of a research platform, talent-training etc.

  13. Big Data and Intellectual Property Rights in the Health and Life Sciences

    DEFF Research Database (Denmark)

    Minssen, Timo; Pierce, Justin

    2017-01-01

    , especially in the life science sectors where competitive innovation and research and development (R&D) resources are persistent considerations. For private actors, the like of pharmaceutical companies, health care providers, laboratories and insurance companies, it is becoming common practice to accumulate R...... involve complex considerations relating to innovation economics, ownership, licensing and exceptions to IPRs. Seemingly there is convincing evidence that the current Intellectual Property regime needs re-calibration in certain areas to harness the full potential of Big Data in the health and life science...

  14. Fundamental Science and Improvement of the Quality of Life---Space Quantization to MRI

    CERN Document Server

    Tannenbaum, M J

    2010-01-01

    How the fundamental and purely quantum mechanical concept of space quantization and intrinsic spin led to totally unanticipated practical improvements to the Quality of Life such as Magnetic Resonance Imaging, atomic clocks, etc. This is just one example of the importance of discoveries in fundamental science that are necessary in order achieve future progress via revolutionary practical applications which improve the quality of life. The importance educating the general populace with a broad knowledge of science is emphasized, as well as the need for specialized education for future scientists.

  15. The formality of learning science in everyday life

    DEFF Research Database (Denmark)

    Bonderup Dohn, Niels

    2010-01-01

    The terms non-formal and informal are attributed to learning in everyday life by many authors, often linked to their interests in particular learning practices. However, many authors use the terms without any clear definition, or employ conflicting definitions and boundaries. An analysis...... perspectives. Based on a literature review, the educational modes of education are defined as discrete entities (formal, non-formal, and informal education), whereas formality at the psychological level is defined in terms of attributes of formality and informality along a continuum (formal - informal learning...... of relevant literature revealed two fundamentally different interpretations of informal learning. The one describes formality of education at the organizational level, while the second describes formality of learning at the psychological level. This article presents a conceptual reconciling of these two...

  16. Elementary teachers' use of content knowledge to evaluate students' thinking in the life sciences

    Science.gov (United States)

    Sabel, Jaime L.; Forbes, Cory T.; Flynn, Leslie

    2016-05-01

    Science learning environments should provide opportunities for students to make sense of and enhance their understanding of disciplinary concepts. Teachers can support students' sense-making by engaging and responding to their ideas through high-leverage instructional practices such as formative assessment (FA). However, past research has shown that teachers may not understand FA, how to implement it, or have sufficient content knowledge to use it effectively. Few studies have investigated how teachers gather information to evaluate students' ideas or how content knowledge factors into those decisions, particularly within the life science discipline. We designed a study embedded in a multi-year professional development program that supported elementary teachers' development of disciplinary knowledge and FA practices within science instruction. Study findings illustrate how elementary teachers' life science content knowledge influences their evaluation of students' ideas. Teachers with higher levels of life science content knowledge more effectively evaluated students' ideas than teachers with lower levels of content knowledge. Teachers with higher content exam scores discussed both content and student understanding to a greater extent, and their analyses of students' ideas were more scientifically accurate compared to teachers with lower scores. These findings contribute to theory and practice around science teacher education, professional development, and curriculum development.

  17. Trends in life science grid: from computing grid to knowledge grid

    OpenAIRE

    Konagaya Akihiko

    2006-01-01

    Abstract Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid...

  18. Los Alamos National Laboratory Training Capabilities (Possible Applications in the Global Initiatives for Proliferation Prevention Program)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Olga [Los Alamos National Laboratory

    2012-06-04

    The briefing provides an overview of the training capabilities at Los Alamos National Laboratory that can be applied to nonproliferation/responsible science education at nuclear institutes in the Former Soviet Union, as part of the programmatic effort under the Global Initiatives for Proliferation Prevention program (GIPP).

  19. College of Agriculture and Life Sciences will host ExxonMobil Bernard Harris Summer Science Camp

    OpenAIRE

    Greiner, Lori A.

    2007-01-01

    Virginia Tech has been chosen as a site for a 2007 ExxonMobil Bernard Harris Summer Science Camp on June 18-30. The Virginia Tech camp will be one of 20 hosted by universities across the country. The two-week residential camp offers an innovative program that enhances middle school students' knowledge of science, technology, engineering, and mathematics (STEM) while encouraging students to stay in school and fostering leadership and citizenship.

  20. Paul Scherrer Institut Scientific Report 2001. Volume II: Life Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Jaussi, R.; Gschwend, B. (eds.)

    2002-03-01

    The IMR group investigated some new approaches to tumour therapy. Several candidate molecules for targeting the tumour vasculature have been identified and are being produced for in vivo studies in tumour-bearing mice. The liposome technology is well established in this group and the goal is to produce suitably tagged liposomes for delivering a variety of cytotoxic agents to tumours. The Centre for Radiopharmaceutical Science, a joint venture with the ETH Zurich and the University of Zurich, pursues a number of projects that should eventually lead to novel radiopharmaceuticals for tumour diagnosis and therapy. Functionally, these radioactive drugs consist of a tumour targeting part, a radionuclide and a linking moiety, which stably connects the two. Optimisation of the components and their combination in terms of in vitro and in vivo properties as well as the efficient large-scale production of promising candidates for eventual first clinical trials is a demanding task. The major emphasis is still on using antibodies, antibody derivatives or peptides as tumour targeting vehicles. In collaboration with the Queens Medical Centre Nottingham, the first patients were treated with a {sup 67}Cu labelled antibody targeting bladder carcinomas. When completed, these studies should give us important information on the usefulness of {sup 67}Cu as a therapeutic radionuclide. Neuropeptides such as neurotensin and bombesin are promising starting points for tumour targeting as their receptors are over expressed on certain tumour cells. Presently, the efforts concentrate on preparing for further clinical studies with neurotensin derivatives (diagnosis of pancreatic tumours using {sup 99m}Tc) and further improving the stability and pharmacological properties of bombesin derivatives. In both these projects the ultimate goal is to label the optimised compounds with {sup 186}Re, a therapeutic radionuclide that can be attached in the stable tricarbonyl form which is easily accessible by

  1. Topics in Complexity: From Physical to Life Science Systems

    Science.gov (United States)

    Charry, Pedro David Manrique

    Complexity seeks to unwrap the mechanisms responsible for collective phenomena across the physical, biological, chemical, economic and social sciences. This thesis investigates real-world complex dynamical systems ranging from the quantum/natural domain to the social domain. The following novel understandings are developed concerning these systems' out-of-equilibrium and nonlinear behavior. Standard quantum techniques show divergent outcomes when a quantum system comprising more than one subunit is far from thermodynamic equilibrium. Abnormal photon inter-arrival times help fulfill the metabolic needs of a terrestrial photosynthetic bacterium. Spatial correlations within incident light can act as a driving mechanism for an organism's adaptation toward more ordered structures. The group dynamics of non-identical objects, whose assembly rules depend on mutual heterogeneity, yield rich transition dynamics between isolation and cohesion, with the cohesion regime reproducing a particular universal pattern commonly found in many real-world systems. Analyses of covert networks reveal collective gender superiority in the connectivity that provides benefits for system robustness and survival. Nodal migration in a network generates complex contagion profiles that lie beyond traditional approaches and yet resemble many modern-day outbreaks.

  2. Coffee, Black Holes, Editors, and Beer: The Science-Writing Life

    Science.gov (United States)

    Francis, Matthew R.

    2016-01-01

    What does a science writer do all day? In a tough job market and the pressures of the publish-or-perish life, careers outside academia are enticing. But it's not just a matter of swapping research papers for news stories, or adapting course lectures to magazine articles. I am a former academic scientist (with a PhD in physics and astronomy, as well as six years of university teaching) who now works as a freelance science journalist. In this talk, I'll share my experiences, along with a brief guide to the science-writing life. Along the way, we'll touch on misconceptions ("I love teaching, so science writing should be easy!"), bad attitudes ("dumbing down" is a concept that should be nuked from orbit), and the joys of sharing science with others. There are some hard truths: don't choose science writing because you think it's an easy option compared with academic research. Nevertheless, it's a rewarding profession, and one that allows you to remember the love of science — and share that love with large numbers of other people.

  3. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  4. Animal Needs. Animal Life in Action[TM]. Life in Action. Schlessinger Science Library. [Videotape].

    Science.gov (United States)

    2000

    This 23-minute videotape for grades 5-8, presents the myriad of animal life that exists on the planet. Students can view and perform experiments and investigations that help explain animal traits and habits. All animals need food, water, and shelter to grow, reproduce, and survive. Students learn about the needs of animals and how, over time, if…

  5. Motivation and career outcomes of a precollege life science experience for underrepresented minorities

    Science.gov (United States)

    Ortega, Robbie Ray

    Minorities continue to be underrepresented in professional science careers. In order to make Science, Technology, Engineering, and Mathematics (STEM) careers more accessible for underrepresented minorities, informal science programs must be utilized to assist in developing interest in STEM for minority youth. In addition to developing interest in science, informal programs must help develop interpersonal skills and leadership skills of youth, which allow youth to develop discrete social behaviors while creating positive and supportive communities thus making science more practical in their lives. This study was based on the premise that introducing underrepresented youth to the agricultural and life sciences through an integrated precollege experience of leadership development with university faculty, scientist, and staff would help increase youths' interest in science, while also increasing their interest to pursue a STEM-related career. Utilizing a precollege life science experience for underrepresented minorities, known as the Ag Discovery Camp, 33 middle school aged youth were brought to the Purdue University campus to participate in an experience that integrated a leadership development program with an informal science education program in the context of agriculture. The week-long program introduced youth to fields of agriculture in engineering, plant sciences, food sciences, and entomology. The purpose of the study was to describe short-term and intermediate student outcomes in regards to participants' interests in career activities, science self-efficacy, and career intentions. Youth were not interested in agricultural activities immediately following the precollege experience. However, one year after the precollege experience, youth expressed they were more aware of agriculture and would consider agricultural careers if their first career choice did not work out for them. Results also showed that the youth who participated in the precollege experience were

  6. The Dutch Techcentre for Life Sciences: Enabling data-intensive life science research in the Netherlands [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Lars Eijssen

    2016-01-01

    Full Text Available We describe the Data programme of the Dutch Techcentre for Life Sciences (DTL, www.dtls.nl. DTL is a new national organisation in scientific research that facilitates life scientists with technologies and technological expertise in an era where new projects often are data-intensive, multi-disciplinary, and multi-site. It is run as a lean not-for-profit organisation with research organisations (both academic and industrial as paying members. The small staff of the organisation undertakes a variety of tasks that are necessary to perform or support modern academic research, but that are not easily undertaken in a purely academic setting. DTL Data takes care of such tasks related to data stewardship, facilitating exchange of knowledge and expertise, and brokering access to e-infrastructure. DTL also represents the Netherlands in ELIXIR, the European infrastructure for life science data. The organisation is still being fine-tuned and this will continue over time, as it is crucial for this kind of organisation to adapt to a constantly changing environment. However, already being underway for several years, our experiences can benefit researchers in other fields or other countries setting up similar initiatives.

  7. iAnn: an event sharing platform for the life sciences

    NARCIS (Netherlands)

    Jimenez, R.C.; Albar, J.P.; Bhak, J.; Blatter, M.C.; Blicher, T.; Brazas, M.D.; Brooksbank, C.; Budd, A.; Rivas, J. De Las; Dreyer, J.; Driel, M.A. van; Dunn, M.J.; Fernandes, P.L.; Gelder, C.W.G. van; Hermjakob, H.; Ioannidis, V.; Judge, D.P.; Kahlem, P.; Korpelainen, E.; Kraus, H.J.; Loveland, J.; Mayer, C.; McDowall, J.; Moran, F.; Mulder, N.; Nyronen, T.; Rother, K.; Salazar, G.A.; Schneider, R.; Via, A.; Villaveces, J.M.; Yu, P.; Schneider, M.V.; Attwood, T.K.; Corpas, M.

    2013-01-01

    SUMMARY: We present iAnn, an open source community-driven platform for dissemination of life science events, such as courses, conferences and workshops. iAnn allows automatic visualisation and integration of customised event reports. A central repository lies at the core of the platform: curators ad

  8. Teaching Introductory Life Science Courses in Colleges of Agriculture: Faculty Experiences

    Science.gov (United States)

    Balschweid, Mark; Knobloch, Neil A.; Hains, Bryan J.

    2014-01-01

    Insignificant numbers of college students declaring STEM majors creates concern for the future of the U.S. economy within the global marketplace. This study highlights the educational development and teaching strategies employed by STEM faculty in teaching first-year students in contextualized life science courses, such as animal, plant, and food…

  9. The Biome Project: Developing a Legitimate Parallel Curriculum for Physical Education and Life Sciences

    Science.gov (United States)

    Hastie, Peter Andrew

    2013-01-01

    The purpose of this article is to describe the outcomes of a parallel curriculum project between life sciences and physical education. Throughout a 6-week period, students in grades two through five became members of teams that represented different animal species and biomes, and concurrently participated in a season of gymnastics skills and…

  10. Unethical Behavior of the Students of the Czech University of Life Sciences

    Science.gov (United States)

    Dömeová, Ludmila; Jindrová, Andrea

    2013-01-01

    The cheating can be viewed as a major educational problem with a broad social concern. The unethical behaviour of students can crucially influence their qualification, future employment and manners in their professional carrier. The contribution investigates the unethical behaviour of the students of the University of Life Sciences in Prague. The…

  11. AREAL low energy electron beam applications in life and materials sciences

    Energy Technology Data Exchange (ETDEWEB)

    Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Yerevan State University, 0025 Yerevan (Armenia); Aroutiounian, R.M. [Yerevan State University, 0025 Yerevan (Armenia); Amatuni, G.A. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Aloyan, L.R.; Aslanyan, L.G. [Yerevan State University, 0025 Yerevan (Armenia); Avagyan, V.Sh. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Babayan, N.S. [Yerevan State University, 0025 Yerevan (Armenia); Institute of Molecular Biology NAS, 0014 Yerevan (Armenia); Buniatyan, V.V. [State Engineering University of Armenia, 0009 Yerevan (Armenia); Dalyan, Y.B.; Davtyan, H.D. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Derdzyan, M.V. [Institute for Physical Research NAS, 0203 Ashtarak (Armenia); Grigoryan, B.A. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Grigoryan, N.E. [A.I. Alikhanyan National Science Laboratory (YerPhi), 0036 Yerevan (Armenia); Hakobyan, L.S. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Haroutyunian, S.G. [Yerevan State University, 0025 Yerevan (Armenia); Harutiunyan, V.V. [A.I. Alikhanyan National Science Laboratory (YerPhi), 0036 Yerevan (Armenia); Hovhannesyan, K.L. [Institute for Physical Research NAS, 0203 Ashtarak (Armenia); Khachatryan, V.G. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Martirosyan, N.W. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); State Engineering University of Armenia, 0009 Yerevan (Armenia); Melikyan, G.S. [State Engineering University of Armenia, 0009 Yerevan (Armenia); and others

    2016-09-01

    The AREAL laser-driven RF gun provides 2–5 MeV energy ultrashort electron pulses for experimental study in life and materials sciences. We report the first experimental results of the AREAL beam application in the study of molecular-genetic effects, silicon-dielectric structures, ferroelectric nanofilms, and single crystals for scintillators.

  12. GOMMA: a component-based infrastructure for managing and analyzing life science ontologies and their evolution

    Directory of Open Access Journals (Sweden)

    Kirsten Toralf

    2011-09-01

    Full Text Available Abstract Background Ontologies are increasingly used to structure and semantically describe entities of domains, such as genes and proteins in life sciences. Their increasing size and the high frequency of updates resulting in a large set of ontology versions necessitates efficient management and analysis of this data. Results We present GOMMA, a generic infrastructure for managing and analyzing life science ontologies and their evolution. GOMMA utilizes a generic repository to uniformly and efficiently manage ontology versions and different kinds of mappings. Furthermore, it provides components for ontology matching, and determining evolutionary ontology changes. These components are used by analysis tools, such as the Ontology Evolution Explorer (OnEX and the detection of unstable ontology regions. We introduce the component-based infrastructure and show analysis results for selected components and life science applications. GOMMA is available at http://dbs.uni-leipzig.de/GOMMA. Conclusions GOMMA provides a comprehensive and scalable infrastructure to manage large life science ontologies and analyze their evolution. Key functions include a generic storage of ontology versions and mappings, support for ontology matching and determining ontology changes. The supported features for analyzing ontology changes are helpful to assess their impact on ontology-dependent applications such as for term enrichment. GOMMA complements OnEX by providing functionalities to manage various versions of mappings between two ontologies and allows combining different match approaches.

  13. Intersections of Life Histories and Science Identities: The Stories of Three Preservice Elementary Teachers

    Science.gov (United States)

    Avraamidou, Lucy

    2016-01-01

    Grounded within Connelly and Clandinin's conceptualization of teachers' professional identity in terms of "stories to live by" and through a life-history lens, this multiple case study aimed to respond to the following questions: (a) How do three preservice elementary teachers view themselves as future science teachers? (b) How have the…

  14. Kant and the nature of matter: Mechanics, chemistry, and the life sciences.

    Science.gov (United States)

    Gaukroger, Stephen

    2016-08-01

    Kant believed that the ultimate processes that regulate the behavior of material bodies can be characterized exclusively in terms of mechanics. In 1790, turning his attention to the life sciences, he raised a potential problem for his mechanically-based account, namely that many of the operations described in the life sciences seemed to operate teleologically. He argued that the life sciences do indeed require us to think in teleological terms, but that this is a fact about us, not about the processes themselves. Nevertheless, even were we to concede his account of the life sciences, this would not secure the credentials of mechanics as a general theory of matter. Hardly any material properties studied in the second half of the eighteenth century were, or could have been, conceived in mechanical terms. Kant's concern with teleology is tangential to the problems facing a general matter theory grounded in mechanics, for the most pressing issues have nothing to do with teleology. They derive rather from a lack of any connection between mechanical forces and material properties. This is evident in chemistry, which Kant dismisses as being unscientific on the grounds that it cannot be formulated in mechanical terms.

  15. Life Experiences of Dissatisfied Science and Engineering Graduate Students in Taiwan

    Science.gov (United States)

    Lin, Yii-Nii

    2012-01-01

    The purpose of this study was to describe the life experiences of science/engineering students who had been dissatisfied with their lives during graduate school in Taiwan. This study adopted a qualitative method of phenomenology utilizing in-depth interviews for data collection. Thirteen male and five female students with an average age of 24.85…

  16. Curriculum Design for Junior Life Sciences Based Upon the Theories of Piaget and Skiller. Final Report.

    Science.gov (United States)

    Pearce, Ella Elizabeth

    Four seventh grade life science classes, given curriculum materials based upon Piagetian theories of intellectual development and Skinner's theories of secondary reinforcement, were compared with four control classes from the same school districts. Nine students from each class, who(at the pretest) were at the concrete operations stage of…

  17. Legal dimensions of Big Data in the Health and Life Sciences

    DEFF Research Database (Denmark)

    Minssen, Timo

    2016-01-01

    Please find below my welcome speech at last-weeks mini-symposium on “Legal dimensions of Big Data in the Health and Life Sciences – From Intellectual Property Rights and Global Pandemics to Privacy and Ethics at the University of Copenhagen (UCPH). The event was organized by our Global Genes –Local...

  18. Career Indecision Levels of Students Enrolled in a College of Agriculture and Life Sciences

    Science.gov (United States)

    Esters, Levon T.

    2007-01-01

    The purpose of this study was to determine the level of career indecision of students enrolled in the College of Agriculture and Life Sciences at Iowa State University. A primary goal of this research was to explore the construct of career indecision using the three factor structure identified by Kelly and Lee (2002). The factors of interest in…

  19. 76 FR 42682 - China Biotech Life Sciences Trade Mission-Clarification and Amendment

    Science.gov (United States)

    2011-07-19

    ... publishing this supplement to the Notice of the Biotech Life Science Trade Mission to China, 76 FR 17,621..., 76 FR 17621, Mar. 30, 2011, are revised to read October 14-18, 2011. In addition, revise the Proposed... Trade Mission to China, 76 FR 17,621, Mar. 30, 2011, is amended to read as follows: Timeframe...

  20. Protein & Cell: a new scientific journal for the 21st century global life sciences community

    Institute of Scientific and Technical Information of China (English)

    Zihe Rao

    2010-01-01

    @@ It is my very great pleasure to announce the launch of Protein & Cell. Understanding the cell, the basic unit of life, is a complicated process but is the source for all the key answers pertaining to the life sciences. A sophisticated view of the nature and essence of life requires systematic studies of the whole cell and the cellular components, ranging from small molecules, nucleic acids and carbohydrates to proteins and macromolecular complexes. Starting from the universal genetic cede,as simple as A, C, T and G, twenty standard amino acids are translated and thousands of proteins are assembled. Proteins function in concert with molecules both inside and outside cells. A single cell can represent the entirety of life in the case of bacteria, while differentiated cells form more complicated tissues and organisms. As implied by the title,Protein & Cell intends to promote greater understanding of the cell, the elementary unit of life, via structural and functional studies of its components.

  1. A biotic game design project for integrated life science and engineering education.

    Science.gov (United States)

    Cira, Nate J; Chung, Alice M; Denisin, Aleksandra K; Rensi, Stefano; Sanchez, Gabriel N; Quake, Stephen R; Riedel-Kruse, Ingmar H

    2015-03-01

    Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  2. A biotic game design project for integrated life science and engineering education.

    Directory of Open Access Journals (Sweden)

    Nate J Cira

    2015-03-01

    Full Text Available Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course. We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  3. Visualization in medicine and life sciences III towards making an impact

    CERN Document Server

    Hamann, Bernd; Hege, Hans-Christian

    2016-01-01

    The book discusses novel visualization techniques driven by the needs in medicine and life sciences as well as new application areas and challenges for visualization within these fields. It presents ideas and concepts for visual analysis of data from scientific studies of living organs or to the delivery of healthcare. Target scientific domains include the entire field of biology at all scales - from genes and proteins to organs and populations - as well as interdisciplinary research based on technological advances such as bioinformatics, biomedicine, biochemistry, or biophysics. Moreover, they comprise the field of medicine and the application of science and technology to healthcare problems. This book does not only present basic research pushing the state of the art in the field of visualization, but it also documents the impact in the fields of medicine and life sciences.

  4. Publications of Los Alamos Research, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, C.J.; McClary, W.J.; Rich, J.A.; Rodriguez, L.L. (comps.)

    1984-10-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1983. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers publishd in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  5. Publications of Los Alamos research 1980

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, C.A.; Willis, J.K. (comps.)

    1981-09-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1980. Papers published in 1980 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted-even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was pubished more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-laboratory reports, journal articles, books, chapters of books, conference papers published either separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  6. New Generation of Los Alamos Opacity Tables

    Science.gov (United States)

    Colgan, James; Kilcrease, D. P.; Magee, N. H.; Sherrill, M. E.; Abdallah, J.; Hakel, P.; Fontes, C. J.; Guzik, J. A.; Mussack, K. A.

    2016-05-01

    We present a new generation of Los Alamos OPLIB opacity tables that have been computed using the ATOMIC code. Our tables have been calculated for all 30 elements from hydrogen through zinc and are publicly available through our website. In this poster we discuss the details of the calculations that underpin the new opacity tables. We also show several recent applications of the use of our opacity tables to solar modeling and other astrophysical applications. In particular, we demonstrate that use of the new opacities improves the agreement between solar models and helioseismology, but does not fully resolve the long-standing `solar abundance' problem. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  7. Life — As a Matter of Fat The Emerging Science of Lipidomics

    CERN Document Server

    Mouritsen, Ole G

    2005-01-01

    LIFE - as a Matter of Fat Lipidomics is the science of the fats called lipids. Lipids are as important for life as proteins, sugars, and genes. The present book gives a multi-disciplinary perspective on the physics of life and the particular role played by lipids and the lipid-bilayer component of cell membranes. The book is aimed at undergraduate students and young research workers within physics, chemistry, biochemistry, molecular biology, nutrition, as well as pharmaceutical and biomedical sciences. The emphasis is on the physical properties of lipid membranes seen as soft and molecularly structured interfaces. By combining and synthesizing insights obtained from a variety of recent studies, an attempt is made to clarify what membrane structure is and how it can be quantitatively described. Furthermore, it is shown how biological function mediated by membranes is controlled by lipid membrane structure and organization on length scales ranging from the size of the individual molecule, across molecular assem...

  8. Annual program analysis of the NASA Space Life Sciences Research and Education Support Program

    Science.gov (United States)

    1994-01-01

    The basic objectives of this contract are to stimulate, encourage, and assist research and education in NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad are recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system. To fulfill the contract objectives, a cadre of staff and visiting scientists, consultants, experts, and subcontractors has been assembled into a unique organization dedicated to the space life sciences. This organization, USRA's Division of Space Life Sciences, provides an academic atmosphere, provides an organizational focal point for science and educational activities, and serves as a forum for the participation of eminent scientists in the biomedical programs of NASA. The purpose of this report is to demonstrate adherence to the requirement of Contract NAS9-18440 for a written review and analysis of the productivity and success of the program. In addition, this report makes recommendations for future activities and conditions to further enhance the objectives of the program and provides a self-assessment of the cost performance of the contract.

  9. Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods.

    Science.gov (United States)

    Waltman, Ludo; van Raan, Anthony F J; Smart, Sue

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the 'EPS-HLS interface' is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade.

  10. Life Science on the International Space Station Using the Next Generation of Cargo Vehicles

    Science.gov (United States)

    Robinson, J. A.; Phillion, J. P.; Hart, A. T.; Comella, J.; Edeen, M.; Ruttley, T. M.

    2011-01-01

    With the retirement of the Space Shuttle and the transition of the International Space Station (ISS) from assembly to full laboratory capabilities, the opportunity to perform life science research in space has increased dramatically, while the operational considerations associated with transportation of the experiments has changed dramatically. US researchers have allocations on the European Automated Transfer Vehicle (ATV) and Japanese H-II Transfer Vehicle (HTV). In addition, the International Space Station (ISS) Cargo Resupply Services (CRS) contract will provide consumables and payloads to and from the ISS via the unmanned SpaceX (offers launch and return capabilities) and Orbital (offers only launch capabilities) resupply vehicles. Early requirements drove the capabilities of the vehicle providers; however, many other engineering considerations affect the actual design and operations plans. To better enable the use of the International Space Station as a National Laboratory, ground and on-orbit facility development can augment the vehicle capabilities to better support needs for cell biology, animal research, and conditioned sample return. NASA Life scientists with experience launching research on the space shuttle can find the trades between the capabilities of the many different vehicles to be confusing. In this presentation we will summarize vehicle and associated ground processing capabilities as well as key concepts of operations for different types of life sciences research being launched in the cargo vehicles. We will provide the latest status of vehicle capabilities and support hardware and facilities development being made to enable the broadest implementation of life sciences research on the ISS.

  11. The Importance of the International Space Station for Life Sciences Research: Past and Future

    Science.gov (United States)

    Robinson, Julie A.; Evans, C. A.; Tate, Judy

    2008-01-01

    The International Space Station (ISS) celebrates ten years of operations in 2008. While the station did not support permanent human crews during the first two years of operations, it hosted a few early science experiments months before the first international crew took up residence in November 2000. Since that time, science returns from the ISS have been growing at a steady pace. To date, early utilization of the U.S. Operating Segment of ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting U.S. and international partner research. This paper will summarize the life science accomplishments of early research aboard the ISS both applied human research for exploration, and research on the effects of microgravity on life. At the 10-year point, the scientific returns from ISS should increase at a rapid pace. During the 2008 calendar year, the laboratory space and research facilities (both pressurized and external) will be tripled, with multiple scientific modules that support a wide variety of research racks and science and technology experiments conducted by all of the International Partners. A milestone was reached in February 2008 with the launch and commissioning of ESA s Columbus module and in March of 2008 with the first of three components of the Japanese Kibo laboratory. Although challenges lie ahead, the realization of the international scientific partnership provides new opportunities for scientific collaboration and broadens the research disciplines engaged on ISS. As the ISS nears completion of assembly in 2010, we come to full international utilization of the facilities for research. Using the past as an indicator, we are now able to envision the multidisciplinary contributions to improving life on Earth that the ISS can make as a platform for life sciences research.

  12. Creating Critical Consumers of Health and Science News: Teaching Science to the Non-Scientist Using Newsworthy Topics in the Life Sciences

    OpenAIRE

    Coderre, Raymond W.; Uekermann, Kristen A.; Youngeun Choi; Anderson, William J.

    2015-01-01

    Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In sh...

  13. Precursor life science experiments and closed life support systems on the Moon

    Science.gov (United States)

    Rodriguez, A.; Paille, C.; Rebeyre, P.; Lamaze, B.; Lobo, M.; Lasseur, C.

    Nowadays the Moon is not only a scientific exploration target but also potentially also a launch pad for deeper space exploration. Establishing an extended human presence on the Moon could reduce the cost of further space exploration, and gather the technical and scientific experience that would make possible the next steps of space exploration, namely manned-missions to Mars. To enable the establishment of such a Moon base, a reliable and regenerative life support system (LSS) is required: without any recycling of metabolic consumables (oxygen, water and food), a 6-person crew during the course of one year would require a supply of 12t from Earth (not including water for hygiene purposes), with a prohibitive associated cost! The recycling of consumables is therefore mandatory for a combination of economic, logistical and also safety reasons. Currently the main regenerative technologies used, namely water recycling in the ISS, are physical-chemical but they do not solve the issue of food production. In the European Space Agency, for the last 15 years, studies are being performed on several life support topics, namely in air revitalisation, food, water and waste management, contaminants, monitoring and control. Ground demonstration, namely the MELiSSA Pilot Plant and Concordia Station, and simulation studies demonstrated the studies feasibility and the recycling levels are promising. To be able to build LSS in a Moon base, the temperature amplitude, the dust and its 14-day night, which limits solar power supply, should be regarded. To reduce these technical difficulties, a landing site should be carefully chosen. Considering the requirements of a mission to the Moon and within the Aurora programme phase I, a preliminary configuration for a regenerative LSS can be proposed as an experiment for a precursor mission to the Moon. An overview of the necessary LSS to a Moon base will be presented, identifying Moon?s specific requirements and showing preliminary

  14. Preventing biological weapon development through the governance of life science research.

    Science.gov (United States)

    Epstein, Gerald L

    2012-03-01

    The dual-use dilemma in the life sciences-that illicit applications draw on the same science and technology base as legitimate applications-makes it inherently difficult to control one without inhibiting the other. Since before the September 11 attacks, the science and security communities in the United States have struggled to develop governance processes that can simultaneously minimize the risk of misuse of the life sciences, promote their beneficial applications, and protect the public trust. What has become clear over that time is that while procedural steps can be specified for assessing and managing dual-use risks in the review of research proposals, oversight of ongoing research, and communication of research results, the actions or decisions to be taken at each of these steps to mitigate dual-use risk defy codification. Yet the stakes are too high to do nothing, or to be seen as doing nothing. The U.S. government should therefore adopt an oversight framework largely along the lines recommended by the National Science Advisory Board for Biosecurity almost 5 years ago-one that builds on existing processes, can gain buy-in from the scientific community, and can be implemented at modest cost (both direct and opportunity), while providing assurance that a considered and independent examination of dual-use risks is being applied. Without extraordinary visibility into the actions of those who would misuse biology, it may be impossible to know how well such an oversight system will actually succeed at mitigating misuse. But maintaining the public trust will require a system to be established in which reasonably foreseeable dual-use consequences of life science research are anticipated, evaluated, and addressed.

  15. A Sailor in the Los Alamos Navy

    Energy Technology Data Exchange (ETDEWEB)

    Judd, D. L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States

    2016-12-20

    As part of the War Department’s Manhattan Engineer District (MED), Los Alamos was an Army installation during World War II, complete with a base commander and a brace of MPs. But it was a unique Army installation, having more civilian then military personnel. Even more unique was the work performed by the civilian population, work that required highly educated scientists and engineers. As the breadth, scope, and complexity of the Laboratory’s work increased, more and more technically educated and trained personnel were needed. But, the manpower needs of the nation’s war economy had created a shortage of such people. To meet its manpower needs, the MED scoured the ranks of the Army for anyone who had technical training and reassigned these men to its laboratories, including Los Alamos, as part of its Special Engineer Detachment (SED). Among the SEDs assigned to Los Alamos was Val Fitch, who was awarded the Nobel Prize in Physics in 1980. Another was Al Van Vessem, who helped stack the TNT for the 100 ton test, bolted together the Trinity device, and rode shotgun with the bomb has it was driven from Los Alamos to ground zero.

  16. Los Alamos waste drum shufflers users manual

    Energy Technology Data Exchange (ETDEWEB)

    Rinard, P.M.; Adams, E.L.; Painter, J.

    1993-08-24

    This user manual describes the Los Alamos waste drum shufflers. The primary purpose of the instruments is to assay the mass of {sup 235}U (or other fissile materials) in drums of assorted waste. It can perform passive assays for isotopes that spontaneously emit neutrons or active assays using the shuffler technique as described on this manual.

  17. Proceedings of the Los Alamos neutrino workshop

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, F.; Stephenson, G.J. Jr. (comps.)

    1982-08-01

    A workshop on neutrino physics was held at Los Alamos from June 8 to 12, 1981. The material presented has been provided in part by the organizers, in part by the chairmen of the working sessions. Closing date for contributions was October 1981.

  18. Life science research objectives and representative experiments for the space station

    Science.gov (United States)

    Johnson, Catherine C. (Editor); Arno, Roger D. (Editor); Mains, Richard (Editor)

    1989-01-01

    A workshop was convened to develop hypothetical experiments to be used as a baseline for space station designer and equipment specifiers to ensure responsiveness to the users, the life science community. Sixty-five intra- and extramural scientists were asked to describe scientific rationales, science objectives, and give brief representative experiment descriptions compatible with expected space station accommodations, capabilities, and performance envelopes. Experiment descriptions include hypothesis, subject types, approach, equipment requirements, and space station support requirements. The 171 experiments are divided into 14 disciplines.

  19. Seismic vulnerability study Los Alamos Meson Physics Facility (LAMPF)

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, M. [EQE International, Inc., Irvine, CA (United States); Goen, L.K. [Los Alamos National Lab., NM (United States)

    1995-12-01

    The Los Alamos Meson Physics Facility (LAMPF), located at TA-53 of Los Alamos National Laboratory (LANL), features an 800 MeV proton accelerator used for nuclear physics and materials science research. As part of the implementation of DOE Order 5480.25 and in preparation for DOE Order 5480.28, a seismic vulnerability study of the structures, systems, and components (SSCs) supporting the beam line from the accelerator building through to the ends of die various beam stops at LAMPF has been performed. The study was accomplished using the SQUG GIP methodology to assess the capability of the various SSCs to resist an evaluation basis earthquake. The evaluation basis earthquake was selected from site specific seismic hazard studies. The goals for the study were as follows: (1) identify SSCs which are vulnerable to seismic loads; and (2) ensure that those SSCs screened during die evaluation met the performance goals required for DOE Order 5480.28. The first goal was obtained by applying the SQUG GIP methodology to those SSCS represented in the experience data base. For those SSCs not represented in the data base, information was gathered and a significant amount of engineering judgment applied to determine whether to screen the SSC or to classify it as an outlier. To assure the performance goals required by DOE Order 5480.28 are met, modifications to the SQUG GIP methodology proposed by Salmon and Kennedy were used. The results of this study ire presented in this paper.

  20. Conceptual design and programmatics studies of space station accommodations for Life Sciences Research Facilities (LSRF)

    Science.gov (United States)

    1985-01-01

    Conceptual designs and programmatics of the space station accommodations for the Life Sciences Research Facilities (LSRF) are presented. The animal ECLSS system for the LSRF provides temperature-humidity control, air circulation, and life support functions for experimental subjects. Three ECLSS were studied. All configurations presented satisfy the science requirements for: animal holding facilities with bioisolation; facilities interchangeable to hold rodents, small primates, and plants; metabolic cages interchangeable with standard holding cages; holding facilities adaptable to restrained large primates and rodent breeding/nesting cages; volume for the specified instruments; enclosed ferm-free workbench for manipulation of animals and chemical procedures; freezers for specimen storage until return; and centrifuge to maintain animals and plants at fractional g to 1 g or more, with potential for accommodating humans for short time intervals.

  1. Introductory physics in biological context: An approach to improve introductory physics for life science students

    Science.gov (United States)

    Crouch, Catherine H.; Heller, Kenneth

    2014-05-01

    We describe restructuring the introductory physics for life science students (IPLS) course to better support these students in using physics to understand their chosen fields. Our courses teach physics using biologically rich contexts. Specifically, we use examples in which fundamental physics contributes significantly to understanding a biological system to make explicit the value of physics to the life sciences. This requires selecting the course content to reflect the topics most relevant to biology while maintaining the fundamental disciplinary structure of physics. In addition to stressing the importance of the fundamental principles of physics, an important goal is developing students' quantitative and problem solving skills. Our guiding pedagogical framework is the cognitive apprenticeship model, in which learning occurs most effectively when students can articulate why what they are learning matters to them. In this article, we describe our courses, summarize initial assessment data, and identify needs for future research.

  2. BIOSPEX: Biological space experiments, a compendium of life sciences experiments carried on US spacecraft

    Science.gov (United States)

    Anderson, M.; Rummel, J. A. (Editor); Deutsch, S. (Editor)

    1979-01-01

    United States space life science experiments, encompassing 27 years of experience beginning with sounding rocket flights carrying primates (1948) to the last U.S. spaceflight, the joint US/USSR Apollo Test Project (1975), are presented. The information for each experiment includes Principal Investigators, the program and mission on which it was flown, the specimens used, the objectives, protocol, equipment, results, conclusions, and bibliographic reference citations for publications derived from each experiment.

  3. A Marketplace for Ontologies and Ontology-Based Tools and Applications in the Life Sciences

    Energy Technology Data Exchange (ETDEWEB)

    McEntire, R; Goble, C; Stevens, R; Neumann, E; Matuszek, P; Critchlow, T; Tarczy-Hornoch, P

    2005-06-30

    This paper describes a strategy for the development of ontologies in the life sciences, tools to support the creation and use of those ontologies, and a framework whereby these ontologies can support the development of commercial applications within the field. At the core of these efforts is the need for an organization that will provide a focus for ontology work that will engage researchers as well as drive forward the commercial aspects of this effort.

  4. Conceptual change about evolution and origins of life throughout an undergraduate course of biological sciences

    OpenAIRE

    2014-01-01

    This research aimed to understand how students at different terms of a Biological Sciences course deal with the themes of evolution and the origin of life. The research instrument was a questionnaire developed within the European project BIOHEAD-CITIZEN applied in several countries aiming at analysing the views of students and teachers about health, environment and evolution. For this study only evolution questions were selected, which were answered by 56 students of the course of Biological ...

  5. User centered and ontology based information retrieval system for life sciences

    OpenAIRE

    2012-01-01

    Abstract Background Because of the increasing number of electronic resources, designing efficient tools to retrieve and exploit them is a major challenge. Some improvements have been offered by semantic Web technologies and applications based on domain ontologies. In life science, for instance, the Gene Ontology is widely exploited in genomic applications and the Medical Subject Headings is the basis of biomedical publications indexation and information retrieval process proposed by PubMed. H...

  6. National Workshop on Astrobiology: The Life Science Involvement of AAS I Laben

    Science.gov (United States)

    Adami, Giorgio

    2006-12-01

    The search for traces of past and present life is a complex and multidisciplinary research activity involving several scientific heritages and a specific industrial ability for planetary exploration. Laben was established in 1958 to design and manufacture electronic instruments for research in nuclear physics. In the mid 2004 the company was merged with Alenia Spazio. It is now part of Alcatel Alenia Space, a French Italian joint venture. Alcatel Alenia Space Italia SpA is a Finmeccanica Company. Currently the plant of Vimodrone provides a wide heritage in life science oriented to space application. The experience in Space Life Science is consolidated in the following research areas: (1) Physiology: Mouse models related to studies on human physiology Human neuroscience research and dosimetry (2) Animal Adaptation and Behaviour: mice behaviour related to stabling stress (3) Developmental Biology: aquatic microorganisms cultivation (4) Cell culture & Biotechnology: Protein crystal growth General purpose Multiwell Next Biotechnology studies and development: Bio reactor, mainly oriented to tissue engineering Microsensor for tissue control (organ replacement) Multiwell for adherent cell culture or for automated biosensor based on cell culture Experiment Container for organic systems Experiment Container for small animals Instrumentation based on fluorescent Biosensors Sensors for Life science experiments for Biopan capsule and Space Vehicle Ray Shielding Materials Random Positioning Machine specialisation (Support ground equipment) The biological features of this heritage is at disposal for the exobiology multi science. The involvement of industries, from the beginning of the exobiology projects, allows a cost effective technologies closed loop development between Research Centres, Principal Investigators and industry.

  7. National Workshop on Astrobiology: the life science involvement of AAS-I Laben.

    Science.gov (United States)

    Adami, Giorgio

    2006-12-01

    The search for traces of past and present life is a complex and multidisciplinary research activity involving several scientific heritages and a specific industrial ability for planetary exploration. Laben was established in 1958 to design and manufacture electronic instruments for research in nuclear physics. In the mid 2004 the company was merged with Alenia Spazio. It is now part of Alcatel Alenia Space, a French Italian joint venture. Alcatel Alenia Space Italia SpA is a Finmeccanica Company. Currently the plant of Vimodrone provides a wide heritage in life science oriented to space application. The experience in Space Life Science is consolidated in the following research areas: (1) Physiology: Mouse models related to studies on human physiology Human neuroscience research and dosimetry (2) Animal Adaptation and Behaviour: mice behaviour related to stabling stress (3) Developmental Biology: aquatic microorganisms cultivation (4) Cell culture & Biotechnology: Protein crystal growth General purpose Multiwell Next Biotechnology studies and development: Bio reactor, mainly oriented to tissue engineering Microsensor for tissue control (organ replacement) Multiwell for adherent cell culture or for automated biosensor based on cell culture Experiment Container for organic systems Experiment Container for small animals Instrumentation based on fluorescent Biosensors Sensors for Life science experiments for Biopan capsule and Space Vehicle Ray Shielding Materials Random Positioning Machine specialisation (Support ground equipment) The biological features of this heritage is at disposal for the exobiology multi science. The involvement of industries, from the beginning of the exobiology projects, allows a cost effective technologies closed loop development between Research Centres, Principal Investigators and industry.

  8. UE-ACP relations and the strategy for Europe on life sciences and biotechnology

    Directory of Open Access Journals (Sweden)

    Javier Manzano San Román

    2003-12-01

    Full Text Available A reflection on the opportunities and risks deriving from the strategy designed by the European Commission for biotechnology and life sciences or developing countries. Specifically, it analyses the possible impact of the application of this strategy in the new framework of the relations between the European Union and the countries of Africa, theCaribbean and the Pacific regulated by the Cotonú Agreement.

  9. The Planning of New Japanese Facilities for Life Science in ISS

    Science.gov (United States)

    Ohnishi, Takeo; Hoson, Takayuki

    Though basic rules and mechanisms of life have been rapidly advanced, in recent years, the most sciences are limited under earth environment. To clarify the universality and the real nature of life, it is necessary to perform the space experiments. We, Japanese Society for Biological Sciences in Space, schedule new five types of up-to-date facilities required for the forefront research in the Kibo Module for utilization during 2015-2020. The project was proposed to the Council of Japan and the utilization Committee of Space Environment Science. We aim (1) further high quality science, (2) widely utilization for various requirements among Japan and foreign scientists. The schedules are 2015-2016, manufacture of them and suitability for space experiments and safety tests; 2016-2018, settlement of the new facilities to ISS; 2018-2023, space experiments. At now stage, we are unable to use space shuttles any more. It is difficult to get the biological samples to the spot of launch. Tests of vibration and shock during launch and landing are required. We recommend the down-road of experimental results from ISS. Now, we schedule new facilities: (1) Plant culture system; culture of various kinds of plants for the cell cycle and the next generation, and space agriculture for long stay in space. (2) Whole-body animal culture system; fertilization, growth, development, movement, life keeping in closed environment and health life in space by many kinds of analysis. (3) Localization and movement of cellular components; gene expression, proteins, chromosome and organelles in the cell with a real time analysis. (4) Collection of biological samples from space and total analysis system; (a) settlement of samples in ISS, space experiments and analysis in space, (b) the collection the samples after space experiments. (5) Exposure area at ISS platform; biological effect and fine physical dosimetry of solar radiations and space radiations under various filters among different radiation

  10. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.

    Science.gov (United States)

    Jain, Astha; Homayoun, Aida; Bannister, Christopher W; Yum, Kyungsuk

    2015-03-01

    Single-walled carbon nanotubes that emit photostable near-infrared fluorescence have emerged as near-infrared optical biosensors for life sciences and biomedicine. Since the discovery of their near-infrared fluorescence, researchers have engineered single-walled carbon nanotubes to function as an optical biosensor that selectively modulates its fluorescence upon binding of target molecules. Here we review the recent advances in the single-walled carbon nanotube-based optical sensing technology for life sciences and biomedicine. We discuss the structure and optical properties of single-walled carbon nanotubes, the mechanisms for molecular recognition and signal transduction in single-walled carbon nanotube complexes, and the recent development of various single-walled carbon nanotube-based optical biosensors. We also discuss the opportunities and challenges to translate this emerging technology into biomedical research and clinical use, including the biological safety of single-walled carbon nanotubes. The advances in single-walled carbon nanotube-based near-infrared optical sensing technology open up a new avenue for in vitro and in vivo biosensing with high sensitivity and high spatial resolution, beneficial for many areas of life sciences and biomedicine.

  11. Optimizing Introductory Physics for the Life Sciences: Placing Physics in Biological Context

    Science.gov (United States)

    Crouch, Catherine

    2014-03-01

    Physics is a critical foundation for today's life sciences and medicine. However, the physics content and ways of thinking identified by life scientists as most important for their fields are often not taught, or underemphasized, in traditional introductory physics courses. Furthermore, such courses rarely give students practice using physics to understand living systems in a substantial way. Consequently, students are unlikely to recognize the value of physics to their chosen fields, or to develop facility in applying physics to biological systems. At Swarthmore, as at several other institutions engaged in reforming this course, we have reorganized the introductory course for life science students around touchstone biological examples, in which fundamental physics contributes significantly to understanding biological phenomena or research techniques, in order to make explicit the value of physics to the life sciences. We have also focused on the physics topics and approaches most relevant to biology while seeking to develop rigorous qualitative reasoning and quantitative problem solving skills, using established pedagogical best practices. Each unit is motivated by and culminates with students analyzing one or more touchstone examples. For example, in the second semester we emphasize electric potential and potential difference more than electric field, and start from students' typically superficial understanding of the cell membrane potential and of electrical interactions in biochemistry to help them develop a more sophisticated understanding of electric forces, field, and potential, including in the salt water environment of life. Other second semester touchstones include optics of vision and microscopes, circuit models for neural signaling, and magnetotactic bacteria. When possible, we have adapted existing research-based curricular materials to support these examples. This talk will describe the design and development process for this course, give examples of

  12. Next Generation Very Large Array Memo No. 6, Science Working Group 1: The Cradle of Life

    CERN Document Server

    Isella, Andrea; Moullet, Arielle; Galván-Madrid, Roberto; Johnstone, Doug; Ricci, Luca; Tobin, John; Testi, Leonardo; Beltran, Maite; Lazio, Joseph; Siemion, Andrew; Liu, Hauyu Baobab; Du, Fujun; Öberg, Karin I; Bergin, Ted; Caselli, Paola; Bourke, Tyler; Carilli, Chris; Perez, Laura; Butler, Bryan; de Pater, Imke; Qi, Chunhua; Hofstadter, Mark; Moreno, Raphael; Alexander, David; Williams, Jonathan; Goldsmith, Paul; Wyatt, Mark; Loinard, Laurent; Di Francesco, James; Wilner, David; Schilke, Peter; Ginsburg, Adam; Sánchez-Monge, Álvaro; Zhang, Qizhou; Beuther, Henrik

    2015-01-01

    This paper discusses compelling science cases for a future long-baseline interferometer operating at millimeter and centimeter wavelengths, like the proposed Next Generation Vary Large Array (ngVLA). We report on the activities of the Cradle of Life science working group, which focused on the formation of low- and high-mass stars, the formation of planets and evolution of protoplanetary disks, the physical and compositional study of Solar System bodies, and the possible detection of radio signals from extraterrestrial civilizations. We propose 19 scientific projects based on the current specification of the ngVLA. Five of them are highlighted as possible Key Science Projects: (1) Resolving the density structure and dynamics of the youngest HII regions and high-mass protostellar jets, (2) Unveiling binary/multiple protostars at higher resolution, (3) Mapping planet formation regions in nearby disks on scales down to 1 AU, (4) Studying the formation of complex molecules, and (5) Deep atmospheric mapping of gian...

  13. The effects of video compression on acceptability of images for monitoring life sciences' experiments

    Science.gov (United States)

    Haines, Richard F.; Chuang, Sherry L.

    1993-01-01

    Current plans indicate that there will be a large number of life science experiments carried out during the thirty year-long mission of the Biological Flight Research Laboratory (BFRL) on board Space Station Freedom (SSF). Non-human life science experiments will be performed in the BFRL. Two distinct types of activities have already been identified for this facility: (1) collect, store, distribute, analyze and manage engineering and science data from the Habitats, Glovebox and Centrifuge, (2) perform a broad range of remote science activities in the Glovebox and Habitat chambers in conjunction with the remotely located principal investigator (PI). These activities require extensive video coverage, viewing and/or recording and distribution to video displays on board SSF and to the ground. This paper concentrates mainly on the second type of activity. Each of the two BFRL habitat racks are designed to be configurable for either six rodent habitats per rack, four plant habitats per rack, or a combination of the above. Two video cameras will be installed in each habitat with a spare attachment for a third camera when needed. Therefore, a video system that can accommodate up to 12-18 camera inputs per habitat rack must be considered.

  14. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    Science.gov (United States)

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024.

  15. Life Sciences Division progress report for CYs 1997-1998 [Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Reinhold C.

    1999-06-01

    This is the first formal progress report issued by the ORNL Life Sciences Division. It covers the period from February 1997 through December 1998, which has been critical in the formation of our new division. The legacy of 50 years of excellence in biological research at ORNL has been an important driver for everyone in the division to do their part so that this new research division can realize the potential it has to make seminal contributions to the life sciences for years to come. This reporting period is characterized by intense assessment and planning efforts. They included thorough scrutiny of our strengths and weaknesses, analyses of our situation with respect to comparative research organizations, and identification of major thrust areas leading to core research efforts that take advantage of our special facilities and expertise. Our goal is to develop significant research and development (R&D) programs in selected important areas to which we can make significant contributions by combining our distinctive expertise and resources in the biological sciences with those in the physical, engineering, and computational sciences. Significant facilities in mouse genomics, mass spectrometry, neutron science, bioanalytical technologies, and high performance computing are critical to the success of our programs. Research and development efforts in the division are organized in six sections. These cluster into two broad areas of R&D: systems biology and technology applications. The systems biology part of the division encompasses our core biological research programs. It includes the Mammalian Genetics and Development Section, the Biochemistry and Biophysics Section, and the Computational Biosciences Section. The technology applications part of the division encompasses the Assessment Technology Section, the Environmental Technology Section, and the Toxicology and Risk Analysis Section. These sections are the stewards of the division's core competencies. The

  16. Elementary Science Students' Motivation and Learning Strategy Use: Constructivist Classroom Contextual Factors in a Life Science Laboratory and a Traditional Classroom

    Science.gov (United States)

    Milner, Andrea R.; Templin, Mark A.; Czerniak, Charlene M.

    2011-01-01

    The purpose of this study was to describe the influence of constructivist classroom contextual factors in a life science laboratory and a traditional science classroom on elementary students' motivation and learning strategy use. The Constructivist Teaching Inventory was used to examine classroom contextual factors. The Motivated Strategies for…

  17. The Divergent Thinking of Basic Skills of Sciences Process Skills of Life Aspects on Natural Sciences Subject in Indonesian Elementary School Students

    Science.gov (United States)

    Subali, Bambang; Paidi; Mariyam, Siti

    2016-01-01

    This research aims at measuring the divergent thinking of basic skills of science process skills (SPS) of life aspects in Natural Sciences subjects on Elementary School. The test instruments used in this research have been standardized through the development of instruments. In this case, the tests were tried out to 3070 students. The results of…

  18. Neutron Capture Experiments Using the DANCE Array at Los Alamos

    Science.gov (United States)

    Dashdorj, D.; Mitchell, G. E.; Baramsai, B.; Chyzh, A.; Walker, C.; Agvaanluvsan, U.; Becker, J. A.; Parker, W.; Sleaford, B.; Wu, C. Y.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Krtička, M.; Bečvář, F.

    2009-03-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is designed for neutron capture measurements on very small and/or radioactive targets. The DANCE array of 160 BaF2 scintillation detectors is located at the Lujan Center at the Los Alamos Neutron Science Center (LANSCE). Accurate measurements of neutron capture data are important for many current applications as well as for basic understanding of neutron capture. The gamma rays following neutron capture reactions have been studied by the time-of-flight technique using the DANCE array. The high granularity of the array allows measurements of the gamma-ray multiplicity. The gamma-ray multiplicities and energy spectra for different multiplicities can be measured and analyzed for spin and parity determination of the resolved resonances.

  19. The use of Second Life as an effective means of providing informal science education to secondary school students

    Science.gov (United States)

    Amous, Haytham

    This research study evaluated the use of Second Life and its virtual museums as a means of providing effective informal science education for both junior high and high school students. This study investigated whether the attitudes of students toward science change as a result of scholastic exposure to the science museums in Second Life. The dependence between attitudes and learning styles was also investigated. The data gathered from the experiences and the perceptions of students using Second Life in informal science education were analyzed to address the questions of the study. The researcher used qualitative and quantitative research methodologies to investigate the research questions. The first and second research questions were quantitative and used TOSRA2 research instrument to assess attitude and perceptions and learning style questionnaire scores. The attitudes toward science before and after visiting the Second Life museums showed no significant change. A weak relationship between the attitudes toward science and the participants learning styles was found. The researcher therefore concluded that no relationship existed between the average of the TOSRA scores and the learning styles questionnaire scores. To address questions research three and four, a collective qualitative case study approach (Creswell, 2007), as well as a structured interviews focusing on the students' perspectives about using Second Life for informal science education was used. The students did not prefer informal science education using second life over formal education. This was in part attributed to the poor usability and/or familiarity with the program. Despite the students' technical difficulties confronted in visiting Second Life the perception of student about their learning experiences and the use of Second Life on informal science environment were positive.

  20. Life science research in space - risks and chances for young scientists

    Science.gov (United States)

    Horn, Eberhard R.

    2007-09-01

    Research in Space is well established in most fields of Life Science, and the number of scientific publications in highly ranked journals increases steadily. However, this kind of research, in particular, fundamental research is coming more and more under pressure, funding decreases, and the discussion about its benefit for men increases continuously. The question is whether these conditions are favorable to the young generation of scientists who are not only interested in this field of research but who is urgently needed for a successful continuation of Life Science research in Space. There are pros and cons that are related to science specific factors as well as to factors specific for space research and space technologies. A young scientist also faces obstacles such as the ever- coming questions about the benefit/cost relation and the sustainability of fundamental research in Space. Continuation of a successful Life Science research in Space with a high level of competitive power should be based on three columns, (1) high- ranked state- of- art experiments, (2) motivated young scientists, and (3) scientific security after completion of projects to avoid loss of knowledge. This aim has to be supported by politicians who express clearly (political) support of Space exploration programs, by universities and private research institutions including industry. Establishment of a European FALL- BACK PLAN (FBP) for situations when flight opportunities are lacking is a way to support young Space scientists in their efforts to regain competitiveness with respect to normal scientists on the basis of first rate peer reviewed research projects that will stand on its own, i.e., transiently with no competition with ground- researchers.

  1. Los Alamos National Laboratory Fission Basis

    Energy Technology Data Exchange (ETDEWEB)

    Keksis, A.L.; Chadwick, M.B.; Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Meade, R.A.; Burns, C.J.; Wallstrom, T.C. [Los Alamos National Laboratory, NM 87545 (United States)

    2011-07-01

    This report is an overview of two main publications that provide a comprehensive review of the Los Alamos National Laboratory (LANL) Fission Basis. The first is the experimental paper, {sup F}ission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on {sup 239}Pu, {sup 235}U, {sup 238}U, [Selby, H. D., et al., Nucl. Data Sheets, Vol. 111 2010, pp. 2891-2922] and the second is the theoretical paper, Fission Product Yields from Fission Spectrum n+ {sup 239}Pu for ENDF/B-VII.1, [Chadwick, M. B., et al., Nucl. Data Sheets, Vol. 111, 2010, pp. 2923-2964]. One important note is that none of this work would have been possible without the great documentation of the experimental details and results by G.W. Knobeloch, G. Butler, C.I. Browne, B. Erdal, B. Bayhurst, R. Prestwood, V. Armijo, J. Hasty and many others. (authors)

  2. Sealife: a semantic grid browser for the life sciences applied to the study of infectious diseases.

    Science.gov (United States)

    Schroeder, Michael; Burger, Albert; Kostkova, Patty; Stevens, Robert; Habermann, Bianca; Dieng-Kuntz, Rose

    2006-01-01

    The objective of Sealife is the conception and realisation of a semantic Grid browser for the life sciences, which will link the existing Web to the currently emerging eScience infrastructure. The SeaLife Browser will allow users to automatically link a host of Web servers and Web/Grid services to the Web content he/she is visiting. This will be accomplished using eScience's growing number of Web/Grid Services and its XML-based standards and ontologies. The browser will identify terms in the pages being browsed through the background knowledge held in ontologies. Through the use of Semantic Hyperlinks, which link identified ontology terms to servers and services, the SeaLife Browser will offer a new dimension of context-based information integration. In this paper, we give an overview over the different components of the browser and their interplay. This SeaLife Browser will be demonstrated within three application scenarios in evidence-based medicine, literature & patent mining, and molecular biology, all relating to the study of infectious diseases. The three applications vertically integrate the molecule/cell, the tissue/organ and the patient/population level by covering the analysis of high-throughput screening data for endocytosis (the molecular entry pathway into the cell), the expression of proteins in the spatial context of tissue and organs, and a high-level library on infectious diseases designed for clinicians and their patients. For more information see http://www.biote.ctu-dresden.de/sealife.

  3. Critical Infrastructure Protection- Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bofman, Ryan K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-24

    Los Alamos National Laboratory (LANL) has been a key facet of Critical National Infrastructure since the nuclear bombing of Hiroshima exposed the nature of the Laboratory’s work in 1945. Common knowledge of the nature of sensitive information contained here presents a necessity to protect this critical infrastructure as a matter of national security. This protection occurs in multiple forms beginning with physical security, followed by cybersecurity, safeguarding of classified information, and concluded by the missions of the National Nuclear Security Administration.

  4. Amphibians and Reptiles of Los Alamos County

    Energy Technology Data Exchange (ETDEWEB)

    Teralene S. Foxx; Timothy K. Haarmann; David C. Keller

    1999-10-01

    Recent studies have shown that amphibians and reptiles are good indicators of environmental health. They live in terrestrial and aquatic environments and are often the first animals to be affected by environmental change. This publication provides baseline information about amphibians and reptiles that are present on the Pajarito Plateau. Ten years of data collection and observations by researchers at Los Alamos National Laboratory, the University of New Mexico, the New Mexico Department of Game and Fish, and hobbyists are represented.

  5. 76 FR 47596 - Notice of Scientific Summit; The Science of Compassion-Future Directions in End-of-Life and...

    Science.gov (United States)

    2011-08-05

    ... Institute of Nursing Research (NINR), National Institutes of Health (NIH), Department of Health and Human... with a Town Hall discussion on the evening of August 10 on the ethics of science at the end-of-life....

  6. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dion, Heather M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dry, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaMont, Stephen Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Podlesak, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tandon, Lav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-22

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  7. Training for life science experiments in space at the NASA Ames Research Center

    Science.gov (United States)

    Rodrigues, Annette T.; Maese, A. Christopher

    1993-01-01

    As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.

  8. Using Video Analysis and Biomechanics to Engage Life Science Majors in Introductory Physics

    Science.gov (United States)

    Stephens, Jeff

    There is an interest in Introductory Physics for the Life Sciences (IPLS) as a way to better engage students in what may be their only physical science course. In this talk I will present some low cost and readily available technologies for video analysis and how they have been implemented in classes and in student research projects. The technologies include software like Tracker and LoggerPro for video analysis and low cost high speed cameras for capturing real world events. The focus of the talk will be on content created by students including two biomechanics research projects performed over the summer by pre-physical therapy majors. One project involved assessing medial knee displacement (MKD), a situation where the subject's knee becomes misaligned during a squatting motion and is a contributing factor in ACL and other knee injuries. The other project looks at the difference in landing forces experienced by gymnasts and cheer-leaders while performing on foam mats versus spring floors. The goal of this talk is to demonstrate how easy it can be to engage life science majors through the use of video analysis and topics like biomechanics and encourage others to try it for themselves.

  9. A home for science: The life and times of Tropical and Polar field stations.

    Science.gov (United States)

    Geissler, P Wenzel; Kelly, Ann H

    2016-12-01

    A 'halfway house' between the generic, purified space of the laboratory and the varied and particular spaces of the field, the field station is a controlled yet uncontained setting from which nature can be accessed and anchored. As living quarters for visiting scientists, field stations are also enmeshed in the routine and rhythms of everyday domestic life, and in longer cycles of habitation, wear, and repair. This introduction considers the empirical and conceptual significance of Polar and Tropical field stations as homes for scientific work and scientific lives. The field station's extra-territorial yet intimate character affects the credibility and circulation of knowledge along science's frontiers. The challenge of making a home in the (non-temperate) field and the mundane experiences of expatriation and appropriation establish particular political dynamics of knowledge-making in these locations. They bring into focus the imaginaries of nature and science that drive transnational research and put into relief the aesthetic and affective dimensions of work and life in these distant homes for science. All these themes are pursued and amplified in a different medium by the artists who contributed to our research and are also featured in this special issue.

  10. Incidence of Data Duplications in a Randomly Selected Pool of Life Science Publications.

    Science.gov (United States)

    Oksvold, Morten P

    2016-04-01

    Since the solution to many public health problems depends on research, it is critical for the progress and well-being for the patients that we can trust the scientific literature. Misconduct and poor laboratory practice in science threatens the scientific progress, leads to loss of productivity and increased healthcare costs, and endangers lives of patients. Data duplication may represent one of challenges related to these problems. In order to estimate the frequency of data duplication in life science literature, a systematic screen through 120 original scientific articles published in three different cancer related journals [journal impact factor (IF) 20] was completed. The study revealed a surprisingly high proportion of articles containing data duplication. For the IF 20 journals, 25% of the articles were found to contain data duplications. The IF 5-10 journal showed a comparable proportion (22.5%). The proportion of articles containing duplicated data was comparable between the three journals and no significant correlation to journal IF was found. The editorial offices representing the journals included in this study and the individual authors of the detected articles were contacted to clarify the individual cases. The editorial offices did not reply and only 1 out of 29 cases were apparently clarified by the authors, although no supporting data was supplied. This study questions the reliability of life science literature, it illustrates that data duplications are widespread and independent of journal impact factor and call for a reform of the current peer review and retraction process of scientific publishing.

  11. Healthy life behaviors of the health science students of Cukurova University

    Directory of Open Access Journals (Sweden)

    Sevgi Ozcan

    2016-12-01

    Full Text Available Purpose: The aim of this study was to evaluate of health science students' healthy life behaviors. Material and Methods: The sample population was composed of 801 students that attending to the health science schools (medicine, dentistry, midwifery, and nursery of Cukurova University. The data was collected by an anonymous questionnaire and Health Promotion Lifestyle Profile-II scale (nutrition, physical activity, stress management, interpersonal relationships, spirituality, healthy responsibility. Results: Of the 60 % students were female. The mean age was 21.5 +/- 2.21 (17-34 years. It is found that the mean score of Health Promotion Lifestyle Profile-II scale was at middle level (124.30+/-17.92, the highest score was taken from spiritual growth subscale and the lowest one was taken from physical activity subscale. No significant relation was found between the age groups and the mean scores. Males got the higher score from the physical activity subscale, and females got the higher scores from all other subscales. The scores of the students attending to the medicine school were lower compared to the other fields. Conclusion: Health science students are health professionals and role models of the future. It is considered that the results of our study may raise awareness and may be a guide for interventions to elevate these students' healthy life behaviors to a better level. [Cukurova Med J 2016; 41(4.000: 664-674

  12. The Navajo Learning Network and the NASA Life Sciences/AFOSR Infrastructure Development Project

    Science.gov (United States)

    1999-01-01

    The NSF-funded Navajo Learning Network project, with help from NASA Life Sciences and AFOSR, enabled Dine College to take a giant leap forward technologically - in a way that could never had been possible had these projects been managed separately. The combination of these and other efforts created a network of over 500 computers located at ten sites across the Navajo reservation. Additionally, the college was able to install a modern telephone system which shares network data, and purchase a new higher education management system. The NASA Life Sciences funds further allowed the college library system to go online and become available to the entire campus community. NSF, NASA and AFOSR are committed to improving minority access to higher education opportunities and promoting faculty development and undergraduate research through infrastructure support and development. This project has begun to address critical inequalities in access to science, mathematics, engineering and technology for Navajo students and educators. As a result, Navajo K-12 education has been bolstered and Dine College will therefore better prepare students to transfer successfully to four-year institutions. Due to the integration of the NSF and NASA/AFOSR components of the project, a unified project report is appropriate.

  13. A safe place to grow: Children, animals and caring in a life science classroom

    Science.gov (United States)

    Day, Leslie

    The ecological systems of the earth are in crisis. The purpose of this study was to determine the impact an elementary school life science education program based on an ethic of care had on children's ability to value the natural world. It is a study of how care-based science education supports personal connections to animals and nature; and how strength-based science education emphasizes creativity as a means for students to explore and express scientific knowledge through the arts. This qualitative study was conducted in a life science classroom filled with a wide variety of animals: fish, amphibians, reptiles, birds, and mammals the students studied and developed caring relationships with. The participants were 55 fourth, fifth and sixth-grade students who spent two years studying the natural world both inside the classroom and outside in the field. Invertebrates, trees, birds, mammals and wildflowers were studied in fourth grade. Evolution, and the study of vertebrate animals, were studied in the fifth grade. As teacher researcher, I collected data including audio-taped interviews, observations, field notes, and artifacts including children's creative projects expressing their factual understanding and thoughts about the animals and the natural world. This study revealed themes reflecting children's caring for animals, scientific knowledge, creative expression of knowledge, and the natural world. The themes are illustrated through four "portraits of care" based on students' voices, experiences, and class-work. The findings indicate that caring relationships with animals supported personal connections to the natural world and scientific knowledge. Children had better understanding and retained knowledge due to their personal connections to the animals. The concepts of evolution and interdependence of living organisms enhanced their relationships with animals and nature. Through the arts, students expressed scientific knowledge in ways that had personal meaning

  14. Influence of an Intensive, Field-Based Life Science Course on Preservice Teachers' Self-Efficacy for Environmental Science Teaching

    Science.gov (United States)

    Trauth-Nare, Amy

    2015-08-01

    Personal and professional experiences influence teachers' perceptions of their ability to implement environmental science curricula and to positively impact students' learning. The purpose of this study was twofold: to determine what influence, if any, an intensive field-based life science course and service learning had on preservice teachers' self-efficacy for teaching about the environment and to determine which aspects of the combined field-based course/service learning preservice teachers perceived as effective for enhancing their self-efficacy. Data were collected from class documents and written teaching reflections of 38 middle-level preservice teachers. Some participants ( n = 18) also completed the Environmental Education Efficacy Belief Instrument at the beginning and end of the semester. Both qualitative and quantitative data analyses indicated a significant increase in PSTs' personal efficacies for environmental teaching, t(17) = 4.50, p = .000, d = 1.30, 95 % CI (.33, .90), but not outcome expectancy, t(17) = 1.15, p = .268, d = .220, 95 % CI (-.06, .20). Preservice teachers reported three aspects of the course as important for enhancing their self-efficacies: learning about ecological concepts through place-based issues, service learning with K-5 students and EE curriculum development. Data from this study extend prior work by indicating that practical experiences with students were not the sole factor in shaping PSTs' self-efficacy; learning ecological concepts and theories in field-based activities grounded in the local landscape also influenced PSTs' self-efficacy.

  15. Integration of Science, Local Systems of Innovation and Local Management of Quality of Life

    Directory of Open Access Journals (Sweden)

    Nelson Arsenio Castro Perdomo

    2013-06-01

    Full Text Available An explanatory research was conducted in order to analyze the results of adopting the integration of science as a working instrument for managing the quality of life in the municipality of Cumanayagua, in the province of Cienfuegos. The methodological procedures included the Delphi method, the implementation of indicators derived from the Branch Program of the Ministry of Higher Education to assess university management of knowledge and innovation, as well as the correlation among variables, together with the documentary review of the locality. Multivariate statistical methods were conducted for analyzing the data. Thus, we could assess the importance of the local development management through the performance of the sectors or areas resulting from this analysis, which were correlated with the concrete expression of the management of projects aimed at achieving a better quality of life. Consequently, it could be confirmed that the integration of science, technology, innovation and environment management urged by the local system of innovation facilitates the management of quality of life and, in turn, the local govern performance.

  16. Conceptual design of a biological specimen holding facility. [Life Science Laboratory for Space Shuttle

    Science.gov (United States)

    Jackson, J. K.; Yakut, M. M.

    1976-01-01

    An all-important first step in the development of the Spacelab Life Science Laboratory is the design of the Biological Specimen Holding Facility (BSHF) which will provide accommodation for living specimens for life science research in orbit. As a useful tool in the understanding of physiological and biomedical changes produced in the weightless environment, the BSHF will enable biomedical researchers to conduct in-orbit investigations utilizing techniques that may be impossible to perform on human subjects. The results of a comprehensive study for defining the BSHF, description of its experiment support capabilities, and the planning required for its development are presented. Conceptual designs of the facility, its subsystems and interfaces with the Orbiter and Spacelab are included. Environmental control, life support and data management systems are provided. Interface and support equipment required for specimen transfer, surgical research, and food, water and waste storage is defined. New and optimized concepts are presented for waste collection, feces and urine separation and sampling, environmental control, feeding and watering, lighting, data management and other support subsystems.

  17. Integrating the digital library puzzle: The library without walls at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Luce, R. E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    1998-01-01

    Current efforts at the Research Library, Los Alamos National Laboratory (LANL), to develop digital library services are described. A key principle of LANL`s approach to delivering library information is the integration of products into a common interface and the use of the Web as the medium of service provision. Products described include science databases such as the SciSearch at LANL and electronic journals. Project developments described have significant ramifications for delivering library services over the Internet.

  18. Los Alamos National Security, LLC Request for Information from industrial entities that desire to commercialize Laboratory-developed Extremely Low Resource Optical Identifier (ELROI) tech

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Michael Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-10

    Los Alamos National Security, LLC (LANS) is the manager and operator of the Los Alamos National Laboratory for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. LANS is a mission-centric Federally Funded Research and Development Center focused on solving the most critical national security challenges through science and engineering for both government and private customers.

  19. 76 FR 35221 - Proposed Collection; Comment Request; NINR End-of-Life and Palliative Care Science Needs...

    Science.gov (United States)

    2011-06-16

    ... Palliative Care Science Needs Assessment: Funding Source Questionnaire (Survey of Authors) SUMMARY: In...-of-Life and Palliative Care Science Needs Assessment: Funding Source Questionnaire (Survey of Authors). Type of Information Collection Request: NEW. Need and Use of Information Collection: The NINR...

  20. Gold Medal Award for life achievement in the science of psychology.

    Science.gov (United States)

    2012-01-01

    The American Psychological Foundation (APF) Gold Medal Awards recognize distinguished and enduring records of accomplishment in four areas of psychology: the application of psychology, the practice of psychology, psychology in the public interest, and the science of psychology. The 2012 recipient of the Gold Medal Award for Life Achievement in the Science of Psychology is Philip G. Zimbardo. Dorothy W. Cantor, president of the APF, will present the APF Gold Medal Awards at the 120th Annual Convention of the American Psychological Association on August 3, 2012, at 4:00 p.m. Members of the 2012 APF Board of Trustees are Dorothy W. Cantor, president; Charles L. Brewer, vice president/secretary; Gerald Koocher, treasurer; Elisabeth R. Straus, executive vice president/executive director; Norman Anderson; Brian N. Baird; David H. Barlow; Camilla Benbow; Sharon Stephens Brehm; Connie Chan; William Howell; Anthony Jackson; Ronald F. Levant; Aurelio Prifitera; Sandra Shullman; Archie L. Turner; and Kurt Geisinger, APA Board of Directors liaison.

  1. Super-Resolution Molecular and Functional Imaging of Nanoscale Architectures in Life and Materials Science

    KAUST Repository

    Habuchi, Satoshi

    2014-06-12

    Super-resolution (SR) fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various SR fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-)nanotechnology.

  2. Super-Resolution Molecular and Functional imaging of Nanoscale Architectures in Life and Materials Science

    Directory of Open Access Journals (Sweden)

    Satoshi eHabuchi

    2014-06-01

    Full Text Available Super-resolution fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various super-resolution fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the super-resolution microscopy. I discuss the applications of super-resolution microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-nanotechnology.

  3. A Comparative Analysis Between TIMSS-R (1999 Questions and LGS (1999 Questions in Life Science

    Directory of Open Access Journals (Sweden)

    Özlem AFACAN

    2008-04-01

    Full Text Available The association made international evaluation in education field (IEA, matches the countries wanted to be added in science and mathematics field with examination doing every four years. This examination applied third times in 1999 and Turkey attended to it first time.This research is a quality methods including survey models. The aim of this research is to compare between LGS and TIMSS-R questions about subject of life science and to interpret their questions’ content. These questions’ analysis was done with Bloom’s Taxonomy. The Bloom’s Taxonomy includes sub titles of information, comprehension, apply, analysis, synthesis and evaluation. Every questions in both of LGS and TIMSS-R compared with their sub titles. In the results of study show that the questions’category is very important for them. It is suggested that questions analyzed with Bloom should have equilibrium context and distribution

  4. Spacelab Life Sciences 3 biomedical research using the Rhesus Research Facility

    Science.gov (United States)

    Ballard, R. W.; Searby, N. D.; Stone, L. S.; Hogan, R. P.; Viso, M.; Venet, M.

    1992-01-01

    In 1985, a letter of agreement was signed between the French space agency, CNES, and NASA, formally initiating a joint venture called the RHESUS Project. The goal of this project is to provide a facility to fly rhesus monkeys (Macaca mulatta) to support spaceflight experiments which are applicable but not practical to carry out on human subjects. Biomedical investigations in behavior/performance, immunology/microbiology, muscle physiology, cardiopulmonary physiology, bone/calcium physiology, regulatory physiology, and neurophysiology disciplines will be performed. The Rhesus Research Facility, hardware capable of supporting two adult rhesus monkeys in a microgravity environment, is being developed for a first flight on Spacelab Life Sciences in early 1996.

  5. CardioVINEdb: a data warehouse approach for integration of life science data in cardiovascular diseases.

    Science.gov (United States)

    Kormeier, Benjamin; Hippe, Klaus; Töpel, Thoralf; Hofestädt, Ralf

    2010-06-28

    One of the major challenges in bioinfomatics is to integrate and manage data from different sources as well as experimental microarray data and present them in a user-friendly format. Therefore, we present CardioVINEdb, a data warehouse approach developed to interact with and explore life science data. The data warehouse architecture provides a platform independent web interface that can be used with any common web browser. A monitor component controls and updates the data from the different sources to guarantee up-todateness. In addition, the system provides a "static" and "dynamic" visualization component for interactive graphical exploration of the data.

  6. Venture capital on a shoestring: Bioventures’ pioneering life sciences fund in South Africa

    Directory of Open Access Journals (Sweden)

    Singer Peter A

    2010-12-01

    Full Text Available Abstract Background Since 2000, R&D financing for global health has increased significantly, with innovative proposals for further increases. However, although venture capital (VC funding has fostered life sciences businesses across the developed world, its application in the developing world and particularly in Africa is relatively new. Is VC feasible in the African context, to foster the development and application of local health innovation? As the most industrially advanced African nation, South Africa serves as a test case for life sciences venture funding. This paper analyzes Bioventures, the first VC company focused on life sciences investment in sub-Saharan Africa. The case study method was used to analyze the formation, operation, and investment support of Bioventures, and to suggest lessons for future health venture funds in Africa that aim to develop health-oriented innovations. Discussion The modest financial success of Bioventures in challenging circumstances has demonstrated a proof of concept that life sciences VC can work in the region. Beyond providing funds, support given to investees included board participation, contacts, and strategic services. Bioventures had to be proactive in finding and supporting good health R&D. Due to the fund’s small size, overhead and management expenses were tightly constrained. Bioventures was at times unable to make follow-on investments, being forced instead to give up equity to raise additional capital, and to sell health investments earlier than might have been optimal. With the benefit of hindsight, the CFO of Bioventures felt that partnering with a larger fund might benefit similar future funds. Being better linked to market intelligence and other entrepreneurial investors was also seen as an unmet need. Summary BioVentures has learned lessons about how the traditional VC model might evolve to tackle health challenges facing Africa, including how to raise funds and educate investors; how

  7. The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences.

    Directory of Open Access Journals (Sweden)

    Nirav Merchant

    2016-01-01

    Full Text Available The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identity management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning material, and best practice resources to help all researchers make the best use of their data, expand their computational skill set, and effectively manage their data and computation when working as distributed teams. iPlant's platform permits researchers to easily deposit and share their data and deploy new computational tools and analysis workflows, allowing the broader community to easily use and reuse those data and computational analyses.

  8. Inside the triple helix: technology transfer and commercialization in the life sciences.

    Science.gov (United States)

    Campbell, Eric G; Powers, Joshua B; Blumenthal, David; Biles, Brian

    2004-01-01

    The transfer and subsequent application of academic research results has demonstrable benefits for health care, researchers, universities, companies, and local economies. Nonetheless, at least three general concerns exist: bias in the reporting of results, limited revenues from these activities, and the lack of data to evaluate technology transfer activities. Future efforts with regard to technology transfer in the life sciences will need to recognize its importance without ignoring concerns or overestimating benefits. Next steps include better monitoring of university-industry relationships, the development of a better data system, the dissemination of best practices in technology transfer management, and evaluation of national technology-transfer policies.

  9. Indoor test for thermal performance evaluation on life sciences engineering (air) solar collector

    Science.gov (United States)

    1978-01-01

    The test procedure used and the results obtained from an evaluation test program conducted to obtain thermal performance data on a life sciences double-glazed air solar collector under simulated conditions is discussed. These tests were made using the Marshall Space Flight Center's solar simulator. A time constant test and incident angle modifier test were also conducted to determine the transient effect and the incident angle effect on the collector. These results and the results of the collector load test are also discussed.

  10. The Cinderella of Psychology: The Neglect of Motor Control in the Science of Mental Life and Behavior

    Science.gov (United States)

    Rosenbaum, David A.

    2005-01-01

    One would expect psychology--the science of mental life and behavior--to place great emphasis on the means by which mental life is behaviorally expressed. Surprisingly, however, the study of how decisions are enacted--the focus of motor control research--has received little attention in psychology. This article documents the neglect and considers…

  11. DETERMINISTIC TRANSPORT METHODS AND CODES AT LOS ALAMOS

    Energy Technology Data Exchange (ETDEWEB)

    J. E. MOREL

    1999-06-01

    The purposes of this paper are to: Present a brief history of deterministic transport methods development at Los Alamos National Laboratory from the 1950's to the present; Discuss the current status and capabilities of deterministic transport codes at Los Alamos; and Discuss future transport needs and possible future research directions. Our discussion of methods research necessarily includes only a small fraction of the total research actually done. The works that have been included represent a very subjective choice on the part of the author that was strongly influenced by his personal knowledge and experience. The remainder of this paper is organized in four sections: the first relates to deterministic methods research performed at Los Alamos, the second relates to production codes developed at Los Alamos, the third relates to the current status of transport codes at Los Alamos, and the fourth relates to future research directions at Los Alamos.

  12. The Effect of Life Skills Training on Emotional Intelligence of the Medical Sciences Students in Iran

    Directory of Open Access Journals (Sweden)

    Hamideh A Lolaty

    2012-01-01

    Full Text Available Background: Emotional intelligence has a major role in mental health and life skills training, and could be viewed as a bridge relating to emotional intelligence and mental health. Aim: The present study is aimed at determining the effect of life skills training on the emotional intelligence among the first year students of Mazandaran University of Medical Sciences. Materials and Methods: In this experimental study, the subjects were selected by random sampling and allocated into two groups: Case group (n=20 and control group (n=19; they matched for gender, experience of stressful life events in the past six months, level of interest in the field of study, and level of emotional intelligence. The two groups responded to Bar-on Emotional Quotient Inventory before starting the experiment. Subsequently, the case group underwent life skills training. After the training, Bar-on Emotional Quotient Inventory was responded by the case and control groups again. The data was analyzed using descriptive statistics including Chi-square test, paired and independent t-tests, using SPSS software version 15. Results and Conclusion: In the case group, the scores of emotional intelligence after life skills training were significantly improved (t=11.703 df=19 P=0.001, while no significant difference was observed in the control group (t=0.683 df =18 P=0.503. By performing programs such as life skills training, the levels of emotional intelligence of the students could be increased, which itself could lead to academic success, reduced substance abuse, and increased stress tolerance in the students.

  13. Oceanography in Second Life: Use of a Virtual Reality to Enhance Undergraduate Education in Marine Science

    Science.gov (United States)

    Villareal, T. A.; Jarmon, L.; Triggs, R.

    2009-12-01

    Shipboard research is a fundamental part of oceanography, but has numerous legal and practical constraints virtually eliminate it as a regular part of large-enrollment programs in marine science. The cost of a properly equipped research vessel alone can prevent student access. While much can be learned by active exploration of archived data by students, the limitations placed on real oceanographic programs by distance, vessel speed, and time are difficult to reproduce in exercises. Pre-cruise planning and collaboration between investigators are likewise a challenge to incorporate. We have used design students in the College of Liberal Arts to construct a oceanographic expedition in Second Life for use in a marine science course (Fall 2009). Second Life is a highly collaborative environment with a variety of tools that allow users to create their own environment and interact with it. Second LIfe is free, highly portable, and inherently amenable to distance or remote teaching. In our application, the research vessel exists as an moving platform with sampling abilities. Software code queries an external MySQL database that contains information from the World Ocean Atlas for the entire ocean, and returns strings of data from standard depths. Students must plan the cruise track to test hypothesis about the ocean, collaborate with other teams to develop the big picture and use standard oceanographic software (Ocean Data Viewer; ODV) to analyze the data. Access to the entire database in ODV then allows comparison to the actual properties and distributions. The effectiveness of this approach is being evaluated by a pre- and post-class surveys and post semester focus group interviews. Similar surveys of the design students that created the environment noted that use of Second Life created a learning experience that was both more immersive and process oriented than traditional college courses. Initial impressions in the marine science class indicate that the strong social

  14. Life Sciences Data Archives (LSDA) in the Post-Shuttle Era

    Science.gov (United States)

    Fitts, Mary A.; Johnson-Throop, Kathy; Havelka, Jacque; Thomas, Diedre

    2010-01-01

    Now, more than ever before, NASA is realizing the value and importance of their intellectual assets. Principles of knowledge management-the systematic use and reuse of information, experience, and expertise to achieve a specific goal-are being applied throughout the agency. LSDA is also applying these solutions, which rely on a combination of content and collaboration technologies, to enable research teams to create, capture, share, and harness knowledge to do the things they do well, even better. In the early days of spaceflight, space life sciences data were collected and stored in numerous databases, formats, media-types and geographical locations. These data were largely unknown/unavailable to the research community. The Biomedical Informatics and Health Care Systems Branch of the Space Life Sciences Directorate at JSC and the Data Archive Project at ARC, with funding from the Human Research Program through the Exploration Medical Capability Element, are fulfilling these requirements through the systematic population of the Life Sciences Data Archive. This project constitutes a formal system for the acquisition, archival and distribution of data for HRP-related experiments and investigations. The general goal of the archive is to acquire, preserve, and distribute these data and be responsive to inquiries for the science communities. Information about experiments and data, as well as non-attributable human data and data from other species' are available on our public Web site http://lsda.jsc.nasa.gov. The Web site also includes a repository for biospecimens, and a utilization process. NASA has undertaken an initiative to develop a Shuttle Data Archive repository. The Shuttle program is nearing its end in 2010 and it is critical that the medical and research data related to the Shuttle program be captured, retained, and usable for research, lessons learned, and future mission planning. Communities of practice are groups of people who share a concern or a passion

  15. UC/Los Alamos Entrepreneurial Postdoctoral Fellowship Pilot Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Mariann R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clow, Shandra Deann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    The UC/Los Alamos Entrepreneurial Postdoctoral Fellowship Pilot Program (Pilot) for existing postdoctoral researchers at Los Alamos National Laboratory (Los Alamos) to gain skills in entrepreneurship and commercializing technology as part of their postdoctoral experience. This program will incorporate training and mentoring during the first 6-month period, culminating in a focused 6-month Fellowship aimed at creating a new business in Northern New Mexico.

  16. Integrating Science Content and Pedagogy in the Earth, Life, and Physical Sciences: A K-8 Pre-Service Teacher Preparation Continuum at the University of Delaware

    Science.gov (United States)

    Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.

    2007-12-01

    University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an

  17. The unclosed circle: Los Alamos and the human and environmental legacy of the atom, 1943--1963

    Science.gov (United States)

    Hughes, Scott Daniel

    2000-12-01

    This dissertation examines the application of nuclear technology at Los Alamos Scientific Laboratory and the legacy this technology wrought on humans and the environment during the period from 1943 to 1963. Through a focus directed primarily on the Health Division, the study considers various dimensions of the Los Alamos Laboratory including radioactive waste management, human subject experimentation, and nuclear weapons testing. Since its inception in 1943, Los Alamos has held a central role in the research and development of nuclear weapons for the United States. In relation to this central mission, the Laboratory produced various types of radioactive wastes, conducted human subject experiments, and participated in hundreds of nuclear weapons tests. All of these functions resulted in a myriad legacy of human and environmental effects whose consequences have not yet been fully assessed. This investigation, using primary, secondary, and recently declassified documents, discusses the development of nuclear physics and radiological health practices in the half-century prior to World War Two and the American reactions in the realms of science and politics to the news concerning nuclear fission. It then moves to a discussion of the emergence of Los Alamos and analyzes how personnel addressed the attendant hazards of nuclear technology and some of the implications of these past practices. Furthermore, the dissertation discusses human subject experimentation conducted at Los Alamos. The final part of the study investigates the multiple roles played by Los Alamos personnel in the testing of nuclear weapons, the attempts to understand and minimize the hazards of such testing, and the Ra-La sub-critical detonations conducted within the geographical boundaries at the Laboratory between 1943-1963. By focusing on a long-neglected part of the American West. Cold War Los Alamos, this dissertation will contribute to the study of the effects that both World War Two and the Cold

  18. Post-genomics nanotechnology is gaining momentum: nanoproteomics and applications in life sciences.

    Science.gov (United States)

    Kobeissy, Firas H; Gulbakan, Basri; Alawieh, Ali; Karam, Pierre; Zhang, Zhiqun; Guingab-Cagmat, Joy D; Mondello, Stefania; Tan, Weihong; Anagli, John; Wang, Kevin

    2014-02-01

    The post-genomics era has brought about new Omics biotechnologies, such as proteomics and metabolomics, as well as their novel applications to personal genomics and the quantified self. These advances are now also catalyzing other and newer post-genomics innovations, leading to convergences between Omics and nanotechnology. In this work, we systematically contextualize and exemplify an emerging strand of post-genomics life sciences, namely, nanoproteomics and its applications in health and integrative biological systems. Nanotechnology has been utilized as a complementary component to revolutionize proteomics through different kinds of nanotechnology applications, including nanoporous structures, functionalized nanoparticles, quantum dots, and polymeric nanostructures. Those applications, though still in their infancy, have led to several highly sensitive diagnostics and new methods of drug delivery and targeted therapy for clinical use. The present article differs from previous analyses of nanoproteomics in that it offers an in-depth and comparative evaluation of the attendant biotechnology portfolio and their applications as seen through the lens of post-genomics life sciences and biomedicine. These include: (1) immunosensors for inflammatory, pathogenic, and autoimmune markers for infectious and autoimmune diseases, (2) amplified immunoassays for detection of cancer biomarkers, and (3) methods for targeted therapy and automatically adjusted drug delivery such as in experimental stroke and brain injury studies. As nanoproteomics becomes available both to the clinician at the bedside and the citizens who are increasingly interested in access to novel post-genomics diagnostics through initiatives such as the quantified self, we anticipate further breakthroughs in personalized and targeted medicine.

  19. The development of socially responsible life-sciences teachers through community service learning.

    Directory of Open Access Journals (Sweden)

    J.J. Rian de Villiers

    2012-03-01

    Full Text Available In South Africa, polices in higher education are urging tertiary institutions to produce graduates who are socially responsible citizens. One method of achieving this is through service-learning initiatives. Zoos as community partners can provide exciting educational opportunities for students to do animal behaviour studies and to develop their social responsibility. A sample of 58 preservice life-sciences teachers from a South African university completed a questionnaire on their animal behaviour studies. This study sought to determine how animal behaviour studies could successfully be incorporated as a community service-learning project in a zoo setting, what the educational value of these studies was and what the benefits were of incorporating this community service-learning component in the life-sciences course. The incorporation of the service-learning component into the zoology course led to the students’ personal and professional development, knowledge about themselves, sensitivity to cultural diversity, civic responsibility and insights into the ways in which communities operate. For a successful service-learning project, lectures, students and community partners should all have a sense of engagement. A number of suggestions are made to improve the incorporation of this service-learning component into the existing zoology course.

  20. Codifying collegiality: recent developments in data sharing policy in the life sciences.

    Directory of Open Access Journals (Sweden)

    Genevieve Pham-Kanter

    Full Text Available Over the last decade, there have been significant changes in data sharing policies and in the data sharing environment faced by life science researchers. Using data from a 2013 survey of over 1600 life science researchers, we analyze the effects of sharing policies of funding agencies and journals. We also examine the effects of new sharing infrastructure and tools (i.e., third party repositories and online supplements. We find that recently enacted data sharing policies and new sharing infrastructure and tools have had a sizable effect on encouraging data sharing. In particular, third party repositories and online supplements as well as data sharing requirements of funding agencies, particularly the NIH and the National Human Genome Research Institute, were perceived by scientists to have had a large effect on facilitating data sharing. In addition, we found a high degree of compliance with these new policies, although noncompliance resulted in few formal or informal sanctions. Despite the overall effectiveness of data sharing policies, some significant gaps remain: about one third of grant reviewers placed no weight on data sharing plans in their reviews, and a similar percentage ignored the requirements of material transfer agreements. These patterns suggest that although most of these new policies have been effective, there is still room for policy improvement.

  1. Creating Value with Long Term R&D: The life science industry

    Science.gov (United States)

    Soloman, Darlene J. S.

    2008-03-01

    Agilent Laboratories looks to the future to identify, invest and enable technologies and applications that will nurture the world’s people, environment and economies, and help ensure Agilent’s continuing leadership. Following a brief introduction to Agilent Technologies and Agilent Laboratories, Solomon will discuss how innovation and long-term R&D are transcending traditional boundaries. Focusing on the life sciences industry, she will discuss current trends in R&D and the importance of measurement in advancing the industry. She will describe some of the challenges that are disrupting the pharmaceutical industry where significant and sustained investment in R&D has not translated into large numbers of block-buster therapeutics. Much of this gap results from the profound complexity of biological systems. New discoveries quickly generate new questions, which in turn drive more research and necessitate new business models. Solomon will highlight examples of Agilent’s long-range R&D in life sciences, emphasizing the importance of physics. She’ll conclude with the importance of creating sustainable value with R&D.

  2. COnto-Diff: generation of complex evolution mappings for life science ontologies.

    Science.gov (United States)

    Hartung, Michael; Groß, Anika; Rahm, Erhard

    2013-02-01

    Life science ontologies evolve frequently to meet new requirements or to better reflect the current domain knowledge. The development and adaptation of large and complex ontologies is typically performed collaboratively by several curators. To effectively manage the evolution of ontologies it is essential to identify the difference (Diff) between ontology versions. Such a Diff supports the synchronization of changes in collaborative curation, the adaptation of dependent data such as annotations, and ontology version management. We propose a novel approach COnto-Diff to determine an expressive and invertible diff evolution mapping between given versions of an ontology. Our approach first matches the ontology versions and determines an initial evolution mapping consisting of basic change operations (insert/update/delete). To semantically enrich the evolution mapping we adopt a rule-based approach to transform the basic change operations into a smaller set of more complex change operations, such as merge, split, or changes of entire subgraphs. The proposed algorithm is customizable in different ways to meet the requirements of diverse ontologies and application scenarios. We evaluate the proposed approach for large life science ontologies including the Gene Ontology and the NCI Thesaurus and compare it with PromptDiff. We further show how the Diff results can be used for version management and annotation migration in collaborative curation.

  3. BioCatalogue: a universal catalogue of web services for the life sciences.

    Science.gov (United States)

    Bhagat, Jiten; Tanoh, Franck; Nzuobontane, Eric; Laurent, Thomas; Orlowski, Jerzy; Roos, Marco; Wolstencroft, Katy; Aleksejevs, Sergejs; Stevens, Robert; Pettifer, Steve; Lopez, Rodrigo; Goble, Carole A

    2010-07-01

    The use of Web Services to enable programmatic access to on-line bioinformatics is becoming increasingly important in the Life Sciences. However, their number, distribution and the variable quality of their documentation can make their discovery and subsequent use difficult. A Web Services registry with information on available services will help to bring together service providers and their users. The BioCatalogue (http://www.biocatalogue.org/) provides a common interface for registering, browsing and annotating Web Services to the Life Science community. Services in the BioCatalogue can be described and searched in multiple ways based upon their technical types, bioinformatics categories, user tags, service providers or data inputs and outputs. They are also subject to constant monitoring, allowing the identification of service problems and changes and the filtering-out of unavailable or unreliable resources. The system is accessible via a human-readable 'Web 2.0'-style interface and a programmatic Web Service interface. The BioCatalogue follows a community approach in which all services can be registered, browsed and incrementally documented with annotations by any member of the scientific community.

  4. An Experimental and Theoretical Approach to Optimize a Three-Dimensional Clinostat for Life Science Experiments

    Science.gov (United States)

    Kim, Sun Myong; Kim, Hyunju; Yang, Dongmin; Park, Jihyung; Park, Rackhyun; Namkoong, Sim; Lee, Jin I.; Choi, Inho; Kim, Han-Sung; Kim, Hyoungsoon; Park, Junsoo

    2017-02-01

    Gravity affects all biological systems, and various types of platforms have been developed to mimic microgravity on the Earth';s surface. A three-dimensional clinostat (3D clinostat) has been constructed to reduce the directionality of gravitation. In this report, we attempted to optimize a 3D clinostat for a life science experiment. Since a 3D clinostat is equipped with two motors, we fixed the angular velocity of one (primary) motor and varied it for the other (secondary) motor. In this condition, each motor ran constantly and continuously in one direction during the experiment. We monitored the direction of the normal vector using a 3D acceleration sensor, and also performed a computer simulation for comparison with the experimental data. To determine the optimal revolution for our life science experiment (i.e., a revolution yielding the strongest effects), we examined the promoter activity of two genes that were reported to be affected by microgravity. We found that the ratio of velocity of 4:1.8 (0.55) was optimal for our biological system. Our results indicate that changes of the revolutions of a 3D clinostat have a direct impact on the result and furthermore that the revolutions of the two motors have to be separately adjusted in order to guarantee an optimal simulation of microgravity.

  5. IBM Watson: How Cognitive Computing Can Be Applied to Big Data Challenges in Life Sciences Research.

    Science.gov (United States)

    Chen, Ying; Elenee Argentinis, J D; Weber, Griff

    2016-04-01

    Life sciences researchers are under pressure to innovate faster than ever. Big data offer the promise of unlocking novel insights and accelerating breakthroughs. Ironically, although more data are available than ever, only a fraction is being integrated, understood, and analyzed. The challenge lies in harnessing volumes of data, integrating the data from hundreds of sources, and understanding their various formats. New technologies such as cognitive computing offer promise for addressing this challenge because cognitive solutions are specifically designed to integrate and analyze big datasets. Cognitive solutions can understand different types of data such as lab values in a structured database or the text of a scientific publication. Cognitive solutions are trained to understand technical, industry-specific content and use advanced reasoning, predictive modeling, and machine learning techniques to advance research faster. Watson, a cognitive computing technology, has been configured to support life sciences research. This version of Watson includes medical literature, patents, genomics, and chemical and pharmacological data that researchers would typically use in their work. Watson has also been developed with specific comprehension of scientific terminology so it can make novel connections in millions of pages of text. Watson has been applied to a few pilot studies in the areas of drug target identification and drug repurposing. The pilot results suggest that Watson can accelerate identification of novel drug candidates and novel drug targets by harnessing the potential of big data.

  6. LAMPF II workshop, Los Alamos National Laboratory, Los Alamos, New Mexico, February 1-4, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Thiessen, H.A. (comp.)

    1982-01-01

    This report contains the proceedings of the first LAMPF II Workshop held at Los Alamos February 1 to 4, 1982. Included are the talks that were available in written form. The conclusion of the participants was that there are many exciting areas of physics that will be addressed by such a machine.

  7. Biological assessment for the effluent reduction program, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.P.

    1996-08-01

    This report describes the biological assessment for the effluent recution program proposed to occur within the boundaries of Los Alamos National Laboratory. Potential effects on wetland plants and on threatened and endangered species are discussed, along with a detailed description of the individual outfalls resulting from the effluent reduction program.

  8. Panel discussion--NASA Russia agreement/Earth applications. Summary of the panel discussion during the 1994 Life Support and Biosphere Science (LSB Science) Conference

    Science.gov (United States)

    Huff, W

    1994-01-01

    The panel at the Life Support and Biosphere (LSB) Science conference resulted in a discussion of the current issues facing this industry today. As the LSB Science industry looks to future space missions, joint Russian missions and Earth applications several quandaries arise, such as funding future work, developing practical workable standards and applying these systems to Earth applications. The panel members addressed these quandaries with some insightful comments.

  9. Proceedings of the Astrobiology Science Conference 2010. Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond

    Science.gov (United States)

    2010-01-01

    The Program of the 2010 Astrobiology Science Conference: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, included sessions on: 50 Years of Exobiology and Astrobiology: Greatest Hits; Extraterrestrial Molecular Evolution and Pre-Biological Chemistry: From the Interstellar Medium to the Solar System I; Human Exploration, Astronaut Health; Diversity in Astrobiology Research and Education; Titan: Past, Present, and Future; Energy Flow in Microbial Ecosystems; Extraterrestrial Molecular Evolution and Prebiological Chemistry: From the Interstellar Medium to the Solar System II; Astrobiology in Orbit; Astrobiology and Interdisciplinary Communication; Science from Rio Tinto: An Acidic Environment; Can We Rule Out Spontaneous Generation of RNA as the Key Step in the Origin of Life?; How Hellish Was the Hadean Earth?; Results from ASTEP and Other Astrobiology Field Campaigns I; Prebiotic Evolution: From Chemistry to Life I; Adaptation of Life in Hostile Space Environments; Extrasolar Terrestrial Planets I: Formation and Composition; Collaborative Tools and Technology for Astrobiology; Results from ASTEP and Other Astrobiology Field Campaigns II; Prebiotic Evolution: From Chemistry to Life II; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Environments; Extrasolar Terrestrial Planets II: Habitability and Life; Planetary Science Decadal Survey Update; Astrobiology Research Funding; Bioessential Elements Through Space and Time I; State of the Art in Life Detection; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Psychrophiles and Polar Environments; Life in Volcanic Environments: On Earth and Beyond; Geochronology and Astrobiology On and Off the Earth; Bioessential Elements Through Space and Time II; Origins and Evolution of Genetic Systems; Evolution of Advanced Life; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Impact Events and Evolution; A Warm, Wet

  10. An independent evaluation of plutonium body burdens in populations near Los Alamos Laboratory using human autopsy data.

    Science.gov (United States)

    Gaffney, Shannon H; Donovan, Ellen P; Shonka, Joseph J; Le, Matthew H; Widner, Thomas E

    2013-06-01

    In the mid-1940s, the United States began producing atomic weapon components at the Los Alamos National Laboratory (LANL). In an attempt to better understand historical exposure to nearby residents, this study evaluates plutonium activity in human tissue relative to residential location and length of time at residence. Data on plutonium activity in the lung, vertebrae, and liver of nearby residents were obtained during autopsies as a part of the Los Alamos Tissue Program. Participant residential histories and the distance from each residence to the primary plutonium processing buildings at LANL were evaluated in the analysis. Summary statistics, including Student t-tests and simple regressions, were calculated. Because the biological half-life of plutonium can vary significantly by organ, data were analyzed separately by tissue type (lung, liver, vertebrae). The ratios of plutonium activity (vertebrae:liver; liver:lung) were also analyzed in order to evaluate the importance of timing of exposure. Tissue data were available for 236 participants who lived in a total of 809 locations, of which 677 were verified postal addresses. Residents of Los Alamos were found to have higher plutonium activities in the lung than non-residents. Further, those who moved to Los Alamos before 1955 had higher lung activities than those who moved there later. These trends were not observed with the liver, vertebrae, or vertebrae:liver and liver:lung ratio data, however, and should be interpreted with caution. Although there are many limitations to this study, including the amount of available data and the analytical methods used to analyze the tissue, the overall results indicate that residence (defined as the year that the individual moved to Los Alamos) may have had a strong correlation to plutonium activity in human tissue. This study is the first to present the results of Los Alamos Autopsy Program in relation to residential status and location in Los Alamos.

  11. Teaching authorship and publication practices in the biomedical and life sciences.

    Science.gov (United States)

    Macrina, Francis L

    2011-06-01

    Examination of a limited number of publisher's Instructions for Authors, guidelines from two scientific societies, and the widely accepted policy document of the International Committee of Medical Journal Editors (ICMJE) provided useful information on authorship practices. Three of five journals examined (Nature, Science, and the Proceedings of the National Academy of Sciences) publish papers across a variety of disciplines. One is broadly focused on topics in medical research (New England Journal of Medicine) and one publishes research reports in a single discipline (Journal of Bacteriology). Similar elements of publication policy and accepted practices were found across the policies of these journals articulated in their Instructions for Authors. A number of these same elements were found in the professional society guidelines of the Society for Neuroscience and the American Chemical Society, as well as the ICMJE Uniform Requirements for Manuscripts Submitted to Biomedical Journals. Taken together, these sources provide the basis for articulating best practices in authorship in scientific research. Emerging from this material is a definition of authorship, as well as policy statements on duplicative publication, conflict of interest disclosure, electronic access, data sharing, digital image integrity, and research requiring subjects' protection, including prior registration of clinical trials. These common elements provide a foundation for teaching about scientific authorship and publication practices across biomedical and life sciences disciplines.

  12. Excel 2013 for biological and life sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach biological and life sciences statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical science problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand science problems.  Practice problems are provided at the end of each chapter with their solutions in an appendix.  Separately, there is a full Practice Test (with answers in an Appendix) that allows readers to test what they have learned.  Includes 164 illustrations in color Suitable for undergraduates or graduate student Prof. Tom Quirk is currently a Professor of Marketing at The Walker School of Business and Technology at Webster University in St....

  13. Creating Critical Consumers of Health and Science News: Teaching Science to the Non-Scientist Using Newsworthy Topics in the Life Sciences.

    Science.gov (United States)

    Coderre, Raymond W; Uekermann, Kristen A; Choi, Youngeun; Anderson, William J

    2016-03-01

    Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In short, lectures emphasize exposure to basic biological concepts and tools as a means of informing understanding of prominent biological questions of public interest. The overall goal of the course is not only to expose students to the media's coverage of scientific progress, but also to hone their critical thinking skills to distinguish hope from hype.

  14. Creating Critical Consumers of Health and Science News: Teaching Science to the Non-Scientist Using Newsworthy Topics in the Life Sciences

    Directory of Open Access Journals (Sweden)

    Raymond W. Coderre

    2015-11-01

    Full Text Available Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In short, lectures emphasize exposure to basic biological concepts and tools as a means of informing understanding of prominent biological questions of public interest. The overall goal of the course is not only to expose students to the media’s coverage of scientific progress, but also to hone their critical thinking skills to distinguish hope from hype.

  15. Surfaces of action: cells and membranes in electrochemistry and the life sciences.

    Science.gov (United States)

    Grote, Mathias

    2010-09-01

    The term 'cell', in addition to designating fundamental units of life, has also been applied since the nineteenth century to technical apparatuses such as fuel and galvanic cells. This paper shows that such technologies, based on the electrical effects of chemical reactions taking place in containers, had a far-reaching impact on the concept of the biological cell. My argument revolves around the controversy over oxidative phosphorylation in bioenergetics between 1961 and 1977. In this scientific conflict, a two-level mingling of technological culture, physical chemistry and biological research can be observed. First, Peter Mitchell explained the chemiosmotic hypothesis of energy generation by representing cellular membrane processes via an analogy to fuel cells. Second, in the associated experimental scrutiny of membranes, material cell models were devised that reassembled spatialized molecular processes in vitro. Cells were thus modelled both on paper and in the test tube not as morphological structures but as compartments able to perform physicochemical work. The story of cells and membranes in bioenergetics points out the role that theories and practices in physical chemistry had in the molecularization of life. These approaches model the cell as a 'topology of molecular action', as I will call it, and it involves concepts of spaces, surfaces and movements. They epitomize an engineer's vision of the organism that has influenced diverse fields in today's life sciences.

  16. H3Africa and the African life sciences ecosystem: building sustainable innovation.

    Science.gov (United States)

    Dandara, Collet; Huzair, Farah; Borda-Rodriguez, Alexander; Chirikure, Shadreck; Okpechi, Ikechi; Warnich, Louise; Masimirembwa, Collen

    2014-12-01

    Interest in genomics research in African populations is experiencing exponential growth. This enthusiasm stems in part from the recognition that the genomic diversity of African populations is a window of opportunity for innovations in postgenomics medicine, ecology, and evolutionary biology. The recently launched H3Africa initiative, for example, captures the energy and momentum of this interest. This interdisciplinary socio-technical analysis highlights the challenges that have beset previous genomics research activities in Africa, and looking ahead, suggests constructive ways H3Africa and similar large scale science efforts could usefully chart a new era of genomics and life sciences research in Africa that is locally productive and globally competitive. As independent African scholars and social scientists, we propose that any serious global omics science effort, including H3Africa, aiming to build genomics research capacity and capability in Africa, needs to fund the establishment of biobanks and the genomic analyses platforms within Africa. Equally they need to prioritize community engagement and bioinformatics capability and the training of African scientists on these platforms. Historically, the financial, technological, and skills imbalance between Africa and developed countries has created exploitative frameworks of collaboration where African researchers have become merely facilitators of Western funded and conceived research agendas involving offshore expatriation of samples. Not surprisingly, very little funding was allocated to infrastructure and human capital development in the past. Moving forward, capacity building should materialize throughout the entire knowledge co-production trajectory: idea generation (e.g., brainstorming workshops for innovative hypotheses development by African scientists), data generation (e.g., genome sequencing), and high-throughput data analysis and contextualization. Additionally, building skills for political science

  17. The Third Man: comparative analysis of a science autobiography and a cinema classic as windows into post-war life sciences research.

    Science.gov (United States)

    Zwart, Hub

    2015-12-01

    In 2003, biophysicist and Nobel Laureate Maurice Wilkins published his autobiography entitled The Third Man. In the preface, he diffidently points out that the title (which presents him as the 'third' man credited with the co-discovery of the structure of DNA, besides Watson and Crick) was chosen by his publisher, as a reference to the famous 1949 movie no doubt, featuring Orson Welles in his classical role as penicillin racketeer Harry Lime. In this paper I intend to show that there is much more to this title than merely its familiar ring. If subjected to a (psychoanalytically inspired) comparative analysis, multiple correspondences between movie and memoirs can be brought to the fore. Taken together, these documents shed an intriguing light on the vicissitudes of budding life sciences research during the post-war era. I will focus my comparative analysis on issues still relevant today, such as dual use, the handling of sensitive scientific information (in a moral setting defined by the tension between collaboration and competition) and, finally, on the interwovenness of science and warfare (i.e. the 'militarisation' of research and the relationship between beauty and destruction). Thus, I will explain how science autobiographies on the one hand and genres of the imagination (such as novels and movies) on the other may deepen our comprehension of tensions and dilemmas of life sciences research then and now. For that reason, science autobiographies can provide valuable input (case material) for teaching philosophy and history of science to science students.

  18. DOE Los Alamos National Laboratory – PV Feasibility Assessment, 2015 Update, NREL Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Witt, Monica Rene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This report summarizes solar and wind potential for Los Alamos National Laboratory (LANL). This report is part of the “Los Alamos National Laboratory and Los Alamos County Renewable Generation” study.

  19. Science policy in changing times

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, M.R.C.

    1995-10-01

    Like many scientists who were born right after World War II and who have learned a lot about physics, physical sciences, and biology from some of the incredible discoveries that were made in the defense laboratories, I have always been fascinated with Los Alamos. One of the marvelous opportunities that my job in Washington presented was to get to know a good deal more about the physical science world and the Department of Energy (DOE) laboratories, particularly Los Alamos since the Manhattan Project.

  20. NASA Virtual Glovebox: An Immersive Virtual Desktop Environment for Training Astronauts in Life Science Experiments

    Science.gov (United States)

    Twombly, I. Alexander; Smith, Jeffrey; Bruyns, Cynthia; Montgomery, Kevin; Boyle, Richard

    2003-01-01

    The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The Virtual GloveboX (VGX) integrates high-fidelity graphics, force-feedback devices and real- time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  1. The design and development of a release mechanism for space shuttle life-science experiments

    Science.gov (United States)

    Jones, H. M.; Daniell, R. G.

    1984-01-01

    The design, development, and testing of a release mechanism for use in two life science experiments on the Spacelab 1, 4, and D1 missions is described. The mechanism is a self latching ball lock device actuated by a linear solenoid. An unusual feature is the tapering of the ball lock plunger to give it a near constant breakout force for release under a wide range of loads. The selection of the design, based on the design requirements, is discussed. A number of problems occurred during development and test, including problems caused by human factors that became apparent after initial delivery for crewtraining sessions. These problems and their solutions are described to assist in the design and testing of similar mechanisms.

  2. MIT-NASA/KSC space life science experiments - A telescience testbed

    Science.gov (United States)

    Oman, Charles M.; Lichtenberg, Byron K.; Fiser, Richard L.; Vordermark, Deborah S.

    1990-01-01

    Experiments performed at MIT to better define Space Station information system telescience requirements for effective remote coaching of astronauts by principal investigators (PI) on the ground are described. The experiments were conducted via satellite video, data, and voice links to surrogate crewmembers working in a laboratory at NASA's Kennedy Space Center. Teams of two PIs and two crewmembers performed two different space life sciences experiments. During 19 three-hour interactive sessions, a variety of test conditions were explored. Since bit rate limits are necessarily imposed on Space Station video experiments surveillance video was varied down to 50 Kb/s and the effectiveness of PI controlled frame rate, resolution, grey scale, and color decimation was investigated. It is concluded that remote coaching by voice works and that dedicated crew-PI voice loops would be of great value on the Space Station.

  3. An introduction to statistics with Python with applications in the life sciences

    CERN Document Server

    Haslwanter, Thomas

    2016-01-01

    This textbook provides an introduction to the free software Python and its use for statistical data analysis. It covers common statistical tests for continuous, discrete and categorical data, as well as linear regression analysis and topics from survival analysis and Bayesian statistics. Working code and data for Python solutions for each test, together with easy-to-follow Python examples, can be reproduced by the reader and reinforce their immediate understanding of the topic. With recent advances in the Python ecosystem, Python has become a popular language for scientific computing, offering a powerful environment for statistical data analysis and an interesting alternative to R. The book is intended for master and PhD students, mainly from the life and medical sciences, with a basic knowledge of statistics. As it also provides some statistics background, the book can be used by anyone who wants to perform a statistical data analysis. .

  4. Entropy and spontaneity in an introductory physics course for life science students

    CERN Document Server

    Geller, Benjamin D; Gouvea, Julia; Sawtelle, Vashti; Turpen, Chandra; Redish, Edward F

    2013-01-01

    In an Introductory Physics for Life Science (IPLS) course that leverages authentic biological examples, student ideas about entropy as "disorder" or "chaos" come into contact with their ideas about the spontaneous formation of organized biological structure. It is possible to reconcile the "natural tendency to disorder" with the organized clustering of macromolecules, but doing so in a way that will be meaningful to students requires that we take seriously the ideas about entropy and spontaneity that students bring to IPLS courses from their prior experiences in biology and chemistry. We draw on case study interviews to argue that an approach that emphasizes the interplay of energy and entropy in determining spontaneity (one that involves a central role for free energy) is one that draws on students' resources from biology and chemistry in particularly effective ways. We see the positioning of entropic arguments alongside energetic arguments in the determination of spontaneity as an important step toward maki...

  5. Concepts of bioisolation for life sciences research on Space Station Freedom

    Science.gov (United States)

    Funk, Glenn A.; Johnson, Catherine C.

    1991-01-01

    The risk concepts related to biological research in space are defined with attention given to the design and operation of experimental hardware for NASA's Biological Flight Research Laboratory (BFRL). The definitions are set forth to describe safety measures for the use of nonhuman specimens in microgravity environments and the direct application of the risk-control concepts. Bioisolation is the process by which biological systems can coexist productively by means of physical, chemical, or biological methods; bioisolation requirements are given for mammals, plants, and microspecimens. The BRFL provides two levels of containment based on the complete sealing of all joints and interfaces in the Modular Habitat and an airflow system designed to provide net negative pressure of at least 0.13 kPa. The requirements are designed to assure a safe working environment for conducting nonhuman life-sciences research in the Space Station Freedom.

  6. The LSLE echocardiograph - Commercial hardware aboard Spacelab. [Life Sciences Laboratory Equipment

    Science.gov (United States)

    Schwarz, R.

    1983-01-01

    The Life Sciences Laboratory Equipment Echocardiograph, a commercial 77020AC Ultrasound Imaging System modified to meet NASA's spacecraft standards, is described. The assembly consists of four models: display and control, scanner, scan converter, and physioamplifiers. Four separate processors communicate over an IEE-488 bus, and the system has more than 6000 individual components on 35 printed circuit cards. Three levels of self test are provided: a short test during power up, a basic test initiated by a front panel switch, and interactive tests for specific routines. Default mode operation further enhances reliability. Modifications of the original system include the replacement of ac power supplies with dc to dc converters, a slide-out keyboard (to prevent accidental operation), Teflon insulated wire, and additional shielding for the ultrasound transducer cable.

  7. Outlaw, hackers, victorian amateurs: diagnosing public participation in the life sciences today

    Directory of Open Access Journals (Sweden)

    Christopher M. Kelty

    2010-03-01

    Full Text Available This essay reflects on three figures that can be used to make sense of the changing nature of public participation in the life sciences today: outlaws, hackers and Victorian gentlemen. Occasioned by a symposium held at UCLA (Outlaw Biology: Public Participation in the Age of Big Bio, the essay introduces several different modes of participation (DIY Bio, Bio Art, At home clinical genetics, patient advocacy and others and makes three points: 1 that public participation is first a problem of legitimacy, not legality or safety; 2 that public participation is itself enabled by and thrives on the infrastructure of mainstream biology; and 3 that we need a new set of concepts (other than inside/outside for describing the nature of public participation in biological research and innovation today.

  8. BioDWH: a data warehouse kit for life science data integration.

    Science.gov (United States)

    Töpel, Thoralf; Kormeier, Benjamin; Klassen, Andreas; Hofestädt, Ralf

    2008-08-25

    This paper presents a novel bioinformatics data warehouse software kit that integrates biological information from multiple public life science data sources into a local database management system. It stands out from other approaches by providing up-to-date integrated knowledge, platform and database independence as well as high usability and customization. This open source software can be used as a general infrastructure for integrative bioinformatics research and development. The advantages of the approach are realized by using a Java-based system architecture and object-relational mapping (ORM) technology. Finally, a practical application of the system is presented within the emerging area of medical bioinformatics to show the usefulness of the approach. The BioDWH data warehouse software is available for the scientific community at http://sourceforge.net/projects/biodwh/.

  9. [Internationalization of the English-language journals in Japan in life sciences].

    Science.gov (United States)

    Yamazaki, S; Zhang, H

    1997-01-01

    The purpose of this study is to analyze the characteristics of the internationalization of four English-language journals in Japan in life sciences based on the papers published in each of journals during the period of 1992-1994. The journals were identified by impact factors (IFs) according to the Journal Citation Reports (JCR) for the 1994 volume. The mean IFs to the top 25 citing and cited journals were compared in order to evaluate their international contribution. The journals (Journal of Biochemistry, Japanese Journal of Cancer Research, Japanese Journal of Physiology) published in Japan did not have an international reputation except for international immunology in terms of IFs and geographic distribution of authors. The editorial policy and strategy have to be established in order to receive a large international readership.

  10. Venture Capital Investments for Life Sciences Start-ups in Switzerland.

    Science.gov (United States)

    Gantenbein, Pascal; Herold, Nils

    2014-12-01

    Despite its economic and technological importance, the Swiss life sciences sector faces severe challenges in attracting enough venture capital for its own development. Although biotechnology and medical technology have been the most important areas of venture financing from 1999 through 2012 according to our own data, average investment volumes nevertheless remain on a low level of only 0.05 percent of Swiss GDP. After 2008, there was a pronounced shift away from early-stage financing. While business angels still play an important role at the early stage, venture capitalists are the most important investor type by volumes having their main focus on expansion financing. The industry faces predominant challenges in securing capital availability for entrepreneurs, in transforming the highly skewed and back-loaded payoff profile of investments into a more stable return stream, and in defining appropriate business and collaboration models.

  11. Nonlinear Dynamics in Complex Systems Theory and Applications for the Life-, Neuro- and Natural Sciences

    CERN Document Server

    Fuchs, Armin

    2013-01-01

    With many areas of science reaching across their boundaries and becoming more and more interdisciplinary, students and researchers in these fields are confronted with techniques and tools not covered by their particular education. Especially in the life- and neurosciences quantitative models based on nonlinear dynamics and complex systems are becoming as frequently implemented as traditional statistical analysis. Unfamiliarity with the terminology and rigorous mathematics may discourage many scientists to adopt these methods for their own work, even though such reluctance in most cases is not justified.This book bridges this gap by introducing the procedures and methods used for analyzing nonlinear dynamical systems. In Part I, the concepts of fixed points, phase space, stability and transitions, among others, are discussed in great detail and implemented on the basis of example elementary systems. Part II is devoted to specific, non-trivial applications: coordination of human limb movement (Haken-Kelso-Bunz ...

  12. Bioinformatics and the Politics of Innovation in the Life Sciences: Science and the State in the United Kingdom, China, and India.

    Science.gov (United States)

    Salter, Brian; Zhou, Yinhua; Datta, Saheli; Salter, Charlotte

    2016-09-01

    The governments of China, India, and the United Kingdom are unanimous in their belief that bioinformatics should supply the link between basic life sciences research and its translation into health benefits for the population and the economy. Yet at the same time, as ambitious states vying for position in the future global bioeconomy they differ considerably in the strategies adopted in pursuit of this goal. At the heart of these differences lies the interaction between epistemic change within the scientific community itself and the apparatus of the state. Drawing on desk-based research and thirty-two interviews with scientists and policy makers in the three countries, this article analyzes the politics that shape this interaction. From this analysis emerges an understanding of the variable capacities of different kinds of states and political systems to work with science in harnessing the potential of new epistemic territories in global life sciences innovation.

  13. Dear Professor Dyson twenty years of correspondence between Freeman Dyson and undergraduate students on science, technology, society and life

    CERN Document Server

    Neuenschwander, Dwight E

    2016-01-01

    Freeman Dyson has designed nuclear reactors and bomb-powered spacecraft; he has studied the origins of life and the possibilities for the long-term future; he showed quantum mechanics to be consistent with electrodynamics and started cosmological eschatology; he has won international recognition for his work in science and for his work in reconciling science to religion; he has advised generals and congressional committees. An STS (Science, Technology, Society) curriculum or discussion group that engages topics such as nuclear policies, genetic technologies, environmental sustainability, the role of religion in a scientific society, and a hard look towards the future, would count itself privileged to include Professor Dyson as a class participant and mentor. In this book, STS topics are not discussed as objectified abstractions, but through personal stories. The reader is invited to observe Dyson's influence on a generation of young people as they wrestle with issues of science, technology, society, life in g...

  14. OReFiL: an online resource finder for life sciences

    Directory of Open Access Journals (Sweden)

    Takagi Toshihisa

    2007-08-01

    Full Text Available Abstract Background Many online resources for the life sciences have been developed and introduced in peer-reviewed papers recently, ranging from databases and web applications to data-analysis software. Some have been introduced in special journal issues or websites with a search function, but others remain scattered throughout the Internet and in the published literature. The searchable resources on these sites are collected and maintained manually and are therefore of higher quality than automatically updated sites, but also require more time and effort. Description We developed an online resource search system called OReFiL to address these issues. We developed a crawler to gather all of the web pages whose URLs appear in MEDLINE abstracts and full-text papers on the BioMed Central open-access journals. The URLs were extracted using regular expressions and rules based on our heuristic knowledge. We then indexed the online resources to facilitate their retrieval and comparison by researchers. Because every online resource has at least one PubMed ID, we can easily acquire its summary with Medical Subject Headings (MeSH terms and confirm its credibility through reference to the corresponding PubMed entry. In addition, because OReFiL automatically extracts URLs and updates the index, minimal time and effort is needed to maintain the system. Conclusion We developed OReFiL, a search system for online life science resources, which is freely available. The system's distinctive features include the ability to return up-to-date query-relevant online resources introduced in peer-reviewed papers; the ability to search using free words, MeSH terms, or author names; easy verification of each hit following links to the corresponding PubMed entry or to papers citing the URL through the search systems of BioMed Central, Scirus, HighWire Press, or Google Scholar; and quick confirmation of the existence of an online resource web page.

  15. The Theoretical Summary and Mathematics Expression on the Regulation of Life in Meridian (Jingluo 经络) Science

    Institute of Scientific and Technical Information of China (English)

    Zhang Renxiang; Zhang Renji

    2007-01-01

    The meridian (Jingluo 经络) is a core principle of traditional Chinese. medicine. The meridian plays a central role in the regulation of human health and vitality. In the past 50 years, the scientific evidence has been gathered via our physiological experiments to confirm the biological basis of the human meridian pathway phenomenon. Meridian Science has been established as a new branch of natural science to advance and promote the study of this important phenomenon for human life. In this paper, the authors describe the theoretical concept of the meridian and mathematics expression, its relationship to an efficient meridian circadian cycle, and its significance to human life.

  16. Fruits of human genome project and private venture, and their impact on life science.

    Science.gov (United States)

    Ikekawa, A; Ikekawa, S

    2001-12-01

    A small knowledge base was created by organizing the Human Genome Project (HGP) and its related issues in "Science" magazines between 1996 and 2000. This base revealed the stunning achievement of HGP and a private venture and its impact on today's biology and life science. In the mid-1990, they encouraged the development of advanced high throughput automated DNA sequencers and the technologies that can analyse all genes at once in a systematic fashion. Using these technologies, they completed the genome sequence of human and various other organisms. These fruits opened the door to comparative genomics, functional genomics, the interdisprinary field between computer and biology, and proteomics. They have caused a shift in biological investigation from studying single genes or proteins to studying all genes or proteins at once, and causing revolutional changes in traditional biology, drug discovery and therapy. They have expanded the range of potential drug targets and have facilitated a shift in drug discovery programs toward rational target-based strategies. They have spawned pharmacogenomics that could give rise to a new generation of highly effective drugs that treat causes, not just symptoms. They should also cause a migration from the traditional medications that are safe and effective for every members of the population to personalized medicine and personalized therapy.

  17. First Experiences with Reading Primary Literature by Undergraduate Life Science Students

    Science.gov (United States)

    van Lacum, Edwin; Ossevoort, Miriam; Buikema, Hendrik; Goedhart, Martin

    2012-08-01

    Learning to read and understand research articles (primary literature) is an important step in the enculturation of higher education students into the scientific community. We presume, based on ideas from the field of genre analysis, that it is important for the development of reading skills to become conscious of the rhetorical structures in research articles. So, we determined how well science students are able to identify 2 important elements of this rhetorical structure: conclusions and grounds. First-year undergraduate life science students who followed a course called 'Biomedical Research' made assignments in which they had to identify these 2 elements. We analysed the answers of 20 students in detail and compared their answers with 2 expert readers. Furthermore, we conducted task-based interviews with 4 students to gain more insight into their reading strategies and to determine how they identify conclusions and grounds. Our results show that students and experts defined conclusions and grounds in different ways. Students and experts agreed on the most important conclusion of the articles. However, students identified a wide range of sentences which were not seen as conclusions by the experts. The grounds students mentioned mostly matched their conclusions. Students sometimes failed to mention important grounds for a particular conclusion. In conclusion, our study shows the differences between student and expert readers of primary literature. Based on our results, we formulated criteria for the design of a teaching strategy that aims to improve students' skills for reading primary literature.

  18. Analysis of student performance in large-enrollment life science courses.

    Science.gov (United States)

    Creech, Leah Renée; Sweeder, Ryan D

    2012-01-01

    This study examined the historical performance of students at Michigan State University in 12 life sciences courses over 13 yr to find variables impacting student success. Hierarchical linear modeling predicted 25.0-62.8% of the variance in students' grades in the courses analyzed. The primary predictor of a student's course grade was his or her entering grade point average; except for the second course in a series (i.e., Biochemistry II), in which the grade for the first course in the series (i.e., Biochemistry I) was often the best predictor, as judged by β values. Student gender and major were also statistically significant for a majority of the courses studied. Female students averaged grades 0.067-0.303 lower than their equivalent male counterparts, and majors averaged grades were 0.088-0.397 higher than nonmajors. Grades earned in prerequisite courses provided minimal predictive ability. Ethnicity and involvements in honors college or science residential college were generally insignificant.

  19. Life science-based neuroscience education at large Western Public Universities.

    Science.gov (United States)

    Coskun, Volkan; Carpenter, Ellen M

    2016-12-01

    The last 40 years have seen a remarkable increase in the teaching of neuroscience at the undergraduate level. From its origins as a component of anatomy or physiology departments to its current status as an independent interdisciplinary field, neuroscience has become the chosen field of study for many undergraduate students, particularly for those interested in medical school or graduate school in neuroscience or related fields. We examined how life science-based neuroscience education is offered at large public universities in the Western United States. By examining publicly available materials posted online, we found that neuroscience education may be offered as an independent program, or as a component of biological or physiological sciences at many institutions. Neuroscience programs offer a course of study involving a core series of courses and a collection of topical electives. Many programs provide the opportunity for independent research, or for laboratory-based training in neuroscience. Features of neuroscience programs at Western universities closely matched those seen at the top 25 public universities, as identified by U.S. News & World Report. While neuroscience programs were identified in many Western states, there were several states in which public universities appeared not to provide opportunities to major in neuroscience. © 2016 Wiley Periodicals, Inc.

  20. Environmental surveillance at Los Alamos during 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1987. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1987 cover: external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are insignificant and do not pose a threat to the public, Laboratory employees, or the environment. 113 refs., 33 figs., 120 tabs.

  1. Environmental surveillance at Los Alamos during 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    This report documents the environmental surveillance program conducted by the Los Alamos Scientific Laboratory (LASL) in 1979. Routine monitoring for radiation and radioactive or chemical substances was conducted on the Laboratory site and in the surrounding region to determine compliance with appropriate standards and permit early identification of possible undesirable trends. Results and interpretation of the data for 1979 on penetrating radiation, chemical and radiochemical quality of ambient air, surface and ground water, municipal water supply, soils and sediments, food, and airborne and liquid effluents are included. Comparisons with appropriate standards and regulations or with background levels from natural or other non-LASL sources provide a basis for concluding that environmental effects attributable to LASL operations are minor and cannot be considered likely to result in any hazard to the population of the area. Results of several special studies provide documentation of some unique environmental conditions in the LASL environs.

  2. Environmental surveillance at Los Alamos during 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kohen, K.; Stoker, A.; Stone, G. [and others

    1994-07-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory during 1992. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring results to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1992 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, laboratory employees, or the environment.

  3. Environmental surveillance at Los Alamos during 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory (LANL or the Laboratory) during 1995. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring result to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1995 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, Laboratory employees, or the environment.

  4. Changing from computing grid to knowledge grid in life-science grid.

    Science.gov (United States)

    Talukdar, Veera; Konar, Amit; Datta, Ayan; Choudhury, Anamika Roy

    2009-09-01

    Grid computing has a great potential to become a standard cyber infrastructure for life sciences that often require high-performance computing and large data handling, which exceeds the computing capacity of a single institution. Grid computer applies the resources of many computers in a network to a single problem at the same time. It is useful to scientific problems that require a great number of computer processing cycles or access to a large amount of data.As biologists,we are constantly discovering millions of genes and genome features, which are assembled in a library and distributed on computers around the world.This means that new, innovative methods must be developed that exploit the re-sources available for extensive calculations - for example grid computing.This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing a "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. By extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.

  5. Non-stop lab week: A real laboratory experience for life sciences postgraduate courses.

    Science.gov (United States)

    Freitas, Maria João; Silva, Joana Vieira; Korrodi-Gregório, Luís; Fardilha, Margarida

    2016-05-01

    At the Portuguese universities, practical classes of life sciences are usually professor-centered 2-hour classes. This approach results in students underprepared for a real work environment in a research/clinical laboratory. To provide students with a real-life laboratory environment, the Non-Stop Lab Week (NSLW) was created in the Molecular Biomedicine master program at the University of Aveiro, Portugal. The unique feature of the NSLW is its intensity: during a 1-week period, students perform a subcloning and a protein expression project in an environment that mimics a real laboratory. Students work autonomously, and the progression of work depends on achieving the daily goals. Throughout the three curricular years, most students considered the intensity of the NSLW a very good experience and fundamental for their future. Moreover, after some experience in a real laboratory, students state that both the techniques and the environment created in the NSLW were similar to what they experience in their current work situation. The NSLW fulfills a gap in postgraduate students' learning, particularly in practical skills and scientific thinking. Furthermore, the NSLW experience provides skills to the students that are crucial to their future research area. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:297-303, 2016.

  6. Technology modules from micro- and nano-electronics for the life sciences.

    Science.gov (United States)

    Birkholz, M; Mai, A; Wenger, C; Meliani, C; Scholz, R

    2016-05-01

    The capabilities of modern semiconductor manufacturing offer remarkable possibilities to be applied in life science research as well as for its commercialization. In this review, the technology modules available in micro- and nano-electronics are exemplarily presented for the case of 250 and 130 nm technology nodes. Preparation procedures and the different transistor types as available in complementary metal-oxide-silicon devices (CMOS) and BipolarCMOS (BiCMOS) technologies are introduced as key elements of comprehensive chip architectures. Techniques for circuit design and the elements of completely integrated bioelectronics systems are outlined. The possibility for life scientists to make use of these technology modules for their research and development projects via so-called multi-project wafer services is emphasized. Various examples from diverse fields such as (1) immobilization of biomolecules and cells on semiconductor surfaces, (2) biosensors operating by different principles such as affinity viscosimetry, impedance spectroscopy, and dielectrophoresis, (3) complete systems for human body implants and monitors for bioreactors, and (4) the combination of microelectronics with microfluidics either by chip-in-polymer integration as well as Si-based microfluidics are demonstrated from joint developments with partners from biotechnology and medicine. WIREs Nanomed Nanobiotechnol 2016, 8:355-377. doi: 10.1002/wnan.1367 For further resources related to this article, please visit the WIREs website.

  7. Life satisfaction, health, self-evaluation and sexuality in current university students of sport sciences, education and natural sciences

    OpenAIRE

    Martin Sigmund; Jana Kvintová; Hana Hřebíčková; Michal Šafář; Dagmar Sigmundová

    2014-01-01

    Background: Lifestyle and health of an individual are influenced by many factors; a significant factor is life satisfaction. Life satisfaction is understood as a multidimensional construct closely related to the area of personal wellbeing and quality of life. Life satisfaction in university students represents one of the determinants of good health, high motivation for studying, work productivity, satisfactory interpersonal relationships and overall healthy lifestyle. Objective: The main obje...

  8. Life's Lessons Learned, and Taught: College of Education Initiative Fosters Lively Science and Math Teaching Grounded in Life Experiences.

    Science.gov (United States)

    Mellas, Laurie

    1998-01-01

    Funded by Lockheed Martin, the University of New Mexico College of Education conducts three-week summer science academies for elementary school teachers of populations underrepresented in science and math. Native American teachers and Hispanic teachers whose families have lived in New Mexico for generations learn to use their own local knowledge…

  9. Environmental surveillance at Los Alamos during 2005

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (LANL or the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.IA, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory's efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory's major environmental programs. Chapter 2 reports the Laboratory's compliance status for 2005. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, Air; Chapters 5 and 6, Water and Sediments; Chapter 7, Soils; and Chapter 8, Foodstuffs and Biota) in a format to meet the needs of a general and scientific audience. Chapter 9, new for this year, provides a summary of the status of environmental restoration work around LANL. A glossary and a list ofacronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory's technical areas and their associated programs, and Appendix D provides web links to more information.

  10. Environmental surveillance at Los Alamos during 2009

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poff, Ben [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hjeresen, Denny [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Isaacson, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Scot [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morgan, Terry [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Paulson, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Salzman, Sonja [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2010-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2009. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (air in Chapter 4; water and sediments in Chapters 5 and 6; soils in Chapter 7; and foodstuffs and biota in Chapter 8) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. The new Chapter 10 describes the Laboratory’s environmental stewardship efforts and provides an overview of the health of the Rio Grande. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory’s technical

  11. Environmental surveillance at Los Alamos during 2008

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gallagher, Pat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hjeresen, Denny [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Isaacson, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johson, Scot [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morgan, Terry [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Paulson, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2009-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Programs Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information.

  12. Supporting Data Stewardship Throughout the Data Life Cycle in the Solid Earth Sciences

    Science.gov (United States)

    Ferrini, V.; Lehnert, K. A.; Carbotte, S. M.; Hsu, L.

    2013-12-01

    Stewardship of scientific data is fundamental to enabling new data-driven research, and ensures preservation, accessibility, and quality of the data, yet researchers, especially in disciplines that typically generate and use small, but complex, heterogeneous, and unstructured datasets are challenged to fulfill increasing demands of properly managing their data. The IEDA Data Facility (www.iedadata.org) provides tools and services that support data stewardship throughout the full life cycle of observational data in the solid earth sciences, with a focus on the data management needs of individual researchers. IEDA builds upon and brings together over a decade of development and experiences of its component data systems, the Marine Geoscience Data System (MGDS, www.marine-geo.org) and EarthChem (www.earthchem.org). IEDA services include domain-focused data curation and synthesis, tools for data discovery, access, visualization and analysis, as well as investigator support services that include tools for data contribution, data publication services, and data compliance support. IEDA data synthesis efforts (e.g. PetDB and Global Multi-Resolution Topography (GMRT) Synthesis) focus on data integration and analysis while emphasizing provenance and attribution. IEDA's domain-focused data catalogs (e.g. MGDS and EarthChem Library) provide access to metadata-rich long-tail data complemented by extensive metadata including attribution information and links to related publications. IEDA's visualization and analysis tools (e.g. GeoMapApp) broaden access to earth science data for domain specialist and non-specialists alike, facilitating both interdisciplinary research and education and outreach efforts. As a disciplinary data repository, a key role IEDA plays is to coordinate with its user community and to bridge the requirements and standards for data curation with both the evolving needs of its science community and emerging technologies. Development of IEDA tools and services

  13. Interdisciplinary reasoning about energy in an introductory physics course for the life sciences

    Science.gov (United States)

    Dreyfus, Benjamin William

    Energy is a unifying concept that cuts across physics, chemistry, and biology. However, students who study all three disciplines can end up with a fragmented understanding of energy. This dissertation sits at the intersection of two active areas of current research: the teaching and learning of energy, and interdisciplinary science education (particularly the intersection of physics and biology). The context for this research is an introductory physics course for undergraduate life sciences majors that is reformed to build stronger interdisciplinary connections between physics, biology, and chemistry. An approach to energy that incorporates chemical bonds and chemical reactions is better equipped to meet the needs of life sciences students than a traditional introductory physics approach that focuses primarily on mechanical energy, and so we present a curricular thread for chemical energy in the physics course. Our first set of case studies examines student reasoning about ATP hydrolysis, a biochemically significant reaction that powers various processes in the cell. We observe students expressing both that an energy input is required to break a chemical bond (which they associate with physics) and that energy is released when the phosphate bond is broken in ATP (which they associate with biology). We use these case studies to articulate a model of interdisciplinary reconciliation: building coherent connections between concepts from different disciplines while understanding each concept in its own disciplinary context and justifying the modeling choices in deciding when to use each disciplinary model. Our second study looks at ontological metaphors for energy: metaphors about what kind of thing energy is. Two ontological metaphors for energy that have previously been documented include energy as a substance and energy as a location. We argue for the use of negative energy in modeling chemical energy in an interdisciplinary context, and for the use of a blended

  14. Fundamental Space Biology-1: HHR and Incubator for ISS Space Life Sciences

    Science.gov (United States)

    Kirven-Brooks, M.; Fahlen, T.; Sato, K.; Reiss-Bubenheim, D.

    The Space Station Biological Research Project (SSBRP) is developing an Incubator and a Habitat Holding Rack (HHR) to support life science experiments aboard the International Space Station (ISS). The HHR provides for cooling and power needs, and supports data transfer (including telemetry, commanding, video processing, Ethernet), video compression, and data and command storage). The Incubator is a habitat that provides for controlled temperature between +4 C and +45 C and air circulation. It has a set of connector ports for power, analog and digital sensors, and video pass-through to support experiment-unique hardware within the Incubator specimen chamber. The Incubator exchanges air with the ISS cabin. The Fundamental Space Biology-1 (FSB-1) Project will be delivering, the HHR and two Incubators to ISS. The two inaugural experiments to be conducted on ISS using this hardware will investigate the biological effects of the space environment on two model organisms, Saccharomyces cerevisiae (S. cerevisiae; yeast) and Caenorhabditis elegans (C. elegans; nematode). The {M}odel {Y}east {C}ultures {o}n {S}tation (MYCOS) experiment will support examination of the effect of microgravity and cosmic radiation on yeast biology. In the second series of experiments during the same increment, the effects of microgravity and space environment radiation on C. elegans will be examined. The {F}undamental Space Biology {I}ncubator {E}xperiment {R}esearch using {C}. {e}legans (FIERCE) study is designed to support a long duration, multi-generational study of nematodes. FIERCE on-orbit science operations will include video monitoring, sub-culturing and periodic fixation and freezing of samples. For both experiments, investigators will be solicited via an International Space Life Sciences Research Announcement. In the near future, the Centrifuge Accommodation Module will be delivered to ISS, which will house the SSBRP 2.5 m Centrifuge Rotor. The Incubator can be placed onto the Centrifuge

  15. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Becker, N.M.; Rodgers, J.C.; Hansen, W.R.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lower Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.

  16. From dioramas to the dinner table: An ethnographic case study of the role of science museums in family life

    Science.gov (United States)

    Ellenbogen, Kirsten M.

    families use museums over time and the network of learning resources that support family life. This study suggests possible ways for museum professionals to reconsider the design of learning activities, museum environments, and a shift in focus from the learning institution of the science museum to the learning institution of the family.

  17. Proceedings of the Astrobiology Science Conference 2010. Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond

    Science.gov (United States)

    2010-01-01

    The Program of the 2010 Astrobiology Science Conference: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, included sessions on: 50 Years of Exobiology and Astrobiology: Greatest Hits; Extraterrestrial Molecular Evolution and Pre-Biological Chemistry: From the Interstellar Medium to the Solar System I; Human Exploration, Astronaut Health; Diversity in Astrobiology Research and Education; Titan: Past, Present, and Future; Energy Flow in Microbial Ecosystems; Extraterrestrial Molecular Evolution and Prebiological Chemistry: From the Interstellar Medium to the Solar System II; Astrobiology in Orbit; Astrobiology and Interdisciplinary Communication; Science from Rio Tinto: An Acidic Environment; Can We Rule Out Spontaneous Generation of RNA as the Key Step in the Origin of Life?; How Hellish Was the Hadean Earth?; Results from ASTEP and Other Astrobiology Field Campaigns I; Prebiotic Evolution: From Chemistry to Life I; Adaptation of Life in Hostile Space Environments; Extrasolar Terrestrial Planets I: Formation and Composition; Collaborative Tools and Technology for Astrobiology; Results from ASTEP and Other Astrobiology Field Campaigns II; Prebiotic Evolution: From Chemistry to Life II; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Environments; Extrasolar Terrestrial Planets II: Habitability and Life; Planetary Science Decadal Survey Update; Astrobiology Research Funding; Bioessential Elements Through Space and Time I; State of the Art in Life Detection; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Psychrophiles and Polar Environments; Life in Volcanic Environments: On Earth and Beyond; Geochronology and Astrobiology On and Off the Earth; Bioessential Elements Through Space and Time II; Origins and Evolution of Genetic Systems; Evolution of Advanced Life; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Impact Events and Evolution; A Warm, Wet

  18. The FIGARO facility at Los Alamos. Capabilities and first results

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert; Devlin, Matthew; Zanini, Luca; O' donnell, John [Los Alamos National Laboratory, Los Alamos, NM (United States); Aprahamian, Ani [University of Notre Dame, Notre Dame, IN (United States); Saladin, Juerg [University of Pittsburgh, Pittsburgh, PA (United States)

    2002-08-01

    A new beam line at the fast neutron spallation source at Los Alamos Neutron Science Center has been constructed for studies of neutron-induced reactions producing gamma rays, internal conversion electrons or neutrons. This facility, called FIGARO (Fast neutron-Induced GAmma-Ray Observer), follows on the great successes of GEANIE (described in other contributions to this Conference), by detecting de-excitation gamma rays with high-resolution germanium detectors. FIGARO has fewer gamma-ray detectors than GEANIE, but instead offers other features including: extremely good collimation of the neutron beam for background reduction, a flexible experimental area to optimize detection efficiency and to allow evaluation of other detectors such as ICEBALL-II for internal conversion electrons, inclusion of neutron detectors for the study of neutron-gamma coincidences, beam time to relieve the scheduling pressure on GEANIE, and a PC-based data acquisition system. Our initial measurements include level density studies through {sup 59}Co(n, xgamma) reactions to complement our previous {sup 59}Co(n, xalpha) measurements, reaction studies of MeV neutrons on {sup 99}Tc with the goal of determining cross sections relevant to transmutation and neutron transport in the design of facilities to incinerate nuclear waste, and an assessment of measuring internal conversion electrons, rather than gamma rays, produced by neutron excitation of actinides. (author)

  19. The FIGARO Facility at Los Alamos : capabilities and first results /

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, M. J. (Matthew J.); Zanini, L.; O' Donnell, J. M.; Aprahamian, A. (Ani); Saladin, J. X.; Haight, Robert C.

    2001-01-01

    A new beam line at the fast neutron spallation source at Los Alamos Neutron Science Center has been constructed for studies of neutron-induced reactions producing gamma rays, internal conversion electrons or neutrons. This facility, called FIGARO (Fast neutron-Induced GAmma-Ray Observer), follows on the great successes of GEANIE (described in other contributions to this Conference), by detecting de-excitation gamma rays with high-resolution germanium detectors. FIGARO has fewer gamma-ray detectors than GEANIE, but instead offers other features including: extremely good collimation of the neutron beam for background reduction, a flexible experimental area to optimize detection efficiency and to allow evaluation of other detectors such as ICEBALL-II for internal conversion electrons, inclusion of neutron detectors for the study of neutron-gamma coincidences, beam time to relieve the scheduling pressure on GEANIE, and a PC-based data acquisition system. Our initial measurements include level density studies through 59Co(n,xgamma) reactions to complement our previous 59Co(n,xalpha) measurements, reaction studies of MeV neutrons on 99Tc with the goal of determining cross sections relevant to transmutation and neutron transport in the design of facilities to incinerate nuclear waste, and an assessment of measuring internal conversion electrons, rather than gamma rays, produced by neutron excitation of actinides.

  20. Chemical decontamination technical resources at Los Alamos National Laboratory (2008)

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E [Los Alamos National Laboratory

    2008-01-01

    This document supplies information resources for a person seeking to create planning or pre-planning documents for chemical decontamination operations. A building decontamination plan can be separated into four different sections: Pre-planning, Characterization, Decontamination (Initial response and also complete cleanup), and Clearance. Of the identified Los Alamos resources, they can be matched with these four sections: Pre-planning -- Dave Seidel, EO-EPP, Emergency Planning and Preparedness; David DeCroix and Bruce Letellier, D-3, Computational fluids modeling of structures; Murray E. Moore, RP-2, Aerosol sampling and ventilation engineering. Characterization (this can include development projects) -- Beth Perry, IAT-3, Nuclear Counterterrorism Response (SNIPER database); Fernando Garzon, MPA-11, Sensors and Electrochemical Devices (development); George Havrilla, C-CDE, Chemical Diagnostics and Engineering; Kristen McCabe, B-7, Biosecurity and Public Health. Decontamination -- Adam Stively, EO-ER, Emergency Response; Dina Matz, IHS-IP, Industrial hygiene; Don Hickmott, EES-6, Chemical cleanup. Clearance (validation) -- Larry Ticknor, CCS-6, Statistical Sciences.

  1. 78 FR 12369 - United States Government Policy for Institutional Oversight of Life Sciences Dual Use Research of...

    Science.gov (United States)

    2013-02-22

    ... Public comments are sought on the entirety of the proposed United States Government Policy for... TECHNOLOGY POLICY United States Government Policy for Institutional Oversight of Life Sciences Dual Use... responsible conduct and communication of such research. The proposed Policy herein, United States...

  2. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-Health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-01-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia…

  3. Significant Life Experience: Exploring the Lifelong Influence of Place-Based Environmental and Science Education on Program Participants

    Science.gov (United States)

    Colvin, Corrie Ruth

    2013-01-01

    Current research provides a limited understanding of the life long influence of nonformal place-based environmental and science education programs on past participants. This study looks to address this gap, exploring the ways in which these learning environments have contributed to environmental identity and stewardship. Using Dorothy Holland's…

  4. Data mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle?

    NARCIS (Netherlands)

    Touw, W.G.; Bayjanov, J.; Overmars, L.; Backus, L.; Boekhorst, J.; Wels, M.W.; Hijum, S.A.F.T. van

    2013-01-01

    In the Life Sciences 'omics' data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows uncovering biological insights that can be experimentally validated or mechanistically modelled, i.e. sophisticated computational approaches are requ

  5. Managing the Improvement of Entrepreneurship Education Programs: A Comparison of Universities in the Life Sciences in Europe, USA and Canada

    NARCIS (Netherlands)

    Blok, V.; Lubberink, R.J.B.; Lans, T.; Omta, S.W.F.

    2014-01-01

    In this chapter we contribute to the literature on the entrepreneurial university by focussing on research-based interventions to implement or improve the entrepreneurship education program. To this end, a benchmark study is executed in a specific domain of the life sciences in Europe, USA and Canad

  6. Moving Liquids with Sound: The Physics of Acoustic Droplet Ejection for Robust Laboratory Automation in Life Sciences.

    Science.gov (United States)

    Hadimioglu, Babur; Stearns, Richard; Ellson, Richard

    2016-02-01

    Liquid handling instruments for life science applications based on droplet formation with focused acoustic energy or acoustic droplet ejection (ADE) were introduced commercially more than a decade ago. While the idea of "moving liquids with sound" was known in the 20th century, the development of precise methods for acoustic dispensing to aliquot life science materials in the laboratory began in earnest in the 21st century with the adaptation of the controlled "drop on demand" acoustic transfer of droplets from high-density microplates for high-throughput screening (HTS) applications. Robust ADE implementations for life science applications achieve excellent accuracy and precision by using acoustics first to sense the liquid characteristics relevant for its transfer, and then to actuate transfer of the liquid with customized application of sound energy to the given well and well fluid in the microplate. This article provides an overview of the physics behind ADE and its central role in both acoustical and rheological aspects of robust implementation of ADE in the life science laboratory and its broad range of ejectable materials.

  7. Enhancing Socially Responsible Innovation in Industry: Practical Use for Considerations of Social and Ethical Aspects in Industrial Life Science & Technology

    NARCIS (Netherlands)

    Flipse, S.M.

    2013-01-01

    The aim of the study presented in this thesis is to explore to what extent corporate researchers in the field of industrial Life Science & Technology (LST) can consider social and ethical aspects of LST innovation to improve their Research and Development (R&D) practices. Innovators, particularly th

  8. Academic Entrepreneurship and Exchange of Scientific Resources: Material Transfer in Life and Materials Sciences in Japanese Universities

    Science.gov (United States)

    Shibayama, Sotaro; Walsh, John P.; Baba, Yasunori

    2012-01-01

    This study uses a sample of Japanese university scientists in life and materials sciences to examine how academic entrepreneurship has affected the norms and behaviors of academic scientists regarding sharing scientific resources. Results indicate that high levels of academic entrepreneurship in a scientific field are associated with less reliance…

  9. Paul Scherrer Institut annual report 1994. Annex II: PSI life sciences and institute for medical radiobiology newsletter 1994

    Energy Technology Data Exchange (ETDEWEB)

    Reist, H.W. [ed.] [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-10-01

    This annex reports on the PSI life science division`s progress achieved during 1994 in the fields of radiation medicine, radiopharmacy, magnetic resonance imaging, radiation hygiene, positron emission tomography (PET) and medical radiology. A bibliography of the department`s publications is included. figs., tabs., refs.

  10. 2015 Los Alamos Space Weather Summer School Research Reports

    Energy Technology Data Exchange (ETDEWEB)

    Cowee, Misa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Yuxi [Univ. of Michigan, Ann Arbor, MI (United States); Desai, Ravindra [Univ. College London, Bloomsbury (United Kingdom); Hassan, Ehab [Univ. of Texas, Austin, TX (United States); Kalmoni, Nadine [Univ. College London, Bloomsbury (United Kingdom); Lin, Dong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Depascuale, Sebastian [Univ. of Iowa, Iowa City, IA (United States); Hughes, Randall Scott [Univ. of Southern California, Los Angeles, CA (United States); Zhou, Hong [Univ. of Colorado, Boulder, CO (United States)

    2015-11-24

    The fifth Los Alamos Space Weather Summer School was held June 1st - July 24th, 2015, at Los Alamos National Laboratory (LANL). With renewed support from the Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) and additional support from the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) Office of Science, we hosted a new class of five students from various U.S. and foreign research institutions. The summer school curriculum includes a series of structured lectures as well as mentored research and practicum opportunities. Lecture topics including general and specialized topics in the field of space weather were given by a number of researchers affiliated with LANL. Students were given the opportunity to engage in research projects through a mentored practicum experience. Each student works with one or more LANL-affiliated mentors to execute a collaborative research project, typically linked with a larger ongoing research effort at LANL and/or the student’s PhD thesis research. This model provides a valuable learning experience for the student while developing the opportunity for future collaboration. This report includes a summary of the research efforts fostered and facilitated by the Space Weather Summer School. These reports should be viewed as work-in-progress as the short session typically only offers sufficient time for preliminary results. At the close of the summer school session, students present a summary of their research efforts. Titles of the papers included in this report are as follows: Full particle-in-cell (PIC) simulation of whistler wave generation, Hybrid simulations of the right-hand ion cyclotron anisotropy instability in a sub-Alfvénic plasma flow, A statistical ensemble for solar wind measurements, Observations and models of substorm injection dispersion patterns, Heavy ion effects on Kelvin-Helmholtz instability: hybrid study, Simulating plasmaspheric electron densities with a two

  11. Unitary Social Science for Causal Understanding: Experiences and Prospects of Life Course Research

    Directory of Open Access Journals (Sweden)

    Diewald, Martin

    2001-01-01

    Full Text Available EnglishLongitudinal data are superior to cross-sectional data for explaining socialprocesses. Yet, the existing division of labour in social science is a serious handicap for causalunderstanding of human behaviour. This is demonstrated in this article with the quite unrelatedcoexistence of sociological research on life histories and psychological research on individualdevelopment. Two examples are discussed: the intergenerational reproduction of social inequities andthe openness versus closedness of labour markets. Though there is an increasing awareness of problemsof selectivity and unobserved heterogeneity in conventional social research, statistical modelling ofthese problems cannot replace the need for transdiscinplinary data collection and research.FrenchLes données longitudinaux sont préférables aux données de période pour expliquer les processus sociaux. Par ailleurs, la division du travail dans les sciences humaines présente un handicap à la compréhension causale des activités humaines. Par exemple, il existe en même temps la recherche sociologique sur les événements de la vie, et la recherche psychologique sur le développement individuel. On considère deux exemples: la reproduction inter-génération de l’inégalité sociale, et l’ouverture ou la fermeture des marchés de main d’oeuvre. Quoiqu’il y ait une plus importante appréciation des problèmes de sélection et de hétérogénéité non-observée dans la recherche sociale conventionnelle, la modélisation statistique de ces problèmes ne peut pas substituer à la collection de données et la recherche transdisciplinaire.

  12. Life Science's Average Publishable Unit (APU Has Increased over the Past Two Decades.

    Directory of Open Access Journals (Sweden)

    Radames J B Cordero

    Full Text Available Quantitative analysis of the scientific literature is important for evaluating the evolution and state of science. To study how the density of biological literature has changed over the past two decades we visually inspected 1464 research articles related only to the biological sciences from ten scholarly journals (with average Impact Factors, IF, ranging from 3.8 to 32.1. By scoring the number of data items (tables and figures, density of composite figures (labeled panels per figure or PPF, as well as the number of authors, pages and references per research publication we calculated an Average Publishable Unit or APU for 1993, 2003, and 2013. The data show an overall increase in the average ± SD number of data items from 1993 to 2013 of approximately 7±3 to 14±11 and PPF ratio of 2±1 to 4±2 per article, suggesting that the APU has doubled in size over the past two decades. As expected, the increase in data items per article is mainly in the form of supplemental material, constituting 0 to 80% of the data items per publication in 2013, depending on the journal. The changes in the average number of pages (approx. 8±3 to 10±3, references (approx. 44±18 to 56±24 and authors (approx. 5±3 to 8±9 per article are also presented and discussed. The average number of data items, figure density and authors per publication are correlated with the journal's average IF. The increasing APU size over time is important when considering the value of research articles for life scientists and publishers, as well as, the implications of these increasing trends in the mechanisms and economics of scientific communication.

  13. Life Science's Average Publishable Unit (APU) Has Increased over the Past Two Decades.

    Science.gov (United States)

    Cordero, Radames J B; de León-Rodriguez, Carlos M; Alvarado-Torres, John K; Rodriguez, Ana R; Casadevall, Arturo

    2016-01-01

    Quantitative analysis of the scientific literature is important for evaluating the evolution and state of science. To study how the density of biological literature has changed over the past two decades we visually inspected 1464 research articles related only to the biological sciences from ten scholarly journals (with average Impact Factors, IF, ranging from 3.8 to 32.1). By scoring the number of data items (tables and figures), density of composite figures (labeled panels per figure or PPF), as well as the number of authors, pages and references per research publication we calculated an Average Publishable Unit or APU for 1993, 2003, and 2013. The data show an overall increase in the average ± SD number of data items from 1993 to 2013 of approximately 7±3 to 14±11 and PPF ratio of 2±1 to 4±2 per article, suggesting that the APU has doubled in size over the past two decades. As expected, the increase in data items per article is mainly in the form of supplemental material, constituting 0 to 80% of the data items per publication in 2013, depending on the journal. The changes in the average number of pages (approx. 8±3 to 10±3), references (approx. 44±18 to 56±24) and authors (approx. 5±3 to 8±9) per article are also presented and discussed. The average number of data items, figure density and authors per publication are correlated with the journal's average IF. The increasing APU size over time is important when considering the value of research articles for life scientists and publishers, as well as, the implications of these increasing trends in the mechanisms and economics of scientific communication.

  14. Social tagging in the life sciences: characterizing a new metadata resource for bioinformatics

    Directory of Open Access Journals (Sweden)

    Tennis Joseph T

    2009-09-01

    Full Text Available Abstract Background Academic social tagging systems, such as Connotea and CiteULike, provide researchers with a means to organize personal collections of online references with keywords (tags and to share these collections with others. One of the side-effects of the operation of these systems is the generation of large, publicly accessible metadata repositories describing the resources in the collections. In light of the well-known expansion of information in the life sciences and the need for metadata to enhance its value, these repositories present a potentially valuable new resource for application developers. Here we characterize the current contents of two scientifically relevant metadata repositories created through social tagging. This investigation helps to establish how such socially constructed metadata might be used as it stands currently and to suggest ways that new social tagging systems might be designed that would yield better aggregate products. Results We assessed the metadata that users of CiteULike and Connotea associated with citations in PubMed with the following metrics: coverage of the document space, density of metadata (tags per document, rates of inter-annotator agreement, and rates of agreement with MeSH indexing. CiteULike and Connotea were very similar on all of the measurements. In comparison to PubMed, document coverage and per-document metadata density were much lower for the social tagging systems. Inter-annotator agreement within the social tagging systems and the agreement between the aggregated social tagging metadata and MeSH indexing was low though the latter could be increased through voting. Conclusion The most promising uses of metadata from current academic social tagging repositories will be those that find ways to utilize the novel relationships between users, tags, and documents exposed through these systems. For more traditional kinds of indexing-based applications (such as keyword-based search to

  15. TogoDoc server/client system: smart recommendation and efficient management of life science literature.

    Science.gov (United States)

    Iwasaki, Wataru; Yamamoto, Yasunori; Takagi, Toshihisa

    2010-12-13

    In this paper, we describe a server/client literature management system specialized for the life science domain, the TogoDoc system (Togo, pronounced Toe-Go, is a romanization of a Japanese word for integration). The server and the client program cooperate closely over the Internet to provide life scientists with an effective literature recommendation service and efficient literature management. The content-based and personalized literature recommendation helps researchers to isolate interesting papers from the "tsunami" of literature, in which, on average, more than one biomedical paper is added to MEDLINE every minute. Because researchers these days need to cover updates of much wider topics to generate hypotheses using massive datasets obtained from public databases or omics experiments, the importance of having an effective literature recommendation service is rising. The automatic recommendation is based on the content of personal literature libraries of electronic PDF papers. The client program automatically analyzes these files, which are sometimes deeply buried in storage disks of researchers' personal computers. Just saving PDF papers to the designated folders makes the client program automatically analyze and retrieve metadata, rename file names, synchronize the data to the server, and receive the recommendation lists of newly published papers, thus accomplishing effortless literature management. In addition, the tag suggestion and associative search functions are provided for easy classification of and access to past papers (researchers who read many papers sometimes only vaguely remember or completely forget what they read in the past). The TogoDoc system is available for both Windows and Mac OS X and is free. The TogoDoc Client software is available at http://tdc.cb.k.u-tokyo.ac.jp/, and the TogoDoc server is available at https://docman.dbcls.jp/pubmed_recom.

  16. TogoDoc server/client system: smart recommendation and efficient management of life science literature.

    Directory of Open Access Journals (Sweden)

    Wataru Iwasaki

    Full Text Available In this paper, we describe a server/client literature management system specialized for the life science domain, the TogoDoc system (Togo, pronounced Toe-Go, is a romanization of a Japanese word for integration. The server and the client program cooperate closely over the Internet to provide life scientists with an effective literature recommendation service and efficient literature management. The content-based and personalized literature recommendation helps researchers to isolate interesting papers from the "tsunami" of literature, in which, on average, more than one biomedical paper is added to MEDLINE every minute. Because researchers these days need to cover updates of much wider topics to generate hypotheses using massive datasets obtained from public databases or omics experiments, the importance of having an effective literature recommendation service is rising. The automatic recommendation is based on the content of personal literature libraries of electronic PDF papers. The client program automatically analyzes these files, which are sometimes deeply buried in storage disks of researchers' personal computers. Just saving PDF papers to the designated folders makes the client program automatically analyze and retrieve metadata, rename file names, synchronize the data to the server, and receive the recommendation lists of newly published papers, thus accomplishing effortless literature management. In addition, the tag suggestion and associative search functions are provided for easy classification of and access to past papers (researchers who read many papers sometimes only vaguely remember or completely forget what they read in the past. The TogoDoc system is available for both Windows and Mac OS X and is free. The TogoDoc Client software is available at http://tdc.cb.k.u-tokyo.ac.jp/, and the TogoDoc server is available at https://docman.dbcls.jp/pubmed_recom.

  17. What is the Status of Junior and Senior High Life Science and Biology?

    Science.gov (United States)

    Rakow, Steven J.; Harris, Linda J.

    1986-01-01

    Results from a national assessment of science conducted by the Minnesota Science Assessment and Research Project in 1981-82 are presented. The achievement of 13- and 17-year-olds on biology items, their attitudes about science and science classes, and comparisons with data from 1976-77 are discussed. (MNS)

  18. Environmental Surveillance at Los Alamos during 2007

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information. In printed copies of this report or Executive Summary, we have

  19. Transformative practices in secondary school science classrooms: Life histories of Black South African teachers

    Science.gov (United States)

    Jita, Loyiso Currell

    1999-11-01

    This study investigated the construction of teaching practices that are aimed at including all students in learning the key ideas of science and helping them to develop a voice for participating in the discourses in and outside of the science classroom. Such practices define what in this study is referred to as transformative practice. The study tells the stories of three Black secondary school teachers in South Africa who have worked to construct a transformative practice in their biology and physical science classrooms. Using a life history perspective, the study explored the relationships between teachers' identities and the changes in their classroom practices. Data were collected mainly through periodic interviews with the teachers and observations of their teaching practices over a period of 18 months. An important finding of the study was that the classroom practices of all three teachers were defined by three similar themes of: (1) "covering the content" and preparing their students to succeed in the national examinations, (2) developing deep conceptual understandings of the subject matter, and (3) including all students in their teaching by constructing what other researchers have called a "culturally-relevant" pedagogy. This finding was consistent despite the observed variations of context and personal histories. A major finding of this study on the question of the relationship between identity and teaching practice was that despite the importance of context, subject matter, material and social resources, another category of resources---the "resources of biography"---proved to be crucial for each of the teachers in crafting a transformative pedagogy. These "resources of biography" included such things as the teachers' own experiences of marginalization, the experiences of growing up or living in a particular culture, and the experiences of participating in certain kinds of social, political, religious or professional activities. The study suggests that it

  20. To iron or to do science: A storied life of a Latina from scientist to science teacher

    Science.gov (United States)

    Hoy, Sarida P.

    Reform initiatives such as Science for All Americans (AAA, 1989) and National Science Education Standards (NRC, 1996) argue for making science accessible to all children regardless of age, sex, cultural and/or ethic background, and disabilities. One of the most popular and prevailing phrases highlighting science education reform in the last decade has been science for all. In terms of making science accessible to all, science educators argue that one role of science teachers ought to be to embrace students' experiences outside of the science classroom by becoming aware and inclusive of the cultural resources that student's households contain. Moll, Gonzalez and Amanti (1992) termed these cultural resources as funds of knowledge which refer to culturally developed bodies of knowledge and skills essential for household well being. This study examined the career transition of a former Latina scientist from a research scientist to a high school science teacher. Her lived experiences that influenced her career transition were examined using interpretive biography through a feminist theory lens. The following question guided the study: How have the lived experiences of the participant as engaged through cultural, historical, and social interactions influenced a transition in career from a research scientist to a classroom teacher? A former Latina scientist and her family participated in this study to facilitate the documentation, narration, and interpretation of her career transition. The researcher immersed herself in the field for five months and data collection included in-depth interviews with the participant and her family. In addition, the researcher kept a reflexive journal. Data were analyzed using socio-cultural thematic approach to identify snapshots and to develop emergent themes. Data analysis revealed that the participant's cultural socialization conflicted with the Eurocentric/Androcentric culture of science found in both the university and research

  1. Creating Critical Consumers of Health and Science News: Teaching Science to the Non-Scientist Using Newsworthy Topics in the Life Sciences†

    OpenAIRE

    Coderre, Raymond W.; Uekermann, Kristen A.; Choi, Youngeun; Anderson, William J.

    2016-01-01

    Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In sh...

  2. Los Alamos loses physics archive as preprint pioneer heads east

    CERN Multimedia

    Butler, D

    2001-01-01

    The Los Alamos preprint server is to move to Cornell University. Paul Ginsparg who created the server cites a lack of enthusiasm among senior staff at LANL as a major reason for his departure (1/2 page).

  3. Explosive Flux Compression: 50 Years of Los Alamos Activities

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, C.M.; Thomson, D.B.; Garn, W.B.

    1998-10-18

    Los Alamos flux compression activities are surveyed, mainly through references in view of space limitations. However, two plasma physics programs done with Sandia National Laboratory are discussed in more detail.

  4. Environmental assessment for the proposed CMR Building upgrades at the Los Alamos National Laboratory, Los Alamos, New Mexico. Final document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-04

    In order to maintain its ability to continue to conduct uninterrupted radioactive and metallurgical research in a safe, secure, and environmentally sound manner, the US Department of Energy (DOE) proposes to upgrade the Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Building. The building was built in the early 1950s to provide a research and experimental facility for analytical chemistry, plutonium and uranium chemistry, and metallurgy. Today, research and development activities are performed involving nuclear materials. A variety of radioactive and chemical hazards are present. The CMR Building is nearing the end of its original design life and does not meet many of today`s design codes and standards. The Proposed Action for this Environmental Assessment (EA) includes structural modifications to some portions of the CMR Building which do not meet current seismic criteria for a Hazard Category 2 Facility. Also included are upgrades and improvements in building ventilation, communications, monitoring, and fire protection systems. This EA analyzes the environmental effects of construction of the proposed upgrades. The Proposed Action will have no adverse effects upon agricultural and cultural resources, wetlands and floodplains, endangered and threatened species, recreational resources, or water resources. The Proposed Action would have negligible effects on human health and transportation, and would not pose a disproportionate adverse health or environmental impact on minority or low-income populations within an 80 kilometer (50 mile) radius of the CMR Building.

  5. Systems biology for molecular life sciences and its impact in biomedicine.

    Science.gov (United States)

    Medina, Miguel Ángel

    2013-03-01

    Modern systems biology is already contributing to a radical transformation of molecular life sciences and biomedicine, and it is expected to have a real impact in the clinical setting in the next years. In this review, the emergence of systems biology is contextualized with a historic overview, and its present state is depicted. The present and expected future contribution of systems biology to the development of molecular medicine is underscored. Concerning the present situation, this review includes a reflection on the "inflation" of biological data and the urgent need for tools and procedures to make hidden information emerge. Descriptions of the impact of networks and models and the available resources and tools for applying them in systems biology approaches to molecular medicine are provided as well. The actual current impact of systems biology in molecular medicine is illustrated, reviewing two cases, namely, those of systems pharmacology and cancer systems biology. Finally, some of the expected contributions of systems biology to the immediate future of molecular medicine are commented.

  6. Thermostatted kinetic equations as models for complex systems in physics and life sciences.

    Science.gov (United States)

    Bianca, Carlo

    2012-12-01

    Statistical mechanics is a powerful method for understanding equilibrium thermodynamics. An equivalent theoretical framework for nonequilibrium systems has remained elusive. The thermodynamic forces driving the system away from equilibrium introduce energy that must be dissipated if nonequilibrium steady states are to be obtained. Historically, further terms were introduced, collectively called a thermostat, whose original application was to generate constant-temperature equilibrium ensembles. This review surveys kinetic models coupled with time-reversible deterministic thermostats for the modeling of large systems composed both by inert matter particles and living entities. The introduction of deterministic thermostats allows to model the onset of nonequilibrium stationary states that are typical of most real-world complex systems. The first part of the paper is focused on a general presentation of the main physical and mathematical definitions and tools: nonequilibrium phenomena, Gauss least constraint principle and Gaussian thermostats. The second part provides a review of a variety of thermostatted mathematical models in physics and life sciences, including Kac, Boltzmann, Jager-Segel and the thermostatted (continuous and discrete) kinetic for active particles models. Applications refer to semiconductor devices, nanosciences, biological phenomena, vehicular traffic, social and economics systems, crowds and swarms dynamics.

  7. Use of the terms "Wellbeing" and "Quality of Life" in health sciences: a conceptual framework

    Directory of Open Access Journals (Sweden)

    Luis Salvador-Carulla

    2014-03-01

    Full Text Available Background and Objectives: The assessment of wellbeing is a top priority in health sciences. The aim of this paper is to review the history of the concept of wellbeing and "Quality of Life" (QoL, and to understand the theories and assumptions that guided this field in order to provide a conceptual framework that may eventually facilitate the development of a formal synset (grouping of synonyms and semantically similar terms of health-related wellbeing. Methods: The history of the concept of wellbeing and QoL was reviewed in order to provide a conceptual framework. Results: Huge differences exist on the definition of "Wellbeing" and its relationship with QoL, "Happiness" and "Functioning" in the health context. From a dimensional perspective, health related wellbeing could be regarded as an overarching construct characterised by asymmetrical polarity, where "wellbeing" embeds the concept of "ill-being" as "health" incorporates de concept of "disease". Conclusions: A common conceptual framework of these terms may eventually facilitate the development of a formal synset of health-related wellbeing. This terminological clarification should be part of a new taxonomy of health-related wellbeing based on the International Classification of Functioning, Disability and Health (ICF framework that may facilitate knowledge transfer across different sectors and semantic interoperability for care management and planning.

  8. Human factors issues in performing life science experiments in a 0-G environment

    Science.gov (United States)

    Gonzalez, Wayne

    1989-01-01

    An overview of the environmental conditions within the Spacelab and the planned Space Station Freedom is presented. How this environment causes specific Human Factors problems and the nature of design solutions are described. The impact of these problems and solutions on the performance of life science activities onboard Spacelab (SL) and Space Station Freedom (SSF) is discussed. The first area highlighted is contamination. The permanence of SSF in contrast to the two-week mission of SL has significant impacts on crew and specimen protection requirements and, thus, resource utilization. These requirements, in turn impose restrictions on working volumes, scheduling, training, and scope of experimental procedures. A second area is microgravity. This means that all specimens, materials, and apparatus must be restrained and carefully controlled. Because so much of the scientific activity must occur within restricted enclosures (gloveboxes), the provisions for restraint and control are made more complex. The third topic is crewmember biomechanics and the problems of movement and task performance in microgravity. In addition to the need to stabilize the body for the performance of tasks, performance of very sensitive tasks such as dissection is difficult. The issue of space sickness and adaption is considered in this context.

  9. The health care and life sciences community profile for dataset descriptions

    Directory of Open Access Journals (Sweden)

    Michel Dumontier

    2016-08-01

    Full Text Available Access to consistent, high-quality metadata is critical to finding, understanding, and reusing scientific data. However, while there are many relevant vocabularies for the annotation of a dataset, none sufficiently captures all the necessary metadata. This prevents uniform indexing and querying of dataset repositories. Towards providing a practical guide for producing a high quality description of biomedical datasets, the W3C Semantic Web for Health Care and the Life Sciences Interest Group (HCLSIG identified Resource Description Framework (RDF vocabularies that could be used to specify common metadata elements and their value sets. The resulting guideline covers elements of description, identification, attribution, versioning, provenance, and content summarization. This guideline reuses existing vocabularies, and is intended to meet key functional requirements including indexing, discovery, exchange, query, and retrieval of datasets, thereby enabling the publication of FAIR data. The resulting metadata profile is generic and could be used by other domains with an interest in providing machine readable descriptions of versioned datasets.

  10. Tailoring the interplay between electromagnetic fields and nanomaterials toward applications in life sciences: a review

    Science.gov (United States)

    del Pino, Pablo

    2014-10-01

    Continuous advances in the field of bionanotechnology, particularly in the areas of synthesis and functionalization of colloidal inorganic nanoparticles with novel physicochemical properties, allow the development of innovative and/or enhanced approaches for medical solutions. Many of the present and future applications of bionanotechnology rely on the ability of nanoparticles to efficiently interact with electromagnetic (EM) fields and subsequently to produce a response via scattering or absorption of the interacting field. The cross-sections of nanoparticles are typically orders of magnitude larger than organic molecules, which provide the means for manipulating EM fields and, thereby, enable applications in therapy (e.g., photothermal therapy, hyperthermia, drug release, etc.), sensing (e.g., surface plasmon resonance, surface-enhanced Raman, energy transfer, etc.), and imaging (e.g., magnetic resonance, optoacoustic, photothermal, etc.). Herein, an overview of the most relevant parameters and promising applications of EM-active nanoparticles for applications in life science are discussed with a view toward tailoring the interaction of nanoparticles with EM fields.

  11. NCBI Bookshelf: books and documents in life sciences and health care.

    Science.gov (United States)

    Hoeppner, Marilu A

    2013-01-01

    Bookshelf (http://www.ncbi.nlm.nih.gov/books/) is a full-text electronic literature resource of books and documents in life sciences and health care at the National Center for Biotechnology Information (NCBI). Created in 1999 with a single book as an encyclopedic reference for resources such as PubMed and GenBank, it has grown to its current size of >1300 titles. Unlike other NCBI databases, such as GenBank and Gene, which have a strict data structure, books come in all forms; they are diverse in publication types, formats, sizes and authoring models. The Bookshelf data format is XML tagged in the NCBI Book DTD (Document Type Definition), modeled after the National Library of Medicine journal article DTDs. The book DTD has been used for systematically tagging the diverse data formats of books, a move that has set the foundation for the growth of this resource. Books at NCBI followed the route of journal articles in the PubMed Central project, using the PubMed Central architectural framework, workflows and processes. Through integration with other NCBI molecular databases, books at NCBI can be used to provide reference information for biological data and facilitate its discovery. This article describes Bookshelf at NCBI: its growth, data handling and retrieval and integration with molecular databases.

  12. The professional development of life sciences teachers in an ecology of practice.

    Directory of Open Access Journals (Sweden)

    Neal T. Petersen

    2012-03-01

    Full Text Available South Africadoes not produce enough scientists to cater for the developmental needs and economic growth of the country. Learners perform relatively poor in national and international assessments because many teachers do not possess the requisite pedagogical content knowledge and skills to confront the ongoing curriculum change. The ethnographic study reported in this article, supports previous findings of teachers teaching Life Sciences mainly by means of transferbased teaching methods. From the basis of the theory of the Zone of Proximal Development it is argued that existing teacher developmental programmes are inadequate to face this problem; the gap between the actual developmental level of the teacher and the demands regarding teaching is too large. A new developmental platform for teachers, namely an effective ecology of practice, must be developed. It will contribute to more context-specific teacher developmental programmes and will therefore provide better in the individual needs of teachers. Social accountability towards teachers should be seen in their empowerment, and in this article the authors make recommendations about the professional development of teachers within ecologies of practice.

  13. Participation in research program: A Novel Course in Undergraduate Education of Life Science.

    Science.gov (United States)

    Zhou, Xuanwei; Lin, Juan; Yin, Yizhou; Sun, Xiaofen; Tang, Kexuan

    2007-09-01

    A novel course, "Participation in Research Program (PRP)" in life sciences is open for 1st to 3rd year undergraduates. PRP introduces the principles of a variety of biological methods and techniques and also offers an opportunity to explore some specific knowledge in more detail prior to thesis research. In addition, the PRP introduces some methodologies that have been proven to be successful at each institution to participants. Through disciplines crossing, students were trained theoretically and practically about modern techniques, facilitating the efficient commutation of general laboratory skills and modern laboratory skills, and the possession of higher research ability. Therefore, during some basic training (e.g., usage and maintenance of equipments, designing and completing experiments, analyzing data and reporting results, etc.), a series of capabilities are strengthened, such as basic experimental skills, searching appropriate methods, explaining unknown biological phenomena, and the capacity of solving problems. To determine the efficiency of these strategies, we carefully examined students' performance and demonstrated the progress in students' basic abilities of scientific research in their training.

  14. Innovating lifetime microscopy: a compact and simple tool for life sciences, screening, and diagnostics.

    Science.gov (United States)

    Esposito, Alessandro; Gerritsen, Hans C; Oggier, Thierry; Lustenberger, Felix; Wouters, Fred S

    2006-01-01

    Fluorescence lifetime imaging microscopy (FLIM) allows the investigation of the physicochemical environment of fluorochromes and protein-protein interaction mapping by Forster resonance energy transfer (FRET) in living cells. However, simpler and cheaper solutions are required before this powerful analytical technique finds a broader application in the life sciences. Wide-field frequency-domain FLIM represents a solution whose application is currently limited by the need for multichannel-plate image intensifiers. We recently showed the feasibility of using a charge-coupled device/complementory metal-oxide semiconductor (CCD/CMOS) hybrid lock-in imager, originally developed for 3-D vision, as an add-on device for lifetime measurements on existing wide-field microscopes. In the present work, the performance of the setup is validated by comparison with well-established wide-field frequency-domain FLIM measurements. Furthermore, we combine the lock-in imager with solid-state light sources. This results in a simple, inexpensive, and compact FLIM system, operating at a video rate and capable of single-shot acquisition by virtue of the unique parallel retrieval of two phase-dependent images. This novel FLIM setup is used for cellular and FRET imaging, and for high-throughput and fast imaging applications. The all-solid-state design bridges the technological gap that limits the use of FLIM in areas such as drug discovery and medical diagnostics.

  15. Comparative study of non-thermal atmospheric pressure discharge plasmas for life science applications

    Science.gov (United States)

    Koga, Kazunori; Katayama, Ryu; Sarinont, Thapanut; Seo, Hyunwoong; Itagaki, Naho; Attri, Pankaj; Leal-Quiros, Edbertho; Tanaka, Akiyo; Shiratani, Masaharu

    2016-09-01

    We are comparing several non-thermal atmospheric pressure discharge plasmas for life science applications. Here we measured discharge period dependence of pH value and 750 nm absorbance of KI-starch solution of deionized water after plasma irradiation with two discharge devices; a dielectric barrier discharge (DBD) jet device and a scalable DBD device. The pH and the absorbance of KI-starch solution are useful indicator of their oxidizability. We have obtained a map of the absorbance and proton concentration [H+] which is deduced from pH value. For the scalable DBD, the range of the absorbance is between 0.7 and 1.3 and that of [H+] is between 10-7 and 10-5 mol/L. For the DBD jet, the range of the absorbance and [H+] are 2.0-3.2 and 10-4-10-3 mol/L, respectively. Measured data for both devices shows same tendency in the map, while the range of values for the scalable DBD is smaller than that for the DBD jet. The results indicate the oxidazability for the scalable DBD is much weaker than that for the DBD jet.

  16. Systematic Education of Self-Medication at Tokyo University of Pharmacy and Life Sciences.

    Science.gov (United States)

    Narui, Koji; Samizo, Kazuo; Inoue, Michiko; Watanabe, Kinzo

    2016-01-01

    The promotion of self-medication by pharmacies, with the aim of encouraging a patient's self-selection of proper OTC drug, is written about in the national action plan "Japan is Back". The subject of self-medication has been improved in the 2013 revised edition of "Model Core Curriculum for Pharmaceutical Education". At Tokyo University of Pharmacy and Life Sciences, the systematic education of self-medication was started from the onset of the six-year course in the third, fourth and fifth grade. We introduce here a new approach in our systematic education of self-medication. In the practice of the fourth grade, groups of around 5-6 students are formed. The pharmacy students assume various roles-of pharmacist, rater, observer, and chairman-and perform role-playing. We prepared a standardized patient (SP) showing various symptoms. The student of the role of pharmacist asks about the SP's symptoms, chooses an OTC drug suitable for the SP, and explains the OTC drug to the SP. After the role-playing, those in the roles of rater, observer, SP, and faculty give feedback to the student who played the role of pharmacist. Because we conduct this role-playing using SPs with a variety of symptoms, we can create a situation similar to a real drugstore.

  17. Science and Society: The Life and Work of a Great Russian Physicist

    CERN Multimedia

    2002-01-01

    In 1934, the eminent Russian physicist and optics specialist Sergei Ivanovitch Vavilov (1891-1951) was the first, together with Pavel Cherenkov, to observe the famous radiation we now call Cherenkov radiation, a discovery commonly used in the Laboratory's detectors. His most well-known discoveries also include that of the non-linear optical effect in 1926. Vavilov founded the Lebedev Physics Institute in Moscow, which prospered under his directorship, and contributed to the rise of nuclear physics and cosmic radiation in the USSR. The highpoint of his career came in 1945, when he was appointed President of the Soviet Academy of Sciences. However, Sergei Vavilov worked under the Stalinist dictatorship, which was responsible for the death of his elder brother, the biologist Nikolai Vavilov. His own health compromised, he died two months before his 60th birthday. His remarkable life, which is interesting not only for his scientific discoveries but also in terms of its historical context, will be the subject of...

  18. Becoming the Change: A Critical Evaluation of the Changing Face of Life Science, as Reflected in the NGSS

    CERN Document Server

    Bowman,, Larry L

    2014-01-01

    Tennessee is one of the 26 lead state partners that volunteered to provide leadership and guidance to states for the purpose of adoption of Next Generation Science Standards (NGSS. As stated in the Tennessee Vision for STEM Education (2009), "Tennessee recognizes the importance of science and aims to commit to this understanding by becoming involved in the development, and eventual adoption and implementation of NGSS." The present study correlates the Tennessee State Science Standards to the NGSS for High School Biology/ Life Sciences and examines the need for a dynamic set of standards that teach the technical skills and critical thinking needed in these scientific fields. The NGSS addresses a move from dated scientific quandaries and proposes standards supported by cutting edge scientific research and literature. Partnerships between scientists and educators allow for the information exchange necessary to implement the changes in scientific research in K-12 instruction. Professional development opportunitie...

  19. When do scientists become entrepreneurs? The social structural antecedents of commercial activity in the academic life sciences.

    Science.gov (United States)

    Stuart, Toby E; Ding, Waverly W

    2006-07-01

    The authors examine the conditions prompting university-employed life scientists to become entrepreneurs, defined to occur when a scientist (1) founds a biotechnology company, or (2) joins the scientific advisory board of a new biotechnology firm. This study draws on theories of social influence, socialization, and status dynamics to examine how proximity to colleagues in commercial science influences individuals' propensity to transition to entrepreneurship. To expose the mechanisms at work, this study also assesses how proximity effects change over time as for-profit science diffuses through the academy. Using adjusted proportional hazards models to analyze case-cohort data, the authors find evidence that the orientation toward commercial science of individuals' colleagues and coauthors, as well as a number of other workplace attributes, significantly influences scientists' hazards of transitioning to for-profit science.

  20. Surface water data at Los Alamos National Laboratory: 1997 water year. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Shaull, D.A.; Alexander, M.R.; Reynolds, R.P.; McLean, C.T.

    1998-01-01

    This annual water data report from Los Alamos National Laboratory (LANL) contains flow data from 19 stream-gaging stations that cover most of the Laboratory`s property. The authors focused data collection on the Laboratory`s downstream boundary, approximated by New Mexico State Highway 4; the upstream boundary is approximated by New Mexico State Highway 501. Some of the gaging stations are within Laboratory boundaries and were originally installed to assist groups other than the Water Quality and Hydrology Group (ESH-18) that also conduct site-specific earth science research. Also included are discharge data from three springs that flow into Canon de Valle.