WorldWideScience

Sample records for alamos critical experiments

  1. Los Alamos Critical Experiments Facility

    International Nuclear Information System (INIS)

    The Critical Experiments Facility of the Los Alamos National Laboratory has been in existence for 45 years. In that period of time, thousands of measurements have been made on assemblies containing every fissionable material in various configurations that included bare metal and compounds of the nitrate, sulfate, fluoride, carbide, and oxide. Techniques developed or applied include Rossi-α, source-jerk, rod oscillator, and replacement measurements. Many of the original measurements of delay neutrons were performed at the site, and a replica of the Hiroshima weapon was operated at steady state to assist in evaluating the relative biological effectiveness (RBE) of neutrons. Solid, liquid, and gas fissioning systems were run at critical. Operation of this original critical facility has demonstrated the margin of safety that can be obtained through remote operation. Eight accidental excursions have occurred on the site, ranging from 1.5 x 1016 to 1.2 x 1017 fissions, with no significant exposure to personnel or damage to the facility beyond the machines themselves -- and in only one case was the machine damaged beyond further use. The present status of the facility, operating procedures, and complement of machines will be described in the context of programmatic activity. New programs will focus on training, validation of criticality alarm systems, experimental safety assessment of process applications, and dosimetry. Special emphasis will be placed on the incorporation of experience from 45 years of operation into present procedures and programs. 3 refs

  2. The Los Alamos Critical Experiments Facility Program

    International Nuclear Information System (INIS)

    Critical assemblies of precisely known materials and reproducible and easily calculated geometries have been constructed at the Los Alamos National Laboratory since the 1940s. Initially, these assemblies were built to provide information necessary for the nuclear weapons development effort. Subsequently, intensive studies of the assemblies themselves were undertaken to provide a better understanding of the physics of the fission process and other nuclear reactions in the nuclear materials from which these machine were constructed and in other materials irradiated in these assemblies. Some of these assemblies (notably Jezebel, Flattop, Big Ten, and Godiva) have been used as benchmark assemblies to compare the results of experimental measurements and computations of certain nuclear reaction parameters. These comparisons are used to validate both the input nuclear data and the computational methods. In addition to these normally fueled benchmark assemblies, other assembly machines are fueled periodically to provide specific and detailed results for parameter sensitivity studies for a large number of applications. Some of these machines and their applications are described

  3. The Pajarito Site operating procedures for the Los Alamos Critical Experiments Facility

    International Nuclear Information System (INIS)

    Operating procedures consistent with DOE Order 5480.6, and the American National Standard Safety Guide for the Performance of Critical Experiments are defined for the Los Alamos Critical Experiments Facility (LACEF) of the Los Alamos National Laboratory. These operating procedures supersede and update those previously published in 1983 and apply to any criticality experiment performed at the facility. 11 refs

  4. Safety analysis of the Los Alamos critical experiments facility

    International Nuclear Information System (INIS)

    The safety of Pajarito Site critical assembly operations depends upon protection built into the facility, upon knowledgeable personnel, and upon good practice as defined by operating procedures and experimental plans. Distance, supplemented by shielding in some cases, would protect personnel against an extreme accident generating 1019 fissions. During the facility's 28-year history, the direct cost of criticality accidents has translated to a risk of less than $200 per year

  5. End of an Era for the Los Alamos Critical Experiments Facility: History of critical assemblies and experiments (1946-2004)

    International Nuclear Information System (INIS)

    The Los Alamos Critical Experiments Facility (LACEF) was the last operational, general-purpose, critical-mass laboratory in the United States. The long history of remote operations and large-scale critical-mass experiments at LACEF began in 1948, and it effectively ended in July 8th, 2004, when the last critical experiment was performed on the Planet critical assembly. The experimental activities at the Pajarito Site began in April 1946 as a way to obtain subcritical measurements for weapons safety guidance. A year later, the first Kiva (a concrete-reinforced building) was constructed, and 18 months afterward the first remote critical operation was reported with the Topsy critical assembly. In the early years, the Pajarito Site primarily supported the weapons program; later, for almost 17 years, the neutronics of the Rover nuclear-propulsion program dominated activities at Pajarito Site. More recently, Pajarito Site added some new dimensions to its operations in order to support emergency response, the Nuclear Criticality Safety Program, and radiation-detection development. The long history of critical-assembly measurements and operations is documented in hundreds of peer-reviewed technical papers, laboratory reports, personal files, and video sessions with some of the pioneers. It is the intent of this paper to capture, in one single document, a summary and the highlights of the glorious days of this facility. In essence, this paper is a summary of the programs conducted in the last 58 years and of the numerous critical assemblies and reactors that operated at LACEF. It also provides a list of references to the reader who might want to learn more about this facility's rich history

  6. Dosimetry at the Los Alamos Critical Experiments Facility: Past, present, and future

    International Nuclear Information System (INIS)

    Although the primary reason for the existence of the Los Alamos Critical Experiments Facility is to provide basic data on the physics of systems of fissile material, the physical arrangements and ability to provide sources of radiation have led to applications for all types of radiation dosimetry. In the broad definition of radiation phenomena, the facility has provided sources to evaluate biological effects, radiation shielding and transport, and measurements of basic parameters such as the evaluation of delayed neutron parameters. Within the last 15 years, many of the radiation measurements have been directed to calibration and intercomparison of dosimetry related to nuclear criticality safety. Future plans include (1) the new applications of Godiva IV, a bare-metal pulse assembly, for dosimetry (including an evaluation of neutron and gamma-ray room return); (2) a proposal to relocate the Health Physics Research Reactor from the Oak Ridge National Laboratory to Los Alamos, which will provide the opportunity to continue the application of a primary benchmark source to radiation dosimetry; and (3) a proposal to employ SHEBA, a low-enrichment solution assembly, for accident dosimetry and evaluation

  7. Safety analysis of the Los Alamos critical experiments facility: burst operation of Skua

    International Nuclear Information System (INIS)

    A detailed consideration of the Skua burst assembly is presented, thereby supplementing the facility safety analysis report covering the operation of other critical assemblies at Los Alamos. As with these assemblies the small fission-product inventory, ambient pressure, and moderate temperatures in Skua are amenable to straightforward measures to ensure the protection of the public

  8. Safety analysis of the Los Alamos critical experiments facility: burst operation of Skua

    International Nuclear Information System (INIS)

    Detailed consideration of the Skua burst assembly is provided, thereby supplementing the facility Safety Analysis Report covering the operation of other critical assemblies at the Los Alamos Scientific Laboratory. As with these assemblies the small fission-product inventory, ambient pressure, and moderate temperatures in Skua are amenable to straightforward measures to ensure the protection of the public

  9. Los Alamos Critical Assemblies Facility

    International Nuclear Information System (INIS)

    The Critical Assemblies Facility of the Los Alamos National Laboratory has been in existence for thirty-five years. In that period, many thousands of measurements have been made on assemblies of 235U, 233U, and 239Pu in various configurations, including the nitrate, sulfate, fluoride, carbide, and oxide chemical compositions and the solid, liquid, and gaseous states. The present complex of eleven operating machines is described, and typical applications are presented

  10. Cygnus experiment at Los Alamos

    International Nuclear Information System (INIS)

    The Cygnus experiment at Los Alamos National Laboratory has been designed to study, with high angular accuracy, point sources of gamma rays of energy above 1014 eV. The experimental detector consists of an air shower array to observe gamma-ray showers and a shielded, large-area track detector to study the muon content of the showers. In this paper we present preliminary data from the array and describe its performance. 9 refs., 3 figs

  11. LOS ALAMOS: New neutrino experiment

    International Nuclear Information System (INIS)

    Full text: The Liquid Scintillator Neutrino Detector (LSND) experiment at Los Alamos' Meson Physics Facility (LAMPF) has been designed for a high sensitivity search for oscillations between muon- and electron-type neutrinos and, concurrently, between the corresponding antineutrinos. In addition, the experiment will measure neutrino-proton elastic scattering, thereby determining the strange quark contribution to the proton spin. At low momentum transfer, neutrino-proton elastic scattering is a direct probe of this contribution. The detector tank, filled with 200 tons of dilute liquid scintillator, has 1220 8'' Hamamatsu photomultiplier tubes mounted on the inside, covering 25% of the surface area. The dilute liquid scintillator is a mixture of mineral oil and 0.03 g/l of b-PBD, so that Cherenkov and scintillation light will be detected in an approximate ratio of 1 to 4. The attenuation length of the scintillator is greater than 30 m for wavelengths above 425 nm. After two years of data collection for (anti)neutrino mixing, the upper limits on the square of the mass difference will be 1.7 x 10-2 ev2 for maximal mixing for antineutrinos and 4.0 x 10-2 for neutrinos. Similarly, mixing strengths of 2.7 x 10-4 can be probed for each channel for all squared mass differences above 1eV2. This will provide the best terrestrial limits on oscillations between muon- and electron-type neutrinos. In addition, the neutrino-proton elastic scattering reaction rate will be measured to an accuracy of 10, determining the strange quark contribution to the proton spin to within ±0.05. Other physics goals include measurements of the charged current reactions where the neutrinos produce electrons or muons, the inelastic neutral current reaction where the neutrino stays a neutrino but excites the target, and a search for the 'rare' decays of a neutral pion and an eta into a neutrino-antineutrino pair. The LSND collaboration includes groups from California at

  12. Radiological dose assessment for bounding accident scenarios at the Critical Experiment Facility, TA-18, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    A computer modeling code, CRIT8, was written to allow prediction of the radiological doses to workers and members of the public resulting from these postulated maximum-effect accidents. The code accounts for the relationships of the initial parent radionuclide inventory at the time of the accident to the growth of radioactive daughter products, and considers the atmospheric conditions at time of release. The code then calculates a dose at chosen receptor locations for the sum of radionuclides produced as a result of the accident. Both criticality and non-criticality accidents are examined

  13. Benchmark assemblies of the Los Alamos Critical Assemblies Facility

    International Nuclear Information System (INIS)

    Several critical assemblies of precisely known materials composition and easily calculated and reproducible geometries have been constructed at the Los Alamos National Laboratory. Some of these machines, notably Jezebel, Flattop, Big Ten, and Godiva, have been used as benchmark assemblies for the comparison of the results of experimental measurements and computation of certain nuclear reaction parameters. These experiments are used to validate both the input nuclear data and the computational methods. The machines and the applications of these machines for integral nuclear data checks are described

  14. The Criticality Safety Information Resource Center at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The mission of the Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory (LANL) is the preservation of primary documentation supporting criticality safety. In many cases, but not all, this primary documentation consists of experimentalists' logbooks. Experience has shown that the logbooks and other primary information are vulnerable to being discarded. Destruction of these logbooks results in a permanent loss to the criticality safety community

  15. Decommissioning the Los Alamos Molten Plutonium Reactor Experiment (LAMPRE I)

    International Nuclear Information System (INIS)

    The Los Alamos Molten Plutonium Reactor Experiment (LAMPRE I) was decommissioned at the Los Alamos National Laboratory, Los Alamos, New Mexico, in 1980. The LAMPRE I was a sodium-cooled reactor built to develop plutonium fuels for fast breeder applications. It was retired in the mid-1960s. This report describes the decommissioning procedures, the health physics programs, the waste management, and the costs for the operation

  16. Experience with confirmation measurement at Los Alamos

    International Nuclear Information System (INIS)

    Confirmation measurements are used at Los Alamos in support of incoming and outgoing shipment accountibility and for support of both at 235U and Pu inventories. Statistical data are presented to show the consistency of measurements on items of identical composition and on items measured at two facilitis using similar instruments. A description of confirmation measurement techniques used in support of 235U and Pu inventories and a discussion on the ability of the measurements to identify items with misstated SNM are given

  17. Experience with confirmation measurement at Los Alamos

    International Nuclear Information System (INIS)

    Confirmation measurements are used at Los Alamos in support of incoming and outgoing shipment accountability and for support of both 235U and Pu inventories. Statistical data are presented to show the consistency of measurements on items of identical composition and on items measured at two facilities using similar instruments. A description of confirmation measurement techniques used in support of 235U and Pu inventories and a discussion on the ability of the measurements to identify items with misstated SNM are given

  18. Critical experiment data archiving

    International Nuclear Information System (INIS)

    Critical experiment facilities produced a large number of important data during the past 45 years; however, many useful data remain unpublished. The unpublished material exists in the form of experimenters' logbooks, notes, photographs, material descriptions, etc., This data could be important for computer code validation, understanding the physics of criticality, facility design, or for setting process limits. In the past, criticality specialists have been able to obtain unpublished details by direct contact with the experimenters. Obviously, this will not be possible indefinitely. Most of the US critical experiment facilities are now closed, and the experimenters are moving to other jobs, retiring, or otherwise becoming unavailable for this informal assistance. Also, the records are in danger of being discarded or lost during facility closures, cleanup activities, or in storage. A project was begun in 1989 to ensure that important unpublished data from critical experiment facilities in the United States are archived and made available as a resource of the US Department of Energy's (DOE's) Nuclear Criticality Information System (NCIS). The objective of this paper is to summarize the project accomplishments to date and bring these activities to the attention of those who might be aware of the location of source information needed for archiving and could assist in getting the materials included in the archive

  19. Critical experiment data archiving

    International Nuclear Information System (INIS)

    Critical experiment facilities produced a large amount of important data during the past forty-five years. However, much useful data remains unpublished. The unpublished material exists in the form of experimenters' logbooks, notes, photographs, material descriptions, etc. This data could be important for computer code validation, understanding the physics of criticality, facility design, or for setting process limits. In the past, criticality specialists have been able to obtain unpublished details by direct contact with the experimenters. Obviously, this will not be possible indefinitely. Most of the US critical experiment facilities are now closed and the experimenters are moving to other jobs, retiring, or otherwise becoming unavailable for this informal assistance. Also, the records are in danger of being discarded or lost during facility closures, cleanup activities, or in storage. A project was begun in 1989 to ensure that important unpublished data from critical experiment facilities in the United States are archived and made available as a resource of the US Department of Energy's Nuclear Criticality Information System. The objective of this paper is to summarize the project accomplishments to date and bring these activities to the attention of those who might be aware of the location of source information needed for archiving, and could assist us in getting the materials included in the archive

  20. DIMPLE criticality experiments

    International Nuclear Information System (INIS)

    The paper concerns the current programme of criticality experiments at the DIMPLE plant, Winfrith, United Kingdom. A description of the plant is given. The experimental programme is outlined, including the aims, the assembly SO1 and the assembly SO2. Future plans are briefly described. (U.K.)

  1. Los Alamos experiments and their impacts on fast reactor safety

    International Nuclear Information System (INIS)

    Results of two sets of recent Los Alamos transition-phase experiments are reported herein. The two sets of experiments addressed two different behaviors of boiling pools of molten fuel, molten steel and steel vapor, in the transition phase of a core-disruptive accident (CDA) in a liquid-metal fast breeder reactor (LMFBR). The transient boilup experiments simulated the recriticality-induced motions of a boiling pool within a single subassembly during the subassembly-pool subphase of the transition phase. The melting wall experiments simulated the melting and entrainment of subassembly duct wall steel into a boiling pool during the same subphase. From the results of the transient boilup experiment we identified behaviors and phenomena that argue against an energetic disassembly from the subassembly-pool subphase. From the melting wall experiments we determined that a stable boiling pool is unlikely by showing that significant amounts of wall steel would likely be rapidly entrained and lead to pool collapse. 8 refs., 3 figs

  2. Status of the Los Alamos tritium beta decay experiment

    International Nuclear Information System (INIS)

    The Los Alamos tritium experiment employs a gaseous tritium source and a magnetic spectrometer to determine the mass of the electron antineutrino from the shape of the tritium beta spectrum. Since publication of the first result from this apparatus (m/sub nu/ < 27 eV at 95% confidence), work has concentrated on improving the data rates. A 96-element Si microstrip array detector has been installed to replace the single proportional counter at the spectrometer focus, resulting in greatly increased efficiency. Measurements of the 1s photoionization spectrum of Kr now obviate the need for reliance on the theoretical shakeup and shakeoff spectrum of Kr in determining the spectrometer resolution. 19 refs., 3 figs

  3. Neutron Capture Experiments Using the DANCE Array at Los Alamos

    International Nuclear Information System (INIS)

    The Detector for Advanced Neutron Capture Experiments (DANCE) is designed for neutron capture measurements on very small and/or radioactive targets. The DANCE array of 160 BaF2 scintillation detectors is located at the Lujan Center at the Los Alamos Neutron Science Center (LANSCE). Accurate measurements of neutron capture data are important for many current applications as well as for basic understanding of neutron capture. The gamma rays following neutron capture reactions have been studied by the time-of-flight technique using the DANCE array. The high granularity of the array allows measurements of the gamma-ray multiplicity. The gamma-ray multiplicities and energy spectra for different multiplicities can be measured and analyzed for spin and parity determination of the resolved resonances.

  4. The Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory (LANL) is a program jointly funded by the U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) in conjunction with the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 97-2. The goal of CSIRC is to preserve primary criticality safety documentation from U.S. critical experimental sites and to make this information available for the benefit of the technical community. Progress in archiving criticality safety primary documents at the LANL archives as well as efforts to make this information available to researchers are discussed. The CSIRC project has a natural linkage to the International Criticality Safety Benchmark Evaluation Project (ICSBEP). This paper raises the possibility that the CSIRC project will evolve in a fashion similar to the ICSBEP. Exploring the implications of linking the CSIRC to the international criticality safety community is the motivation for this paper

  5. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory's Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, was also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ''Conduct of Business in the Nuclear Criticality Safety Group.'' There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets

  6. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, S.P.; McLaughlin, T.P.

    1997-05-01

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory`s Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, was also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ``Conduct of Business in the Nuclear Criticality Safety Group.`` There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets.

  7. Evaluation of Saxton critical experiments

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Kook; Noh, Jae Man; Jung, Hyung Guk; Kim, Young Il; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    As a part of International Criticality Safety Benchmark Evaluation Project (ICSBEP), SAXTON critical experiments were reevaluated. The effects of k{sub eff} of the uncertainties in experiment parameters, fuel rod characterization, soluble boron, critical water level, core structure, {sup 241}Am and {sup 241}Pu isotope number densities, random pitch error, duplicated experiment, axial fuel position, model simplification, etc., were evaluated and added in benchmark-model k{sub eff}. In addition to detailed model, the simplified model for Saxton critical experiments was constructed by omitting the top, middle, and bottom grids and ignoring the fuel above water. 6 refs., 1 fig., 3 tabs. (Author)

  8. MCNPTM criticality primer and training experiences

    International Nuclear Information System (INIS)

    With the closure of many experimental facilities, the nuclear criticality safety analyst is increasingly required to rely on computer calculations to identify safe limits for the handling and storage of fissile materials. However, the analyst may have little experience with the specific codes available at his or her facility. Usually, the codes are quite complex, black boxes capable of analyzing numerous problems with a myriad of input options. Documentation for these codes is designed to cover all the possible configurations and types of analyses but does not give much detail on any particular type of analysis. For criticality calculations, the user of a code is primarily interested in the value of the effective multiplication factor for a system (keff). Most codes will provide this, and truckloads of other information that may be less pertinent to criticality calculations. Based on discussions with code users in the nuclear criticality safety community, it was decided that a simple document discussing the ins and outs of criticality calculations with specific codes would be quite useful. The Transport Methods Group, XTM, at Los Alamos National Laboratory (LANL) decided to develop a primer for criticality calculations with their Monte Carlo code, MCNP. This was a joint task between LANL with a knowledge and understanding of the nuances and capabilities of MCNP and the University of New Mexico with a knowledge and understanding of nuclear criticality safety calculations and educating first time users of neutronics calculations. The initial problem was that the MCNP manual just contained too much information. Almost everything one needs to know about MCNP can be found in the manual; the problem is that there is more information than a user requires to do a simple keff calculation. The basic concept of the primer was to distill the manual to create a document whose only focus was criticality calculations using MCNP

  9. Magnetospheric critical ionization velocity experiment

    International Nuclear Information System (INIS)

    In March of 1983, a barium injection sounding rocket experiment (The Star of Lima) was conducted to investigate Alfven's critical ionization velocity (CIV) hypothesis in space. Included in the instrumented payload was a UCSD particle-detection experiment consisting of five retarding-potential analyzers. Despite conditions that appeared to be optimal for the critical velocity effect, a fractional ionization of only approx.5 x 10-4 was observed, indicating that the conditions required for the effect to occur are still not well understood. Several possible explanations for this low ionization efficiency are explored. The most likely explanation for the negative result in the Star of Lima experiment is that the length of the cloud parallel to the magnetic field was smaller than the fastest growing modes of the lower hybrid instability believed to energize the electrons

  10. History of critical experiments at Pajarito Site

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, H.C.

    1983-03-01

    This account describes critical and subcritical assemblies operated remotely at the Pajarito Canyon Site at the Los Alamos National Laboratory. Earliest assemblies, directed exclusively toward the nuclear weapons program, were for safety tests. Other weapon-related assemblies provided neutronic information to check detailed weapon calculations. Topsy, the first of these critical assemblies, was followed by Lady Godiva, Jezebel, Flattop, and ultimately Big Ten. As reactor programs came to Los Alamos, design studies and mockups were tested at Pajarito Site. For example, nearly all 16 Rover reactors intended for Nevada tests were preceded by zero-power mockups and proof tests at Pajarito Site. Expanded interest and capability led to fast-pulse assemblies, culminating in Godiva IV and Skua, and to the Kinglet and Sheba solution assemblies.

  11. History of critical experiments at Pajarito Site

    International Nuclear Information System (INIS)

    This account describes critical and subcritical assemblies operated remotely at the Pajarito Canyon Site at the Los Alamos National Laboratory. Earliest assemblies, directed exclusively toward the nuclear weapons program, were for safety tests. Other weapon-related assemblies provided neutronic information to check detailed weapon calculations. Topsy, the first of these critical assemblies, was followed by Lady Godiva, Jezebel, Flattop, and ultimately Big Ten. As reactor programs came to Los Alamos, design studies and mockups were tested at Pajarito Site. For example, nearly all 16 Rover reactors intended for Nevada tests were preceded by zero-power mockups and proof tests at Pajarito Site. Expanded interest and capability led to fast-pulse assemblies, culminating in Godiva IV and Skua, and to the Kinglet and Sheba solution assemblies

  12. Dose reconstruction for weapons experiments involving 140La at Los Alamos National Laboratory, 1944-1962

    International Nuclear Information System (INIS)

    A series of 254 weapons design experiments was conducted by Los Alamos National Laboratory from 1944 through 1962 and resulted in the dispersal of approximately 11 PBq (300 kCi) of radioactive 140La. All shots occurred at Point Able in Bayo Canyon, east of the Los Alamos townsite. Public interest and the Government Accounting Office probe precipitated a dose reconstruction to assess potential exposures to members of the public. The information available for each shot included explosive charge size, date and time of explosion, and shot activity. Detailed meteorological data were not available for the majority of the shots, requiring the development of statistically representative meteorological data. A wind rose was developed specific to the afternoon-evening time of the shots, and the wind frequency in each sector was used to determine the fraction of activity dispersed towards each hypothetical receptor. HOTSPOT 7, a Gaussian plume-based dispersion model, was used to determine the average dose per sector per unit of shot activity. The dose from penetrating radiation from ground-deposited 140La was greater by several orders of magnitude than the dose from inhalation and immersion. The highest doses to a permanent resident probably occurred in the easternmost part of the Los Alamos townsite. The highest annual dose occurred in 1955 and was approximately 0.23 mSv. Assuming an individual had been at the location of maximum potential exposure in the Los Alamos townsite continuously throughout the experiments, the total dose from the 18-y series would have been approximately 1.4 mSv with an average dose of approximately 0.09 mSv y-1. Doses at nearby Totavi trailer park, San Clara Pueblo, and Santa Clara Pueblo were approximately 75%, 40%, and 15%, respectively, of those at Los Alamos. Visitors to nearby public areas received negligible doses. 11 refs., 6 figs., 4 tabs

  13. Postanalysis of the CNPS [Compact Nuclear Power Source] critical experiments

    International Nuclear Information System (INIS)

    The Compact Nuclear Power Source (CNPS) was designed to produce electric power for remote sites where fuel logistics and costs would justify a remotely sited nuclear power plant. Since the reactor was of novel design with no appropriate benchmarks a series of critical experiments was carried out a LANL [Los Alamos National Laboratory]. This paper describes the methodology and reports the results of the postanalysis that was performed on the critical experiments, which included several distinct critical configurations, the measurement of the isothermal temperature coefficient of reactivity and various material worths. Comparisons with measurements indicate that current methods and cross sections are adequate for calculating at lest the beginning of life conditions in low enriched 235U-graphite cores

  14. The Los Alamos Trapped Ion Quantum Computer Experiment

    OpenAIRE

    Hughes, R. J.; James, D. F. V.; J.J. Gomez; Gulley, M. S.; Holzscheiter, M. H.; Kwiat, P. G.; Lamoreaux, S. K.; Peterson, C. G.; Sandberg, V. D.; Schauer, M. M.; Simmons, C. M.; Thorburn, C. E.; Tupa, D.; Wang, P Z; White, A.G.

    1997-01-01

    The development and theory of an experiment to investigate quantum computation with trapped calcium ions is described. The ion trap, laser and ion requirements are determined, and the parameters required for quantum logic operations as well as simple quantum factoring are described.

  15. Critical velocity experiments in space

    Science.gov (United States)

    Torbert, R. B.

    1988-01-01

    Published data from active space experiments designed to demonstrate the Alfven critical-velocity effect are compiled in graphs and compared with the predictions of numerical simulations. It is found that the discrepancies in the ionization yields obtained in shaped-charge releases of alkali metals are related to the macroscopic limits of time and energy in such releases. It is argued that the total ionization yield is an inadequate measure of the critical-velocity effect, and a new criterion based on eta, the efficiency of energy transfer from the recently ionized neutrals to a heated electron population, is proposed: the effect would be verified if eta values of 10 percent or greater were observed.

  16. Environmental assessment for consolidation of certain materials and machines for nuclear criticality experiments and training

    International Nuclear Information System (INIS)

    In support of its assigned missions and because of the importance of avoiding nuclear criticality accidents, DOE has adopted a policy to reduce identifiable nuclear criticality safety risks and to protect the public, workers, government property and essential operations from the effects of a criticality accident. In support of this policy, the Los Alamos Critical Experiments Facility (LACEF) at the Los Alamos National Laboratory (LANL) Technical Area (TA) 18, provides a program of general purpose critical experiments. This program, the only remaining one of its kind in the United States, seeks to maintain a sound basis of information for criticality control in those physical situations that DOE will encounter in handling and storing fissionable material in the future, and ensuring the presence of a community of individuals competent in practicing this control

  17. Subpicosecond Compression Experiments at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    We report on recent experiments using a magnetic chicane compressor at 8 MeV. Electron bunches at both low (0.1 nC) and high (1 nC) charges were compressed from 10 endash 15 ps to less than 1 ps (FWHM). A transverse deflecting rf cavity was used to measure the bunch length at low charge; the bunch length at high charge was inferred from the induced energy spread of the beam. The longitudinal centrifugal space-charge force [Phys. Rev. E 51, 1453 (1995)] is calculated using a point-to-point numerical simulation and is shown not to influence the energy-spread measurement. copyright 1996 American Institute of Physics

  18. Status of computational and experimental correlations for Los Alamos fast-neutron critical assemblies

    International Nuclear Information System (INIS)

    New assemblies and improved measuring techniques call for periodic review of the status of computation vs. experiment. It is appropriate to emphasize neutron-spectral characterizations because of the particularly elusive problems associated with absolute spectral-index measurement and the need for checks of computation beyond simple critical size. The ever-improving spectral-index measurements in conjunction with increasing precision, both of microscopic data for detector and assembly materials and of computational techniques, produce a gradual clarification of the characteristics of a family of fast-neutron critical assemblies. This family now includes unreflected and thick-uranium-reflected U233 in spherical geometry. Direct correlations among the experimental data will be presented to indicate the a priori possibilities for successful correlations with computation. Sensitivity of computed spectra and critical sizes to neutron-transport models (transport and linear approximations ) and arithmetic approximations (finite angular segmentations and multi-group representations) will be presented for several typical assemblies to help establish the necessary computational detail. Comparisons between experiment and prediction will include, in addition to spectral indices and critical sizes, neutron lifetimes and delayed-neutron fractions. (author)

  19. Applicability of ZPR critical experiment data to criticality safety

    International Nuclear Information System (INIS)

    More than a hundred zero power reactor (ZPR) critical assemblies were constructed, over a period of about three decades, at the Argonne National Laboratory ZPR-3, ZPR-6, ZPR-9 and ZPPR fast critical assembly facilities. To be sure, the original reason for performing these critical experiments was to support fast reactor development. Nevertheless, data from some of the assemblies are well suited to form the basis for valuable, new criticality safety benchmarks. The purpose of this paper is to describe the ZPR data that would be of benefit to the criticality safety community and to explain how these data could be developed into practical criticality safety benchmarks

  20. Experience at Los Alamos with use of the optical model for applied nuclear data calculations

    International Nuclear Information System (INIS)

    While many nuclear models are important in calculations of nuclear data, the optical model usually provides the basic underpinning of analyses directed at data for applications. An overview is given here of experience in the Nuclear Theory and Applications Group at Los Alamos National Laboratory in the use of the optical model for calculations of nuclear cross section data for applied purposes. We consider the direct utilization of total, elastic, and reaction cross sections for neutrons, protons, deuterons, tritons, 3He and alpha particles in files of evaluated nuclear data covering the energy range of 0 to 200 MeV, as well as transmission coefficients for reaction theory calculations and neutron and proton wave functions direct-reaction and Feshbach-Kerman-Koonin analyses. Optical model codes such as SCAT and ECIS and the reaction theory codes COMNUC, GNASH FKK-GNASH, and DWUCK have primarily been used in our analyses. A summary of optical model parameterizations from past analyses at Los Alamos will be given, including detailed tabulations of the parameters for a selection of nuclei

  1. Experience at Los Alamos with use of the optical model for applied nuclear data calculations

    International Nuclear Information System (INIS)

    While many nuclear models are important in calculations of nuclear data, the optical model usually provides the basic underpinning of analyses directed at data for applications. An overview is given here of experience in the Nuclear Theory and Applications Group at Los Alamos National Laboratory in the use of the optical model for calculations of nuclear cross section data for applied purposes. We consider the direct utilization of total, elastic, and reaction cross sections for neutrons, protons, deuterons, tritons, 3He and alpha particles in files of evaluated nuclear data covering the energy range of 0 to 200 MeV, as well as transmission coefficients for reaction theory calculations and neutron and proton wave functions in direct-reaction and Feshbach-Kerman-Koonin analyses. Optical model codes such as SCAT and ECIS and the reaction theory codes COMNUC, GNASH, FKK-GNASH, and DWUCK have primarily been used in our analyses. A summary of optical model parameterizations from past analyses at Los Alamos will be given, including detailed tabulations of the parameters for a selection of nuclei. (author)

  2. Critical experiments of JMTRC MEU cores

    International Nuclear Information System (INIS)

    The JMTRC, the critical facility of the Japan Materials Testing Reactor (JMTR), went critical on August 29, 1983, with 14 medium enriched uranium (MEU, 45%) fuel elements. Experiments are now being carried out to measure the change in various reactor characteristics between the previous HEU core and the new MEU fueled core. This paper describes the results obtained thus far on critical mass, excess reactivity, control rod worths and flux distribution, including preliminary neutronics calculations for the experiments using the SRAC code. (author)

  3. Subharmonic buncher for the Los Alamos free-electron laser oscillator experiment

    International Nuclear Information System (INIS)

    A high efficiency free-electron laser oscillator experiment is being constructed at Los Alamos National Laboratory. A buncher system has been designed to deliver 30-ps, 5-nC electron bunches to a 20-MeV standing-wave linac at the 60th subharmonic of the 1300-MHz accelerator frequency. The first 108.3-MHz buncher cavity accepts a 5-ns, 5-A peak current pulse from a triode gun. Following a 120-cm drift space, a second 108.3-MHz cavity is used, primarily to enhance the bunching of the trailing half of the bunch. A 1300-MHz cavity with 20-cm drift spaces at the each end completes the beamline components. The bunching process continues into the linac's first three accelerating cells. Two thin iron-shielded lenses and several large-diameter solenoids provide axial magnetic fields for radial focusing

  4. 'Proserpine'. Homogeneous critical experiment with plutonium

    International Nuclear Information System (INIS)

    Proserpine is a homogeneous critical experiment in which plutonium is used as a fissile material. This experiment has been designed to investigate static and kinetic parameters of a thermal neutron reactor in which fissile material is highly concentrated. This report proposes a brief description of the installation (core, solution circuits, measurement and level adjustment, reflector, adjustment mechanism and safety, thermostatically-controlled booth and temperature control, installation safety), and presents the experimental program (critical mass, characteristics of the fissile solution, temperature coefficient) and the first results obtained in a zircaloy vessel. This experiment had two main objectives: a minimum critical mass, and an operating safety with respect to contamination risks

  5. Fast critical experiment data for space reactors

    International Nuclear Information System (INIS)

    Data from a number of previous critical experiments exist that are relevant to the design concepts being considered for SP-100 and MMW space reactors. Although substantial improvements in experiment techniques have since made some of the measured quantities somewhat suspect, the basic criticality data are still useful in most cases. However, the old experiments require recalculation with modern computational methods and nuclear cross section data before they can be applied to today's designs. Recently, we have calculated about 20 fast benchmark critical experiments with the latest ENDF/B data and modern transport codes. These calculations were undertaken as a part of the planning process for a new series of benchmark experiments aimed at supporting preliminary designs of SP-100 and MMW space reactors

  6. Russian nuclear criticality experiments. Status and prospects

    International Nuclear Information System (INIS)

    After the nuclear criticality had been reached on a uranium-graphite assembly for the first time in the Soviet Union on December 25, 1946, by I.V. Kurchatov and his team (1), the critical conditions in a great variety of multiplying media have been realized only in the Kurchatov Institute for at least several thousand times. Even the first Russian critical experiments carried out by Igor Kurchatov confirmed the unique merits of zero-power reactors: the most practically convenient range of parameters of kinetic response for variation of critical conditions, as well as invariability, over a wide range of the most important functions of neutron flux to reactor power. Neutron physics experiments have become a necessary stage in creation and improvement of nuclear reactors. Most critical experiments were performed mainly as a necessary stage of reactor design in the 60ies and 70ies, which has been the reactor 'golden age', when most of the total of over thousand nuclear reactors of various type and destination have been created worldwide. Though the ways of conducting critical measurements were very diversified, there are two main types of experiments. The first is so-called mock-up or prototype experiments when an exact (to the extent possible) simulation of the core is constructed to minimize the error in forecasting the operating reactor characteristics. Such experiments, which often represent the quality control of the core manufacturing and adjustment of core parameters to the design requirements, were carried out in Russia on critical assemblies of several plants, in design institutions (OKBM, Nizhni Novgorod; Electrostal and others), as well as in research centers (RRC 'Kurchatov Institute', etc.). Their results, which prevail today in the criticality database, even taking into account the capabilities provided by present-day calculation codes, are not well suited for new applications. It is hard to expect that the error resulting from inevitable idealization of

  7. Spacelab experiment on the critical ionizations velocity

    International Nuclear Information System (INIS)

    Although the existence of a critical ionization velocity has been shown in laboratory experiments certain difficulties remain when one tries to scale the parameters to cosmic dimensions. These problems are discussed in the light of recent theoretical developments, and a possible experiment is described which makes use of the high orbital velocity of spacelab and the large uniform plasma through which it travels

  8. Critical experiments with mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Harris, D.R. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1997-06-01

    This paper very briefly outlines technical considerations in performing critical experiments on weapons-grade plutonium mixed oxide fuel assemblies. The experiments proposed would use weapons-grade plutonium and Er{sub 2}O{sub 3} at various dissolved boron levels, and for specific fuel assemblies such as the ABBCE fuel assembly with five large water holes. Technical considerations described include the core, the measurements, safety, security, radiological matters, and licensing. It is concluded that the experiments are feasible at the Rensselaer Polytechnic Institute Reactor Critical Facility. 9 refs.

  9. Benchmark calculations of sodium fast critical experiments

    International Nuclear Information System (INIS)

    The high expectations from fast critical experiments impose the additional requirements on reliability of final reconstructed values, obtained in experiments at critical facility. Benchmark calculations of critical experiments are characterized by impossibility of complete experiment reconstruction, the large amounts of input data (dependent and independent) with very different reliability. It should also take into account different sensitivity of the measured and appropriate calculated characteristics to the identical changes of geometry parameters, temperature, and isotopic composition of individual materials. The calculations of critical facility experiments are produced for the benchmark models, generated by the specific reconstructing codes with its features when adjusting model parameters, and using the nuclear data library. The generated benchmark model, providing the agreed calculated and experimental values for one or more neutronic characteristics can lead to considerable differences for other key characteristics. The sensitivity of key neutronic characteristics to the extra steel allocation in the core, and ENDF/B nuclear data sources is performed using a few calculated models of BFS-62-3A and BFS1-97 critical assemblies. The comparative analysis of the calculated effective multiplication factor, spectral indices, sodium void reactivity, and radial fission-rate distributions leads to quite different models, providing the best agreement the calculated and experimental neutronic characteristics. This fact should be considered during the refinement of computational models and code-verification purpose. (author)

  10. KUCA critical experiments using MEU fuel (II)

    International Nuclear Information System (INIS)

    Due to mutual concerns in the USA and Japan about the proliferation potential of highly-enriched uranium (HEU), a joint study program I was initiated between Argonne National Laboratory (ANL and Kyoto University Research Reactor Institute (KURRI) in 1978. In accordance with the reduced enrichment for research and test reactor (RERTR) program, the alternatives were studied for reducing the enrichment of the fuel to be used in the Kyoto University High Flux Reactor (KUHFR). The KUHFR has a distinct feature in its core configuration it is a coupled-core. Each annular shaped core is light-water-moderated and placed within a heavy water reflector with a certain distance between them. The phase A reports of the joint ANL-KURRI program independently prepared by two laboratories in February 1979, 3,4 concluded that the use of medium-enrichment uranium (MEU, 45%) in the KUHFR is feasible, pending results of the critical experiments in the Kyoto University Critical Assembly (KUCA) 5 and of the burnup test in the Oak Ridge Research Reactor 6 (ORR). An application of safety review (Reactor Installation License) for MEU fuel to be used in the KUCA was submitted to the Japanese Government in March 1980, and a license was issued in August 1980. Subsequently, the application for 'Authorization before Construction' was submitted and was authorized in September 1980. Fabrication of MEU fuel-elements for the KUCA experiments by CERCA in France was started in September 1980, and was completed in March 1981. The critical experiments in the KUCA with MEU fuel were started on a single-core in May 1981 as a first step. The first critical state of the core using MEU fuel was achieved at 312 p.m. in May 12, 1981. After that, the reactivity effects of the outer side-plates containing boron burnable poison were measured. At Munich Meeting in Sept., 1981, we presented a paper on critical mass and reactivity of burnable poison in the MEU core. Since then we carried out the following experiments

  11. Review of operating experience at the Los Alamos Plutonium Electrorefining Facility, 1963-1977

    International Nuclear Information System (INIS)

    This report reviews the operation of the Los Alamos Plutonium Electrorefining Plant at Technical Area 21 for the period 1964 through 1977. During that period, approximately 1568 kg of plutonium metal, > 99.95% pure, was produced in 653 runs from 1930 kg of metal fabrication scrap, 99% pure. General considerations of the electrorefining process and facility operation and recommendations for further improvement of the process are discussed

  12. A second simulated criticality accident dosimetry experiment

    CERN Document Server

    Adams, N

    1973-01-01

    This experiment was undertaken to facilitate training in criticality dose assessment by UKAEA and BNFL establishments with potential criticality hazards. Personal dosemeters, coins, samples of hair, etc. supplied by the seven participating establishments were attached to a man-phantom filled with a solution of sodium nitrate (simulating 'body-sodium'), and exposed to a burst of radiation from the AWRE pulsed reactor VIPER. The neutron and photon doses were each several hundred rads. Participants made two sets of dose assessments. The first, made solely from the evidence of their routine dosemeters the activation of body-sodium and standard monitoring data, simulated the initial dose assessment that would be made before the circumstances of a real incident were established. The second was made when the position and orientation of the phantom relative to the reactor and the shielding (20 cm of copper) between the reactor core and the phantom were disclosed. Neutron and photon dose assessments for comparison wit...

  13. Critical experiment on FCA Assembly VI-1

    International Nuclear Information System (INIS)

    Mock-up experiment on prototype fast breeder reactor ''MONJU'' has been performed using Fast Critical Facility (FCA), in JAERI. The first partial physics mock-up system is named FCA Assembly VI-1, which is two zoned core system. The inner core of the Assembly is the test region simulating the composition of the outer core of ''MONJU'', and the outer core of the Assembly is the driver region loaded by enriched uranium fuel. The measurements of critical mass, bunching effect, reaction rate ratio at the core center, and the radial distributions of fission rate have been conducted. Preliminary calculational results agree well with the measured values other than the fission rate distribution at the blanket region. (author)

  14. Benchmark analysis of KRITZ-2 critical experiments

    International Nuclear Information System (INIS)

    In the KRITZ-2 critical experiments, criticality and pin power distributions were measured at room temperature and high temperature (about 245 degC) for three different cores (KRITZ-2:1, KRITZ-2:13, KRITZ-2:19) loading slightly enriched UO2 or MOX fuels. Recently, international benchmark problems were provided by ORNL and OECD/NEA based on the KRITZ-2 experimental data. The published experimental data for the system with slightly enriched fuels at high temperature are rare in the world and they are valuable for nuclear data testing. Thus, the benchmark analysis was carried out with a continuous-energy Monte Carlo code MVP and its four nuclear data libraries based on JENDL-3.2, JENDL-3.3, JEF-2.2 and ENDF/B-VI.8. As a result, fairly good agreements with the experimental data were obtained with any libraries for the pin power distributions. However, the JENDL-3.3 and ENDF/B-VI.8 give under-prediction of criticality and too negative isothermal temperature coefficients for slightly enriched UO2 cores, although the older nuclear data JENDL-3.2 and JEF-2.2 give rather good agreements with the experimental data. From the detailed study with an infinite unit cell model, it was found that the differences among the results with different libraries are mainly due to the different fission cross section of U-235 in the energy range below 1.0 eV. (author)

  15. A magnetospheric critical velocity experiment - Particle results

    Science.gov (United States)

    Torbert, R. B.; Newell, P. T.

    1986-01-01

    In March of 1983, a barium injection sounding rocket experiment (The Star of Lima) was conducted to investigate Alfven's critical ionization velocity (CIV) hypothesis in space. Included in the instrumented payload was a particle detection experiment consisting of five retarding potential analyzers. Despite conditions that appeared to be optimal for the critical velocity effect, the particle data, in agreement with optical observations, indicates that a fractional ionization of only approximately .0005 was observed, indicating that the conditions required for the effect to occur are still not well understood. However many of the required phenomena associated with the CIV effect were observed; in particular a superthermal electron population was formed at the expense of ion drift kinetic energy in the presence of intense electrostatic waves near the lower hybrid frequency. The amount of ionization produced is plausibly consistent with the observed electron flux, but could also be accounted for by residual solar UV at the injection point. It is shown based on the data set that one obvious explanation for the low ionization efficiency, namely that the ionizing superthermal electrons may rapidly escape along field lines, can be ruled out.

  16. Energy supply and environmental issues: The Los Alamos National Laboratory experience in regional and international programs

    Energy Technology Data Exchange (ETDEWEB)

    Goff, S.J.

    1995-12-31

    The Los Alamos National Laboratory, operated by the University of California, encompasses more than forty-three square miles of mesas and canyons in northern New Mexico. A Department of Energy national laboratory, Los Alamos is one of the largest multidisciplinary, multiprogram laboratories in the world. Our mission, to apply science and engineering capabilities to problems of national security, has expanded to include a broad array of programs. We conduct extensive research in energy, nuclear safeguards and security, biomedical science, computational science, environmental protection and cleanup, materials science, and other basic sciences. The Energy Technology Programs Office is responsible for overseeing and developing programs in three strategic areas: energy systems and the environment, transportation and infrastructure, and integrated chemicals and materials processing. Our programs focus on developing reliable, economic and environmentally sound technologies that can help ensure an adequate supply of energy for the nation. To meet these needs, we are involved in programs that range from new and enhanced oil recovery technologies and tapping renewable energy sources, through efforts in industrial processes, electric power systems, clean coal technologies, civilian radioactive waste, high temperature superconductivity, to studying the environmental effects of energy use.

  17. Fission reactor critical experiments and analysis

    International Nuclear Information System (INIS)

    Work accomplished in support of nonweapons programs by LASL Group Q-14 is described. Included are efforts in basic critical measurements, nuclear criticality safety, a plasma core critical assembly, and reactivity coefficient measurements

  18. Operating manual for the critical experiments facility

    International Nuclear Information System (INIS)

    The operation of the Critical Experiments Facility (CEF) requires careful attention to procedures in order that all safety precautions are observed. Since an accident could release large amounts of radioactivity, careful operation and strict enforcement of procedures are necessary. To provide for safe operation, detailed procedures have been written for all phases of the operation of this facility. The CEF operating procedures are not to be construed to constitute a part ofthe Technical Specifications. In the event of any discrepancy between the information given herein and the Technical Specifications, limits set forth in the Technical Specifications apply. All normal and most emergency operation conditions are covered by procedures presented in this manual. These procedures are designed to be followed by the operating personnel. Strict adherence to these procedures is expected for the following reasons. (1) To provide a standard, safe method of performing all operations, the procedures were written by reactor engineers experienced in supervising the operation of reactors and were reviewed by an organization with over 30 years of reactor operating experience. (2) To have an up-to-date description of operating techniques available at all times for reference and review, it is necessary that the procedures be written

  19. 50 kA, 50 kV DC international and switching systems for the Los Alamos ZTH experiment

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory has completed the engineering design and development for the high power electrical switching networks for the ZTH experiment. ZTH is Reversed Field Pinch (RFP) plasma experiment with a 4 MA plasma current capability. Power to the ohmic heating (OH), equilibrium field (EF), and toroidal field (TF) coils will be provided from a 1.43 GVA turbo-alternator, which has over 600 MJ of extractable energy. The DC interrupting switch will handle 2.4 GVA, 150 MJ during initial machine operations. An additional 150 to 200 MJ are required for flat-topping the plasma current. A new ultra-high power switch, designed and tested at Los Alamos, will be used to reconfigure the power supply connections so that the supplies can be switched from parallel to series operation. In this manner, the same supplies can be used to charge and then flat-top the OH coils. The inexpensive cost of these switches results in significant economy of power supplies and systems. Detailed engineering information will be presented for the family of 25 kA and 50 kA, 50kV fast isolation and transfer switches, including testing of special water-cooled units capable of 50,000 amperes continuous duty. Similarly, detailed engineering data will be provided for the 150 MJ, 50 kA, 50kV DC interrupting system. This includes information on I2t heating losses, contact resistance, long recovery time voltage standoff testing, and other pertinent engineering parameters. 6 refs., 12 figs

  20. Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation

    International Nuclear Information System (INIS)

    One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

  1. Critical experiment with uranium diluted with concrete and polyethylene

    International Nuclear Information System (INIS)

    An experiment has been performed combining highly enriched uranium, a hydrogenous moderator (polyethylene), and concrete. The purpose of the experiment was to provide additional criticality data that can be used to verify and validate criticality safety evaluations in support of the decommissioning of nuclear facilities throughout the Dept. of Energy complex. In this experiment, criticality was observed as a function time due to the curing and drying processes that occurred in the concrete. (authors)

  2. The Los Alamos National Laboratory Weapons Neutron Research Facility

    International Nuclear Information System (INIS)

    The Physical makeup is presented of the Weapons Neutron Research (WNR) facilitiy at the Los Alamos National Laboratory with emphasis on the critical components. The operating experience is discussed including failure modes and their subsequent resolution. The present target-moderator configuration is given and plans for development and improvements. (orig.)

  3. Exponential and Critical Experiments. Vol. III. Proceedings of the Symposium on Exponential and Critical Experiments

    International Nuclear Information System (INIS)

    In September 1963 the International Atomic Energy Agency organized the Symposium on Exponential and Critical Experiments in Amsterdam, Netherlands, at the invitation of the Government of the Netherlands. The Symposium enabled scientists from Member States to discuss the results of such experiments which provide the physics data necessary for the design of power reactors. Great advances made in recent years in this field have provided scientists with highly sophisticated and reliable experimental and theoretical methods. This trend is reflected in the presentation, at the Symposium, of many new experimental techniques resulting in more detailed and accurate information and a reduction of costs. Both the number of experimental parameters and their range of variation have been extended, and a closer degree of simulation of the actual power reactor has been achieved, for example, by means of high temperature critical assemblies. Basic types of lattices have continued to be the objective of many investigations, and extensive theoretical analyses have been carried out to provide a more thorough understanding of the neutron physics involved. Twenty nine countries and 3 international organizations were represented by 198 participants. Seventy one papers were presented. These numbers alone show the wide interest which the topic commands in the field of reactor design. We hope that this publication, which includes the papers presented at the Symposium and a record of the discussions, will prove useful as a work of reference to scientists working in this field

  4. Exponential and Critical Experiments Vol. II. Proceedings of the Symposium on Exponential and Critical Experiments

    International Nuclear Information System (INIS)

    In September 1963 the International Atomic Energy Agency organized the Symposium on Exponential and Critical Experiments in Amsterdam, Netherlands, at the invitation of the Government of the Netherlands. The Symposium enabled scientists from Member States to discuss the results of such experiments which provide the physics data necessary for the design of power reactors. Great advances made in recent years in this field have provided scientists with highly sophisticated and reliable experimental and theoretical methods. This trend is reflected in the presentation, at the Symposium, of many new experimental techniques resulting in more detailed and accurate information and a reduction of costs. Both the number of experimental parameters and their range of variation have been extended, and a closer degree of simulation of the actual power reactor has been achieved, for example, by means of high temperature critical assemblies. Basic types of lattices have continued to be the objective of many investigations, and extensive theoretical analyses have been carried out to provide a more thorough understanding of the neutron physics involved. Twenty nine countries and 3 international organizations were represented by 198 participants. Seventy one papers were presented. These numbers alone show the wide interest which the topic commands in the field of reactor design. We hope that this publication, which includes the papers presented at the Symposium and a record of the discussions, will prove useful as a work of reference to scientists working in this field

  5. Exponential and Critical Experiments Vol. I. Proceedings of the Symposium on Exponential and Critical Experiments

    International Nuclear Information System (INIS)

    In September 1963 the International Atomic Energy Agency organized the Symposium on Exponential and Critical Experiments in Amsterdam, Netherlands, at the invitation of the Government of the Netherlands. The Symposium enabled scientists from Member States to discuss the results of such experiments which provide the physics data necessary for the design of power reactors. Great advances made in recent years in this field have provided scientists with highly sophisticated and reliable experimental and theoretical methods. This trend is reflected in the presentation, at the Symposium, of many new experimental techniques resulting in more detailed and accurate information and a reduction of costs. Both the number of experimental parameters and their range of variation have been extended, and a closer degree of simulation of the actual power reactor has been achieved, for example, by means of high temperature critical assemblies. Basic types of lattices have continued to be the objective of many investigations, and extensive theoretical analyses have been carried out to provide a more thorough understanding of the neutron physics involved. , Twenty nine countries and 3 international organizations were represented by 198 participants. Seventy one papers were presented. These numbers alone show the wide interest which the topic commands in the field of reactor design. We hope that this publication, which includes the papers presented at the Symposium and a record of the discussions, will prove useful as a work of reference to scientists working in this field

  6. (abstract) Modeling the Critical Velocity Ionization Experiment Interaction

    Science.gov (United States)

    Wang, J.; Murphy, G.; Biasca, R.

    1993-01-01

    Proper interpretation of critical velocity ionization experiments depends upon understanding the expected results from in-situ or remote sensors. In particular, the 1991 shuttle based CIV experiment had diagnostics.

  7. The impact and applicability of critical experiment evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, R. [Los Alamos National Lab., NM (United States)

    1997-06-01

    This paper very briefly describes a project to evaluate previously performed critical experiments. The evaluation is intended for use by criticality safety engineers to verify calculations, and may also be used to identify data which need further investigation. The evaluation process is briefly outlined; the accepted benchmark critical experiments will be used as a standard for verification and validation. The end result of the project will be a comprehensive reference document.

  8. Summary Report of Laboratory Critical Experiment Analyses Performed for the Disposal Criticality Analysis Methodology

    International Nuclear Information System (INIS)

    This report, ''Summary Report of Laboratory Critical Experiment Analyses Performed for the Disposal Criticality Analysis Methodology'', contains a summary of the laboratory critical experiment (LCE) analyses used to support the validation of the disposal criticality analysis methodology. The objective of this report is to present a summary of the LCE analyses' results. These results demonstrate the ability of MCNP to accurately predict the critical multiplication factor (keff) for fuel with different configurations. Results from the LCE evaluations will support the development and validation of the criticality models used in the disposal criticality analysis methodology. These models and their validation have been discussed in the ''Disposal Criticality Analysis Methodology Topical Report'' (CRWMS M and O 1998a)

  9. Summary Report of Laboratory Critical Experiment Analyses Performed for the Disposal Criticality Analysis Methodology

    Energy Technology Data Exchange (ETDEWEB)

    J. Scaglione

    1999-09-09

    This report, ''Summary Report of Laboratory Critical Experiment Analyses Performed for the Disposal Criticality Analysis Methodology'', contains a summary of the laboratory critical experiment (LCE) analyses used to support the validation of the disposal criticality analysis methodology. The objective of this report is to present a summary of the LCE analyses' results. These results demonstrate the ability of MCNP to accurately predict the critical multiplication factor (keff) for fuel with different configurations. Results from the LCE evaluations will support the development and validation of the criticality models used in the disposal criticality analysis methodology. These models and their validation have been discussed in the ''Disposal Criticality Analysis Methodology Topical Report'' (CRWMS M&O 1998a).

  10. Critical experiments for fuel debris using modified STACY

    International Nuclear Information System (INIS)

    Critical assemblies of the thermal neutron system are decreasing in number in spite of their important roles in the reactor physics research, the design of nuclear facilities and the human resource training. On the other hand, the utilization term extension of the light water reactors brings new research themes requiring critical experiments of the thermal neutron system; e.g., the new fuel design with higher burn up, the introduction of burn up credit into the criticality safety control of spent fuel, the criticality safety control of fuel debris generated in a severe accident of a reactor, etc. Japan Atomic Energy Agency is modifying the Static Experiment Critical Facility (STACY) to revive the critical experiments. The modified STACY will be an infrastructure, a multipurpose critical assembly, for the experimental research of the reactor physics on thermal neutron system. The primary mission of the modified STACY at present is the critical experiments for fuel debris to contribute to the criticality safety control of the fuel debris generated by the severe accident of the Fukushima Daiichi Nuclear Power Station. This report introduces the plan of criticality safety research in Japan Atomic Energy Agency following the accident, and describes the role of the modified STACY in the retrieval work of fuel debris from the damaged reactor. (author)

  11. Introduction to 'International Handbook of Criticality Safety Benchmark Experiments'

    International Nuclear Information System (INIS)

    The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in 1992 by the United States Department of Energy. The project quickly became an international effort as scientists from other interested countries became involved. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) is now an official activity of the Organization for Economic Cooperation and Development-Nuclear Energy Agency (OECD-NEA). 'International Handbook of Criticality Safety Benchmark Experiments' was prepared and is updated year by year by the working group of the project. This handbook contains criticality safety benchmark specifications that have been derived from experiments that were performed at various nuclear critical facilities around the world. The benchmark specifications are intended for use by criticality safety engineers to validate calculation techniques used. The author briefly introduces the informative handbook and would like to encourage Japanese engineers who are in charge of nuclear criticality safety to use the handbook. (author)

  12. Review of impact experiments on the critical ionization velocity

    International Nuclear Information System (INIS)

    The impact experiments on the critical ionization velocity (V sub (c)) interactions are reviewed. In these experiments, a highly ionized plasma impacts on a neutral gas cloud. V sub (c)-interaction is observed only when the magnetic field, and the neutral gas density, are above certain critical limits. The values of these limits, however, differ between the experiments. The extrapolation of the laboratory results to space applications is also discussed. (Author)

  13. Progress report on recent rare muon decay experiments at the Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    A search has been performed for the decays μ → eee, μ → eγ, and μ → eγγ with a sensitivity in the branching ratios at the level of 10-10. The experiment used a separated, 26 MeV/c μ+ beam with an average intensity of 300kHz. A total of 2.2 x 1011 muon decays were examined for the present result. The detector for the experiment is the Crystal Box, which consists of a cylindrical drift chamber surrounded by 396 NaI(T1) crystals. A layer of scintillation counters in front of the crystals provided timing for electrons and veto for photons. The energy resolution for electrons and photons is approx. 6% (FWHM). The position resolution of the drift chamber is 350 μm leading to a vertex cut with a rejection of 103 for μ → eee. The timing resolution is approx. 300 ps the scintillators and approx. 1 ns from the crystals. No candidate for μ → eee has been found, yielding an upper limit for the branching ratio of B/sub μ3e/ -10 (90% C.L.). 21 references

  14. Fiber Bragg grating sensing of detonation and shock experiments at Los Alamos National Laboratory

    Science.gov (United States)

    Rodriguez, G.; Sandberg, R. L.; Jackson, S. I.; Dattelbaum, D. M.; Vincent, S. W.; McCulloch, Q.; Martinez, R. M.; Gilbertson, S. M.; Udd, E.

    2013-05-01

    An all optical-fiber-based approach to measuring high explosive detonation front position and velocity is described. By measuring total light return using an incoherent light source reflected from a fiber Bragg grating sensor in contact with the explosive, dynamic mapping of the detonation front position and velocity versus time is obtained. We demonstrate two calibration procedures and provide several examples of detonation front measurements: PBX 9502 cylindrical rate stick, radial detonation front in PBX 9501, and PBX 9501 detonation along a curved meridian line. In the cylindrical rate stick measurement, excellent agreement with complementary diagnostics (electrical pins and streak camera imaging) is achieved, demonstrating accuracy in the detonation front velocity to below the 0.3% level when compared to the results from the pin data. In a similar approach, we use embedded fiber grating sensors for dynamic pressure measurements to test the feasibility of these sensors for high pressure shock wave research in gas gun driven flyer plate impact experiments. By applying well-controlled steady shock wave pressure profiles to soft materials such as PMMA, we study the dynamic pressure response of embedded fiber Bragg gratings to extract pressure amplitude of the shock wave. Comparison of the fiber sensor results is then made with traditional methods (velocimetry and electro-magnetic particle velocity gauges) to gauge the accuracy of the approach.

  15. Los Alamos Science: Number 23, 1995. Radiation protection and the human radiation experiments

    International Nuclear Information System (INIS)

    There are a variety of myths and misconceptions about the ionizing radiation that surrounds and penetrates us all. Dispel a few of these by taking a leisurely tour of radiation and its properties, of the natural and man-made sources of ionizing radiation, and of the way doses are calculated. By damaging DNA and inducing genetic mutations, ionizing radiation can potentially initiate a cell on the road to cancer. The authors review what is currently known about regulation of cellular reproduction, DNA damage and repair, cellular defense mechanisms, and the specific cancer-causing genes that are susceptible to ionizing radiation. A rapid survey of the data on radiation effects in humans shows that high radiation doses increase the risk of cancer, whereas the effects of low doses are very difficult to detect. The hypothetical risks at low doses, which are estimated from the atomic-bomb survivors, are compared to the low-dose data so that the reader can assess the present level of uncertainty. As part of the openness initiative, ten individuals who have worked with plutonium during various periods in the Laboratory's history were asked to share their experiences including their accidental intakes. The history and prognosis of people who have had plutonium exposures is discussed by the Laboratory's leading epidemiologist

  16. Uranium metal briquette critical experiments evaluated and indirectly applied

    International Nuclear Information System (INIS)

    The longstanding criticality safety evaluation (CSE) for casting operations at Y-12 National Security Complex (NSC) contains an analysis of briquettes in crucibles in which it is difficult to ascertain whether the analysis is conservative. To investigate, a more realistic analysis approach was undertaken that incorporates critical experiments, briquette measurements, new computations, and credits a recently installed passive design feature. (authors)

  17. Weightless experiments to probe universality of fluid critical behavior.

    Science.gov (United States)

    Lecoutre, C; Guillaument, R; Marre, S; Garrabos, Y; Beysens, D; Hahn, I

    2015-06-01

    Near the critical point of fluids, critical opalescence results in light attenuation, or turbidity increase, that can be used to probe the universality of critical behavior. Turbidity measurements in SF6 under weightlessness conditions on board the International Space Station are performed to appraise such behavior in terms of both temperature and density distances from the critical point. Data are obtained in a temperature range, far (1 K) from and extremely close (a few μK) to the phase transition, unattainable from previous experiments on Earth. Data are analyzed with renormalization-group matching classical-to-critical crossover models of the universal equation of state. It results that the data in the unexplored region, which is a minute deviant from the critical density value, still show adverse effects for testing the true asymptotic nature of the critical point phenomena. PMID:26172640

  18. Experience With the SCALE Criticality Safety Cross Section Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, S.M.

    2000-08-21

    This report provides detailed information on the SCALE criticality safety cross-section libraries. Areas covered include the origins of the libraries, the data on which they are based, how they were generated, past experience and validations, and performance comparisons with measured critical experiments and numerical benchmarks. The performance of the SCALE criticality safety cross-section libraries on various types of fissile systems are examined in detail. Most of the performance areas are demonstrated by examining the performance of the libraries vs critical experiments to show general trends and weaknesses. In areas where directly applicable critical experiments do not exist, performance is examined based on the general knowledge of the strengths and weaknesses of the cross sections. In this case, the experience in the use of the cross sections and comparisons with the results of other libraries on the same systems are relied on for establishing acceptability of application of a particular SCALE library to a particular fissile system. This report should aid in establishing when a SCALE cross-section library would be expected to perform acceptably and where there are known or suspected deficiencies that would cause the calculations to be less reliable. To determine the acceptability of a library for a particular application, the calculational bias of the library should be established by directly applicable critical experiments.

  19. Validation of Cross Sections with Criticality Experiment and Reaction Rates: the Neptunium Case

    CERN Document Server

    Leong, L S; Audouin, L; Berthier, B; Le Naour, C; Stéphan, C; Paradela, C; Tarrío, D; Duran, I

    2014-01-01

    The Np-237 neutron-induced fission cross section has been recently measured in a large energy range (from eV to GeV) at the n\\_TOF facility at CERN. When compared to previous measurements the n\\_TOF fission cross section appears to be higher by 5-7\\% beyond the fission threshold. To check the relevance of the n\\_TOF data, we considered a criticality experiment performed at Los Alamos with a 6 kg sphere of Np-237, surrounded by uranium highly enriched in U-235 so as to approach criticality with fast neutrons. The multiplication factor k(eff) of the calculation is in better agreement with the experiment when we replace the ENDF/B-VII. 0 evaluation of the Np-237 fission cross section by the n\\_TOF data. We also explored the hypothesis of deficiencies of the inelastic cross section in U-235 which has been invoked by some authors to explain the deviation of 750 pcm. The large modification needed to reduce the deviation seems to be incompatible with existing inelastic cross section measurements. Also we show that t...

  20. International handbook of evaluated criticality safety benchmark experiments

    International Nuclear Information System (INIS)

    The primary purpose of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Working Group is to compile critical and subcritical benchmark experiment data into a standardised format that allows criticality safety analysts to easily use the data to validate calculation tools and cross-section libraries. ICSBEP work includes: - Identifying a comprehensive set of critical benchmark data and, to the extent possible, verify the data by reviewing original and subsequently revised documentation, and by talking with the experimenters or individuals who are familiar with the experimenters or the experimental facility; - Evaluating the data and quantify overall uncertainties through various types of sensitivity analysis; - Compiling the data into a standardised format; - Performing calculations of each experiment with standard criticality safety codes; - Formally documenting the work into a single source of verified benchmark critical data. The work of the ICSBEP is documented as an International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP Handbook). Currently, the handbook spans nearly 67,000 pages and contains 561 evaluations representing 4839 critical, near-critical, or subcritical configurations, 24 criticality alarm placement/shielding configurations with multiple dose points for each, and 207 configurations that have been categorised as fundamental physics measurements that are relevant to criticality safety applications. The handbook is intended for use by criticality safety analysts to perform necessary validations of their calculational techniques and is expected to be a valuable tool for decades to come. The ICSBEP Handbook is produced in electronic format (pdf files) where the experiments are grouped into evaluations and categorised by: fissile media (plutonium, highly enriched uranium, intermediate and mixed enrichment uranium, low enriched uranium, uranium-233, mixed plutonium-uranium and special isotope systems

  1. The critical point of quantum chromodynamics through lattice and experiment

    Indian Academy of Sciences (India)

    Sourendu Gupta

    2011-05-01

    This talk discusses methods of extending lattice computations at finite temperature into regions of finite chemical potential, and the conditions under which such results from the lattice may be compared to experiments. Such comparisons away from a critical point are absolutely essential for quantitative use of lattice QCD in heavy-ion physics. An outline of various arguments which can then be used to locate the critical point is also presented.

  2. TRIGA criticality experiment for testing burn-up calculations

    Energy Technology Data Exchange (ETDEWEB)

    Persic, Andreja; Ravnik, Matjaz; Zagar, Tomaz [Jozef Stefan Institute, Reactor Physics Division, Ljubljana (Slovenia)

    1999-07-01

    A criticality experiment with partly burned TRIGA fuel is described. 20 wt % enriched standard TRIGA fuel elements initially containing 12 wt % U are used. Their average burn-up is 1.4 MWd. Fuel element burn-up is calculated in 2-D four group diffusion approximation using TRIGLAV code. The burn-up of several fuel elements is also measured by reactivity method. The excess reactivity of several critical and subcritical core configurations is measured. Two core configurations contain the same fuel elements in the same arrangement as were used in the fresh TRIGA fuel criticality experiment performed in 1991. The results of the experiment may be applied for testing the computer codes used for fuel burn-up calculations. (author)

  3. Critical experiments analysis by ABBN-90 constant system

    International Nuclear Information System (INIS)

    The ABBN-90 is a new version of the well-known Russian group-constant system ABBN. Included constants were calculated based on files of evaluated nuclear data from the BROND-2, ENDF/B-VI, and JENDL-3 libraries. The ABBN-90 is intended for the calculation of different types of nuclear reactors and radiation shielding. Calculations of criticality safety and reactivity accidents are also provided by using this constant set. Validation of the ABBN-90 set was made by using a computerized bank of evaluated critical experiments. This bank includes the results of experiments conducted in Russia and abroad of compact spherical assemblies with different reflectors, fast critical assemblies, and fuel/water-solution criticalities. This report presents the results of the calculational analysis of the whole collection of critical experiments. All calculations were produced with the ABBN-90 group-constant system. Revealed discrepancies between experimental and calculational results and their possible reasons are discussed. The codes and archives INDECS system is also described. This system includes three computerized banks: LEMEX, which consists of evaluated experiments and their calculational results; LSENS, which consists of sensitivity coefficients; and LUND, which consists of group-constant covariance matrices. The INDECS system permits us to estimate the accuracy of neutronics calculations. A discussion of the reliability of such estimations is finally presented. 16 figs

  4. Validation of KENO V.a: Comparison with critical experiments

    International Nuclear Information System (INIS)

    Section 1 of this report documents the validation of KENO V.a against 258 critical experiments. Experiments considered were primarily high or low enriched uranium systems. The results indicate that the KENO V.a Monte Carlo Criticality Program accurately calculates a broad range of critical experiments. A substantial number of the calculations showed a positive or negative bias in excess of 1 1/2% in k-effective (k/sub eff/). Classes of criticals which show a bias include 3% enriched green blocks, highly enriched uranyl fluoride slab arrays, and highly enriched uranyl nitrate arrays. If these biases are properly taken into account, the KENO V.a code can be used with confidence for the design and criticality safety analysis of uranium-containing systems. Sections 2 of this report documents the results of investigation into the cause of the bias observed in Sect. 1. The results of this study indicate that the bias seen in Sect. 1 is caused by code bias, cross-section bias, reporting bias, and modeling bias. There is evidence that many of the experiments used in this validation and in previous validations are not adequately documented. The uncertainty in the experimental parameters overshadows bias caused by the code and cross sections and prohibits code validation to better than about 1% in k/sub eff/. 48 refs., 19 figs., 19 tabs

  5. Critical experiments analysis by ABBN-90 constant system

    Energy Technology Data Exchange (ETDEWEB)

    Tsiboulia, A.; Nikolaev, M.N.; Golubev, V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)] [and others

    1997-06-01

    The ABBN-90 is a new version of the well-known Russian group-constant system ABBN. Included constants were calculated based on files of evaluated nuclear data from the BROND-2, ENDF/B-VI, and JENDL-3 libraries. The ABBN-90 is intended for the calculation of different types of nuclear reactors and radiation shielding. Calculations of criticality safety and reactivity accidents are also provided by using this constant set. Validation of the ABBN-90 set was made by using a computerized bank of evaluated critical experiments. This bank includes the results of experiments conducted in Russia and abroad of compact spherical assemblies with different reflectors, fast critical assemblies, and fuel/water-solution criticalities. This report presents the results of the calculational analysis of the whole collection of critical experiments. All calculations were produced with the ABBN-90 group-constant system. Revealed discrepancies between experimental and calculational results and their possible reasons are discussed. The codes and archives INDECS system is also described. This system includes three computerized banks: LEMEX, which consists of evaluated experiments and their calculational results; LSENS, which consists of sensitivity coefficients; and LUND, which consists of group-constant covariance matrices. The INDECS system permits us to estimate the accuracy of neutronics calculations. A discussion of the reliability of such estimations is finally presented. 16 figs.

  6. Validation of KENO V.a Comparison with Critical Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, W.C.

    1999-01-01

    Section 1 of this report documents the validation of KENO V.a against 258 critical experiments. Experiments considered were primarily high or low enriched uranium systems. The results indicate that the KENO V.a Monte Carlo Criticality Program accurately calculates a broad range of critical experiments. A substantial number of the calculations showed a positive or negative bias in excess of 1 1/2% in k-effective (k{sub eff}). Classes of criticals which show a bias include 3% enriched green blocks, highly enriched uranyl fluoride slab arrays, and highly enriched uranyl nitrate arrays. If these biases are properly taken into account, the KENO V.a code can be used with confidence for the design and criticality safety analysis of uranium-containing systems. Section 2 of this report documents the results of investigation into the cause of the bias observed in Sect. 1. The results of this study indicate that the bias seen in Sect. 1 is caused by code bias, cross-section bias, reporting bias, and modeling bias. There is evidence that many of the experiments used in this validation and in previous validations are not adequately documented. The uncertainty in the experimental parameters overshadows bias caused by the code and cross sections and prohibits code validation to better than about 1% in k{sub eff}.

  7. Results of the critical experiments concerning OTTO loading at the critical HTR-test facility KAHTER

    International Nuclear Information System (INIS)

    Critical experiments concerning OTTO loading are described. In the KAHTER facility an OTTO loading has been simulated, therefore the original KAHTER assembly was reconstructed. The determination of critical masses and reactivity worths of control rods and of additional absorber rods in the top reflector and in the upper cavity was of main interest for comparison with reactor following calculations. Besides this, reaction rates in different energy regions were measured in the upper part of the core, in the cavity and top reflector. (orig.)

  8. International handbook of evaluated criticality safety benchmark experiments

    International Nuclear Information System (INIS)

    The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in October of 1992 by the United States Department of Energy. The project quickly became an international effort as scientists from other interested countries became involved. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) became an official activity of the Organization for Economic Cooperation and Development - Nuclear Energy Agency (OECD-NEA) in 1995. This handbook contains criticality safety benchmark specifications that have been derived from experiments performed at various nuclear critical facilities around the world. The benchmark specifications are intended for use by criticality safety engineers to validate calculational techniques used to establish minimum subcritical margins for operations with fissile material and to determine criticality alarm requirement and placement. Many of the specifications are also useful for nuclear data testing. Example calculations are presented; however, these calculations do not constitute a validation of the codes or cross section data. The evaluated criticality safety benchmark data are given in nine volumes. These volumes span over 55,000 pages and contain 516 evaluations with benchmark specifications for 4,405 critical, near critical, or subcritical configurations, 24 criticality alarm placement / shielding configurations with multiple dose points for each, and 200 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications. Experiments that are found unacceptable for use as criticality safety benchmark experiments are discussed in these evaluations; however, benchmark specifications are not derived for such experiments (in some cases models are provided in an appendix). Approximately 770 experimental configurations are categorized as unacceptable for use as criticality safety benchmark experiments. Additional evaluations are in progress and will be

  9. Momentum coupling in ionospheric critical ionization velocity experiments

    International Nuclear Information System (INIS)

    The critical ionization velocity (CIV) effect is a process that can rapidly ionize a neutral gas which moves through a magnetized plasma. The process has been studied for several decades in laboratory experiments, but presently the emphasis has moved to ionospheric injection experiments. In these experiments, the neutral gas component is released at high velocity, with respect to the ionosphere, from a rocket or a satellite. Efficient momentum coupling between the injected cloud and the ambient ionosphere is achieved by means of Alfven waves that are launched along the magnetic field. A computer model is presented for the momentum exchange between a cloud of injected ions and the ionosphere, and the model electric fields and particle spectra are shown to agree in detail with measurements from the Critical Ionization Test II (CRIT II); [Swenson et al., Geophys. Res. Lett. 17, 2337 (1990)] ionospheric injection experiment

  10. Postanalysis of the CNPS [Compact Nuclear Power Source] critical experiment

    International Nuclear Information System (INIS)

    The Compact Nuclear Power Source (CNPS) was designed to produce electric power for remote sites where fuel logistics and costs would justify a remotely sited nuclear power plant. Since the reactor was of novel design with no appropriate benchmarks, a series of critical experiments was carried out at LANL. This paper describes the methodology and reports the results of the postanalysis that was performed on the critical experiments, which included several distinct critical configurations, the measurement of the isothermal temperature coefficient of reactivity and various material worths. Comparisons with measurements indicate that current methods and cross sections are adequate for calculating at least the beginning of life conditions in low enriched 235U-graphite cores. 7 refs., 4 figs., 4 tabs

  11. Reactor physics experiments at Kyoto University Critical Assembly (KUCA)

    International Nuclear Information System (INIS)

    Kyoto University Critical Assembly (KUCA) is a multi-core type critical assembly established in 1974. It has three independent cores, namely, two solid-moderated cores (A, B cores) and one light water-moderated core (C core). A pulsed neutron generator by D-T reactions and new FFAG proton accelerator are installed, which can be used in combination with the A-core. In the KUCA, basic studies on reactor physics are being performed. Recent research topics includes 1) nuclear characteristics of thorium fueled reactor, 2) critical experiments loaded with erbium at various spectrum indices, 3) subcriticality measurements, 4) development of innovative neutron detector and 5) simulation experiments of accelerator driven system (ADS). For education, the reactor laboratory course on reactor physics is offered for 12 Japanese universities since 1975. More than 150 graduate or undergraduate students majoring in nuclear engineering are joining this course every year and same reactor laboratory course has been offered for Korean and Swedish students.

  12. Postanalysis of the CNPS (Compact Nuclear Power Source) critical experiment

    Science.gov (United States)

    Palmer, R. G.

    The Compact Nuclear Power Source (CNPS) was designed to produce electric power for remote sites where fuel logistics and costs would justify a remotely sited nuclear power plant. Since the reactor was of novel design with no appropriate benchmarks, a series of critical experiments was carried out at LANL. This paper describes the methodology and reports the results of the postanalysis that was performed on the critical experiments, which included several distinct critical configurations, the measurement of the isothermal temperature coefficient of reactivity and various material worths. Comparisons with measurements indicate that current methods and cross sections are adequate for calculating at least the beginning of life conditions in low enriched U-235-graphite cores.

  13. Critical heat flux experiments in tight lattice core

    Energy Technology Data Exchange (ETDEWEB)

    Kureta, Masatoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    Fuel rods of the Reduced-Moderation Water Reactor (RMWR) are so designed to be in tight lattices as to reduce moderation and achieve higher conversion ratio. As for the BWR type reactor coolant flow rate is reduced small compared with the existing BWR, so average void fraction comes to be langer. In order to evaluate thermo hydraulic characteristics of designed cores, critical heat flux experiments in tight lattice core have been conducted using simulated high pressure coolant loops for both the PWR and BWR seven fuel rod bundles. Experimental data on critical heat flux for full bundles have been accumulated and applied to assess the critical power of designed cores using existing codes. Evaluated results are conservative enough to satisfy the limiting condition. Further experiments on axial power distribution effects and 37 fuel rod bundle tests will be performed to validate thermohydraulic characteristics of designed cores. (T. Tanaka)

  14. The Nuclear Criticality Information System's project to archive unpublished critical experiment data

    International Nuclear Information System (INIS)

    Critical experiment facilities produced a large amount of important data during the past forty-five years. However, much useful data remains unpublished. The unpublished material exists in the form of experimenters' logbooks, notes, photographs, material descriptions, etc. These data could be important for computer code validation, understanding the physics of criticality, facility design, or for setting process limits. In the past, criticality specialists have been able to obtain unpublished details by direct contact with the experimenters. Obviously, this will not be possible indefinitely. Most of the US critical experiment facilities are now closed, the experimenters are moving the other jobs, retiring, or otherwise becoming unavailable for this informal assistance. The closure of the facilities and the loss of personnel is likely to lead to the loss of the facility records unless an effort is made to assure that the records are preserved. It has been recognized for some time that the unpublished records of critical experiment facilities comprise a valuable resource, thus the Nuclear Criticality Information System (NCIS) is working to insure that the records are preserved and made available via NCIS. As a first step in the archiving project, we identified criteria to help judge which series of experiments should be considered for archiving. Data that are used for validating calculations or the basis for subcritical limits in standards, handbooks, and guides are of particular importance. In this paper we will discuss the criteria for archiving, the priority list of experiments for archiving, and progress in developing an NCIS image database using current CD-ROM technology

  15. Implementation and Critical Assessment of the Flipped Classroom Experience

    Science.gov (United States)

    Scheg, Abigail G., Ed.

    2015-01-01

    In the past decade, traditional classroom teaching models have been transformed in order to better promote active learning and learner engagement. "Implementation and Critical Assessment of the Flipped Classroom Experience" seeks to capture the momentum of non-traditional teaching methods and provide a necessary resource for individuals…

  16. Technical specifications for the Pajarito Site Critical Experiments Facility

    International Nuclear Information System (INIS)

    This document is to satisfy the requirement for technical specifications spelled out in DOE Manual Chapter 0540, Safety of DOE-Owned Reactors. Technical specifications are defined in Sec. 0540-048, and the requirement for them appears in Sec. 0540-015. The following technical specifications update the document, Technical Specifications for the Pajarito Site Critical Experiments Facility

  17. Educational reactor-physics experiments with the critical assemble TCA

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki [Tokyo Inst. of Tech. (Japan); Horiki, Oichiro; Suzaki, Takenori

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for (1) Critical approach and Exponential experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, and (5) Measurement of safety plate worth by the rod drop method. (author)

  18. Fast critical experiments in FCA and their analysis

    International Nuclear Information System (INIS)

    JAERI Fast Critical Facility FCA went critical for the first time in April, 1967. Since then, critical experiments and their analysis were carried out on thirty-five assemblies until march, 1982. This report summarizes many achievements obtained in these fifteen years and points out disagreements observed between the calculation and experiment for further studies. A series of mock-up experiments for Experimental Fast Reactor JOYO, a theoretical and numerical study of adjustment of group constants by using integral data and a development of proton-recoil counter system for fast neutron spectrum measurement won high praise. Studies of Doppler effect of structural materials, effect of fission product accumulation on sodium-void worth, axially heterogeneous core and actinide cross sections attracted world-side attention. Significant contributions were also made to Prototype Fast Breeder Reactor MONJU through the partial mock-up experiments. Disagreements between the calculation and experiment were observed in the following items; reaction rate distribution and reactivity worth of B4C absorber in radial blanket, central reactivity worth in core with reflector, plate/pin fuel heterogeneity effect on criticality, sodium-void effect in central core region, Doppler effect of structural materials, core neutron spectrum near large resonances of iron and oxygen, effect of fission product accumulation on sodium-void worth, physics property of heterogeneous core, reactivity change resulted from fuel slumping and so on. Further efforts should be made to solve these disagreements through recalculating the experimental results with newly developed data and methods and carrying out the experiments intended to identify the cause of disagreement. (author)

  19. Operating procedures for the Pajarito Site Critical Assembly Facility

    International Nuclear Information System (INIS)

    Operating procedures consistent with DOE Order 5480.2, Chapter VI, and the American National Standard Safety Guide for the Performance of Critical Experiments are defined for the Pajarito Site Critical Assembly Facility of the Los Alamos National Laboratory. These operating procedures supersede and update those previously published in 1973 and apply to any criticality experiment performed at the facility

  20. Technical specifications for the Oak Ridge Critical Experiments Facility

    International Nuclear Information System (INIS)

    These Technical Specifications for the Oak Ridge Critical Experiments Facility (CEF) delineate limiting conditions of operation for the facility. The CEF is used primarily for testing the High Flux Isotope Reactor (HFIR) fuel assemblies. Specifically, the Criticality Testing Unit, Liquid (CTUL), located in the CEF, is used for the HFIR fuel assembly test. The test is performed to satisfy the surveillance requirements of the HFIR Technical Specifications. The test is used to determine the water-submerged shutdown margin for each fuel assembly. 11 refs

  1. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Historically, new entrants to the practice of nuclear criticality safety have learned their job primarily by on-the-job training (OJT) often by association with an experienced nuclear criticality safety engineer who probably also learned their job by OJT. Typically, the new entrant learned what he/she needed to know to solve a particular problem and accumulated experience as more problems were solved. It is likely that more formalism will be required in the future. Current US Department of Energy requirements for those positions which have to demonstrate qualification indicate that it should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis i's incompletely developed in some areas. Details of this analysis are provided in this report

  2. TRIGA Mark II Criticality Benchmark Experiment with Burned Fuel

    International Nuclear Information System (INIS)

    The experimental results of criticality benchmark experiments performed at the Jozef Stefan Institute TRIGA Mark II reactor are presented. The experiments were performed with partly burned fuel in two compact and uniform core configurations in the same arrangements as were used in the fresh fuel criticality benchmark experiment performed in 1991. In the experiments, both core configurations contained only 12 wt% U-ZrH fuel with 20% enriched uranium. The first experimental core contained 43 fuel elements with average burnup of 1.22 MWd or 2.8% 235U burned. The last experimental core configuration was composed of 48 fuel elements with average burnup of 1.15 MWd or 2.6% 235U burned. The experimental determination of keff for both core configurations, one subcritical and one critical, are presented. Burnup for all fuel elements was calculated in two-dimensional four-group diffusion approximation using the TRIGLAV code. The burnup of several fuel elements was measured also by the reactivity method

  3. Benchmark analyses of criticality calculation codes based on the evaluated dissolver-type criticality experiment systems

    International Nuclear Information System (INIS)

    Criticality calculation codes/code systems MCNP, MVP, SCALE and JACS, which are currently typically used in Japan for nuclear criticality safety evaluation, were benchmarked for so called dissolver-typed systems, i.e., fuel rod arrays immersed in fuel solution. The benchmark analyses were made for the evaluated critical experiments published in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook: one evaluation representing five critical configurations from heterogeneous core of low-enriched uranium dioxides at the Japan Atomic Energy Research Institute and two evaluations representing 16 critical configurations from heterogeneous core of mixed uranium and plutonium dioxides (MOXs) at the Battelle Pacific Northwest Laboratories of the U.S.A. The results of the analyses showed that the minimum values of the neutron multiplication factor obtained with MCNP, MVP, SCALE and JACS were 0.993, 0.990, 0.993, 0.972, respectively, which values are from 2% to 4% larger than the maximum permissible multiplication factor of 0.95. (author)

  4. Critical phase transitions made self-organized: proposed experiments

    International Nuclear Information System (INIS)

    In Sornette, a scenario for self-organized critically (SOC) has been proposed according to which SOC relies on a non-linear feedback of the order parameter on the control parameter(s), the amplitude of this feedback being tuned by the spatial correlation length ξ. Implementing such a feedback mechanism, it is possible in principle to convert standard ''unstable'' critical phase transitions into self-organized critical dynamics. Here, we analyze this idea in more detail and suggest to couple a standard experiment on critical phenomena with sime probing radiation or some electronic feedback using a microprocessor or analog device which pushed the temperature or analog control parameter to that value where the susceptibility, the correlation length or the inverse of the decay rate is maximal. The practical realization of the feedback thus corresponds to an optimization of the response of the system under the action of a probe or a disturbance. We discuss liquid-vapor and binary demixion critical points, and briefly the He4 superfluid transition, magnetic systems, and superfluid transitions. (orig.)

  5. Measurement of critical contact angle in a microgravity space experiment

    Energy Technology Data Exchange (ETDEWEB)

    Concus, P.; Finn, R.; Weislogel, M.

    1999-06-01

    Mathematical theory predicts that small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. This phenomenon was investigated in the Interface Configuration Experiment on board the NASA USML-2 Space Shuttle flight. The experiment's double proboscis containers were designed to strike a balance between conflicting requirements of sizable volume of liquid shift (for ease of observation) and abruptness of the shift (for accurate determination of critical contact angle). The experimental results support the classical concept of macroscopic contact angle and demonstrate the role of hysteresis in impeding orientation toward equilibrium.

  6. Measurement of critical contact angle in a microgravity space experiment

    Energy Technology Data Exchange (ETDEWEB)

    Concus, P. [California Univ., Berkeley, CA (United States). Lawrence Berkeley Lab.; Finn, R. [Department of Mathematics, Stanford University, CA (United States); Weislogel, M. [NASA Lewis Research Center, Cleveland, OH (United States)

    2000-03-01

    Mathematical theory predicts that small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. This phenomenon was investigated in the interface configuration experiment on board the NASA USML-2 Space Shuttle flight. The experiment's ''double proboscis'' containers were designed to strike a balance between conflicting requirements of sizable volume of liquid shift (for ease of observation) and abruptness of the shift (for accurate determination of critical contact angle). The experimental results support the classical concept of macroscopic contact angle and demonstrate the role of hysteresis in impeding orientation toward equilibrium. (orig.)

  7. Parametric analyses of planned flowing uranium hexafluoride critical experiments

    Science.gov (United States)

    Rodgers, R. J.; Latham, T. S.

    1976-01-01

    Analytical investigations were conducted to determine preliminary design and operating characteristics of flowing uranium hexafluoride (UF6) gaseous nuclear reactor experiments in which a hybrid core configuration comprised of UF6 gas and a region of solid fuel will be employed. The investigations are part of a planned program to perform a series of experiments of increasing performance, culminating in an approximately 5 MW fissioning uranium plasma experiment. A preliminary design is described for an argon buffer gas confined, UF6 flow loop system for future use in flowing critical experiments. Initial calculations to estimate the operating characteristics of the gaseous fissioning UF6 in a confined flow test at a pressure of 4 atm, indicate temperature increases of approximately 100 and 1000 K in the UF6 may be obtained for total test power levels of 100 kW and 1 MW for test times of 320 and 32 sec, respectively.

  8. What’s so Critical about Critical Neuroscience? -Rethinking Experiment, Enacting Critique

    Directory of Open Access Journals (Sweden)

    Des eFitzgerald

    2014-05-01

    Full Text Available In the midst of on-going hype about the power and potency of the new brain sciences, scholars within ‘Critical Neuroscience’ have called for a more nuanced and sceptical neuroscientific knowledge-practice. Drawing especially on the Frankfurt School, they urge neuroscientists towards a more critical approach – one that re-inscribes the objects and practices of neuroscientific knowledge within webs of social, cultural, historical and political-economic contingency. This paper is an attempt to open up the black-box of ‘critique’ within Critical Neuroscience itself. Specifically, we argue that limiting enactments of critique to the invocation of context misses the force of what a highly-stylized and tightly-bound neuroscientific experiment can actually do. We show that, within the neuroscientific experiment itself, the world-excluding and context-denying ‘rules of the game’ may also enact critique, in novel and surprising forms, while remaining formally independent of the workings of society, and culture, and history. To demonstrate this possibility, we analyze the Optimally Interacting Minds paradigm, a neuroscientific experiment that used classical psychophysical methods to show that, in some situations, people worked better as a collective, and not as individuals – a claim that works precisely against reactionary tendencies that prioritise individual over collective agency, but that was generated and legitimized entirely within the formal, context-denying conventions of neuroscientific experimentation. At the heart of this paper is a claim that it was precisely the rigours and rules of the experimental game that allowed these scientists to enact some surprisingly critical, and even radical, gestures. We conclude by suggesting that, in the midst of large-scale neuroscientific initiatives, it may be 'experiment,' and not 'context,' that forms the meeting-ground between neuro-biological and socio-political research practices.

  9. Nuclear knowledge management experience of the international criticality safety benchmark evaluation project

    International Nuclear Information System (INIS)

    Full text: The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in October of 1992 by the Department of Energy Defence Programs, now NNSA. The U.S. effort to support and provide leadership for the ICSBEP has been funded by DOE-DP since that time. The project is managed through the Idaho National Engineering and Environmental Laboratory (INEEL), but involves nationally known criticality safety experts from Los Alamos National Laboratory, Lawrence Livermore National Laboratory, Savannah River Technology Center, Oak Ridge National Laboratory and the Y-12 Plant, Hanford, Argonne National Laboratory, and the Rocky Flat Plant. An International Criticality Safety Data Exchange component was added to the project during 1994. Representatives from the United Kingdom, France, Japan, the Russian Federation, Hungary, Republic of Korea, Slovenia, Yugoslavia, Kazakhstan, Spain, Israel, Brazil, and Poland are now participating on the project and China, South Africa, and the Czech Republic have indicated that they plan to contribute to the project. The ICSBEP is an official activity of the OECD-NEA. The United States is the lead country, providing most of the administrative support. The purpose of the ICSBEP is to: 1. Identify and evaluate a comprehensive set of criticality related benchmark data. 2. Verify the data, to the extent possible, by reviewing original and subsequently revised documentation, logbook data when possible, and by talking with the experimenters or individuals who are familiar with the experimenters or the experimental facility. 3. Compile the data into a standardized format. 4. Perform calculations of each experiment with standard criticality safety codes. 5. Formally document the work into a single source of verified and internationally peer reviewed benchmark critical data. Each experiment evaluation undergoes a thorough internal review by someone within the evaluator's organization. The internal reviewers verifies: 1. The

  10. Beta decay measurements with ultracold neutrons: a review of recent measurements and the research program at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    We present a review of the motivation and results of recent experiments which utilize ultracold neutrons for measurements of neutron beta decay. Because these experiments hinge critically on the available ultracold neutron source technology, we also review the status of ultracold neutron source development, emphasizing the Los Alamos ultracold neutron facility and the ongoing beta decay research program sited there. (paper)

  11. Critical ionization velocity interaction in the CRIT I rocket experiment

    Science.gov (United States)

    Brenning, N.; Faelthammar, C.-G.; Marklund, G.; Haerendel, G.; Kelley, M.; Pfaff, R.

    1990-01-01

    In the rocket experiment CRIT I, launched from Wallops Island on May 13, 1986, two identical Barium-shaped charges were fired from distances of 1.3 km and 3.6 km towards the main experiment payload, which was separated from a sub-payload by a couple of km along the magnetic field. The relevance of earlier proposed mechanisms for electron heating in ionospheric critical velocity experiments is investigated in the light of the CRIT I results. It is concluded that both the 'homogeneous' and the 'ionizing front' models can be applied, in different parts of the stream. It is also possible that a third, entirely different, mechanism may contribute to the electron heating. This mechanism involves direct energization of electrons in the magnetic-field-aligned component of the dc electric field.

  12. Monte Carlo simulation of the TRIGA mark 2 criticality experiment

    International Nuclear Information System (INIS)

    The criticality analysis of the TRIGA-2 bench-mark experiment at the Musashi Institute of Technology Research Reactor (MuITR, 100 kW) was performed by the three-dimensional continuous-energy Monte Carlo code (MCNP4A). To minimize errors due to an inexact geometry model, all fresh fuel and control rods as well as vicinity of the core were precisely modeled. Core multiplication factors (Keff) in the initial core critical experiment and in the excess reactivity adjustment for the several fuel-loading patterns as well as the fuel element reactivity worth distributions were used in the validation process of the physical model and neutron cross section data from the ENDF/B-V evaluation. The calculated Keff overestimated the experimental data by 1.0% for both the initial core and the several fuel-loading arrangements (fuel or graphite element was added only to the outer-ring), but the discrepancy increased to 1.8% for the some fuel-loading patterns (graphite element was positioned in the inner-ring). The comparison result of the fuel element worth distribution showed above tendency. Al in all, the agreement between the MCNP predictions and the experimentally determined values is good, which indicates that the Monte Carlo model is enough to simulate criticality of the TRIGA-2 reactor. (author)

  13. Optical observations on critical ionization velocity experiments in space

    International Nuclear Information System (INIS)

    A number of Critical Ionization Velocity (CIV) experiments have been performed in space. CIV has been observed in laboratory experiments, but experiments in space have been inconclusive. Most space experiments have used barium which ionizes easily, and with emission lines from both neutrals and ions in the visible optical observations can be made from the ground. Also other elements, such as xenon, strontium and calcium, have been used. High initial ionization in some barium release experiments has been claimed due to CIV. However, a number of reactions between barium and the ambient plasma have been suggested as more likely processes. Currently the most popular process in this debate is charge exchange with O+. This process has a large cross section, but is it large enough? The cross section for charge exchange with calcium should be even larger, but in a double release of barium and calcium (part of the NASA CRRES release experiments) most ionization was observed from the barium release. Moreover, if charge exchange is the dominant process, the amount of ionization should relate to the oxygen ion density, and that does not appear to be the case. Other processes, such as associative ionization, have also been proposed, but yields are uncertain because the reaction rates are very poorly known

  14. Utilization of the BARC critical facility for ADS related experiments

    Indian Academy of Sciences (India)

    Rajeev Kumar; R Srivenkatesan

    2007-02-01

    The paper discusses the basic design of the critical facility, whose main purpose is the physics validation of AHWR. Apart from moderator level control, the facility will have shutdown systems based on shutoff rods and multiple ranges of neutron detection systems. In addition, it will have a flux mapping system based on 25 fission chambers, distributed in the core. We are planning to use this reactor for experiments with a suitable source to simulate an ADS system. Any desired sub-criticality can be achieved by adjusting the moderator level. Apart from perfecting our experimental techniques, in simple configurations, we intend to study the one-way coupled core in this facility. Preliminary calculations, employing a Monte Carlo code TRIPOLI, are presented.

  15. The Los Alamos Space Science Outreach (LASSO) Program

    Science.gov (United States)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  16. Fundamental-mode sources in approach to critical experiments

    International Nuclear Information System (INIS)

    An equivalent fundamental-mode source is an imaginary source that is distributed identically in space, energy, and angle to the fundamental-mode fission source. Therefore, it produces the same neutron multiplication as the fundamental-mode fission source. Even if two source distributions produce the same number of spontaneous fission neutrons, they will not necessarily contribute equally toward the multiplication of a given system. A method of comparing the relative importance of source distributions is needed. A factor, denoted as g* and defined as the ratio of the fixed-source multiplication to the fundamental-mode multiplication, is used to convert a given source strength to its equivalent fundamental-mode source strength. This factor is of interest to criticality safety as it relates to the 1/M method of approach to critical. Ideally, a plot of 1/M versus κeff is linear. However, since 1/M = (1 minus κeff)/g*, the plot will be linear only if g* is constant with κeff. When g* increases with κeff, the 1/M plot is said to be conservative because the critical mass is underestimated. However, it is possible for g* to decrease with κeff yielding a nonconservative 1/M plot. A better understanding of g* would help predict whether a given approach to critical will be conservative or nonconservative. The equivalent fundamental-mode source strength g*S can be predicted by experiment. The experimental method was tested on the XIX-1 core on the Fast Critical Assembly at the Japan Atomic Energy Research Institute. The results showed a 30% difference between measured and calculated values. However, the XIX-1 reactor had significant intermediate-energy neutrons. The presence of intermediate-energy neutrons may have made the cross-section set used for predicted values less than ideal for the system

  17. Fast Reactor Spent Fuel Processing: Experience and Criticality Safety

    International Nuclear Information System (INIS)

    This paper discusses operational and criticality safety experience associated with the Idaho National Laboratory Fuel Conditioning Facility which uses a pyrometallurgical process to treat spent fast reactor metallic fuel. The process is conducted in an inert atmosphere hot cell. The process starts with chopping metallic fuel elements into a basket. The basket is lowered into molten salt (LiCl-KCl) along with a steel mandrel. Active metal fission products, transuranic metals and sodium metal in the spent fuel undergo chemical oxidation and form chlorides. Voltage is applied between the basket, which serves as an anode, and the mandrel, which serves as a cathode, causing metallic uranium in the spent fuel to undergo electro-chemical oxidation thereby forming uranium chloride. Simultaneously at the cathode, uranium chloride undergoes electro-chemical reduction and deposits uranium metal onto the mandrel. The uranium metal and accompanying entrained salt are placed in a distillation furnace where the uranium melts forming an ingot and the entrained salt boils and subsequently condenses in a separate crucible. The uranium ingots are placed in long term storage. During the ten year operating history, over one hundred criticality safety evaluations were prepared. All criticality safety related limits and controls for the entire process are contained in a single document which required over thirty revisions to accommodate the process changes. Operational implementation of the limits and controls includes use of a near real-time computerized tracking system. The tracking system uses an Oracle database coupled with numerous software applications. The computerized tracking system includes direct fuel handler interaction with every movement of material. Improvements to this system during the ten year history include introduction of web based operator interaction, tracking of moderator materials and the development of a plethora database queries to assist in day to day

  18. Aesthetic Experience and Transformation in Music Therapy: A Critical Essay

    Directory of Open Access Journals (Sweden)

    Giorgos Tsiris

    2008-11-01

    Full Text Available The present paper is a critical essay which is based on Aigen’s (2007, p. 127 premise that "aesthetic experience involves and models processes of transformation that are necessary parts of successful music therapy." From his premise, three basic points emerge: aesthetic experience, transformation and successful music therapy. Based on these points I structure my essay in four parts. In the first part I do a brief retrospective review of the philosophical discourse of aesthetics, as this emerged in ancient Greece and later on in the eighteenth and nineteenth century in Western Europe. The second part concerns the nature of aesthetic experience and its relevance to music therapy where my focus is mainly concentrated on Aigen’s concept of music as a medium and its fundamental relation to Dewey’s ideas. The third part of the essay concerns transformation, its meaning and its role in therapy. I explore the concept of transformation as an intermediate stage between "death" and "rebirth" by drawing mainly from humanistic approaches and Rogers’ notion of "becoming a person." The connection of aesthetic experience with processes of transformation is revealed through their common inherent characteristics of change, growth, and tension. In the last part, I define what "successful" music therapy means by identifying its clinical aims. I also develop the importance of aesthetic experience and transformation in the framework of music-centered music therapy, while I conclude by suggesting its significance to the broader field of music therapy.

  19. Forecast of criticality experiments and experimental programs needed to support nuclear operations in the United States of America: 1994--1999

    International Nuclear Information System (INIS)

    This Forecast is generated by the Chair of the Experiment Needs Identification Workgroup (ENIWG), with input from Department of Energy and the nuclear community. One of the current concerns addressed by ENIWG was the Defense Nuclear Facilities Safety Board's Recommendation 93-2. This Recommendation delineated the need for a critical experimental capability, which includes (1) a program of general-purpose experiments, (2) improving the information base, and (3) ongoing departmental programs. The nuclear community also recognizes the importance of criticality theory, which, as a stepping stone to computational analysis and safety code development, needs to be benchmarked against well-characterized critical experiments. A summary project of the Department's needs with respect to criticality information includes (1) hands-on training, (2) criticality and nuclear data, (3) detector systems, (4) uranium- and plutonium-based reactors, and (5) accident analysis. The Workgroup has evaluated, prioritized, and categorized each proposed experiment and program. Transportation/Applications is a new category intended to cover the areas of storage, training, emergency response, and standards. This category has the highest number of priority-1 experiments (nine). Facilities capable of performing experiments include the Los Alamos Critical Experiment Facility (LACEF) along with Area V at Sandia National Laboratory. The LACEF continues to house the most significant collection of critical assemblies in the Western Hemisphere. The staff of this facility and Area V are trained and certified, and documentation is current. ENIWG will continue to work with the nuclear community to identify and prioritize experiments because there is an overwhelming need for critical experiments to be performed for basic research and code validation

  20. Forecast of criticality experiments and experimental programs needed to support nuclear operations in the United States of America: 1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, D.

    1994-03-01

    This Forecast is generated by the Chair of the Experiment Needs Identification Workgroup (ENIWG), with input from Department of Energy and the nuclear community. One of the current concerns addressed by ENIWG was the Defense Nuclear Facilities Safety Board`s Recommendation 93-2. This Recommendation delineated the need for a critical experimental capability, which includes (1) a program of general-purpose experiments, (2) improving the information base, and (3) ongoing departmental programs. The nuclear community also recognizes the importance of criticality theory, which, as a stepping stone to computational analysis and safety code development, needs to be benchmarked against well-characterized critical experiments. A summary project of the Department`s needs with respect to criticality information includes (1) hands-on training, (2) criticality and nuclear data, (3) detector systems, (4) uranium- and plutonium-based reactors, and (5) accident analysis. The Workgroup has evaluated, prioritized, and categorized each proposed experiment and program. Transportation/Applications is a new category intended to cover the areas of storage, training, emergency response, and standards. This category has the highest number of priority-1 experiments (nine). Facilities capable of performing experiments include the Los Alamos Critical Experiment Facility (LACEF) along with Area V at Sandia National Laboratory. The LACEF continues to house the most significant collection of critical assemblies in the Western Hemisphere. The staff of this facility and Area V are trained and certified, and documentation is current. ENIWG will continue to work with the nuclear community to identify and prioritize experiments because there is an overwhelming need for critical experiments to be performed for basic research and code validation.

  1. Forecast of criticality experiments and experimental programs needed to support nuclear operations in the United States of America: 1994-1999

    International Nuclear Information System (INIS)

    This Forecast is generated by the Chair of the Experiment Needs Identification Workgroup (ENIWG), with input from Department of Energy and the nuclear community. One of the current concerns addressed by ENIWG was the Defense Nuclear Facilities Safety Board's Recommendation 93-2. This Recommendation delineated the need for a critical experimental capability, which includes (1) a program of general-purpose experiments, (2) improving the information base, and (3) ongoing departmental programs. The nuclear community also recognizes the importance of criticality theory, which, as a stepping stone to computational analysis and safety code development, needs to be benchmarked against well-characterized critical experiments. A summary projection of the Department's needs with respect to criticality information includes (1) hands-on training, (2) criticality and nuclear data, (3) detector systems, (4) uranium- and plutonium-based reactors, and (5) accident analysis. The Workgroup has evaluated, prioritized, and categorized each proposed experiment and program. Transportation/Applications is a new category intended to cover the areas of storage, training, emergency response, and standards. This category has the highest number of priority-1 experiments (nine). Facilities capable of performing experiments include the Los Alamos Critical Experiment Facility (LACEF) along with Area V at Sandia National Laboratory. The LACEF continues to house the most significant collection of critical assemblies in the Western Hemisphere. The staff of this facility and Area V are trained and certified, and documentation is current. ENIWG will continue to work with the nuclear community to identify and prioritize experiments because there is an overwhelming need for critical experiments to be performed for basic research and code validation

  2. CIV experiments on ATLAS-1. [Critical Ionization Velocity

    Science.gov (United States)

    Marshall, J. A.; Burch, J. L.; Choueiri, E. Y.; Kawashima, N.

    1993-01-01

    A test of the Critical Ionization Velocity (CIV) theory was made with neutral xenon releases from the Space Experiments with Particle Accelerators hollow cathode plasma contactor onboard the Shuttle Orbiter Atlantis during the ATLAS-1 mission. The gas velocity perpendicular to the Earth's magnetic field was essentially the orbital velocity (7.5 km/s), and thus it exceeded the CIV for xenon. The releases were observed with onboard instrumentation. A factor of 60 enhancement was seen in the Langmuir probe current. Calculations confirmed that release conditions generally satisfied criteria for CIV and predicted a maximum factor of 20 increase in plasma density. Thus, CIV effects were likely to have occurred during the ATLAS-I experiments.

  3. Controlled damping of a physical pendulum: experiments near critical conditions

    International Nuclear Information System (INIS)

    This paper presents an experimental device for the study of damped oscillatory motion along with three associated experiments. Special emphasis is given on both didactic aspects and the interactivity of the experimental set-up, in order to assist students in understanding fundamental aspects of damped oscillatory motion and allow them to directly compare their experimental results with the well-known theory they can find in textbooks. With this in mind, a physical pendulum was selected with an eddy-current damping system that allows the damping conditions to be controlled with great precision. The three experiments examine accurate control of damping, frequency shift near critical damping and the transition from underdamped to overdamped conditions

  4. Critical experiments on enriched uranium graphite moderated cores

    International Nuclear Information System (INIS)

    A variety of 20 % enriched uranium loaded and graphite-moderated cores consisting of the different lattice cells in a wide range of the carbon to uranium atomic ratio have been built at Semi-Homogeneous Critical Experimental Assembly (SHE) to perform the critical experiments systematically. In the present report, the experimental results for homogeneously or heterogeneously fuel loaded cores and for simulation core of the experimental reactor for a multi-purpose high temperature reactor are filed so as to be utilized for evaluating the accuracy of core design calculation for the experimental reactor. The filed experimental data are composed of critical masses of uranium, kinetic parameters, reactivity worths of the experimental control rods and power distributions in the cores with those rods. Theoretical analyses are made for the experimental data by adopting a simple ''homogenized cylindrical core model'' using the nuclear data of ENDF/B-III, which treats the neutron behaviour after smearing the lattice cell structure. It is made clear from a comparison between the measurement and the calculation that the group constants and fundamental methods of calculations, based on this theoretical model, are valid for the homogeneously fuel loaded cores, but not for both of the heterogeneously fuel loaded cores and the core for simulation of the experimental reactor. Then, it is pointed out that consideration to semi-homogeneous property of the lattice cells for reactor neutrons is essential for high temperature graphite-moderated reactors using dispersion fuel elements of graphite and uranium. (author)

  5. Analysis of BFS-75-1 critical experiment

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Young Il; Kim, Sang Ji

    2001-03-01

    As the second stage of critical experiment plan for developing the KALIMER core design, an experimental program named BFS-75-1 was carried out through the second half of 1998 to the first half of 1999, for which a critical mock-up core was constructed at the BFS-1 facility in IPPE. In this work, the K-CORE system, being used in the KALIMER conceptual core design, has been validated against BFS-75-1 experiment by comparing the calculated results to the measurements. The validation results show that the effective multiplication factor can be predicted within 0.2% error. The fission reaction rate distributions are calculated within 10% error in the core region, but are found to be in poor agreement in the blanket region. The calculated values agree with the measured ones within 3% for principal one and 7% for minor actinide spectal index according to various measurement method respectively. The calculation for sodium void reactivity worth shows the large deviation from measurement value in case of central void but 24% deviation at the core boundary region. Deviations are found ranged from 1% to 7% in the most of control rod experiment except the trap type control rod simulated by pellets. In the calculations of small sample reactivity worth, the first order perturbation method results in the calculated errors less than 8% for U-235, U-238, Pu-239 and B-10, but much higher calculated errors for other materials. The calculated value for Doppler effect shows the large deviation from experiment value but the reason for these unacceptable deviations has not been identified yet.

  6. Star of Condor - A strontium critical velocity experiment, Peru, 1983

    Science.gov (United States)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T.; Foeppl, H.; Valenzuela, A.

    1986-01-01

    'Star of Condor' was a critical velocity experiment using Sr vapor produced in a radial shaped charge, which was carried to 571.11 km altitude on a Taurus-Tomahawk rocket launched from Punto Lobos, Peru, and detonated in the plane of the magnetic field lines so that all ranges of pitch angles from parallel to B to perpendicular to B were covered. Sr has a critical velocity of 3.3 km/s, and from observation, 42.5 percent of the neutral Sr gas had a velocity component perpendicular to B exceeding that value. No Sr ion emissions were detected shortly after the burst with usual TV integration times. However, about 10 min after the detonation a faint field-aligned streak was discovered with long TV integration times. The brightness is estimated as 5 R, which, combined with the streak geometry, implies an ion production of 2.4 x 10 to the 19th ions. This is only 0.0036 percent ionization of the Sr vapor. All the ions could easily have been produced by thermal ionization from the original detonation thermal distribution. The breakup of the Sr gas into small bloblike structures may have allowed the high-energy electrons to escape before an ionization cascade could be produced. For whatever reason, the Alfven mechanism proposed for space plasmas in the absence of laboratory walls did not produce an ionization cascade in the experiment.

  7. SR90, strontium shaped-charge critical ionization velocity experiment

    International Nuclear Information System (INIS)

    In May 1986 the authors carried out an experiment to test Alfven's critical ionization velocity (CIV) effect in free space, using the first high-explosive shaped charge with a conical liner of strontium metal. The release, made at 540 km altitude at dawn twilight, was aimed at 48 degree to B. The background electron density was 1.5 x 104 cm -3. A faint field-aligned Sr+ ion streak with tip velocity of 2.6 km s-1 was observed from two optical sites. Using two calibration methods, they calculate that between 4.5 x 1020 and 2 x 1021 ions were visible. They have calculated an ionization time constant of 1,920 s for Sr from the solar UV spectrum and ionization cross section, which combined with a computer simulation of the injection predicts 1.7 x 1021 solar UV ions in the low-velocity part of the ion streak. Thus all the observed ions are from solar UV ionization of the slow (less than critical) velocity portion of the neutral jet. The observed neutral Sr velocity distribution and computer simulations indicate that 2 x 1021 solar UV ions would have been created from the fast (greater than critical) part of the jet. They would have been more diffuse and were not observed. Using this fact, they estimate that any CIV ions created were less than 1021. They conclude that future Sr CIV free space experiments should be conducted below the UV shadow height and in much larger background plasma density

  8. SR90, strontium shaped-charge critical ionization velocity experiment

    Science.gov (United States)

    Wescott, Eugene M.; Stenbaek-Nielsen, Hans; Swift, Daniel W.; Valenzuela, Arnoldo; Rees, David

    1990-01-01

    In May 1986 an experiment was performed to test Alfven's critical ionization velocity (CIV) effect in free space, using the first high explosive shaped charge with a conical liner of strontium metal. The release, made at 540 km altitude at dawn twilight, was aimed at 48 deg to B. The background electron density was 1.5 x 10(exp 4) cu cm. A faint field-aligned Sr(+) ion streak with tip velocity of 2.6 km/s was observed from two optical sites. Using two calibration methods, it was calculated that between 4.5 x 10(exp 20) and 2 x 10(exp 21) ions were visible. An ionization time constant of 1920 s was calculated for Sr from the solar UV spectrum and ionization cross section which combined with a computer simulation of the injection predicts 1.7 x 10(exp 21) solar UV ions in the low-velocity part of the ion streak. Thus all the observed ions are from solar UV ionization of the slow (less than critical) velocity portion of the neutral jet. The observed neutral Sr velocity distribution and computer simulations indicate that 2 x 10(exp 21) solar UV ions would have been created from the fast (greater than critical) part of the jet. They would have been more diffuse, and were not observed. Using this fact it was estimated that any CIV ions created were less than 10(exp 21). It was concluded that future Sr CIV free space experiments should be conducted below the UV shadow height and in much larger background plasma density.

  9. Lessons learned from applying VIM to fast reactor critical experiments

    International Nuclear Information System (INIS)

    VIM is a continuous energy Monte Carlo code first developed around 1970 for the analysis of plate-type, fast-neutron, zero-power critical assemblies. In most respects, VIM is functionally equivalent to the MCNP code but it has two features that make uniquely suited to the analysis of fast reactor critical experiments: (1) the plate lattice geometry option, which allows efficient description of and neutron tracking in the assembly geometry, and (2) a statistical treatment of neutron cross section data in the unresolved resonance range. Since its inception, VIM's capabilities have expanded to include numerous features, such as thermal neutron cross sections, photon cross sections, and combinatorial and other geometry options, that have allowed its use in a wide range of neutral-particle transport problems. The earliest validation work at Argonne National Laboratory (ANL) focused on the validation of VIM itself. This work showed that, in order for VIM to be a ''rigorous'' tool, extreme detail in the pointwise Monte Carlo libraries was needed, and the required detail was added. The emphasis soon shifted to validating models, methods, data and codes against VIM. Most of this work was done in the context of analyzing critical experiments in zero power reactor (ZPR) assemblies. The purpose of this paper is to present some of the lessons learned from using VIM in ZPR analysis work. This involves such areas as uncovering problems in deterministic methods and models, pitfalls in using Monte Carlo codes, and improving predictions. The numerical illustrations included here were taken from the extensive documentation cited as references

  10. ESADA Plutonium Program Critical Experiments: Power Distribution Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Akkurt, H.

    2001-06-12

    In 1967, a series of critical experiments were conducted at the Westinghouse Reactor Evaluation Center (WREC) using mixed-oxide (MOX) PuO{sub 2}-UO{sub 2} and/or UO{sub 2} fuels in various lattices and configurations. These experiments were performed under the joint sponsorship of Empire State Atomic Development Associates (ESADA) plutonium program and Westinghouse. The purpose of these experiments was to develop experimental data useful in validating analytical methods used in the design of plutonium-bearing replacement fuel for water reactors. Three different fuel types were used during the experimental program: two MOX fuels and a low-enriched UO{sub 2} fuel. The MOX fuels were distinguished by their {sup 240}Pu content: 8 wt % {sup 240}Pu and 24 wt % {sup 240}Pu. Both MOX fuels contained 2.0 wt % PuO{sub 2} in natural UO{sub 2}. The UO{sub 2} fuel with 2.72 wt % enrichment was used for comparison with the plutonium data and for use in multiregion experiments.

  11. Experiences of critical care nurses caring for unresponsive patients.

    Science.gov (United States)

    Villanueva, N E

    1999-08-01

    Grounded theory methodology was utilized to explore the experiences of critical care nurses caring for patients who were unable to respond due to a traumatic brain injury or receiving neuromuscular blocking agents. The registered nurses participating in the study worked in a neuroscience intensive care unit. Saturation of the categories was achieved with 16 interviews. The core category that emerged from the study is Giving the Patient a Chance. The subcategories of Learning about My Patient, Maintaining and Monitoring, Talking to My Patient, Working with Families, Struggling with Dilemmas and Personalizing the Experience all centered upon the focus of doing everything to help the patient attain the best possible outcome. Factors influencing each of the subcategories were identified such as the acuity of the patient, experience level of the nurse and the presence or absence of family members or significant others. These factors accounted for the variations in the nurses' experience. Several reasons accounting for the variations were determined. The study identified areas that need to be addressed in both general nursing education and nursing practice, such as instruction on talking to comatose patients, working with families and orientation information for nurses new to caring for these populations. Recommendations for improvement in these areas, as well as for future studies are discussed. PMID:10553569

  12. The Relationships of Critical Thinking Skills, Critical Thinking Dispositions, and College Experiences of Theological Students in Indonesia

    Science.gov (United States)

    Soeherman, Sylvia

    2010-01-01

    The purposes of this study were to assess the critical thinking skills of theological students in Indonesia and to explore the relationships between these students' critical thinking skills and their demographic profiles, critical thinking dispositions, and college experiences. All third-year students who pursued either the Sarjana Theologi (a…

  13. Criticality experiments: analysis, evaluation, and programs. 7. Program of Experimental Investigations on Critical Facilities at IPPE

    International Nuclear Information System (INIS)

    In general, the BFS-1, BFS-2, MATR, and RF-GS critical facilities remain in operation at the Institute of Physics and Power Engineering (IPPE). BFS-1 and BFS-2 are universal facilities primarily intended for use with solid component elements; however, the license allows the use of water in central sub-zones. The BFS-1 and BFS-2 facilities are used for simulation of fast systems as well as systems with intermediate and thermal spectra. The MATR critical facility is intended for research of temperature effects on water-moderated cores over a wide range of temperatures (up to 250 deg. C) and pressures. The RF-GS critical facility is designed (with adaptable opportunities) for the simulation of multiplying systems with a water moderator. The experimental programs are being developed in the following directions: 1. use of plutonium released from the military programs as fuel for the BN and VVER reactors as well as for its immobilization in geological formations; 2. based on the perspective of the nuclear fuel cycle (in accordance with the initiative of the President of the Russian Federation), implemented in a new generation of fast reactors; 3. investigations of prospective reactors and accelerator-driven systems and creation of benchmarks for testing of calculational codes and neutron data for nontraditional materials. A considerable part of these investigations is being carried out in cooperation with foreign laboratories (United States, Japan, France, People's Republic of China, Republic of Korea, etc.). These programs are focused in three main directions. The first is concerned with the BN-600 reactor. Investigations into the use of a hybrid zone with this reactor have been carried out since 1999 and include the BFS-62-1 core (BN-600 initial state), BFS-62-2 (uranium core, steel reflector), BFS-62-3 (hybrid core, steel reflector), and BFS-62-4 (hybrid core, radial blanket). These experiments will be finished at the beginning of 2001 and are being carried out in

  14. International comparison of criticality accident evaluation methods. Evaluation plan of super-critical benchmark based on TRACY experiment

    International Nuclear Information System (INIS)

    In order to evaluate criticality accident analysis codes, a criticality accident benchmark problem was made based on the TRACY experiment. It is evaluated by the contributors of the expert group on criticality excursion analysis, a group of criticality safety WP of OECD/NEA/NSC. This paper reports the detail of TRACY Benchmark I and II, and preliminary results of its analysis using AGNES code. (author)

  15. Experience and Consideration in Safety Critical Software Tests

    International Nuclear Information System (INIS)

    Software for safety critical systems of nuclear power plants are developed based on a strict development process. Software verification and validation (SW V and V) is a very important one among development activities. Specially, testing part of SW V and V needs many efforts and know-how. KOPEC has experience from several projects for Nuclear Power Plants. Each SW V and V step of software development model has specific goals such as performance, calculation accuracy, response time, depending on test stage. To achieve each goal, various testing methodologies are adopted. When the results of each stage satisfy expected performance and accuracy, the next stage is performed. Faults are detected during tests, and if correcting faults needed software change, regression tests should be performed through all stages

  16. Experiments on critical heat flux for CAREM reactor

    International Nuclear Information System (INIS)

    The prediction of critical heat flux (CHF) in rod bundles of light water reactors is basically performed with the aid of empirical correlations derived from experimental data. Many CHF correlations have been proposed and are widely used in the analysis of the thermal margin during normal operation, transient, and accident conditions. Correlations found in the open literature are not sufficiently verified for the thermal-hydraulic conditions that appear in the CAREM core under normal operation: high pressure, low flow, and low qualities. To compensate this deficiency, an experimental investigation on CHF in such thermal-hydraulic conditions is being carried out. The experiments have been performed in the Institute of Physics and Power Engineering of Russian Federation. A short description of facilities, details of the experimental program and some trends in the preliminary results obtained are presented in this work. (author)

  17. Experiments on Critical Heat Flux for CAREM -25 Reactor

    International Nuclear Information System (INIS)

    The prediction of critical heat flux (CHF) in rod bundles of light water reactors is basically performed with the aid of empirical correlations derived from experimental data.Many CHF correlations have been proposed and are widely used in the analysis of the thermal margin during normal operation, transient, and accident conditions.Correlations found in the open literature are not sufficiently verified for the thermal hydraulic conditions that appear in the CAREM core under normal operation: high pressure, low flow, and low qualities.To compensate this deficiency, an experimental investigation on CHF in such thermal-hydraulic conditions was carried out.The experiments have been performed in the Institute of Physics and Power Engineering of Russian Federation.A short description of facilities, details of the experimental program and some preliminary results obtained are presented in this work

  18. Critical experiments on STACY homogeneous core containing 10% enriched uranyl nitrate solution

    International Nuclear Information System (INIS)

    In order to investigate criticality properties of low enriched uranyl nitrate solution treated in the reprocessing facility for LWR fuel cycle, systematic and high precision critical experiments have been performed at the Static Experiment Critical Facility, STACY since 1995. Criticality benchmark data on 10% enriched uranyl nitrate solution for single core and multiple core systems have been accumulated using cylindrical and slab type core tanks. This paper overviews mains data and related criticality calculation results using standard criticality safety calculation code system. (author)

  19. Nuclear criticality safety: 2-day training course

    Energy Technology Data Exchange (ETDEWEB)

    Schlesser, J.A. [ed.] [comp.

    1997-02-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course.

  20. Nuclear criticality safety: 2-day training course

    International Nuclear Information System (INIS)

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course

  1. Experience with soluble neutron poisons for criticality control at ICPP

    International Nuclear Information System (INIS)

    Soluble neutron poisons assure criticality control in two of the headend fuel reprocessing systems at the Idaho Chemical Processing Plant. Soluble poisons have been used successfully since 1964 and will be employed in the projected new headend processes. The use of soluble poisons (1) greatly increases the process output (2) allows versatility in the size of fuel assemblies processed and (3) allows the practical reprocessing of some fuels. The safety limit for all fluids entering the U-Zr alloy dissolver is 3.6 g/liter boron. To allow for possible deviations in the measurement systems and drift between analytical sampling periods, the standard practice is to use 3.85 g/liter boron as the lower limit. This dissolver has had 4000 successful hours of operation using soluble poisons. The electrolytic dissolution process depends on soluble gadolinium for criticality safety. This system is used to process high enriched uranium clad in stainless steel. Electrolytic dissolution takes advantage of the anodic corrosion that occurs when a large electrical current is passed through the fuel elements in a corrosive environment. Three control methods are used on each headend system. First, the poison is mixed according to standard operating procedures and the measurements are affirmed by the operator's supervisor. Second, the poisoned solution is stirred, sampled, analyzed, and the analysis reported while still in the mix tank. Finally, a Nuclear Poison Detection System (NPDS) must show an acceptable poison concentration before the solution can be transferred. The major disadvantage of using soluble poisons is the need for very sophisticated control systems and procedures, which require extensive checkout. The need for a poisoned primary heating and cooling system means a secondary system is needed as well. Experience has shown, however, that production enhancement more than makes up for the problems

  2. Comparison and analysis of 2-D simulation results with two implosion radiation experiments on the Los Alamos Pegasus I and Pegasus II capacitor banks

    International Nuclear Information System (INIS)

    Two experiments, PegI-41, conducted on the Los Alamos Pegasus I capacitor bank, and PegII-25, on the Pegasus II bank, consisted of the implosions of 13 mg (nominal), 5 cm radius, 2 cm high thin cylindrical aluminum foils resulting in soft x-ray radiation pulses from the plasma thermalization on axis. The implosions were conducted in direct-drive (no intermediate switching) mode with peak currents of about 4 MA and 5 MA respectively, and implosion times of about 2.5 micros and 2.0 micros. A radiation yield of about 250 kJ was measured for PegII-25. The purpose of these experiments was to examine the physics of the implosion and relate this physics to the production of the radiation pulse and to provide detailed experimental data which could be compared with 2-D radiation-magnetohydrodynamic (RMHD) simulations. Included in the experimental diagnostic suites were faraday rotation and dB/dt current measurements, a visible framing camera, an x-ray stripline camera, time-dependent spectroscopy, bolometers and XRD'S. A comparison of the results from these experiments shows agreement with 2-D simulation results in the instability development, current, and radiation pulse data, including the pulsewidth, shape, peak power and total radiation yield as measured by bolometry. Instabilities dominate the behavior of the implosion and largely determine the properties of the resulting radiation pulse. The 2-D simulations can be seen to be an important tool in understanding the implosion physics

  3. Enabling software defined networking experiments in networked critical infrastructures

    Directory of Open Access Journals (Sweden)

    Béla Genge

    2014-05-01

    Full Text Available Nowadays, the fact that Networked Critical Infrastructures (NCI, e.g., power plants, water plants, oil and gas distribution infrastructures, and electricity grids, are targeted by significant cyber threats is well known. Nevertheless, recent research has shown that specific characteristics of NCI can be exploited in the enabling of more efficient mitigation techniques, while novel techniques from the field of IP networks can bring significant advantages. In this paper we explore the interconnection of NCI communication infrastructures with Software Defined Networking (SDN-enabled network topologies. SDN provides the means to create virtual networking services and to implement global networking decisions. It relies on OpenFlow to enable communication with remote devices and has been recently categorized as the “Next Big Technology”, which will revolutionize the way decisions are implemented in switches and routers. Therefore, the paper documents the first steps towards enabling an SDN-NCI and presents the impact of a Denial of Service experiment over traffic resulting from an XBee sensor network which is routed across an emulated SDN network.

  4. Integrated Verification Experiment data collected as part of the Los Alamos National Laboratory's Source Region Program

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, T.J.; Carlos, R.C.; Argo, P.E.

    1993-01-21

    As part of the integrated verification experiment (IVE), we deployed a network of hf ionospheric sounders to detect the effects of acoustic waves generated by surface ground motion following underground nuclear tests at the Nevada Test Site. The network sampled up to four geographic locations in the ionosphere from almost directly overhead of the surface ground zero out to a horizontal range of 60 km. We present sample results for four of the IVEs: Misty Echo, Texarkana, Mineral Quarry, and Bexar.

  5. Nuclear criticality safety: 2-day training course

    International Nuclear Information System (INIS)

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: (1) be able to define terms commonly used in nuclear criticality safety; (2) be able to appreciate the fundamentals of nuclear criticality safety; (3) be able to identify factors which affect nuclear criticality safety; (4) be able to identify examples of criticality controls as used at Los Alamos; (5) be able to identify examples of circumstances present during criticality accidents; (6) have participated in conducting two critical experiments

  6. Critical Pedagogy: EFL Teachers’ Views, Experience and Academic Degrees

    OpenAIRE

    Mahsa Mahmoodarabi; Mohammad Reza Khodabakhsh

    2015-01-01

    Although critical pedagogy has brought about positive changes in the field of education by shifting from traditional pedagogy to emancipatory pedagogy, not much attention has been paid to the factors affecting teachers’ beliefs of critical pedagogy and only few studies have been conducted to design reliable and valid instruments to study EFL (English as a Foreign Language) teachers’ beliefs about different aspects of teaching in the field of critical pedagogy. Consequently, there is a gap in ...

  7. New features in recent critical velocity ionization experiments in space

    International Nuclear Information System (INIS)

    The authors review some new features observed in recent critical ionization velocity (CIV) space experiments: CRIT1, CRIT2, CRRES, IBSS, ATLAS-1, and APEX. In the two releases of CRIT1, the one with higher ionization featured a double pulse electric field structure while the other featured a single pulse. In both releases, the longitudinal electric field was larger than the transverse one. In CRIT2, a plasma density cavity was clearly present following the passage of the neutral cloud. Charge exchange or simply elastic collision may explain the cavity. Unlike in CRIT1, no single or double pulse electric field structure showed up in CRIT2. The electrostatic wave spectra in CRIT1 and CRIT2 showed no sign of prominent lower hybrid frequency, although the lower hybrid plasma instability has been widely believed to be the centrally important mechanism responsible for accelerating electrons to ionization energies in CIV. In CRIT2, electrons arrived at the detector before the neutral cloud. In CRRES, two pairs of gas release yielded inconsistent ionization results. The barium gas ionizations were different from each other by a factor of ten. The calcium gas ionization was about two order of magnitude lower than that predicted by charge exchange along, even if CIV did not occur. Surprisingly, in IBSS, not only the plasma density did not show any rapid increase but also it actually decreased during gas releases. In ATLAS-1, the Langmuir probe biased at a fixed potential showed two orders of magnitude increase in current collection in less than 1 ms. Yet, the rapid ionization yield in ATLAS-1 may be completely accounted for by means of charge exchange along, without invoking CIV. In APEX, ground observation failed to detect any ionization. Some of these new features are puzzling and unexpected. Potentially they may lead to a new generation of CIV theories soon

  8. Critical Pedagogy: EFL Teachers' Views, Experience and Academic Degrees

    Science.gov (United States)

    Mahmoodarabi, Mahsa; Khodabakhsh, Mohammad Reza

    2015-01-01

    Although critical pedagogy has brought about positive changes in the field of education by shifting from traditional pedagogy to emancipatory pedagogy, not much attention has been paid to the factors affecting teachers' beliefs of critical pedagogy and only few studies have been conducted to design reliable and valid instruments to study EFL…

  9. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    For non-reactor nuclear facilities, the U.S. Department of Energy (DOE) does not require that nuclear criticality safety engineers demonstrate qualification for their job. It is likely, however, that more formalism will be required in the future. Current DOE requirements for those positions which do have to demonstrate qualification indicate that qualification should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis is incompletely developed in some areas

  10. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.G. [comp.

    1994-01-01

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda.

  11. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    International Nuclear Information System (INIS)

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda

  12. Los Alamos science. Volume 4, No. 7

    International Nuclear Information System (INIS)

    A history of the Los Alamos National Laboratory over its 40 years is presented. The evolution of the laboratory is broken down into the Oppenheimer years, the Bradbury years, the Agnew years and the Kerr years. The weapons program is described including nuclear data, early reactors, computing and computers, plutonium, criticality, weapon design and field testing

  13. Learning in theatre: a critical commentary from experience

    OpenAIRE

    Hauxwell, Jonathan

    2010-01-01

    As a learning environment, the operating theatre is controlled by factors including the activities and power of the educator, available learning opportunities and professional drivers such as employment and regulatory body requirements. Serious educational issues around failing students and bullying need attention. This critical commentary from an educationalist’s standpoint provides a contextual framework for examining this rarely studied ‘classroom’.

  14. Effects of Diversity Experiences on Critical Thinking Skills: Who Benefits?

    Science.gov (United States)

    Loes, Chad; Pascarella, Ernest; Umbach, Paul

    2012-01-01

    This study analyzed data from the Wabash National Study of Liberal Arts Education to estimate the unique effects of exposure to classroom diversity and involvement in interactional diversity on growth in critical thinking skills during the first year of college. Net of important confounding influences, neither classroom nor interactional diversity…

  15. Critical and Creative Thinking Nexus: Learning Experiences of Doctoral Students

    Science.gov (United States)

    Brodin, Eva M.

    2016-01-01

    Critical and creative thinking constitute important learning outcomes at doctoral level across the world. While the literature on doctoral education illuminates this matter through the lens of experienced senior researchers, the doctoral students' own perspective is missing. Based upon interviews with 14 doctoral students from four disciplines at…

  16. The Experiences of Neophyte Teachers: A Critical Constructivist Assessment.

    Science.gov (United States)

    Goddard, J. Tim; Foster, Rosemary Y.

    2001-01-01

    Interviewed beginning teachers to examine their experiences and the extent to which their preservice programs adequately prepared them for teaching. Results revealed six conceptual and temporal states through which they passed during their initial experiences: archetype; approaching the gates; clearing the gates; the gloss wears off;…

  17. Enabling software defined networking experiments in networked critical infrastructures

    OpenAIRE

    Béla Genge; Zoltán Gál

    2014-01-01

    Nowadays, the fact that Networked Critical Infrastructures (NCI), e.g., power plants, water plants, oil and gas distribution infrastructures, and electricity grids, are targeted by significant cyber threats is well known. Nevertheless, recent research has shown that specific characteristics of NCI can be exploited in the enabling of more efficient mitigation techniques, while novel techniques from the field of IP networks can bring significant advantages. In this paper we explore the intercon...

  18. Brief summary of unreflected and unmoderated cylindrical critical experiments with oralloy at Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, J.T.

    1999-11-01

    This report lists and briefly describes {approximately}50 critical and {approximately}20 subcritical experiments with unreflected and unmoderated uranium (93.2 wt% {sup 235}U) metal that could easily be incorporated into the International Handbook of Evaluated Criticality Safety Benchmark Experiments. Photographs of several assemblies are included.

  19. Brief Summary of Unreflected and Unmoderated Cylindrical Critical Experiments with Oralloy at Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, J.T.

    1999-12-08

    This report lists and briefly describes {approx}50 critical and {approx}20 subcritical experiments with unreflected and unmoderated uranium (93.2 wt% {sup 235}U) metal that could easily be incorporated into the International Handbook of Evaluated Criticality Safety Benchmark Experiments. Photographs of several assemblies are included.

  20. Reflector-moderated critical assemblies

    International Nuclear Information System (INIS)

    Experiments with reflector-moderated critical assemblies were part of the Rover Program at the Los Alamos Scientific Laboratory (LASL). These assemblies were characterized by thick D2O or beryllium reflectors surrounding large cavities that contained highly enriched uranium at low average densities. Because interest in this type of system has been revived by LASL Plasma Cavity Assembly studies, more detailed descriptions of the early assemblies than had been available in the unclassified literature are provided. (U.S.)

  1. Benchmark on the Kritz-2 Leu and MOX critical experiments

    International Nuclear Information System (INIS)

    In the framework of the joint activities of the OECD/NEA Working Party on the Physics of Plutonium Fuels and Innovative Fuel Cycles (WPPR)1 and the Task Force on Reactor-based Plutonium Disposition (TFRPD), an international benchmark exercise based on KRITZ UO2 and MOX critical configurations was launched in October 2000. The aim of this exercise was to investigate the capabilities of the current production codes and nuclear data libraries to analyse MOX-fuelled systems, and to compare the accuracy of the predictions for the MOX- and UO2-fuelled configurations. Institutions from 7 countries participated in this exercise, providing 13 solutions. The report provides comparative analyses of calculated and measured results, as well as intercomparisons of some of the results obtained by participants by calculation only. (author)

  2. Early history of NMR at Los Alamos

    International Nuclear Information System (INIS)

    Nuclear magnetic resonance (NMR) spectroscopy has developed into an important research tool in chemistry. More recently, NMR imaging and in vivo spectroscopy promise to produce a revolution in medicine and biochemistry. Early experiments at Los Alamos led to DOE programs involving stable isotopes of importance to biology and to medicine. These events are briefly recounted. 2 refs

  3. Critical Heat Flux during Flow Boiling Experiment with Surfactant Solutions

    International Nuclear Information System (INIS)

    Some additives enhance heat transfer, although, the magnitude and mechanism of enhancement are not consistent or clearly understood. A low concentration of surfactant can also reduce the solution's surface tension considerably, and its level of reduction depends on the amount and type of surfactant present in solution. The surfactant concentrations are usually low enough that the addition of surfactant to water causes no significant change in saturation temperature and most other physical properties, except viscosity and surface tension. Reduced surface tension influences the activation of nucleation sites, bubble growth and dynamics, affecting the boiling heat transfer coefficient. Surfactants effect on CHF (Critical Heat Flux) was determined during flow boiling at atmospheric pressure in closed loop filled with water solutions of tri-sodium phosphate (TSP, Na3PO4.12H2O). TSP was added to the containment sump water to adjust pH level during accidents in nuclear power plants. CHF was measured for four water surfactant solutions at different mass fluxes (100 - 500 kg/m2sec) and two inlet subcooling temperatures (50 .deg. C and 75 .deg. C). Wettability was determined by measuring the contact angle at different concentration cases that will substantiate any CHF increase

  4. Programs of Experiments with Critical Assemblies at the Russian Research Centre 'Kurchatov Institute'

    International Nuclear Information System (INIS)

    The paper gives a brief overview of benchmark experiments that have been performed and are being performed at the Russian Research Centre 'Kurchatov Institutes' (RRC KIs), satisfy requirements of the International Criticality Safety Benchmark Evaluation Project (ICSBEP), and have been published or will be published in the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments'. These experiments include critical experiments in water-moderated facilities pertaining to substantiation of reactor physics for VVER-type light water reactors with uranium enrichments varying from natural uranium to ∼6.5%; in heterogeneous critical assemblies with a widely varying uranium enrichment (from 5 to 96%) for small nuclear power systems of various applications; in critical assemblies with a uranyl sulfate solution core; and in critical assemblies simulating peculiarities of high-temperature gas-cooled reactors (HTGR), RBMK physics, etc.A list of critical assemblies currently in operation at RRC KI is given. Future experimental programs are briefly described; their implementation, if based on the ICSBEP requirements, will be useful for the international community. Using RRC KI as an example, it is demonstrated that Russian nuclear centers maintain capabilities for carrying out a wide range of new critical experiments, including international cooperation in this area

  5. Analysis Of Criticality Experiments Of Bandung Triga 2000 Reactor By Using MCNP-4B Code

    International Nuclear Information System (INIS)

    During the first core loading of Bandung TRIGA 2000 reactor, two kinds of criticality experiment have been conducted, i.e, sub critical core loading and critical core loading experiments. The purpose of the experiments is to maximize the utilization of the reactor as well as to provide benchmark data for neutronic computer codes. In the sub critical core loading experiment, the core is loaded up to 42 fuel elements ring D, 13 fuel elements in ring, D, 6 fuel elements and 3 graphite dummies in ring E, 2 fuel elements in ring B, 2 fuel elements in ring B, 1 fuel element in ring B. In the other case, during the critical loading experiment, the core is loaded following the loading pattern planned by General Atomics, i.e: 20 fuel elements in ring B, C and D plus 5 control rods in ring D, 11 fuel elements in ring D, 6 fuel elements and 3 graphite dummies in ring E, and then the core is loaded with additional fuel elements, step by step, until the core reached its first criticality, i.e., 55 fuel elements. Prior to conduct of criticality experiments MCNP-4B code is used to plan the fuel loading pattern of the sub critical loading experiment, i.e. to assure that the core is still in sub critical state with 42 fuel elements in the core. In the calculation is assumed that the mass of U-235 in each fuel element depends on the documented burnup data, the mass of U-238 is assumed to be the same as the one in fresh fuels. Furthermore, all fission patricides as well as poisonous materials in each fuel element are ignored. The experiment results showed that the calculations of MCNP-4B also predicted that TRIGA 2000 reactor with the above assumptions, is appropriate for predicting for predicting the neutronic characteristics of Bandung TRIGA 2000 reactor

  6. Criticality experiments: analysis, evaluation, and programs. 1. Preview of the 2001 Edition of the 'International Handbook of Criticality Safety Benchmark Experiments'

    International Nuclear Information System (INIS)

    The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in 1992 and has become a major internationally recognized program. The purpose of the ICSBEP is to identify, evaluate, verify, and formally document a comprehensive and internationally peer-reviewed set of criticality safety benchmark data. The work of the ICSBEP is published as an Organization for Economic Cooperation and Development (OECD) handbook entitled 'International Handbook of Criticality Safety Benchmark Experiments'. More than 150 scientists from around the world have combined their efforts to produce this handbook, which currently spans more than 19 000 pages and contains benchmark specifications for more than 2352 critical configurations. The handbook is intended for use by criticality safety analysts to perform necessary validations of their calculational techniques. The 2001 edition of the 'International Handbook of Criticality Safety Benchmark Experiments' is scheduled for publication in September of 2001 and could contain as many as 30 new evaluations of experimental data. Included in the list of 'in-progress' evaluations are: 1. the ZPPR-21 experiments entitled 'Criticality Studies for Integral Fast Reactors'; 2. RAPSODIE mixed plutonium/uranium fuel rods in water (IPSN, France); 3. mixed uranium/plutonium (29.87%) nitrate solutions poisoned with gadolinium (IPSN, France); 4. PuO2-UO2-polystyrene cubes with poison plates (Westinghouse SMS, United States); 5. highly enriched uranyl nitrate solution in steel containers with 'pipe' intersections (Westinghouse SMS, United States); 6. HEU metal in oil (Westinghouse SMS, United States); 7. an evaluation of experiments with liquid mixtures of HEU hexafluoride and hydrofluoric acid (IPSN, France); 8. critical experiments of stainless steel clad SPERT fuel in water (INEEL, United States); 9. HEU foils reflected by SiO2 and polyethylene (LANL, United States); 10. Un-reflected highly enriched uranyl nitrate subcritical

  7. Critical Thinking and Its Relationship to Motivation, Learning Strategies, and Classroom Experience.

    Science.gov (United States)

    Garcia, Teresa; Pintrich, Paul R.

    Critical thinking has important implications for classic learning issues such as transfer of knowledge and application of problem-solving skills to novel situations. The goal of this study was to identify some of the important correlates of critical thinking, in terms of motivation, use of cognitive learning strategies, and classroom experiences.…

  8. Experiments on the critical ionization velocity interaction in weak magnetic fields

    International Nuclear Information System (INIS)

    The critical ionization velocity interaction is studied experimentally in a configuration with a magnetized plasma stream colliding with a stationary neutral gas cloud. Experiments are performed both with a transverse and longitudinal magnetic field. It is found that in both cases the critical ionization velocity effect either disappears or becomes too small to be distinguishable among classical collisional processes. (author)

  9. Scope of STACY experiments for criticality benchmark data on low enriched uranium and plutonium solution system

    International Nuclear Information System (INIS)

    The Static Experiment Critical Facility, STACY was constructed in the Nuclear Fuel Cycle Safety Engineering Research Facility, NUCEF of the Japan Atomic Energy Research Institute in order to produce the fundamental critical data of uranyl nitrate solution, plutonium nitrate solution and their mixture. A series of experiments using single core tank have been performed using 10% enriched uranyl nitrate solution since the first criticality in 1995. Benchmark data of STACY are now used for verification of Japanese criticality safety code system and nuclear data libraries. Kinetic parameters, temperature coefficients and reflector effects of structural material are also measured using single homogeneous core. It is on schedule to make experiments for neutron interaction effect and for simulating the dissolving process with a heterogeneous core using low enriched uranyl nitrate solution. After these experiments, systematic critical and subcritical experiments on plutonium nitrate solution will start in five years. This paper reviews the main results of STACY since the initial criticality and describes the criticality properties of the experimental cores in the future program. (author)

  10. Reactor physics experiments with thorium based clusters in AHWR - critical facility

    International Nuclear Information System (INIS)

    AHWR - Critical Facility (AHWR - CF) is a 'zero power' reactor designed to carry out various reactor physics experiments for validation of AHWR design. A number of experiments have been carried out in standard and extended reference core of the reactor. In this paper, results of experiments with different Thorium based experimental clusters are presented. These experiments provided valuable data for validation of reactor physics design methodologies. (author)

  11. International Handbook of Evaluated Criticality Safety Benchmark Experiments - ICSBEP (DVD), Version 2013

    International Nuclear Information System (INIS)

    The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in October of 1992 by the United States Department of Energy. The project quickly became an international effort as scientists from other interested countries became involved. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) became an official activity of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) in 1995. This handbook contains criticality safety benchmark specifications that have been derived from experiments performed at various nuclear critical experiment facilities around the world. The benchmark specifications are intended for use by criticality safety engineers to validate calculational techniques used to establish minimum subcritical margins for operations with fissile material and to determine criticality alarm requirement and placement. Many of the specifications are also useful for nuclear data testing. Example calculations are presented; however, these calculations do not constitute a validation of the codes or cross section data. The evaluated criticality safety benchmark data are given in nine volumes. These volumes span nearly 66,000 pages and contain 558 evaluations with benchmark specifications for 4,798 critical, near critical or subcritical configurations, 24 criticality alarm placement/shielding configurations with multiple dose points for each and 200 configurations that have been categorised as fundamental physics measurements that are relevant to criticality safety applications. New to the Handbook are benchmark specifications for Critical, Bare, HEU(93.2)- Metal Sphere experiments referred to as ORSphere that were performed by a team of experimenters at Oak Ridge National Laboratory in the early 1970's. A photograph of this assembly is shown on the front cover

  12. Critical experiments simulating the operating conditions of PWRs in the Toshiba NCA facility

    International Nuclear Information System (INIS)

    Critical experiments simulating the operating conditions of a PWR fuel assembly were conducted at the Toshiba Nuclear Critical Assembly (NCA). In a PWR core, boric acid is added in the moderator to control the core excess reactivity. In order to achieve such a nuclear condition without mixing boric acid in the water of the NCA core tank, new boron contained polystyrene blocks were developed and used in the NCA core experiments. Various measurement data were obtained through a series of critical experiments using these blocks. The comparisons were performed against measurement data and nuclear properties of an operating PWR 17 x 17 fuel assembly. Good agreements were observed by applying this new experiment technique, and thereby the feasibility of the PWRs experiment of the Toshiba NCA facility was verified. (author)

  13. Los Alamos Programming Models

    Energy Technology Data Exchange (ETDEWEB)

    Bergen, Benjamin Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-07

    This is the PDF of a powerpoint presentation from a teleconference on Los Alamos programming models. It starts by listing their assumptions for the programming models and then details a hierarchical programming model at the System Level and Node Level. Then it details how to map this to their internal nomenclature. Finally, a list is given of what they are currently doing in this regard.

  14. LOS ALAMOS: Reorganization

    International Nuclear Information System (INIS)

    Full text: A few months ago Los Alamos National Laboratory embarked on a major reorganization. All upper management was invited to submit their resignations and reapply for new positions, of which there are only about one third as many. This action was coordinated with an attractive early retirement incentive so that displaced managers, as well as any other employee, could choose to retire if they were unhappy with the reorganization, or for any other reason. About 850 of the Lab's 7,700 employees have chosen retirement. MP (Meson or Medium Energy Physics) and AT (Accelerator Technology) Divisions have been combined into the AOT (Accelerator Operations and Technology) Division. Stanley O. Schriber is its new Director. AOT Division is responsible for operations and improvements at the Los Alamos Meson Physics Facility (LAMPF) and supports traditional users, LANSCE (the Los Alamos Neutron Scattering Center), and the emerging neutron applications community. Advanced accelerator development, including beam transport theory, instrumentation, free electron laser technology, and engineering for research, defence, industrial, and medical applications will be a major focus

  15. Bibliography for nuclear criticality accident experience, alarm systems, and emergency management

    Energy Technology Data Exchange (ETDEWEB)

    Putman, V.L.

    1995-09-01

    The characteristics, detection, and emergency management of nuclear criticality accidents outside reactors has been an important component of criticality safety for as long as the need for this specialized safety discipline has been recognized. The general interest and importance of such topics receives special emphasis because of the potentially lethal, albeit highly localized, effects of criticality accidents and because of heightened public and regulatory concerns for any undesirable event in nuclear and radiological fields. This bibliography lists references which are potentially applicable to or interesting for criticality alarm, detection, and warning systems; criticality accident emergency management; and their associated programs. The lists are annotated to assist bibliography users in identifying applicable: industry and regulatory guidance and requirements, with historical development information and comments; criticality accident characteristics, consequences, experiences, and responses; hazard-, risk-, or safety-analysis criteria; CAS design and qualification criteria; CAS calibration, maintenance, repair, and testing criteria; experiences of CAS designers and maintainers; criticality accident emergency management (planning, preparedness, response, and recovery) requirements and guidance; criticality accident emergency management experience, plans, and techniques; methods and tools for analysis; and additional bibliographies.

  16. Bibliography for nuclear criticality accident experience, alarm systems, and emergency management

    International Nuclear Information System (INIS)

    The characteristics, detection, and emergency management of nuclear criticality accidents outside reactors has been an important component of criticality safety for as long as the need for this specialized safety discipline has been recognized. The general interest and importance of such topics receives special emphasis because of the potentially lethal, albeit highly localized, effects of criticality accidents and because of heightened public and regulatory concerns for any undesirable event in nuclear and radiological fields. This bibliography lists references which are potentially applicable to or interesting for criticality alarm, detection, and warning systems; criticality accident emergency management; and their associated programs. The lists are annotated to assist bibliography users in identifying applicable: industry and regulatory guidance and requirements, with historical development information and comments; criticality accident characteristics, consequences, experiences, and responses; hazard-, risk-, or safety-analysis criteria; CAS design and qualification criteria; CAS calibration, maintenance, repair, and testing criteria; experiences of CAS designers and maintainers; criticality accident emergency management (planning, preparedness, response, and recovery) requirements and guidance; criticality accident emergency management experience, plans, and techniques; methods and tools for analysis; and additional bibliographies

  17. Analysis and evaluation of critical experiments for validation of neutron transport calculations

    International Nuclear Information System (INIS)

    The calculation schemes, computational codes and nuclear data used in neutronic design require validation to obtain reliable results. In the nuclear criticality safety field this reliability also translates into a higher level of safety in procedures involving fissile material. The International Criticality Safety Benchmark Evaluation Project is an OECD/NEA activity led by the United States, in which participants from over 20 countries evaluate and publish criticality safety benchmarks. The product of this project is a set of benchmark experiment evaluations that are published annually in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. With the recent participation of Argentina, this information is now available for use by the neutron calculation and criticality safety groups in Argentina. This work presents the methodology used for the evaluation of experimental data, some results obtained by the application of these methods, and some examples of the data available in the Handbook.

  18. Science Requirements for a Space Flight Experiment Entitled Critical Viscosity of Xenon

    Science.gov (United States)

    Berg, Robert F.; Moldover, Michael R.

    1993-01-01

    We propose to measure in low gravity the viscosity of xenon close to its critical point. The accuracy will be sufficient to eliminate uncertainties currently associated with the analysis of l-g experiments. The measurements will provide the first direct observation of the predicted power-law divergence of viscosity in a pure fluid. The measurements will also strengthen Zeno's test of mode coupling theory by greatly increasing the reliability of the extrapolation of viscosity to low reduced temperatures. Our scientific objectives are described in more detail in one of the attached reports. The low-gravity experiment will be the final stage of a program whose completed ground-based stages are: (1) theoretical studies by one of the principal investigators (MRM) and coworkers, (2) critical viscosity measurements of binary liquid mixtures, (3) critical viscosity measurements of pure fluids in l-g, and development of a suitable vibration-insensitive viscometer. Our technical approach is described in the draft Science Requirements Document. One of us (MRM) has reviewed opportunities for critical phenomena research in low gravity. Both of us were co-principal investigators in the Thermal Equilibration Experiment in the Critical Point Facility, flown on IML-1 in 1992. From this experience, and from the technical maturity of our ground-based work, we believe our critical point viscometer is ready for development as a flight experiment.

  19. Critical experiments on low-enriched uranium oxide systems with H/U = 2.03

    International Nuclear Information System (INIS)

    Seven critical experiments were performed on a horizontal split table machine using 4.48% enriched 235U uranium oxide (U3O8). The oxide was compacted to a density of 4.68 g/cm3 and placed in 152-mm cubical aluminum cans. Water was added to achieve an H/U atomic ratio of 2.03. Various arrays of oxide cans were distributed on each half of the split table and the separation between halves reduced until criticality occurred. The critical table separation varied from 4.3 mm to 29.3 mm. These experiments were performed in both plastic and concrete reflectors. The first five experiments required the addition of a high-enriched (approx. 93% 235U) metal driver to achieve criticality. Critical uranium driver masses ranged from 2.765 kg to 13.730 kg for 5 x 5 x 5 arrays of uranium oxide cans. In all five cases, the center can of the array was deleted to accommodate the driver. The uranium oxide mass was 1859.6 kg. Two additional experiments in the plastic reflector contained either 9.3-mm- or 24.3-mm-thick plastic moderator material between the oxide cans. These latter experiments did not require a driver to achieve criticality; and the uranium oxide mass was 723.9 kg for the configuration having the thinner interstitial moderator and 452.4 kg for the other

  20. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dion, Heather M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dry, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaMont, Stephen Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Podlesak, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tandon, Lav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-22

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  1. Benchmark Evaluation of the Medium-Power Reactor Experiment Program Critical Configurations

    Energy Technology Data Exchange (ETDEWEB)

    Margaret A. Marshall; John D. Bess

    2013-02-01

    A series of small, compact critical assembly (SCCA) experiments were performed in 1962-1965 at the Oak Ridge National Laboratory Critical Experiments Facility (ORCEF) for the Medium-Power Reactor Experiment (MPRE) program. The MPRE was a stainless-steel clad, highly enriched uranium (HEU)-O2 fuelled, BeO reflected reactor design to provide electrical power to space vehicles. Cooling and heat transfer were to be achieved by boiling potassium in the reactor core and passing vapor directly through a turbine. Graphite- and beryllium-reflected assemblies were constructed at ORCEF to verify the critical mass, power distribution, and other reactor physics measurements needed to validate reactor calculations and reactor physics methods. The experimental series was broken into three parts, with the third portion of the experiments representing the beryllium-reflected measurements. The latter experiments are of interest for validating current reactor design efforts for a fission surface power reactor. The entire series has been evaluated as acceptable benchmark experiments and submitted for publication in the International Handbook of Evaluated Criticality Safety Benchmark Experiments and in the International Handbook of Evaluated Reactor Physics Benchmark Experiments.

  2. Proceedings of the workshop on integral experiment covariance data for critical safety validation

    Energy Technology Data Exchange (ETDEWEB)

    Stuke, Maik (ed.)

    2016-04-15

    For some time, attempts to quantify the statistical dependencies of critical experiments and to account for them properly in validation procedures were discussed in the literature by various groups. Besides the development of suitable methods especially the quality and modeling issues of the freely available experimental data are in the focus of current discussions, carried out for example in the Expert Group on Uncertainty Analysis for Criticality Safety Assessment (UACSA) of the OECD-NEA Nuclear Science Committee. The same committee compiles and publishes also the freely available experimental data in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. Most of these experiments were performed as series and might share parts of experimental setups leading to correlated results. The quality of the determination of these correlations and the underlying covariance data depend strongly on the quality of the documentation of experiments.

  3. Proceedings of the workshop on integral experiment covariance data for critical safety validation

    International Nuclear Information System (INIS)

    For some time, attempts to quantify the statistical dependencies of critical experiments and to account for them properly in validation procedures were discussed in the literature by various groups. Besides the development of suitable methods especially the quality and modeling issues of the freely available experimental data are in the focus of current discussions, carried out for example in the Expert Group on Uncertainty Analysis for Criticality Safety Assessment (UACSA) of the OECD-NEA Nuclear Science Committee. The same committee compiles and publishes also the freely available experimental data in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. Most of these experiments were performed as series and might share parts of experimental setups leading to correlated results. The quality of the determination of these correlations and the underlying covariance data depend strongly on the quality of the documentation of experiments.

  4. Critical experiments and reactor physics calculations for low enriched high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    On the recommendation of the IAEA International Working Group on Gas Cooled Reactors, the IAEA established a Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low-Enriched High Temperature Gas Cooled Reactors (HTGRs) in 1990. The objective of the CRP was to provide safety-related physics data for low-enriched uranium (LEU) fueled HTGRs for use in validating reactor physics codes used by the participating countries for analyses of their designs. Experience on low-enriched uranium, graphite-moderated reactor systems from research institutes and critical facilities in participating countries were brought into the CRP and shared among participating institutes. The status of experimental data and code validation for HTGRs and the remaining needs at the initiation of this CRP were addressed in detail at the IAEA Specialists Meeting on Uncertainties in Physics Calculations for HTGR Cores held at the Paul Scherrer Institute (PSI), Villigen, Switzerland in May, 1990. The main activities of the CRP were conducted within an international project at the PROTEUS critical experiment facility at the Paul Scherrer Institute, Villigen, Switzerland. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Fuel for the experiments was provided by the KFA Research Center, Juelich, Germany. Initial criticality was achieved on July 7, 1992. These experiments were conducted over a range of experimental parameters such as carbon-to-uranium ratio, core height-to-diameter ratio, and simulated moisture concentration. To assure that the experiments being conducted are appropriate for the design of the participants, specialists from each of the countries have participated

  5. Criticality experiments with planar arrays of three-liter bottles containing plutonium nitrate solution

    Energy Technology Data Exchange (ETDEWEB)

    Durst, B.M.; Clayton, E.D.; Smith, J.H.

    1985-01-01

    The objective of these experiments was to provide benchmark data to validate calculational codes used in critically safety assessments of plant configurations. Arrays containing up to as many as sixteen three-liter bottles filled with plutonium nitrate were used in the experiments. A split-table device was used in the final assembly of the arrays. Ths planar arrays were reflected with close fitting plexiglas on each side and on the bottom but not the top surface. The experiments addressed a number of factors effecting criticality: the critical air gap between bottles in an array of fixed number of bottles, the number of bottles required for criticality if the bottles were touching, and the effect on critical array spacing and critical bottle number due to the insertion of an hydrogeneous substance into the air gap between bottles. Each bottle contained about 2.4l of Pu(NO{sub 3}){sub 4} solution at a Pu concentration of 105g Pu/l, with the {sup 240}Pu content being 2.9 wt% at a free acid molarity H{sup +} of 5.1. After the initial series of experiments were performed with bottles separated by air gaps, plexiglas shells of varying thicknesses were placed around each bottle to investigate how moderation between bottles affects both the number of bottles required for criticality and the critical spacing between each bottle. The minimum of bottles required for criticality was found to be 10.9 bottles, occurring for a square array with bottles in contact. As the bottles were spaced apart, the critical number increased. For sixteen bottles in a square array, the critical separation between surfaces in both x and y direction was 0.96 cm. The addition of plexiglas around each bottle decreased the critical bottle number, compared to those separated in air, but the critical bottle number, even with interstitial plastic in place was always greater than 10.9 bottles. The most reactive configuration was a tightly packed array of bottles with no intervening material.

  6. Critical experiments for BWR fuel assemblies with cluster of gadolinia rods

    International Nuclear Information System (INIS)

    Gadolinia-bearing fuel rods are needed for high-burnup fuels. Strong neutron absorption of gadolinia makes an assembly heterogeneous from the viewpoint of reactor physics. The cluster of gadolinia-bearing fuel rods is useful for higher-burnup fuels than current fuels. Few critical experiments have been reported for fuel assemblies with the cluster of gadolinia-bearing fuel rods. We conducted critical experiments for BWR fuel assemblies with the cluster of gadolinia-bearing fuel rods in the Toshiba Nuclear Critical Assembly (NCA). Critical water level and power distribution were measured. Measurements were compared with analyses by a continuous-energy Monte Carlo code, MCNP, with the JENDL3.3 nuclear data library. (author)

  7. Analysis of integral experiment for thorium fuel cycle at Kyoto University Critical Assembly

    International Nuclear Information System (INIS)

    To measure integral neutronics characteristics of thorium loaded core, critical experiments had been carried out at Kyoto University Critical Assembly (KUCA). The critical experiments were performed with various neutron spectra and thorium inventories. The thorium loaded core has two regions which are a test zone and a driver fuel zone. The test zone consists of thorium plates and graphite plates. In order to change the neutron spectrum of the experimental neutron field systematically, the graphite/Th-232 ratio at the test zone had been systematically varied by changing the combination of the thorium plates and the graphite plates in a unit cell. In this study, the criticalities of thorium loaded core were analyzed by MVP2.0 with JENDL-4.0, JENDL-3.3. In addition, sensitivity analyses were performed by SAGEP code and uncertainties of the numerical results were evaluated by using cross section covariance matrix. (author)

  8. Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Podlesak, David W [Los Alamos National Laboratory; Steiner, Robert E. [Los Alamos National Laboratory; Burns, Carol J. [Los Alamos National Laboratory; LaMont, Stephen P. [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory

    2012-08-09

    The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities at Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities. Some conclusions are: (1) Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous defense and non-defense programs including safeguards accountancy verification measurements; (2) Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material forensic characterization; (3) Actinide analytical chemistry uses numerous means to validate and independently verify that measurement data quality objectives are met; and (4) Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  9. 'Visual’ parsing can be taught quickly without visual experience during critical periods

    OpenAIRE

    Lior Reich; Amir Amedi

    2015-01-01

    Cases of invasive sight-restoration in congenital blind adults demonstrated that acquiring visual abilities is extremely challenging, presumably because visual-experience during critical-periods is crucial for learning visual-unique concepts (e.g. size constancy). Visual rehabilitation can also be achieved using sensory-substitution-devices (SSDs) which convey visual information non-invasively through sounds. We tested whether one critical concept – visual parsing, which is highly-impaired in...

  10. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cappiello, C.C.; Butterfield, K.B.; Sanchez, R.G.; Bounds, J.A.; Kimpland, R.H.; Damjanovich, R.P.; Jaegers, P.J.

    1997-08-01

    Experiments were performed to measure a variety of parameters for SHEBA: behavior of the facility during transient and steady-state operation; characteristics of the SHEBA fuel; delayed-critical solution height vs solution temperature; initial reactor period and reactivity vs solution height; calibration of power level vs reactor power instrumentation readings; flux profile in SHEBA; radiation levels and neutron spectra outside the assembly for code verification and criticality alarm and dosimetry purposes; and effect on reactivity of voids in the fuel.

  11. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    International Nuclear Information System (INIS)

    Experiments were performed to measure a variety of parameters for SHEBA: behavior of the facility during transient and steady-state operation; characteristics of the SHEBA fuel; delayed-critical solution height vs solution temperature; initial reactor period and reactivity vs solution height; calibration of power level vs reactor power instrumentation readings; flux profile in SHEBA; radiation levels and neutron spectra outside the assembly for code verification and criticality alarm and dosimetry purposes; and effect on reactivity of voids in the fuel

  12. Experiments on the critical ionization velocity interaction in weak magnetic fields

    International Nuclear Information System (INIS)

    The critical ionization velocity interaction is studied experimentally in a configuration with a magnetized plasma stream colliding with a stationary neutral gas cloud. In all previous experiment of this kind the magnetic field (1) has had a component transverse to the plasma flow and (2) has been strong in the sense that the electron gyro frequency, has exceeded or been approximately equal to the plasma frequency. Both these conditions play an important role in existing theories of the critical velocity interaction. The present experiments are performed to determine whether or not such interaction is possible when one of these conditions is not fulfilled, namely when the magnetic field is weak. Experiments have been performed both with a transverse and longitudinal (aligned with the plasma flow) magnetic field. It is found that in both cases the critical ionization velocity effect either disappears or becomes too small to be distinguishable among classical collisional processes. (author)

  13. Safety system and 10 years experience in the maintenance of Kyoto University Critical Assembly

    International Nuclear Information System (INIS)

    Kyoto University Critical Assembly (KUCA) is a new type facility for joint use program among universities and research institutes. It consists of two solid-moderated cores and a water-moderated core. In order to keep safe operation of the critical assembly, safety system has been designed to meet the complex operating systems. The first critical experiment of KUCA was performed in August 1974. Since then, this safety system has served for the safety operation of KUCA. In the present report, the outline of this system and the maintenance are described. (author)

  14. Simulated and Virtual Science Laboratory Experiments: Improving Critical Thinking and Higher-Order Learning Skills

    Science.gov (United States)

    Simon, Nicole A.

    Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory experience, linking with educational technologies (Pyatt & Sims, 2007; 2011; Trundle & Bell, 2010). A causal-comparative quantitative study was conducted with 150 learners enrolled at a two-year community college, to determine the effects of simulation laboratory experiments on Higher-Order Learning, Critical Thinking Skills, and Cognitive Load. The treatment population used simulated experiments, while the non-treatment sections performed traditional expository experiments. A comparison was made using the Revised Two-Factor Study Process survey, Motivated Strategies for Learning Questionnaire, and the Scientific Attitude Inventory survey, using a Repeated Measures ANOVA test for treatment or non-treatment. A main effect of simulated laboratory experiments was found for both Higher-Order Learning, [F (1, 148) = 30.32,p = 0.00, eta2 = 0.12] and Critical Thinking Skills, [F (1, 148) = 14.64,p = 0.00, eta 2 = 0.17] such that simulations showed greater increases than traditional experiments. Post-lab treatment group self-reports indicated increased marginal means (+4.86) in Higher-Order Learning and Critical Thinking Skills, compared to the non-treatment group (+4.71). Simulations also improved the scientific skills and mastery of basic scientific subject matter. It is recommended that additional research recognize that learners' Critical Thinking Skills change due to different instructional methodologies that occur throughout a semester.

  15. A short review of critical experiments performed at the Kurchatov Institute

    Energy Technology Data Exchange (ETDEWEB)

    Gagarinski, A.Yu.; Glushkov, Y.S.; Ponomarev-Stepnoi, N.N. [Kurchatov Institute (Russian Federation)

    1997-06-01

    Since the 1950s, the Institute of Atomic Energy (now the Russian Research Center Kurchatov Institute) has investigated nuclear reactors intended for various purposes. A summary of the present state of these assemblies is given in an attachment to the paper. A second attachment provides a brief description of critical experiments for small nuclear power systems intended for decentralized power generation. The critical assemblies for these experiments were moderated by water and zirconium hydride, and fuel elements ranged in enrichment from 5% to 95% uranium 235. 7 refs.

  16. Competing atomic processes in Ba and Sr injection critical velocity experiments

    Science.gov (United States)

    Newell, P. T.; Torbert, R. B.

    1985-01-01

    The critical ionization velocity effect requires a superthermal electron population to ionize through collisional impact. Such superthermal electrons can however lose energy to competing atomic processes, as well as to ionization, thus limiting the efficiency of the effect. Considering Ba and Sr magnetospheric injection experiments designed to test the CIV theory, it is found that in both cases roughly 60 percent of the superthermal electron energy is lost on exciting line radiation. Moreover, energy loss to background neutral oxygen places a strict limit on the injected cloud densities for which critical velocity effects are possible; a finding which explains the consistently negative results in radial injection experiments.

  17. An investigation of emotion experiences at work : a critical incident technique approach / Natalie Booth

    OpenAIRE

    Booth, Natalie

    2013-01-01

    Orientation: Emotions at work have been considered as an important facet of employees’ work life. However, research regarding the investigation of the emotion experiences at work per se has been lacking. Research Purpose: The general objective of this study is to critically investigate what emotion events are experienced and how these events are appraised for them to result in specific emotions. Motivation for the study: Currently a lack of research regarding emotion experiences as a pr...

  18. Conceptual design of a digital control system for nuclear criticality experiments

    International Nuclear Information System (INIS)

    Nuclear criticality is a concern in many areas of nuclear engineering including waste management, nuclear weapons testing and design, basic nuclear research, and nuclear reactor design and analysis. As in many areas of science and engineering, experimental work conducted in this field has provided a wealth of data and insight essential to the formulation of theory and the advancement in knowledge of fissioning systems. In light of the many diverse applications of nuclear criticality, there is a continuing interest to learn and understand more about the fundamental physical processes through continued experimentation. This thesis addresses the problem of setting up and programming a microprocessor-based digital control system (PLC) for a proposed critical experiment using, among other devices, a stepper motor, a joystick control mechanism, and switches. This experiment represents a revised configuration to test cylindrical nuclear waste packages. A Monte Carlo numerical study for the proposed critical assembly has been performed in order to illustrate how results from numerical calculations are used in the process of assembling the control system and to corroborate previous experimental data. In summary, a control system utilizing some common devices necessary to perform a critical experiment (stepper motor, push-buttons, etc.) has been assembled. Control components were sized using the results of a probabilistic computer code (MCNP). Finally, a program was written that illustrates the coupling between the hardware and the devices being controlled in the new test fixture

  19. GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; John D. Bess; Jim Gulliford

    2011-09-01

    Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical or subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the

  20. Design of an efficient calculation model of BWR cold critical experiments for validation

    International Nuclear Information System (INIS)

    The term burnup credit is used when the calculated spent fuel composition is credited in the criticality safety analysis as opposed to the fresh fuel assumption. Applicable standards place requirements for the validation of the burnup codes that are used in the analysis. Unfortunately, there is a lack of high quality BWR radiochemical assay data suitable for validation. In order to circumvent this difficulty, BWR cold critical experiments could be used for the validation. A disadvantage in the use of reactor measurements is the number of detail that needs to be fed into the calculation model. An accurate modelling would require thousands of assembly burnup calculations and setting up a core model with hundreds of thousands of fuel material compositions and different control rod designs present in the core. Clearly, a simplified approach would be very valuable for the modelling of cold critical experiments with Monte Carlo codes. A simplified way of modelling BWR cold critical experiment has been considered in this work. In this approach, only the most relevant part of the core is described in a detailed manner and suitable boundary conditions are applied in other parts of the core by replacing the assembly and control rod data with representative designs. In this work BWR cold critical measurements of Olkiluoto 1 and Olkiluoto 2 units were used to demonstrate the quality of the approach. SIMULATE-3 calculations were made in order to compare different calculation models for 58 cold critical experiments. The results show that the simplified core model with suitable boundary conditions is robust, accurate and neutronically equivalent with the detailed model. The results suggest that instead of modelling all 500 assemblies in the core including nodal burnup calculations with a depletion code, only 48 assemblies need to be considered. Furthermore, instead of modelling all control rod types in the core, considering one or two rod designs is sufficient for validation

  1. Nuclear criticality safety experiments, calculations, and analyses: 1958 to 1982. Volume 1. Lookup tables

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, B.L.; Hampel, V.E.

    1982-10-21

    This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains - in chronological order - the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

  2. Nuclear criticality safety experiments, calculations, and analyses: 1958 to 1982. Volume 1. Lookup tables

    International Nuclear Information System (INIS)

    This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains - in chronological order - the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41

  3. Critical Race Theory, Disability Microaggressions and Latina/o Student Experiences in Special Education

    Science.gov (United States)

    Dávila, Brianne

    2015-01-01

    This research draws upon critical race theory (CRT) to explore the experiences of Latina/o students in special education. It seeks to extend the theoretical construct of racial microaggressions and illustrate the additional layer of disability as I present data that are particular to the context of special education and the assigned label of…

  4. A double concern: Grandmothers' experiences when a small grandchild is critically ill

    DEFF Research Database (Denmark)

    Hall, Elisabeth

    2004-01-01

    Grandmothers play an active part in family health and illness, but so far they are peripheral in both nursing and nursing research. This article addresses grandmothers' lived experiences when a small grandchild is critically ill. A convenience sample of 7 grandmothers was interviewed once. With the...

  5. The Experience of Critical Self-Reflection by Life Coaches: A Phenomenological Study

    Science.gov (United States)

    Shaw, Deanna Lynn

    2012-01-01

    The purpose of this study was to describe the experience of critical self-reflection by life coaches. Life coaching is expanding within many disciplines including education, health care, business, social work, and wellness. Life coaching involves a coach working with an individual or groups aimed at effecting change for professional and personal…

  6. A Critical Dialectical Pluralistic Examination of the Lived Experience of Select Women Doctoral Students

    Science.gov (United States)

    Onwuegbuzie, Anthony J.; Rosli, Roslinda; Ingram, Jacqueline M.; Frels, Rebecca K.

    2014-01-01

    The purpose of this study was to explore and to understand the daily life experiences of 8 women doctoral students who were in pursuit of their doctorates. A partially mixed concurrent dominant status design was utilized in this study embedded within a mixed methods phenomenological research lens and driven by a critical dialectical pluralistic…

  7. How Do Virtual World Experiences Bring about Learning? A Critical Review of Theories

    Science.gov (United States)

    Loke, Swee-Kin

    2015-01-01

    While students do learn real-world knowledge and skills in virtual worlds, educators have yet to adequately theorise how students' virtual world experiences bring about this learning. This paper critically reviewed theories currently used to underpin empirical work in virtual worlds for education. In particular, it evaluated how applicable these…

  8. Development of Critical Thinking through Aesthetic Experience: The Case of Students of an Educational Department

    Science.gov (United States)

    Raikou, Natassa

    2016-01-01

    This article addresses an application performed in tertiary education--a department of pedagogical and educational sciences--of a contemporary method, Transformative Learning through Aesthetic Experience. The method is based on the use of art and aims to reinforce and promote the development of critical thinking within educational settings.…

  9. Evaluation of Fission Product Critical Experiments and Associated Biases for Burnup Credit Validation

    International Nuclear Information System (INIS)

    One of the challenges associated with implementation of burnup credit is the validation of criticality calculations used in the safety evaluation; in particular the availability and use of applicable critical experiment data. The purpose of the validation is to quantify the relationship between reality and calculated results. Validation and determination of bias and bias uncertainty require the identification of sets of critical experiments that are similar to the criticality safety models. A principal challenge for crediting fission products (FP) in a burnup credit safety evaluation is the limited availability of relevant FP critical experiments for bias and bias uncertainty determination. This paper provides an evaluation of the available critical experiments that include FPs, along with bounding, burnup-dependent estimates of FP biases generated by combining energy dependent sensitivity data for a typical burnup credit application with the nuclear data uncertainty information distributed with SCALE 6. A method for determining separate bias and bias uncertainty values for individual FPs and illustrative results is presented. Finally, a FP bias calculation method based on data adjustment techniques and reactivity sensitivity coefficients calculated with the SCALE sensitivity/uncertainty tools and some typical results is presented. Using the methods described in this paper, the cross-section bias for a representative high-capacity spent fuel cask associated with the ENDF/B-VII nuclear data for 16 most important stable or near stable FPs is predicted to be no greater than 2% of the total worth of the 16 FPs, or less than 0.13% k/k.

  10. Determination of Critical Experiment Correlations Using the Sampler Sequence Within SCALE 6.2

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Rearden, Bradley T [ORNL

    2015-01-01

    The validation of neutron transport methods used in nuclear criticality safety analyses is required by consensus American National Standards Institute/American Nuclear Society (ANSI/ANS) standards. In the last decade, there has been an increased interest in correlations among critical experiments used in validation that have shared physical attributes and which impact the independence of each measurement. The statistical methods included in many of the frequently cited guidance documents on performing validation calculations incorporate the assumption that all individual measurements are independent, so little guidance is available to practitioners on the topic. Typical guidance includes recommendations to select experiments from multiple facilities and experiment series in an attempt to minimize the impact of correlations or common-cause errors in experiments. Recent efforts have been made both to determine the magnitude of such correlations between experiments and to develop and apply methods for adjusting the bias and bias uncertainty to account for the correlations. This paper describes recent work performed at Oak Ridge National Laboratory using the Sampler sequence from the SCALE code system to develop experimental correlations using a Monte Carlo sampling technique. Sampler will be available for the first time with the release of SCALE 6.2, and a brief introduction to the methods used to calculate experiment correlations within this new sequence is presented in this paper. Techniques to utilize these correlations in the establishment of upper subcritical limits are the subject of a companion paper and will not be discussed here. Example experimental uncertainties and correlation coefficients are presented for a variety of low-enriched uranium water-moderated lattice experiments selected for use in a benchmark exercise by the Working Party on Nuclear Criticality Safety Subgroup on Uncertainty Analysis in Criticality Safety Analyses. The results include

  11. Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dogliani, Harold O [Los Alamos National Laboratory

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  12. LEU-HTR critical experiment program for the PROTEUS facility in Switzerland

    International Nuclear Information System (INIS)

    New critical experiments in the framework of an IAEA Coordinated Research Program on ''Validation of Safety Related Reactor Physics Calculations for Low-Enriched HTR's'' are planned at the PSI PROTEUS facility. The experiments are designed to supplement the experimental data base and reduce the design and licensing uncertainties for small-and medium-sized helium-cooled reactors using low-enriched uranium (LEU) and graphite high temperature fuel. The main objectives of the new experiments are to provide first-of-a-kind high quality experimental data on: (1) the criticality of sample, easy to interpret, single core region LEU HTR systems for several moderator-to-fuel ratios and several lattice geometries; (2) the changes in reactivity, neutron balance components and control rod effectiveness caused by water ingress into this type of reactor; and (3) the effects of the boron and/or hafnium absorbers that are used to modify the reactivity and the power distributions in typical HTR systems. Work on the design and licensing of the modified PROTEUS critical facility is now in progress with the HTR experiments scheduled to begin early in 1991. Several international partners will be involved in the planning, execution, and analysis of these experiments in order to ensure that they are relevant and cost effective with respect to the various gas-cooled reactor national programs. (author)

  13. Analysis of tungsten gray rods critical experiments using PARAGON with ultra-fine energy mesh methodology

    International Nuclear Information System (INIS)

    New critical experiments using gray control rods with tungsten were recently performed at the Toshiba NCA critical facility. This paper presents analyses of these experiments using both stochastic and deterministic codes. We used the continuous energy Monte Carlo code MCNP and the Westinghouse lattice physics code PARAGON. The basic nuclear data source for the cross-sections is ENDF/B-VII.1. First, the tungsten data is validated against Monte Carlo calculations. The ultra-fine energy mesh with 6064 group cross-sections library was used in PARAGON to extend the validation of the methodology to the cold temperature conditions. Comparisons focused on reactivity and the measured fission rate distributions. The results show that the ENDF/B-VII.1 data adequately reproduces the measured tungsten gray rod reactivity worth. Also, the energy mesh and the methodology used in PARAGON are seen to be adequate in predicting the reactivity and fission rate distributions for these challenging and highly heterogeneous experiments. (author)

  14. Nuclear criticality experiments from 1943 to 1978: an annotated bibliography. Volume 1. Main listing

    International Nuclear Information System (INIS)

    The bibliography contains 1067 citations from the literature of critical and near-critical nuclear experiments. It provides an up-to-date index to reports containing useful data for many types of criticality studies. Most of the reports can provide specifications for relatively simple critical configurations necessary for validating nuclear constants and calculational techniques. The reports of more than 1143 experimentors at 38 international facilities since 1943 are cross-referenced. The collection contains the prototypes of many different designs of nuclear reactors and studies performed to insure the safe use of fissile materials in chemical processing plants, storage facilities, and transportation containers. The bibliography has three volumes. Volume 1 contains the main listing of citations with abstracts. Volume 2 is a set of indexes organized by report number, publication date, experimental facility, and author name. Volume 3 provides a subject index, concorded on the significant keyphrases derived from titles, and an index of keyterms derived from titles, and an index of keyterms extracted from titles and abstracts. The bibliography was printed by computer as a selection from a computerized system at Lawrence Livermore Laboratory contaning information and data on criticality experiments

  15. Nuclear criticality experiments from 1943 to 1978: an annotated bibliography. Volume 1. Main listing

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, B.L.; Wilcox, T.P.; Hampel, V.E.

    1979-04-24

    The bibliography contains 1067 citations from the literature of critical and near-critical nuclear experiments. It provides an up-to-date index to reports containing useful data for many types of criticality studies. Most of the reports can provide specifications for relatively simple critical configurations necessary for validating nuclear constants and calculational techniques. The reports of more than 1143 experimentors at 38 international facilities since 1943 are cross-referenced. The collection contains the prototypes of many different designs of nuclear reactors and studies performed to insure the safe use of fissile materials in chemical processing plants, storage facilities, and transportation containers. The bibliography has three volumes. Volume 1 contains the main listing of citations with abstracts. Volume 2 is a set of indexes organized by report number, publication date, experimental facility, and author name. Volume 3 provides a subject index, concorded on the significant keyphrases derived from titles, and an index of keyterms derived from titles, and an index of keyterms extracted from titles and abstracts. The bibliography was printed by computer as a selection from a computerized system at Lawrence Livermore Laboratory contaning information and data on criticality experiments.

  16. Los Alamos National Laboratory strategic directions

    Energy Technology Data Exchange (ETDEWEB)

    Hecker, S. [Los Alamos National Lab., NM (United States)

    1995-10-01

    It is my pleasure to welcome you to Los Alamos. I like the idea of bringing together all aspects of the research community-defense, basic science, and industrial. It is particularly important in today`s times of constrained budgets and in fields such as neutron research because I am convinced that the best science and the best applications will come from their interplay. If we do the science well, then we will do good applications. Keeping our eye focused on interesting applications will spawn new areas of science. This interplay is especially critical, and it is good to have these communities represented here today.

  17. Los Alamos National Laboratory strategic directions

    International Nuclear Information System (INIS)

    It is my pleasure to welcome you to Los Alamos. I like the idea of bringing together all aspects of the research community-defense, basic science, and industrial. It is particularly important in today's times of constrained budgets and in fields such as neutron research because I am convinced that the best science and the best applications will come from their interplay. If we do the science well, then we will do good applications. Keeping our eye focused on interesting applications will spawn new areas of science. This interplay is especially critical, and it is good to have these communities represented here today

  18. Calculation of critical experiment parameters for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Six critical experiments were performed shortly before the initial ascension to power of the High Flux Isotope Reactor (HFIR). Critical configurations were determined at various control rod positions by varying the soluble boron content in the light water coolant. Calculated k-effective was 2% high at beginning-of-life (BOL) typical conditions, but was 1.0 at end-of-life (EOL) typical conditions. Axially averaged power distributions for a given radial location were frequently within experimental error. At specific r,z locations with the core, the calculated power densities were significantly different from the experimentally derived values. A reassessment of the foil activation data seems desirable

  19. Experimental analysis of tight-pitch core critical experiment on KUCA

    International Nuclear Information System (INIS)

    Critical experiments on a tight-pitch nuclear reactor core were performed by the university community using the Kyoto University Critical Assembly (KUCA) to investigate neutronic properties of High Conversion Light Water Reactors (HCLWR). The measured data have been numerically analysed to investigate the accuracy of the methods and nuclear data used. The neutron transport correction and the neutron streaming correction are large for two cores (Phase 1 and Phase 2 cores) with different moderator to fuel volume ratio. With these corrections the calculational to experimental value ratios (C/E value) of the reactivity are 1.009 and 1.004 for the Phase 1 and Phase 2 cores, respectively. (author)

  20. Test on the reactor with the intelligent extrapolation criticality device for physical startup experiment

    International Nuclear Information System (INIS)

    The Intelligent Extrapolation Criticality Device is used for automatic counting and automatic extrapolation during the criticality experiment on the reactor. Test must be performed on the zero-power reactor or other reactor before the Device is used. The paper describes the test situation and test results of the Device on the zero-power reactor. The test results show that the Device has the function of automatic counting and automatic extrapolation, the deviation of the extrapolation data is small, and it can satisfy the requirements of physical startup on the reactor. (author)

  1. Benchmarking of MCNP against B ampersand W LRC Core XI critical experiments

    International Nuclear Information System (INIS)

    The MCNP Monte Carlo code and its ENDF/B-V continuous-energy cross- section library previously has been benchmarked against a variety of critical experiments, and that benchmarking recently has been extended to include its ENDF/B-VI continuous-energy cross-section library and additional critical experiments. This study further extends the benchmarking of MCNP and its two continuous-energy libraries to 17 large-scale mockup experiments that closely resemble the core of a pressurized water reactor (PWR). The experiments were performed at Babcock ampersand Wilcox's Lynchburg Research Center in 1970 and 1971. The series was designated as Core XI, and the individual experiments were characterized as different ''loadings.'' The experiments were performed inside a large aluminum tank that contained borated water. The water height for each loading was exactly 145 cm, and the soluble boron concentration in the water was adjusted until the configuration was slightly supercritical, with a value of 1.0007 for keff. Pin-by-pin power distributions were measured for several of the loadings

  2. Critical experiments on minimal-content gadolinia for above-5wt% enrichment fuels in Toshiba NCA

    International Nuclear Information System (INIS)

    A concept of 'minimal-content gadolinia' with a content of less than several hundred ppm mixed in the 'above-5wt% enrichment UO2 fuel' for super high burnup is proposed for ensuring the criticality safety in the UO2 fuel fabrication facility for light water reactors (LWRs) without increase in investment cost. Required gadolinia contents calculated were from 53 to 305 ppm for enrichments of UO2 powders for boiling water reactor (BWR) fuel from 6 to 10 wt%. It is expected that the minimal-content gadolinia yields an acceptable reactivity suppression at the beginning of operating cycle and no reactivity penalty at the end of operating cycle due to no residual gadolinium. A series of critical experiments were carried out in the Toshiba Nuclear Critical Assembly (NCA). Reactivity effects of the gadolinia were measured to clarify the nuclear characteristics, and the measured values and the calculated values agreed within 5%. (author)

  3. Critical heat-flux experiments under low-flow conditions in a vertical annulus

    International Nuclear Information System (INIS)

    An experimental study was performed on critical heat flux (CHF) at low flow conditions for low pressure steam-water upward flow in an annulus. The test section was transparent, therefore, visual observations of dryout as well as various instrumentations were made. The data indicated that a premature CHF occurred due to flow regime transition from churn-turbulent to annular flow. It is shown that the critical heat flux observed in the experiment is essentially similar to a flooding-limited burnout and the critical heat flux can be well reproduced by a nondimensional correlation derived from the previously obtained criterion for flow regime transition. The observed CHF values are much smaller than the standard high quality CHF criteria at low flow, corresponding to the annular flow film dryout. This result is very significant, because the coolability of a heater surface at low flow rates can be drastically reduced by the occurrence of this mode of CHF

  4. Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Don [ORNL; Elam, Karla Riggle [ORNL; Fox, Patricia B [ORNL

    2008-09-01

    In the 1980s, a series of critical experiments referred to as the Haut Taux de Combustion (HTC) experiments was conducted by the Institut de Radioprotection et de Surete Nucleaire (IRSN) at the experimental criticality facility in Valduc, France. The plutonium-to- uranium ratio and the isotopic compositions of both the uranium and plutonium used in the simulated fuel rods were designed to be similar to what would be found in a typical pressurized-water reactor fuel assembly that initially had an enrichment of 4.5 wt% {sup 235}U and was burned to 37,500 MWd/MTU. The fuel material also includes {sup 241}Am, which is present due to the decay of {sup 241}Pu. The HTC experiments include configurations designed to simulate fuel handling activities, pool storage, and transport in casks constructed of thick lead or steel. Rights of use for the HTC experiment data were purchased under an agreement that limits release of the information. Consequently, a detailed and complete description of the experiments is not presented in this report. This report discusses evaluation of the four HTC data reports, modeling of the experiments, sensitivity and uncertainty analysis, and upper subcritical limit (USL) calculation. The report also presents some conclusions and recommendations concerning use of the HTC experiment data for burnup credit applications. The similarity of the HTC experiments with PWR spent nuclear fuel has been quantified using sensitivity/uncertainty analysis, confirming that the HTC experiments are significantly more applicable to the validation of burnup credit calculations than other available mixed-oxide (MOX) experiments. The HTC experiments were designed and executed with a high level of rigor, resulting in experimental uncertainties that are lower than many of the earlier MOX experiments. The HTC data reports, together with information provided in this report, provide sufficient data to allow for either detailed or simplified computational models to be

  5. Critical experiments on an enriched uranium solution system containing periodically distributed strong thermal neutron absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, R.E.

    1996-09-30

    A series of 62 critical and critical approach experiments were performed to evaluate a possible novel means of storing large volumes of fissile solution in a critically safe configuration. This study is intended to increase safety and economy through use of such a system in commercial plants which handle fissionable materials in liquid form. The fissile solution`s concentration may equal or slightly exceed the minimum-critical-volume concentration; and experiments were performed for high-enriched uranium solution. Results should be generally applicable in a wide variety of plant situations. The method is called the `Poisoned Tube Tank` because strong neutron absorbers (neutron poisons) are placed inside periodically spaced stainless steel tubes which separate absorber material from solution, keeping the former free of contamination. Eight absorbers are investigated. Both square and triangular pitched lattice patterns are studied. Ancillary topics which closely model typical plant situations are also reported. They include the effect of removing small bundles of absorbers as might occur during inspections in a production plant. Not taking the tank out of service for these inspections would be an economic advantage. Another ancillary topic studies the effect of the presence of a significant volume of unpoisoned solution close to the Poisoned Tube Tank on the critical height. A summary of the experimental findings is that boron compounds were excellent absorbers, as expected. This was true for granular materials such as Gerstley Borate and Borax; but it was also true for the flexible solid composed of boron carbide and rubber, even though only thin sheets were used. Experiments with small bundles of absorbers intentionally removed reveal that quite reasonable tanks could be constructed that would allow a few tubes at a time to be removed from the tank for inspection without removing the tank from production service.

  6. Critical experiments on an enriched uranium solution system containing periodically distributed strong thermal neutron absorbers

    International Nuclear Information System (INIS)

    A series of 62 critical and critical approach experiments were performed to evaluate a possible novel means of storing large volumes of fissile solution in a critically safe configuration. This study is intended to increase safety and economy through use of such a system in commercial plants which handle fissionable materials in liquid form. The fissile solution's concentration may equal or slightly exceed the minimum-critical-volume concentration; and experiments were performed for high-enriched uranium solution. Results should be generally applicable in a wide variety of plant situations. The method is called the 'Poisoned Tube Tank' because strong neutron absorbers (neutron poisons) are placed inside periodically spaced stainless steel tubes which separate absorber material from solution, keeping the former free of contamination. Eight absorbers are investigated. Both square and triangular pitched lattice patterns are studied. Ancillary topics which closely model typical plant situations are also reported. They include the effect of removing small bundles of absorbers as might occur during inspections in a production plant. Not taking the tank out of service for these inspections would be an economic advantage. Another ancillary topic studies the effect of the presence of a significant volume of unpoisoned solution close to the Poisoned Tube Tank on the critical height. A summary of the experimental findings is that boron compounds were excellent absorbers, as expected. This was true for granular materials such as Gerstley Borate and Borax; but it was also true for the flexible solid composed of boron carbide and rubber, even though only thin sheets were used. Experiments with small bundles of absorbers intentionally removed reveal that quite reasonable tanks could be constructed that would allow a few tubes at a time to be removed from the tank for inspection without removing the tank from production service

  7. Criticality experiments with low enriched UO2 fuel rods in water containing dissolved gadolinium

    International Nuclear Information System (INIS)

    The results obtained in a criticality experiments program performed for British Nuclear Fuels, Ltd. (BNFL) under contract with the United States Department of Energy (USDOE) are presented in this report along with a complete description of the experiments. The experiments involved low enriched UO2 and PuO2-UO2 fuel rods in water containing dissolved gadolinium, and are in direct support of BNFL plans to use soluble compounds of the neutron poison gadolinium as a primary criticality safeguard in the reprocessing of low enriched nuclear fuels. The experiments were designed primarily to provide data for validating a calculation method being developed for BNFL design and safety assessments, and to obtain data for the use of gadolinium as a neutron poison in nuclear chemical plant operations - particularly fuel dissolution. The experiments program covers a wide range of neutron moderation (near optimum to very under-moderated) and a wide range of gadolinium concentration (zero to about 2.5 g Gd/l). The measurements provide critical and subcritical k/sub eff/ data (1 greater than or equal to k/sub eff/ greater than or equal to 0.87) on fuel-water assemblies of UO2 rods at two enrichments (2.35 wt % and 4.31 wt % 235U) and on mixed fuel-water assemblies of UO2 and PuO2-UO2 rods containing 4.31 wt % 235U and 2 wt % PuO2 in natural UO2 respectively. Critical size of the lattices was determined with water containing no gadolinium and with water containing dissolved gadolinium nitrate. Pulsed neutron source measurements were performed to determine subcritical k/sub eff/ values as additional amounts of gadolinium were successively dissolved in the water of each critical assembly. Fission rate measurements in 235U using solid state track recorders were made in each of the three unpoisoned critical assemblies, and in the near-optimum moderated and the close-packed poisoned assemblies of this fuel

  8. Monte Carlo calculations of the REBUS critical experiment for validation of burnup credit

    International Nuclear Information System (INIS)

    The application of burnup credit (BUC) to criticality safety analysis for Spent Nuclear Fuel (SNF) configurations requires the implementation of both estimation of the SNF composition with the aid of depletion calculation tools and estimation of the SNF reactivity with the aid of criticality calculation tools. Amongst the several experimental programs dedicated to the validation of both calculation tools, REBUS is distinguished by a combination of chemical analysis and critical experiment. In addition to detailed assays of irradiated fuel, the reactivity worth of the fuel rods under investigation is measured both before and after irradiation. Since a whole bundle of fuel rods is used in the experiment, the change in reactivity is significant enough to be observable by Monte Carlo calculations. Thus, the calculation tools which see the most widespread use in SNF critical safety applications can be validated directly. Apart from the effective neutron multiplication factor keff, REBUS also provides measurements of the flux and fission rate distributions. While the program comprises investigation of commercial UO2 fuel rods and mixed oxide (MOX) fuel from a research reactor, the presentation will focus on the commercial UO2 fuel with an overview of the experimental setup and first results from the analysis. (author)

  9. Analysis of kyoto university reactor physics critical experiments using NCNSRC calculation methodology

    International Nuclear Information System (INIS)

    The kyoto university reactor physics experiments on the university critical assembly is used to benchmark validate the NCNSRC calculations methodology. This methodology has two lines, diffusion and Monte Carlo. The diffusion line includes the codes WIMSD4 for cell calculations and the two dimensional diffusion code DIXY2 for core calculations. The transport line uses the MULTIKENO-Code vax Version. Analysis is performed for the criticality, and the temperature coefficients of reactivity (TCR) for the light water moderated and reflected cores, of the different cores utilized in the experiments. The results of both Eigen value and TCR approximately reproduced the experimental and theoretical Kyoto results. However, some conclusions are drawn about the adequacy of the standard wimsd4 library. This paper is an extension of the NCNSRC efforts to assess and validate computer tools and methods for both Et-R R-1 and Et-MMpr-2 research reactors. 7 figs., 1 tab

  10. Proposed experiment to study the critical ionization velocity theory in space

    International Nuclear Information System (INIS)

    A simple, novel experiment is suggested to verify the critical ionization hypothesis in space. The experiment involves the isentropic expansion of gas through a carefully chosen nozzle and skimmer so that the formation of dimers and trimers is enhanced. Because of the reduced ionization potentials of these species and because of the increased mass, it is expected that the critical ionization velocity will be lowered considerably even for simple gases such as N2. The release of the gas aboard the space shuttle, whose orbiting velocity is about 7.3 km s/sup -1/, will provide the necessary velocity relative to the ambient ions to ionize the dimers and trimers. The advantages of this method over previously tried or proposed methods are briefly discussed

  11. Applicable regulations and development of surveillance experiments of criticality approach in the TRIGA III Mark reactor

    International Nuclear Information System (INIS)

    In the procedure elaborated to repair the vessel of TRIGA III Mark reactor is required to move toward two tanks of temporal storage the fuel elements which are in operation and the spent fuel elements which are in decay inside the reactor pool. The National Commission of Nuclear Safety and Safeguards (CNSNS) has requested as protection measure that it is carried out a surveillance of the criticality approach of the temporal storages. This work determines the main regulation aspects that entails an experiment of criticality approach, moreover, informing about the results obtained in the developing of this experiments. The regulation aspects are not exclusives for this work in the TRIGA Mark III reactor but they also apply toward any assembling of fissile material. (Author)

  12. Patient experiences with oral mucositis caused by chemo-/radiotherapy: a critical qualitative literature review

    OpenAIRE

    Daniela Zanolin; Christine Widmer; Eva-Maria Panfil

    2014-01-01

    Mucositis is one of the most common side effects of chemotherapy and radiotherapy. In order to develop an evidence-based clinical practice guideline for the management of tumor therapy-induced-oral mucositis, it was necessary to capture the patients’ perspective. Therefore the aim of this critical literature review was to explore the experience of patients with therapy-induced-oral mucositis. Searches were carried out using a systematic search strategy in CINAHL and Medline. Qualitative studi...

  13. Women's experiences of coping with pain during childbirth: A critical review of qualitative research

    OpenAIRE

    Van der Gucht, Natalie; Lewis, Kiara

    2015-01-01

    Objective To identify and analyse qualitative literature exploring women׳s experiences of coping with pain during childbirth. Design Critical review of qualitative research. Findings Ten studies were included, conducted in Australia, England, Finland, Iceland, Indonesia, Iran and Sweden. Eight of the studies employed a phenomenological perspective with the remaining two without a specific qualitative methodological perspective. Thematic analysis was used as the approach for s...

  14. Critical experiments analyses by using 70 energy group library based on ENDF/B-VI

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Yoshihisa; Matsumoto, Hideki [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Nuclear Energy Systems Engineering Center; Huria, H.C.; Ouisloumen, M.

    1998-03-01

    The newly developed 70-group library has been validated by comparing kinf from a continuous energy Monte-Carlo code MCNP and two dimensional spectrum calculation code PHOENIX-CP. The code employs Discrete Angular Flux Method based on Collision Probability. The library has been also validated against a large number of critical experiments and numerical benchmarks for assemblies with MOX and Gd fuels. (author)

  15. IT Teachers’ Experience of Teaching–Learning Strategies to Promote Critical Thinking

    Directory of Open Access Journals (Sweden)

    Roxanne Bailey

    2015-06-01

    Full Text Available Information Technology (IT high school learners are constantly struggling to cope with the challenges of succeeding in the subject. IT teachers, therefore, need to be empowered to utilize appropriate teaching–learning strategies to improve IT learners’ success in the subject. By promoting critical thinking skills, IT learners have the opportunity to achieve greater success in the most difficult part of the curriculum, which is programming. Participating IT teachers received once-off face-to-face professional development where some teachers received professional development in critical thinking strategies while other IT teachers received professional development in critical thinking strategies infused into pair programming. To determine how teachers experience these suggested strategies, teachers participated in initial interviews as well as follow-up interviews after they had implemented the suggested strategies. From the interviews, it became evident that teachers felt that their learners benefited from the strategies. Teachers in the pair programming infusing critical thinking strategies focused more on the pair programming implementation than on the totality of pair programming infused with critical thinking. Although teachers were initially willing to change their ways, they were not always willing to implement new teaching–learning strategies.

  16. Critical experiments simulating accidental water immersion of highly enriched uranium dioxide fuel elements

    International Nuclear Information System (INIS)

    The paper focuses on experimental analysis of nuclear criticality safety at accidental water immersion of fuel elements of the Russian TOPAZ-2 space nuclear power system reactor. The structure of water-moderated heterogeneous critical assemblies at the NARCISS facility is described in detail, including sizes, compositions, densities of materials of the main assembly components for various core configurations. Critical parameters of the assemblies measured for varying number of fuel elements, height of fuel material in fuel elements and their arrangement in the water moderator with a uniform or variable spacing are presented. It has been found from the experiments that at accidental water immersion of fuel elements involved, the minimum critical mass equal to approximately 20 kg of uranium dioxide is achieved at 31-37 fuel elements. The paper gives an example of a physical model of the water-moderated heterogeneous critical assembly with a detailed characterization of its main components that can be used for calculations using different neutronic codes, including Monte Carlo ones. (author)

  17. Analysis of TRACY experiment and JCO criticality accident by using AGNES code

    International Nuclear Information System (INIS)

    A one-point kinetics code, AGNES, has been developed in JAERI for the purpose of the analysis of TRACY experiment. Four of the experiments performed in ramp feed mode were simulated by AGNES code, and the power, temperature and total fission number were evaluated. The calculated values of them were in agreement with the experimental values with ±15% error. In the analysis of JCO criticality accident, three supposed cases were considered, and the total fission number was evaluated at 4 - 6x1017 by insertion of 1.5 - 3.0$ excess reactivity. (author)

  18. Nuclear criticality research at the University of New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Busch, R.D. [Univ. of New Mexico, Albuquerque, NM (United States)

    1997-06-01

    Two projects at the University of New Mexico are briefly described. The university`s Chemical and Nuclear Engineering Department has completed the final draft of a primer for MCNP4A, which it plans to publish soon. The primer was written to help an analyst who has little experience with the MCNP code to perform criticality safety analyses. In addition, the department has carried out a series of approach-to-critical experiments on the SHEBA-II, a UO{sub 2}F{sub 2} solution critical assembly at Los Alamos National Laboratory. The results obtained differed slightly from what was predicted by the TWODANT code.

  19. Correlation between Knowledge, Experience and Common Sense, with Critical Thinking Capability of Medical Faculty's Students at Indonesia Christian University

    Science.gov (United States)

    Nadeak, Bernadetha

    2015-01-01

    This research discusses correlation between knowledge, experience and common sense with critical thinking of Medical Faculty's Student. As to the objective of this research is to find the correlation between knowledge, experience and common sense with critical thinking of Medical Faculty's Students at Christian University of Indonesia. It is…

  20. Charge exchange contamination of CRIT-II barium CIV experiment. [critical ionization velocity in ionosphere

    Science.gov (United States)

    Swenson, G. R.; Mende, S. B.; Meyerott, R. E.; Rairden, R. L.

    1991-01-01

    Experiments have been recently performed which attempted to confirm critical ionization velocity (CIV) ionization by deploying chemicals at high velocity in the ionosphere. Specifically, the CRIT-II rocket performed a barium release in the ionosphere, where observations of Ba(+) resonant emissions following the release are believed to have resulted from the CIV process. Calculations are presented which suggest a significant fraction (if not all) of the Ba(+) observed likely resulted from charge exchange with the thermosphere ions and not through CIV processes. The results presented here are pertinent to other CIV experiments performed in the ionosphere. It is recommended that laboratory measurements should be made of the charge exchange cross section between O(+) and Ba as well as other metal vapors used in CIV experiments.

  1. 'Visual' parsing can be taught quickly without visual experience during critical periods.

    Science.gov (United States)

    Reich, Lior; Amedi, Amir

    2015-01-01

    Cases of invasive sight-restoration in congenital blind adults demonstrated that acquiring visual abilities is extremely challenging, presumably because visual-experience during critical-periods is crucial for learning visual-unique concepts (e.g. size constancy). Visual rehabilitation can also be achieved using sensory-substitution-devices (SSDs) which convey visual information non-invasively through sounds. We tested whether one critical concept--visual parsing, which is highly-impaired in sight-restored patients--can be learned using SSD. To this end, congenitally blind adults participated in a unique, relatively short (~70 hours), SSD-'vision' training. Following this, participants successfully parsed 2D and 3D visual objects. Control individuals naïve to SSDs demonstrated that while some aspects of parsing with SSD are intuitive, the blind's success could not be attributed to auditory processing alone. Furthermore, we had a unique opportunity to compare the SSD-users' abilities to those reported for sight-restored patients who performed similar tasks visually, and who had months of eyesight. Intriguingly, the SSD-users outperformed the patients on most criteria tested. These suggest that with adequate training and technologies, key high-order visual features can be quickly acquired in adulthood, and lack of visual-experience during critical-periods can be somewhat compensated for. Practically, these highlight the potential of SSDs as standalone-aids or combined with invasive restoration approaches. PMID:26482105

  2. China ADS sub-critical experimental assembly-Venus-1 and preliminary experiment

    Institute of Scientific and Technical Information of China (English)

    SHI Yongqian; ZHANG Wei; CAO Jian; QUAN Yanhui; LUO Huangda; WU Xiaofei; XIA Pu; LUO Zhanglin; ZHAO Zhixiang; DING Dazhao; LI Yiguo; ZHU Qinfu; XIA Haihong; LI Jien

    2007-01-01

    China's accelerator-driven sub-critical system (ADS) sub-critical experimental assembly--Venus-1 and the preliminary experiment is presented. The core of Venus-1 is a coupled one of a fast neutron zone and a thermal neutron zone. The fast neutron zone is at the centre of the core and formed by natural uranium fuel. A fast neutron spectrum field can be produced in the fast neutron zone and used for the transmutation of minor actinides (Mas). The thermal neutron zone surrounds the fast neutron zone and is formed by low-enriched uranium fuel. It is a fission zone. An epithermal neutron zone between the fast neutron zone and the thermal neutron zone can be established for the transmutation of longlived fission products (LLFP). On July 18, 2005, the first fuel element was loaded into the Venus-Ⅰ sub-critical assembly and some preliminary experiments about the subcritical neutronics were performed. The Venus-1 can be driven by an Am-Be source or other steady neutron source (Cf-252, D-D reaction and D-T reaction) to study the effect of the external neutron source with different energies or a D-T pulsed neutron source on the dynamic characteristics.

  3. Los Alamos, Hiroshima, Nagasaki - a personal recollection

    International Nuclear Information System (INIS)

    The author, a physicist participating in the Manhattan Project, recalls his experiences and work in the laboratories at the time which marked the onset of the nuclear era, the construction of the first uranium and plutonium bombs in Los Alamos, and the hidious effects shown to the world by the nuclear bombing of Japan. His thoughts and memories presented 50 years after the nuclear destruction of Hiroshima and Nagasaki, and now that the Cold War has ended, call for a global ban of nuclear weapons. (orig.)

  4. The Los Alamos foil implosion project

    International Nuclear Information System (INIS)

    The goal of the Los Alamos foil implosion project is to produce an intense (>100 TW), multi-megajoule, laboratory soft x-ray source for material studies and fusion experiments. The concept involves the implosion of annular, current-carrying, cylindrical metallic plasmas via their self-magnetic forces. The project features inductive storage systems using both capacitor banks and high explosive-driven flux compression generators as prime energy sources. Fast opening switches are employed to shorten the electrical pulses. The program will be described and activities to date will be summarized

  5. Numerical Experiments on Critical Ventilation Velocity and Back-layer in Tunnel Fire

    Institute of Scientific and Technical Information of China (English)

    YANG Pei-zhong; JIN Hao; SHAO Gang; JIN Xian-long

    2006-01-01

    Full-scale numerical experiments were carried out on the vehicular fire in a long tunnel to study the critical ventilation velocity and back-layer distance with heat release rate of 5,20 and 100MW respectively. A computational fluid dynamics (CFD) model of fire-driven fluid flow FDS(Fire Dynamics Simulator) was used to solve numerically a form of the Navier-Stokes equations for fire. The results were compared with the expressions proposed in the literature. A modified equation for the critical ventilation velocity was given to better fit the experimental results. A bi-exponential model that well fitted the numerical experimental results was proposed to describe the relationship between back-layer distance and ventilation velocity.

  6. Non-solar UV produced ions observed optically from the 'Crit I' critical velocity ionization experiment

    Science.gov (United States)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Rees, D.; Valenzuela, A.; Brenning, N.

    1990-01-01

    A critical velocity ionization experiment was carried out with a heavily instrumented rocket launched from Wallops Island on May 13, 1986. Two neutral barium beams were created by explosive shaped charges released from the rocket and detonated at 48 deg to B at altitudes near 400 km and below the solar UV cutoff. Critical velocity ionization was expected to form a detectable ion jet along the release field line, but, instead, an ion cloud of fairly uniform intensity was observed stretching from the release field line across to where the neutral barium jet reached sunlight. The process creating these ions must have been present from the time of the release; the efficiency is estimated to be equivalent to an ionization time constant of 1800 sec. This ionization is most likely from collisions between the neutral barium jet and the ambient atmospheric oxygen, and, if so, the cross section for collisional ionization is 9 x 10 to the -18th sq cm.

  7. Integrated Verification Experiment data collected as part of the Los Alamos National Laboratory`s Source Region Program. Appendix D: Ionospheric measurements for IVEs

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, T.J.; Carlos, R.C.; Argo, P.E.

    1993-01-21

    As part of the integrated verification experiment (IVE), we deployed a network of hf ionospheric sounders to detect the effects of acoustic waves generated by surface ground motion following underground nuclear tests at the Nevada Test Site. The network sampled up to four geographic locations in the ionosphere from almost directly overhead of the surface ground zero out to a horizontal range of 60 km. We present sample results for four of the IVEs: Misty Echo, Texarkana, Mineral Quarry, and Bexar.

  8. Critical experiments on single-unit spherical plutonium geometries reflected and moderated by oil

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, R.E.

    1997-05-01

    Experimental critical configurations are reported for several dozen spherical and hemispherical single-unit assemblies of plutonium metal. Most were solid but many were hollow-centered, thick, shell-like geometries. All were constructed of nested plutonium (mostly {sup 2139}Pu) metal hemispherical shells. Three kinds of critical configurations are reported. Two required interpolation and/or extrapolation of data to obtain the critical mass because reflector conditions were essentially infinite. The first finds the plutonium essentially fully reflected by a hydrogen-rich oil; the second is essentially unreflected. The third kind reports the critical oil reflector height above a large plutonium metal assembly of accurately known mass (no interpolation required) when that mass was too great to permit full oil reflection. Some configurations had thicknesses of mild steel just outside the plutonium metal, separating it from the oil. These experiments were performed at the Rocky Flats Critical Mass Laboratory in the late 1960s. They have not been published in a form suitable for benchmark-quality comparisons against state-of-the-art computational techniques until this paper. The age of the data and other factors lead to some difficulty in reconstructing aspects of the program and may, in turn, decrease confidence in certain details. Whenever this is true, the point is acknowledged. The plutonium metal was alpha-phase {sup 239}Pu containing 5.9 wt-% {sup 240}Pu. All assemblies were formed by nesting 1.667-mm-thick (nominal) bare plutonium metal hemispherical shells, also called hemishells, until the desired configuration was achieved. Very small tolerance gaps machined into radial dimensions reduced the effective density a small amount in all cases. Steel components were also nested hemispherical shells; but these were nominally 3.333-mm thick. Oil was used as the reflector because of its chemical compatibility with plutonium metal.

  9. Long-Term Soil Experiments: A Key to Managing Earth's Rapidly Changing Critical Zones

    Science.gov (United States)

    Richter, D., Jr.

    2014-12-01

    In a few decades, managers of Earth's Critical Zones (biota, humans, land, and water) will be challenged to double food and fiber production and diminish adverse effects of management on the wider environment. To meet these challenges, an array of scientific approaches is being used to increase understanding of Critical Zone functioning and evolution, and one amongst these approaches needs to be long-term soil field studies to move us beyond black boxing the belowground Critical Zone, i.e., to further understanding of processes driving changes in the soil environment. Long-term soil experiments (LTSEs) provide direct observations of soil change and functioning across time scales of decades, data critical for biological, biogeochemical, and environmental assessments of sustainability; for predictions of soil fertility, productivity, and soil-environment interactions; and for developing models at a wide range of temporal and spatial scales. Unfortunately, LTSEs globally are not in a good state, and they take years to mature, are vulnerable to loss, and even today remain to be fully inventoried. Of the 250 LTSEs in a web-based network, results demonstrate that soils and belowground Critical Zones are highly dynamic and responsive to human management. The objective of this study is to review the contemporary state of LTSEs and consider how they contribute to three open questions: (1) can soils sustain a doubling of food production in the coming decades without further impinging on the wider environment, (2) how do soils interact with the global C cycle, and (3) how can soil management establish greater control over nutrient cycling. While LTSEs produce significant data and perspectives for all three questions, there is on-going need and opportunity for reviews of the long-term soil-research base, for establishment of an efficiently run network of LTSEs aimed at sustainability and improving management control over C and nutrient cycling, and for research teams that

  10. Critical experiments on single-unit spherical plutonium geometries reflected and moderated by oil

    International Nuclear Information System (INIS)

    Experimental critical configurations are reported for several dozen spherical and hemispherical single-unit assemblies of plutonium metal. Most were solid but many were hollow-centered, thick, shell-like geometries. All were constructed of nested plutonium (mostly 2139Pu) metal hemispherical shells. Three kinds of critical configurations are reported. Two required interpolation and/or extrapolation of data to obtain the critical mass because reflector conditions were essentially infinite. The first finds the plutonium essentially fully reflected by a hydrogen-rich oil; the second is essentially unreflected. The third kind reports the critical oil reflector height above a large plutonium metal assembly of accurately known mass (no interpolation required) when that mass was too great to permit full oil reflection. Some configurations had thicknesses of mild steel just outside the plutonium metal, separating it from the oil. These experiments were performed at the Rocky Flats Critical Mass Laboratory in the late 1960s. They have not been published in a form suitable for benchmark-quality comparisons against state-of-the-art computational techniques until this paper. The age of the data and other factors lead to some difficulty in reconstructing aspects of the program and may, in turn, decrease confidence in certain details. Whenever this is true, the point is acknowledged. The plutonium metal was alpha-phase 239Pu containing 5.9 wt-% 240Pu. All assemblies were formed by nesting 1.667-mm-thick (nominal) bare plutonium metal hemispherical shells, also called hemishells, until the desired configuration was achieved. Very small tolerance gaps machined into radial dimensions reduced the effective density a small amount in all cases. Steel components were also nested hemispherical shells; but these were nominally 3.333-mm thick. Oil was used as the reflector because of its chemical compatibility with plutonium metal

  11. Karma1.1 benchmark calculations for the numerical benchmark problems and the critical experiments

    International Nuclear Information System (INIS)

    The transport lattice code KARMA 1.1 has been developed at KAERI for the reactor physics analysis of the pressurized water reactor. This program includes the multi-group library processed from ENDF/B-VI R8 and also utilizes the macroscopic cross sections for the benchmark problems. Benchmark calculations were performed for the C5G7 and the KAERI benchmark problems given with seven group cross sections, for various fuels loaded in the operating pressurized water reactors in South Korea, and for the critical experiments including CE, B and W and KRITZ. Benchmark results show that KARMA 1.1 is working reasonably. (author)

  12. Analysis of a boron-carbide-drum-controlled critical reactor experiment

    Science.gov (United States)

    Mayo, W. T.

    1972-01-01

    In order to validate methods and cross sections used in the neutronic design of compact fast-spectrum reactors for generating electric power in space, an analysis of a boron-carbide-drum-controlled critical reactor was made. For this reactor the transport analysis gave generally satisfactory results. The calculated multiplication factor for the most detailed calculation was only 0.7-percent Delta k too high. Calculated reactivity worth of the control drums was $11.61 compared to measurements of $11.58 by the inverse kinetics methods and $11.98 by the inverse counting method. Calculated radial and axial power distributions were in good agreement with experiment.

  13. The Qualification Experiences for Safety-critical Software of POSAFE-Q

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jang Yeol; Son, Kwang Seop; Cheon, Se Woo; Lee, Jang Soo; Kwon, Kee Choon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    Programmable Logic Controllers (PLC) have been applied to the Reactor Protection System (RPS) and the Engineered Safety Feature (ESF)-Component Control System (CCS) as the major safety system components of nuclear power plants. This paper describes experiences on the qualification of the safety-critical software including the pCOS kernel and system tasks related to a safety-grade PLC, i.e. the works done for the Software Verification and Validation, Software Safety Analysis, Software Quality Assurance, and Software Configuration Management etc.

  14. The Qualification Experiences for Safety-critical Software of POSAFE-Q

    International Nuclear Information System (INIS)

    Programmable Logic Controllers (PLC) have been applied to the Reactor Protection System (RPS) and the Engineered Safety Feature (ESF)-Component Control System (CCS) as the major safety system components of nuclear power plants. This paper describes experiences on the qualification of the safety-critical software including the pCOS kernel and system tasks related to a safety-grade PLC, i.e. the works done for the Software Verification and Validation, Software Safety Analysis, Software Quality Assurance, and Software Configuration Management etc

  15. Experiment to investigate anti ν/sub μ/ → anti ν/sub e/ oscillations at Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    An experiment, being planned at LAMPF, aims to investigate a possible neutrino oscillation channel, anti ν/sub μ/ → anti ν/sub e/. If anti ν/sub μ/, produced in the LAMPF beam stop, oscillate to anti ν/sub e/, then interactions anti ν/sub e/ + p → e+ + n, may be detected. A large volume liquid scintillator (4470 liter) emplaced at 33 m from the beam stop, detects e+ and n, after moderation in the hydrogenous liquid and capture in Gd, loaded into the scintillator. Our anticipated signal rate is currently estimated at 1.67 (sigma m2)2/day assuming full amplitude oscillation. The corresponding counting rate, assuming all anti ν/sub μ/ have oscillated to anti ν/sub e/ at the detector is 1.5/day. Cosmic rates are estimated at 0.033/day. Correlated backgrounds from the beam stop are calculated to be small in comparison to cosmic events, except for reactions of ν/sub e/ in Pb. These reactions may be reduced with an Fe shield within the detector. With the above rate, a limit on the sensitivity of our experiment for the value of sigma m2 is estimated at 0.12 eV2 with 70 days of counting. Detector features, estimated background rates, and sensitivity values are discussed

  16. Space, the final frontier: A critical review of recent experiments performed in microgravity.

    Science.gov (United States)

    Vandenbrink, Joshua P; Kiss, John Z

    2016-02-01

    Space biology provides an opportunity to study plant physiology and development in a unique microgravity environment. Recent space studies with plants have provided interesting insights into plant biology, including discovering that plants can grow seed-to-seed in microgravity, as well as identifying novel responses to light. However, spaceflight experiments are not without their challenges, including limited space, limited access, and stressors such as lack of convection and cosmic radiation. Therefore, it is important to design experiments in a way to maximize the scientific return from research conducted on orbiting platforms such as the International Space Station. Here, we provide a critical review of recent spaceflight experiments and suggest ways in which future experiments can be designed to improve the value and applicability of the results generated. These potential improvements include: utilizing in-flight controls to delineate microgravity versus other spaceflight effects, increasing scientific return via next-generation sequencing technologies, and utilizing multiple genotypes to ensure results are not unique to one genetic background. Space experiments have given us new insights into plant biology. However, to move forward, special care should be given to maximize science return in understanding both microgravity itself as well as the combinatorial effects of living in space. PMID:26795156

  17. Handling of time-critical Conditions Data in the CMS experiment - Experience of the first year of data taking

    CERN Document Server

    CERN. Geneva

    2012-01-01

    Data management for a wide category of non-event data plays a critical role in the operation of the CMS experiment. The processing chain (data taking-reconstruction-analysis) relies in the prompt availability of specific, time dependent data describing the state of the various detectors and their calibration parameters, which are treated separately from event data. The Condition Database system is the infrastructure established to handle these data and to make sure that they are available to both offline and online workflows. The Condition Data layout is designed such that the payload data (the Condition) is associated to an Interval Of Validity (IOV). The IOV allows accessing selectively the sets corresponding to specific intervals of time, run number or luminosity section. Both payloads and IOVs are stored in a cluster of relational database servers (Oracle) using an object-relational access approach. The strict requirements of security and isolation of the CMS online systems are imposing a redundant archit...

  18. De Haas--Van Alphen Experiments in the Quantum Critical Region of Cerium and Uranium Compounds

    International Nuclear Information System (INIS)

    When pressure is applied to the cerium and uranium compounds, their magnetic ordering temperatures are suppressed and become zero at a critical pressure Pc. Around Pc, non-Fermi liquid and/or superconductivity are observed. We clarified a change of the electronic state via the de Haas--van Alphen (dHvA) experiment when pressure crosses Pc. The dHvA experiment under pressure was done for antiferromagnets CeRh2Si2, CeRhIn5 and URu2Si2, and a ferromagnet UGe2. We find an abrupt change of the Fermi surface for CeRh2Si2 and UGe2 when crossing Pc, indicating a first-order like phase transition. For CeRhIn5 and URu2Si2, a change of the cyclotron mass is clearly observed. (author)

  19. Plasma-wall interaction data needs critical to a Burning Core Experiment (BCX)

    International Nuclear Information System (INIS)

    The Division of Development and Technology has sponsored a four day US-Japan workshop ''Plasma-Wall Interaction Data Needs Critical to a Burning Core Experiment (BCX)'', held at Sandia National Laboratories, Livermore, California on June 24 to 27, 1985. The workshop, which brought together fifty scientists and engineers from the United States, Japan, Germany, and Canada, considered the plasma-material interaction and high heat flux (PMI/HHF) issues for the next generation of magnetic fusion energy devices, the Burning Core Experiment (BCX). Materials options were ranked, and a strategy for future PMI/HHF research was formulated. The foundation for international collaboration and coordination of this research was also established. This volume contains the last three of the five technical sessions. The first of the three is on plasma materials interaction issues, the second is on research facilities and the third is from smaller working group meetings on graphite, beryllium, advanced materials and future collaborations

  20. Interpretation of the electric fields measured in an ionospheric critical ionization velocity experiment

    Science.gov (United States)

    Brenning, N.; Faelthammar, C.-G.; Marklund, G.; Haerendel, G.; Kelley, M. C.; Pfaff, R.

    1991-01-01

    The quasi-dc electric fields measured in the CRIT I ionospheric release experiment are studied. In the experiment, two identical barium shaped charges were fired toward a main payload, and three-dimensional measurements of the electric field inside the streams were made. The relevance of proposed mechanisms for electron heating in the critical ionization velocity (CIV) mechanism is addressed. It is concluded that both the 'homogeneous' and the 'ionizing front' models probably are valid, but in different parts of the streams. It is also possible that electrons are directly accelerated by a magnetic field-aligned component of the electric field. The coupling between the ambient ionosphere and the ionized barium stream is more complicated that is usually assumed in CIV theories, with strong magnetic-field-aligned electric fields and probably current limitation as important processes.

  1. Non-solar UV produced ions observed optically from the CRIT I critical velocity ionization experiment

    International Nuclear Information System (INIS)

    A critical velocity ionization experiment was carried out with a heavily instrumented rocket launched from Wallops Island at dawn on May 13, 1986. Two neutral barium beams were created by explosive shaped charges released from the rocket and detonated at 48 degree to B at altitudes near 400 km and below the solar UV cutoff. Critical velocity ionization was expected to form a detectable ion jet along the release field line, but instead an ion cloud of fairly uniform intensity was observed stretching from the release field line across to where the neutral barium jet reached sunlight. The process creating these ions mush have been present from the time of the release and the efficiency is estimated to be equivalent to an ionization time constant of 1,800 s. The ionization is most likely from collisions between the neutral barium jet and the ambient atmospheric oxygen, and if so, the cross section for collisional ionization is 9 x 10-18 cm2. A critical velocity ionization process may have been present during the first few tenths of a second after release, but its efficiency cannot have exceeded an equivalent ionization time constant of about 1,800 s

  2. Analysis of full core steam flooding experiments for the Phase II GCFR critical assembly

    International Nuclear Information System (INIS)

    The initial program of bench mark critical experiments conducted on behalf of the design and safety evaluations for the 300 MW(e) gas cooled fast breeder reactor demonstration plant included extensive measurements of the reactivity effects of accidental steam ingress. Insertions of polyethylene (CH2) foam into all of the void channels in the 1250-liter (l) core, the radial blankets, and the axial blankets of the Phase II GCFR critical assembly gave simulated floodings of up to 2.25% steam in the coolant. The report presents results of General Atomic Company (GA) analyses of the Phase II steam entry experiments, giving comparisons of calculated and measured flooding worths under various conditions, including changes in core geometry and introduction of control rod poisoning. Also studied were the effects of steam flooding on control material worth and other physics parameters. Calculated worths of hydrogenous materials were found to be significantly sensitive to variations in analytical models and methods. Good agreement with experiments was obtained by a 28-group analysis when a rigorous regeneration of cross sections, cell-heterogeneity factors, and directional diffusion coefficients was provided at each specific flooding density to account for the moderated spectra. Steam worths in a rodded core can be similarly well predicted provided that rod shielding effects are re-evaluated in the steam environment. Extrapolations based on these experiments clearly suggest that should a steam leak occur, it would not be a major safety concern, even in a small GCFR demonstration plant. Details of the analytical procedures and models utilized are presented

  3. KAERI results on BFS-62 3A critical experiment analysis (Phase 5)

    International Nuclear Information System (INIS)

    This presentation is reporting on the KAERI's results on the BFS-62-3 A critical experiment analysis (Phase-5 ). In Phase-5 Model a homogeneous full core model is employed. Transport and diffusion calculations in R-Z model are carried out. R-Z model is used to test the transport effect and to provide the spectral weighting in generation of effective group XS. Based on the Hex-Z model, the sodium void reactivity effects (SVRE) are calculated for the voided regions. Cross Section Library KAFAX was based on the nuclear data file: JEF-2.2, ENDF-B/VI, prepared in MATXS format with multi-groups. Effective Cross Section(XS) Generation was done by cell XS calculation and group collapsing from 80 to 25 and 9 groups. BFS-62-3A Critical Experiment was modelled in R-Z and Hex-Z geometry. Results of Sodium Void Reactivity Effects include: Effect of Axial Mesh Size Change; Effect of Different Regionwise Spectrum Weighting in XS Collapsing; and differences caused by using JEF-2.2 and ENDF-B/VI libraries. A summary of KAERl Results is presented

  4. Clinical accompaniment: the critical care nursing students’ experiences in a private hospital

    Directory of Open Access Journals (Sweden)

    N. Tsele

    2000-09-01

    Full Text Available The quality of clinical accompaniment of the student enrolled for the post-basic diploma in Medical and Surgical Nursing Science: Critical Care Nursing (General is an important dimension of the educational/learning programme. The clinical accompanist/mentor is responsible for ensuring the student’s compliance with the clinical outcomes of the programme in accordance with the requirements laid down by the Nursing Education Institution and the South African Nursing Council. The purpose of this study was to explore and describe the experiences of the students enrolled for a post-basic diploma in Medical and Surgical Nursing Science: Critical Care Nursing (General, in relation to the clinical accompaniment in a private hospital in Gauteng. An exploratory, descriptive and phenomenological research design was utilised and individual interviews were conducted with the ten students in the research hospital. A content analysis was conducted and the results revealed both positive and negative experiences by the students in the internal and external worlds. The recommendations include the formulation of standards for clinical accompaniment of students. the evaluation of the quality of clinical accompaniment of students and empowerment of the organisation, clinical accompanists/mentors and clinicians.

  5. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cappiello, C.C.; Butterfield, K.B.; Sanchez, R.G. [and others

    1997-10-01

    The Solution High-Energy Burst Assembly (SHEBA) was originally constructed during 1980 and was designed to be a clean free-field geometry, right-circular, cylindrically symmetric critical assembly employing U(5%)O{sub 2}F{sub 2} solution as fuel. A second version of SHEBA, employing the same fuel but equipped with a fuel pump and shielding pit, was commissioned in 1993. This report includes data and operating experience for the 1993 SHEBA only. Solution-fueled benchmark work focused on the development of experimental measurements of the characterization of SHEBA; a summary of the results are given. A description of the system and the experimental results are given in some detail in the report. Experiments were designed to: (1) study the behavior of nuclear excursions in a low-enrichment solution, (2) evaluate accidental criticality alarm detectors for fuel-processing facilities, (3) provide radiation spectra and dose measurements to benchmark radiation transport calculations on a low-enrichment solution system similar to centrifuge enrichment plants, and (4) provide radiation fields to calibrate personnel dosimetry. 15 refs., 37 figs., 10 tabs.

  6. Analysis of mixed oxide fuel critical experiments with neutronics analysis codes for boiling water reactors

    International Nuclear Information System (INIS)

    Critical experiments of UO2 and full mixed oxide (MOX) fuel cores conducted at the Tank-type Critical Assembly (TCA) were analyzed using BWR design-purpose codes HINES and CERES with ENDF/B files and Monte Carlo fine analysis codes VMONT and MVP with the JENDL-3.2 library. The averaged values of the multiplication factors calculated with HINES/CERES, VMONT and MVP agreed with those of experiments within 0.3%Δk. The values by the design-purpose codes showed a small difference of 0.1%Δk between UO2 and MOX cores. Monte Carlo code results showed that the JENDL-3.2 library had a tendency to overestimate the multiplication factors of UO2 cores by about 0.3%Δk compared with those values of MOX cores. The root mean square errors of calculated power distributions were less than 1% for HINES/CERES and VMONT. These results showed that (1) the accuracy of these codes when applied to full MOX cores was almost the same as their accuracy for UO2 cores, which confirmed the accuracy of present core design codes for full MOX cores; and (2) the accuracy of the 190-energy-group Monte Carlo calculation code VMONT was almost the same as that of the continuous-energy Monte Carlo calculation code MVP. (author)

  7. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    International Nuclear Information System (INIS)

    The Solution High-Energy Burst Assembly (SHEBA) was originally constructed during 1980 and was designed to be a clean free-field geometry, right-circular, cylindrically symmetric critical assembly employing U(5%)O2F2 solution as fuel. A second version of SHEBA, employing the same fuel but equipped with a fuel pump and shielding pit, was commissioned in 1993. This report includes data and operating experience for the 1993 SHEBA only. Solution-fueled benchmark work focused on the development of experimental measurements of the characterization of SHEBA; a summary of the results are given. A description of the system and the experimental results are given in some detail in the report. Experiments were designed to: (1) study the behavior of nuclear excursions in a low-enrichment solution, (2) evaluate accidental criticality alarm detectors for fuel-processing facilities, (3) provide radiation spectra and dose measurements to benchmark radiation transport calculations on a low-enrichment solution system similar to centrifuge enrichment plants, and (4) provide radiation fields to calibrate personnel dosimetry. 15 refs., 37 figs., 10 tabs

  8. Student research in criticality safety at the University of Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Hetrick, D.L.

    1997-06-01

    A very brief progress report on four University of Arizona student projects is given. Improvements were made in simulations of power pulses in aqueous solutions, including the TWODANT model. TWODANT calculations were performed to investigate the effect of assembly shape on the expansion coefficient of reactivity for solutions. Preliminary calculations were made of critical heights for the Los Alamos SHEBA assembly. Calculations to support French experiments to measure temperature coefficients of dilute plutonium solutions confirmed feasibility.

  9. The GUINEVERE experiment: First PNS measurements in a lead moderated sub-critical fast core

    International Nuclear Information System (INIS)

    The GUINEVERE (Generation of Uninterrupted Intense Neutrons at the lead Venus Reactor) experimental program is dedicated to the study of Accelerator Driven System reactivity monitoring. It was partly carried out within the EUROTRANS integrated project (EURATOM FP6). GUINEVERE consists in coupling the fast core of the VENUS-F reactor (SCK-CEN, Mol (Belgium)), composed of enriched uranium and solid lead, with a T(d,n) neutron source provided by the GENEPI-3C deuteron accelerator. This neutron source can be operated in several modes: pulsed mode, continuous mode and also continuous mode with short beam interruptions (the so called 'beam trips'). In the past, the key questions of the reactivity control and monitoring in a subcritical system were studied in the MUSE experiments (1998-2004). These experiments highlighted the difficulty to determine precisely the reactivity with a single technique. This led to investigate a new strategy which is based on the combination of the relative reactivity monitoring via the core power to beam current relationship with absolute reactivity cross-checks during programmed beam interruptions. Consequently, to determine the reactivity, several dynamical techniques of reactivity determination have to be compared. In addition, their accuracy for absolute reactivity determination must be evaluated using a reference reactivity determination technique (from a critical state: rod drop and MSM measurements). The first sub-critical configuration which was studied was around keff = 0.96 (SCI). Pulsed Neutron Source experiments (PNS) were carried out. The neutron population decrease was measured using fission chambers in different locations inside the core and the reflector. Neutron population time decrease was analyzed using fitting techniques and the Area Method Results obtained for the SCI reactivity will be shown, discussed and compared to the reference value given by the MSM method. (authors)

  10. The GUINEVERE experiment: First PNS measurements in a lead moderated sub-critical fast core

    Energy Technology Data Exchange (ETDEWEB)

    Thyebault, H. E. [Laboratoire de Physique Subatomique et de Cosmologie, CNRS-IN2P3/UJF/INPG (France); Baeten, P. [StudieCentrum voor Kernenergie-CEN (Belgium); Billebaud, A.; Chabod, S. [Laboratoire de Physique Subatomique et de Cosmologie, CNRS-IN2P3/UJF/INPG (France); Kochetkov, A. [StudieCentrum voor Kernenergie-CEN (Belgium); Lecolley, F. R.; Lecouey, J. L.; Lehaut, G.; Marie, N. [Laboratoire de Physique Corpusculaire de Caen, ENSICAEN/Universite de Caen/CNRS-IN2P3 (France); Mellier, F. [CEA Commissariat A l' Energie Atomique et Aux Energies Alternatives, DEN, DER/SPEX, F-13108 Saint-Paul-lez-Durance (France); Uyttenhove, W.; Vittiglio, G.; Wagemans, J. [StudieCentrum voor Kernenergie-CEN (Belgium); Ban, G. [Laboratoire de Physique Corpusculaire de Caen, ENSICAEN/Universite de Caen/CNRS-IN2P3 (France); Dessagne, P.; Kerveno, M. [Institut de Physique Hubert Curien-DRS/UdS/CNRS-IN2P3, 53 Avenue des Martyrs, 38026 Grenoble cedex (France); Steckmeyer, J. C. [Laboratoire de Physique Corpusculaire de Caen, ENSICAEN/Universite de Caen/CNRS-IN2P3 (France)

    2012-07-01

    The GUINEVERE (Generation of Uninterrupted Intense Neutrons at the lead Venus Reactor) experimental program is dedicated to the study of Accelerator Driven System reactivity monitoring. It was partly carried out within the EUROTRANS integrated project (EURATOM FP6). GUINEVERE consists in coupling the fast core of the VENUS-F reactor (SCK-CEN, Mol (Belgium)), composed of enriched uranium and solid lead, with a T(d,n) neutron source provided by the GENEPI-3C deuteron accelerator. This neutron source can be operated in several modes: pulsed mode, continuous mode and also continuous mode with short beam interruptions (the so called 'beam trips'). In the past, the key questions of the reactivity control and monitoring in a subcritical system were studied in the MUSE experiments (1998-2004). These experiments highlighted the difficulty to determine precisely the reactivity with a single technique. This led to investigate a new strategy which is based on the combination of the relative reactivity monitoring via the core power to beam current relationship with absolute reactivity cross-checks during programmed beam interruptions. Consequently, to determine the reactivity, several dynamical techniques of reactivity determination have to be compared. In addition, their accuracy for absolute reactivity determination must be evaluated using a reference reactivity determination technique (from a critical state: rod drop and MSM measurements). The first sub-critical configuration which was studied was around k{sub eff} = 0.96 (SCI). Pulsed Neutron Source experiments (PNS) were carried out. The neutron population decrease was measured using fission chambers in different locations inside the core and the reflector. Neutron population time decrease was analyzed using fitting techniques and the Area Method Results obtained for the SCI reactivity will be shown, discussed and compared to the reference value given by the MSM method. (authors)

  11. TNF-A Levels throughout the Critical Period for Experience-Dependent Plasticity in the Rat Primary Auditory Cortex

    NARCIS (Netherlands)

    Man, WH; Madeira, Caroline; Zhou, Xiaoming; Merzenich, Michael M; Panizzutti, Rogerio

    2015-01-01

    Tumor necrosis factor- alpha (TNF-α) is likely to play a role in brain plasticity. To determine whether TNF-α levels change throughout a critical period of experience-dependent brain plasticity, we assessed these levels in the primary auditory cortex of rats before, during and after the critical per

  12. An adaptive actor-critic algorithm with multi-step simulated experiences for controlling nonholonomic mobile robots

    OpenAIRE

    Syam, Rafiuddin

    2007-01-01

    In this paper, we propose a new algorithm of an adaptive actor-critic method with multi-step simulated experiences, as a kind of temporal difference (TD) method. In our approach, the TD-error is composed of two valuefunctions and m utility functions, where m denotes the number ofmulti-steps inwhich the experience should be simulated. The value-function is constructed from the critic formulated by a radial basis function neural network (RBFNN), which has a simulated exp...

  13. A critical heat flux experiment with water flow at low pressures in thin rectangular channels

    International Nuclear Information System (INIS)

    Highlights: • The CHF experiments were performed in thin rectangular channels at low pressure. • Different test sections were tested with different heating length and width. • A new CHF correlation was derived by considering the heating length effect. • Large pressure drop was found in test section at high flow rate condition. - Abstract: Experimental investigation was performed on the critical heat flux (CHF) in thin rectangular channels with very wide mass velocity range at low pressures. Different test sections were adopted with the different heated length and heated width. Both the vertical upward flow and downward flow were tested during the experiment. The results prove that the effect of the heated length on the CHF exists in the high mass velocity test but it is not very strong. The CHF rises with shorter heated length. At low mass velocities, the CHF at downward flow is much lower than that at upward flow. Empirical correlations were compared with the experimental data both from present and others’ studies. Empirical correlations provided by Katto and Gambill gave out good prediction for the low upflow and the high downflow respectively. The Sudo correlation had wide flow range but it overestimated at low mass velocity and underestimated at high mass velocity. A new CHF correlation for the large flow rate shows good agreement with the present and others’ studies. High pressure drop was found in the experiment at high flow rate conditions. It was analyzed and discussed in the paper

  14. Star of Lima - Overview and optical diagnostics of a barium Alfven critical velocity experiment

    Science.gov (United States)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T.; Foeppl, H.; Valenzuela, A.

    1986-01-01

    The Alfven critical velocity mechanism for ionization of a neutral gas streaming across the magnetic field has been demonstrated in laboratory experiments. In March 1983, two rocket-borne experiments with Ba and Sr tested the effect in the wall-less laboratory of space from Punto Lobos, Peru, near 430 km altitude. 'Star of Lima' used a conical Ba shaped charge aimed at an instrument payload about 2 km away. Because of rocket overperformance the detonation occurred in partial sunlight, so that less than 21.6 percent of the ionizing UV was present. Particle and field measurements indicate the production of hot electrons and waves in the energy and frequency range that are respectively predicted to produce a cascade of ionization by the Alfven mechanism. However, the ionization fluxes and wave energy density did not reach cascade levels, and optical observations indicate that only 2.5 to 5 x 10 to the 20th Ba ions were produced. A substantial portion and perhaps all of the ionization could have been produced by solar UV. The failure of the Alfven process in this experiment is not well understood.

  15. Preparation of a criticality benchmark based on experiments performed at the RA-6 reactor

    International Nuclear Information System (INIS)

    The operation and fuel management of a reactor uses neutronic modeling to predict its behavior in operational and accidental conditions. This modeling uses computational tools and nuclear data that must be contrasted against benchmark experiments to ensure its accuracy. These benchmarks have to be simple enough to be possible to model with the desired computer code and have quantified and bound uncertainties. The start-up of the RA-6 reactor, final stage of the conversion and renewal project, allowed us to obtain experimental results with fresh fuel. In this condition the material composition of the fuel elements is precisely known, which contributes to a more precise modeling of the critical condition. These experimental results are useful to evaluate the precision of the models used to design the core, based on U3Si2 and cadmium wires as burnable poisons, for which no data was previously available. The analysis of this information can be used to validate models for the analysis of similar configurations, which is necessary to follow the operational history of the reactor and perform fuel management. The analysis of the results and the generation of the model were done following the methodology established by International Criticality Safety Benchmark Evaluation Project, which gathers and analyzes experimental data for critical systems. The results were very satisfactory resulting on a value for the multiplication factor of the model of 1.0000 ± 0.0044, and a calculated value of 0.9980 ± 0.0001 using MCNP 5 and ENDF/B-VI. The utilization of as-built dimensions and compositions, and the sensitivity analysis allowed us to review the design calculations and analyze their precision, accuracy and error compensation.

  16. Development of critical digital review procedure and the preliminary application experience

    International Nuclear Information System (INIS)

    A CDR (Critical digital review) is the procedure for the replacement of an Instrumentation and control system that is critical for safety and has become obsolete. The contents of this CDR procedure include: Scope, Responsibility, Operation Procedure, and CDR review items which are described in the paper. The CDR phases include Feasibility Phase, Conceptual Design Phase, Approval Phase, Bid Phase, Factory Acceptance Test Phase, Installation Phase, and Site Acceptance Test Phase. The CDR Review Items include the comparison of the design change, Software Verification and Validation, Failure Mode and Effects Analysis, Evaluation of Watchdog Timer, Evaluation of Electromagnetic Compatibility, Evaluation of Grounding for System/Component, Seismic Evaluation, Human Factors Engineering Evaluation, and Inspection. The objectives of CDR are not only for obtaining a high quality digital instrumentation and control system, but also for regulatory review by regulatory body. The experience of the CDR showed the importance of preparation of the documents by the vendor. This means the communication with the vendors for the bid preparation is crucial

  17. Optical observations on the CRIT-II Critical Ionization Velocity Experiment

    International Nuclear Information System (INIS)

    A rocket borne Critical Ionization Velocity (CIV) experiment was carried out from Wallops Island at dusk on May 4, 1989. Two barium shaped charges were released below the solar terminator (to prevent photoionization) at altitudes near 400 km. The ambient ionospheric electron density was 5x105 cm-3. The neutral barium jet was directed upwards and at an angle of nominally 45 degrees to B which gives approximately 3x1023 neutrals with super critical velocity. Ions created by a CIV process in the region of the neutral jet would travel up along B into sunlight where they can be detected optically. Well defined ion clouds (max. brightness 750 R) were observed in both releases. An ionization rate of 0.8%s-1 (125s ionization time constant) can account for the observed ion cloud near the release field line, but the ionization rate falls off with increasing distance from the release. It is concluded that a CIV process was present in the neutral jet out to about 50 km from the release, which is significantly further than allowed by current theories

  18. Optical observations on the CRIT-II Critical Ionization Velocity Experiment

    Science.gov (United States)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Haerendel, G.; Valenzuela, A.

    1990-01-01

    A rocket borne Critical Ionization Velocity (CIV0 experiment was carried out from Wallops Island at dusk on May 4, 1989. Two barium shaped charges were released below the solar terminator (to prevent photoionization) at altitudes near 400 km. The ambient ionospheric electron density was 50,000/cu cm. The neutral barium jet was directed upward and at an angle of nominally 45 degrees to B which gives approximately 3 x 10 to the 23rd neutrals with super critical velocity. Ions created by a CIV process in the region of the neutral jet would travel up along B into sunlight where they can be detected optically. Well defined ion clouds (max. brightness 750 R) were observed in both releases. An ionization rate of 0.8 percent/sec (125 sec ionization time constant) can account for the observed ion cloud near the release field line, but the ionization rate falls off with increasing distance from the release. It is concluded that a CIV process was present in the neutral jet out to about 50 km from the release, which is significantly further than allowed by current theories.

  19. Design of Hemispherical Downward-Facing Vessel for Critical Heat Flux Experiment

    International Nuclear Information System (INIS)

    The in-vessel retention (IVR) is one of major severe accident management strategies adopted by some operating nuclear power plants during a severe accident. The recent Shin-Gori Units 3 and 4 of the Advanced Power Reactor 1400 MWe (APR1400) have adopted the external reactor vessel cooling (ERVC) by reactor cavity flooding as major severe accident management strategy. The ERVC in the APR1400 design resorts to active flooding system using thermal insulator. The Corium Attack Stopper Apparatus Spherical Channel (CASA SC) tests are conducted to measure the critical power and critical heat flux (CHF) on a downward hemispherical vessel scaled down from the APR1400 lower head by 1/10 on a linear scale. CASA is designed through scaling and thermal analysis to simulate the APR1400 vessel and thermal insulator. The heated vessel of CASA SC represents the external surface of a hemisphere submerged vessel in water. The heated vessel plays an important role in the ERVC experiment depending on the configuration of oxide pool and metallic layer. Hand calculation and computational analysis are performed to produce high heat flux from the downward facing hemisphere in excess of 1 MW/m2

  20. Alize 3 - first critical experiment for the franco-german high flux reactor - calculations

    International Nuclear Information System (INIS)

    The results of experiments in the light water cooled D2O reflected critical assembly ALIZE III have been compared to calculations. A diffusion model was used with 3 fast and epithermal groups and two overlapping thermal groups, which leads to good agreement of calculated and measured power maps, even in the case of strong variations of the neutron spectrum in the core. The difference of calculated and measured keff was smaller than 0.5 per cent δk/k. Calculations of void and structure material coefficients of the reactivity of 'black' rods in the reflector, of spectrum variations (Cd-ratio, Pu-U-ratio) and to the delayed photoneutron fraction in the D2O reflector were made. Measurements of the influence of beam tubes on reactivity and flux distribution in the reflector were interpreted with regard to an optimum beam tube arrangement for the Franco- German High Flux Reactor. (author)

  1. On the BepiColombo and juno radio science experiments: Precise models and critical estimates

    Science.gov (United States)

    Tommei, Giacomo

    2015-08-01

    Radio Science Experiments (RSEs) use radio links between spacecraft and Earth to look for changes in the frequency as well as roundtrip light time of signals to investigate geophysical phenomena and for tests of fundamental physics. BepiColombo and Juno are two space missions that will perform RSEs, thanks to a very accurate tracking: to extract the desired information, it is not sufficient to improve the precision of observations, we need also to develop accurate mathematical models making smaller the residuals, defined as the observed observables minus the computed observables. However, sometimes, even highly accurate mathematical models are not sufficient for the determination of a given parameter with the required accuracy. In this paper, after a brief summary of the mathematical models needed for top accuracy RSEs, we will present two critical cases from the simulations of the BepiColombo and Juno where also these accurate models may not be sufficient to determine some quantities with the desired accuracy

  2. Aesthetic experience, poetic texts reading and critic reader’s education

    Directory of Open Access Journals (Sweden)

    Enrique Rodríguez Pérez

    2012-11-01

    Full Text Available Imagination and poetry forge citizens' democratic attitude because they downplay core beliefs, structures and standpoints. Poetics ambiguity, fragility and mystery make poetry readers and writers take on a more active and sincere way of behaving in the world, to themselves and to others. To do this, it reflects on the primary and foundational nature of the aesthetic experience and the poetic texts while reading and writing are taking place. From then on, the links between poetic dimension, reading and critic readers’ education are outlined. Finally, it is evident why school is one of the most promising settings to make poetry readers –immersed in world textuality- be democratically committed to respect differences.

  3. Verification of HELIOS-MASTER system through benchmark of critical experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ha Yong; Kim, Kyo Yun; Cho, Byung Oh; Lee, Chung Chan; Zee, Sung Quun

    1999-03-01

    HELIOS-MASTER code system is verified through the benchmark of the critical experiments that were performed by RRC Kurchatov Institute with water moderated hexagonally pitched lattices of highly enriched uranium fuel rods (80w/o). We also used the same input by using MCNP code that was described in evaluation report, and compare our results with those of evaluation report. HELIOS developed by Scandpower A/S is a two-dimensional transport program for generation of group cross sections and MASTER developed by KAERI is a three-dimensional nuclear design and analysis code based on the two group diffusion theory. It solves neutronics model with AFEN (Analytic Function Expansion Nodal) method for hexagonal geometry. The results show that HELIOS-MASTER code system is fast and accurate enough so that this code system can be used as nuclear core analysis tool for hexagonal geometry. (author). 4 refs., 4 tabs., 10 figs.

  4. Verification of HELIOS-MASTER system through benchmark of critical experiments

    International Nuclear Information System (INIS)

    HELIOS-MASTER code system is verified through the benchmark of the critical experiments that were performed by RRC Kurchatov Institute with water moderated hexagonally pitched lattices of highly enriched uranium fuel rods (80w/o). We also used the same input by using MCNP code that was described in evaluation report, and compare our results with those of evaluation report. HELIOS developed by Scandpower A/S is a two-dimensional transport program for generation of group cross sections and MASTER developed by KAERI is a three-dimensional nuclear design and analysis code based on the two group diffusion theory. It solves neutronics model with AFEN (Analytic Function Expansion Nodal) method for hexagonal geometry. The results show that HELIOS-MASTER code system is fast and accurate enough so that this code system can be used as nuclear core analysis tool for hexagonal geometry. (author). 4 refs., 4 tabs., 10 figs

  5. Catalog and history of the experiments of criticality Saclay (1958-1964) Valduc / Building 10 (1964-2003)

    International Nuclear Information System (INIS)

    The group ' International Criticality Safety Evaluation Benchmark evaluation project ' (I.C.S.B.E.P.) has for aim to supply to the international community experiments of benchmarks criticality, of certified quality, used to guarantee the qualification of criticality calculation codes. Have been defined: a structure of experiments classification, a format of standard presentation, a structure of work with evaluation, internal and external checks, presentation in plenary session. After favourable opinion of the work group, the synthesis document called evaluation is integrated to the general report I.C.S.B.E.P. (N.C.)

  6. Critical Race Media Projects: Counterstories and Praxis (Re)Claim Chicana/o Experiences

    Science.gov (United States)

    Alemán, Sonya M.; Alemán, Enrique, Jr.

    2016-01-01

    This article maps out two critical race media projects -- a documentary and a Chicana/o-centric student newspaper--developed by Chicana/o scholars seeking to fulfilll the promise of praxis hailed by critical race theorists. Fortified and guided by the quintessential tenets of critical race theory and Latino critical race theory, these critical…

  7. Analysis of measurements for a uranium-free core experiment at the BFS-2 critical assembly

    International Nuclear Information System (INIS)

    This document describes a series of calculations that were carried out to model various measurements from the BFS-58-1-I1 experiment. BFS-58-1-I1 was a mock-up of a uranium-free, Pu burning core at BFS-2, a Russian critical assembly operated by IPPE. The experiment measured values of Keff, Na void reactivity worth, material sample reactivity worths and reaction rate ratios. The experiments were modelled using a number of different methods. Basic nuclear data was taken from JENDL-3.2, in either 70 or 18 groups. Cross-section data for the various material regions of the assembly were calculated by either SLAROM or CASUP; the heterogeneous structure of the core regions was modelled in these calculations, with 3 different options considered for representing the (essentially 2D) geometry of the assembly components in a 1D cell model. Whole reactor calculations of flux and Keff were done using both a diffusion model (CITATION) and a transport model (TWOTRAN2), both using an RZ geometry. Reactivity worths were calculated both directly from differences in Keff values and by using the exact perturbation calculations of PERKY and SN-PERT (for CITATION and TWOTRAN2, respectively). Initial calculations included a number of inaccuracies in the assembly representation, a result of communication difficulties between JNC and IPPE; these errors were removed for the final calculations that are presented. Calculations for the experiments have also been carried out in Russia (IPPE) and France (CEA) as part of an international comparison exercise, some of those results are also presented here. The calculated value of Keff was 1.1%Δk/k higher than the measured value, Na void worth C/E values were ∼1.06; these results were considered to be reasonable. (Discrepancies in certain Na void values were probably due to experimental causes , though the effect should be investigated in any future experiments.) Several sample worth values were small compared with calculational uncertainties

  8. Plasma-wall interaction data needs critical to a Burning Core Experiment (BCX)

    International Nuclear Information System (INIS)

    The Division of Development and Technology has sponsored a four day US-Japan workshop ''Plasma-Wall Interaction Data Needs Critical to a Burning Core Experiment (BCX)'', held at Sandia National Laboratories, Livermore, California on June 24 to 27, 1985. The workshop, which brought together fifty scientists and engineers from the United States, Japan, Germany, and Canada, considered the plasma-material interaction and high heat flux (PMI/HHF) issues for the next generation of magnetic fusion energy devices, the Burning Core Experiment (BCX). Materials options were ranked, and a strategy for future PMI/HHF research was formulated. The foundation for international collaboration and coordination of this research was also established. This volume contains the first two of the five technical sessions. The first one being the BCX overview, the second on the BCX candidate materials. The remaining three sessions in volume two are on the plasma materials interaction issues, research facilities and small working group meeting on graphite, beryllium, advanced materials and future collaborations

  9. Sedimentation equilibria in polydisperse ferrofluids: critical comparisons between experiment, theory, and computer simulation.

    Science.gov (United States)

    Elfimova, Ekaterina A; Ivanov, Alexey O; Lakhtina, Ekaterina V; Pshenichnikov, Alexander F; Camp, Philip J

    2016-05-14

    The sedimentation equilibrium of dipolar particles in a ferrofluid is studied using experiment, theory, and computer simulation. A theory of the particle-concentration profile in a dipolar hard-sphere fluid is developed, based on the local-density approximation and accurate expressions from a recently introduced logarithmic free energy approach. The theory is tested critically against Monte Carlo simulation results for monodisperse and bidisperse dipolar hard-sphere fluids in homogeneous gravitational fields. In the monodisperse case, the theory is very accurate over broad ranges of gravitational field strength, volume fraction, and dipolar coupling constant. In the bidisperse case, with realistic dipolar coupling constants and compositions, the theory is excellent at low volume fraction, but is slightly inaccurate at high volume fraction in that it does not capture a maximum in the small-particle concentration profile seen in simulations. Possible reasons for this are put forward. Experimental measurements of the magnetic-susceptibility profile in a real ferrofluid are then analysed using the theory. The concentration profile is linked to the susceptibility profile using the second-order modified mean-field theory. It is shown that the experimental results are not consistent with the sample being monodisperse. By introducing polydispersity in the simplest possible way, namely by assuming the system is a binary mixture, almost perfect agreement between theory and experiment is achieved. PMID:27042815

  10. Experiment on smooth, circular cylinders in cross-flow in the critical Reynolds number regime

    Energy Technology Data Exchange (ETDEWEB)

    Miau, J.J.; Tsai, H.W.; Lin, Y.J.; Tu, J.K.; Fang, C.H.; Chen, M.C. [National Cheng Kung University, Department of Aeronautics and Astronautics, Tainan (China)

    2011-10-15

    Experiments were conducted for 2D circular cylinders at Reynolds numbers in the range of 1.73 x 10{sup 5}-5.86 x 10{sup 5}. In the experiment, two circular cylinder models made of acrylic and stainless steel, respectively, were employed, which have similar dimensions but different surface roughness. Particular attention was paid to the unsteady flow behaviors inferred by the signals obtained from the pressure taps on the cylinder models and by a hot-wire probe in the near-wake region. At Reynolds numbers pertaining to the initial transition from the subcritical to the critical regimes, pronounced pressure fluctuations were measured on the surfaces of both cylinder models, which were attributed to the excursion of unsteady flow separation over a large circumferential region. At the Reynolds numbers almost reaching the one-bubble state, it was noted that the development of separation bubble might switch from one side to the other with time. Wavelet analysis of the pressure signals measured simultaneously at {theta} = {+-}90 further revealed that when no separation bubble was developed, the instantaneous vortex-shedding frequencies could be clearly resolved, about 0.2, in terms of the Strouhal number. The results of oil-film flow visualization on the stainless steel cylinder of the one-bubble and two-bubble states showed that the flow reattachment region downstream of a separation bubble appeared not uniform along the span of the model. Thus, the three dimensionality was quite evident. (orig.)

  11. Criticality and reactor physics benchmark experiments. Influence of nuclear data uncertainties

    International Nuclear Information System (INIS)

    A number of LWR-type criticality and reactor physics experiments, mainly from the ICSBEP and IRPhEP Handbooks, many of which were already used in the past for international benchmarks in the framework of OECD/NEA working groups, are being evaluated with respect to uncertainties in the basic nuclear data. For this, the sampling based uncertainty and sensitivity analysis tool XSUSA along with the Monte Carlo code KE-NO-V.a as transport solver is employed. Particular emphasis is put on experiments where differential quantities, mainly reaction rate distributions, were measured; the uncertainties of such quantities are not directly accessible to tools based on first order perturbation theory. With respect to multiplication factors and reactivity differences, all results are compared with corresponding results obtained with TSUNAMI-3D from the SCALE 6.1 system; the agreement is very good for all assemblies under consideration. With respect to fission rate distributions, the uncertainty analyses yield only moderate uncertainties from nuclear data; therefore, in general the total uncertainty is dominated by measurement uncertainties, which include the uncertainties of technological parameters. The work is continuously being extended; in the future, also non-LWR specific assemblies, mainly relevant for GEN-IV reactors, will be investigated. (author)

  12. Critical Ethnographic Analysis of "Doing Good" on Short-Term International Immersion Experiences.

    Science.gov (United States)

    Elliot, Michelle L

    2015-09-01

    Reciprocal partnerships are growing alongside the rise of international learning and "doing" experiences for students and clinicians. This paper questions how global citizenship, the acquisition of awareness and skills to sensitively navigate through a rapidly globalized social world, is cultivated amidst international partnerships focused on short-term immersion opportunities. Using an ethnographic methodology to examine the experiences of occupational therapy students abroad, this paper addresses the potential for competing agendas when the motivation to participate within these partnerships is driven in part by a desire to "do good." The empirical lens was directed towards the students' verbal, written and enacted narratives rather than the sociocultural realm of the sending institution, the host organization or the occupational realities of the local communities, therefore is limited in discursive scope. Nevertheless, the need is great for further critical appraisal of objectives and expectations by all parties to foster a partnership culture of reciprocity and equality and to diminish the neocolonial legacy of Western expertise dissemination. By examining how the stated and implied desire to do good exists alongside the risk to do harm to individuals and international networks, the conclusions can be extended locally to highlight the challenges to "partnering up" between clinicians and patients. PMID:25925873

  13. Plasma-wall interaction data needs critical to a Burning Core Experiment (BCX)

    Energy Technology Data Exchange (ETDEWEB)

    1985-11-01

    The Division of Development and Technology has sponsored a four day US-Japan workshop ''Plasma-Wall Interaction Data Needs Critical to a Burning Core Experiment (BCX)'', held at Sandia National Laboratories, Livermore, California on June 24 to 27, 1985. The workshop, which brought together fifty scientists and engineers from the United States, Japan, Germany, and Canada, considered the plasma-material interaction and high heat flux (PMI/HHF) issues for the next generation of magnetic fusion energy devices, the Burning Core Experiment (BCX). Materials options were ranked, and a strategy for future PMI/HHF research was formulated. The foundation for international collaboration and coordination of this research was also established. This volume contains the last three of the five technical sessions. The first of the three is on plasma materials interaction issues, the second is on research facilities and the third is from smaller working group meetings on graphite, beryllium, advanced materials and future collaborations.

  14. Assessment of DeCART for Numerical Benchmark Problems Based on the Compact Nuclear Power Source Critical Experiments

    International Nuclear Information System (INIS)

    DeCART is a 3-dimensional whole-core code based on the synthesis of 2-D radial MOC (Method Of Characteristics) transport and 1-D axial nodal diffusion methods. This code has been applied to the PWR physics analysis. Recently its' geometry treatment capability has been extended to deal with the hexagonal meshes for the VHTR (Very High Temperature gas-cooled Reactor) physics analysis, which requires a verification of the applicability to the VHTR fuels. The Argonne national laboratory has developed the numerical benchmark problems based on the Compact Nuclear Power Source (CNPS) experiments conducted at the Los Alamos National Laboratory (LANL) in the late 1980s in order to support the validation and verification work for the VHTR physics codes. Development of the numerical benchmarks was required from a lack of experimental information on the design data uncertainties and the inconsistency in the design data from different sources. Two- and three-dimensional numerical benchmarks based on the CNPS experiment are specified for the verification of the VHTR physics. In this study the DeCART code was assessed by performing the CNPS benchmark calculations and comparing the results with the MCNP ones

  15. Assessment of DeCART for Numerical Benchmark Problems Based on the Compact Nuclear Power Source Critical Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hoon; Cho, Jin Young; Kim, Kang Seog; Joo, Hyung Kook; Lee, Chung Chan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    DeCART is a 3-dimensional whole-core code based on the synthesis of 2-D radial MOC (Method Of Characteristics) transport and 1-D axial nodal diffusion methods. This code has been applied to the PWR physics analysis. Recently its' geometry treatment capability has been extended to deal with the hexagonal meshes for the VHTR (Very High Temperature gas-cooled Reactor) physics analysis, which requires a verification of the applicability to the VHTR fuels. The Argonne national laboratory has developed the numerical benchmark problems based on the Compact Nuclear Power Source (CNPS) experiments conducted at the Los Alamos National Laboratory (LANL) in the late 1980s in order to support the validation and verification work for the VHTR physics codes. Development of the numerical benchmarks was required from a lack of experimental information on the design data uncertainties and the inconsistency in the design data from different sources. Two- and three-dimensional numerical benchmarks based on the CNPS experiment are specified for the verification of the VHTR physics. In this study the DeCART code was assessed by performing the CNPS benchmark calculations and comparing the results with the MCNP ones.

  16. High-Temperature Gas-Cooled Reactor Critical Experiment and its Application to Thorium Absorption Rates

    International Nuclear Information System (INIS)

    In developing the concept of the HTGR and its first prototype at Peach Bottom, General Atomic made the decision that a critical experiment was required to provide adequately certain necessary input data for the nuclear analysis. The specific needs of the nuclear design theory for input data relating to thorium absorptions led to an experimental design consisting of a central lattice-type critical assembly with surrounding buffer and driver regions. This type of assembly, in which the spectrum of interest can be established in the relatively small central lattice having a desired geometry, provides a useful tool for obtaining a variety of input data for nuclear analysis surveys of new concepts. The particular advantages of this approach over that of constructing a mock-up assembly will be discussed, as well as the role of the theory in determining what experiments are most useful and how these experiments are then used in verifying design techniques. Two relatively new techniques were developed for use in the lattice assembly. These were a reactivity oscillation technique for determining the thorium Doppler coefficient, and an activation technique for determining both the resonance integral of thorium dispersed in graphite and its temperature dependence (activation Doppler coefficient). The Doppler coefficient measurement by reactivity oscillation utilized the entire central fuel element in a technique which permitted heating this fuel element to 800°F and accurately subtracting experimentally the thermal-base effects, that is, those effects not contributing to the thorium resonance capture. Comparison of results with theory for a range of conditions shows excellent agreement. The measurement of the thorium resonance integral and its temperature dependence will be described. The technique developed for measuring resonance capture makes use of gold as the standard and vanadium as die material giving the 1/v absorption rate. This technique is dictated by the fact

  17. On the evaluation of pebble bed reactor critical experiments using the PEBBED code

    International Nuclear Information System (INIS)

    The PEBBED pebble bed reactor fuel management code under development at the Idaho National Laboratory is designed for rapid design and analysis of pebble bed high temperature reactors (PBRs). Embedded within the code are the THERMIX-KONVEK thermal fluid solver and the COMBINE-7 spectrum generation code for inline cross section homogenization. Because 1D symmetry can be found at each stage of core heterogeneity; spherical at TRISO and pebble levels, and cylindrical at the control rod and core levels, the 1-D transport capability of ANISN is assumed to be sufficient in most cases for generating flux solutions for cross section homogenization. Furthermore, it is fast enough to be executed during the analysis or the equilibrium core. Multi-group diffusion-based design codes such as PEBBED and VSOP are not expected to yield the accuracy and resolution of continuous energy Monte Carlo codes for evaluation of critical experiments. Nonetheless, if the preparation of multigroup cross sections can adequately capture the physics of the mixing of PBR fuel elements and leakage from the core, reasonable results may be obtained. In this paper, results of the application of PEBBED to two critical experiments (HTR Proteus and HTR-10) and associated computational models are presented. The embedded 1-D transport solver is shown to capture the double heterogeneity of the pebble fuel in unit cell calculations. Eigenvalue calculations of a whole core are more challenging, particularly if the boron concentration is uncertain. The sensitivity of major safety parameters to variations in modeling assumptions, however, is shown to be minimal. The embedded transport solver can also be used to obtain control rod worths but only with adjustment of the local spectrum. Results are compared to those of other codes as well as Core 4 of the HTR-Proteus experiment which contains partially inserted rods. They indicate the need for a reference solution to adjust the radius of the graphite in the

  18. On the evaluation of pebble bed reactor critical experiments using the PEBBED code

    Energy Technology Data Exchange (ETDEWEB)

    Hans D. Gougar; R. Sonat Sen

    2001-10-01

    The PEBBED pebble bed reactor fuel management code under development at the Idaho National Laboratory is designed for rapid design and analysis of pebble bed high temperature reactors (PBRs). Embedded within the code are the THERMIX-KONVEK thermal fluid solver and the COMBINE-7 spectrum generation code for inline cross section homogenization. Because 1D symmetry can be found at each stage of core heterogeneity; spherical at TRISO and pebble levels, and cylindrical at the control rod and core levels, the 1-D transport capability of ANISN is assumed to be sufficient in most cases for generating flux solutions for cross section homogenization. Furthermore, it is fast enough to be executed during the analysis or the equilibrium core. Multi-group diffusion-based design codes such as PEBBED and VSOP are not expected to yield the accuracy and resolution of continuous energy Monte Carlo codes for evaluation of critical experiments. Nonetheless, if the preparation of multigroup cross sections can adequately capture the physics of the mixing of PBR fuel elements and leakage from the core, reasonable results may be obtained. In this paper, results of the application of PEBBED to two critical experiments (HTR Proteus and HTR-10) and associated computational models are presented. The embedded 1-D transport solver is shown to capture the double heterogeneity of the pebble fuel in unit cell calculations. Eigenvalue calculations of a whole core are more challenging, particularly if the boron concentration is uncertain. The sensitivity of major safety parameters to variations in modeling assumptions, however, is shown to be minimal. The embedded transport solver can also be used to obtain control rod worths but only with adjustment of the local spectrum. Results are compared to those of other codes as well as Core 4 of the HTR-Proteus experiment which contains partially inserted rods. They indicate the need for a reference solution to adjust the radius of the graphite in the

  19. Los Alamos Nuclear plant analyzer

    International Nuclear Information System (INIS)

    The Relational Database software obtained from Idaho National Engineering Laboratory is implemented on the Los Alamos Cray computer system. For the Nuclear Plant Analyzer (NPA), Los Alamos retained a graphics display terminal and a separate forms terminal for mutual compatibility, but integrated both the terminals into a single-line full-duplex mode of communications, using a single keyboard for input. Work on the program-selection phase of an NPA session is well underway. The final phase of implementation will be the Worker or graphics-driver phase. The Los Alamos in-house NPA has been in use for some time, and has given good results in analyses of four transients. The NPA hydrocode has been developed in to a fast-running code. The authors have observed an average of a factor-of-3 speed increase for typical slow reactor-safety transients when employing the stability enhancing two-step (SETS) method in the one-dimensional components using PF1/MOD1. The SETS method allows violation of the material Courant time-step stability limit and is thus stable at large time steps. The SETS method to the three-dimensional VESSEL component in the NPA hydrocode has been adapted. In addition to the speed increase from this new software, significant additional speed is expected as a result of new hardware that provides for vectorization or parallelization

  20. A validation study of existing neutronics tools against ZPPR-21 and ZPPR-15 critical experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.S.; Kim, S.J. (Nuclear Engineering Division)

    2007-09-30

    A study was performed to validate the existing tools for fast reactor neutronics analysis against previous critical experiments. The six benchmark problems for the ZPPR-21 critical experiments phases A through F specified in the Handbook of Evaluated Criticality Safety Benchmark Experiments were analyzed. Analysis was also performed for three loading configurations of the ZPPR-15 Phase A experiments. As-built core models were developed in XYZ geometries using the reactor loading records and drawer master information. Detailed Monte Carlo and deterministic transport calculations were performed, along with various modeling sensitivity analyses. The Monte Carlo simulations were carried out with the VIM code with continuous energy cross sections based on the ENDF/B-V.2 data. For deterministic calculations, region-dependent 230-group cross sections were generated using the ETOE-2/MC-2/SDX code system, again based on the ENDF/B-V.2 data. Plate heterogeneity effects were taken into account by SDX unit cell calculations. Core calculations were performed with the TWODANT discrete ordinate code for the ZPPR-21 benchmarks, and with the DIF3D nodal transport option for the ZPPR-15 experiments. For all six ZPPR-21 configurations where the Pu-239 concentration varies from 0 to 49 w/o and the U-235 concentration accordingly varies from 62 to 0 w/o, the core multiplication factor determined with a 230-group TWODANT calculation agreed with the VIM Monte Carlo solution within 0.20 %{Delta}k, and there was no indication of any systematic bias. The quality of principal cross sections generated with the MC-2 code was comparable to that of VIM cross sections. The overall reactivity effect due to the errors in the 230-group principal cross sections was estimated to be less than 0.05 %{Delta}k. The statistics of the differences between calculated values and specified benchmark experimental values showed similar bias (from -0.28 %{Delta}k to 0.33 %{Delta}k) for MC{sup 2}-2/TWODANT and VIM

  1. A validation study of existing neutronics tools against ZPPR-21 and ZPPR-15 critical experiments

    International Nuclear Information System (INIS)

    A study was performed to validate the existing tools for fast reactor neutronics analysis against previous critical experiments. The six benchmark problems for the ZPPR-21 critical experiments phases A through F specified in the Handbook of Evaluated Criticality Safety Benchmark Experiments were analyzed. Analysis was also performed for three loading configurations of the ZPPR-15 Phase A experiments. As-built core models were developed in XYZ geometries using the reactor loading records and drawer master information. Detailed Monte Carlo and deterministic transport calculations were performed, along with various modeling sensitivity analyses. The Monte Carlo simulations were carried out with the VIM code with continuous energy cross sections based on the ENDF/B-V.2 data. For deterministic calculations, region-dependent 230-group cross sections were generated using the ETOE-2/MC-2/SDX code system, again based on the ENDF/B-V.2 data. Plate heterogeneity effects were taken into account by SDX unit cell calculations. Core calculations were performed with the TWODANT discrete ordinate code for the ZPPR-21 benchmarks, and with the DIF3D nodal transport option for the ZPPR-15 experiments. For all six ZPPR-21 configurations where the Pu-239 concentration varies from 0 to 49 w/o and the U-235 concentration accordingly varies from 62 to 0 w/o, the core multiplication factor determined with a 230-group TWODANT calculation agreed with the VIM Monte Carlo solution within 0.20 %Δk, and there was no indication of any systematic bias. The quality of principal cross sections generated with the MC-2 code was comparable to that of VIM cross sections. The overall reactivity effect due to the errors in the 230-group principal cross sections was estimated to be less than 0.05 %Δk. The statistics of the differences between calculated values and specified benchmark experimental values showed similar bias (from -0.28 %Δk to 0.33 %Δk) for MC2-2/TWODANT and VIM. This result suggests that

  2. Occurrences at Los Alamos National Laboratory: What can they tell us?

    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Reichelt; A. Jeffery Eichorst; Marc E. Clay; Rita J. Henins; Judith D. DeHaven; Richard J. Brake

    2000-03-01

    The authors analyzed the evolution of institutional and facility response to groups of abnormal incidents at Los Alamos National Laboratory (LANL). The analysis is divided into three stages: (1) the LANL response to severe accidents from 1994 to 1996, (2) the LANL response to facility-specific clusters of low-consequence incidents from 1997 to 1999, and (3) the ongoing development of and response to a Laboratory-wide trending and analysis program. The first stage is characterized by five severe accidents at LANL--a shooting fatality, a forklift accident, two electrical shock incidents, and an explosion in a nuclear facility. Each accident caused LANL and the Department of Energy (DOE) to launch in-depth investigations. A recurrent theme of the investigations was the failure of LANL and DOE to identify and act on precursor or low-consequence events that preceded the severe accidents. The second stage is characterized by LANL response to precursor or low-consequence incidents over a two-year period. In this stage, the Chemistry and Metallurgy Research Facility, the Los Alamos Critical Experiments Facility, and the Los Alamos Neutron Science Center responded to an increase in low-consequence events by standing down their facilities. During the restart process, each facility collectively analyzed the low-consequence events and developed systemic corrective actions. The third stage is characterized by the development of a Laboratory-wide trending and analysis program, which involves proactive division-level analysis of incidents and development of systemic actions. The authors conclude that, while the stages show an encouraging evolution, the facility standdowns and restarts are overly costly and that the institutional trending and analysis program is underutilized. The authors therefore recommend the implementation of an institutional, mentored program of trending and analysis that identifies clusters of related low-consequence events, analyzes those events, and

  3. Which experiences of health care delivery matter to service users and why? A critical interpretive synthesis and conceptual map

    OpenAIRE

    Entwistle, Vikki; Firnigl, Danielle; Ryan, Mandy; Francis, Jillian; Kinghorn, Philip

    2012-01-01

    Objective Patients' experiences are often treated as health care quality indicators. Our aim was to identify the range of experiences of health care delivery that matter to patients and to produce a conceptual map to facilitate consideration of why they matter. Methods Broad-based review and critical interpretive synthesis of research literature on patients' perspectives of health care delivery. We recorded experiences reported by a diverse range of patients on ‘concept cards’, considered why...

  4. Extracorporeal circulatory systems in the interhospital transfer of critically ill patients: experience of a single institution

    International Nuclear Information System (INIS)

    Critically ill patients with acute circulatory failure cannot be moved to other institutions unless stabilized by mechanical support systems. Extracorporeal heart and lung assist systems are increasingly used as a bridge to end-organ recovery or transplantation, and as an ultimate rescue tool in cardiopulmonary resuscitation. From July 2001 to April 2008, we had 38 requests for extracorporeal support for interhospital transfer carried out by the air medical service. Respiratory failure was present in 29 patients, who were provided with pumpless extracorporeal lung assist (PECLA) or veno-venous extracorporeal membrane oxygenation (ECMO). Cardiac failure dominated in 9 patients, who underwent implantation of extracorporeal life support (ECLS). Underlying diseases were acute respiratory distress syndrome in 15 patients, pneumonia in 7, prior lung transplant status in 4, cardiogenic shock in 7, and septic shock in 4. All assist systems were connected via peripheral vessels by the Seldinger technique. Transport was uneventful in all cases with no technical failures. On arrival at the specialized care hospital, two patients had leg ischemia and underwent relocation of the arterial cannula. After a mean (SD) support of 5.1 (3.0) days for PECLA, 3.5 (2.9) days for ECLS, and 7.3 (5.8) days for ECMO, 60%, 66%, and 66% of patients, respectively, could be successfully weaned from the systems. Discharge rates were 45% for PECLA, 44% for ECLS, and 56% for ECMO. Our experience proves that minimized extracorporeal assist devices allow safe assistance of patients with isolated or combined heart and lung failure in need of interhospital transfer. Critically ill patients get a chance to reach a center of maximum medical care. (author)

  5. Nonlinear Upshift of Trapped Electron Mode Critical Density Gradient: Simulation and Experiment

    Science.gov (United States)

    Ernst, D. R.

    2012-10-01

    A new nonlinear critical density gradient for pure trapped electron mode (TEM) turbulence increases strongly with collisionality, saturating at several times the linear threshold. The nonlinear TEM threshold appears to limit the density gradient in new experiments subjecting Alcator C-Mod internal transport barriers to modulated radio-frequency heating. Gyrokinetic simulations show the nonlinear upshift of the TEM critical density gradient is associated with long-lived zonal flow dominated states [1]. This introduces a strong temperature dependence that allows external RF heating to control TEM turbulent transport. During pulsed on-axis heating of ITB discharges, core electron temperature modulations of 50% were produced. Bursts of line-integrated density fluctuations, observed on phase contrast imaging, closely follow modulations of core electron temperature inside the ITB foot. Multiple edge fluctuation measurements show the edge response to modulated heating is out of phase with the core response. A new limit cycle stability diagram shows the density gradient appears to be clamped during on-axis heating by the nonlinear TEM critical density gradient, rather than by the much lower linear threshold. Fluctuation wavelength spectra will be quantitatively compared with nonlinear TRINITY/GS2 gyrokinetic transport simulations, using an improved synthetic diagnostic. In related work, we are implementing the first gyrokinetic exact linearized Fokker Planck collision operator [2]. Initial results show short wavelength TEMs are fully stabilized by finite-gyroradius collisional effects for realistic collisionalities. The nonlinear TEM threshold and its collisionality dependence may impact predictions of density peaking based on quasilinear theory, which excludes zonal flows.[4pt] In collaboration with M. Churchill, A. Dominguez, C. L. Fiore, Y. Podpaly, M. L. Reinke, J. Rice, J. L. Terry, N. Tsujii, M. A. Barnes, I. Bespamyatnov, R. Granetz, M. Greenwald, A. Hubbard, J. W

  6. Critical Media Literacy and Popular Film: Experiences of Teaching and Learning in a Graduate Class

    Science.gov (United States)

    Stuckey, Heather; Kring, Kelly

    2007-01-01

    This chapter describes the use of popular film and semiotics for the development of critical media literacy in a graduate-level education course entitled "Pop Culture as Pedagogy: The Role of Entertainment Media in Teaching for Critical Consciousness and Critical Media Literacy." The course focused on analysis of different forms of pop culture,…

  7. Women’s experiences of symptoms of posttraumatic stress disorder (PTSD) after traumatic childbirth: a review and critical appraisal

    OpenAIRE

    James, Stella

    2015-01-01

    This paper critically analyses nine studies on postnatal posttraumatic stress disorder (PTSD) following traumatic childbirth, in order to find common themes of PTSD symptoms, using the cognitive model of PTSD as a guide; it critically appraised one of the studies in depth and it attempted to explain the lived experience of women suffering from postnatal PTSD following traumatic childbirth and the suitability of cognitive behavioural therapy (CBT) for postnatal PTSD. This paper found that wome...

  8. Promotion of critical thinking in e-learning: a qualitative study on the experiences of instructors and students

    OpenAIRE

    Gharib, Mitra; Zolfaghari, Mitra; Mojtahedzadeh, Rita; Mohammadi, Aeen; Gharib, Atoosa

    2016-01-01

    Background With the increasing popularity of e-learning programs, educational stakeholders are attempting to promote critical thinking in the virtual education system. This study aimed to explore the experiences of both the instructors and the students about critical thinking promotion within the virtual education system. Methods This qualitative study recruited the instructors and students from four academic disciplines provided by the Virtual School of Tehran University of Medical Sciences ...

  9. Interpretation of the electric fields measured in an ionospheric critical ionization velocity experiment

    International Nuclear Information System (INIS)

    This paper deals with the quasi-dc electric fields measured in the CRIT I ionospheric release experiment, which was launched from Wallops Island on May 13, 1986. The purpose of the experiment was to study the critical ionization velocity (CIV) mechanism in the ionosphere. Two identical barium shaped charges were fired from distances of 1.99 km and 4.34 km towards a main payload, which made full three-dimensional measurements of the electric field inside the streams. There was also a subpayload separated from the main payload by a couple of kilometers along the magnetic field. The relevance of earlier proposed mechanisms for electron heating in CIV is investigated in the light of the CRIT I results. It is concluded that both the homogeneous and the ionizing front models probably apply, but in different parts of the stream. It is also possible that electrons are directly accelerated by a magnetic-field-aligned component of the electric field; the quasi-dc electric field observed within the streams had a large magnetic-field-aligned component, persisting on the time scale of the passage of the streams. The coupling between the ambient ionosphere and the ionized barium stream in CRIT I was more complicated than is usually assumed in CIV theories, with strong magnetic-field-aligned electric fields and probably current limitation as important processes. One interpretation of the quasi-dc electric field data is that the internal electric fields of the streams were not greatly modified by magnetic-field-aligned currents, i.e., a state was established where the transverse currents were to a first approximation divergence-free. It is argued that this interpretation can explain both a reversal of the strong explosion-directed electric field in burst 1 and the absence of such a reversal in burst 2

  10. Magnetic field-aligned plasma expansion in critical ionization velocity space experiments

    International Nuclear Information System (INIS)

    Motivated by the recent Critical Ionization Velocity (CIV) experiments in space, the temporal evolution of a plasma cloud released in an ambient plasma is studied. Time-dependent Vlasov equations for both electrons and ions, along with the Poisson equation for the self-consistent electric field parallel to the ambient magnetic field, are solved. The initial cloud is assumed to consist of cold, warm, and hot electrons with temperatures T/sub c/ ≅ 0.2 eV, T/sub w/ ≅ 2 eV, and T/sub h/ ≅ 10 eV, respectively. It is found that the minor hot electrons escape the cloud, and their velocity distribution function shows the typical time-of-flight dispersion feature - that is, the larger the distance from the cloud, the larger is the average drift velocity of the escaping electrons. The major warm electrons expand along the magnetic field line with the corresponding ion-acoustic speed. The combined effect of the escaping hot electrons and the expanding warm ones sets up an electric potential structure which accelerates the ambient electrons into the cloud. Thus, the energy loss due to the electron escape is partly replenished. The electric field distribution in the potential structure depends on the stage of the evolution; before the rarefaction waves propagating from the edges of the cloud reach its center, the electric fields point into the cloud. After this stage the cloud divides into two subclouds, with each having their own bipolar electric fields. Effects of collisions on the evolution of plasma clouds are also discussed. The relevance of the results seen from the calculations are discussed in the context of recent space experiments on CIV

  11. Nuclear accident dosimetry studies at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Two critical assemblies have been characterized at the Los Alamos Critical Experiments Facility (LACEF) for use in testing nuclear accident dosimeters and related devices. These device, Godiva IV and SHEBA II, have very different characteristics in both operation and emitted neutron energy spectra. The Godiva assembly is a bare metal fast burst device with a hard spectrum. This spectrum can be modified by use of several shields including steel, concrete, and plexiglas. The modified spectra vary in both average neutron energy and in the specific distribution of the neutron energies in the intermediate energy range. This makes for a very favorable test arrangement as the response ratios between different activation foils used in accident dosimeters are significantly altered such as the ratio between gold, copper, and sulfur elements. The SHEBA device is a solution assembly which has both a slow ramp and decay period and a much softer spectrum. The uncertainly introduced in the response of fast decay foils such as indium can therefore be evaluated into the test results. The neutron energy spectrum for each configuration was measured during low power operations with a multisphere system. These measurements were extended to high dose pulsed operation by use of TLDs moderated TLDs, and special activation techniques. The assemblies were used in the testing of several accident dosimetry devices in studies modeled after the Nuclear Accident Dosimetry Studies that were conducted at Oak Ridge National Laboratory for about 25 years using the Health Physics Research Reactor. It is our intention to conduct these studies approximately annually for the evaluation of the nuclear accident dosimeter systems currently in use within the DOE, alternative systems used internationally, and new dosimeter designs being developed or considered for field application. Participation in selected studies will be open to all participants

  12. Spacelab experiment definition study on phase transition and critical phenomena in fluids: Interim report on experimental justification

    Science.gov (United States)

    Moldover, M. R.; Hocken, M. R.; Gammon, R. W.; Sengers, J. V.

    1976-01-01

    Pure fluids and fluid mixtures near critical points are identified and are related to the progress of several disciplines. Consideration is given to thermodynamic properties, transport properties, and the complex nonlinear phenomena which occur when fluids undergo phase transitions in the critical region. The distinction is made between practical limits which may be extended by advances in technology and intrinsic ones which arise from the modification of fluid properties by the earth's gravitational field. The kinds of experiments near critical points which could best exploit the low gravity environment of an orbiting laboratory are identified. These include studies of the index of refraction, constant volume specific heat, and phase separation.

  13. Analysis of the impact of correlated benchmark experiments on the validation of codes for criticality safety analysis

    International Nuclear Information System (INIS)

    The validation of a code for criticality safety analysis requires the recalculation of benchmark experiments. The selected benchmark experiments are chosen such that they have properties similar to the application case that has to be assessed. A common source of benchmark experiments is the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments' (ICSBEP Handbook) compiled by the 'International Criticality Safety Benchmark Evaluation Project' (ICSBEP). In order to take full advantage of the information provided by the individual benchmark descriptions for the application case, the recommended procedure is to perform an uncertainty analysis. The latter is based on the uncertainties of experimental results included in most of the benchmark descriptions. They can be performed by means of the Monte Carlo sampling technique. The consideration of uncertainties is also being introduced in the supplementary sheet of DIN 25478 'Application of computer codes in the assessment of criticality safety'. However, for a correct treatment of uncertainties taking into account the individual uncertainties of the benchmark experiments is insufficient. In addition, correlations between benchmark experiments have to be handled correctly. For example, these correlations can arise due to different cases of a benchmark experiment sharing the same components like fuel pins or fissile solutions. Thus, manufacturing tolerances of these components (e.g. diameter of the fuel pellets) have to be considered in a consistent manner in all cases of the benchmark experiment. At the 2012 meeting of the Expert Group on 'Uncertainty Analysis for Criticality Safety Assessment' (UACSA) of the OECD/NEA a benchmark proposal was outlined that aimed for the determination of the impact on benchmark correlations on the estimation of the computational bias of the neutron multiplication factor (keff). The analysis presented here is based on this proposal. (orig.)

  14. Criticality experiments with mixed plutonium and uranium nitrate solution at a plutonium fraction of 0.4 in slab geometry

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, B.A.; Keeton, S.C.

    1997-09-01

    R. C. Lloyd of PNL has completed and published a series of critical experiments with mixed plutonium- uranium nitrate solutions (Reference 1). This series of critical experiments was part of an extensive program jointly sponsored by the U. S. Department of Energy (DOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan and was carried out in the mid-1980`s. The experiments evaluated here (published as Report PNL-6327) were performed with mixed plutonium- uranium nitrate solution in a variable thickness slab tank with two 106.7 cm square sides and a width that could be varied from 7.6 to 22.8 cm. The objective of these experiments was to obtain experimental data to permit the validation of computer codes for criticality calculations and of cross-section data to minimize the uncertainties inherent therein, so that facility safety, efficiency, and reliability could be enhanced. The concentrations of the solution were about 105, 293, and 435 g(Pu+U)/liter with a ratio of plutonium to total heavy metal (plutonium plus uranium) of about 0. 40 for all eight experiments. Four measurements were made with a water reflector, and four with no reflector. Following the publication of the initial PNL reports, considerable effort was devoted to an extensive reevaluation of this series of experiments by a collaboration of researchers from ORNL, PNL, and PNC (Reference 2). Their work resulted in a more accurate description of the ``as built`` hardware configuration and the materials specifications. For the evaluations in this report, the data published in Reference 2 by Smolen et al. is selected to supersede the original PNL report. Eight experiments have been evaluated and seven (063, 064, 071, 072, 074, 075, and 076) provide benchmark criticality data. Experiment 073 could not achieve criticality within vessel height limitations.

  15. Observation of self-organized criticality (SOC) behavior during edge biasing experiment on TEXTOR

    International Nuclear Information System (INIS)

    The self-organized criticality (SOC) behavior of the edge plasma transport has been investigated using the fluctuation data measured in the plasma edge and the scrape-off layer of TEXTOR tokamak before and during the edge electrode biasing experiments. In the 'non-shear' discharge phase before biasing, both the potential and density fluctuations clearly exhibit some of the characteristics associated with SOC: (1) existence of f-1 power-law dependence in the frequency spectrum, (2) slowly decaying long tails in the autocorrelation function, (3) values of Hurst parameters larger than 0.5 at all the detected radial locations, (4) non-Gaussian probability density function of fluctuations and (5) radial propagation of avalanche-like events in the edge plasma area. During the biasing phase, with the generation of an edge radial electric field Er and hence a sheared Er x B flow, the local turbulence is found to be well de-correlated by the Er x B velocity shear, consistent with theoretical predictions. Nevertheless, it is concomitantly found that the Hurst parameters are substantially enhanced in the negative flow shear region and in the scrape-off layer as well, which is contrary to theoretical expectation. Implication of these observations to our understanding of plasma transport mechanisms is discussed. (authors)

  16. Critical-heat-flux experiment on the screw tube under one-sided-heating conditions

    International Nuclear Information System (INIS)

    Development of high-heat-flux components such as the divertor plate of fusion experimental machines is essential for removal of high heat loads with heating on one side. For this purpose, the authors machined a tube with an inside wall like a nut, namely, a screw tube, to enhance heat transfer efficiency and simplify the machining process. The screw tube is compared with a swirl tube, originally developed by Oak Ridge National Laboratory, and the Hypervapotron, developed by Joint European Torus (JET). The spirally machined inside wall can enlarge the heat transfer area and make a little vortex flow only close to the wall. The performance of the screw tube is characterized by a critical-heat-flux experiment that uses water flow velocities ranging from 4 to 20 m/s with a water inlet pressure of 1.0 MPa. As a result, the screw tube has a higher incidence of CHFs compared with the smooth tube and the Hypervapotron and performs similarly to the swirl tube at identical flow velocities. 15 refs., 10 figs., 2 tabs

  17. Experience report: Using formal methods for requirements analysis of critical spacecraft software

    Science.gov (United States)

    Lutz, Robyn R.; Ampo, Yoko

    1994-01-01

    Formal specification and analysis of requirements continues to gain support as a method for producing more reliable software. However, the introduction of formal methods to a large software project is difficult, due in part to the unfamiliarity of the specification languages and the lack of graphics. This paper reports results of an investigation into the effectiveness of formal methods as an aid to the requirements analysis of critical, system-level fault-protection software on a spacecraft currently under development. Our experience indicates that formal specification and analysis can enhance the accuracy of the requirements and add assurance prior to design development in this domain. The work described here is part of a larger, NASA-funded research project whose purpose is to use formal-methods techniques to improve the quality of software in space applications. The demonstration project described here is part of the effort to evaluate experimentally the effectiveness of supplementing traditional engineering approaches to requirements specification with the more rigorous specification and analysis available with formal methods.

  18. Neutronics modeling of the SPERT III E-Core critical experiments with MPACT and KENO

    International Nuclear Information System (INIS)

    Highlights: • A steady-state neutronics model for SPERT III E-Core was developed with KENO and MPACT. • All components in the core were explicitly modeled. • Numerical results indicate both models achieved good agreements with experiments. • Good agreements were obtained for both eigenvalues and fission rate distributions. - Abstract: The Special Power Excursion Reactor Test (SPERT) III E-Core is a small experimental reactor having many of the general characteristics of a commercial light water power reactor except for a great geometric complexity and stronger heterogeneity. A detailed steady-state neutronics model for SPERT III E-Core was developed with the Monte Carlo code KENO and the deterministic 3D transport code MPACT. All components including fuel assemblies, control rods, transient rod, flux suppressors, grid spacers and dummy spacer assemblies were explicitly modeled. Calculations were performed for cold zero power (CZP) and hot zero power (HZP) critical conditions of the core. Numerical results indicate that both models were able to achieve very good agreement with experimental measurements for both eigenvalue and control rod worths, and good agreement was obtained with each other with respect to fission rate distributions

  19. Recent developments in the Los Alamos radiation transport code system

    Energy Technology Data Exchange (ETDEWEB)

    Forster, R.A.; Parsons, K. [Los Alamos National Lab., NM (United States)

    1997-06-01

    A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results.

  20. Critical Components of a Successful Undergraduate Research Experience in the Geosciences for Minority Students

    Science.gov (United States)

    Liou-Mark, J.; Blake, R.; Chukuigwe, C.

    2013-12-01

    For the past five years, the New York City College of Technology has administered a successful National Science Foundation (NSF) Research Experience for Undergraduates (REU) program. The program provides rich, substantive, academic and life-transformative STEM educational experiences for students who would otherwise not pursue STEM education altogether or would not pursue STEM education through to the graduate school level. The REU Scholars are provided with an opportunity to conduct intensive satellite and ground-based remote sensing research at the National Oceanic and Atmospheric Administration Cooperative Remote Sensing Science and Technology Center (NOAA-CREST). Candidates for the program are recruited from the City University of New York's twenty-three separate campuses. These students engage in a research experience that spans the summer and the fall and spring semesters. Eighty-four percent (84%) of the program participants are underrepresented minorities in STEM, and they are involved in a plethora of undergraduate research best practice activities that include: training courses in MATLAB programming, Geographic Information Systems, and Remote Sensing; workshops in Research Ethics, Scientific Writing, and Oral and Poster Research Presentations; national, regional, and local conference presentations; graduate school support; and geoscience exposure events at national laboratories, agencies, and research facilities. To enhance their success in the program, the REU Scholars are also provided with a comprehensive series of safety nets that include a multi-tiered mentoring design specifically to address critical issues faced by this diverse population. Since the inception of the REU program in 2008, a total of 61 undergraduate students have finished or are continuing with their research or are pursuing their STEM endeavors. All the REU Scholars conducted individual satellite and ground-based remote sensing research projects that ranged from the study of

  1. Attempt of the joint analysis of the entire set of the HEU-SOL type experiments from the ''International Handbook of Evaluated Criticality Safety Benchmark Experiments''

    International Nuclear Information System (INIS)

    This paper provides a description of work on the joint analysis of the entire set of the experiments with the solutions of highly enriched uranium in light water from the ''International Handbook of Evaluated Criticality Safety Benchmark Experiments''. The purpose of the work was to analyze the experiments for interconsistency, discover and evaluate possible correlations between them, discover and eliminate systematic errors and disagreements, and get a consistent set of evaluated experiments for future use in validation of calculations of critical mass of solutions of highly enriched uranium of different concentrations in light water and evaluation of uncertainty of these calculations. The paper describes in details how the correlations between the experimental uncertainties were determined as well as how systematic errors were discovered. (author)

  2. LOS ALAMOS: Proposed neutrino facility

    International Nuclear Information System (INIS)

    Neutrinos have always been prominent in the experimental programme at the 800 MeV proton linear accelerator, LAMPF, at Los Alamos National Laboratory. This interest has heightened in anticipation of the proton storage ring (PSR) which is soon to be built. The PSR can operate in a mode which compresses the 750 μs LAMPF beam pulse to 270 ns. Thus high neutrino flux at low duty factor would be available, permitting a great improvement in background rejection from cosmic rays and good time separation of electron neutrinos from muon neutrinos

  3. Los Alamos racquetball contamination incident

    International Nuclear Information System (INIS)

    Several employees of the Los Alamos Plutonium Facility were found to have low levels of radioactivity on their hands and clothing when they arrived for work one morning. The initial concern was that the stringent contamination or material controls at the facility had failed, and that one or more of the employees had either accidentally or intentionally removed plutonium from the Laboratory premises. Fortunately, however, an investigation revealed that the source of the radioactivity was radon daughters electrostatically collected upon the surface of the racquetball and transferred by physical contact to the employees during an early morning racquetball game. This paper describes the events leading to the discovery of this phenomenon. 1 figure

  4. The potential use of criticality benchmark experiments in nuclear data evaluation

    International Nuclear Information System (INIS)

    The presence of significant systematic errors even in the latest nuclear data compilations can be shown by making Monte Carlo calculations for critical systems. Calculations have been made for forty-four critical systems. Modelling errors, which used to plague such calculations, have been eliminated, and discrepancies between calculated and experimental eigenvalues of critical systems can now be confidently ascribed to errors in the nuclear data. The Monte Carlo code MONK is particularly suitable for these calculations. (author)

  5. Results of critical velocity experiments with barium, strontium, and calcium releases from CRRES satellite

    Science.gov (United States)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hampton, D. L.; Delamere, P. A.

    1994-01-01

    As part of the NASA Combined Release and Radiation Effects Satellite (CRRES) chemical release program in September 1990, two Ba and also one each Sr and Ca canisters of a boron-titanium thermite mixture, which vaporizes the element on ignition, were released near perigee after dusk in the South Pacific to study the critical velocity effect proposed by Alfven. The critical velocities of these three elements are 2.7, 3.5, and 5.4 km/s respectively, all well below the orbital velocity of 9.4 km/s. On September 10, 1990, a Sr and Ba pair (G-13, or critical ionization velocity (CIV) I) was released near Rarotonga at approximately 515 km altitude in a background electron density of 3.4 x 10(exp 6)/cu cm. On September 14, 1990, G-14 or CIV II released a Ca and Ba pair west of New Caledonia near 595 km at an electron density of 1.5 x 10(exp 6)/cu cm. Ions of all three elements were observed with low-light level imagers from two aircraft after they had transited up the magnetic field lines into the sunlight. Emissions from the spherically expanding neutral gas shells below the solar terminator, observed with cameras filtered for the Ba(+) ion line at 4554 A and also in unfiltered imagers for approximately 15 s after release, are probably due to excitation by hot electrons created in the CIV process. The ions created clearly lost much of their energy, which we now show can be explained by elastic collisions: Ba(+) + O. Inventories of the observed ions indicate yields of 0.15% and 1.84% for Ba in the first and second experiments, 0.02% for Sr and 0.27% for Ca. Ionization from all the releases continued along the satellite trajectory much longer (greater than 45 s) than expected for a CIV process. The ion production along the satellite track versus time typically shows a rapid rise to a peak in a few seconds followed by an exponential decrease to a level essentially constant rate. The characteristic distances for CIV I and II are 47 and 62 km, respectively. We interpret the

  6. The Racine-1e critical experiments for control-rod method and data validation experimental and calculation results

    International Nuclear Information System (INIS)

    This paper summarizes the results of control rod experiments, performed in the heterogeneous double ring core RACINE-1E, investigated as part of the RACINE programme at the French zero-power-facility MASURCA. Measurements were made using both natural and highly enriched boron carbide adsorbers and comprised subcritical and critical experiments. The analysis was carried out using methods similar to those used by CEA for the prediction of rod worths in LMFBR power reactors

  7. Promotion of critical thinking in e-learning: a qualitative study on the experiences of instructors and students

    Science.gov (United States)

    Gharib, Mitra; Zolfaghari, Mitra; Mojtahedzadeh, Rita; Mohammadi, Aeen; Gharib, Atoosa

    2016-01-01

    Background With the increasing popularity of e-learning programs, educational stakeholders are attempting to promote critical thinking in the virtual education system. This study aimed to explore the experiences of both the instructors and the students about critical thinking promotion within the virtual education system. Methods This qualitative study recruited the instructors and students from four academic disciplines provided by the Virtual School of Tehran University of Medical Sciences (Tehran, Iran). All programs were master’s degree programs and utilized a blended (combination of e-learning and face to face) training. Semistructured interviews with the participants were used to collect data. Results The participants had a variety of experiences about how to promote critical thinking. These experiences were conceptualized in four main themes, namely, instructional design, educational leadership and management, local evidence, and belief systems. Conclusion The present study clarified the factors affecting critical thinking promotion in e-learning. Not only the instructors but also the educational designers and leaders can benefit from our findings to improve the quality of virtual education programs and promote critical thinking. PMID:27217807

  8. Determining the tube bundle streamlining critical parameters using the numerical experiment method

    Science.gov (United States)

    Kaplunov, S. M.; Val'es, N. G.; Samolysov, A. V.; Marchevskaya, O. A.

    2015-08-01

    The article is devoted to development and application of mathematical models describing the most dangerous mechanisms through which vibrations are excited in tube bundles and blunt cylindrically shaped structures, and to development of reliable calculation methods for describing these models, which would make it possible to obtain prompt data for designing and subsequent operation of the considered structural elements. For solving such problems, a comprehensive approach is required, which should be based on a combined use of numerical experiments on computers and experimental investigations on full-scale equipment. The authors have developed a procedure for numerically investigating the hydrodynamic forces arising during stalled streamlining and the tube bundle vibrations caused by these forces. The procedure is based on using the developed mathematical model describing fluid-elastic excitation of vibrations in a bundle of elastic tubes placed in external cross flow. The problem of studying fluid-elastic excitation is brought to stability analysis, which is carried out with the assumption about a linear behavior of destabilizing forces for undisturbed state of elastic tubes. A theoretical investigation of the developed mathematical model was carried out, from which the necessary and sufficient condition of system stability has been obtained in terms of system dimensionless parameters (mass, damping, and velocity). An algorithm for numerically determining the matrices of linear hydrodynamic coupling coefficients for particular tube bundles is developed. The validity of the algorithm and the computer programs developed on its basis are checked by comparing the results of test calculations with the bank of known experimental data. A procedure is proposed for determining the matrices of linear hydrodynamic coupling coefficients in bundles having a regular layout of their cross section and a large number of tubes through calculating these matrices for a relatively small

  9. Campus Climate and the Underrepresented Minority Engineering Student Experience: A Critical Race Study

    Science.gov (United States)

    Mayes, Terrance

    In the current technological era, the number of minorities in science, technology, engineering, and mathematics (STEM) is a crucial factor in predetermining the economic growth of the United States. Since the minority population is growing at much faster rates than the non-minority population, the lack of proportionate production of minority engineers poses a threat to the United States' ability to remain a global competitor in technological innovation. Sixty-three per cent (63%) of undergraduate students who enter engineering majors continue on to graduate in that major. The graduation rate, however, for African-American, Hispanic, and Native-American students in engineering is significantly lower at 39%. As this group represents only a small fraction of the annual student enrollment, engineering programs are graduating these minority groups at rates that are greatly disproportionate to United States demographics. Therefore, researchers are thoroughly investigating certain initiatives that promote academic success among underrepresented minority students in engineering. Colleges and universities have attempted to address the growing achievement gap between underrepresented minority and non-minority engineering students, predominately through various deficit-based interventions, focusing on the student's flaws and problems. As the pipeline for minorities in engineering continues to narrow, it begs the question of whether institutions are focusing on the right solutions to the problem. Critical Race Theory scholars argue that colleges and universities must address institutional climate issues around students, such as racism, microaggressions, and marginalization, before members of oppressed groups can truly succeed. This dissertation explored the unique experiences of underrepresented minority engineering students in a predominately White and Asian campus.

  10. Critical heat flux experiments for low flow of water in vertical annuli near atmospheric pressure

    International Nuclear Information System (INIS)

    Critical Heat Flux (CHF) experiments were performed to measure the CHF limits for low water flow in vertical annuli near atmospheric pressure (0.118 MPa) as functions of the annulus ratio, inlet subcooling, and water flow rate. Each of the test sections consisted of a uniformly heated 304 stainless steel inner tube (1.27 cm OD, 49 cm long, and 0.889 mm wall thickness) and an outer pyrex tube, resulting in annulus ratios of 1.575, 1.72 and 2.0. The temperatures at the inner surface of the heated section were measured at eight locations (1, 3, 5, 10, 20, 30, 40, and 45 cm from the top of the test section) using a specially designed temperature probe. The water temperature was also measured at the inlet and the exit of the test section. All temperature measurements were performed using grounded type-K stainless steel sheathed thermocouples. During the experiments, the water flow to the test section was stabilized by using a control valve located upstream of the test section. The electric power to the test section was increased in small increments and at each increment, the inlet water flow and subcooling were kept constant. The CHF limit was determined when a sudden temperature ramp, up to a present limit of 470 K, occurred and/or a bright glow was observed at the top of the heated section. More than 380 CHF data points were collected for water inlet subcoolings ranging from 182 kJ/kg to 312 kJ/kg, and mass flow rates from zero to 0.841 kg/sec. The CHF values varied from 160 kW/m/sup 2/ for zero inlet flow to a maximum of 1560 kW/m/sup 2/ for a water flow rate of 0.841 kg/sec. For the same water inlet mass flux, increasing the coolant inlet subcooling and/or the annulus ratio generally increased the CHF limit

  11. Power Distribution Analysis for the ORNL High Flux Isotope Reactor Critical Experiment 3

    International Nuclear Information System (INIS)

    The mission of the Reduced Enrichment for Research and Test Reactors Program is to minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civilian nuclear applications by working to convert research and test reactors, as well as radioisotope production processes, to low-enriched uranium (LEU) fuel and targets. Oak Ridge National Laboratory (ORNL) is currently reviewing the design bases and key operating criteria including fuel operating parameters, enrichment-related safety analyses, fuel performance, and fuel fabrication in regard to converting the fuel of the High Flux Isotope Reactor (HFIR) from HEU to LEU. The purpose of this study is to validate Monte Carlo methods currently in use for conversion analyses. The methods have been validated for the prediction offlux values in the reactor target, reflector, and beam tubes, but this study focuses on the prediction of the power density profile in the core. Power distributions were calculated in the fuel elements of the HFIR, a research reactor at ORNL, via MCNP and were compared to experimentally obtained data. This study was performed to validate Monte Carlo methods for power density calculations and to observe biases. A current three-dimensional MCNP model was modified to replicate the 1965 HFIR Critical Experiment 3 (HFIRCE-3). In this experiment, the power profile was determined by counting the gamma activity at selected locations in the core. 'Foils' (chunks of fuel meat and clad) were punched out of the fuel elements in HFIRCE-3 following irradiation, and experimental relative power densities were obtained by measuring the activity of these foils and comparing each foil's activity to the activity of a normalizing foil. This analysis consisted of calculating corresponding activities by inserting volume tallies into the modified MCNP model to represent the punchings. The average fission density was calculated for each foil location and then normalized to the reference foil

  12. Computer simulation of Masurca critical and subcritical experiments. Muse-4 benchmark. Final report

    International Nuclear Information System (INIS)

    The efficient and safe management of spent fuel produced during the operation of commercial nuclear power plants is an important issue. In this context, partitioning and transmutation (P and T) of minor actinides and long-lived fission products can play an important role, significantly reducing the burden on geological repositories of nuclear waste and allowing their more effective use. Various systems, including existing reactors, fast reactors and advanced systems have been considered to optimise the transmutation scheme. Recently, many countries have shown interest in accelerator-driven systems (ADS) due to their potential for transmutation of minor actinides. Much R and D work is still required in order to demonstrate their desired capability as a whole system, and the current analysis methods and nuclear data for minor actinide burners are not as well established as those for conventionally-fuelled systems. Recognizing a need for code and data validation in this area, the Nuclear Science Committee of the OECD/NEA has organised various theoretical benchmarks on ADS burners. Many improvements and clarifications concerning nuclear data and calculation methods have been achieved. However, some significant discrepancies for important parameters are not fully understood and still require clarification. Therefore, this international benchmark based on MASURCA experiments, which were carried out under the auspices of the EC 5. Framework Programme, was launched in December 2001 in co-operation with the CEA (France) and CIEMAT (Spain). The benchmark model was oriented to compare simulation predictions based on available codes and nuclear data libraries with experimental data related to TRU transmutation, criticality constants and time evolution of the neutronic flux following source variation, within liquid metal fast subcritical systems. A total of 16 different institutions participated in this first experiment based benchmark, providing 34 solutions. The large number

  13. KEOPS and other VENUS experiments dedicated to the criticality safety of a MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    The qualification scheme of criticality computer codes for Pu bearing powders lies upon databases which suffer from a lack of recent experimental results. As a MOX manufacture, BELGONUCLEAIRE is especially concerned by criticality safety and would like to address such an issue by launching with SCK-CEN an International Programme called KEOPS. (author)

  14. Enhancing Critical Thinking across the Undergraduate Experience: An Exemplar from Engineering

    Science.gov (United States)

    Ralston, Patricia A.; Bays, Cathy L.

    2013-01-01

    Faculty in a large, urban school of engineering designed a longitudinal study to assess the critical thinking skills of undergraduate students as they progressed through the engineering program. The Paul-Elder critical thinking framework was used to design course assignments and develop a holistic assessment rubric. The curriculum was re-designed…

  15. Critical and power experiments on the low-enriched uranium core of the upgraded Pakistan Research Reactor-1

    International Nuclear Information System (INIS)

    The Pakistan Research Reactor was converted from 93% highly enriched uranium fuel to 20% low-enriched uranium fuel in October 1991. The reactor power was also upgraded from 5 to 9 MW. A series of critical and power experiments were performed on the new core for verification of design data and to determine the nuclear performance of the reactor. The characteristics tests included a criticality experiment, reactivity measurements on reflected and unreflected, critical and full-power cores, and flux distribution in and around the core, as well as thermal-hydraulic measurements. A comparison of the measured and the calculated results was also made. The results of the characteristics tests indicate that the performance of the new reactor is within design limits

  16. Danish parents' experiences when their newborn or critically ill child is transferred to the PICU - a qualitative study

    DEFF Research Database (Denmark)

    Hall, Elisabeth

    2005-01-01

    The aim of this study was to describe Danish parents' experiences when their newborn or small child was critically ill. Thirteen parents were interviewed. Data were analyzed using qualitative content analysis. The child's transfer to the paediatric intensive care unit (PICU) meant either help or ...... child's transfer to and from the PICU. Critical care nurses have to discuss the policy of family-centred care.......The aim of this study was to describe Danish parents' experiences when their newborn or small child was critically ill. Thirteen parents were interviewed. Data were analyzed using qualitative content analysis. The child's transfer to the paediatric intensive care unit (PICU) meant either help or...... death for the parents. The back transfer was experienced as joy and despair. The parents had confidence in most nurses, and they were kind, helpful, informative and capable. Less capable and distressed nurses made the parents feel uncomfortale and insecure. Parents need help and support during their...

  17. Resonance ionization mass spectrometry at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Two approaches to Resonance Ionization Mass Spectrometry (RIMS) at Los Alamos National Laboratory are discussed. The first is the use of continuous-wave dye lasers as the ionization source, and the use of pulse counting detection; and results are presented for lutetium and technetium. The second approach is the use of multiphoton resonances in the pulsed laser excitation of atoms. Experiments with 2 + 1 [photons to resonance plus photons to ionize] RIMS schemes for several elements are discussed. (author)

  18. Some results of applied spallation physics research at Los Alamos

    International Nuclear Information System (INIS)

    At the Los Alamos National Laboratory, we have an active effort in the general area of Applied Spallation Physics Research. The main emphasis of this activity has been on obtaining basic data relevant to spallation neutron source development, accelerator breeder technology, and validation of computer codes used in these applications. We present here an overview of our research effort and show some measured and calculated results of differential and clean integral experiments

  19. Validation of the ABBN/CONSYST constants system. Part 2: Validation through the critical experiments on cores with uranium solutions

    International Nuclear Information System (INIS)

    Results of calculations of critical assemblies with the cores of uranium solutions for the considered series of the experiments are presented in this paper. The conclusions about acceptability of the ABBN-93.1 cross sections for the calculations of such systems are made. (author)

  20. Can Educators Make a Difference? Experimenting with, and Experiencing, Democracy in Education. Critical Constructions: Studies on Education and Society

    Science.gov (United States)

    Carr, Paul R., Ed.; Zyngier, David, Ed.; Pruyn, Marc, Ed.

    2012-01-01

    As the title of this book suggests, how one understands, perceives and experiences democracy may have a significant effect on how he/she actually engages in, and with, democracy. Within the educational context, this is a key concern, and forms the basis of the research presented in this volume within a critical, comparative analysis. The Global…

  1. Analysis of the previous and preparation of new experiments on fast multiplying assemblies for obtaining benchmark data on criticality

    International Nuclear Information System (INIS)

    The JIPNR-Sosny of the NAS of Belarus created and explored a number of uranium-containing critical assemblies of the BTS series in designing fast BRIG-300 reactor with N2O4 ↔ 2NO2 ↔ 2NO + O2 coolant and the PVER fast-resonance neutron spectrum reactor with a steam-water coolant. Research in the physics of these reactors was performed on fast-thermal critical assemblies at the critical facility Roza. Structurally, these critical assemblies consisted of fast and thermal reactor cores and the buffer zones located between them, intended for leakage spectrum neutron conversion from a thermal zone to a spectrum of neutrons of the modelled fast reactor. Fast zones are a non-uniform hexagonal lattice of cylindrical fuel rods with fuel composition based on metal U (90% U-235), UO2 (36% U-235), depleted U (0.4% U-235), rods with SiO2; a buffer zone is a non-uniform hexagonal lattice of cylindrical fuel rods based on UO2 (36% U-235), natural U and depleted U (0.4% U-235), rods with B4C and made from stainless steel; a thermal zone is a uniform rectangular uranium-polyethylene lattice of cylindrical fuel rods based on the fuel composition UO2+Mg (10% U-235). For obtaining benchmark data on the criticality, computational models have been developed and the analysis of experiments has been carried out to estimate the experimental results as criticality benchmark data. The JIPNR-Sosny of the NAS of Belarus also prepared experiments on the criticality of multiplying systems simulating some physical features of the core of fast low power small-size gas-cooled reactors with UZrCN nuclear fuel. For these purposes, the critical assemblies P-20 were developed at the critical facility “Giacint”. These assemblies represent a uniform hexagonal lattice of fuel cassette: the central area is based on cylindrical fuel rods with UZrCN (19.75% U-235), the peripheral area is based on the cylindrical fuel rods with metallic U (90% U-235), UO2 (36% U-235) and natural U; and the reflector on

  2. After the Resistance: The Alamo Today

    Centers for Disease Control (CDC) Podcasts

    2014-09-23

    Byron Breedlove reads his essay After the Resistance: The Alamo Today about the Alamo and emerging disease resistance.  Created: 9/23/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 10/20/2014.

  3. Contributions to the qualification of the ''CRISTAL'' criticality calculi scheme: interpretation of critical experiments. Elaboration of a characterization system of neutronic configurations

    International Nuclear Information System (INIS)

    This thesis work is about the validation of the new criticality-safety package CRISTAL and contributes to the modernization and the improvement of the computational tools. The first part presents neutronic elements, the objectives of safety criticality studies and the package CRISTAL. Then, the validation work concerned two series of experiments involving uranyl solutions (UO2F2) and UO2 powders. For these experiments, the differences between the computation results and the experimental results were analysed. It was highlighted interesting physical phenomena such of the compensations of errors between the approximate representation by the 99 energy group structure on the first resonance of oxygen and the anisotropy of the diffusion simulation as well as the influence of uranium 234 in high enriched solutions in uranium 235. Once the work of the experimental qualification carried out, raises the question of the use the base of qualification and the ''calculation-experiment'' variations which are referred to it. It is often difficult to establish the link between the ''studied configuration'' and the experiments of the base of qualification. The presented characterisation system proposes to answer in a way automatic and quantified this difficulty: - in bringing an answer on the package qualification for the studied configuration, - in giving an estimate of the package bias. To answer these points, it was defined a set of 35 characteristic neutronic parameters representing the behaviour of the medium. To process the information brought by these parameters and to use it to answer the objectives of the system, we called upon statistical methods (Principal Components Analysis and Sliced Inverse Regression). The results obtained in the feasibility studies showed the relevance of these methods for the considered objectives. (author)

  4. Water supply at Los Alamos during 1991

    Energy Technology Data Exchange (ETDEWEB)

    Purtymun, W.D.; McLin, S.G.; Stoker, A.K.; Maes, M.N.

    1994-06-01

    This report summarizes production and aquifer conditions for water wells in the Los Alamos, Guaje, and Pajarito Well Fields . The wells supply all of the potable water used for municipal and some industrial purposes in Los Alamos County and the Los Alamos National Laboratory. The spring gallery in Water Canyon supplies nonpotable water for industrial use while the rest of the nonpotable water supply used for irrigation is surface water from the Guaje and Los Alamos Reservoirs. Included is a section on the chemical and radiochemical quality of water from the supply wells, gallery in Water Canyon and the reservoirs in Guaje and Los Alamos Canyons. A section on the quality of water with reference to compliance with state and federal regulations is included in the report.

  5. Bias and Uncertainty of Critical Experiment Models with CSAS25 from SCALE4.4a for Criticality Safety Analyses On the HP J-5600 (CMODB) Workstation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.H.; Keener, H.J.; DeClue, J.F.; Krass, A.W.; Cain, V.R.

    2001-02-01

    This report documents establishment of bias, bias trends and uncertainty for validation of the CSAS25 control module from the SCALE 4.4a computer code system for use in evaluating criticality safety of uranium systems. The 27-group ENDF/B-IV, 44-group ENDF/B-V, and 238-group ENDF/B-V cross-section libraries were used. The criticality validation calculations were performed using over 500 benchmark cases from Volumes II and IV of the ''International Handbook of Evaluated Criticality Safety Benchmark Experiments,'' published by the Nuclear Energy Agency Organization for Economic Cooperation and Development (NEA/OECD). Based on statistical analysis of the calculation results, the bias, bias trends and uncertainty of the benchmark calculations have been established for these benchmark experiments. Numerical methods for applying margins are briefly described, but the determination of appropriate correlating parameter and values for additional margin, applicable to a particular analysis, must be determined as part of process analysis. As such, this document does not specify upper subcritical limits as has been done in the past. A follow-on report will be written to assess the methods for determination of an upper safety limit in more detail, provide comparisons, and recommend a preferred method. Analysts using these results are responsible for exercising sound engineering judgment using strong technical arguments to develop a margin in k{sub eff} or other correlating parameter that is sufficiently large to ensure that conditions (calculated by this method to be subcritical by this margin) will actually be subcritical. Documentation of determination and justification of the appropriate margin in the analyst's evaluation, in conjunction with this report, will constitute the complete Validation Report in accordance with ANSI/ANS-8.1-1998, Section 4.3.6(4).

  6. Monte Carlo analysis of the slightly enriched uranium-D2O critical experiment LTRIIA (AWBA Development Program)

    International Nuclear Information System (INIS)

    The Savannah River Laboratory LTRIIA slightly-enriched uranium-D2O critical experiment was analyzed with ENDF/B-IV data and the RCP01 Monte Carlo program, which modeled the entire assembly in explicit detail. The integral parameters delta25 and delta28 showed good agreement with experiment. However, calculated K/sub eff/ was 2 to 3% low, due primarily to an overprediction of U238 capture. This is consistent with results obtained in similar analyses of the H2O-moderated TRX critical experiments. In comparisons with the VIM and MCNP2 Monte Carlo programs, good agreement was observed for calculated reeaction rates in the B2=0 cell

  7. Critical experiments supporting close proximity water storage of power reactor fuel. Technical progress report

    International Nuclear Information System (INIS)

    Close-packed storage of LWR fuel assemblies is needed in order to expand the capacity of existing underwater storage pools. This increased capacity is required to accommodate the large volume of spent fuel produced by prolonged onsite storage. To provide benchmark criticality data in support of this effort, 20 critical assemblies were constructed that simulated a variety of close-packed LWR fuel storage configurations. Criticality calculations using the Monte Carlo KENO-IV code were performed to provide an analytical basis for comparison with the experimental data. Each critical configuration is documented in sufficient detail to permit the use of these data in validating calculational methods according to ANSI Standard N16.9-1975

  8. Correspondence Fictions: Critical Literacies and Experiments in Writing Media After Computation

    OpenAIRE

    Gold, Rochelle Koryn

    2015-01-01

    This dissertation studies postmodern fiction, electronic literature, digital art, locative media, and everyday social media practices from the 1960s to the present. I argue that these experimental literary works and practices of media production serve as models of critical literacy, albeit imperfect ones, that might lead to increased agency, community-building, and self-sovereignty, especially for historically marginalized communities. The four elements of critical literacy I identify in this...

  9. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N.G. [ed.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  10. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    International Nuclear Information System (INIS)

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos

  11. Contributions at the Tripoli Monte Carlo code qualifying on critical experiences and at neutronic interaction study of fissile units

    International Nuclear Information System (INIS)

    Criticality studies in nuclear fuel cycle are based on Monte Carlo method. These codes use multigroup cross sections which can verify by experimental configurations or by use of reference codes such Tripoli 2. In this Tripoli 2 code nuclear data are errors attached and asked for experimental studies with critical experiences. This is one of the aim of this thesis. To calculate the keff of interacted fissile units we have used the multigroup Monte Carlo code Moret with convergence problems. A new estimator of reactions rates permit to better approximate the neutrons exchange between units and a new importance function has been tested. 2 annexes

  12. Environmental surveillance at Los Alamos

    International Nuclear Information System (INIS)

    This report documents the environmental surveillance program conducted by the Los Alamos Scientific Laboratory (LASL) in 1978. Routine monitoring for radiation and radioactive or chemical substances is conducted on the Laboratory site and in the surrounding region to determine compliance with appropriate standards and permit early identification of possible undesirable trends. Results and interpretation of the data for 1978 on penetrating radiation, chemical and radiochemical quality of ambient air, surface and groundwater, municipal water supply, soils and sediments, food, and airborne and liquid effluents are included. Comparisons with appropriate standards and regulations or with background levels from natural or other non-LASL sources provide a basis for concluding that environmental effects attributable to LASL operations are minor and cannot be considered likely to result in any hazard to the population of the area. Results of several special studies provide documentation of some unique environmental conditions in the LASL environs

  13. Design of the Los Alamos generator installation

    International Nuclear Information System (INIS)

    A 1430 MVA synchronous generator from a cancelled nuclear power plant is being installed at Los Alamos to be used as the pulsed power generator for the Confinement Physics Research Facility. The generator is mounted on a spring foundation to avoid dynamic forces from being transmitted to the substructure and the ground. A 6 MW load-commutated inverter drive will accelerate the machine from standstill to the maximum operating speed of 1800 rpm and from 1260 rpm to 1800 rpm between load pulses. The generator cooling method is being changed from hydrogen to air cooling. A current limiting fuse, with a fuse clearing current of 80 kA, will protect the generator output against short circuit currents. Changes in the excitation system are described. A status report of the installation and an approximate schedule for completing the installation are presented. The paper also addresses results of special studies and tests undertaken to evaluate the condition of the generator and to predict the behavior of some critical mechanical generator components under pulsed loading conditions. 1 ref., 4 figs., 2 tabs

  14. Critical Success Factors of Customers Experience in Iranian Banks and their Ranking by Using Analytic Hierarchy Process Model

    Directory of Open Access Journals (Sweden)

    Fariddeddin Allameh Haery

    2013-09-01

    Full Text Available Nowadays, the importance of experiences is uncovered to any businesses especially in service offering segments. Businesses can insure success by creating optimized experiences for their customer. This article seeks to enrich the understanding of critical success factors of customer experience by providing an overview of existing CFS literature and suggesting and prioritizing the specific elements of critical success factors of customer experience in order to improve bank’s services. For this purpose we conduct a survey by participation of 384 bank’s customers. Analytic hierarchical process has been applied in order to determine and prioritize the critical success factors. Results suggest that from the viewpoint of customers, behavioral aspect possesses the highest priority among all the other factors and cognitive element has the second priority. Also sub-criteria comparison result indicate that sub-factors of employee, service process, speed, physical evidence, marketing mix and convenience are ranked first to sixth between other sub-factors. In addition by calculating inconsistency rate of pair-wise comparison, consistency of these factors is also acceptable.

  15. The physics of sub-critical lattices in accelerator driven hybrid systems: The MUSE experiments in the MASURCA facility

    International Nuclear Information System (INIS)

    Since 1991, the CEA has studied the physics of hybrid systems, involving a sub-critical reactor coupled with an accelerator. These studies have provided information on the potential of hybrid systems to transmute actinides and, long lived fission products. The potential of such a system remains to be proven, specifically in terms of the physical understanding of the different phenomena involved and their modelling, as well as in terms of experimental validation of coupled systems, sub-critical environment/accelerator. This validation must be achieved through mock-up studies of the sub-critical environments coupled to a source of external neutrons. The MUSE-4 mock-up experiment is planed at the MASURCA facility and will use an accelerator coupled to a tritium target. The great step between the generator used in the past and the accelerator will allow to increase the knowledge in hybrid physic and to decrease the experimental biases and the measurement uncertainties

  16. FZK/IKET results on 3D homogeneous model for BFS-62 critical experiment

    International Nuclear Information System (INIS)

    The paper includes preliminary results of FZK/IKET, Germany, for Phase 5 of IAEA CRP on 'Updated Codes and Methods to Reduce the Calculational Uncertainties of Liquid Metal Fast Reactor Reactivity Effects'. Previous Phases were devoted to calculation analyses (reactivity effects and influence of their uncertainties on modeling hypothetical accidents) of a BN-600 reactor model that is partially (option 1) or fully (option 2) loaded with MOX fuel. Currently the BN-600 reactor (under operation since 1980) is fully loaded with UOX fuel. The MOX options have been suggested recently to burn Pu in the reactor with fast spectrum. Phase 5 is to analyze a 3D homogeneous model for the BFS-62 critical experiment that was conducted recently at IPPE, Obninsk, Russia. The BFS-62 experimental core represents in full scale a BN-600 core partially loaded with MOX fuel. The 3D homogeneous model for the BFS-62 was developed at IPPE for benchmarking codes and data libraries used by participants of the CRP. In particular, the whole core reactivity and effects related to voiding of the reactor core and above core reactor subregions are to be calculated. The above core structures in the BN-600 with MOX contain a large fraction of sodium, therefore in case of boiling (during a hypothetical accident) of sodium there a corresponding large negative reactivity effects may compensate a positive effect of the very core voiding. The experimental values are adjusted to make possible comparisons with computation results obtained for the homogeneous benchmark model. A new cross-section library - based on nuclear data files available from the Internet - has been recently developed at FZK. The main purpose of this library are safety studies. The master library includes data for 545 energy groups, includes alternative data evaluations (ENDF, JEFF, JENDL). For this benchmark, a 21-group composition-dependent cross-section set was generated on the basis of JEFF 3.0. 3D calculations were performed with 11

  17. Tiger Team Assessment of the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services

  18. Tiger Team Assessment of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  19. Experience of RCM analysis and evaluation method of establishing critical components in Korean NPPS

    International Nuclear Information System (INIS)

    The analysis of Reliability Centered Maintenance (RCM) for three pilot system of Yonggwang nuclear power unit 1, 2 had been performed from 1997 to 1999. The objective of this analysis was to optimize the preventive maintenance program. For evaluation of critical component, FMEA (Failure Mode and Effect Analysis) and Instrument matrix method had been used in the analysis. As results of the analysis, about 25% of total component was identified as critical component, and the number of preventive maintenance (PM) tasks has been reduced by about 18% compared with current PM tasks. Also as for the types of PM tasks, time-directed tasks were reduced from 75% to 55%, while condition-directed tasks and failure finding tasks were increased from 2% and 23% to 9% and 36%, respectively. Based on this analysis of pilot system, the RCM analysis on extended 25 systems of the same unit has started from 2000 to 2002. In this study, the evaluation method for establishing critical component that can be used for selection of the SSC(system, structure, component) in maintenance rule has been developed. This method is simpler and cost-benefit than FMEA method. In this paper, the results of RCM analysis on pilot systems of Yonggwang nuclear power unit 1 and 2 and evaluation method for determining critical component used in our nuclear power plant are described. Also the future plan for maintenance strategies on the all NPPs in Korea are described. (author)

  20. Voice, Identity, and the Organizing of Student Experience: Managing Pedagogical Dilemmas in Critical Classroom Discussions

    Science.gov (United States)

    Yannuzzi, Thomas J.; Martin, Daniela

    2014-01-01

    The current paper explores the discursive complexities of teaching and learning in inclusive, critically oriented classrooms. It argues that to accomplish the ontological goals of higher learning, we need to focus on the construction of student voice, or the ability to be considered in and have influence on teaching and learning. The paper further…

  1. In Pursuit of Critical Literacy: Understanding Experiences of Exclusion for Adult Literacy Learners

    Science.gov (United States)

    Howard, Margaret; Logan, Anna

    2012-01-01

    This paper explores exclusion and equality through critical theory, in the context of adult literacy provision in Ireland, by investigating the sites of exclusion that exist for a group of five male adult literacy learners. A summary review of literacy theories, exclusion and equality is provided framing the reporting of data from this…

  2. Evaluation of undergraduate clinical learning experiences in the subject of pediatric dentistry using critical incident technique

    OpenAIRE

    S Vyawahare; N R Banda; Choubey, S.; P Parvekar; A Barodiya; Dutta, S.

    2013-01-01

    Introduction: In pediatric dentistry, the experiences of dental students may help dental educators better prepare graduates to treat the children. Research suggests that student′s perceptions should be considered in any discussion of their education, but there has been no systematic examination of India′s undergraduate dental students learning experiences. Aim: This qualitative investigation aimed to gather and analyze information about experiences in pediatric dentistry from the students′ vi...

  3. The critical success factors for managing the visitor experience at a major musical event / Bianca Manners

    OpenAIRE

    Manners, Bianca

    2011-01-01

    With numerous artists coming to South Africa, the event industry is becoming congested with competition. This makes the production of a memorable visitor experience to events particularly challenging for the management of the event. Various aspects are required to occur when managing an event, and these contribute to the success and memorable experience of visitors. These aspects can either be controlled or uncontrolled by management. To ensure a successful event and memorable experience for ...

  4. IEA Wind Task 23 Offshore Wind Technology and Deployment. Subtask 1 Experience with Critical Deployment Issues. Final Technical Report

    DEFF Research Database (Denmark)

    Lemming, Jørgen Kjærgaard

    The final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports: Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). The Subtask 1 report included here provides background info...... of aero-elastic offshore wind turbine codes, monopile foundation modeling, tripod support structure modeling, and Phase IV results regarding floating wind turbine modeling....

  5. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    International Nuclear Information System (INIS)

    Energy Los Alamos Site Office, Carlsbad Field Office and the Department of Energy Headquaeters. Rather than simply processing containers as retrieved, the plan places priority on efficient curie disposition, a direct correlation to reducing risk. Key elements of the approch include balancing inventory and operational risks, tailoring methods to meet requirements, optimizing existing facilities, equipment and staff, and incorporating best practices from other Department of Energy sites. With sufficient funding this will enable LANL to ship the above-ground high activity contact-handled transuranic waste offsite by the end of Fiscal Year (FY) 2007 and to disposition the remaining above- and below-ground contact-handled and remote-handled transuranic waste inventory by December 2010. Nearly 70% of the contact-handled transuranic waste containers, including the high activity waste, require processing and repackaging before characterization and certification for shipment to the Waste Isolation Pilot Plant. LANL is employing a balanced risk approach that accomplishes significant long-term risk reduction by accepting short-term increased facility operations risk under well-developed and justified interim controls. Reviews of facility conditions and additional analyses show that the Waste Characterization, Reduction and Repackaging Facility and the Radioassay and Nondestructive Testing Facility are the most appropriate facilities to safetly remediate, repackage, and ship lower activity and the remaining high activity drums. Updated safety documentation supporting limited Hazard Category 2 operations in these facilities has been developed. Once approved, limited-term operations to process the high activity drums can begin in early 2007, building upon the experience base established performing Hazard Category 3 operations processing lower activity waste in these facilities. LANL is also implementing a series of actions to improve and sustain operations for processing contact

  6. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    O' LEARY, GERALD A. [Los Alamos National Laboratory

    2007-01-04

    the Department of Energy Los Alamos Site Office, Carlsbad Field Office and the Department of Energy Headquaeters. Rather than simply processing containers as retrieved, the plan places priority on efficient curie disposition, a direct correlation to reducing risk. Key elements of the approch include balancing inventory and operational risks, tailoring methods to meet requirements, optimizing existing facilities, equipment and staff, and incorporating best practices from other Department of Energy sites. With sufficient funding this will enable LANL to ship the above-ground high activity contact-handled transuranic waste offsite by the end of Fiscal Year (FY) 2007 and to disposition the remaining above- and below-ground contact-handled and remote-handled transuranic waste inventory by December 2010. Nearly 70% of the contact-handled transuranic waste containers, including the high activity waste, require processing and repackaging before characterization and certification for shipment to the Waste Isolation Pilot Plant. LANL is employing a balanced risk approach that accomplishes significant long-term risk reduction by accepting short-term increased facility operations risk under well-developed and justified interim controls. Reviews of facility conditions and additional analyses show that the Waste Characterization, Reduction and Repackaging Facility and the Radioassay and Nondestructive Testing Facility are the most appropriate facilities to safetly remediate, repackage, and ship lower activity and the remaining high activity drums. Updated safety documentation supporting limited Hazard Category 2 operations in these facilities has been developed. Once approved, limited-term operations to process the high activity drums can begin in early 2007, building upon the experience base established performing Hazard Category 3 operations processing lower activity waste in these facilities. LANL is also implementing a series of actions to improve and sustain operations for

  7. Effects of Diversity Experiences on Critical Thinking Skills over 4 Years of College

    Science.gov (United States)

    Pascarella, Ernest T.; Martin, Georgianna L.; Hanson, Jana M.; Trolian, Teniell L.; Gillig, Benjamin; Blaich, Charles

    2014-01-01

    The benefits of student engagement in diversity experiences on a range of college outcomes have been well documented. However, the potential influence of involvement in diversity experiences during college on the cognitive and intellectual outcomes of post-secondary education is only beginning to be understood. Gurin et al. (2002) made a…

  8. Progress in inertial fusion research at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    The Los Alamos Scientific Laboratory Inertial Confinement Fusion Program is reviewed. Experiments using the Helios CO2 laser system delivering up to 6kJ on target are described. Because breakeven energy estimates for laser drivers of 1 μm and above have risen and there is a need for CO2 experiments in the tens-of-kJ regime as soon as practical, a first phase of Antares construction is now directed toward completion of two of the six original modules in 1983. These modules are designed to deliver 40kJ of CO2 laser light on target. (author)

  9. Publications of Los Alamos research 1988

    International Nuclear Information System (INIS)

    This bibliography lists unclassified publications of work done at the Los Alamos National Laboratory for 1988. The entries, which are subdivided by broad subject categories, are cross-referenced with an author index and a numeric index

  10. Publications of Los Alamos research 1988

    Energy Technology Data Exchange (ETDEWEB)

    Varjabedian, K.; Dussart, S.A.; McClary, W.J.; Rich, J.A. (comps.)

    1989-12-01

    This bibliography lists unclassified publications of work done at the Los Alamos National Laboratory for 1988. The entries, which are subdivided by broad subject categories, are cross-referenced with an author index and a numeric index.

  11. Environmental surveillance at Los Alamos during 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance.

  12. Environmental surveillance at Los Alamos during 1994

    International Nuclear Information System (INIS)

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance

  13. Analysis of Np-237 ENDF for the theortical interpretation of critical assembly experiments

    International Nuclear Information System (INIS)

    We report on the present status of our effort toward an improved Np-237 evaluated nuclear data file (ENDF). The aim here is to bridge the gap between calculated and observed k-eff values, as measured at the Np-U critical assembly at LANL, TA-18. As such, we perform a critical analysis of the existing body of experimental data and recommended evaluations. We are targeting in principal the fission nu-bar and cross section in Np-237, as well as the inelastic scattering which is particularly important since Np-237 is a threshold fissioner. This analysis will be employed in a future sensitivity study of the calculated k-eff with respect to variations of the afore mentioned nuclear data.

  14. Clinical accompaniment: the critical care nursing students’ experiences in a private hospital

    OpenAIRE

    N. Tsele; Marie Muller

    2000-01-01

    The quality of clinical accompaniment of the student enrolled for the post-basic diploma in Medical and Surgical Nursing Science: Critical Care Nursing (General) is an important dimension of the educational/learning programme. The clinical accompanist/mentor is responsible for ensuring the student’s compliance with the clinical outcomes of the programme in accordance with the requirements laid down by the Nursing Education Institution and the South African Nursing Council. The purpose of this...

  15. A Comprehensive Framework for Six Sigma Critical Success Factors With an Experience on a Developing Country

    OpenAIRE

    Shahin, Arash

    2010-01-01

    This paper reviewed literature on the CSFs of Six Sigma implementation in different sectors, worldwide and a comprehensive framework was proposed for Six Sigma critical success factors (CSFs). All those factors was extracted from literature review and seem essential for optimizing financial return from Six Sigma projects and for achieving the full potential of its application in all organizations. A case study was also conducted, in which the CSFs were prioritized in five major car maker comp...

  16. Edward Teller Returns to LOS Alamos

    Science.gov (United States)

    Hecker, Siegfried S.

    2010-01-01

    I was asked to share some reflections of Edward Teller's return to Los Alamos during my directorship. I met Teller late in his life. My comments focus on that time and they will be mostly in the form of stories of my interactions and those of my colleagues with Teller. Although the focus of this symposium is on Teller's contributions to science, at Los Alamos it was never possible to separate Teller's science from policy and controversy ...

  17. Materials accounting at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    This presentation gives an overview of the accounting system used at the Los Alamos National Laboratory by the Los Alamos Nuclear Material Accounting and Safeguards System (MASS). This system processes accounting data in real time for bulk materials, discrete items, and materials undergoing dynamic processing. The following topics are covered in this chapter: definitions; nuclear material storage; nuclear material storage; computer system; measurement control program; inventory differences; and current programs and future plans

  18. High-energy particle Monte Carlo at Los Alamos

    International Nuclear Information System (INIS)

    A major computational effort at Los Alamos has been the development of a code system based on the HETC code for the transport of nucleons, pions, and muons. The Los Alamos National Laboratory version of HETC utilizes MCNP geometry and interfaces with MCNP for the transport of neutrons below 20 MeV and photons at any energy. A major recent effort has been the development of the PHT code for treating the gamma cascade in excited nuclei (the residual nuclei from an HETC calculation) by the Monte Carlo method to generate a photon source for MCNP. The HETC/MCNP code system has been extensively used for design studies of accelerator targets and shielding, including the design of LAMPF-II. It is extensively used for the design and analysis of accelerator experiments. Los Alamos National Laboratory has been an active member of the International Collaboration on Advanced Neutron Sources; as such we engage in shared code development and computational efforts. In the past few years, additional effort has been devoted to the development of a Chen-model intranuclear cascade code (INCA1) featuring a cluster model for the nucleus and deuteron pickup reactions. Concurrently, the INCA2 code for the breakup of light, excited nuclei using the Fermi breakup model has been developed. Together, they have been used for the calculation of neutron and proton cross sections in the energy ranges appropriate to medical accelerators, and for the computation of tissue kerma factors

  19. Qualitative critical incident study of patients’ experiences leading to emergency hospital admission with advanced respiratory illness

    OpenAIRE

    Karasouli, Eleni; Munday, Daniel; Bailey, Cara; Staniszewska, Sophie; Hewison, Alistair; Griffiths, Frances

    2016-01-01

    Objectives The high volume of emergency admissions to hospital is a challenge for health systems internationally. Patients with lung cancer and chronic obstructive pulmonary disease (COPD) are frequently admitted to hospital as emergency cases. While the frequency of emergency admission has been investigated, few studies report patient experiences, particularly in relation to the decision-making process prior to emergency admission. We sought to explore patient and carer experiences and those...

  20. ICF research at Los Alamos

    International Nuclear Information System (INIS)

    It is apparent that short wavelength lasers (<500 nm) provide efficient coupling of laser energy into ICF target compression. KrF lasers (248 nm) operate at near-optimum wavelength and provide other potential benefits to ICF target coupling (e.g., bandwidth) and applications (high wallplug efficiency and relatively low cost). However, no driver technology has yet been shown to meet all of the requirements for a high-gain ICF capability at a currently acceptable cost, and there are still significant uncertainties in the driver-target coupling and capsule hydrodynamics that must be addressed. The Los Alamos research program is designed to assess the potential of KrF lasers for ICF and to determine the feasibility of achieving high gain in the laboratory with a KrF laser driver. Major efforts in KrF laser development and technology, target fabrication and materials development, and laser-matter interaction and hydrodynamics research are discussed. 27 refs., 10 figs

  1. Combined use of the RPI [Rensselaer Polytechnic Institute] reactor for training and critical experiments

    International Nuclear Information System (INIS)

    The Rensselaer Polytechnic Institute (RPI) reactor critical facility (RCF) has provided educational and research opportunities for RPI and other students for >25 yr. The RCF was built by the American Locomotive Company (ALCO) in the 1950s as a critical facility in support of the army package power reactor program, and, when ALCO went out of business in 1964, the RCF was acquired by RPI. Since that time, RPI has operated the RCF primarily in a teaching mode in the nuclear engineering department, although reactor research, activation analyses, and reactivity assays have been carried out as well. Until recently, the RCF was fueled by plates containing highly enriched uranium as a cermet in stainless steel. This highly enriched uranium (HEU) fuel was replaced recently by 4.81 wt% enriched UO2 high-density pellets clad in stainless steel rods. The use of these SPERT (F1) fuel rods in the RCF provided a cost-effective method for conversion of the core from HEU to low-enriched uranium and for enhancement of the RCF training and research program. The RCF is the only facility in the United States that provides reactor training on a core containing fuel that is similar to that used in power industry light water reactors (LWRs). Moreover, the RCF is the only facility in the United States currently available for supplying critical experimental data in support of the LWR power industry. Thus, the RCF is in a unique position to carry out important training and research services consistent with RPI's nuclear engineering objectives

  2. Final stage of first super-critical 460 MW CFB boiler construction. First experience

    Energy Technology Data Exchange (ETDEWEB)

    Ostrowski, Waldemar [PKE, Lagisza Power Plant (Poland); Goral, Damian [Foster Wheeler Energia Polska, Sosnowiec (Poland)

    2010-07-01

    Steam boilers with circulating fluidised bed combustion have been advanced in the past years and proved well as large-scale technology. A further step was the development and construction of a boiler with super-critical steam parameters and increased output. In 2002 the Polish utility Poludniowy Koncern Energetyczny SA awarded a contract to Foster Wheeler Energia Oy to erect a fluidised bed boiler for the Lagisza power plant. Construction of the 460 MW plant was started in 2006. The plant has been in commercial operation since 2009. (orig.)

  3. Flux-Flattening Experiments on a Heavy-Water Critical Facility

    International Nuclear Information System (INIS)

    The work is divided into two parts. The first one deals with thermal flux and cadmium-ratio measurements in a heavy-water critical facility with three different geometries: (a) outer reflected; (b) inner and outer reflected; (c) with a black body inserted into the inner reflector. The second part makes a comparison between experimental results and theoretical calculations, pointing out the possibility to achieve core thermal flux flattening, without high reactivity losses and changes in core neutron spectrum, by means of a black body inserted into the inner reflector. (author)

  4. Critical experiments to determine amount of U-235 in research reactor fuel assemblies

    International Nuclear Information System (INIS)

    Four different critical core configurations of the IRR1 [Bettan, M., Hirshfeld H., Levine, S.H., 2002. Method to determine the burnup of the IRR1 fuel assemblies. In: Proceedings of the 21st Conference of the Nuclear Societies in Israel, p. 38-41], Cores 1, 2, 3, and 4, have been used to determine experimentally the reactivity changes caused by interchanging different fuel assemblies (FAs) in the same core position [Bettan, M., Hirshfeld H., Levine, S.H., 2002. Method to determine the burnup of the IRR1 fuel assemblies. In: Proceedings of the 21st Conference of the Nuclear Societies in Israel, p. 38-41; Levine, S.H., Kim, S.S., 1985. Development of an asymmetric multiple-position neutron source (AMPNS) method to monitor the criticality of a degraded reactor core. Ann. Nucl. Energy 12, 517; IAEA-TECDOC-633, 1992. Determination of research fuel burnup, January]. The different fuel assemblies varied in their burnup or loss in U-235 causing the core reactivity to change systematically with each FA interchange. The control blade height was altered to compensate for this change in the core reactivity to maintain the core critical. The control blade reactivity worth as a function of its height was measured by period measurements so that the reactivity change due to the interchange of an FA was determined. The WIMS/EXT2 [WIMS-D4: Winfrith Improved Multigroup Scheme (WIMS) code system, 1969. Computer Code Package CCC-576, RSICC/ORNL, Oak Ridge, TN; Fowler, T.B. et al., 1967. EXTERMINATOR-II: A FORTRAN IV Code for solving multigroup diffusion equations in two dimensions, ORNL-4078, ORNL, April] codes are used to evaluate the change in core reactivity as a function of FA U-235 or burnup. By relating the calculation of the reactivity change with the measured reactivity change, the burnup or U-235 mass in each FA is determined. The U-235 mass of the FAs gave good agreement between measurements made of the same FA in different cores and appears to bring better agreement between

  5. Temperature Gradients on the Cell Wall in the Critical Viscosity Experiment

    Science.gov (United States)

    Berg, Robert F.; Moldover, Michael R.

    1993-01-01

    Because of the diverging susceptibility delta rho/delta Tau near the liquid-vapor critical point, temperature gradients must be kept small to maintain adequate sample homogeneity. In our Science Requirements Document we paid particular attention to radial density gradients caused by equilibration of the xenon sample. Axial density gradients were addressed through the requirement that the cell's copper wall have a gradient less than 22 microK/m. This report re-examines the cell wall's temperature distribution in more detail by estimating all known significant contributions to temperature differences on the cell's wall.

  6. ISS-Crystal Growth of Photorefractive Materials (BSO): Critical Design Issues for Optimized Data Extraction from Space Experiments

    Science.gov (United States)

    Hyers, Robert W.; Motakef, S.; Witt, A. F.; Wuensch, B.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Realization of the full potential of photorefractive materials in device technology is seriously impeded by our inability to achieve controlled formation of critical defects during single crystal growth and by difficulties in meeting the required degree of compositional uniformity on a micro-scale over macroscopic dimensions. The exact nature and origin of the critical defects which control photorefractivity could not as yet be identified because of gravitational interference. There exists, however, strong evidence that the density of defect formation and their spatial distribution are adversely affected by gravitational interference which precludes the establishment of quantifiable and controllable heat and mass transfer conditions during crystal growth. The current, NASA sponsored research at MIT is directed at establishing a basis for the development of a comprehensive approach to the optimization of property control during melt growth of photorefractive materials, making use of the m-g environment, provided in the International Space Station. The objectives to be pursued in m-g research on photorefractive BSO (Bi12SiO20) are: (a) identification of the x-level(s) responsible for photorefractivity in undoped BSO; (b) development of approaches leading to the control of x-level formation at uniform spatial distribution; (c) development of doping and processing procedures for optimization of the critical, application specific parameters, spectral response, sensitivity, response time and matrix stability. The presentation will focus on: the rationale for the justification of the space experiment, ground-based development efforts, design considerations for the space experiments, strategic plan of the space experiments, and approaches to the quantitative analysis of the space experiments.

  7. Benchmark analysis of criticality experiments in the TRIGA mark II using a continuous energy Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    The criticality analysis of the TRIGA-II benchmark experiment at the Musashi Institute of Technology Research Reactor (MuITR, 100kW) was performed by the three-dimensional continuous-energy Monte Carlo code (MCNP4A). To minimize errors due to an inexact geometry model, all fresh fuels and control rods as well as vicinity of the core were precisely modeled. Effective multiplication factors (keff) in the initial core critical experiment and in the excess reactivity adjustment for the several fuel-loading patterns as well as the fuel element reactivity worth distributions were used in the validation process of the physical model and neutron cross section data from the ENDF/B-V evaluation. The calculated keff overestimated the experimental data by about 1.0%Δk/k for both the initial core and the several fuel-loading arrangements (fuels or graphite elements were added only to the outer-ring), but the discrepancy increased to 1.8%Δk/k for the some fuel-loading patterns (graphite elements were inserted into the inner-ring). The comparison result of the fuel element worth distribution showed above tendency. All in all, the agreement between the MCNP predictions and the experimentally determined values is good, which indicates that the Monte Carlo model is enough to simulate criticality of the TRIGA-II reactor. (author)

  8. Swimming without the water: a critical perspective on mental health experience for adult nursing students.

    Science.gov (United States)

    Barrett, Paul; Jackson, Andrew

    2013-11-01

    Adult nurses and adult field nursing students come into contact with a diverse range of other patient groups in their practice but perhaps none more so than those who have co-existing mental health issues. Consequently adult field student nurses must be equipped with the requisite knowledge and skills to competently care for their patients who also experience mental health problems. Given the pressure on placements many education providers have developed alternatives to direct mental health experiences. The authors review their own experience of some of the modalities that higher education institutes (HEI) use to instruct their students in this field. They argue that, ideally, there is no substitute for the practical experience of placements in the mental health sector, particularly if these include contact with mental health nursing. The paper concludes with some recommendations for nursing education and our professional body that could help equip adult field nursing students with the necessary experience and skills of mental health to support them into their future careers. PMID:23830557

  9. Experience of critical incident stress among ambulance service staff and relationship to psychological symptoms.

    Science.gov (United States)

    Gallagher, Sharon; McGilloway, Sinéad

    2009-01-01

    This two-stage study was undertaken to assess the extent and nature of Critical Incident Stress (CIS) amongst frontline staff in a large ambulance service in Ireland. In Stage One, 63% (112/180) of participants completed a Screening Questionnaire and the GHQ-12. In Stage Two, 27 participants, who had experienced a critical incident (CI) during the previous year completed several measures to assess PTSD symptomatology, burnout, health-related Quality of Life, and dispositional optimism. Eighty-one per cent (80/94) of the Stage One group reported that their health had been affected by a CI; 42% (44/106) were identified as 'cases' on the GHQ-12. Stage Two results indicated that 12 participants had PTSD symptoms while this entire group showed moderate levels of emotional exhaustion and depersonalization, despite experiencing high levels of personal accomplishment and optimism. The findings suggest a high prevalence of CIS among ambulance personnel in Ireland and a significant impact on overall health and wellbeing. This has important implications for the effective management of CIS and suggests an important role for occupational health and organizational psychologists in providing routine support to ambulance service staff andpossibly other emergency services personnel. PMID:20524508

  10. Accelerators for critical experiments involving single-particle upset in solid-state microcircuits

    Science.gov (United States)

    Zoutendyk, J. A.

    1985-01-01

    Charged-particle interactions in microelectronic circuit chips (integrated circuits) present a particularly insidious problem for solid-state electronic systems due to the generation of soft errors or single-particle event upset (SEU) by either cosmic rays or other radiation sources. Particle accelerators are used to provide both light and heavy ions in order to assess the propensity of integrated circuit chips for SEU. Critical aspects of this assessment involve the ability to analytically model SEU for the prediction of error rates in known radiation environments. In order to accurately model SEU, the measurement and prediction of energy deposition in the form of an electron-hole plasma generated along an ion track is of paramount importance. This requires the use of accelerators which allow for ease in both energy control (change of energy) and change of ion species. This and other aspects of ion-beam control and diagnostics (e.g., uniformity and flux) are of critical concern for the experimental verification of theoretical SEU models.

  11. Phoenix: outstanding features; verification in critical experiments and against gamma-detector measurements in Ringhals 1

    International Nuclear Information System (INIS)

    The LWR lattice program PHOENIX treats all material regions individually. At library-group level they are coupled by a heterogeneous response method. For PWRs this calculation suffices. For BWRs, a broad-group S4-calculation with homogenized pin cells and control blades is still needed. Temporarily introduced sources minimize homogenization errors. Gamma fluxes are evaluated by the same computational procedure. Various tests are reported: Fission-product absorption rates obtained by PHOENIX and RECORD agree very well. Further, apart from a probable deficiency of -3.3 pcm/K in the hot-cold temperature coefficient, the standard deviation of k was about 200 pcm in cold and hot criticals with and without burnable absorbers and control blades. In these criticals, the standard deviation of the fission-rate distribution varied from 1.3% to 2.1%. Finally, calculated gamma-detector signals based on PHOENIX-generated detector response functions have been compared with Ringhals 1 measurements. Low standard deviations between calculated and measured signals were obtained. A detailed representation of the detector using the proper amount of structural material is shown to be essential for the void dependence of the response function

  12. Critical Experiments to Determine Amount of U-235 in Research Reactor Fuel Assemblies

    International Nuclear Information System (INIS)

    Seven different critical core configurations of the IRR1 have been used to determine experimentally the reactivity changes caused by interchanging different fuel assemblies in the same core position(1'2). The data obtained with the first four critical configurations, Cores 1, 2, 3, and 4, are analyzed in this report; the other three will be analyzed and reported in a later paper. The different fuel assemblies (highly enriched MTR type fuel assemblies) interchanged in these cores varied in their burnup or loss in U-235, thus changing the core keff w i t h each interchange. The k∞ of a fuel assembly is a function of its U-235 inventory. The fuel assemblies interchange forced the control blade to alter its height in order to compensate for the change in core reactivity. The control blade reactivity worth as a function of its height was measured by period measurements so the reactivity changes due to the fuel assemblies interchange could be determined. Several different fuel assemblies in each core were measured in this manner. This experimental data can be calculated using reactor physics codes

  13. Critical and Subcritical 0-Power Experiment at Rensselaer (CaSPER)

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Jennifer Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-09

    This report discusses the 0-power experiment at Rensselaer Polytechnic Institute (CaSPER). Keff simulation results, list-mode multiplication results, and related work are included. The aim of the work is subcritical measurements for code and nuclear data validation.

  14. Are Sojourners Natural Comparativists? Critical Perspectives on the Learning Experiences of International Students

    Science.gov (United States)

    Schweisfurth, Michele

    2012-01-01

    Students who spend a period of time studying outside of their own national systems have a number of advantages in terms of developing a comparative perspective on education. The experience of living and studying abroad provides them with the opportunity to act as participant observers of at least two different systems, and the natural…

  15. Enhancing Critical Consciousness through a Cross-Cultural Immersion Experience in South Africa

    Science.gov (United States)

    Choi, Kyoung Mi; VanVoorhis, Richard W.; Ellenwood, Audrey E.

    2015-01-01

    Using phenomenological approaches, the author explored the meanings and essences of a cross-cultural immersion experience in South Africa among counseling master's-level students. Five core themes--the meaning of being American, sociopolitical awareness, engagement with South Africans and their communities, appreciation of life, and commitment to…

  16. Momentum and Energy Transfer in an Ionospheric Critical Ionization Velocity Experiment

    DEFF Research Database (Denmark)

    Bolin, O.; Brenning, N.; Swenson, C. M.;

    1995-01-01

    We present new data from the subpayload of the GRIT II ionospheric active injection experiment. The analysis made possible by these data provides a good understanding of the momentum transfer between the injected ions and the ambient ionosphere. It resolves the conflict between the two competing...

  17. 3D Monte Carlo particle-in-cell simulations of critical ionization velocity experiments in the ionosphere

    International Nuclear Information System (INIS)

    Proper interpretation of space based critical velocity ionization experiments depends upon understanding the expected results from in-situ or remote sensors. A three-dimensional electromagnetic Particle-in-Cell code with Monte Carlo charged particle-neutral collisions has been developed to model CIV interactions in typical neutral gas release experiments. In the model, the released neutral gas is taken to be a spherical cloud traveling with a constant density and velocity rvec υn across the geomagnetic field rvec B0. Then dynamics of the plasma ionized from the neutral cloud are studied, and the induced instabilities are discussed. The simulations show that the newly ionized plasma evolves to form an ''asymmetric sphere-sheet tail'' structure: the ions mainly drift with the neutral cloud and expand in the rvec υ x rvec B0 direction; the electrons are trapped by the magnetic field and form a curved ''sheet-like'' tail which spreads along the rvec B0 direction. The ionization rate determines the structure shape. Significant ion density enhancement occurs only in the core region of the neutral gas cloud. It is shown that the detection of CIV in an ionospheric gas release experiment critically depends on the sensor location

  18. Critical experiments in support of the CNPS [Compact Nuclear Power Source] program

    International Nuclear Information System (INIS)

    Zero-power static and kinetic measurements have been made on a mock-up of the Compact Nuclear Power Source (CNPS), a graphite moderated, graphite reflected, U(19.9% 235U) fueled reactor design. Critical configurations were tracked from a first clean configuration (184 most central fuel channels filled and all control rod and heat pipe channels empty) to a fully loaded configuration (all 492 fuel channels filled, core-length stainless steel pipe in the twelve heat-pipe channels, and approximately half-core-length boron carbide in the outer 4 control rod channels. Reactor physics data such as material worths and neutron lifetime are presented only for the clean and fully loaded configurations

  19. Review and evaluation of available critical experiment data for HTGR non-proliferation fuel cycles

    International Nuclear Information System (INIS)

    As part of the overall effort to resolve the issues of nuclear materials diversion and weapons proliferation, General Atomic (GA) has undertaken a study on the effective utilization on low enrichment uranium (LEU) fuel cycles in the High Temperature Gas-Cooled Reactor (HTGR). In the area of the core design, this work involved a thorough evaluation of the feasibility of various possible LEU fuel cycles including a definition of potential problems. Among the items considered in this core study were calculational methods for LEU fuel in HTGRs. In this regard, a review was undertaken of the available experimental data from critical facilities using LEU in HTGR or HTGR-like assemblies, which could be used to validate the physics design codes used at GA for the non-proliferation design work. The results of this review are summarized

  20. Enhancing software safety by fault trees: experiences from an application to flight critical software

    International Nuclear Information System (INIS)

    The fault tree analysis is a well-established method in system safety and reliability assessment. We transferred the principles of this technique to an assembler code analysis, regarding any incorrect output of the software as the undesired top-level event. Starting from the instructions providing the outputs and tracking back to all instructions contributing to these outputs a hierarchical system of references is generated that may graphically be represented as a fault tree. To cope with the large number of relations in the code, a tool suite has been developed, which automatically creates these references and checks for unfulfilled preconditions of instructions. The tool was applied to the operational software of an inertial measurement unit, which provides safety critical signals for artificial stabilization of an aircraft. The method and its implementation as a software tool is presented and the benefits, surprising results, and limitations we have experienced were discussed

  1. Microstructure, critical current density and trapped field experiments in IG-processed Y-123

    Science.gov (United States)

    Muralidhar, M.; Ide, N.; Koblischka, M. R.; Diko, P.; Inoue, K.; Murakami, M.

    2016-05-01

    In this paper, we adapted the top-seeded infiltration growth ‘IG’ technique and produced several YBa2Cu3O y ‘Y-123’ samples with an addition of Y2BaCuO5 ‘Y-211’ secondary phase particles with varying sizes by the sintering process and the ball milling technique. For the first set of samples, Y-211 disks were sintered at temperatures ranging between 900 °C and 1100 °C and were used for the production of Y-123 material by the IG process. Magnetization measurements showed a sharp superconducting transition with an onset T c at around 92 K, irrespective of the sintering temperature. However, the trapped field and critical current density (J c) values were dependent on the sintering temperature and it was found that the best temperature is around 925 °C. Further, the trapped field distribution measurements at 77 K indicated that all samples are of single grain nature. The highest trapped field was recorded around 0.31 T at 77 K for the Y-123 sample with 20 mm in diameter and 5 mm thickness produced by Y-211 pre-from around 925 °C. On the other hand, a second set of samples Y-211 were controlled by ball milling technique combined with an optimized slow cooling process. As a result, the critical current density (J c) at 77 K and zero field was determined to be 225 kA cm-2. The improved performance of the Y-123 material can be understood in terms of homogeneous distribution of fine secondary phase particles which is demonstrated by AFM micrographs.

  2. Doctors’ and nurses’ views and experience of transferring patients from critical care home to die: A qualitative exploratory study

    Science.gov (United States)

    Coombs, Maureen; Darlington, Anne-Sophie; Richardson, Alison

    2015-01-01

    Background: Dying patients would prefer to die at home, and therefore a goal of end-of-life care is to offer choice regarding where patients die. However, whether it is feasible to offer this option to patients within critical care units and whether teams are willing to consider this option has gained limited exploration internationally. Aim: To examine current experiences of, practices in and views towards transferring patients in critical care settings home to die. Design: Exploratory two-stage qualitative study Setting/participants: Six focus groups were held with doctors and nurses from four intensive care units across two large hospital sites in England, general practitioners and community nurses from one community service in the south of England and members of a Patient and Public Forum. A further 15 nurses and 6 consultants from critical care units across the United Kingdom participated in follow-on telephone interviews. Findings: The practice of transferring critically ill patients home to die is a rare event in the United Kingdom, despite the positive view of health care professionals. Challenges to service provision include patient care needs, uncertain time to death and the view that transfer to community services is a complex, highly time-dependent undertaking. Conclusion: There are evidenced individual and policy drivers promoting high-quality care for all adults approaching the end of life encompassing preferred place of death. While there is evidence of this choice being honoured and delivered for some of the critical care population, it remains debatable whether this will become a conventional practice in end of life in this setting. PMID:25519147

  3. From Memory Impairment to Posttraumatic Stress Disorder-Like Phenotypes: The Critical Role of an Unpredictable Second Traumatic Experience.

    Science.gov (United States)

    Finsterwald, Charles; Steinmetz, Adam B; Travaglia, Alessio; Alberini, Cristina M

    2015-12-01

    Arousal and stress critically regulate memory formation and retention. Increasing levels of stress produce an inverted U-shaped effect on cognitive performance, including the retention of explicit memories, and experiencing a severe stress during a traumatic event may lead to posttraumatic stress disorder (PTSD). The molecular mechanisms underlying the impairing effect of a severe stress on memory and the key contribution of traumatic experiences toward the development of PTSD are still unknown. Here, using increasing footshock intensities in an inhibitory avoidance paradigm, we reproduced the inverted U-shaped curve of memory performance in rats. We then show that the inverted U profile of memory performance correlates with an inverted U profile of corticosterone level in the circulation and of brain-derived neurotrophic factor, phosphorylated tropomyosin-receptor kinase B, and methyl CpG binding protein in the dorsal hippocampus. Furthermore, training with the highest footshock intensity (traumatic experience) led to a significant elevation of hippocampal glucocorticoid receptors. Exposure to an unpredictable, but not to a predictable, highly stressful reminder shock after a first traumatic experience resulted in PTSD-like phenotypes, including increased memory of the trauma, high anxiety, threat generalization, and resistance to extinction. Systemic corticosterone injection immediately after the traumatic experience, but not 3 d later, was sufficient to produce PTSD-like phenotypes. We suggest that, although after a first traumatic experience a suppression of the corticosterone-dependent response protects against the development of an anxiety disorder, experiencing more than one trauma (multiple hits) is a critical contributor to the etiology of PTSD. PMID:26631471

  4. Automated workflows for critical time-dependent calibrations at the CMS experiment.

    CERN Document Server

    Cerminara, Gianluca

    2015-01-01

    Fast and efficient methods for the calibration and the alignment ofthe detector are a key asset to exploit the physics potential of theCompact Muon Solenoid (CMS) detector and to ensure timely preparationof results for conferences and publications.To achieve this goal, the CMS experiment has set up a powerfulframework. This includes automated workflows in the context of a promptcalibration concept, which allows for a quick turnaround of thecalibration process following as fast as possible any change inrunning conditions.The presentation will review the design and operational experience ofthese workflows and the related monitoring system during the LHC RunIand focus on the development, deployment and commissioning in preparation of RunII.

  5. Pandemic (H1N1 2009 influenza: Experience from a critical care unit in India

    Directory of Open Access Journals (Sweden)

    Sahoo Jyoti

    2010-01-01

    Full Text Available This case series details our experience with seven patients with pandemic (H1N1 2009 influenza from an intensive care unit in India. All the patients had respiratory failure requiring ventilation except one; two patients developed pneumothorax. Of the seven patients, two died (28.5% and five recovered. Four patients had co-morbid conditions and one was morbidly obese; all the five patients were discharged alive.

  6. CREATING NOVEL GOAL-DIRECTED ACTIONS AT CRITICALITY: A NEURO-ROBOTIC EXPERIMENT

    OpenAIRE

    Arie, Hiroaki; Endo, Tetsuro; ARAKAKI, TAKAFUMI; Sugano, Shigeki; Tani, Jun

    2009-01-01

    The present study examines the possible roles of cortical chaos in generating novel actions for achieving specified goals. The proposed neural network model consists of a sensory-forward model responsible for parietal lobe functions, a chaotic network model for premotor functions and prefrontal cortex model responsible for manipulating the initial state of the chaotic network. Experiments using humanoid robot were performed with the model and showed that the action plans for satisfying specif...

  7. Momentum and Energy Transfer in an Ionospheric Critical Ionization Velocity Experiment

    OpenAIRE

    Bolin, O.; Brenning, N; Swenson, C. M.; Primdahl, Fritz

    1995-01-01

    We present new data from the subpayload of the GRIT II ionospheric active injection experiment. The analysis made possible by these data provides a good understanding of the momentum transfer between the injected ions and the ambient ionosphere. It resolves the conflict between the two competing models for the energy transfer from the newly created ions to hot electrons, while also giving a natural coupling between the energy and momentum transfer processes.

  8. Therapists’ experiences and perceptions of teamwork in neurological rehabilitation: Critical happenings in effective and ineffective teamwork

    OpenAIRE

    Suddick, K; De Souza, LH

    2007-01-01

    This article reports the second part of an exploratory study into occupational therapists` and physiotherapists` perceptions and experiences of team-work in neurological rehabilitation: the factors that were thought to influence effective and ineffective team-work, and the meaning behind effective and ineffective team work in neurological rehabilitation. The study was undertaken through semi-structured interviews of 10 therapists from three different neurological rehabilitation teams based in...

  9. Handling Worldwide LHC Computing Grid Critical Service Incidents : The infrastructure and experience behind nearly 5 years of GGUS ALARMs

    CERN Multimedia

    Dimou, M; Dulov, O; Grein, G

    2013-01-01

    In the Wordwide LHC Computing Grid (WLCG) project the Tier centres are of paramount importance for storing and accessing experiment data and for running the batch jobs necessary for experiment production activities. Although Tier2 sites provide a significant fraction of the resources a non-availability of resources at the Tier0 or the Tier1s can seriously harm not only WLCG Operations but also the experiments' workflow and the storage of LHC data which are very expensive to reproduce. This is why availability requirements for these sites are high and committed in the WLCG Memorandum of Understanding (MoU). In this talk we describe the workflow of GGUS ALARMs, the only 24/7 mechanism available to LHC experiment experts for reporting to the Tier0 or the Tier1s problems with their Critical Services. Conclusions and experience gained from the detailed drills performed in each such ALARM for the last 4 years are explained and the shift with time of Type of Problems met. The physical infrastructure put in place to ...

  10. Experience gained in the production of licensable safety-critical software for Darlington NGS

    International Nuclear Information System (INIS)

    The Darlington Nuclear Generating Station is a new station, consisting of four 935 Mw units, built by Ontario Hydro, on the north shore of Lake Ontario, approximately 50 miles east of Toronto. In May, 1987, the first of the four units of this station was approaching the point where Ontario Hydro would be requesting a license to load fuel, and then proceed to first criticality. At this point, however, the regulatory authority, the Atomic Energy Control Board (AECB) started to show increasing concerns related to the Trip Computer Software associated with Darlington's newly-designed computerized shutdown systems. The concerns centered around whether or not the safety reliability, reviewability, and maintainability of this software could be demonstrated by Ontario Hydro or the system designer, Atomic Energy of Canada Limited (AECL). In order to back up the validity of their concerns, they hired a well-known consultant, who reviewed the code, and made recommendations concerning its design, implementation, and documentation. Considerable effort was required by Ontario Hydro and AECL in order to comply with those recommendations. This paper describes those efforts, outlines the difficulties encountered, and assesses the lessons learned from them

  11. Critical heat flux loading experiments on CVD-W coating in the TEXTOR tokamak

    International Nuclear Information System (INIS)

    A copper block coated with 0.2 mm layer of CVD-W was exposed to high heat fluxes in the edge plasma of the TEXTOR tokamak. The coating showed good performance in general, however, the coating was destroyed during the critical heat flux loading at an estimated peak power density of 28 MW/m2. This destruction process was first initiated by the cracking of the CVD-W layer due to the large difference in thermal expansion between W and Cu. Molten Cu emerged through the cracks leaving cavities beneath the CVD-W layer. The formed cavities reduced the heat conduction from the CVD-W layer to the Cu block, and the CVD-W layer was damaged further due to the overheating during plasma loads. To avoid this coating failure, it is necessary to keep the temperature at the interface reasonably low and to release thermal stresses by castellation and/or adopting a functionally graded interlayer

  12. Licensing experiences of safety critical software systems in nuclear applications a case study

    International Nuclear Information System (INIS)

    This paper summarizes results of reviews on the safety, critical software performed during the licensing process for the new Wolsung units. Each of these CANDU-type nuclear power plants has two micro-computerized shutdown systems. The SDS No. 1 program is graphically programmed in such a manner that its development process does not essentially differ from the design process of the conventional analog counterpart. This approach is understandable even to a reviewer in the regulatory agency without additional training in software engineering. The confidence in the reliability of this system is strengthened by the reverse verification and increased by extensive testing such as the reliability test. Concerning SDS No. 2, the development process is significantly influenced by the software cost reduction project of the U.S. naval research laboratory, and is, as a whole, clear and well structured except for the modules related to the operation of the computer itself. These modules contain some algorithms which are not easy to understand. However, their correctness verifications are requested by the reviewer and supplemented by the developer. After the clarification of these issues, there are no substantial problems that constitute a significant impediment to licensing. 32 refs., 7 figs

  13. Analysis of the BFS-62 critical experiment. A report produced for BNFL (Joint European contribution)

    International Nuclear Information System (INIS)

    A benchmark analysis for a hybrid UOX/MOX fuelled core of the BN-600 reactor was proposed during the first Research Co-ordination Meeting of the IAEA Co-ordinated Research Project 'Updated Codes and Methods to Reduce Calculational Uncertainties of LMFR Reactivity Effects'. Phase 5 of the benchmark focuses on validation of calculated sodium void coefficient distributions and integral reactivity coefficients by comparison with experimental measurements made in the critical facility BFS-62. The European. participation in Phase 5 of the benchmark analyses consists of a joint contribution from France (CEA Cadarache) and the UK (Serco Assurance Winfrith - sponsored by BNFL). Calculations have been performed using the ERANOS code and data system, which has been developed in the framework of the European collaboration on fast reactors. Results are presented in this paper for the sodium void reactivity effect based on calculated values of the absolute core reactivity. The spatial distribution of the void effect, determined using first order perturbation theory with the diffusion theory approximation, is also presented

  14. Laser protective eyewear program at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    The proliferation of lasers at Los Alamos focused considerable attention on providing adequate eye protection for experimenters involved in the use of a wide variety of nonionizing radiation. Experiments with fast-pulsed lasers (Nd:YAG, HF, and CO2) were performed to gain biological threshold data on ocular damage. In parallel, eye protection devices were evaluated, which resulted in the development of lightweight, comfortable spectacles of colored glass filters that can be ground to prescription specifications. Goggle styles are employed in specific applications

  15. Criticality safety training

    International Nuclear Information System (INIS)

    Criticality safety training is an important element of the Plutonium Facility safety program at Los Alamos National Laboratory. Training consists of student self-study handbooks and hands-on performance-based training in a mock-up laboratory containing gloveboxes, trolley conveyor system, and self-monitoring instruments. A 10-minute video tape and lecture was presented to describe how training in this area is conducted

  16. Criticality safety training

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, S.K. [Los Alamos National Lab., NM (United States)

    1997-06-01

    Criticality safety training is an important element of the Plutonium Facility safety program at Los Alamos National Laboratory. Training consists of student self-study handbooks and hands-on performance-based training in a mock-up laboratory containing gloveboxes, trolley conveyor system, and self-monitoring instruments. A 10-minute video tape and lecture was presented to describe how training in this area is conducted.

  17. Three-Dimensional Electromagnetic Monte Carlo Particle-in-Cell Simulations of Critical Ionization Velocity Experiments in Space

    Science.gov (United States)

    Wang, J.; Biasca, R.; Liewer, P. C.

    1996-01-01

    Although the existence of the critical ionization velocity (CIV) is known from laboratory experiments, no agreement has been reached as to whether CIV exists in the natural space environment. In this paper we move towards more realistic models of CIV and present the first fully three-dimensional, electromagnetic particle-in-cell Monte-Carlo collision (PIC-MCC) simulations of typical space-based CIV experiments. In our model, the released neutral gas is taken to be a spherical cloud traveling across a magnetized ambient plasma. Simulations are performed for neutral clouds with various sizes and densities. The effects of the cloud parameters on ionization yield, wave energy growth, electron heating, momentum coupling, and the three-dimensional structure of the newly ionized plasma are discussed. The simulations suggest that the quantitative characteristics of momentum transfers among the ion beam, neutral cloud, and plasma waves is the key indicator of whether CIV can occur in space. The missing factors in space-based CIV experiments may be the conditions necessary for a continuous enhancement of the beam ion momentum. For a typical shaped charge release experiment, favorable CIV conditions may exist only in a very narrow, intermediate spatial region some distance from the release point due to the effects of the cloud density and size. When CIV does occur, the newly ionized plasma from the cloud forms a very complex structure due to the combined forces from the geomagnetic field, the motion induced emf, and the polarization. Hence the detection of CIV also critically depends on the sensor location.

  18. The idealized quantum two-slit gedanken experiment revisited-Criticism and reinterpretation

    International Nuclear Information System (INIS)

    An idealized two-slit experiment is envisaged in which the hypothetical experimental set-up is constructed in such a way as to resemble a toy model giving information about the structure of quantum space-time itself. Thus starting from a very simple equation which may be interpreted as a physical realization of Goedel's undecidability theorem, we proceed to show that space-time is very likely to be akin to a fuzzy Kaehler-like manifold on the quantum level. This remarkable manifold transforms gradually into a classical space-time as we decrease the resolution in a way reversibly analogous to the processes of recovering classical space-time from the Riemannian space of general relativity. The paper's main philosophy is to emphasize that the quintessence of the two-slit experiment as well as Feynman's path integral could be given a different interpretation by altering our classical concept of space-time geometry and topology. In turn this would be in keeping with the development in theoretical physics since special and subsequently general relativity. In the final analysis it would seem that we have two different yet, from a positivistic philosophy viewpoint, completely equivalent alternatives to view quantum physics. Either we insist on what we see in our daily experiences, namely, a smooth four-dimensional space-time, and then accept, whether we like it or not, things such as probability waves and complex probabilities. Alternatively, we could see behind the facade of classical space-time a far more elaborate and highly complex fuzzy space-time with infinite hierarchical dimensions such as the so-called Fuzzy K3 or E-Infinity space-time and as a reward for this imaginative picture we can return to real probabilities without a phase and an almost classical picture with the concept of a particle's path restored. We say almost classical because non-linear dynamics and deterministic chaos have long shown the central role of randomness in classical mechanics and this is

  19. Recent LAMPF [Los Alamos Meson Physics Facility] research using muons

    International Nuclear Information System (INIS)

    In addition to the core programs in nuclear and particle physics, diverse experiments have been carried out that address interdisciplinary and applied topics at the Los Alamos Meson Physics Facility (LAMPF). These include muon-spin-relaxation experiments to study magnetic dynamics in spin glasses and electronic structure in heavy-fermion superconductors; muon channeling experiments to provide information on pion stopping sites in crystals; tomographic density reconstruction studies using proton energy loss; and radiation-effects experiments to explore microstructure evolution and to characterize materials for fusion devices and high-intensity accelerators. Finally, the catalysis of the d-t fusion reaction using negative muons has been extensively investigated with some surprising results including a stronger than linear dependence of the mesomolecular formation rate on target density and the observation of 150 fusions per muon under certain conditions. Recent results in those programs involving pions and muons interacting with matter are discussed

  20. The first critical experiment with a LEU Russian fuel IRT-4M at the training reactor VR-1

    International Nuclear Information System (INIS)

    A critical experiment is a standard part of training of students at the Training Reactor VR-1 operated within the Faculty of Nuclear Sciences and Physical Engineering at the Czech Technical University in Prague. In autumn 2005 the HEU fuel IRT-3M with enrichment 36 % 235U was replaced by the LEU fuel IRT-4M with enrichment 19.7 % 235U. The fuel replacement at the VR-1 Reactor is a part of an international program RERTR. This Paper presents basic information about preparation for the fuel replacement and approaching of the first critical state with the new zone configuration C1 which replaced B1 core with the old IRT-3M fuel. The whole process was carried out according to the Czech law and the relevant international recommendations. The experience with the VR-1 operation confirms the assumption that the C1 core configuration will be suitable from the point of view of the reactivity balance for the long term safe operation of the Training Reactor VR-1. (author)

  1. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    International Nuclear Information System (INIS)

    The ENDF/B-VII.1 library is the latest revision to the United States' Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 418 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [1]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unmoderated and uranium reflected 235U and 239Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for selected actinide reaction rates such as 236U capture. Other deficiencies, such as the overprediction of Pu solution system critical eigenvalues and a decreasing trend in calculated eigenvalue for

  2. Design study of a fast spectrum zero-power reactor dedicated to source driven sub-critical experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mercatali, L.; Serikov, A. [Forschungszentrum Karlsruhe, Institute for Neutron Physics and Reactor Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Baeten, P.; Uyttenhove, W. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Lafuente, A. [Univerisdad Politecnica de Madrid, 28006 Madrid (Spain); Teles, P. [Instituto Tecnologico e Nuclear, EN 10, 2680-953 Sacavem (Portugal)

    2010-09-15

    In the framework of the European P and T program (IFP6-EUROTRANS), the Generation of Uninterrupted Intense NEutrons pulses at the lead VEnus REactor (GUINEVERE) project consists of an Accelerator Driven System (ADS) that is composed by a fast lead simulated-cooled reactor operated in sub-critical conditions, coupled with an updated version of the GENEPI neutron generator previously used for the MUSE experiments. The GUINEVERE facility aims at developing and improving different techniques for the reactivity monitoring of sub-critical ADS's. As such, the GUINEVERE project will comprise a series of major experiments that will be performed in the near future. The GUINEVERE facility will be located at the VENUS light water moderated research reactor at the SCK-CEN site of Mol (Belgium), which needs to be modified in order to accommodate a completely different and new type of core. A series of constraints were taken into account in the technical design of the GUINEVERE core, in order to properly conjugate the technical feasibility of this facility and the necessity to comply with the envisioned experimental program and its associated scientific outcome. The complete design study of the GUINEVERE core is the subject of this paper. The final design of the fuel assemblies, safety and control rods is provided. Also, the critical core configuration, to be used as reference for absolute reactivity measurements, is presented along with its associated reactor physics parameters, calculated by means of Monte Carlo methodologies. Finally, for licensing purposes, the GUINEVERE facility must satisfy the required nuclear safety criteria of the Belgian safety authorities, and in this paper, an overview of the safety analysis that has been performed with regard to the core physics, thermal assessment and shielding issues is also provided. (author)

  3. Publications of Los Alamos Research, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, C.J.; McClary, W.J.; Rich, J.A.; Rodriguez, L.L. (comps.)

    1984-10-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1983. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers publishd in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  4. Publications of Los Alamos Research 1982

    International Nuclear Information System (INIS)

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1982. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassfiication of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them

  5. Publications of Los Alamos research 1980

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, C.A.; Willis, J.K. (comps.)

    1981-09-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1980. Papers published in 1980 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted-even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was pubished more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-laboratory reports, journal articles, books, chapters of books, conference papers published either separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  6. Water supply at Los Alamos during 1992

    Energy Technology Data Exchange (ETDEWEB)

    Purtymun, W.D.; McLin, S.G.; Stoker, A.K.; Maes, M.N.

    1995-09-01

    Municipal potable water supply during 1992 was 1,516 {times} 10{sup 6} gallons from wells in the Guaje and Pajarito well fields. About 13 {times} 10{sup 6} gallons were pumped from the Los Alamos Well Field and used in the construction of State Road 501 adjacent to the Field. The last year the Las Alamos Field was used for municipal supply was 1991. The nonpotable water supply used for steam plant support was about 0.12 {times} 10{sup 6} gallons from the spring gallery in Water Canyon. No nonpotable water was used for irrigation from Guaje and Los Alamos Reservoirs. Thus, the total water usage in 1992 was about 1,529 {times} 10{sup 6} gallons. Neither of the two new wells in the Otowi Well Field were operational in 1992.

  7. Publications of Los Alamos Research, 1983

    International Nuclear Information System (INIS)

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1983. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers publishd in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them

  8. New Generation of Los Alamos Opacity Tables

    Science.gov (United States)

    Colgan, James; Kilcrease, D. P.; Magee, N. H.; Sherrill, M. E.; Abdallah, J.; Hakel, P.; Fontes, C. J.; Guzik, J. A.; Mussack, K. A.

    2016-05-01

    We present a new generation of Los Alamos OPLIB opacity tables that have been computed using the ATOMIC code. Our tables have been calculated for all 30 elements from hydrogen through zinc and are publicly available through our website. In this poster we discuss the details of the calculations that underpin the new opacity tables. We also show several recent applications of the use of our opacity tables to solar modeling and other astrophysical applications. In particular, we demonstrate that use of the new opacities improves the agreement between solar models and helioseismology, but does not fully resolve the long-standing `solar abundance' problem. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  9. Status of Monte Carlo at Los Alamos

    International Nuclear Information System (INIS)

    At Los Alamos the early work of Fermi, von Neumann, and Ulam has been developed and supplemented by many followers, notably Cashwell and Everett, and the main product today is the continuous-energy, general-purpose, generalized-geometry, time-dependent, coupled neutron-photon transport code called MCNP. The Los Alamos Monte Carlo research and development effort is concentrated in Group X-6. MCNP treats an arbitrary three-dimensional configuration of arbitrary materials in geometric cells bounded by first- and second-degree surfaces and some fourth-degree surfaces (elliptical tori). Monte Carlo has evolved into perhaps the main method for radiation transport calculations at Los Alamos. MCNP is used in every technical division at the Laboratory by over 130 users about 600 times a month accounting for nearly 200 hours of CDC-7600 time

  10. Experiences with Extra-Vehicular Activities in Response to Critical ISS Contingencies

    Science.gov (United States)

    Van Cise, E. A.; Kelly, B. J.; Radigan, J. P.; Cranmer, C. W.

    2016-01-01

    EVA preparation team structure, approach, goals, and the resources allocated to its work after the 2010 events. Finally, the authors will overview the implementation of these updates in addressing failures onboard the ISS in 2012, 2013, and 2014. The successful use of the updated approaches, and the application of the approaches to other spacewalks, will demonstrate the effectiveness of this additional work and make a case for putting significant time and resources into pre-failure planning and analysis for critical hardware items on human-tended spacecraft.

  11. Accident analysis for the NCSC foil experiment

    International Nuclear Information System (INIS)

    An accident analysis has been performed for the nuclear criticality safety class (NCSC) foil experiment. The Los Alamos Critical Experiments Facility (LACEF) performs this experiment regularly during its 2-, 3-, and 5-day nuclear criticality safety classes. This accident analysis is part of an effort to modify the NCSC foil experiment plan so that the experiment may be operated at delayed critical. Currently, the NCSC foil experiment may only be operated up to a neutron multiplication of 100. The purpose of the accident analysis is to ensure that any accidental nuclear excursion does not exceed the boundary of the safety envelope described in the LACEF safety analysis report (SAR). The experiment consists of very thin, highly enriched (93% 235U) uranium metal foils (23 X 23 X 0.008 cm) interleaved between Lucite plates (36 X 36 X 1.27 cm). The fuel foils and Lucite plates are stacked vertically to form a critical assembly. Extra Lucite plates placed at the top and bottom of the assembly act as vertical reflectors. The assembly is operated remotely with the use of a general-purpose vertical-lift platform machine. The accident scenario consists of one additional fuel foil being added to an existing critical or nearly critical stack. The reactivity insertion rate is 0.05 $/s, based on the speed of the vertical-lift platform. It is assumed that none of the safety systems will function properly during the accident and that the operating crew is unable to mitigate the accident

  12. Re-mastering the Master's Tools: Recognizing and affirming the life experiences and cultural practices of urban youth in critical computational literacy through a video game project

    OpenAIRE

    Lee, Clifford

    2012-01-01

    This study examines how a video game project that focuses on students' lived experiences and cultural practices teach critical literacies and computational thinking. Specifically, this research looked at how the pedagogy, processes, and student products demonstrated culturally relevant pedagogy practices, critical literacy, and computational thinking. This design-based research study utilizes critical literacy, sociocultural learning theory, and culturally relevant pedagogy in the framing, st...

  13. Thermal hydraulic test for reactor safety system - Critical heat flux experiment and development of prediction models

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Baek, Won Pil; Yang, Soo Hyung; No, Chang Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    2000-04-01

    To acquire CHF data through the experiments and develop prediction models, research was conducted. Final objectives of research are as follows: 1) Production of tube CHF data for low and middle pressure and mass flux and Flow Boiling Visualization. 2) Modification and suggestion of tube CHF prediction models. 3) Development of fuel bundle CHF prediction methodology base on tube CHF prediction models. The major results of research are as follows: 1) Production of the CHF data for low and middle pressure and mass flux. - Acquisition of CHF data (764) for low and middle pressure and flow conditions - Analysis of CHF trends based on the CHF data - Assessment of existing CHF prediction methods with the CHF data 2) Modification and suggestion of tube CHF prediction models. - Development of a unified CHF model applicable for a wide parametric range - Development of a threshold length correlation - Improvement of CHF look-up table using the threshold length correlation 3) Development of fuel bundle CHF prediction methodology base on tube CHF prediction models. - Development of bundle CHF prediction methodology using correction factor. 11 refs., 134 figs., 25 tabs. (Author)

  14. Comparison between MCNP and critical experiments -- A determination of bias values to be utilized in licensing calculations for high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Monte Carlo N-Particle Transport Code System (MCNP) criticality calculations were performed on a library of critical benchmark experiments to obtain preliminary bias values and subcritical margins to be utilized in licensing calculations for high-level radioactive waste disposal. The critical experiments library includes a broad range of system physical and neutronic characteristics that are representative of a range of potential criticality configurations relevant to long-term deep geological disposal. Two hundred and eighty-nine critical benchmark experiments were selected and grouped into 20 critical experiment classifications. From the results of this study, an applicable subcritical margin or maximum allowable keff can be selected for preliminary repository criticality analysis based on the similarity between the physical and neutronic characteristics of the system being analyzed and the relevant library classification. The results of this study provide quantification of both the confidence associated with the MCNP code and the presented conservative method for performing criticality evaluations relevant to repository emplacement of high-level radioactive waste

  15. Quantifying critical conditions for seaward expansion of tidal marshes: A transplantation experiment

    Science.gov (United States)

    Silinski, Alexandra; van Belzen, Jim; Fransen, Erik; Bouma, Tjeerd J.; Troch, Peter; Meire, Patrick; Temmerman, Stijn

    2016-02-01

    The alternative stable states theory is increasingly applied to tidal marsh shorelines, where the two opposing stable states - a dense vegetated state on the one hand and a bare tidal flat on the other hand - can coexist in time but differ in space. The shift from the bare to vegetated state by the establishment of individual plants (seedlings, rhizome-grown shoots) on the bare tidal flat is known to be triggered by the occurrence of windows of opportunity. These are periods when species- and life stage-dependent thresholds, such as sediment dynamics or wave impact, are not exceeded. One controlling environmental parameter in intertidal wetlands is elevation as many important stressors for plants - such as hydroperiod, sediment dynamics and wave properties (wave period and wave height) - are typically correlated to it. Disentangling the respective impact of these correlated stressors remains challenging. In this paper, we present the results of a transplantation experiment where the establishment of three different life stages (seedlings, rhizome-grown shoots and patches) of the brackish pioneer Scirpus maritimus was tested over an elevation gradient at two locations of contrasting wave exposure. This gradient reached from the bare tidal flat into the marsh and covered an elevation range at which continuous S. maritimus-dominated pioneer marsh is known to occur. We found that erosion stress influences seedling survival on tidal flats while drought stress seems to limit long-term establishment of individual shoots and seedlings in the marsh. Furthermore, survival of transplants was more successful on the tidal flat of the sheltered site compared to the tidal flat of the exposed site whereas survival time within the marsh did not differ between sites. This highlights the attenuation of waves and currents in exposed marshes. However, no long-term establishment occurred on the tidal flat, emphasizing the importance of clonal integration for tidal flat colonization.

  16. Los Alamos contribution to target diagnostics on the National Ignition Facility

    International Nuclear Information System (INIS)

    The National Ignition Facility (NIF) will have a large suite of sophisticated target diagnostics. This will allow thoroughly diagnosed experiments to be performed both at the ignition and pre-ignition levels. As part of the national effort Los Alamos National Laboratory will design, construct and implement a number of diagnostics for the NIF. This paper describes Los Alamos contributions to the ''phase I diagnostics.'' Phase I represents the most fundamental and basic measurement systems that will form the core for most work on the NIF. The Los Alamos effort falls into four categories: moderate to hard X-ray (time resolved imaging neutron spectroscopy- primarily with neutron time of flight devices; burn diagnostics utilizing gamma ray measurements; testing measurement concepts on the TRIDENT laser system at Los Alamos. Because of the high blast, debris and radiation environment, the design of high resolution X-ray imaging systems present significant challenges. Systems with close target proximity require special protection and methods for such protection is described. The system design specifications based on expected target performance parameters is also described. Diagnosis of nuclear yield and burn will be crucial to the NIF operation. Nuclear reaction diagnosis utilizing both neutron and gamma ray detection is discussed. The Los Alamos TRIDENT laser system will be used extensively for the development of new measurement concepts and diagnostic instrumentation. Some its potential roles in the development of diagnostics for NIF are given

  17. RCRA facility investigation for the townsite of Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    During World War II, Los Alamos, New Mexico was established as an ideal location for the secrecy and safety needed for the research and development required to design a nuclear fission bomb. Experiments carried out in the 1940s generated both radioactive and hazardous waste constituents on what is presently part of the Los Alamos townsite. Under the RCRA permit issued to Los alamos national Laboratory in 1990, the Laboratory is scheduled for investigation of its solid waste management units (SWMUs). The existing information on levels of radioactivity on the townsite is principally data from soil samples taken during the last site decontamination in 1976, little information on the presence of hazardous constituents exists today. This paper addresses pathway analysis and a preliminary risk assessment for current residents of the Los Alamos townsite. The estimated dose levels, in mrem per year, show that the previously decontaminated SWMU areas on the Los Alamos townsite will not contribute a radiation dose of any concern to the current residents

  18. Los Alamos Controlled Air Incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    International Nuclear Information System (INIS)

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawing, specifications, calculations, and costs. It aids duplication of the process at other facilities

  19. Los Alamos Controlled Air Incinerator for radioactive waste. Volume II. Engineering design reference manual

    International Nuclear Information System (INIS)

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawings, specifications, calculations, and costs. It aids duplication of the process at other facilities

  20. The performance of the Los Alamos Proton Storage Ring

    International Nuclear Information System (INIS)

    The Proton Storage Ring (PSR) now in operation at Los Alamos is a high-current accumulator that generates intense 800-MeV proton pulses for driving the Los Alamos Neutron Scattering Center (LANSCE) spallation source. The ring compresses up to 1000-μs-long macropulses from the LAMPF linac into 250-ns bunches and ejects them to a neutron-production target, providing an output optimized for thermal-neutron-scattering research. The design pulse rate and peak pulse intensity of PSR are 12 Hz and 5.2 . 1013 protons per pulse (ppp), yielding 100 μA average current when full performance is reached. This paper summarizes commissioning results and operational experience in the two years since first beam. The PSR has operated in production at average currents up to 30 μA and has reached a peak intensity of 3.4 . 1013 ppp. These achievements represents 30% and 65% of the design objectives. Higher current production has been inhibited by beam losses during accumulation and extraction. Therefore, experiments to understand loss mechanisms have occupied a large fraction of the commissioning effort. Correction of an extraction-channel aperture restriction identified late in 1986 should dramatically reduce extraction losses, which will permit higher current production in 1987. Beam tests in the 1013-ppp range have indicated the presence of a collective instability tentatively identified as transverse. However, by suitable parameter adjustments, the instability threshold can be pushed above the top charge-level attainable with the existing H - source

  1. Developing critical partnerships in area-wide pest management programmes: The Hawaii experience

    International Nuclear Information System (INIS)

    Full text: Aside from the technical issues that form the basis of any successful area-wide programme, significant attention must be made to programme organisation and development of partnerships that facilitate the large numbers of non-technical issues that must be addressed in a successful area-wide programme. The recent experience with the Hawaii area-wide fruit fly integrated pest management programme (HAW-FLYPM) is a recent example of the trials and tribulations that occur when one attempts to set up such a programme. In our example, USDA-ARS researchers (and their predecessors) from the US Pacific Basin Agr. Res. Center had developed much of overarching strategies that are used today for the detection, control and eradication of many tephritid fruit fly species, especially Mediterranean fruit fly, oriental fruit fly and melon fly, all species that have become established in Hawaii over the last 100 years. Early researchers were responsible for such seminal technologies as the development of low cost diets for mass-rearing, attractants for several fruit fly species, early demonstrations of SIT against fruit flies and more recently development of augmentative biological control strategies against fruit flies. These early discoveries have been refined and improved by many USDA and non-USDA researchers over the subsequent decades but the basic technologies have remained the same. While credit must be given for those pioneers in Hawaii who set the stage for area-wide fruit fly control technologies, the presence of plantation agriculture in the form of sugarcane and pineapple overshadowed any strong movement to apply the Hawaii-based technologies in their backyard. Instead the application of these technologies was showcased outside the state of Hawaii. The decline of both sugar cane and pineapple in Hawaii has brought about a renewed interest in diversified ag in Hawaii and with it the resurgence of the fruit fly issue due to its impact on production, trade and

  2. Publications of Los Alamos research, 1985

    International Nuclear Information System (INIS)

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1985, including laboratory reports, papers released as non-laboratory reports, journal articles, books, conference papers, papers published in congrssional hearings, theses, and US patents

  3. Red laser initiative at Los Alamos

    International Nuclear Information System (INIS)

    Several solid state lasers systems tunable between 0.70 and 0.95 μm have been the subject of studies to identify new lasers for various programs at the Los Alamos National Laboratory. These solid state lasers include Cr:GSGG, Cr:GSAG and Ti:Sapphire. Both laser pumped flashlamp pumped results are described in the following sections

  4. PROMILLE database as a part of JNC reactor physics analytical system for BFS-2 fast critical facility experiments analysis

    International Nuclear Information System (INIS)

    The PROMILLE database for experimental data from the BFS-2 fast critical facility (Institute of Physics and Power Engineering (IPPE), Russia) has been developed and embedded into the JNC reactor physics analytical system to provide a strict documentation format, a common data source for different analytical tools and a unique export interface with different reactor codes. PROMILLE should be considered not only as a database but also as a bank of interfaces because of its dynamic role in the analytical process. The database currently accepts data from the simulation materials (pellets, tubes and bars) as well as full cores descriptions. A core description involves all different unit cells forming loading elements, all types of the loading elements forming a layout and the layout itself. In fact it is a description of criticality experiments. Export interfaces for the CITATION-FBR code and the SLAROM and CASUP codes have been developed. The PROMILLE software was developed with MS Visual Basic 6.0 and the data is kept in the data tables generated with the MS Access database management system. Data for eight BFS-2 assembly configurations have been incorporated. They include BFS-58-1i1 uranium-free plutonium assembly with inert material included in its fuel matrix and also seven BFS-62 modifications simulating different stages of investigation of MOX fuel based BN-600 core. (author)

  5. INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

    2008-09-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR’06 are highlighted, and the future of the two projects is discussed.

  6. Nurses' experiences of caring for critically ill, non-sedated, mechanically ventilated patients in the Intensive Care Unit

    DEFF Research Database (Denmark)

    Laerkner, Eva; Egerod, Ingrid; Hansen, Helle Ploug

    2015-01-01

    closeness. CONCLUSION: Despite the complexity of care, nurses preferred to care for more awake rather than sedated patients and appreciated caring for just one patient at a time. The importance of close collaboration between nurses and doctors to ensure patient comfort during mechanical ventilation was......OBJECTIVE: The objective was to explore nurses' experiences of caring for non-sedated, critically ill patients requiring mechanical ventilation. DESIGN AND SETTING: The study had a qualitative explorative design and was based on 13 months of fieldwork in two intensive care units in Denmark where a...... protocol of no sedation is implemented. Data were generated during participant observation in practice and by interviews with 16 nurses. Data were analysed using thematic interpretive description. FINDINGS: An overall theme emerged: "Demanding, yet rewarding". The demanding aspects of caring for more awake...

  7. Time-critical database condition data handling in the CMS experiment during the first data taking period

    CERN Document Server

    Di Guida, Salvatore

    2011-01-01

    Automatic, synchronous and of course reliable population of the condition databases is critical for the correct operation of the online selection as well as of the offline reconstruction and analysis of data. In this complex infrastructure, monitoring and fast detection of errors is a very challenging task. To recover the system and to put it in a safe state requires spotting a faulty situation within strict time constraints. We will describe here the system put in place in the CMS experiment to automate the processes that populate centrally the Condition Databases and make condition data promptly available both online for the high-level trigger and offline for reconstruction. The data are automatically collected using centralized jobs or are ``dropped'' by the users in dedicate services (offline and online drop-box), which synchronize them and take care of writing them into the online database. Then they are automatically streamed to the offline database, and thus are immediately acce...

  8. Validation of multigroup neutron cross sections and calculational methods for the advanced neutron source against the FOEHN critical experiments measurements

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.A.; Gallmeier, F.X. [Oak Ridge Institute for Science and Energy, TN (United States); Gehin, J.C. [Oak Ridge National Lab., TN (United States)] [and others

    1995-05-01

    The FOEHN critical experiment was analyzed to validate the use of multigroup cross sections and Oak Ridge National Laboratory neutronics computer codes in the design of the Advanced Neutron Source. The ANSL-V 99-group master cross section library was used for all the calculations. Three different critical configurations were evaluated using the multigroup KENO Monte Carlo transport code, the multigroup DORT discrete ordinates transport code, and the multigroup diffusion theory code VENTURE. The simple configuration consists of only the fuel and control elements with the heavy water reflector. The intermediate configuration includes boron endplates at the upper and lower edges of the fuel element. The complex configuration includes both the boron endplates and components in the reflector. Cross sections were processed using modules from the AMPX system. Both 99-group and 20-group cross sections were created and used in two-dimensional models of the FOEHN experiment. KENO calculations were performed using both 99-group and 20-group cross sections. The DORT and VENTURE calculations were performed using 20-group cross sections. Because the simple and intermediate configurations are azimuthally symmetric, these configurations can be explicitly modeled in R-Z geometry. Since the reflector components cannot be modeled explicitly using the current versions of these codes, three reflector component homogenization schemes were developed and evaluated for the complex configuration. Power density distributions were calculated with KENO using 99-group cross sections and with DORT and VENTURE using 20-group cross sections. The average differences between the measured values and the values calculated with the different computer codes range from 2.45 to 5.74%. The maximum differences between the measured and calculated thermal flux values for the simple and intermediate configurations are {approx} 13%, while the average differences are < 8%.

  9. Criticality experiments: analysis, evaluation, and programs. 8. Prompt Neutron Decay Constants in Uranium Diluted with Matrix Material Systems

    International Nuclear Information System (INIS)

    Rossi-Alpha measurements were performed on uranium diluted with matrix material systems to determine the prompt neutron decay constants. These constants represent an eigenvalue characteristic of these particular critical assemblies, which can be experimentally measured by the Rossi-Alpha or pulse neutron source techniques and calculated by a deterministic or Monte Carlo method. In the measurements presented in this paper, highly enriched foils diluted in various X/235U ratios with polyethylene and SiO2, and polyethylene and aluminum were assembled to a high multiplication, and the prompt neutron decay constants were obtained by the Rossi-Alpha technique. The uranium diluted with matrix material experiments were fueled with highly enriched uranium foils. The average dimensions of the bare foils were 22.86 cm squared and 0.00762 cm thick. The foils were laminated with plastic sheets to reduce the amount of airborne contamination. Each foil weighed ∼70 g. The diluent material consisted of SiO2, or 6061 aluminum plates, which were embedded into polyethylene plates. The SiO2 and aluminum plates were 22.86 cm square and 0.64 cm thick. The polyethylene plates were 39.12 cm square and 1.91 cm thick. Each polyethylene plate had a central recess whose dimensions were 22.86 cm by 22.86 cm by 0.64 cm deep and was used to accommodate the SiO2, or aluminum plates as well as the uranium foils. There were eight 39.12-cm-squared by 2.54-cm-thick high density polyethylene plates that form the top and bottom reflectors (four at the top and four at the bottom). Also, one of the polyethylene plates located in the center of the assembly had holes drilled in a radial direction to accommodate neutron detectors. Four 3He detectors were placed in this plate. The 3He detectors were 1.27 cm in diameter and ∼15 cm long. Rossi-Alpha measurements were performed at several subcritical separations for both experiments. The data were collected with a type I time analyzer (PATRM). This time

  10. Investigation of self-organized criticality behavior of edge plasma transport in Torus experiment of technology oriented research

    International Nuclear Information System (INIS)

    The self-organized criticality (SOC) behavior of the edge plasma transport has been studied using fluctuation data measured in the plasma edge and the scrape-off layer of Torus experiment of technology oriented research tokamak [H. Soltwisch et al., Plasma Phys. Controlled Fusion 26, 23 (1984)] before and during the edge biasing experiments. In the 'nonshear' discharge phase before biasing, the fluctuation data clearly show some of the characteristics associated with SOC, including similar frequency spectra to those obtained in 'sandpile' transport and other SOC systems, slowly decaying long tails in the autocorrelation function, values of Hurst parameters larger than 0.5 at all the detected radial locations, and a radial propagation of avalanchelike events in the edge plasma area. During the edge biasing phase, with the generation of an edge radial electric field Er and thus of ErxB flow shear, contrary to theoretical expectation, the Hurst parameters are substantially enhanced in the negative flow shear region and in the scrape-off layer as well. Concomitantly, it is found that the local turbulence is well decorrelated by the ErxB velocity shear, consistent with theoretical predictions

  11. Seismic vulnerability study Los Alamos Meson Physics Facility (LAMPF)

    International Nuclear Information System (INIS)

    The Los Alamos Meson Physics Facility (LAMPF), located at TA-53 of Los Alamos National Laboratory (LANL), features an 800 MeV proton accelerator used for nuclear physics and materials science research. As part of the implementation of DOE Order 5480.25 and in preparation for DOE Order 5480.28, a seismic vulnerability study of the structures, systems, and components (SSCs) supporting the beam line from the accelerator building through to the ends of die various beam stops at LAMPF has been performed. The study was accomplished using the SQUG GIP methodology to assess the capability of the various SSCs to resist an evaluation basis earthquake. The evaluation basis earthquake was selected from site specific seismic hazard studies. The goals for the study were as follows: (1) identify SSCs which are vulnerable to seismic loads; and (2) ensure that those SSCs screened during die evaluation met the performance goals required for DOE Order 5480.28. The first goal was obtained by applying the SQUG GIP methodology to those SSCS represented in the experience data base. For those SSCs not represented in the data base, information was gathered and a significant amount of engineering judgment applied to determine whether to screen the SSC or to classify it as an outlier. To assure the performance goals required by DOE Order 5480.28 are met, modifications to the SQUG GIP methodology proposed by Salmon and Kennedy were used. The results of this study ire presented in this paper

  12. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Becker, N.M. [Los Alamos National Lab., NM (United States); Vanta, E.B. [Wright Laboratory Armament Directorate, Eglin Air Force Base, FL (United States)

    1995-05-01

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

  13. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    International Nuclear Information System (INIS)

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980's at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments

  14. Los Alamos National Security, LLC Request for Information from industrial entities that desire to commercialize Laboratory-developed Extremely Low Resource Optical Identifier (ELROI) tech

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Michael Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-10

    Los Alamos National Security, LLC (LANS) is the manager and operator of the Los Alamos National Laboratory for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. LANS is a mission-centric Federally Funded Research and Development Center focused on solving the most critical national security challenges through science and engineering for both government and private customers.

  15. Evaluation of the concrete shield compositions from the 2010 criticality accident alarm system benchmark experiments at the CEA Valduc SILENE facility

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Celik, Cihangir [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dunn, Michael E [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wagner, John C [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McMahan, Kimberly L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Authier, Nicolas [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille (France); Jacquet, Xavier [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille (France); Rousseau, Guillaume [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille (France); Wolff, Herve [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille (France); Savanier, Laurence [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille (France); Baclet, Nathalie [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille (France); Lee, Yi-kang [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette (France); Trama, Jean-Christophe [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette (France); Masse, Veronique [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette (France); Gagnier, Emmanuel [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette (France); Naury, Sylvie [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette (France); Blanc-Tranchant, Patrick [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette (France); Hunter, Richard [Babcock International Group (United Kingdom); Kim, Soon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dulik, George Michael [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, Kevin H. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2015-01-01

    In October 2010, a series of benchmark experiments were conducted at the French Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA) Valduc SILENE facility. These experiments were a joint effort between the United States Department of Energy Nuclear Criticality Safety Program and the CEA. The purpose of these experiments was to create three benchmarks for the verification and validation of radiation transport codes and evaluated nuclear data used in the analysis of criticality accident alarm systems. This series of experiments consisted of three single-pulsed experiments with the SILENE reactor. For the first experiment, the reactor was bare (unshielded), whereas in the second and third experiments, it was shielded by lead and polyethylene, respectively. The polyethylene shield of the third experiment had a cadmium liner on its internal and external surfaces, which vertically was located near the fuel region of SILENE. During each experiment, several neutron activation foils and thermoluminescent dosimeters (TLDs) were placed around the reactor. Nearly half of the foils and TLDs had additional high-density magnetite concrete, high-density barite concrete, standard concrete, and/or BoroBond shields. CEA Saclay provided all the concrete, and the US Y-12 National Security Complex provided the BoroBond. Measurement data from the experiments were published at the 2011 International Conference on Nuclear Criticality (ICNC 2011) and the 2013 Nuclear Criticality Safety Division (NCSD 2013) topical meeting. Preliminary computational results for the first experiment were presented in the ICNC 2011 paper, which showed poor agreement between the computational results and the measured values of the foils shielded by concrete. Recently the hydrogen content, boron content, and density of these concrete shields were further investigated within the constraints of the previously available data. New computational results for the first experiment are now available

  16. Nuclear criticality safety guide

    Energy Technology Data Exchange (ETDEWEB)

    Pruvost, N.L.; Paxton, H.C. [eds.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

  17. Nuclear criticality safety guide

    International Nuclear Information System (INIS)

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators

  18. Effect of visual experience on tubulin synthesis during a critical period of visual cortex development in the hooded rat.

    Science.gov (United States)

    Cronly-Dillon, J; Perry, G W

    1979-08-01

    1. In some species, restriction of visual experience in early life may affect normal functional development of visual cortical cells. The purpose of the present study was to determine if visual deprivation during post-natal development in the hooded rat also affects the production in brain cells of certain molecular components such as tubulin, that are needed for growth and maintenance of synapses and neurites. 2. Norwegian black hooded rats were reared under a variety of conditions of visual deprivation. At various stages of development the animals were killed and the rate of synthesis of tubulin in visual and motor cortex determined. Tritiated colchicine was used to assay tubulin and L-[14C]leucine injected into the brain ventricles 2 hr before death was used to measure rate of tubulin synthesis. 3. In rats reared in normal light there is a marked elevation in visual cortex tubulin synthesis that spans the period from eye-opening (13 days) until approximately 35 days. This elevation in tubulin synthesis is absent in animals reared in darkness from birth or deprived of pattern vision by eyelid suture. Also the effect of visual deprivation on tubulin synthesis was specifically confined to visual cortex and was not found for the motor cortex. Similarly, the incorporation of L-[14C]leucine into total protein in visual cortex was unaffected by dark rearing. Hence the stimulation of tubulin synthesis by visual experience in rat visual cortex is not attributable to a general non-specific stimulation of protein synthesis. 4. Rats that were dark-reared from birth and then exposed to a lighted environment for 24 hr during a certain critical period that extends from eye-opening (13 days) until approximately 35 days, displayed a significant increase in visual cortex tubulin rats that were brought into the light later than 35 days showed no significant increase in tubulin synthesis when compared with their continuously dark-rearer controls. 5. It is suggested that the number

  19. Water Supply at Los Alamos during 1997

    Energy Technology Data Exchange (ETDEWEB)

    M. N. Maes; S. G. McLin; W. D. Purtymun

    1998-12-01

    Production of potable municipal water supplies during 1997 totaled about 1,285.9 million gallons from wells in the Guaje, Pajarito, and Otowi well fields. There was no water used from the spring gallery in Water Canyon or from Guaje Reservoir during 1997. About 2.4 million gallons of water from Los Alamos Reservoir was used to irrigate public parks and recreational lands. The total water usage in 1997 was about 1,288.3 million gallons, or about 135 gallons per day per person living in Los Alamos County. Groundwater pumpage was down about 82.2 million gallons in 1997 compared with the pumpage in 1996. Four new replacement wells were drilled and cased in Guaje Canyon between October 1997 and March 1998. These wells are currently being developed and aquifer tests are being performed. A special report summarizing the geological, geophysical, and well construction logs will be issued in the near future for these new wells.

  20. Radionuclide concentrations in pinto beans, sweet corn, and zucchini squash grown in Los Alamos Canyon at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pinto beans, sweet corn, and zucchini squash (Cucurbita pepo var. black beauty) were grown in a randomized complete-block field/pot experiment at a site that contained the highest observed levels of surface gross gamma radioactivity within Los Alamos Canyon (LAC) at Los Alamos National Laboratory. Soils as well as washed edible and nonedible crop tissues were analyzed for various radionuclides and heavy metals . Most radionuclides, with the exception of 3H and totU, in soil from LAC were detected in significantly higher concentrations (p -1. This dose was below the International Commission on Radiological Protection permissible dose limit (PDL) of 100 mrem y-1 from all pathways; however, the addition of other internal and external exposure route factors may increase the overall dose over the PDL. Also, the risk of an excess cancer fatality, based on 74 mrem y-1, was 3.7 x 10-5 (37 in a million), which is above the Environmental Protection Agency's (acceptable) guideline of one in a million. 31 refs., 15 tabs

  1. The Los Alamos accelerator code group

    International Nuclear Information System (INIS)

    The Los Alamos Accelerator Code Group (LAACG) is a national resource for members of the accelerator community who use and/or develop software for the design and analysis of particle accelerators, beam transport systems, light sources, storage rings, and components of these systems. Below the authors describe the LAACG's activities in high performance computing, maintenance and enhancement of POISSON/SUPERFISH and related codes and the dissemination of information on the INTERNET

  2. Star is born at los alamos

    International Nuclear Information System (INIS)

    Antares is a fusion-research carbon-dioxide laser currently being built at the Los Alamos Scientific Laboratory. When it begins full operation in 1983, it will deliver 40 terawatts of peak power--one-nanosecond, 40-kilojoule pulses of 10.6-micrometer light--on a deuterium-tritium target. Single-sector energy-extraction tests of the first power amplifier will begin in June 1981. It design, optical alignment system, and control system are discussed

  3. Los Alamos National Laboratory Facility Review

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-05

    This series of slides depicts the Los Alamos Neutron Science Center (LANSCE). The Center's 800-MeV linac produces H+ and H- beams as well as beams of moderated (cold to 1 MeV) and unmoderated (0.1 to 600 MeV) neutrons. Experimental facilities and their capabilities and characteristics are outlined. Among these are LENZ, SPIDER, and DANCE.

  4. Amphibians and Reptiles of Los Alamos County

    Energy Technology Data Exchange (ETDEWEB)

    Teralene S. Foxx; Timothy K. Haarmann; David C. Keller

    1999-10-01

    Recent studies have shown that amphibians and reptiles are good indicators of environmental health. They live in terrestrial and aquatic environments and are often the first animals to be affected by environmental change. This publication provides baseline information about amphibians and reptiles that are present on the Pajarito Plateau. Ten years of data collection and observations by researchers at Los Alamos National Laboratory, the University of New Mexico, the New Mexico Department of Game and Fish, and hobbyists are represented.

  5. Los Alamos transuranic waste size reduction facility

    International Nuclear Information System (INIS)

    A transuranic (TRU) Waste Size Reduction Facility (SRF) was designed and constructed at the Los Alamos National Laboratory during the period of 1977 to 1981. This paper summarizes the engineering development, installation, and early test operations of the SRF. The facility incorporates a large stainless steel enclosure fitted with remote handling and cutting equipment to obtain an estimated 4:1 volume reduction of gloveboxes and other bulky metallic wastes

  6. Critical Drivers for Safety Culture: Examining Department of Energy and U.S. Army Operational Experiences - 12382

    International Nuclear Information System (INIS)

    Evaluating operational incidents can provide a window into the drivers most critical to establishing and maintaining a strong safety culture, thereby minimizing the potential project risk associated with safety incidents. By examining U.S. Department of Energy (DOE) versus U.S. Army drivers in terms of regulatory and contract requirements, programs implemented to address the requirements, and example case studies of operational events, a view of the elements most critical to making a positive influence on safety culture is presented. Four case studies are used in this evaluation; two from DOE and two from U.S. Army experiences. Although the standards guiding operations at these facilities are different, there are many similarities in the level of hazards, as well as the causes and the potential consequences of the events presented. Two of the incidents examined, one from a DOE operation and the other from a U.S. Army facility, resulted in workers receiving chemical burns. The remaining two incidents are similar in that significant conduct of operations failures occurred resulting in high-level radioactive waste (in the case of the DOE facility) or chemical agent (in the case of the Army facility) being transferred outside of engineering controls. A review of the investigation reports for all four events indicates the primary causes to be failures in work planning leading to ineffective hazard evaluation and control, lack of procedure adherence, and most importantly, lack of management oversight to effectively reinforce expectations for safe work planning and execution. DOE and Army safety programs are similar, and although there are some differences in contractual requirements, the expectations for safe performance are essentially the same. This analysis concludes that instilling a positive safety culture comes down to management leadership and engagement to (1) cultivate an environment that values a questioning attitude and (2) continually reinforce expectations

  7. Time-critical Database Condition Data Handling in the CMS Experiment During the First Data Taking Period

    International Nuclear Information System (INIS)

    Automatic, synchronous and reliable population of the condition databases is critical for the correct operation of the online selection as well as of the offline reconstruction and analysis of data. In this complex infrastructure, monitoring and fast detection of errors is a very challenging task. In this paper, we describe the CMS experiment system to process and populate the Condition Databases and make condition data promptly available both online for the high-level trigger and offline for reconstruction. The data are automatically collected using centralized jobs or are 'dropped' by the users in dedicated services (offline and online drop-box), which synchronize them and take care of writing them into the online database. Then they are automatically streamed to the offline database, and thus are immediately accessible offline worldwide. The condition data are managed by different users using a wide range of applications. In normal operation the database monitor is used to provide simple timing information and the history of all transactions for all database accounts, and in the case of faults it is used to return simple error messages and more complete debugging information.

  8. Microstructure and Property Evolution in Advanced Cladding and Duct Materials Under Long-Term Irradiation at Elevated Temperature: Critical Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Was, Gary; Jiao, Zhijie; Allen, Todd; Yang, Yong

    2013-12-20

    radiation on these important materials. The objective of this project is to conduct critical experiments to understand the evolution of microstructural and microchemical features (loops, voids, precipitates, and segregation) and mechanical properties (hardening and creep) under high temperature and full dose range radiation, including the effect of differences in the initial material composition and microstructure on the microstructural response, including key questions related to saturation of the microstructure at high doses and temperatures.

  9. Consistent Set of Experiments from ICSBEP Handbook for Evaluation of Criticality Calculation Prediction of Apparatus of External Fuel Cycle with Different Fuel

    International Nuclear Information System (INIS)

    Experiments with plutonium, low enriched uranium and uranium-233 from the ICSBEP1 Handbook are being considered in this paper. Among these experiments it was selected only those, which seem to be the most relevant to the evaluation of uncertainty of critical mass of mixtures of plutonium or low enriched uranium or uranium-233 with light water. All selected experiments were examined and covariance matrices of criticality uncertainties were developed along with some uncertainties were revised. Statistical analysis of these experiments was performed and some contradictions were discovered and eliminated. Evaluation of accuracy of prediction of criticality calculations was performed using the internally consistent set of experiments with plutonium, low enriched uranium and uranium-233 remained after the statistical analyses. The application objects for the evaluation of calculational prediction of criticality were water-reflected spherical systems of homogeneous aqueous mixtures of plutonium or low enriched uranium or uranium-233 of different concentrations which are simplified models of apparatus of external fuel cycle. It is shows that the procedure allows to considerably reduce uncertainty in keff caused by the uncertainties in neutron cross-sections. Also it is shows that the results are practically independent of initial covariance matrices of nuclear data uncertainties. (authors)

  10. Decommissioning the UHTREX Reactor Facility at Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    The Ultra-High Temperature Reactor Experiment (UHTREX) facility was constructed in the late 1960s to advance high-temperature and gas-cooled reactor technology. The 3-MW reactor was graphite moderated and helium cooled and used 93% enriched uranium as its fuel. The reactor was run for approximately one year and was shut down in February 1970. The decommissioning of the facility involved removing the reactor and its associated components. This document details planning for the decommissioning operations which included characterizing the facility, estimating the costs of decommissioning, preparing environmental documentation, establishing a system to track costs and work progress, and preplanning to correct health and safety concerns in the facility. Work to decommission the facility began in 1988 and was completed in September 1990 at a cost of $2.9 million. The facility was released to Department of Energy for other uses in its Los Alamos program

  11. Study of polyelectrolytes for Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    To assess the safety of a potential radioactive waste repository, analysis of the fluid solution containing low levels of activity need to be performed. In some cases, the radioactivity would be so weak (3--30 pCi/L) that the solution must be concentrated for measurement. For this purpose, Los Alamos National Laboratory scientists are synthesizing some water soluble polyelectrolytes, which, because they are strong complexing agents for inorganic cations, can concentrate the radioelements in solution. To assist in characterization of these polyelectrolytes, the author has performed experiments to determine physico-chemical constants, such as pKa values and stability constants. The complexation constants between both polyelectrolytes and europium were determined by two methods: solvent extraction and ion exchange. Results are presented

  12. ORSPHERE: CRITICAL, BARE, HEU(93.2)-METAL SPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Margaret A. Marshall

    2013-09-01

    In the early 1970’s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950’s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files.” (Reference 1) While performing the ORSphere experiments care was taken to accurately document component dimensions (±0. 0001 in. for non-spherical parts), masses (±0.01 g), and material data The experiment was also set up to minimize the amount of structural material in the sphere proximity. A three part sphere was initially assembled with an average radius of 3.4665 in. and was then machined down to an average radius of 3.4420 in. (3.4425 in. nominal). These two spherical configurations were evaluated and judged to be acceptable benchmark experiments; however, the two experiments are highly correlated.

  13. Theoretical understanding of the coping approaches and social support experiences of relatives of critically ill patients during the intensive care unit stay and the recovery period at home

    OpenAIRE

    Johansson, Ingrid

    2006-01-01

    Relatives may experience a difficult and demanding situation when the patient is critically ill. During the period in the intensive care unit (ICU), the relatives may be subject to strong emotions of an existential nature, and the situation may involve several stressors as a result of changed roles, responsibilities and routines. These emotional stress experiences may result in weakened mental and physical functioning on the part of the relatives. During the patient’s rehabilitation at home t...

  14. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Cartron, D.; Rhyne, T.; Schulze, M.; Welty, L.

    1997-06-01

    Over the past decade, numerous companies have been formed to commercialize research results from leading U.S. academic and research institutions. Emerging small businesses in areas such as Silicon Valley, Boston`s Route 128 corridor, and North Carolina`s Research Triangle have been especially effective in moving promising technologies from the laboratory bench to the commercial marketplace--creating new jobs and economic expansion in the process. Unfortunately, many of the U.S. national laboratories have not been major participants in this technology/commercialization activity, a result of a wide variety of factors which, until recently, acted against successful commercialization. This {open_quotes}commercialization gap{close_quotes} exists partly due to a lack, within Los Alamos in particular and the DOE in general, of in-depth expertise and experience in such business areas as new business development, securities regulation, market research and the determination of commercial potential, the identification of entrepreneurial management, marketing and distribution, and venture capital sources. The immediate consequence of these factors is the disappointingly small number of start-up companies based on technologies from Los Alamos National Laboratory that have been attempted, the modest financial return Los Alamos has received from these start-ups, and the lack of significant national recognition that Los Alamos has received for creating and commercializing these technologies.

  15. Plant Uptake of Organic Pollutants from Soil: A Critical Review ofBioconcentration Estimates Based on Modelsand Experiments

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.; Maddalena, Randy L.

    2007-01-01

    The role of terrestrial vegetation in transferring chemicals from soil and air into specific plant tissues (stems, leaves, roots, etc.) is still not well characterized. We provide here a critical review of plant-to-soil bioconcentration ratio (BCR) estimates based on models and experimental data. This review includes the conceptual and theoretical formulations of the bioconcentration ratio, constructing and calibrating empirical and mathematical algorithms to describe this ratio and the experimental data used to quantify BCRs and calibrate the model performance. We first evaluate the theoretical basis for the BCR concept and BCR models and consider how lack of knowledge and data limits reliability and consistency of BCR estimates. We next consider alternate modeling strategies for BCR. A key focus of this evaluation is the relative contributions to overall uncertainty from model uncertainty versus variability in the experimental data used to develop and test the models. As a case study, we consider a single chemical, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and focus on variability of bioconcentration measurements obtained from 81 experiments with different plant species, different plant tissues, different experimental conditions, and different methods for reporting concentrations in the soil and plant tissues. We use these observations to evaluate both the magnitude of experimental variability in plant bioconcentration and compare this to model uncertainty. Among these 81 measurements, the variation of the plant/soil BCR has a geometric standard deviation (GSD) of 3.5 and a coefficient of variability (CV-ratio of arithmetic standard deviation to mean) of 1.7. These variations are significant but low relative to model uncertainties--which have an estimated GSD of 10 with a corresponding CV of 14.

  16. IEA Wind Task 23, offshore wind technology and deployment. Subtask 1: Experience with critical deployment issues. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Lemming, J.

    2010-10-15

    The final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports: Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). The Subtask 1 report included here provides background information and objectives of Task 23. It specifically discusses ecological issues and regulation, electrical system integration and offshore wind, external conditions, and key conclusions for Subtask 1. A comprehensive approach to planning is needed that integrates impacts on ecology, the effects of electrical infrastructure, and the layout of wind farms. Governments, which usually finance ecological research, should disclose results for wide dissemination as they become available. As example the workshop held suggested that documents covering the issues like offshore wind energy legislation, Guidelines for EIAs and SEAs and best practices need to be produced and distributed on a regular basis, as ecological research progresses and experience from the planning and operation of existing wind farms emerges. Research should help strike the balance between optimum regulation and the need to get projects up and running. Such research is needed to increase understanding of offshore wind metrology and its impact on electrical power fluctuations. More work is needed to develop special grid code and standards for offshore. The transient behavior of large cable installations (switching / harmonic/ Behavior and modeling of large HV cable systems) must be better understood. Connection and control systems must be developed for large offshore wind farms. Work is needed to develop the technical architecture of offshore wind grid systems. Public access to measurements (e.g., turbine power output, meteorological masts, buoys) is important, especially for model validation. Determining wake effects is currently the most important challenge in wind engineering. Emphasis should be put into

  17. NEPA and NHPA- successful decommissioning of historic Manhattan Project properties at Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    McGehee, E.D.; Pendergrass, A.K.

    1997-05-21

    This paper describes experiences at Los Alamos National Laboratory during the process of planning and executing decommissioning and decontamination activities on a number of properties constructed as part of the Manhattan project. Many of these buildings had been abandoned for many years and were in deteriorating condition, in addition to being contaminated with asbestos, lead based paints and high explosive residues. Due to the age and use of the structures they were evaluated against criteria for the National Register of Historic Places. This process is briefly reviewed, along with the results, as well as actions implemented as a result of the condition and safety of the structures. A number of the structures have been decontaminated and demolished. Planning is still ongoing for the renovation of one structure, and the photographic and drawing records of the properties is near completion.

  18. Nuclear criticality safety experiments, calculations, and analyses - 1958 to 1982. Volume 2. Summaries. Complilation of papers from the Transactions of the American Nuclear Society

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, B.L.; Hampel, V.E.

    1982-10-21

    This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains-in chronological order-the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

  19. Nuclear criticality safety experiments, calculations, and analyses - 1958 to 1982. Volume 2. Summaries. Complilation of papers from the Transactions of the American Nuclear Society

    International Nuclear Information System (INIS)

    This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains-in chronological order-the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41

  20. LAMPF II workshop, Los Alamos National Laboratory, Los Alamos, New Mexico, February 1-4, 1982

    International Nuclear Information System (INIS)

    This report contains the proceedings of the first LAMPF II Workshop held at Los Alamos February 1 to 4, 1982. Included are the talks that were available in written form. The conclusion of the participants was that there are many exciting areas of physics that will be addressed by such a machine

  1. Biological assessment for the effluent reduction program, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.P.

    1996-08-01

    This report describes the biological assessment for the effluent recution program proposed to occur within the boundaries of Los Alamos National Laboratory. Potential effects on wetland plants and on threatened and endangered species are discussed, along with a detailed description of the individual outfalls resulting from the effluent reduction program.

  2. Recent development in pyrochemistry at Los Alamos

    International Nuclear Information System (INIS)

    Recent developments in pyrochemical processing at Los Alamos include the recovery of plutonium from anodes and impure metal by pyroredox and new molten salt handling and purification techniques. The anode is dissolved in a ZnCl2 KCl salt to form PuCl3 and a zinc and impurities button. Calcium reduction of the PuCl3 yields 95 to 98% pure plutonium. New techniques for transferring molten salt from a purification or regeneration vessel to molds has been successfully developed and demonstrated. Additional salt work involving recycle of direct oxide reduction salts using anhydrous hydrogen chloride, phosgene, and chlorine gases is under way. 13 figures, 1 table

  3. Materials accounting at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The materials accounting system at Los Alamos has evolved from an ''80-column'' card system to a very sophisticated near-real-time computerized nuclear material accountability and safeguards system (MASS). The present hardware was designed and acquired in the late 70's and is scheduled for a major upgrade in fiscal year 1986. The history of the system from 1950 through the DYMAC of the late 70's up to the present will be discussed. The philosophy of the system along with the details of the system will be covered. This system has addressed the integrated problems of management, control, and accounting of nuclear material successfully. 8 refs., 3 figs., 1 tab

  4. Los Alamos free-electron laser

    International Nuclear Information System (INIS)

    During the past year the Los Alamos free-electron laser (FEL) oscillator has demonstrated high peak and average power (10 MW and 6 kW), broad-wavelength tunability (9 to 35 μm), and near-ideal optical quality (0.9 Strehl ratio). An electron energy-extraction efficiency of 1% was measured. The predicted production of synchrotron sidebands also was observed in the broadened optical spectrum. As shorter wavelengths and higher powers are pursued, higher currents with improved beam quality will be required. Advanced injectors and energy-recovery systems are being developed to meet these demands. 17 refs., 6 figs., 3 tabs

  5. Optics code development at Los Alamos

    International Nuclear Information System (INIS)

    This paper is an overview of part of the beam optics code development effort in the Accelerator Technology Division at Los Alamos National Laboratory. The aim of this effort is to improve our capability to design advanced beam optics systems. The work reported is being carried out by a collaboration of permanent staff members, visiting consultants, and student research assistants. The main components of the effort are: building a new framework of common supporting utilities and software tools to facilitate further development; research and development on basic computational techniques in classical mechanics and electrodynamics; and evaluation and comparison of existing beam optics codes, and support for their continuing development. 17 refs

  6. Innovations in Los Alamos alpha box design

    International Nuclear Information System (INIS)

    Destructive examinations of irradiated fuel pins containing plutonium fuel must be performed in shielded hot cells with strict provisions for containing the plutonium. Alpha boxes provide containment for the plutonium, toxic fission products, and other hazardous highly radioactive materials. The alpha box contains windows for viewing and a variety of transfer systems specially designed to allow transfers in and out of the alpha box without spread of the hazardous materials that are contained in the box. Alpha boxes have been in use in the Wing 9 hot cells at Los Alamos National Laboratory for more than 20 years. Features of the newly designed alpha boxes are presented

  7. Innovations in Los Alamos alpha box design

    Energy Technology Data Exchange (ETDEWEB)

    Ledbetter, J.M.; Dowler, K.E.; Cook, J.H.

    1985-01-01

    Destructive examinations of irradiated fuel pins containing plutonium fuel must be performed in shielded hot cells with strict provisions for containing the plutonium. Alpha boxes provide containment for the plutonium, toxic fission products, and other hazardous highly radioactive materials. The alpha box contains windows for viewing and a variety of transfer systems specially designed to allow transfers in and out of the alpha box without spread of the hazardous materials that are contained in the box. Alpha boxes have been in use in the Wing 9 hot cells at Los Alamos National Laboratory for more than 20 years. Features of the newly designed alpha boxes are presented.

  8. Criticality Model

    International Nuclear Information System (INIS)

    The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality

  9. Criticality Model

    Energy Technology Data Exchange (ETDEWEB)

    A. Alsaed

    2004-09-14

    The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of

  10. The search for safety, control, and voice for mothers living with the legacy of childhood violence experiences: a critical feminist narrative inquiry.

    Science.gov (United States)

    Pitre, Nicole Y; Kushner, Kaysi E; Hegadoren, Kathy M

    2011-01-01

    We explored the experiences of 12 women who mothered their children while they encountered challenges stemming from the legacy of childhood violence experiences. We examined the participants' narratives through critical, feminist, and symbolic interaction lenses to locate the forces and conditions facilitating and constraining women's mothering choices and decisions. Women's stories revealed their agency in the face of enduring distrust experiences. Women were determined to "change the story." They met pervasive self-doubt with a "search for anchors" and "constant comparisons." Persistent distrust of others meant women relied on "hypervigilance" and "gatekeeping." Implications for knowledge development, research, and practice are discussed. PMID:21822073

  11. DOE Los Alamos National Laboratory – PV Feasibility Assessment, 2015 Update, NREL Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Witt, Monica Rene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This report summarizes solar and wind potential for Los Alamos National Laboratory (LANL). This report is part of the “Los Alamos National Laboratory and Los Alamos County Renewable Generation” study.

  12. Students’ Critical Mathematical Thinking Skills and Character: Experiments for Junior High School Students through Realistic Mathematics Education Culture-Based

    OpenAIRE

    Anderson L. Palinussa

    2013-01-01

    This paper presents the findings of a quasi-experimental with pre-testpost-test design and control group that aims to assess students’ critical mathematical thinking skills and character through realisticmathematics education (RME) culture-based. Subjects of this studywere 106 junior high school students from two low and medium schools level in Ambon. The instruments of the study are: students’ early math skills test, critical thinking skills mathematical test and perception scale of students...

  13. Polarized and depolarized light-scattering studies on Brownian diffusional and critical fluid systems: theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, C.M.

    1976-01-01

    An effort to expand light-scattering autocorrelation techniques to Brownian diffusional and critical fluid systems in which multiple scattering effects are important, and to understand the observed similarity of the Rayleigh linewidth of light scattered from these two seemingly different systems is discussed. A formalism was developed to find the light field multiply scattered from a suspension of Brownian diffusing particles. For the field doubly scattered from a system of noninteracting Brownian particles, the intensity and correlation time were much less dependent on the scattering angle than for the singly scattered component. The polarized and depolarized correlation times of light scattered from Brownian particle systems were measured. The double-scattering formalism was extended to light scattered from critical fluid systems. In the region k xi greater than 5 the doubly and singly scattered correlation times were nearly equal. The dynamic droplet model of critical phenomena was developed which gives the proper, experimentally verified, forms for the intensity and linewidth of light scattered from a critical fluid. To test the dynamic droplet model and the mode theories Rayleigh linewidth predictions, light-scattering measurements were performed on the critical fluid system methanol and cyclohexane. The data agreed with both the dynamic droplet and decoupled mode theory predictions. The depolarized scattered spectra from a critical fluid were measured, and qualitative agreement with the double-scattering theory was found. 57 figures, 5 tables.

  14. Los Alamos Waste Management Cost Estimation Model

    International Nuclear Information System (INIS)

    This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs

  15. The large area crop inventory experiment: An experiment to demonstrate how space-age technology can contribute to solving critical problems here on earth

    Science.gov (United States)

    1977-01-01

    The large area crop inventory experiment is being developed to predict crop production through satellite photographs. This experiment demonstrates how space age technology can contribute to solving practical problems of agriculture management.

  16. Automatic beam position control at Los Alamos Spallation Radiation Effects Facility (LASREF)

    International Nuclear Information System (INIS)

    Historically the Los Alamos Spallation Radiation Effects Facility (LASREF) has used manual methods to control the position of the 800 kW, 800 MeV proton beam on targets. New experiments, however, require more stringent position control more frequently than can be done manually for long periods of time. Data from an existing harp is used to automatically adjust steering magnets to maintain beam position to required tolerances

  17. The Climate at Los Alamos; Are we measurement changes?

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-16

    A new report shows new graphic displays of the weather trends in Los Alamos, New Mexico, and at the Los Alamos National Laboratory (LANL). The graphs show trends of average, minimum average, and maximum average temperature for summer and winter months going back decades. Records of summer and winter precipitation are also included in the report.

  18. Safety Evaluation Report, related to the renewal of the operating license for the critical experiment facility of the Rensselaer Polytechnic Institute (Docket No. 50-225)

    International Nuclear Information System (INIS)

    This Safety Evaluation Report for the application filed by the Rensselaer Polytechnic Institute (RPI) for a renewal of operating license CX-22 to continue to operate a critical experiment facility has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by Rensselaer Polytechnic Institute and is located at a site in the city of Schenectady, New York. The staff concludes that this critical facility can continue to be operated by RPI without endangering the health and safety of the public

  19. Radionuclide concentrations in pinto beans, sweet corn, and zucchini squash grown in Los Alamos Canyon at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, P.R.; Mullen, M.A.; Naranjo, L. Jr.; Armstrong, D.R.

    1997-05-01

    Pinto beans, sweet corn, and zucchini squash (Cucurbita pepo var. black beauty) were grown in a randomized complete-block field/pot experiment at a site that contained the highest observed levels of surface gross gamma radioactivity within Los Alamos Canyon (LAC) at Los Alamos National Laboratory. Soils as well as washed edible and nonedible crop tissues were analyzed for various radionuclides and heavy metals . Most radionuclides, with the exception of {sup 3}H and {sup tot}U, in soil from LAC were detected in significantly higher concentrations (p <0.01) than in soil collected from regional background (RBG) locations. Similarly, most radionuclides in edible crop portions of beans, squash, and corn were detected in significantly higher (p <0.01 and 0.05) concentrations than RBG. Most soil-to-plant concentration ratios for radionuclides in edible and nonedible crop tissues from LAC were within the default values given by the Nuclear Regulatory Commission and Environmental Protection Agency. All heavy metals in soils, as well as edible and nonedible crop tissues grown in soils from LAC, were within RBG concentrations. Overall, the total maximum net positive committed effective dose equivalent (CEDE)--the CEDE plus two sigma for each radioisotope minus background and then all positive doses summed--to a hypothetical 50-year resident that ingested 160 kg of beans, corn, and squash in equal proportions, was 74 mrem y{sup -1}. This dose was below the International Commission on Radiological Protection permissible dose limit (PDL) of 100 mrem y{sup -1} from all pathways; however, the addition of other internal and external exposure route factors may increase the overall dose over the PDL. Also, the risk of an excess cancer fatality, based on 74 mrem y{sup -1}, was 3.7 x 10{sup -5} (37 in a million), which is above the Environmental Protection Agency`s (acceptable) guideline of one in a million. 31 refs., 15 tabs.

  20. Quantum Criticality

    OpenAIRE

    Keimer, Bernhard; Sachdev, Subir(Department of Physics, Harvard University, Cambridge, MA, 02138, USA)

    2011-01-01

    This is a review of the basic theoretical ideas of quantum criticality, and of their connection to numerous experiments on correlated electron compounds. A shortened, modified, and edited version appeared in Physics Today. This arxiv version has additional citations to the literature.