WorldWideScience

Sample records for alamethicin pore reconstructed

  1. Structural and membrane modifying porperties of suzukacillin, a peptide antibiotic related to alamethicin. Part B. Pore formation in black lipid films.

    Science.gov (United States)

    Boheim, G; Janko, K; Leibfritz, D; Ooka, T; König, W A; Jung, G

    1976-04-16

    Suzukacillin, a polypeptide consisting of presumably 23 amino acids and 1 phenylalaninol, is produced by a Trichoderma viride strain No. 1037 and it can be isolated from the culture medium. It shows membrane-modifying properties similar to those of alamethicin. Discrete condustance fluctuations indicate the formation of oligomer pores of varying diameter. On the basis of voltage jump relaxation experiments evidence is given that the dimer is the nucleation state from which pore formation starts and the oligomer disappears. According to the voltage-current characteristics, voltage-dependent and voltage-independent conductances are observed. A slow process is involved, which can be interpreted as a change in the equilibrium distribution between different conformations of the suzukacillin monomer at the membrane interphase. This change results from its interaction with the lipid matrix. Differences in experimental observations between suzukacillin and alamethicin are attributed to the relatively larger alpha-helix and higher number of aliphatic side chains of the suzukacillin monomer and to a more intense interaction with the lipid membrane. This leads to a higher probability of forming dimers from monomers and to the occurrence of "inactivation". PMID:1260058

  2. Lipid-alamethicin interactions influence alamethicin orientation

    OpenAIRE

    Huang, Huey W.; Wu, Yili

    1991-01-01

    Whereas the barrel-stave configuration is accepted by most investigators as a good description of the conducting state of alamethicin, there are conflicting interpretations on its nonconducting state; in the absence of an applied field, some found alamethicin molecules on the membrane surface, but others found them incorporated in the hydrophobic core of the membrane. This problem is resolved by the discovery of a phase-transitionlike behavior of alamethicin in the membrane. As a function of ...

  3. Lipid-alamethicin interactions influence alamethicin orientation.

    Science.gov (United States)

    Huang, H W; Wu, Y

    1991-11-01

    Whereas the barrel-stave configuration is accepted by most investigators as a good description of the conducting state of alamethicin, there are conflicting interpretations on its nonconducting state; in the absence of an applied field, some found alamethicin molecules on the membrane surface, but others found them incorporated in the hydrophobic core of the membrane. This problem is resolved by the discovery of a phase-transitionlike behavior of alamethicin in the membrane. As a function of lipid/peptide ratio L/P and the chemical potential of water mu, alamethicin molecules were observed to switch between two states: in one, the majority of the peptide molecules bind parallel to the membrane surface; in another, the majority of the peptide molecules insert perpendicularly into the membrane. The state of alamethicin was monitored by the method of oriented circular dichroism (OCD; Wu, Y., H. W. Huang, and G. A. Olah, 1990, Biophys. J. 57:797-806) using aligned multilayer samples in the liquid crystalline L(alpha) phase. If L/P exceeds a critical value, most of the peptide molecules are on the membrane surface. If L/P is below the critical value, most of the peptide molecules are incorporated in the membrane when mu is high; when mu is low, most of them are again on the membrane surface. In a typical conduction experiment of voltage dependence, alamethicin molecules are in a partition equilibrium between the aqueous phase and the lipid phase before the application of voltage; in the lipid phase, the lipid/peptide ratio is such that most of alamethicin molecules are on the membrane surface. This is the nonconducting state of alamethicin. The OCD analysis showed that there is essentially no change in the secondary structure when alamethicin changes between the surface state and the inserted state. The voltage-gating mechanism can be explained if we assume that these surface peptide molecules probabilistically turn into the membrane core to form channels due to the

  4. Pore REconstruction and Segmentation (PORES) method for improved porosity quantification of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Van Eyndhoven, G., E-mail: geert.vaneyndhoven@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Kurttepeli, M. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van Oers, C.J.; Cool, P. [Laboratory of Adsorption and Catalysis, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Bals, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Batenburg, K.J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Centrum Wiskunde and Informatica, Science Park 123, NL-1090 GB Amsterdam (Netherlands); Mathematical Institute, Universiteit Leiden, Niels Bohrweg 1, NL-2333 CA Leiden (Netherlands); Sijbers, J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium)

    2015-01-15

    Electron tomography is currently a versatile tool to investigate the connection between the structure and properties of nanomaterials. However, a quantitative interpretation of electron tomography results is still far from straightforward. Especially accurate quantification of pore-space is hampered by artifacts introduced in all steps of the processing chain, i.e., acquisition, reconstruction, segmentation and quantification. Furthermore, most common approaches require subjective manual user input. In this paper, the PORES algorithm “POre REconstruction and Segmentation” is introduced; it is a tailor-made, integral approach, for the reconstruction, segmentation, and quantification of porous nanomaterials. The PORES processing chain starts by calculating a reconstruction with a nanoporous-specific reconstruction algorithm: the Simultaneous Update of Pore Pixels by iterative REconstruction and Simple Segmentation algorithm (SUPPRESS). It classifies the interior region to the pores during reconstruction, while reconstructing the remaining region by reducing the error with respect to the acquired electron microscopy data. The SUPPRESS reconstruction can be directly plugged into the remaining processing chain of the PORES algorithm, resulting in accurate individual pore quantification and full sample pore statistics. The proposed approach was extensively validated on both simulated and experimental data, indicating its ability to generate accurate statistics of nanoporous materials. - Highlights: • An electron tomography reconstruction/segmentation method for nanoporous materials. • The method exploits the porous nature of the scanned material. • Validated extensively on both simulation and real data experiments. • Results in increased image resolution and improved porosity quantification.

  5. Pore Structure Reconstruction and Moisture Migration in Porous Media

    Science.gov (United States)

    Zheng, Jiayi; Shi, Xing; Shi, Juan; Chen, Zhenqian

    2014-09-01

    Three kinds of porous media (isotropic, perpendicular anisotropic and parallel anisotropic porous media) with the same porosity, different pore size distributions and fractal spectral dimensions were reconstructed by random growth method. It was aimed to theoretically study the impact of microscopic pore structure on water vapor diffusion process in porous media. The results show that pore size distribution can only denote the static characteristics of porous media but cannot effectively reflect the dynamic transport characteristics of porous media. Fractal spectral dimension can effectively analyze and reflect pores connectivity and moisture dynamic transport properties of porous media from the microscopic perspective. The pores connectivity and water vapor diffusion performance in pores of porous media get better with the increase of fractal spectral dimension of porous media. Fractal spectral dimension of parallel anisotropic porous media is more than that of perpendicular anisotropic porous media. Fractal spectral dimension of isotropic porous media is between parallel anisotropic porous media and perpendicular anisotropic porous media. Other macroscopic parameters such as equilibrium diffusion coefficient of water vapor, water vapor concentration variation at right boundary in equilibrium, the time when water vapor diffusion process reaches a stable state also can characterize the pores connectivity and water vapor diffusion properties of porous media.

  6. NMR Structural Studies on Alamethicin Dimers

    Institute of Scientific and Technical Information of China (English)

    李星

    2003-01-01

    15N labeled alamethicin dimer was synthesized. The structure and dynamics of alamethicin dimers were studied with nuclear magnetic resonance (NMR) spectroscopy. The data from 15N-labeled alamethicin dimer suggest little differences in conformation between the dimer and monomer in the Aib1-Pro14 region. Significant difference in the conformation of the C-terminus are manifest in the NH chemical shifts in the Val15-Pho20 region.

  7. Antimicrobial Peptides in Toroidal and Cylindrical Pores

    OpenAIRE

    Mihajlovic, Maja; Lazaridis, Themis

    2010-01-01

    Antimicrobial peptides (AMPs) are small, usually cationic peptides, which permeabilize biological membranes. Their mechanism of action is still not well understood. Here we investigate the preference of alamethicin and melittin for pores of different shapes, using molecular dynamics (MD) simulations of the peptides in pre-formed toroidal and cylindrical pores. When an alamethicin hexamer is initially embedded in a cylindrical pore, at the end of the simulation the pore remains cylindrical or ...

  8. Redistribution of Cholesterol in Model Lipid Membranes in Response to the Membrane-Active Peptide Alamethicin

    Science.gov (United States)

    Heller, William; Qian, Shuo

    2013-03-01

    The cellular membrane is a heterogeneous, dynamic mixture of molecules and macromolecules that self-assemble into a tightly-regulated functional unit that provides a semipermeable barrier between the cell and its environment. Among the many compositional differences between mammalian and bacterial cell membranes that impact its physical properties, one key difference is cholesterol content, which is more prevalent in mammals. Cholesterol is an amphiphile that associates with membranes and serves to maintain its fluidity and permeability. Membrane-active peptides, such as the alpha-helical peptide alamethicin, interact with membranes in a concentration- and composition-dependent manner to form transmembrane pores that are responsible for the lytic action of the peptide. Through the use of small-angle neutron scattering and deuterium labeling, it was possible to observe a redistribution of the lipid and cholesterol in unilamellar vesicles in response to the presence of alamethicin at a peptide-to-lipid ratio of 1/200. The results demonstrate that the membrane remodeling powers of alamethicin reach beyond the membrane thinning effect to altering the localization of specific components in the bilayer, complementing the accepted two-state mechanism of pore formation. Research was supported by U. S. DOE-OBER (CSMB; FWP ERKP291) and the U. S. DOE-BES Scientific User Facilities Division (ORNL's SNS and HFIR).

  9. A tethered bilayer sensor containing alamethicin channels and its detection of amiloride based inhibitors.

    Science.gov (United States)

    Yin, Ping; Burns, Christopher J; Osman, Peter D J; Cornell, Bruce A

    2003-04-01

    Alamethicin, a small transmembrane peptide, inserts into a tethered bilayer membrane (tBLM) to form ion channels, which we have investigated using electrical impedance spectroscopy. The number of channels formed is dependent on the incubation time, concentration of the alamethicin and the application of DC voltage. The properties of the ion channels when formed in tethered bilayers are similar to those for such channels assembled into black lipid membranes (BLMs). Furthermore, amiloride and certain analogs can inhibit the channel pores, formed in the tBLMs. The potency and concentration of the inhibitors can be determined by measuring the change of impedance. Our work illustrates the possibility of using a synthetic tBLM for the study of small peptide voltage dependent ion channels. A potential application of such a device is as a screening tool in drug discovery processes.

  10. Chemical nature and sequence of alamethicin.

    Science.gov (United States)

    Martin, D R; Williams, R J

    1976-02-01

    An n.m.r. spectroscopy study of pure alamethicin shows it to be a linear polypeptide of 19 residues. The N-terminus is blocked by an acetyl group, and the eighteenth residue, glutamic acid, is linked by an amide bond on its side chain to phenylalaninol (Fig. 6). The new formula is confirmed by a comparison between pure chemical compounds and the products of partial hydrolysis. PMID:1275883

  11. Analysis and evaluation of channel models : Simulations of alamethicin

    NARCIS (Netherlands)

    Tieleman, DP; Hess, B; Sansom, MSP

    2002-01-01

    Alamethicin is an antimicrobial peptide that forms stable channels with well-defined conductance levels. We have used extended molecular dynamics simulations of alamethicin bundles consisting of 4, 5, 6, 7, and 8 helices in a palmitoyl-oleolyl-phosphatidylcholine bilayer to evaluate and analyze chan

  12. Numerical Simulation of Two Phase Flow in Reconstructed Pore Network Based on Lattice Boltzmann Method

    Directory of Open Access Journals (Sweden)

    Song Rui

    2013-01-01

    Full Text Available Accurate prediction and understanding of the disorder microstructures in the porous media contribute to acquiring the macroscopic physical properties such as conductivity, permeability, formation factor, elastic moduli etc. Based on the rock serial sectioning images of Berea sandstone acquired by the core scanning system developed by our research group, the reconstructed rock model is established in the Mimics software and the extracted pore network of the porous rock is accomplished by the self-programming software in C++ programming language based on the revised Medial axis based algorithm and the Maximal ball algorithm. Using a lattice Boltzmann method, the single and two C phase flow are accomplished. Both of the pore-scale networks and the seepage mechanism of the single- and two Cphase flow are identical with the benchmark experimental data.

  13. Alamethicin Suppresses Methanogenesis and Promotes Acetogenesis in Bioelectrochemical Systems

    KAUST Repository

    Zhu, Xiuping

    2015-03-27

    Microbial electrosynthesis (MES) systems with mixed cultures often generate a variety of gaseous and soluble chemicals. Methane is the primary end product in mixed-culture MES because it is the thermodynamically most favorable reduction product of CO2. Here, we show that the peptaibol alamethicin selectively suppressed the growth of methanogens in mixed-culture MES systems, resulting in a shift of the solution and cathode communities to an acetate-producing system dominated by Sporomusa, a known acetogenic genus in MES systems. Archaea in the methane-producing control were dominated by Methanobrevibacter species, but no Archaea were detected in the alamethicin-treated reactors. No methane was detected in the mixed-culture reactors treated with alamethicin over 10 cycles (∼ 3 days each). Instead, acetate was produced at an average rate of 115 nmol ml(-1) day(-1), similar to the rate reported previously for pure cultures of Sporomusa ovata on biocathodes. Mixed-culture control reactors without alamethicin generated methane at nearly 100% coulombic recovery, and no acetate was detected. These results show that alamethicin is effective for the suppression of methanogen growth in MES systems and that its use enables the production of industrially relevant organic compounds by the inhibition of methanogenesis.

  14. Defect formation of lytic peptides in lipid membranes and their influence on the thermodynamic properties of the pore environment

    CERN Document Server

    Oliynyk, V; Heimburg, T; Oliynyk, Vitaliy; Kaatze, Udo; Heimburg, Thomas

    2006-01-01

    We present an experimental study of the pore formation processes of small amphipathic peptides in model phosphocholine lipid membranes. We used atomic force microscopy to characterize the spatial organization and structure of alamethicin- and melittin- induced defects in lipid bilayer membranes and the influence of the peptide on local membrane properties. Alamethicin induced holes in gel DPPC membranes were directly visualized at different peptide concentrations. We found that the thermodynamic state of lipids in gel membranes can be influenced by the presence of alamethicin such that nanoscopic domains of fluid lipids form close to the peptide pores, and that the elastic constants of the membrane are altered in their vicinity. Melittin-induced holes were visualized in DPPC and DLPC membranes at room temperature in order to study the influence of the membrane state on the peptide induced hole formation. Also differential scanning calorimetry was used to investigate the effect of alamethicin on the lipid memb...

  15. Alamethicin biosynthesis: acetylation of the amino terminus and attachment of phenylalaninol.

    Science.gov (United States)

    Mohr, H; Kleinkauf, H

    1978-10-12

    Alamethicin synthetase was extracted from the fungus Trichoderma viride at the end of its exponential growth phase. It is multienzyme complex with a molecular weight of approx. 480 000. The biosynthesis of alamethicin is initiated on the synthetase by acetylation of thiolester-bound aminoisobutyric acid, which remains enzyme bound. Acetyl-CoA serves as the acetate donor. Of the alamethicin constituents, glycine, alanine and valine are also acetylated when incubated alone. This acetylation is prevented by added aminoisobutyric acid, which indicates that the site on alamethicin synthetase catalyzing the acetylation has a preference for aminoisobutyric acid. Alamethicin formation on the synthetase is terminated by linkage of phenylalaninol to the carboxyl terminus of the peptide. It is unlikely that the amino alcohol is a degradation product of alamethicin or that it had been split off from the synthetase complex. Thus it is probably the reaction product of a separate enzyme system. PMID:568941

  16. Asymmetric distribution of charged lipids between the leaflets of a vesicle bilayer induced by melittin and alamethicin

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Shuo [ORNL; Heller, William T [ORNL

    2011-01-01

    Cellular membranes are complex mixtures of lipids, proteins, and other small molecules that provide functional, dynamic barriers between the cell and its environment, as well as between environments within the cell. The lipid composition of the membrane is highly specific and controlled in terms of both content and lipid localization. The membrane structure results from the complex interplay between the wide varieties of molecules present. Here, small-angle neutron scattering and selective deuterium labeling were used to probe the impact of the membrane-active peptides melittin and alamethicin on the structure of lipid bilayers composed of a mixture of the lipids dimyristoyl phosphatidylglycerol (DMPG) and chain-perdeuterated dimyristoyl phosphatidylcholine (DMPC). We found that both peptides enriched the outer leaflet of the bilayer with the negatively charged DMPG, creating an asymmetric distribution of lipids. The level of enrichment is peptide concentration-dependent and is stronger for melittin than it is for alamethicin. The enrichment between the inner and outer bilayer leaflets occurs at very low peptide concentrations and increases with peptide concentration, including when the peptide adopts a membrane-spanning, pore-forming state. The results suggest that these membrane-active peptides may have a secondary stressful effect on target cells at low concentrations that results from a disruption of the lipid distribution between the inner and outer leaflets of the bilayer that is independent of the formation of transmembrane pores.

  17. Mechanical properties of collagen membranes modified with pores--are they still sufficient for orbital floor reconstruction?

    Science.gov (United States)

    Birkenfeld, F; Flörke, C; Behrens, E; Rohnen, M; Kern, M; Gassling, V; Wiltfang, J

    2015-12-01

    Adequate mechanical strength is essential for materials used to reconstruct the orbital floor, and collagen membranes have recently been suggested for the repair of isolated fractures of the orbital floor. However, their mechanical properties after modification with pores for increased drainage of blood into the sinus have not been sufficiently investigated. We have tested the mechanical resistance of polydioxanone foils (PDS) to distortion and compared it with that of 3 resorbable collagen membranes (Smartbrane(®), Bio-Gide(®), and Creos(®)) in mint condition and when artificially aged (3 weeks, 6 weeks, and 8 weeks) after modification with pores (diameter 2mm) in a standard configuration (n=12 in each group). PDS and Creos(®) had comparable initial values for mechanical resistance of about 2.3N/mm(2), and Bio-Gide(®) and Smartbrane(®) had about 20% and 80% lower initial mechanical resistance, respectively. All materials tested had lower values after artificial ageing. After eight weeks of ageing, PDS lost about 99% of its initial mechanical resistance, Creos(®) about 66%, Bio-Gide(®) about 30%, and Smartbrane(®) about 95%. After 3 weeks the mechanical resistance in all groups was significantly less than the initial values (p=0.05), but there was no difference between samples aged artificially for 6 compared with 8 weeks. The mechanical resistance of the tested materials was not influenced by the presence of pores in a standard configuration and was in the appropriate range for moderate fractures of the orbital floor. We recommend further clinical investigations of collagen membranes modified with pores. PMID:26255542

  18. Barrel-stave model or toroidal model? A case study on melittin pores.

    OpenAIRE

    Yang, L; Harroun, T A; Weiss, T M; Ding, L; Huang, H W

    2001-01-01

    Transmembrane pores induced by amphiphilic peptides, including melittin, are often modeled with the barrel-stave model after the alamethicin pore. We examine this assumption on melittin by using two methods, oriented circular dichroism (OCD) for detecting the orientation of melittin helix and neutron scattering for detecting transmembrane pores. OCD spectra of melittin were systematically measured. Melittin can orient either perpendicularly or parallel to a lipid bilayer, depending on the phy...

  19. Structural and membrane modifying properties of suzukacillin, a peptide antibiotic related to alamethicin. Part A. Sequence and conformation.

    Science.gov (United States)

    Jung, G; König, W A; Leibfritz, D; Ooka, T; Janko, K; Boheim, G

    1976-04-16

    The primary structure and conformation of the polypeptide antibiotic suzukacillin A are investigated. Suzukacillin A is isolated from the Trichoderma viride strain 1037 and exhibits membrane modifying and lysing properties similar to those of alamethicin. A combined gas chromatographic mass spectrometric analysis of the trifluoroacetylated peptide methyl esters of partial hydrolysates revealed a tentative sequence of 23 residues including 10 2-methylalanines and one phenylalaninol, which shows many fragments known from alamethicin: Ac-Aib-Pro-Val-Aib-Val-Ala-Aib-Ala-Aib-Aib-Gln-Aib-Leu-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-Glu(Pheol)-Gln-OH. All chiral amino acids and phenylalainol have L-configuration. Ultraviolet and infrared spectroscopy, circular dichroism in various solvents and in particular 13C nuclear magnetic resonance have been used for a comparative study of suzukacillin with alamethicin. Suzukacillin has a partially alpha-helical structure and the helix content increases largely from polar to lipophilic solvents. Suzukacillin aggregates more strongly than alamethicin in aqueous medis due to a longer alpha-helical part and higher number of aliphatic residues. A part of the alpha-helix is exceptionally stabilized due to 2-methylalanine residues shielding the peptide bonds from interactions with polar solvents. In lipophilic solvents and lecithin vesicles particularly large temperature induced reductions of the high alpha-helix content are found for alamethicin. Suzukacillin shows similar temperature coefficients in lipophilic media, however, in contrast to alamethicin a more linear change in intensity of the Cotton effects is observed. PMID:1260057

  20. Influence of pore structures on the mechanical behavior of low-permeability sandstones:numerical reconstruction and analysis

    Institute of Scientific and Technical Information of China (English)

    Jiangtao Zheng; Yang Ju; Xi Zhao

    2014-01-01

    The research of rock properties based on its inherent microscopic to mesoscopic porous structure has drawn great attention for its potential in predicting the macroscopic behavior of rocks. An accurate reconstruction of the three-dimensional porous structure is a premise for the related studies of hydraulic and mechanical properties of rocks, such as the transport properties and mechanical responses under pressures. In this paper, we present a computer procedure for reconstructing the 3D porous structure of low-permeability sandstone. Two large-size 3D models are reconstructed based on the information of a reference model which is established from computed tomography (CT) images. A self-developed finite element method is applied to analyze the nonlinear mechanical behavior of the sandstone based on its reconstructed model and to compare the results with those based on the reference model. The good consistency of the obtained mechanical responses indicates the potential of using reconstruction models to predict the influences of porous structure on the mechanical properties of low-permeability sandstone.

  1. Intramembrane Water Associated with TOAC Spin-Labeled Alamethicin: Electron Spin-Echo Envelope Modulation by D2O

    Science.gov (United States)

    Bartucci, R.; Guzzi, R.; Sportelli, L.; Marsh, D.

    2009-01-01

    Alamethicin is a 20-residue, hydrophobic, helical peptide, which forms voltage-sensitive ion channels in lipid membranes. The helicogenic, nitroxyl amino acid TOAC was substituted isosterically for Aib at residue positions 1, 8, or 16 in a F50/5 alamethicin analog to enable EPR studies. Electron spin-echo envelope modulation (ESEEM) spectroscopy was used to investigate the water exposure of TOAC-alamethicin introduced into membranes of saturated or unsaturated diacyl phosphatidylcholines that were dispersed in D2O. Echo-detected EPR spectra were used to assess the degree of assembly of the peptide in the membrane, via the instantaneous diffusion from intermolecular spin-spin interactions. The profile of residue exposure to water differs between membranes of saturated and unsaturated lipids. In monounsaturated dioleoyl phosphatidylcholine, D2O-ESEEM intensities decrease from TOAC1 to TOAC8 and TOAC16 but not uniformly. This is consistent with a transmembrane orientation for the protoassembled state, in which TOAC16 is located in the bilayer leaflet opposite to that of TOAC1 and TOAC8. Relative to the monomer in fluid bilayers, assembled alamethicin is disposed asymmetrically about the bilayer midplane. In saturated dimyristoyl phosphatidylcholine, the D2O-ESEEM intensity is greatest for TOAC8, indicating a more superficial location for alamethicin, which correlates with the difference in orientation between gel- and fluid-phase membranes found by conventional EPR of TOAC-alamethicin in aligned phosphatidylcholine bilayers. Increasing alamethicin/lipid ratio in saturated phosphatidylcholine shifts the profile of water exposure toward that with unsaturated lipid, consistent with proposals of a critical concentration for switching between the two different membrane-associated states. PMID:19186137

  2. Cyclodextrin-Scaffolded Alamethicin with Remarkably Efficient Membrane Permeabilizing Properties and Membrane Current Conductance

    DEFF Research Database (Denmark)

    Hjørringgaard, Claudia Ulrich; Vad, Brian Stougaard; Matchkov, Vladimir;

    2012-01-01

    Bacterial resistance to classical antibiotics is a serious medical problem, which continues to grow. Small antimicrobial peptides represent a potential solution and are increasingly being developed as novel therapeutic agents. Many of these peptides owe their antibacterial activity to the formation...... of trans-membrane ion-channels resulting in cell lysis. However, to further develop the field of peptide antibiotics, a thorough understanding of their mechanism of action is needed. Alamethicin belongs to a class of peptides called peptaibols and represents one of these antimicrobial peptides. To examine...

  3. Rapid Brownian Motion Primes Ultrafast Reconstruction of Intrinsically Disordered Phe-Gly Repeats Inside the Nuclear Pore Complex

    Science.gov (United States)

    Moussavi-Baygi, R.; Mofrad, M. R. K.

    2016-01-01

    Conformational behavior of intrinsically disordered proteins, such as Phe-Gly repeat domains, alters drastically when they are confined in, and tethered to, nan channels. This has challenged our understanding of how they serve to selectively facilitate translocation of nuclear transport receptor (NTR)-bearing macromolecules. Heterogeneous FG-repeats, tethered to the NPC interior, nonuniformly fill the channel in a diameter-dependent manner and adopt a rapid Brownian motion, thereby forming a porous and highly dynamic polymeric meshwork that percolates in radial and axial directions and features two distinguishable zones: a dense hydrophobic rod-like zone located in the center, and a peripheral low-density shell-like zone. The FG-meshwork is locally disrupted upon interacting with NTR-bearing macromolecules, but immediately reconstructs itself between 0.44 μs and 7.0 μs, depending on cargo size and shape. This confers a perpetually-sealed state to the NPC, and is solely due to rapid Brownian motion of FG-repeats, not FG-repeat hydrophobic bonds. Elongated-shaped macromolecules, both in the presence and absence of NTRs, penetrate more readily into the FG-meshwork compared to their globular counterparts of identical volume and surface chemistry, highlighting the importance of the shape effects in nucleocytoplasmic transport. These results can help our understanding of geometrical effects in, and the design of, intelligent and responsive biopolymer-based materials in nanofiltration and artificial nanopores. PMID:27470900

  4. Rapid Brownian Motion Primes Ultrafast Reconstruction of Intrinsically Disordered Phe-Gly Repeats Inside the Nuclear Pore Complex.

    Science.gov (United States)

    Moussavi-Baygi, R; Mofrad, M R K

    2016-01-01

    Conformational behavior of intrinsically disordered proteins, such as Phe-Gly repeat domains, alters drastically when they are confined in, and tethered to, nan channels. This has challenged our understanding of how they serve to selectively facilitate translocation of nuclear transport receptor (NTR)-bearing macromolecules. Heterogeneous FG-repeats, tethered to the NPC interior, nonuniformly fill the channel in a diameter-dependent manner and adopt a rapid Brownian motion, thereby forming a porous and highly dynamic polymeric meshwork that percolates in radial and axial directions and features two distinguishable zones: a dense hydrophobic rod-like zone located in the center, and a peripheral low-density shell-like zone. The FG-meshwork is locally disrupted upon interacting with NTR-bearing macromolecules, but immediately reconstructs itself between 0.44 μs and 7.0 μs, depending on cargo size and shape. This confers a perpetually-sealed state to the NPC, and is solely due to rapid Brownian motion of FG-repeats, not FG-repeat hydrophobic bonds. Elongated-shaped macromolecules, both in the presence and absence of NTRs, penetrate more readily into the FG-meshwork compared to their globular counterparts of identical volume and surface chemistry, highlighting the importance of the shape effects in nucleocytoplasmic transport. These results can help our understanding of geometrical effects in, and the design of, intelligent and responsive biopolymer-based materials in nanofiltration and artificial nanopores. PMID:27470900

  5. Lipid chain-length dependence for incorporation of alamethicin in membranes: electron paramagnetic resonance studies on TOAC-spin labeled analogs.

    Science.gov (United States)

    Marsh, Derek; Jost, Micha; Peggion, Cristina; Toniolo, Claudio

    2007-06-01

    Alamethicin is a 19-residue hydrophobic peptide, which is extended by a C-terminal phenylalaninol but lacks residues that might anchor the ends of the peptide at the lipid-water interface. Voltage-dependent ion channels formed by alamethicin depend strongly in their characteristics on chain length of the host lipid membranes. EPR spectroscopy is used to investigate the dependence on lipid chain length of the incorporation of spin-labeled alamethicin in phosphatidylcholine bilayer membranes. The spin-label amino acid TOAC is substituted at residue positions n = 1, 8, or 16 in the sequence of alamethicin F50/5 [TOAC(n), Glu(OMe)(7,18,19)]. Polarity-dependent isotropic hyperfine couplings of the three TOAC derivatives indicate that alamethicin assumes approximately the same location, relative to the membrane midplane, in fluid diC(N)PtdCho bilayers with chain lengths ranging from N = 10-18. Residue TOAC(8) is situated closest to the bilayer midplane, whereas TOAC(16) is located farther from the midplane in the hydrophobic core of the opposing lipid leaflet, and TOAC(1) remains in the lipid polar headgroup region. Orientational order parameters indicate that the tilt of alamethicin relative to the membrane normal is relatively small, even at high temperatures in the fluid phase, and increases rather slowly with decreasing chain length (from 13 degrees to 23 degrees for N = 18 and 10, respectively, at 75 degrees C). This is insufficient for alamethicin to achieve hydrophobic matching. Alamethicin differs in its mode of incorporation from other helical peptides for which transmembrane orientation has been determined as a function of lipid chain length. PMID:17351010

  6. Reconstruction and analysis of fuel cell gas diffusion layers using fiber spacing rather than pore size data: Questioned validity of widely-used porosity-based thermal conductivity models

    Science.gov (United States)

    Sadeghifar, Hamidreza

    2016-03-01

    Porosity and pore size data have long been used for reconstructing (two directional) fibrous materials. The present study is aimed to explain the overlooked fact that pore size parameter, bundling several other geometric parameters together, cannot be directly used for the reconstruction and geometrical modeling of gas diffusion layers (GDLs) of fuel cells. Instead, it has to be converted to fiber spacing, for which purpose it is a useful parameter. A technical approach is presented on how to reach fiber spacing from pore size (diameter) data. The reason why GDLs with the same porosity, fiber diameter and angle, but with unequal fiber spacing, may have different properties is also explained by providing physical evidence. The present study clearly demonstrates that the traditional notion that fibrous materials with lower porosity have higher thermal conductivity does not necessary hold. In addition, it is shown that GDLs with the same porosity and the same pore size may have different fiber spacing and thus, distinct properties. It is found that the thermal conductivity models based solely upon porosity can be off by several hundred percent and must be either discarded or used over the narrow range of conditions under which they have been formulated.

  7. Differences Between Human and Rat Intestinal and Hepatic Bisphenol-A Glucuronidation and the Influence of Alamethicin on In vitro Kinetic Measurements

    Science.gov (United States)

    The extent to which membrane disrupting agents, such as alamethicin, may alter cofactor transport and influence in vitro kinetic measurements of glucurondiation is a major concern regarding the characterization and extrapolation of inter-and intra-species pharmacokinetics of bisp...

  8. Pore Forming Properties of Cecropin-Melittin Hybrid Peptide in a Natural Membrane

    Directory of Open Access Journals (Sweden)

    Giorgio Rispoli

    2009-12-01

    Full Text Available The pore forming properties of synthetic cecropin-melittin hybrid peptide (Acetyl-KWKLFKKIGAVLKVL-CONH2; CM15 were investigated by using photoreceptor rod outer segments (OS isolated from frog retinae obtained by using the whole-cell configuration of the patch-clamp technique. CM15 was applied (and removed to (from the OS in ~50 ms with a computer-controlled microperfusion system. Once the main OS endogenous conductance was blocked with light, the OS membrane resistance was ≥1 GΩ, allowing high resolution, low-noise recordings. Different to alamethicines, CM15 produced voltage-independent membrane permeabilisation, repetitive peptide application caused a progressive permeabilisation increase, and no single-channel events were detected at low peptide concentrations. Collectively, these results indicate a toroidal mechanism of pore formation by CM15.

  9. Pore Velocity Estimation Uncertainties

    Science.gov (United States)

    Devary, J. L.; Doctor, P. G.

    1982-08-01

    Geostatistical data analysis techniques were used to stochastically model the spatial variability of groundwater pore velocity in a potential waste repository site. Kriging algorithms were applied to Hanford Reservation data to estimate hydraulic conductivities, hydraulic head gradients, and pore velocities. A first-order Taylor series expansion for pore velocity was used to statistically combine hydraulic conductivity, hydraulic head gradient, and effective porosity surfaces and uncertainties to characterize the pore velocity uncertainty. Use of these techniques permits the estimation of pore velocity uncertainties when pore velocity measurements do not exist. Large pore velocity estimation uncertainties were found to be located in the region where the hydraulic head gradient relative uncertainty was maximal.

  10. Alamethicin-like behaviour of new 18-residue peptaibols, trichorzins PA. Role of the C-terminal amino-alcohol in the ion channel forming activity.

    Science.gov (United States)

    Duval, D; Cosette, P; Rebuffat, S; Duclohier, H; Bodo, B; Molle, G

    1998-03-01

    The influences of peptide length, absence of a Glx (Gln/Glu) residue and the C-terminal amino alcohol on liposome permeabilization and ion-channel characteristics in planar lipid bilayers were examined with two 18-residue peptaibols, PA V and PA IX. As compared to the 20-residue alamethicin, both peptides belonging to the newly isolated trichorzin family, lack a proline in the N-terminal part and one of the two Gln/Glu residues in the C-terminal part of the sequence. The two analogues studied here differ among themselves in their C-terminal amino alcohol (tryptophanol for PA V and phenylalaninol for PA IX). These alpha-helical peptaibols modify to a similar extent the permeability of liposomes, as measured by leakage of a previously entrapped fluorescent probe. Monitoring tryptophanol fluorescence, a greater embedment of the peptide PA V is observed in cholesterol-free bilayers. Macroscopic conductance studies for PA V and PA IX display alamethicin-like current-voltage curves, with a similar voltage dependence, but a smaller mean number of monomers per conducting aggregate is estimated for the tryptophanol analogue, PA V. Single-channel recordings indicate faster current fluctuations for PA IX, while amplitude histograms show lower conductance levels for PA V. Apart from underlining the role of the mismatch between helix length and bilayer hydrophobic thickness, these results stress that the C-terminal tryptophanol favours a stabilization of the conducting aggregates. PMID:9518665

  11. On the cavitation and pore blocking in slit-shaped ink-bottle pores.

    Science.gov (United States)

    Fan, Chunyan; Do, D D; Nicholson, D

    2011-04-01

    We present GCMC simulations of argon adsorption in slit pores of different channel geometry. We show that the isotherm for an ink-bottle pore can be reconstructed as a linear combination of the local isotherms of appropriately chosen independent unit cells. Second, depending on the system parameters and operating conditions, the phenomena of cavitation and pore blocking can occur for a given configuration of the ink-bottle pore by varying the geometrical aspect ratio. Although it has been argued in the literature that the geometrical aspects of the system govern the evaporation mechanism (either cavitation or pore blocking), we here put forward an argument that the local compressibility in different parts of the ink-bottle pore is the deciding factor for evaporation. When the fluid in the small neck is strongly bound, cavitation is the governing process, and molecules in the cavity evaporate to the surrounding bulk gas via a mass transfer mechanism through the pore neck. When the pore neck is sufficiently large, the system of neck and cavity evaporates at the same pressure, which is a consequence of the comparable compressibility between the fluid in the neck and that in the cavity. This suggests that local compressibility is the measure of cohesiveness of the fluid prior to evaporation. One consequence that we derive from the analysis of isotherms of a number of connected pores is that by analyzing the adsorption branch or the desorption branch of an experimental isotherm may not lead to the correct pore sizes and the correct pore volume distribution. PMID:21370903

  12. Alamethicin permeabilizes the plasma membrane and mitochondria but not the tonoplast in tobacco (Nicotiana tabacum L. cv Bright Yellow) suspension cells

    DEFF Research Database (Denmark)

    Matic, S.; Geisler, D.A.; Møller, I.M.;

    2005-01-01

    The ion channel-forming peptide AlaM (alamethicin) is known to permeabilize isolated mitochondria as well as animal cells. When intact tobacco (Nicotiana tabacum L.) Bright Yellow-2 cells were treated with AlaM, the cells became permeable for low-molecular-mass molecules as shown by induced leakage...... remained intact, as indicated by an unaffected tonoplast proton gradient. Low-flux permeabilization of plasma membranes and mitochondria at moderate AlaM concentrations was reversible and did not affect cell vigour. Higher AlaM concentrations induced cell death. After the addition of catalase that removes...... the H2O2 necessary for NADH oxidation by apoplastic peroxidases, mitochondrial oxygen consumption could be measured in permeabilized cells. Inhibitor-sensitive oxidation of the respiratory substrates succinate, malate and NADH was observed after the addition of the appropriate coenzymes (ATP, NAD...

  13. Velocities in Solar Pores

    Science.gov (United States)

    Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.

    1996-05-01

    We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.

  14. The ion-channel activity of longibrachins LGA I and LGB II: effects of pro-2/Ala and gln-18/Glu substitutions on the alamethicin voltage-gated membrane channels.

    Science.gov (United States)

    Cosette, P; Rebuffat, S; Bodo, B; Molle, G

    1999-11-01

    Longibrachins LGA I (Ac Aib Ala Aib Ala Aib(5) Ala Gln Aib Val Aib(10) Gly Leu Aib Pro Val(15) Aib Aib Gln Gln Pheol(20), with Aib: alpha-aminoisobutyric acid, pheol: phenylalaninol) and LGB II are two homologous 20-residue long-sequence peptaibols isolated from the fungus Trichoderma longibrachiatum that differ between them by a Gln-18/Glu substitution. They distinguish from alamethicin by a Pro-2 for Ala replacement, which allowed to examine for the first time with natural Aib-containing analogues, the effect of Pro-2 on the ion-channel properties exhibited by alamethicin. The influence of these structural modifications on the voltage-gated ion-channel forming activity of the peptides in planar lipid bilayers were analysed. The general 'barrel-stave' model of ion-channel activity, already described for alamethicin, was preserved with both longibrachins. The negatively charged LGB II promoted higher oligomerisation levels, which could presumably dilute the repulsive effect of the negative Glu ring near the entrance of the channel and resulted in lower lifetimes of the substates, confirming the strong anchor of the peptide C-terminus at the cis-interface. Reduction of the channel lifetimes was observed for the longibrachins, compared to alamethicin. This argues for a better stabilisation of the channels formed by peptaibols having a proline at position 2, which results in better anchoring of the peptide monomer N-terminus at the trans-bilayer interface. Qualitative assays of the temperature dependence on the neutral longibrachin channel properties demonstrated a high increase of channel lifetimes and a markedly reduced voltage-sensitivity when the temperature was decreased, showing that such conditions may allow to study the channel-forming properties of peptides leading to fast current fluctuations. PMID:10556493

  15. NUCLEAR PORE COMPLEX BIOGENESIS

    OpenAIRE

    Fernandez-Martinez, Javier; Rout, Michael P.

    2009-01-01

    Nuclear pore complexes (NPCs) are the sole mediators of transport between the nucleus and the cytoplasm. NPCs have a life cycle: they assemble, disassemble, turn over and age. The molecular mechanisms governing these different vital steps are beginning to emerge, suggesting key roles for the core structural scaffold of the NPC and auxiliary factors in the assembly of this large macromolecular complex, and connections between NPC maintenance, NPC turnover, and ageing of the cell.

  16. Structure of Self-Aggregated Alamethicin in ePC Membranes Detected by Pulsed Electron-Electron Double Resonance and Electron Spin Echo Envelope Modulation Spectroscopies

    Science.gov (United States)

    Milov, Alexander D.; Samoilova, Rimma I.; Tsvetkov, Yuri D.; De Zotti, Marta; Formaggio, Fernando; Toniolo, Claudio; Handgraaf, Jan-Willem; Raap, Jan

    2009-01-01

    Abstract PELDOR spectroscopy was exploited to study the self-assembled super-structure of the [Glu(OMe)7,18,19]alamethicin molecules in vesicular membranes at peptide to lipid molar ratios in the range of 1:70–1:200. The peptide molecules were site-specifically labeled with TOAC electron spins. From the magnetic dipole-dipole interaction between the nitroxides of the monolabeled constituents and the PELDOR decay patterns measured at 77 K, intermolecular-distance distribution functions were obtained and the number of aggregated molecules (n ≈ 4) was estimated. The distance distribution functions exhibit a similar maximum at 2.3 nm. In contrast to Alm16, for Alm1 and Alm8 additional maxima were recorded at 3.2 and ∼5.2 nm. From ESEEM experiments and based on the membrane polarity profiles, the penetration depths of the different spin-labeled positions into the membrane were qualitatively estimated. It was found that the water accessibility of the spin-labels follows the order TOAC-1 > TOAC-8 ≈ TOAC-16. The geometric data obtained are discussed in terms of a penknife molecular model. At least two peptide chains are aligned parallel and eight ester groups of the polar Glu(OMe)18,19 residues are suggested to stabilize the self-aggregate superstructure. PMID:19383464

  17. Stochastic reconstruction of sandstones

    Science.gov (United States)

    Manwart; Torquato; Hilfer

    2000-07-01

    A simulated annealing algorithm is employed to generate a stochastic model for a Berea sandstone and a Fontainebleau sandstone, with each a prescribed two-point probability function, lineal-path function, and "pore size" distribution function, respectively. We find that the temperature decrease of the annealing has to be rather quick to yield isotropic and percolating configurations. A comparison of simple morphological quantities indicates good agreement between the reconstructions and the original sandstones. Also, the mean survival time of a random walker in the pore space is reproduced with good accuracy. However, a more detailed investigation by means of local porosity theory shows that there may be significant differences of the geometrical connectivity between the reconstructed and the experimental samples.

  18. The pore space scramble

    Science.gov (United States)

    Gormally, Alexandra; Bentham, Michelle; Vermeylen, Saskia; Markusson, Nils

    2015-04-01

    Climate change and energy security continue to be the context of the transition to a secure, affordable and low carbon energy future, both in the UK and beyond. This is reflected in for example, binding climate policy targets at the EU level, the introduction of renewable energy targets, and has also led to an increasing interest in Carbon Capture and Storage (CCS) technology with its potential to help mitigate against the effects of CO2 emissions from fossil fuel burning. The UK has proposed a three phase strategy to integrate CCS into its energy system in the long term focussing on off-shore subsurface storage (DECC, 2014). The potential of CCS therefore, raises a number of challenging questions and issues surrounding the long-term storage of CO2 captured and injected into underground spaces and, alongside other novel uses of the subsurface, contributes to opening a new field for discussion on the governance of the subsurface. Such 'novel' uses of the subsurface have lead to it becoming an increasingly contested space in terms of its governance, with issues emerging around the role of ownership, liability and property rights of subsurface pore space. For instance, questions over the legal ownership of pore space have arisen with ambiguity over the legal standpoint of the surface owner and those wanting to utilise the pore space for gas storage, and suggestions of whether there are depths at which legal 'ownership' becomes obsolete (Barton, 2014). Here we propose to discuss this 'pore space scramble' and provide examples of the competing trajectories of different stakeholders, particularly in the off-shore context given its priority in the UK. We also propose to highlight the current ambiguity around property law of pore space in the UK with reference to approaches currently taken in different national contexts. Ultimately we delineate contrasting models of governance to illustrate the choices we face and consider the ethics of these models for the common good

  19. Chemotherapy Drugs Thiocolchicoside and Taxol Permeabilize Lipid Bilayer Membranes by Forming Ion Pores

    Science.gov (United States)

    Ashrafuzzaman, Md; Duszyk, M.; Tuszynski, J. A.

    2011-12-01

    We report ion channel formation by chemotherapy drugs: thiocolchicoside (TCC) and taxol (TXL) which primarily target tubulin but not only. For example, TCC has been shown to interact with GABAA, nuclear envelope and strychnine-sensitive glycine receptors. TXL interferes with the normal breakdown of microtubules inducing mitotic block and apoptosis. It also interacts with mitochondria and found significant chemotherapeutic applications for breast, ovarian and lung cancer. In order to better understand the mechanisms of TCC and TXL actions, we examined their effects on phospholipid bilayer membranes. Our electrophysiological recordings across membranes constructed in NaCl aqueous phases consisting of TCC or TXL under the influence of an applied transmembrane potential (V) indicate that both molecules induce stable ion flowing pores/channels in membranes. Their discrete current versus time plots exhibit triangular shapes which is consistent with a spontaneous time-dependent change of the pore conductance in contrast to rectangular conductance events usually induced by ion channels. These events exhibit conductance (~0.01-0.1 pA/mV) and lifetimes (~5-30 ms) within the ranges observed in e.g., gramicidin A and alamethicin channels. The channel formation probability increases linearly with TCC/TXL concentration and V and is not affected by pH (5.7 - 8.4). A theoretical explanation on the causes of chemotherapy drug induced ion pore formation and the pore stability has also been found using our recently discovered binding energy between lipid bilayer and the bilayer embedded ion channels using gramicidin A channels as tools. This picture of energetics suggests that as the channel forming agents approach to the lipids on bilayer the localized charge properties in the constituents of both channel forming agents (e.g., chemotherapy drugs in this study) and the lipids determine the electrostatic drug-lipid coupling energy through screened Coulomb interactions between the drug

  20. Pore roller filtration apparatus

    DEFF Research Database (Denmark)

    2014-01-01

    , comprising a pressure regulated separation chamber defined, in cross section, by a plurality of rollers mounted between opposing sidewalls, each of said rollers having a shaft adapted to be engaged with the sidewalls, a filter arranged so that it passes between at least one set of said rollers consisting...... of a pore roller and one other roller, means for establishing a pressure difference across the filter, means for passing filter and filter cake through the set of rollers, and a closure mechanism configured to control the transverse tension between the rollers....

  1. Pore-water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Vinsot, A. [Agence Nationale pour la Gestion des Dechets Radioactifs, Lab. de Souterrain de Meuse/Haute-Marne, 55 - Bure (France); Appelo, C.A.J. [Valeriusstraat 11, Amsterdam (Netherlands); Cailteau, C. [LEM, ENSG/INPL, 54 - Vandoeuvre-les-Nancy (France); Cailteau, C. [G2R-CREGU, UMR 7566 CNRS, 54 - Vandoeuvre-les-Nancy (France); Cailteau, C. [Andra - Agence Nationale pour la Gestion des Dechets Radioactifs, 92 - Chatenay Malabry (France); Mettler, S.; Wersin, P. [NAGRA, CH-5430 Wettingen (Switzerland); Canniere, P. de [Studiecentrum voor Kernenergie - Centre d' Etude de l' Energie Nucleaire, Mol (Belgium); Gabler, H.E. [BGR, Hannover (Germany); Gaucher, E.C.; Tournassat, C. [Bureau de Recherches Geologiques et Minieres (BRGM), 45 - Orleans (France); Jacquot, E.; Altmann, S. [Agence Nationale pour la Gestion des Dechets Radioactifs (DS/TR), 92 - Chatenay Malabry (France); Vinsot, A. [Agence Nationale pour la Gestion des Dechets Radioactifs, Lab. de Recherche Souterrain de Meuse/Haute-Marne, 55 - Bure (France); Courdouan, A.; Christl, I.; Kretzschmar, R. [Institute of Biogeochemistry and Pollutant Dynamics, Dept. of Environmental Sciences, ETH Zurich, CHN (Switzerland); Wersin, P. [National Cooperative for the Disposal of Radioactive Waste (Nagra), Wettingen (Switzerland); Savoye, S.; Matray, J.M.; Wittebroodt, Ch.; Cabrera, J.; Bensenouci, F. [Institut de Radioprotection et de Surete Nucleaire, 92 - Fontenay aux Roses (France); Michelot, J.L.; Bensenouci, F. [Paris-11 Univ., UMR IDES CNRS, 91 - Orsay (France); Waber, H.S. [Rock-Water Interaction (RWI), Inst. of Geological Sciences, Bern (Switzerland); Wittebroodt, Ch. [Montpellier-2 Univ., MSE, 34 (France); Lavielle, B.; Gilabert, E.; Thomas, B.; Lavastre, V. [Bordeaux 1-2 Univ., (GdR FORPRO 0788), Chimie Nucleaire Analytique et Bioenvironnementale (CNAB), CNRS, 33 - Gradignan (France); Lavastre, V. [Nimes Univ., Geochimie Isotopique Environnementale (GIS/CEREGE), CNRS-RANCE, 30 (France)

    2007-07-01

    This session gathers 5 articles dealing with: CO{sub 2} data on gas and pore water sampled in-situ in the Opalinus clay at the Mont Terri rock laboratory (A. Vinsot, C.A.J. Appelo, C. Cailteau, S. Mettler, P. Wersin, P. De Canniere, H.E. Gaebler); the improvements in the modelling of the pore water chemistry of the Callovo-Oxfordian formation (E.C. Gaucher, C. Tournassat, E. Jacquot, S. Altmann, A. Vinsot) the nature and reactivity of dissolved organic matter in the Opalinus clay and Callovo-Oxfordian formations (A. Courdouan, I. Christl, P.Wersin, R. Kretzschmar); PH4: a 250 m deep borehole in Tournemire for assessing the reliability of chloride, helium and water stable isotopes profiles in the Toarcian/ Domerian shales (S. Savoye, J.L. Michelot, H.N. Waber, J.M. Matray, F. Bensenouci, Ch. Wittebroodt, J. Cabrera); and the development of a new facility for dating old groundwaters by using {sup 81}Kr (B. Lavielle, E. Gilabert, B. Thomas, V. Lavastre)

  2. Pore dynamics in lipid membranes

    Science.gov (United States)

    Gozen, I.; Dommersnes, P.

    2014-09-01

    Transient circular pores can open in plasma membrane of cells due to mechanical stress, and failure to repair such pores lead to cell death. Similar pores in the form of defects also exist among smectic membranes, such as in myelin sheaths or mitochondrial membranes. The formation and growth of membrane defects are associated with diseases, for example multiple sclerosis. A deeper understanding of membrane pore dynamics can provide a more refined picture of membrane integrity-related disease development, and possibly also treatment options and strategies. Pore dynamics is also of great importance regarding healthcare applications such as drug delivery, gene or as recently been implied, cancer therapy. The dynamics of pores significantly differ in stacks which are confined in 2D compared to those in cells or vesicles. In this short review, we will summarize the dynamics of different types of pores that can be observed in biological membranes, which include circular transient, fusion and hemi-fusion pores. We will dedicate a section to floral and fractal pores which were discovered a few years ago and have highly peculiar characteristics. Finally, we will discuss the repair mechanisms of large area pores in conjunction with the current cell membrane repair hypotheses.

  3. Soils, Pores, and NMR

    Science.gov (United States)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 samples (Haber-Pohlmeier et al. 2010). Third, relaxometric information forms the basis of understanding magnetic resonance imaging (MRI) results. The general difficulty of imaging in soils are the inherent fast T2 relaxation times due to i) the small pore sizes, ii) presence of paramagnetic ions in the solid matrix, and iii) diffusion in internal gradients. The last point is important, since echo times can not set shorter than about 1ms for imaging purposes. The way out is either the usage of low fields for imaging in soils or special ultra-short pulse sequences, which do not create echoes. In this presentation we will give examples on conventional imaging of macropore fluxes in soil cores (Haber-Pohlmeier et al. 2010), and the combination with relaxometric imaging, as well as the advantages and drawbacks of low-field and ultra-fast pulse imaging. Also first results on the imaging of soil columns measured by SIP in Project A3 are given. Haber-Pohlmeier, S., S. Stapf, et al. (2010). "Waterflow Monitored by Tracer Transport in Natural Porous Media Using MRI." Vadose Zone J.: submitted. Haber-Pohlmeier, S., S. Stapf, et al. (2010). "Relaxation in a

  4. A pore water conductivity sensor

    NARCIS (Netherlands)

    Hilhorst, M.A.

    2001-01-01

    The electrical permittivity and conductivity of the bulk soil are a function of the permittivity and conductivity of the pore water. For soil water contents higher than 0.10 both functions are equal, facilitating in situ conductivity measurements of the pore water. A novel method is described, based

  5. Ion transport across transmembrane pores

    NARCIS (Netherlands)

    Leontiadou, Hari; Mark, Alan E.; Marrink, Siewert-Jan

    2007-01-01

    To study the pore-mediated transport of ionic species across a lipid membrane, a series of molecular dynamics simulations have been performed of a dipalmitoyl-phosphatidyl-choline bilayer containing a preformed water pore in the presence of sodium and chloride ions. It is found that the stability of

  6. Metal structures with parallel pores

    Science.gov (United States)

    Sherfey, J. M.

    1976-01-01

    Four methods of fabricating metal plates having uniformly sized parallel pores are studied: elongate bundle, wind and sinter, extrude and sinter, and corrugate stack. Such plates are suitable for electrodes for electrochemical and fuel cells.

  7. Boom clay pore water chemistry

    International Nuclear Information System (INIS)

    In Belgium, geological disposal in clay is the primary option for the isolation of high-level radioactive waste and spent fuel from the biosphere. The Boom Clay is studied as the potential host rock for methodological studies on the geological disposal of radioactive waste. It is present under the facilities of the SCK-CEN at Mol, at a depth of 190 to 293 m. The current R and D programme focuses on the feasibility and safety of radioactive waste disposal in the Boom Clay. In this framework, a detailed characterisation of the clay is performed (mechanical, physico-chemical and hydrogeological properties, variability, role of organic matter,...). In addition, high priority is given to the understanding of the basic phenomena which control the retention o f radionuclides in the clay. Therefore, it is very important to characterise and understand the pore water composition in the host rock. All the available information from previous studies on the Boom Clay pore water chemistry was synthesise d in a 'state of the art' report, status 2004. This report describes the pore water sampling and analytical techniques, the results, and interpretation of a series of studies carried out in-situ in the HADES URF and in the laboratories. The objective of this study was to evaluate the most reliable technique(s) to obtain representative pore water samples, to determine the variation of the pore water composition in the Boom Clay, to present a coherent geochemical model for explaining the mechanisms controlling the Boom Clay pore water composition, and to propose a reference pore water composition to be used in the laboratory experiments, for speciation calculations, and for assessments of perturbation that might influence the Boom Clay pore water. The main conclusions will be presented here. (authors)

  8. Can ash clog soil pores?

    Science.gov (United States)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands

  9. Geostatistical Modeling of Pore Velocity

    Energy Technology Data Exchange (ETDEWEB)

    Devary, J.L.; Doctor, P.G.

    1981-06-01

    A significant part of evaluating a geologic formation as a nuclear waste repository involves the modeling of contaminant transport in the surrounding media in the event the repository is breached. The commonly used contaminant transport models are deterministic. However, the spatial variability of hydrologic field parameters introduces uncertainties into contaminant transport predictions. This paper discusses the application of geostatistical techniques to the modeling of spatially varying hydrologic field parameters required as input to contaminant transport analyses. Kriging estimation techniques were applied to Hanford Reservation field data to calculate hydraulic conductivity and the ground-water potential gradients. These quantities were statistically combined to estimate the groundwater pore velocity and to characterize the pore velocity estimation error. Combining geostatistical modeling techniques with product error propagation techniques results in an effective stochastic characterization of groundwater pore velocity, a hydrologic parameter required for contaminant transport analyses.

  10. The Description of Shale Reservoir Pore Structure Based on Method of Moments Estimation

    Science.gov (United States)

    Li, Wenjie; Wang, Changcheng; Shi, Zejin; Wei, Yi; Zhou, Huailai; Deng, Kun

    2016-01-01

    Shale has been considered as good gas reservoir due to its abundant interior nanoscale pores. Thus, the study of the pore structure of shale is of great significance for the evaluation and development of shale oil and gas. To date, the most widely used approaches for studying the shale pore structure include image analysis, radiation and fluid invasion methods. The detailed pore structures can be studied intuitively by image analysis and radiation methods, but the results obtained are quite sensitive to sample preparation, equipment performance and experimental operation. In contrast, the fluid invasion method can be used to obtain information on pore size distribution and pore structure, but the relative simple parameters derived cannot be used to evaluate the pore structure of shale comprehensively and quantitatively. To characterize the nanoscale pore structure of shale reservoir more effectively and expand the current research techniques, we proposed a new method based on gas adsorption experimental data and the method of moments to describe the pore structure parameters of shale reservoir. Combined with the geological mixture empirical distribution and the method of moments estimation principle, the new method calculates the characteristic parameters of shale, including the mean pore size (x¯), standard deviation (σ), skewness (Sk) and variation coefficient (c). These values are found by reconstructing the grouping intervals of observation values and optimizing algorithms for eigenvalues. This approach assures a more effective description of the characteristics of nanoscale pore structures. Finally, the new method has been applied to analyze the Yanchang shale in the Ordos Basin (China) and Longmaxi shale from the Sichuan Basin (China). The results obtained well reveal the pore characteristics of shale, indicating the feasibility of this new method in the study of the pore structure of shale reservoir. PMID:26992168

  11. Pore structure of ore granular media by computerized tomography image processing

    Institute of Scientific and Technical Information of China (English)

    WU Ai-xiang; YANG Bao-hua; XI Yong; JIANG Huai-chun

    2007-01-01

    The pore structure images of ore particles located at different heights of leaching column were scanned with X-ray computerized tomography (CT) scanner, the porosity and pore size distribution were calculated and the geometrical shape and connectivity of pores were analyzed based on image process method, and the three dimensional reconstruction of pore structure images was realized. The results show that the porosity of ore particles bed in leaching column is 42.92%, 41.72%, 39.34% at top,middle and bottom zone, respectively. Obviously it has spatial variability and decreases appreciably along the height of the column.The overall average porosity obtained by image processing is 41.33% while the porosity gotten from general measurement method in laboratory is 42.77% showing the results of both methods are consistent well. The pore structure of ore granular media is characterized as a dynamical space network composed of interconnected pore bodies and pore throats. The ratio of throats with equivalent diameter less than 1.91 mm to the total pores is 29.31%, and that of the large pores with equivalent diameter more than 5.73 mm is 2.90%.

  12. Penile reconstruction

    Institute of Scientific and Technical Information of China (English)

    Giulio Garaffa; Salvatore Sansalone; David J Ralph

    2013-01-01

    During the most recent years,a variety of new techniques of penile reconstruction have been described in the literature.This paper focuses on the most recent advances in male genital reconstruction after trauma,excision of benign and malignant disease,in gender reassignment surgery and aphallia with emphasis on surgical technique,cosmetic and functional outcome.

  13. Coating of silicon pore optics

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Ackermann, M.; Christensen, Finn Erland;

    2009-01-01

    For the International X-ray observatory (IXO), a mirror module with an effective area of 3 m2 at 1.25 keV and at least 0.65 m2 at 6 keV has to be realized. To achieve this goal, coated silicon pore optics has been developed over the last years. One of the challenges is to coat the Si plates...

  14. Climate Reconstructions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Paleoclimatology Program archives reconstructions of past climatic conditions derived from paleoclimate proxies, in addition to the Program's large...

  15. Laryngopharyngeal reconstruction

    OpenAIRE

    Kazi, Rehan A

    2006-01-01

    There is a high incidence of hypopharyngeal cancer is our country due to the habits of tobacco and alcohol. Moreover these cases are often detected in the late stages thereby making the issue of reconstruction very tedious and unpredictable. There are a number of options for laryngopharyngeal reconstruction available now including the use of microvascular flaps depending upon the patient’s fitness, motivation, technical expertise, size and extent of the defect. This article reviews the differ...

  16. DESIGN INFORMATION ON FINE PORE AERATION SYSTEMS

    Science.gov (United States)

    Field studies were conducted over several years at municipal wastewater treatment plants employing line pore diffused aeration systems. These studies were designed to produce reliable information on the performance and operational requirements of fine pore devices under process ...

  17. USING A NEW FINITE SLIT PORE MODEL FOR NLDFT ANALYSIS OF CARBON PORE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Jagiello, Jacek [Micromeritics Instrument Corporation; Kenvin, Jeffrey [Micromeritics Instrument Corporation; Oliver, James P [Micromeritics Instrument Corporation; Lupini, Andrew R [ORNL; Contescu, Cristian I [ORNL

    2011-01-01

    In this work, we present a model for analyzing activated carbon micropore structures based on graphene sheet walls of finite thickness and extent. This is a two-dimensional modification of the widely used infinite slit pore model that assumes graphite-like infinitely extended pore walls. The proposed model has two versions: (1) a strip pore constructed with graphene strip walls that have finite length L in the x direction and are infinite in the y direction. Strip pores are open on both sides in the x direction. (2) A channel pore is a strip pore partially closed along one edge by a perpendicularly oriented graphene wall. This more realistic model allows pore termination via both physical pore entrances and pore blockage. The model consequently introduces heterogeneity of the adsorption potential that is reduced near pore entrances and enhanced near corners of pore walls. These energetically heterogeneous structures fill with adsorbate more gradually than homogeneous pores of the same width. As a result, the calculated adsorption isotherms are smoother and less steep for the finite versus the infinite pore model. In the application of this model for carbon characterization it is necessary to make an assumption about the pore length. In this work we made this assumption based on the high resolution scanning transmission electron microscopy (STEM) results. We find the agreement between the experiment and the model significantly better for the finite than for the infinite pore model.

  18. Project Reconstruct.

    Science.gov (United States)

    Helisek, Harriet; Pratt, Donald

    1994-01-01

    Presents a project in which students monitor their use of trash, input and analyze information via a database and computerized graphs, and "reconstruct" extinct or endangered animals from recyclable materials. The activity was done with second-grade students over a period of three to four weeks. (PR)

  19. Vaginal reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Lesavoy, M.A.

    1985-05-01

    Vaginal reconstruction can be an uncomplicated and straightforward procedure when attention to detail is maintained. The Abbe-McIndoe procedure of lining the neovaginal canal with split-thickness skin grafts has become standard. The use of the inflatable Heyer-Schulte vaginal stent provides comfort to the patient and ease to the surgeon in maintaining approximation of the skin graft. For large vaginal and perineal defects, myocutaneous flaps such as the gracilis island have been extremely useful for correction of radiation-damaged tissue of the perineum or for the reconstruction of large ablative defects. Minimal morbidity and scarring ensue because the donor site can be closed primarily. With all vaginal reconstruction, a compliant patient is a necessity. The patient must wear a vaginal obturator for a minimum of 3 to 6 months postoperatively and is encouraged to use intercourse as an excellent obturator. In general, vaginal reconstruction can be an extremely gratifying procedure for both the functional and emotional well-being of patients.

  20. Vaginal reconstruction

    International Nuclear Information System (INIS)

    Vaginal reconstruction can be an uncomplicated and straightforward procedure when attention to detail is maintained. The Abbe-McIndoe procedure of lining the neovaginal canal with split-thickness skin grafts has become standard. The use of the inflatable Heyer-Schulte vaginal stent provides comfort to the patient and ease to the surgeon in maintaining approximation of the skin graft. For large vaginal and perineal defects, myocutaneous flaps such as the gracilis island have been extremely useful for correction of radiation-damaged tissue of the perineum or for the reconstruction of large ablative defects. Minimal morbidity and scarring ensue because the donor site can be closed primarily. With all vaginal reconstruction, a compliant patient is a necessity. The patient must wear a vaginal obturator for a minimum of 3 to 6 months postoperatively and is encouraged to use intercourse as an excellent obturator. In general, vaginal reconstruction can be an extremely gratifying procedure for both the functional and emotional well-being of patients

  1. Effect of Gas Pores on Mechanical Properties of High-Pressure Die-Casting AM50 Magnesium Alloy.

    Science.gov (United States)

    Jiang, Wei; Cao, Zhanyi; Liu, Liping; Jiang, Bo

    2016-08-01

    High-pressure die-casting (HPDC) AM50 tensile specimens were used to investigate characteristics of gas pores and its effect on mechanical properties of HPDC AM50 magnesium alloy. Combining microstructure morphology gained from optical microscopy, scanning electron microscopy (SEM), and three-dimensional (3D) reconstruction with the experimental data from uniaxial tensile testing, we pursued the relationship between gas pores and the mechanical properties of HPDC AM50 Mg alloy. Results indicate that comparing with 3D reconstruction models, 2D images like optical metallography images and SEM images have one-sidedness. Furthermore, the size and maximum areal fraction of gas pores have negative effects on the mechanical properties of HPDC AM50 Mg alloy. With increase of the maximum size of gas pores in the specimen, the ultimate tensile strength (UTS) and elongation decrease. In addition, with the maximum areal fraction becoming larger, both the UTS and elongation decrease linearly.

  2. Microlens arrays with integrated pores

    Directory of Open Access Journals (Sweden)

    Shu Yang

    2005-12-01

    Full Text Available Microlenses are important optical components that image, detect, and couple light. But most synthetic microlenses have fixed position and shape once they are fabricated, so their possible range of tunability and complexity is rather limited. By comparison, biology provides many varied, new paradigms for the development of adaptive optical networks. Here, we discuss inspirational examples of biological lenses and their synthetic analogs. We focus on the fabrication and characterization of biomimetic microlens arrays with integrated pores, whose appearance and function are similar to highly efficient optical elements formed by brittlestars. The complex design can be created by three-beam interference lithography. The synthetic lens has strong focusing ability for use as an adjustable lithographic mask and a tunable optical device coupled with the microfluidic system. Replacing rigid microlenses with soft hydrogels provides a way of changing the lens geometry and refractive index continuously in response to external stimuli, resulting in intelligent, multifunctional, tunable optics.

  3. Effects of fractal pore on coal devolatilization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yongli; He, Rong [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Wang, Xiaoliang; Cao, Liyong [Dongfang Electric Corporation, Chengdu (China). Centre New Energy Inst.

    2013-07-01

    Coal devolatilization is numerically investigated by drop tube furnace and a coal pyrolysis model (Fragmentation and Diffusion Model). The fractal characteristics of coal and char pores are investigated. Gas diffusion and secondary reactions in fractal pores are considered in the numerical simulations of coal devolatilization, and the results show that the fractal dimension is increased firstly and then decreased later with increased coal conversions during devolatilization. The mechanisms of effects of fractal pores on coal devolatilization are analyzed.

  4. Minimum Membrane Bending Energies of Fusion Pores

    OpenAIRE

    Jackson, Meyer B.

    2009-01-01

    Membranes fuse by forming highly curved intermediates, culminating in structures described as fusion pores. These hourglass-like figures that join two fusing membranes have high bending energies, which can be estimated using continuum elasticity models. Fusion pore bending energies depend strongly on shape, and the present study developed a method for determining the shape that minimizes bending energy. This was first applied to a fusion pore modeled as a single surface and then extended to a...

  5. Radio Reconstructions

    OpenAIRE

    Bulley, James; Jones, Daniel

    2013-01-01

    Radio Reconstructions is a sound installation which use indeterminate radio broadcasts as its raw material. Each piece is structured by a notated score, which controls its rhythm, dynamics and melodic contour over time. The audio elements used to enact this score are selected in real-time from unknown radio transmissions, by an autonomous software system which is continuously scanning the radio waves in search of similar fragments of audio. Using a technique known as audio mosaicing, hund...

  6. Nanofiltration membranes with narrowed pore size distribution via pore wall modification.

    Science.gov (United States)

    Du, Yong; Lv, Yan; Qiu, Wen-Ze; Wu, Jian; Xu, Zhi-Kang

    2016-06-30

    We propose a novel strategy for narrowing down the pore size distribution of ready-made nanofiltration membranes (NFMs) via pore wall modification. NFMs were subjected to the filtration of a highly reactive molecule solution, during which large pores were selectively reduced in size. The as-treated NFMs have high monovalent ion/divalent ion selectivity. PMID:27321407

  7. Pore Pressure Measurements Inside Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, H. F.; Grüne, Joachim

    2004-01-01

    The present paper presents pore pressure measurements from large scale model tests performed at the Large Wave Channel, Hannover, Germany and small scale model test performed at the Hydraulic & Coastal Engineering Laboratory, Aalborg University, Denmark. Information on pore pressure attenuation a...

  8. Afghanistan Reconstruction

    Institute of Scientific and Technical Information of China (English)

    Fu Xiaoqiang

    2006-01-01

    @@ The Karzai regime has made some progress over the past four years and a half in the post-war reconstruction.However, Taliban's destruction and drug economy are still having serious impacts on the security and stability of Afghanistan.Hence the settlement of the two problems has become a crux of affecting the country' s future.Moreover, the Karzai regime is yet to handle a series of hot potatoes in the fields of central government' s authority, military and police building-up and foreign relations as well.

  9. FINGERPRINT MATCHING BASED ON PORE CENTROIDS

    Directory of Open Access Journals (Sweden)

    S. Malathi

    2011-05-01

    Full Text Available In recent years there has been exponential growth in the use of bio- metrics for user authentication applications. Automated Fingerprint Identification systems have become popular tool in many security and law enforcement applications. Most of these systems rely on minutiae (ridge ending and bifurcation features. With the advancement in sensor technology, high resolution fingerprint images (1000 dpi pro- vide micro level of features (pores that have proven to be useful fea- tures for identification. In this paper, we propose a new strategy for fingerprint matching based on pores by reliably extracting the pore features The extraction of pores is done by Marker Controlled Wa- tershed segmentation method and the centroids of each pore are con- sidered as feature vectors for matching of two fingerprint images. Experimental results shows that the proposed method has better per- formance with lower false rates and higher accuracy.

  10. Pore Narrowing of Mesoporous Silica Materials

    Directory of Open Access Journals (Sweden)

    Christophe Detavernier

    2013-02-01

    Full Text Available To use mesoporous silicas as low-k materials, the pore entrances must be really small to avoid diffusion of metals that can increase the dielectric constant of the low-k dielectric. In this paper we present a new method to narrow the pores of mesoporous materials through grafting of a cyclic-bridged organosilane precursor. As mesoporous material, the well-studied MCM-41 powder was selected to allow an easy characterization of the grafting reactions. Firstly, the successful grafting of the cyclic-bridged organosilane precursor on MCM-41 is presented. Secondly, it is demonstrated that pore narrowing can be obtained without losing porosity by removing the porogen template after grafting. The remaining silanols in the pores can then be end-capped with hexamethyl disilazane (HMDS to make the material completely hydrophobic. Finally, we applied the pore narrowing method on organosilica films to prove that this method is also successful on existing low-k materials.

  11. The Pivotal Role of Alumina Pore Structure in HF Capture and Fluoride Return in Aluminum Reduction

    Science.gov (United States)

    McIntosh, Grant J.; Agbenyegah, Gordon E. K.; Hyland, Margaret M.; Metson, James B.

    2016-07-01

    Fluoride emissions during primary aluminum production are mitigated by dry scrubbing on alumina which, as the metal feedstock, also returns fluoride to the pots. This ensures stable pot operation and maintains process efficiency but requires careful optimization of alumina for both fluoride capture and solubility. The Brunauer-Emmett-Teller (BET) surface area of 70-80 m2 g-1 is currently accepted. However, this does not account for pore accessibility. We demonstrate using industry-sourced data that pores <3.5 nm are not correlated with fluoride return. Reconstructing alumina pore size distributions (PSDs) following hydrogen fluoride (HF) adsorption shows surface area is not lost by pore diameter shrinkage, but by blocking the internal porosity. However, this alone cannot explain this 3.5 nm threshold. We show this is a consequence of surface diffusion-based inhibition with surface chemistry probably playing an integral role. We advocate new surface area estimates for alumina which account for pore accessibility by explicitly ignoring <3.5 nm pores.

  12. Tracheal reconstructions.

    Science.gov (United States)

    Srikrishna, S V; Shekar, P S; Shetty, N

    1998-12-01

    Surgical reconstruction of the trachea is a relatively complex procedure. We had 20 cases of tracheal stenosis. We have a modest experience of 16 tracheal reconstructions for acquired tracheal stenosis. Two patients underwent laser treatment while another two died before any intervention. The majority of these cases were a result of prolonged ventilation (14 cases), following organophosphorous poisoning (11 cases), Guillain-Barré syndrome, bullet injury, fat embolism and surprisingly only one tumor, a case of mucoepidermoid carcinoma, who had a very unusual presentation. There were 12 males and 4 females in this series, age ranging from 12-35 years. The duration of ventilation ranged from 1-21 days and the interval from decannulation to development of stridor was between 5-34 days. Six of them were approached by the cervical route, 5 by thoracotomy and cervical approach, 2 via median sternotomy and 3 by thoracotomy alone. Five of them required an additional laryngeal drop and 1 required pericardiotomy and release of pulmonary veins to gain additional length. The excised segments of trachea measured 3 to 5 cms in length. All were end to end anastomosis with interrupted Vicryl sutures. We have had no experience with stents or prosthetic tubes. Three patients developed anastomotic leaks which were controlled conservatively. Almost all of them required postoperative tracheo-bronchial suctioning with fibreoptic bronchoscope. We had one death in this series due to sepsis. PMID:9914459

  13. Characteristics of pore migration controlled by diffusion through the pore-filling fluid

    Science.gov (United States)

    Petrishcheva, E.; Renner, J.

    2010-10-01

    We analyze drag and drop of pores filled with a fluid phase, e.g., water or melt, in which the constituting elements of the solid matrix are dissolved. Assuming that the diffusion through the fluid-phase dominates bulk transport kinetics, we address the problem of pore motion and calculate the pore mobility and the critical velocity of elongated and lenticular pores on a grain boundary for arbitrary dihedral angle. The found variations in critical velocity and mobility with dihedral angle are modest for given volume of pores with the two considered geometries. For given pore size, however, the dependence on dihedral angle accounts for several orders of magnitude in pore mobility and critical velocity.

  14. Three-dimensional characterization of pores in Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Márcia Regina Baldissera

    2011-03-01

    Full Text Available The direct three-dimensional characterization of opaque materials through serial sectioning makes possible to visualize and better quantify a material microstructure, using classical metallographic techniques coupled with computer-aided reconstruction. Titanium alloys are used as biomaterials for bone implants because of its excellent mechanical properties, biocompatibility and enhanced corrosion resistance. The Ti-6Al-4V alloy (in wt. (% with porous microstructure permits the ingrowths of new-bone tissues improving the fixation bone/implant. This is important to understand connectivity, morphology and spatial distribution of pores in microstructure. The Ti-6Al-4V alloy compacts were produced by powder metallurgy and sintered at three distinct temperatures (1250, 1400 and 1500 °C to obtain distinct microstructures in terms of residual porosity. The visualization of the reconstructed 3D microstructure provides a qualitative and quantitative analysis of the porosity of Ti6Al4V alloy (volume fraction and pore morphology.

  15. Influence of pore pressure to the development of a hydraulic fracture in poroelastic medium

    CERN Document Server

    Golovin, Sergey V

    2016-01-01

    In this paper we demonstrate the influence of the pore pressure to the development of a hydraulically-driven fracture in a poroelastic medium. We present a novel numerical model for propagation of a planar hydraulic fracture and prove its correctness by demonstration of the numerical convergence and by comparison with known solutions. The advantage of the algorithm is that it does not require the distinguishing of the fracture's tips and reconstruction of the numerical mesh according to the fracture propagation. Next, we perform a thorough analysis of the interplay of fluid filtration and redistribution of stresses near the fracture. We demonstrate that the fracture length decreases with the increase of the Biot's number (the parameter that determines the contribution of the pore pressure to the stress) and explain this effect by analysing the near-fracture pore pressure, rock deformation and stresses. We conclude, that the correct account for the fluid exchange between the fracture and the rock should be bas...

  16. High temperature ion channels and pores

    Science.gov (United States)

    Kang, Xiaofeng (Inventor); Gu, Li Qun (Inventor); Cheley, Stephen (Inventor); Bayley, Hagan (Inventor)

    2011-01-01

    The present invention includes an apparatus, system and method for stochastic sensing of an analyte to a protein pore. The protein pore may be an engineer protein pore, such as an ion channel at temperatures above 55.degree. C. and even as high as near 100.degree. C. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable electrical current signal. Possible signals include change in electrical current. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may also be detected.

  17. Enlarged facial pores: an update on treatments.

    Science.gov (United States)

    Dong, Joanna; Lanoue, Julien; Goldenberg, Gary

    2016-07-01

    Enlarged facial pores remain a common dermatologic and cosmetic concern from acne and rosacea, among other conditions, that is difficult to treat due to the multifactorial nature of their pathogenesis and negative impact on patients' quality of life. Enlarged facial pores are primarily treated through addressing associative factors, such as increased sebum production and cutaneous aging. We review the current treatment modalities for enlarged or dense facial pores, including topical retinoids, chemical peels, oral antiandrogens, and lasers and devices, with a focus on newer therapies. PMID:27529707

  18. Membrane-mediated repulsion between gramicidin pores

    OpenAIRE

    Constantin, Doru

    2015-01-01

    International audience We investigated the X-ray scattering signal of highly aligned multilayers of the zwitterionic lipid 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine containing pores formed by the antimicrobial peptide gramicidin as a function of the peptide/lipid ratio. We are able to obtain information on the structure factor of the pore fluid, which then yields the interaction potential between pores in the plane of the bilayers. Aside from a hard core with a radius close to the geo...

  19. Control of pore size in epoxy systems.

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Patricia Sue; Lenhart, Joseph Ludlow (North Dakota State University, Fargo, ND); Lee, Elizabeth (North Dakota State University, Fargo, ND); Kallam, Alekhya (North Dakota State University, Fargo, ND); Majumdar, Partha (North Dakota State University, Fargo, ND); Dirk, Shawn M.; Gubbins, Nathan; Chisholm, Bret J. (North Dakota State University, Fargo, ND); Celina, Mathias Christopher; Bahr, James (North Dakota State University, Fargo, ND); Klein, Robert J.

    2009-01-01

    Both conventional and combinatorial approaches were used to study the pore formation process in epoxy based polymer systems. Sandia National Laboratories conducted the initial work and collaborated with North Dakota State University (NDSU) using a combinatorial research approach to produce a library of novel monomers and crosslinkers capable of forming porous polymers. The library was screened to determine the physical factors that control porosity, such as porogen loading, polymer-porogen interactions, and polymer crosslink density. We have identified the physical and chemical factors that control the average porosity, pore size, and pore size distribution within epoxy based systems.

  20. DESIGN MANUAL: FINE PORE AERATION SYSTEMS

    Science.gov (United States)

    This manual presents the best current practices for selecting, designing, operating, maintaining, and controlling fine pore aeration systems used in the treatment of municipal wastewater. It was prepared by the American Society of Civil Engineers Committee on Oxygen Transfer unde...

  1. Pore structure in blended cement pastes

    DEFF Research Database (Denmark)

    Canut, Mariana Moreira Cavalcanti

    Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained...... supplement each other. Cement pastes (w/b=0.4) with and without slag and fly ash cured at two moisture (sealed and saturated) and temperature (20 and 55ºC) conditions were used to investigate the combined impact of SCMs addition and curing on the pore structure of pastes cured up to two years. Also...... volume and threshold pore size were found when comparing with plain cement paste at the same curing conditions. The porosity methods MIP, LTC and SEM have been shown to be suitable to characterise pore parameters of the pastes. MIP is a simple and fast method which covers a large range of pore sizes...

  2. Straight Pore Microfilter with Efficient Regeneration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is directed toward development of a novel microfiltration filter that has distinctively narrow pore size...

  3. Analysis of a spatially deconvolved solar pore

    CERN Document Server

    Noda, C Quintero; Cobo, B Ruiz; Suematsu, Y; Katsukawa, Y; Ichimoto, K

    2016-01-01

    Solar pores are active regions with large magnetic field strengths and apparent simple magnetic configurations. Their properties resemble the ones found for the sunspot umbra although pores do not show penumbra. Therefore, solar pores present themselves as an intriguing phenomenon that is not completely understood. We examine in this work a solar pore observed with Hinode/SP using two state of the art techniques. The first one is the spatial deconvolution of the spectropolarimetric data that allows removing the stray light contamination induced by the spatial point spread function of the telescope. The second one is the inversion of the Stokes profiles assuming local thermodynamic equilibrium that let us to infer the atmospheric physical parameters. After applying these techniques, we found that the spatial deconvolution method does not introduce artefacts, even at the edges of the magnetic structure, where large horizontal gradients are detected on the atmospheric parameters. Moreover, we also describe the p...

  4. Straight Pore Microfilter with Efficient Regeneration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II project is directed toward development of a novel microfiltration filter that has distinctively narrow pore size...

  5. Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution

    Science.gov (United States)

    Shah, S. M.; Gray, F.; Crawshaw, J. P.; Boek, E. S.

    2016-09-01

    A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 μm, 6.2 μm, 8.3 μm and 10.2 μm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 μm) to lower resolutions (6.2 μm, 8.3 μm and 10.2 μm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it

  6. Reconstructive Urology

    Directory of Open Access Journals (Sweden)

    Fikret Fatih Önol

    2014-11-01

    Full Text Available In the treatment of urethral stricture, Buccal Mucosa Graft (BMG and reconstruction is applied with different patch techniques. Recently often prefered, this approach is, in bulber urethra strictures of BMG’s; by “ventral onley”, in pendulous urethra because of thinner spingiosis body, which provides support and nutrition of graft; by means of “dorsal inley” being anastomosis. In the research that Cordon et al. did, they compared conventional BMJ “onley” urethroplast and “pseudo-spongioplasty” which base on periurethral vascular tissues to be nourished by closing onto graft. In repairment of front urethras that spongiosis supportive tissue is insufficient, this method is defined as peripheral dartos [çevre dartos?] and buck’s fascia being mobilized and being combined on BMG patch. Between the years 2007 and 2012, assessment of 56 patients with conventional “ventral onley” BMG urethroplast and 46 patients with “pseudo-spongioplasty” were reported to have similar success rates (80% to 84% in 3.5 year follow-up on average. While 74% of the patients that were applied pseudo-spongioplasty had disease present at distal urethra (pendulous, bulbopendulous, 82% of the patients which were applied conventional onley urethroplast had stricture at proximal (bulber urethra yet. Also lenght of the stricture at the pseudo-spongioplasty group was longer in a statistically significant way (5.8 cm to 4.7 cm on average, p=0.028. This study which Cordon et al. did, shows that conditions in which conventional sponjiyoplasti is not possible, periurethral vascular tissues are adequate to nourish BMG. Even it is an important technique in terms of bringing a new point of view to today’s practice, data especially about complications that may show up after pseudo-spongioplasty usage on long distal strictures (e.g. appearance of urethral diverticulum is not reported. Along with this we think that, providing an oppurtinity to patch directly

  7. Visualization of enzyme activities inside earthworm pores

    Science.gov (United States)

    Hoang, Duyen; Razavi, Bahar S.

    2015-04-01

    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  8. Lattice Boltzmann prediction of transport properties in reconstructed nanostructures of organic matters in shales

    CERN Document Server

    Chen, Li; Zhang, Lei; Tao, Wenquan

    2014-01-01

    Size, morphology and distributions of pores in organic matters of shale matrix are discussed based on high resolution images from experiments in the literature. 150 nanoscale structures of the organic matters are then reconstructed by randomly placing pore spheres with different diameters and overlap tolerances. Effects of porosity, the mean diameter and the overlap tolerance on void space connectivity and pore size distribution are studied. Further, a pore-scale model based on the Lattice Boltzmann method is developed to predict the Knudsen diffusivity and permeability of the reconstructed organic matters. The simulation results show that the mean pore diameter and overlap tolerance significantly affect the transport properties. The predicted Knudsen effective diffusivity is compared with Bruggeman equation and it is found that this equation underestimate the tortuosity. A modified Bruggeman equation is proposed based on the simulation results. The predicted intrinsic permeability is in acceptable agreement ...

  9. Low pore connectivity in natural rock

    Science.gov (United States)

    Hu, Qinhong; Ewing, Robert P.; Dultz, Stefan

    2012-05-01

    As repositories for CO2 and radioactive waste, as oil and gas reservoirs, and as contaminated sites needing remediation, rock formations play a central role in energy and environmental management. The connectivity of the rock's porespace strongly affects fluid flow and solute transport. This work examines pore connectivity and its implications for fluid flow and chemical transport. Three experimental approaches (imbibition, tracer concentration profiles, and imaging) were used in combination with network modeling. In the imbibition results, three types of imbibition slope [log (cumulative imbibition) vs. log (imbibition time)] were found: the classical 0.5, plus 0.26, and 0.26 transitioning to 0.5. The imbibition slope of 0.26 seen in Indiana sandstone, metagraywacke, and Barnett shale indicates low pore connectivity, in contrast to the slope of 0.5 seen in the well-connected Berea sandstone. In the tracer profile work, rocks exhibited different distances to the plateau porosity, consistent with the pore connectivity from the imbibition tests. Injection of a molten metal into connected pore spaces, followed by 2-D imaging of the solidified alloy in polished thin sections, allowed direct assessment of pore structure and lateral connection in the rock samples. Pore-scale network modeling gave results consistent with measurements, confirming pore connectivity as the underlying cause of both anomalous behaviors: imbibition slope not having the classical value of 0.5, and accessible porosity being a function of distance from the edge. A poorly connected porespace will exhibit anomalous behavior in fluid flow and chemical transport, such as a lower imbibition slope (in air-water system) and diffusion rate than expected from classical behavior.

  10. Low Pore Connectivity in Natural Rock

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qinhong; Ewing, Robert P.; Dultz, Stefan

    2012-05-15

    As repositories for CO₂ and radioactive waste, as oil and gas reservoirs, and as contaminated sites needing remediation, rock formations play a central role in energy and environmental management. The connectivity of the rock's porespace strongly affects fluid flow and solute transport. This work examines pore connectivity and its implications for fluid flow and chemical transport. Three experimental approaches (imbibition, tracer concentration profiles, and imaging) were used in combination with network modeling. In the imbibition results, three types of imbibition slope [log (cumulative imbibition) vs. log (imbibition time)] were found: the classical 0.5, plus 0.26, and 0.26 transitioning to 0.5. The imbibition slope of 0.26 seen in Indiana sandstone, metagraywacke, and Barnett shale indicates low pore connectivity, in contrast to the slope of 0.5 seen in the well-connected Berea sandstone. In the tracer profile work, rocks exhibited different distances to the plateau porosity, consistent with the pore connectivity from the imbibition tests. Injection of a molten metal into connected pore spaces, followed by 2-D imaging of the solidified alloy in polished thin sections, allowed direct assessment of pore structure and lateral connection in the rock samples. Pore-scale network modeling gave results consistent with measurements, confirming pore connectivity as the underlying cause of both anomalous behaviors: imbibition slope not having the classical value of 0.5, and accessible porosity being a function of distance from the edge. A poorly connected porespace will exhibit anomalous behavior in fluid flow and chemical transport, such as a lower imbibition slope (in air–water system) and diffusion rate than expected from classical behavior.

  11. Low pore connectivity in natural rock.

    Science.gov (United States)

    Hu, Qinhong; Ewing, Robert P; Dultz, Stefan

    2012-05-15

    As repositories for CO(2) and radioactive waste, as oil and gas reservoirs, and as contaminated sites needing remediation, rock formations play a central role in energy and environmental management. The connectivity of the rock's porespace strongly affects fluid flow and solute transport. This work examines pore connectivity and its implications for fluid flow and chemical transport. Three experimental approaches (imbibition, tracer concentration profiles, and imaging) were used in combination with network modeling. In the imbibition results, three types of imbibition slope [log (cumulative imbibition) vs. log (imbibition time)] were found: the classical 0.5, plus 0.26, and 0.26 transitioning to 0.5. The imbibition slope of 0.26 seen in Indiana sandstone, metagraywacke, and Barnett shale indicates low pore connectivity, in contrast to the slope of 0.5 seen in the well-connected Berea sandstone. In the tracer profile work, rocks exhibited different distances to the plateau porosity, consistent with the pore connectivity from the imbibition tests. Injection of a molten metal into connected pore spaces, followed by 2-D imaging of the solidified alloy in polished thin sections, allowed direct assessment of pore structure and lateral connection in the rock samples. Pore-scale network modeling gave results consistent with measurements, confirming pore connectivity as the underlying cause of both anomalous behaviors: imbibition slope not having the classical value of 0.5, and accessible porosity being a function of distance from the edge. A poorly connected porespace will exhibit anomalous behavior in fluid flow and chemical transport, such as a lower imbibition slope (in air-water system) and diffusion rate than expected from classical behavior.

  12. Hydrochromic Approaches to Mapping Human Sweat Pores.

    Science.gov (United States)

    Park, Dong-Hoon; Park, Bum Jun; Kim, Jong-Man

    2016-06-21

    Hydrochromic materials, which undergo changes in their light absorption and/or emission properties in response to water, have been extensively investigated as humidity sensors. Recent advances in the design of these materials have led to novel applications, including monitoring the water content of organic solvents, water-jet-based rewritable printing on paper, and hydrochromic mapping of human sweat pores. Our interest in this area has focused on the design of hydrochromic materials for human sweat pore mapping. We recognized that materials appropriate for this purpose must have balanced sensitivities to water. Specifically, while they should not undergo light absorption and/or emission transitions under ambient moisture conditions, the materials must have sufficiently high hydrochromic sensitivities that they display responses to water secreted from human sweat pores. In this Account, we describe investigations that we have carried out to develop hydrochromic substances that are suitable for human sweat pore mapping. Polydiacetylenes (PDAs) have been extensively investigated as sensor matrices because of their stimulus-responsive color change property. We found that incorporation of headgroups composed of hygroscopic ions such as cesium or rubidium and carboxylate counterions enables PDAs to undergo a blue-to-red colorimetric transition as well as a fluorescence turn-on response to water. Very intriguingly, the small quantities of water secreted from human sweat pores were found to be sufficient to trigger fluorescence turn-on responses of the hydrochromic PDAs, allowing precise mapping of human sweat pores. Since the hygroscopic ion-containing PDAs developed in the initial stage display a colorimetric transition under ambient conditions that exist during humid summer periods, a new system was designed. A PDA containing an imidazolium ion was found to be stable under all ambient conditions and showed temperature-dependent hydrochromism corresponding to a

  13. Analysis of a spatially deconvolved solar pore

    Science.gov (United States)

    Quintero Noda, C.; Shimizu, T.; Ruiz Cobo, B.; Suematsu, Y.; Katsukawa, Y.; Ichimoto, K.

    2016-08-01

    Solar pores are active regions with large magnetic field strengths and apparent simple magnetic configurations. Their properties resemble the ones found for the sunspot umbra although pores do not show penumbra. Therefore, solar pores present themselves as an intriguing phenomenon that is not completely understood. We examine in this work a solar pore observed with Hinode/SP using two state of the art techniques. The first one is the spatial deconvolution of the spectropolarimetric data that allows removing the stray light contamination induced by the spatial point spread function of the telescope. The second one is the inversion of the Stokes profiles assuming local thermodynamic equilibrium that let us to infer the atmospheric physical parameters. After applying these techniques, we found that the spatial deconvolution method does not introduce artefacts, even at the edges of the magnetic structure, where large horizontal gradients are detected on the atmospheric parameters. Moreover, we also describe the physical properties of the magnetic structure at different heights finding that, in the inner part of the solar pore, the temperature is lower than outside, the magnetic field strength is larger than 2 kG and unipolar, and the line-of-sight velocity is almost null. At neighbouring pixels, we found low magnetic field strengths of same polarity and strong downward motions that only occur at the low photosphere, below the continuum optical depth log τ = -1. Finally, we studied the spatial relation between different atmospheric parameters at different heights corroborating the physical properties described before.

  14. Using BIB-SEM to determine pore morphology and pore size distributions in coal macerals

    Energy Technology Data Exchange (ETDEWEB)

    Giffin, S.; Littke, R. [RWTH Aachen Univ. (Germany). Inst. of Geology and Geochemistry of Petroleum and Coal; Klaver, J.; Urai, J.L. [RWTH Aachen Univ. (Germany). Structural Geology, Tectonics and Geomechanics

    2013-08-01

    The composition of coalbeds is considerably heterogeneous, affecting the transport pathways for fluids within the coal. Transport pathways include cleats and larger pores. However, only a few clues exist as the nature of these pores. This study examines the morphology and distribution of macro- and mesopores in coal samples, using broad ion beam (BIB) milling to prepare relief- and damage-free polished surfaces of coal samples for high-resolution SEM imaging. Broad ion beam milling is advantageous to focused ion beam milling in that a larger surface area can be milled. Combining that with SEM imaging results in a useful tool to study pore morphology and distributions in the size range between 10 nm and 10 {mu}m. Since BIB-sections of a few square millimeters are not large enough to be statistically representative, results cannot be easily interpreted from a coal seam standpoint. Therefore, porosity was investigated as a function of maceral type to characterize pore morphologies. Macerals from the vitrinite and inertinite groups were selected with a known relationship to bedding. BIB-sections were milled parallel to bedding and perpendicular to bedding, and the pores were evaluated in each section. The goal of this study is to (1) qualitatively describe pore morphology with respect to maceral type and (2) quantitatively characterize pore size distributions with respect to maceral and in relationship to bedding. Our results lead to a better understanding of bulk coal porosity due to the visual, spatial representation and quantification of pores in individual macerals. (orig.)

  15. Moving Magnetic Features around a Pore

    CERN Document Server

    Kaithakkal, A J; Solanki, S K; Lagg, A; Barthol, P; Gandorfer, A; Gizon, L; Hirzberger, J; vanNoort, M; Rodríguez, J Blanco; Iniesta, J C Del Toro; Suárez, D Orozco; Schmidt, W; Pillet, V Martínez; Knölker, M

    2016-01-01

    Spectropolarimetric observations from Sunrise II/IMaX obtained in June 2013 are used for a statistical analysis to determine the physical properties of moving magnetic features (MMFs) observed near a pore. MMFs of the same and opposite polarity with respect to the pore are found to stream from its border at an average speed of 1.3 km s$^{-1}$ and 1.2 km s$^{-1}$ respectively, with mainly same-polarity MMFs found further away from the pore. MMFs of both polarities are found to harbor rather weak, inclined magnetic fields. Opposite-polarity MMFs are blue-shifted, while same-polarity MMFs do not show any preference for up- or downflows. Most of the MMFs are found to be of sub-arcsecond size and carry a mean flux of $\\sim$ 1.2$\\times 10^{17}$ Mx.

  16. Optical detection of pores in adipocyte membrane

    Science.gov (United States)

    Yanina, I. Yu.; Doubrovski, V. A.; Tuchin, V. V.

    2013-08-01

    Structures that can be interpreted as cytoplasm droplets leaking through the membrane are experimentally detected on the membranes of adipocytes using optical digital microscopy. The effect of an aqueous alcohol solution of brilliant green on the amount and sizes of structures is studied. It is demonstrated that the optical irradiation of the adipocytes that are sensitized with the aid of the brilliant green leads to an increase in the amount of structures (pores) after the irradiation. The experimental results confirm the existence of an earlier-proposed effect of photochemical action on the sensitized cells of adipose tissue that involves additional formation of pores in the membrane of the sensitized cell under selective optical irradiation. The proposed method for the detection of micropores in the membrane of adipose tissue based on the detection of the cytoplasm droplets leaking from the cell can be considered as a method for the optical detection of nanosized pores.

  17. PORE STRUCTURE MODEL OF CEMENT HYDRATES CONSIDERING PORE WATER CONTENT AND REACTION PROCESS UNDER ARBITRARY HUMIDITY

    Science.gov (United States)

    Fujikura, Yusuke; Oshita, Hideki

    A simulation model to estimate the pore structure of cement hydrates by curing in arbitrary relative humidity is presented. This paper describes procedures for predicting phase compositions based on the classical hydration model of Portland cement, calculating the particle size distribution of constituent phases and evaluating the pore size distribution by stereological and statistical considerations. And to estimate the water content in pore structure under any relative humidity, we proposed the simulation model of adsorption isotherm model based on the pore structure. To evaluate the effectiveness of this model, simulation results were compared with experimental results of the pore size distribution measured by mercury porosimetry. As a result, it was found that the experimental and simulated results were in close agreement, and the simulated results indicated characterization of the po re structure of cement hydrates.

  18. Pore water chemistry of the febex bentonite

    International Nuclear Information System (INIS)

    The knowledge of pore water chemistry in the clay barrier is essential for performance assessment purposes in a nuclear waste repository, since the pore water composition controls the processes involved in the release and transport of the radionuclides. The methodology followed to define the representative composition of the FEBEX bentonite pore water is presented in this paper. A series of bentonite-water interaction tests have been performed with the aim of providing a database on the main chemical parameters of the bentonite. These tests were carried out both with high solid to liquid (s:l) ratios (squeezing tests) and low s:l ratios (aqueous extracts tests). The exchangeable cations have also been analyzed to determine the selectivity coefficient of the exchange reactions. To complete the data set, a physical and mineralogical characterization of the bentonite was made. The most significant bentonite-water interaction processes controlling the chemistry of the system was identified. The ion concentrations basically depend on the s:l ratio of the system, and the pore water composition is controlled by the dissolution of chlorides, dissolution/precipitation of carbonates and sulphates and the cation exchange reactions in the smectite. The bentonite/water system was modelled with the PHREEQC2 program to obtain the best possible estimation of the pore water composition for initial conditions of water content (=14%), after checking the conceptual model with the experimental results. The model predictions fitted satisfactorily with the experimental data at low s:l ratios. At high s:l ratios, the modelled results agree adequately, except for the sulphate content, which could be affected by the effective porosity, anion exclusion or stagnant zones not taken into account in the model. According to the model, the FEBEX bentonite pore water at 14% moisture is a sodium-chloride type, with an ionic strength of 0.25 M and pH of 7.78. Copyright (2001) Material Research

  19. Porous media fluid transport and pore structure

    CERN Document Server

    Dullien, F A L

    1992-01-01

    This book examines the relationship between transport properties and pore structure of porous material. Models of pore structure are presented with a discussion of how such models can be used to predict the transport properties of porous media. Portions of the book are devoted to interpretations of experimental results in this area and directions for future research. Practical applications are given where applicable, and are expected to be useful for a large number of different fields, including reservoir engineering, geology, hydrogeology, soil science, chemical process engineering, biomedica

  20. Neuromagnetic source reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, P.S.; Mosher, J.C. [Los Alamos National Lab., NM (United States); Leahy, R.M. [University of Southern California, Los Angeles, CA (United States)

    1994-12-31

    In neuromagnetic source reconstruction, a functional map of neural activity is constructed from noninvasive magnetoencephalographic (MEG) measurements. The overall reconstruction problem is under-determined, so some form of source modeling must be applied. We review the two main classes of reconstruction techniques-parametric current dipole models and nonparametric distributed source reconstructions. Current dipole reconstructions use a physically plausible source model, but are limited to cases in which the neural currents are expected to be highly sparse and localized. Distributed source reconstructions can be applied to a wider variety of cases, but must incorporate an implicit source, model in order to arrive at a single reconstruction. We examine distributed source reconstruction in a Bayesian framework to highlight the implicit nonphysical Gaussian assumptions of minimum norm based reconstruction algorithms. We conclude with a brief discussion of alternative non-Gaussian approachs.

  1. Silicon Pore Optics development for ATHENA

    DEFF Research Database (Denmark)

    Collon, Maximilien J.; Vacanti, Giuseppe; Guenther, Ramses;

    2015-01-01

    ) to meet the science requirements of large effective area (1-2 m(2) at a few keV) at a focal length of 12 m. To meet the high angular resolution (5 arc seconds) requirement the X-ray lens will also need to be very accurate. Silicon Pore Optics (SPO) technology has been invented to enable building...

  2. Gas transport and subsoil pore characteristics

    DEFF Research Database (Denmark)

    Berisso, Feto Esimo; Schjønning, Per; Keller, Thomas;

    2013-01-01

    were sampled in vertical and horizontal directions from 0.3, 0.5, 0.7 and 0.9 m depth (the two lower depths only in Sweden). In the laboratory, water retention, air permeability (ka) and gas diffusivity (Ds/D0) were determined. For the sandy clay loam, morphological characteristics of pores (effective...

  3. Particle diffusion in complex nanoscale pore networks

    DEFF Research Database (Denmark)

    Müter, Dirk; Sørensen, Henning Osholm; Bock, H.;

    2015-01-01

    We studied the diffusion of particles in the highly irregular pore networks of chalk, a very fine-grained rock, by combining three-dimensional X-ray imaging and dissipative particle dynamics (DPD) simulations. X-ray imaging data were collected at 25 nm voxel dimension for two chalk samples...

  4. Observations of sausage modes in magnetic pores

    CERN Document Server

    Morton, R J; Jess, D B; Mathioudakis, M

    2010-01-01

    We present here evidence for the observation of the magneto-hydrodynamic (MHD) sausage modes in magnetic pores in the solar photosphere. Further evidence for the omnipresent nature of acoustic global modes is also found. The empirical decomposition method of wave analysis is used to identify the oscillations detected through a 4170 {\\AA} 'blue continuum' filter observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument. Out of phase, periodic behavior in pore size and intensity is used as an indicator of the presence of magneto-acoustic sausage oscillations. Multiple signatures of the magneto-acoustic sausage mode are found in a number of pores. The periods range from as short as 30 s up to 450 s. A number of the magneto-acoustic sausage mode oscillations found have periods of 3 and 5 minutes, similar to the acoustic global modes of the solar interior. It is proposed that these global oscillations could be the driver of the sausage type magneto-acoustic MHD wave modes in pores.

  5. Induction of nano pore in Agrobacterial hemoglobin

    Directory of Open Access Journals (Sweden)

    Mojtaba Tousheh

    2014-01-01

    Full Text Available Introduction: A variety of oxygen-transport and -binding proteins exist in organisms including bacteria, protozoans, and fungi all have hemoglobin-like proteins. In addition to dealing with transport and sensing of oxygen, they may also deal with NO2, CO2, sulfide compounds, and even O2 scavenging in environments. Also they detoxified chlorinated materials like P450 enzymes and peroxidases and use as a detector of nitrate and hydrogen peroxide. Pore-forming bacterial globins are interested for filtration. Materials and methods: Although there are data for bacterial toxin as a filter, here we used Agrobacterial hem to induce nano pore in the heme structure using point mutation. Results: Investigations showed that three amino acids leucine 76, alanine 83 and histidine 80 are important for pore formation in Agrobacterium hemoglobin. A point mutation on leucine 76 to glycine, histidine 80 to asparagine and alanine 83 to lysine step by step led to create the nano pore 0.7- 0.8 nm in the globin. Discussion and conclusion: These mutations in bacterial hemoglobin increase the stability when mutation is with it’s at pH7. This mutation decreases the aliphatic index however increase the stability index.

  6. Particle diffusion in complex nanoscale pore networks

    DEFF Research Database (Denmark)

    Müter, Dirk; Sørensen, Henning Osholm; Bock, H.;

    2015-01-01

    We studied the diffusion of particles in the highly irregular pore networks of chalk, a very fine-grained rock, by combining three-dimensional X-ray imaging and dissipative particle dynamics (DPD) simulations. X-ray imaging data were collected at 25 nm voxel dimension for two chalk samples with v...

  7. Multi-scale simulation of capillary pores and gel pores in Portland cement paste

    OpenAIRE

    Gao, Peng; YE, guang; Wei, Jiangxiong; Yu, Qijun

    2015-01-01

    The microstructures of Portland cement paste (water to cement ratio is 0.4, curing time is from 1 day to 28 days) are simulated based on the numerical cement hydration model, HUMOSTRUC3D (van Breugel, 1991; Koenders, 1997; Ye, 2003). The nanostructures of inner and outer C-S-H are simulated by the packing of monosized (5 nm) spheres. The pore structures (capillary pores and gel pores) of Portland cement paste are established by upgrading the simulated nanostructures of C-S-H to th...

  8. Facial skin pores: a multiethnic study

    Science.gov (United States)

    Flament, Frederic; Francois, Ghislain; Qiu, Huixia; Ye, Chengda; Hanaya, Tomoo; Batisse, Dominique; Cointereau-Chardon, Suzy; Seixas, Mirela Donato Gianeti; Dal Belo, Susi Elaine; Bazin, Roland

    2015-01-01

    Skin pores (SP), as they are called by laymen, are common and benign features mostly located on the face (nose, cheeks, etc) that generate many aesthetic concerns or complaints. Despite the prevalence of skin pores, related literature is scarce. With the aim of describing the prevalence of skin pores and anatomic features among ethnic groups, a dermatoscopic instrument, using polarized lighting, coupled to a digital camera recorded the major features of skin pores (size, density, coverage) on the cheeks of 2,585 women in different countries and continents. A detection threshold of 250 μm, correlated to clinical scorings by experts, was input into a specific software to further allow for automatic counting of the SP density (N/cm2) and determination of their respective sizes in mm2. Integrating both criteria also led to establishing the relative part of the skin surface (as a percentage) that is actually covered by SP on cheeks. The results showed that the values of respective sizes, densities, and skin coverage: 1) were recorded in all studied subjects; 2) varied greatly with ethnicity; 3) plateaued with age in most cases; and 4) globally refected self-assessment by subjects, in particular those who self-declare having “enlarged pores” like Brazilian women. Inversely, Chinese women were clearly distinct from other ethnicities in having very low density and sizes. Analyzing the present results suggests that facial skin pore’s morphology as perceived by human eye less result from functional criteria of associated appendages such as sebaceous glands. To what extent skin pores may be viewed as additional criteria of a photo-altered skin is an issue to be further addressed. PMID:25733918

  9. Pore Structure of Cement Pastes Blended with Volcanic Rock

    Institute of Scientific and Technical Information of China (English)

    YU Lehua; ZHOU Shuangxi; LI Liling

    2016-01-01

    The pore parameters of cement pastes blended with volcanic rock at the curing age of 1, 28 and 90 d were de-termined by a mercury intrusion porosimetry. The pore structure of the pastes was characterized through the analysis of porosity, average pore diameter, the most probable pore aperture, pore size distribution, as well as total pore volume. For the improvement of mechanical property and durability of cement-based material, the correlation of the formed pore structure with hydration time and replacement level of volcanic rock for cement was revealed. The results indicate that volcanic rock can diminish porosity and reduce pore size in cement paste when curing time prolongs, which is particu-larly prominent with replacement level of less than 20% in late period. The more harmful pores (i.e., capillary pore) are gradually transformed into harmless pore (i.e., gel pores or micropore), even fully filled and disappeared when hydration products increase. The pore structure of the cement paste is thus refined. The beneficial effect of volcanic rock on the pore structure of cement paste could enhance the mechanical property and durability of cement-based material.

  10. Breast reconstruction after mastectomy

    Directory of Open Access Journals (Sweden)

    Daniel eSchmauss

    2016-01-01

    Full Text Available Breast cancer is the leading cause of cancer death in women worldwide. Its surgical approach has become less and less mutilating in the last decades. However, the overall number of breast reconstructions has significantly increased lately. Nowadays breast reconstruction should be individualized at its best, first of all taking into consideration oncological aspects of the tumor, neo-/adjuvant treatment and genetic predisposition, but also its timing (immediate versus delayed breast reconstruction, as well as the patient’s condition and wish. This article gives an overview over the various possibilities of breast reconstruction, including implant- and expander-based reconstruction, flap-based reconstruction (vascularized autologous tissue, the combination of implant and flap, reconstruction using non-vascularized autologous fat, as well as refinement surgery after breast reconstruction.

  11. Breast Reconstruction After Mastectomy

    Science.gov (United States)

    ... reconstruction with or without radiotherapy. Current Opinion in Obstetrics and Gynecology 2011;23(1):44–50. [PubMed Abstract] Barry M, Kell MR. Radiotherapy and breast reconstruction: a meta-analysis. Breast ...

  12. Reoperative midface reconstruction.

    Science.gov (United States)

    Acero, Julio; García, Eloy

    2011-02-01

    Reoperative reconstruction of the midface is a challenging issue because of the complexity of this region and the severity of the aesthetic and functional sequela related to the absence or failure of a primary reconstruction. The different situations that can lead to the indication of a reoperative reconstructive procedure after previous oncologic ablative procedures in the midface are reviewed. Surgical techniques, anatomic problems, and limitations affecting the reoperative reconstruction in this region of the head and neck are discussed.

  13. Pores and Void in Asclepiades' Physical Theory.

    Science.gov (United States)

    Leith, David

    2012-01-01

    This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades' theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus' theory. PMID:22984299

  14. Active Pore Volume in Danish Peat Soils

    DEFF Research Database (Denmark)

    Forsmann, Ditte M.; Kjærgaard, Charlotte

    2012-01-01

    environment. Lowland soils are primarily peat soils, and only a minor part of the total soil volume of peat soils is occupied by macropores (>30 µm). Since water primarily flows in these macropores, the majority of the soil matrix is bypassed (the immobile domain). Phosphorus released in the immobile domain...... is not actively transported out of the system, but is only transported via diffusion, which is a very slow process. Thus it is interesting to investigate the size of the active pore volume in peat soils. The hypothesis of this study is that the active pores volume of a peat soil can be expressed using bulk...... density as a key parameter. This hypothesis is investigated using intact soil cores (d:6 cm; h: 15 cm) from 20 Danish peat soil locations. The volume of macropores was determined for samples, drained to a matrix potential of pF 2, using a pycnometer. Furthermore, retention curves were conducted using 100...

  15. Pores and Void in Asclepiades’ Physical Theory

    OpenAIRE

    Leith, David

    2012-01-01

    This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades’ theory, and concludes that his conception of void was basically that of Epicurus; the second half f...

  16. The pore dimensions of gramicidin A.

    OpenAIRE

    Smart, O S; Goodfellow, J. M.; Wallace, B.A.

    1993-01-01

    The ion channel forming peptide gramicidin A adopts a number of distinct conformations in different environments. We have developed a new method to analyze and display the pore dimensions of ion channels. The procedure is applied to two x-ray crystal structures of gramicidin that adopt distinct antiparallel double helical dimer conformations and a nuclear magnetic resonance (NMR) structure for the beta6.3 NH2-terminal to NH2-terminal dimer. The results are discussed with reference to ion cond...

  17. Temperature induced pore fluid pressurization in geomaterials

    OpenAIRE

    Ghabezloo, Siavash; Sulem, Jean

    2010-01-01

    International audience The theoretical basis of the thermal response of the fluid-saturated porous materials in undrained condition is presented. It has been demonstrated that the thermal pressurization phenomenon is controlled by the discrepancy between the thermal expansion of the pore fluid and of the solid phase, the stress-dependency of the compressibility and the non-elastic volume changes of the porous material. For evaluation of the undrained thermo-poro-elastic properties of satur...

  18. Evolution of Pore Size Distribution and Mean Pore Size in Lotus-type Porous Magnesium Fabricated with Gasar Process

    Institute of Scientific and Technical Information of China (English)

    Yuan LIU; Yanxiang LI; Huawei ZHANG; Jiang WAN

    2006-01-01

    The effect of gas pressures on the mean pore size, the porosity and the pore size distribution of lotus-type porous magnesium fabricated with Gasar process were investigated. The theoretical analysis and the experimental results all indicate that there exists an optimal ratio of the partial pressures of hydrogen pH2 to argon pAr for producing lotus-type structures with narrower pore size distribution and smaller pore size. The effect of solidification mode on the pore size distribution and pore size was also discussed.

  19. Morphology of the pore space in claystones – evidence from BIB/FIB ion beam sectioning and cryo-SEM observations

    Directory of Open Access Journals (Sweden)

    G. Desbois

    2009-02-01

    Full Text Available The morphology of pore space has a strong effect on mechanical and transport properties of mudrocks and clay-rich fault gouge, but its characterization has been mostly indirect. We report on a study of Boom clay from a proposed disposal site of radioactive waste (Mol site, Belgium using high resolution SEM at cryogenic temperature, with ion beam cutting to prepare smooth, damage free surfaces. Pores commonly have crack-like tips, preferred orientation parallel to bedding and power law size distribution. We define a number of pore types depending on shape and location in the microstructure: large jagged pores in strain shadows of clastic grains, high aspect ratio pores between similarly oriented phyllosilicate grains and crescent-shaped pores in saddle reefs of folded phyllosilicates. 3-D reconstruction by serial sectioning shows 3-D connectivity of the pore space. These findings call for reinterpretation of traditional pore size distributions calculated from mercury Injection experiments, explain slaking of clays by successive wetting and drying and provide the basis for microstructure-based models of transport in clays.

  20. INVESTIGATIONS INTO BIOFOULING PHENOMENA IN FINE PORE AERATION DEVICES

    Science.gov (United States)

    Microbiologically-based procedures were used to describe biofouling phenomena on fine pore aeration devices and to determine whether biofilm characteristics could be related to diffuser process performance parameters. Fine pore diffusers were obtained from five municipal wastewa...

  1. Facial skin pores: a multiethnic study

    Directory of Open Access Journals (Sweden)

    Flament F

    2015-02-01

    Full Text Available Frederic Flament,1 Ghislain Francois,1 Huixia Qiu,2 Chengda Ye,2 Tomoo Hanaya,3 Dominique Batisse,3 Suzy Cointereau-Chardon,1 Mirela Donato Gianeti Seixas,4 Susi Elaine Dal Belo,4 Roland Bazin5 1Department of Applied Research and Development, L’Oreal Research and Innovation, Paris, France; 2Department of Applied Research and Development, L’Oreal Research and Innovation, Shanghai, People’s Republic of China; 3Department of Applied Research and Development, L’Oreal Research and Innovation, Tokyo, Japan; 4Department of Applied Research and Development, L’Oreal Research and Innovation, Rio de Janeiro, Brazil; 5RB Consult, Bievres, France Abstract: Skin pores (SP, as they are called by laymen, are common and benign features mostly located on the face (nose, cheeks, etc that generate many aesthetic concerns or complaints. Despite the prevalence of skin pores, related literature is scarce. With the aim of describing the prevalence of skin pores and anatomic features among ethnic groups, a dermatoscopic instrument, using polarized lighting, coupled to a digital camera recorded the major features of skin pores (size, density, coverage on the cheeks of 2,585 women in different countries and continents. A detection threshold of 250 µm, correlated to clinical scorings by experts, was input into a specific software to further allow for automatic counting of the SP density (N/cm2 and determination of their respective sizes in mm2. Integrating both criteria also led to establishing the relative part of the skin surface (as a percentage that is actually covered by SP on cheeks. The results showed that the values of respective sizes, densities, and skin coverage: 1 were recorded in all studied subjects; 2 varied greatly with ethnicity; 3 plateaued with age in most cases; and 4 globally reflected self-assessment by subjects, in particular those who self-declare having “enlarged pores” like Brazilian women. Inversely, Chinese women were clearly

  2. The Structure of a Melittin-Stabilized Pore

    OpenAIRE

    Leveritt, John M.; Pino-Angeles, Almudena; Lazaridis, Themis

    2015-01-01

    Melittin has been reported to form toroidal pores under certain conditions, but the atomic-resolution structure of these pores is unknown. A 9-μs all-atom molecular-dynamics simulation starting from a closely packed transmembrane melittin tetramer in DMPC shows formation of a toroidal pore after 1 μs. The pore remains stable with a roughly constant radius for the rest of the simulation. Surprisingly, one or two melittin monomers frequently transition between transmembrane and surface states. ...

  3. Atomistic Simulations of Pore Formation and Closure in Lipid Bilayers

    OpenAIRE

    Bennett, W. F. Drew; Sapay, Nicolas; Tieleman, D. Peter

    2014-01-01

    Cellular membranes separate distinct aqueous compartments, but can be breached by transient hydrophilic pores. A large energetic cost prevents pore formation, which is largely dependent on the composition and structure of the lipid bilayer. The softness of bilayers and the disordered structure of pores make their characterization difficult. We use molecular-dynamics simulations with atomistic detail to study the thermodynamics, kinetics, and mechanism of pore formation and closure in DLPC, DM...

  4. Soil Pore Network Visualisation and Quantification using ImageJ

    DEFF Research Database (Denmark)

    Garbout, Amin; Pajor, Radoslaw; Otten, Wilfred

    -defined densities. First, scanned grayscale data of soil volumes were thresholded to separate solid and pore phases. Then, pore networks were extracted with the Skeletonize3D plug-in (Ignacio Arganda-Carreras), exploiting an ITK algorithm: binary thinning was used for finding the centerlines (”skeleton”) of pores...

  5. New ultrasonic technique for the study of the pore shape of track-etched pores in polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Alvarez-Arenas, T.E., E-mail: tgomez@ia.cetef.csic.e [Instituto de Acustica, CSIC, Serrano 144, 28006 Madrid (Spain); Apel, P.Yu.; Orelovitch, O.L. [Flerov Lab. of Nuclear Reactions, JINR, Dubna (Russian Federation); Munoz, M. [Institute of Applied Physics, CSIC, Serrano 144, Madrid (Spain)

    2009-10-15

    A new technique for the study of the pore shape of track-etched pores in polymer films is presented. This technique is based on the use of air-coupled ultrasounds and phase and magnitude spectral analysis. Transmission of ultrasounds through these membranes is made up of two contributions: propagation through the solid part and propagation along the pore channels. A time-domain procedure to separate these to contributions is presented. Sensitivity of ultrasounds propagation in the pore channels to variations of pore shape is studied. Membranes with similar properties (gas flow rate values) but slight differences in the pore shape are studied. The proposed technique reveals to be sensitive to such differences; unlike other techniques, it is capable to provide information in a separate way about pore aperture at the surface and pore diameter inside the membrane, in addition the technique is non-destructive.

  6. 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability

    Energy Technology Data Exchange (ETDEWEB)

    Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent

    2013-09-03

    Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of

  7. Research on the reconstruction method of porous media using multiple-point geostatistics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The pore structural characteristics have been the key to the studies on the mechanisms of fluids flow in porous media. With the development of experimental technology, the modern high-resolution equipments are capable of capturing pore structure images with a resolution of microns. But so far only 3D volume data of millimeter-scale rock samples can be obtained losslessly. It is necessary to explore the way of virtually reconstructing larger volume digital samples of porous media with the representative structural characteristics of the pore space. This paper proposes a reconstruction method of porous media using the structural characteristics captured by the data templates of multiple-point geostatistics. In this method, the probability of each structural characteristic of a pore space is acquired first, and then these characteristics are reproduced according to the probabilities to present the real structural characteristics in the reconstructed images. Our experimental results have shown that: (i) the deviation of LBM computed permeability respectively on the virtually reconstructed sandstone and the original sample is less than 1.2%; (ii) the reconstructed sandstone and the original sample have similar structural characteristics demonstrated by the variogram curves.

  8. Energy conversion device with support member having pore channels

    Science.gov (United States)

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  9. Silicon pore optics developments and status

    DEFF Research Database (Denmark)

    Bavdaz, Marcos; Wille, Eric; Wallace, Kotska;

    2012-01-01

    Silicon Pore Optics (SPO) is a lightweight high performance X-ray optics technology being developed in Europe, driven by applications in observatory class high energy astrophysics missions. An example of such application is the former ESA science mission candidate ATHENA (Advanced Telescope...... of the SPO technology. The technology development programme has succeeded in maturing the SPO further and achieving important milestones, in each of the main activity streams: environmental compatibility, industrial production and optical performance. In order to accurately characterise the increasing...... performance of this innovative optical technology, the associated X-ray test facilities and beam-lines have been refined and upgraded. © 2012 SPIE....

  10. Performance of multilayer coated silicon pore optics

    DEFF Research Database (Denmark)

    Ackermann, M. D.; Collon, M. J.; Cooper-Jensen, Carsten P.;

    2010-01-01

    The requirements for the IXO (International X-ray Observatory) telescope are very challenging in respect of angular resolution and effective area. Within a clear aperture with 1.7 m > R > 0.25 m that is dictated by the spacecraft envelope, the optics technology must be developed to satisfy...... and in accordance with the variation in grazing incidence angle. The higher energy photon response is enhanced through the use of depth-graded multilayer coatings on the inner radii mirror modules. In this paper we report on the first reflectivity measurements of wedged ribbed silicon pore optics mirror plates...

  11. Cosmic Tidal Reconstruction

    CERN Document Server

    Zhu, Hong-Ming; Yu, Yu; Er, Xinzhong; Chen, Xuelei

    2015-01-01

    The gravitational coupling of a long wavelength tidal field with small scale density fluctuations leads to anisotropic distortions of the locally measured small scale matter correlation function. Since the local correlation function is statistically isotropic in the absence of such tidal interactions, the tidal distortions can be used to reconstruct the long wavelength tidal field and large scale density field in analogy with the cosmic microwave background lensing reconstruction. In this paper we present in detail a formalism for the cosmic tidal reconstruction and test the reconstruction in numerical simulations. We find that the density field on large scales can be reconstructed with good accuracy and the cross correlation coefficient between the reconstructed density field and the original density field is greater than 0.9 on large scales ($k\\lesssim0.1h/\\mathrm{Mpc}$). This is useful in the 21cm intensity mapping survey, where the long wavelength radial modes are lost due to foreground subtraction proces...

  12. Different Routes to the Pore Engineering of Spherical MCM-41

    Institute of Scientific and Technical Information of China (English)

    LIU Shi-quan; E F Vansant; JIANG Min-hua

    2003-01-01

    Different routes,including the replacements of the template,addition of pore expander and hydrothermal post-synthesis treatment have been used for the pore engineering of spherical MCM-41.A comparison among the pore engineering effects of these methods has been made.The results show that the hydrothermal post-synthesis treatment affords the synthesized material with a larger pore size and narrow pore size distribution without changing the spherical morphology.As far as the pore-size expansion is concerned,the addition of DMTA is the most effective one,but this might be limited by the spherical morphology.Combining the replacement of C16TMABr with the Gemini surfactant GEM 16-8-16 with an addition of DMTA gives rise to the largest pore volume and surface area.

  13. Cephalic sensorial pores in galaxiid fishes from Chile (Osmeriformes: Galaxiidae

    Directory of Open Access Journals (Sweden)

    Sylvia Sáez

    2014-11-01

    Full Text Available The number and arrangement of the cephalic pores of the lateral line in Chilean fishes of the family Galaxiidae, were studied. The study showed that Brachygalaxias differs from Galaxias, in the absence of mandibular pores and in pore number reductions in the preopeopercular series. The most important variations were recorded in Galaxias globiceps and G. platei. The former species differed from the other species in the absence of a pore in the preopercular series, while in G. platei the supraorbital pore situated behind the eye was the main distinctive feature observed, in contrast to the upper position observed in the other species studied. A taxonomic key using cephalic sensory pores is proposed. These results indicate that the cephalic sensorial pores of the lateral line are a useful taxonomic character in the improvement of the diagnosis of galaxiid fishes -and in taxonomic and systematic studies among family Galaxiidae members.

  14. Wave-induced pore water pressure in marine cohesive soils

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Cyclic triaxial tests and numerical analyses were undertaken, in order to evaluate the wave-induced pore water pressure in seabed sediments in the Hangzhou Bay. The cyclic triaxial tests indicate that the rate of pore water pressure generation in cohesive soils decreases with time, and the development of the pore water pressure can be represented by a hyperbolic curve. Numerical analyses, taking into account the generation and dissipation of pore water pressure simultaneously, suggest that the pore water pressure buildup in cohesive soils may increase with time continuously until the pore water pressure ratio approaches to 1, or it may decrease after a certain time, which is controlled by drain conditions. These phenomena are different from those in sands. For waves with a return period of 100 a in the Hangzhou Bay, ifthe wave duration is more than 60 h, then the pore water pressure ratio will be close to 1 and soil fabric failure will take place.

  15. Analysis of quantitative pore features based on mathematical morphology

    Institute of Scientific and Technical Information of China (English)

    QI Heng-nian; CHEN Feng-nong; WANG Hang-jun

    2008-01-01

    Wood identification is a basic technique of wood science and industry. Pore features are among the most important identification features for hardwoods. We have used a method based on an analysis of quantitative pore feature, which differs from traditional qualitative methods. We applies mathematical morphology methods such as dilation and erosion, open and close transformation of wood cross-sections, image repairing, noise filtering and edge detection to segment the pores from their background. Then the mean square errors (MSE) of pores were computed to describe the distribution of pores. Our experiment shows that it is easy to classift the pore features into three basic types, just as in traditional qualitative methods, but with the use of MSE of pores. This quantitative method improves wood identification considerably.

  16. Re-construction

    OpenAIRE

    Bernadette Marie Devilat

    2013-01-01

    Re-construct: to build again. The necessary reconstruction process after an earthquake can be seen as an opportunity to improve previous conditions. All damaged buildings undergo a renovation process in which every piece is carefully returned to its original place. The photograph shows roof reconstruction work in San Pedro de Alcántara, a heritage area in the central valley of Chile, which was particularly affected by the 2010 earthquake. 

  17. Temperature reconstruction analysis

    CERN Document Server

    Scafetta, N; Grigolini, P; Roberts, J; Scafetta, Nicola; Imholt, Tim; Grigolini, Paolo; Roberts, Jim

    2002-01-01

    This paper presents a wavelet multiresolution analysis of a time series dataset to study the correlation between the real temperature data and three temperature model reconstructions at different scales. We show that the Mann et.al. model reconstructs the temperature better at all temporal resolutions. We show and discuss the wavelet multiresolution analysis of the Mann's temperature reconstruction for the period from 1400 to 2000 A.D.E.

  18. Flexor pulley reconstruction.

    Science.gov (United States)

    Dy, Christopher J; Daluiski, Aaron

    2013-05-01

    Flexor pulley reconstruction is a challenging surgery. Injuries often occur after traumatic lacerations or forceful extension applied to an acutely flexed finger. Surgical treatment is reserved for patients with multiple closed pulley ruptures, persistent pain, or dysfunction after attempted nonoperative management of a single pulley rupture, or during concurrent or staged flexor tendon repair or reconstruction. If the pulley cannot be repaired primarily, pulley reconstruction can be performed using graft woven into remnant pulley rim or looping graft around the phalanx. Regardless of the reconstructive technique, the surgeon should emulate the length, tension, and glide of the native pulley. PMID:23660059

  19. Temperature induced pore fluid pressurization in geomaterials

    CERN Document Server

    Ghabezloo, Siavash

    2010-01-01

    The theoretical basis of the thermal response of the fluid-saturated porous materials in undrained condition is presented. It has been demonstrated that the thermal pressurization phenomenon is controlled by the discrepancy between the thermal expansion of the pore fluid and of the solid phase, the stress-dependency of the compressibility and the non-elastic volume changes of the porous material. For evaluation of the undrained thermo-poro-elastic properties of saturated porous materials in conventional triaxial cells, it is important to take into account the effect of the dead volume of the drainage system. A simple correction method is presented to correct the measured pore pressure change and also the measured volumetric strain during an undrained heating test. It is shown that the porosity of the tested material, its drained compressibility and the ratio of the volume of the drainage system to the one of the tested sample, are the key parameters which influence the most the error induced on the measuremen...

  20. Atmosphere above a large solar pore

    CERN Document Server

    Sobotka, M; Jurcak, J; Heinzel, P; Del Moro, D

    2013-01-01

    A large solar pore with a granular light bridge was observed on October 15, 2008 with the IBIS spectrometer at the Dunn Solar Telescope and a 69-min long time series of spectral scans in the lines Ca II 854.2 nm and Fe I 617.3 nm was obtained. The intensity and Doppler signals in the Ca II line were separated. This line samples the middle chromosphere in the core and the middle photosphere in the wings. Although no indication of a penumbra is seen in the photosphere, an extended filamentary structure, both in intensity and Doppler signals, is observed in the Ca II line core. An analysis of morphological and dynamical properties of the structure shows a close similarity to a superpenumbra of a sunspot with developed penumbra. A special attention is paid to the light bridge, which is the brightest feature in the pore seen in the Ca II line centre and shows an enhanced power of chromospheric oscillations at 3-5 mHz. Although the acoustic power flux in the light bridge is five times higher than in the "quiet" chr...

  1. Bimodal mesoporous silica with bottleneck pores.

    Science.gov (United States)

    Reber, M J; Brühwiler, D

    2015-11-01

    Bimodal mesoporous silica consisting of two sets of well-defined mesopores is synthesized by a partial pseudomorphic transformation of an ordered mesoporous starting material (SBA-15 type). The introduction of a second set of smaller mesopores (MCM-41 type) establishes a pore system with bottlenecks that restricts the access to the core of the bimodal mesoporous silica particles. The particle size and shape of the starting material are retained, but micropores present in the starting material disappear during the transformation, leading to a true bimodal mesoporous product. A varying degree of transformation allows the adjustment of the pore volume contribution of the two mesopore domains. Information on the accessibility of the mesopores is obtained by the adsorption of fluorescence-labeled poly(amidoamine) dendrimers and imaging by confocal laser scanning microscopy. This information is correlated with nitrogen sorption data to provide insights regarding the spatial distribution of the two mesopore domains. The bimodal mesoporous materials are excellent model systems for the investigation of cavitation effects in nitrogen desorption isotherms. PMID:26399172

  2. Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects.

    Science.gov (United States)

    Bružauskaitė, Ieva; Bironaitė, Daiva; Bagdonas, Edvardas; Bernotienė, Eiva

    2016-05-01

    During the last decade biomaterial sciences and tissue engineering have become new scientific fields supplying rising demand of regenerative therapy. Tissue engineering requires consolidation of a broad knowledge of cell biology and modern biotechnology investigating biocompatibility of materials and their application for the reconstruction of damaged organs and tissues. Stem cell-based tissue regeneration started from the direct cell transplantation into damaged tissues or blood vessels. However, it is difficult to track transplanted cells and keep them in one particular place of diseased organ. Recently, new technologies such as cultivation of stem cell on the scaffolds and subsequently their implantation into injured tissue have been extensively developed. Successful tissue regeneration requires scaffolds with particular mechanical stability or biodegradability, appropriate size, surface roughness and porosity to provide a suitable microenvironment for the sufficient cell-cell interaction, cell migration, proliferation and differentiation. Further functioning of implanted cells highly depends on the scaffold pore sizes that play an essential role in nutrient and oxygen diffusion and waste removal. In addition, pore sizes strongly influence cell adhesion, cell-cell interaction and cell transmigration across the membrane depending on the various purposes of tissue regeneration. Therefore, this review will highlight contemporary tendencies in application of non-degradable scaffolds and stem cells in regenerative medicine with a particular focus on the pore sizes significantly affecting final recover of diseased organs.

  3. Electrokinetic induced solute dispersion in porous media; pore network modeling

    Science.gov (United States)

    Li, Shuai; Schotting, Ruud; Raoof, Amir

    2013-04-01

    Electrokinetic flow plays an important role in remediation process, separation technique, and chromatography. The solute dispersion is a key parameter to determine transport efficiency. In this study, we present the electrokinetic effects on solute dispersion in porous media at the pore scale, using a pore network model. The analytical solution of the electrokinetic coupling coefficient was obtained to quantity the fluid flow velocity in a cylinder capillary. The effect of electrical double layer on the electrokinetic coupling coefficient was investigated by applying different ionic concentration. By averaging the velocity over cross section within a single pore, the average flux was obtained. Applying such single pore relationships, in the thin electrical double layer limit, to each and every pore within the pore network, potential distribution and the induced fluid flow was calculated for the whole domain. The resulting pore velocities were used to simulate solute transport within the pore network. By averaging the results, we obtained the breakthrough curve (BTC) of the average concentration at the outlet of the pore network. Optimizing the solution of continuum scale advection-dispersion equation to such a BTC, solute dispersion coefficient was estimated. We have compared the dispersion caused by electrokinetic flow and pure pressure driven flow under different Peclet number values. In addition, the effect of microstructure and topological properties of porous media on fluid flow and solute dispersion is presented, mainly based on different pore coordination numbers.

  4. Image Reconstruction. Chapter 13

    International Nuclear Information System (INIS)

    This chapter discusses how 2‑D or 3‑D images of tracer distribution can be reconstructed from a series of so-called projection images acquired with a gamma camera or a positron emission tomography (PET) system [13.1]. This is often called an ‘inverse problem’. The reconstruction is the inverse of the acquisition. The reconstruction is called an inverse problem because making software to compute the true tracer distribution from the acquired data turns out to be more difficult than the ‘forward’ direction, i.e. making software to simulate the acquisition. There are basically two approaches to image reconstruction: analytical reconstruction and iterative reconstruction. The analytical approach is based on mathematical inversion, yielding efficient, non-iterative reconstruction algorithms. In the iterative approach, the reconstruction problem is reduced to computing a finite number of image values from a finite number of measurements. That simplification enables the use of iterative instead of mathematical inversion. Iterative inversion tends to require more computer power, but it can cope with more complex (and hopefully more accurate) models of the acquisition process

  5. A Stereolithography Pore-Throat Model

    Science.gov (United States)

    Crandall, D.; Ahmadi, G.; Ferer, M.; Smith, D. H.

    2007-12-01

    A new experimental, heterogeneous pore-throat model has been designed and fabricated using stereolithography (SL). In SL production, a laser cures a thin layer of photo-sensitive resin on the surface of a vat of liquid resin; a moveable platform then submerges the cured layer and a new layer is cured on top of the previous one, creating a physical model from a computer generated model. This layered fabrication of a computer generated model has enabled the production of an experimental porous medium with improved fluid resistance properties, as compared to previously studied, constant-height etched cells. A uniform distribution of throat widths was randomly placed throughout the pore-throat matrix and the throat height of each throat was assigned to increase the range of viscous and capillary resistances within the physical model. This variation in both throat height and width generated a porous medium with fairly low porosity (43%), permeability (~400 D), and wide range of geometric resistance properties. Experimental, two-phase immiscible drainage studies in the porous flowcell were performed. Analysis of the captured images was performed with open-source image processing software. These analysis techniques utilized the capability of both ImageJ and the Gnu Image Manipulation Program to be customized with ancillary codes. This enabled batch procedures to be created that converted the original grey-scale bitmaps to binary data sets, which were then analyzed with in-house codes. The fractal dimension, Df, (measured with box-counting) and percent saturation of these experiments were calculated and shown to compare favorably to fractal predictions and previous flowcell studies. Additionally, using the computer generated pore-throat geometry, a computational fluid dynamics model of two- phase flow through the porous medium was created. This model was created using FLUENT code and the Volume of Fluid method. The percent saturation of the less-viscous invading fluid

  6. Distributed Pore Chemistry in Porous Organic Polymers

    Science.gov (United States)

    Koontz, Steven L. (Inventor)

    1999-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge. wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions. and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  7. Conservation agriculture effects on soil pore characteristics

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Abdollahi, Lotfollah

    Conservation tillage in combination with crop rotation, residue management and cover crops are key components of conservation agriculture. A positive long-term effect of applying all components of conservation agriculture on soil structural quality is expected. However, there is a lack...... ploughing to a depth of 20 cm (MP), harrowing to a depth of 8-10 cm (H) and direct drilling (D). Minimally disturbed core samples were taken at 4-8, 12-16 and 18-27 cm depths 11 years after experimental start. Water retention characteristics were measured for a range of matric potential ranging from -10...... air permeability and pore continuity index. Generally, residue input, especially when combined with direct drilling at the Foulum site, decreased bulk density and the volume of blocked air porosity, and increased air-filled porosity, volumetric water content, air permeability and gas diffusivity. Our...

  8. Bioactive Ca-P scaffolds used for bone reconstruction

    Institute of Scientific and Technical Information of China (English)

    RUAN Jian-ming(阮建明); ZOU Jian-peng(邹俭鹏); Goldie Elisabeth; LIU Bing(刘兵)

    2003-01-01

    Bioactive ceramic scaffolds HA*TCP, aimed to be applied in clinic, were evaluated both in vitro and in vivo models. HA*TCP was supposed as a completely biodegradable material and designed as a scaffold to be used for bone reconstruction or regeneration. Materials processing was proposed and physical properties as well as microstructure feature were characterized. Biological postulation of the relationship between seeding density and proliferation, and viability of human osteoblasts cultured on the porous HA*TCP were quantitatively measured. Bone reconstruction was investigated both in vitro and in vivo by using these biodegradable scaffolds with pore sizes ranged in 200-400 μm in diameter. The degradable scaffold supported cellular proliferation of seeded osteoblasts on the scaffold and shown normal differentiated function in vitro. Seeding density is an important factor for cell attachment and proliferation expression and has been considerably discussed. Suitable pore size of the scaffolds is required if promotion of bone reconstruction is desired. Clinical trials show that HA*TCP scaffolds are successful applied for bone reconstruction and regeneration and can be completely degraded in human body in 12 months. This approach suggests the feasibility of using porous HA*TCP scaffold materials for the transplantation of autogenous osteoblasts to regenerate bone tissue.

  9. Stacking of silicon pore optics for IXO

    Science.gov (United States)

    Collon, Maximilien J.; Guenther, Ramses; Ackermann, Marcelo; Partapsing, Rakesh; Kelly, Chris; Beijersbergen, Marco W.; Bavdaz, Marcos; Wallace, Kotska; Olde Riekerink, Mark; Mueller, Peter; Krumrey, Michael

    2009-08-01

    Silicon pore optics is a technology developed to enable future large area X-ray telescopes, such as the International Xray Observatory (IXO), a candidate mission in the ESA Space Science Programme 'Cosmic Visions 2015-2025'. IXO uses nested mirrors in Wolter-I configuration to focus grazing incidence X-ray photons on a detector plane. The IXO mirrors will have to meet stringent performance requirements including an effective area of ~3 m2 at 1.25 keV and ~1 m2 at 6 keV and angular resolution better than 5 arc seconds. To achieve the collecting area requires a total polished mirror surface area of ~1300 m2 with a surface roughness better than 0.5 nm rms. By using commercial high-quality 12" silicon wafers which are diced, structured, wedged, coated, bent and stacked the stringent performance requirements of IXO can be attained without any costly polishing steps. Two of these stacks are then assembled into a co-aligned mirror module, which is a complete X-ray imaging system. Included in the mirror module are the isostatic mounting points, providing a reliable interface to the telescope. Hundreds of such mirror modules are finally integrated into petals, and mounted onto the spacecraft to form an X-ray optic of four meters in diameter. In this paper we will present the silicon pore optics assembly process and latest X-ray results. The required metrology is described in detail and experimental methods are shown, which allow to assess the quality of the HPOs during production and to predict the performance when measured in synchrotron radiation facilities.

  10. Experimental study on pore water pressure dissipation of mucky soil

    Institute of Scientific and Technical Information of China (English)

    Xianwei ZHANG; Changming WANG; Junxia LI; Bin WANG

    2008-01-01

    Pore water pressure has an important influence on mechanical properties of soil. The authors studied the characteristics of pore water pressure dissipating of mucky soil under consolidated-drained condition by using refitted triaxial instrument and analyzed the variation of pore pressure coefficient with consolidation pressure. The results show that the dissipating of pore water pressure behaves in different ways depends on different styles of loading. What is more, the pore water pressure coefficient of mucky soil is less than 1. As the compactness of soil increases and moisture content reduces, the value of B reduces. There is a staggered dissipating in the process of consolidation, in which it is a mutate point when U/P is 80%. It is helpful to establish the pore water pressure model and study the strength-deformation of soil in process of consolidation.

  11. Factors Determining the Pore Shape in Polycarbonate Track Membranes

    CERN Document Server

    Apel, P Yu; Orelovich, O L; Akimenko, S N; Sartowska, B; Dmitriev, S N

    2004-01-01

    The process of pore formation in ion-irradiated polycarbonate films on treatment with alkali solutions in the presence of a surfactant is studied. It is found that the pore shape depends on both the structure of the initial films and the peculiarities of the interaction of the surfactant with the polymer surface and the transport of the surfactant into tracks. Due to heterogeneity of the films the cross-section of a track pore channel changes along its length. The presence of the surfactant results in a further effect. Surfactant molecules adsorb on the polymer surface at the pore entries and reduce the etch rate which leads to formation of cigar-like pore channels. The use of surfactant as a component of chemical etchant enables one to control the pore shape in track membranes thus optimizing their retention and permeation characteristics.

  12. Process of inducing pores in membranes by melittin

    OpenAIRE

    Lee, Ming-Tao; Sun, Tzu-Lin; Hung, Wei-Chin; Huang, Huey W.

    2013-01-01

    Melittin is a prototype of the ubiquitous antimicrobial peptides that induce pores in membranes. It is commonly used as a molecular device for membrane permeabilization. Even at concentrations in the nanomolar range, melittin can induce transient pores that allow transmembrane conduction of atomic ions but not leakage of glucose or larger molecules. At micromolar concentrations, melittin induces stable pores allowing transmembrane leakage of molecules up to tens of kilodaltons, corresponding ...

  13. On the Mechanism of Pore Formation by Melittin*

    OpenAIRE

    van den Bogaart, Geert; Guzman, Jeanette Velasquez; Mika, Jacek T.; Poolman, Bert

    2008-01-01

    The mechanism of pore formation of lytic peptides, such as melittin from bee venom, is thought to involve binding to the membrane surface, followed by insertion at threshold levels of bound peptide. We show that in membranes composed of zwitterionic lipids, i.e. phosphatidylcholine, melittin not only forms pores but also inhibits pore formation. We propose that these two modes of action are the result of two competing reactions: direct insertion into the membrane and b...

  14. Regulation of the assembly and function of the nuclear pore

    OpenAIRE

    Delmar, Valerie Anne

    2008-01-01

    The nucleus is the defining structure of eukaryotic cells. The nuclear envelope acts as a barrier between nucleus and cytoplasm. Nuclear pore complexes perforating the envelope control all traffic into and out of the nucleus, and thus act to regulate transcription, translation, and other essential cellular processes. During mitosis, the nuclear envelope from flies to mammals disassembles into its component parts, with the nuclear pore breaking into multiple subunits. The pore then reassembles...

  15. Enhanced membrane pore information by multimeric/oligomeric antimicrobial peptides

    OpenAIRE

    Arnusch, C.J.; Branderhorst, H.M.; de Kruijff, B.; Liskamp, R. M. J.; Breukink, E.J.; Pieters, R. J.

    2007-01-01

    The pore-forming antibacterial peptide magainin 2 was made divalent, tetravalent, and octavalent via a copper(I)-mediated 1-3 dipolar cycloaddition reaction (“click” chemistry). This series of poreforming compounds was tested in vitro for their ability to form pores in large unilamillar vesicles (LUVs). A large increase in the pore-forming capability was especially observed with the tetravalent and octavalent magainin compounds in the LUVs consisting of DOPC, and the octavalent magainin compo...

  16. Influence of Pore Structure on Compressive Strength of Cement Mortar

    OpenAIRE

    Haitao Zhao; Qi Xiao; Donghui Huang; Shiping Zhang

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement r...

  17. Experimental solubility of silica in nano-pores

    OpenAIRE

    Mercury, Lionel; Bouzid, Majda; Matray, Jean-Michel

    2012-01-01

    International audience We used a pressure membrane extractor (Model 1020, SoilMoisture Equipment Corp.) to study the silica content at equilibriumwith the decreasing pore sizes of amorphous silica. The principle isto extract the aqueous solution through a sequential process fromthe larger (micrometric) pores to the thinner (some nm) pores. Eachextraction step is followed by an equilibration period.The measurements confirmed earlier observations [1,2] that theconcentration in dissolved sili...

  18. Characterization of Reconstructed Basins Using Pattern Spectrum Procedure

    Directory of Open Access Journals (Sweden)

    P. Radhakrishnan

    2005-01-01

    Full Text Available Several classical and Fractal binary shapes, which are akin to geophysical shapes such as basins, lakes, and pore-grain spruce, are analyzed and characterized by employing various mathematical morphological transformations, and methods. By employing rhombus, square and octagon structuring elements, these shapes are decomposed into their skeletal networks and their corresponding skeletal network subsets are dilated to the respective degree by these structuring elements in order to reconstruct the original shapes. Furthermore, to test the reconstruction accuracy, the pattern spectrum procedure is applied and sharpness indices were computed. These shapiness indices were considered as a basis to test the reconstruction accuracy in a quantitative manner. A general trend is observed while characterizing the shape-size complexity of these surface water bodies.

  19. Pore-size-distribution of cationic polyacrylamide hydrogels. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga`s mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  20. Pore-size-distribution of cationic polyacrylamide hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga's mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  1. Enzyme screening with synthetic multifunctional pores: Focus on biopolymers

    Science.gov (United States)

    Sordé, Nathalie; Das, Gopal; Matile, Stefan

    2003-01-01

    This report demonstrates that a single set of identical synthetic multifunctional pores can detect the activity of many different enzymes. Enzymes catalyzing either synthesis or degradation of DNA (exonuclease III or polymerase I), RNA (RNase A), polysaccharides (heparinase I, hyaluronidase, and galactosyltransferase), and proteins (papain, ficin, elastase, subtilisin, and pronase) are selected to exemplify this key characteristic of synthetic multifunctional pore sensors. Because anionic, cationic, and neutral substrates can gain access to the interior of complementarily functionalized pores, such pores can be the basis for very user-friendly screening of a broad range of enzymes. PMID:14530413

  2. Enhanced membrane pore formation by multimeric/oligomeric antimicrobial peptides.

    Science.gov (United States)

    Arnusch, Christopher J; Branderhorst, Hilbert; de Kruijff, Ben; Liskamp, Rob M J; Breukink, Eefjan; Pieters, Roland J

    2007-11-20

    The pore-forming antibacterial peptide magainin 2 was made divalent, tetravalent, and octavalent via a copper(I)-mediated 1-3 dipolar cycloaddition reaction ("click" chemistry). This series of pore-forming compounds was tested in vitro for their ability to form pores in large unilamillar vesicles (LUVs). A large increase in the pore-forming capability was especially observed with the tetravalent and octavalent magainin compounds in the LUVs consisting of DOPC, and the octavalent magainin compound showed a marked increase with the DOPC/DOPG LUVs. Activity was observed in the low nanomolar range for these compounds. PMID:17944489

  3. Fusion Pore Diameter Regulation by Cations Modulating Local Membrane Anisotropy

    Directory of Open Access Journals (Sweden)

    Doron Kabaso

    2012-01-01

    Full Text Available The fusion pore is an aqueous channel that is formed upon the fusion of the vesicle membrane with the plasma membrane. Once the pore is open, it may close again (transient fusion or widen completely (full fusion to permit vesicle cargo discharge. While repetitive transient fusion pore openings of the vesicle with the plasma membrane have been observed in the absence of stimulation, their frequency can be further increased using a cAMP-increasing agent that drives the opening of nonspecific cation channels. Our model hypothesis is that the openings and closings of the fusion pore are driven by changes in the local concentration of cations in the connected vesicle. The proposed mechanism of fusion pore dynamics is considered as follows: when the fusion pore is closed or is extremely narrow, the accumulation of cations in the vesicle (increased cation concentration likely leads to lipid demixing at the fusion pore. This process may affect local membrane anisotropy, which reduces the spontaneous curvature and thus leads to the opening of the fusion pore. Based on the theory of membrane elasticity, we used a continuum model to explain the rhythmic opening and closing of the fusion pore.

  4. The Pore Structure of Direct Methanol Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    Lund, Peter Brilner

    2005-01-01

    The pore structure and morphology of direct methanol fuel cell electrodes are characterized using mercury intrusion porosimetry and scanning electron microscopy. It is found that the pore size distributions of printed primer and catalyst layers are largely dictated by the powders used to make...... the printing ink. The extent to which the pore structure is modified by changing several parameters in the membrane electrode assembly MEA manufacturing process is discussed. The pore structure of the printed layers is found to be invariant with respect to changes in powder loading or in choice of printing...

  5. Entropy of Shortest Distance (ESD as Pore Detector and Pore-Shape Classifier

    Directory of Open Access Journals (Sweden)

    Klaudia Oleschko

    2013-06-01

    Full Text Available The entropy of shortest distance (ESD between geographic elements (“elliptical intrusions”, “lineaments”, “points” on a map, or between "vugs", "fractures" and "pores" in the macro- or microscopic images of triple porosity naturally fractured vuggy carbonates provides a powerful new tool for the digital processing, analysis, classification and space/time distribution prognostic of mineral resources as well as the void space in carbonates, and in other rocks. The procedure is applicable at all scales, from outcrop photos, FMI, UBI, USI (geophysical imaging techniques to micrographs, as we shall illustrate through some examples. Out of the possible applications of the ESD concept, we discuss in details the sliding window entropy filtering for nonlinear pore boundary enhancement, and propose this procedure as unbiased thresholding technique.

  6. Rock Physics of Reservoir Rocks with Varying Pore Water Saturation and Pore Water Salinity

    DEFF Research Database (Denmark)

    Katika, Konstantina

    the rate and amount of oil recovered. Advanced waterflooding experiments of reservoir rocks are performed on laboratory scale, but the mechanisms that describe the effects of water injection on the rock minerals are poorly understood. After many decades, a methodology on how this technique should...... be performed on specific geological structures and why it is sometimes successful; has yet to be established. The presence of both oil and water in the pore space, several different ions present in the injected water that contact the pore walls, possible changes in the fluid wetting the surface of the grains....... In order to understand the potential mechanisms under the action of water injection, the present study investigates the effect of the selected ions on the solid/fluid interface of the porous medium under reservoir conditions by studying the following conditions separately: 1) during coreflooding...

  7. Acromioclavicular Joint Reconstruction.

    Science.gov (United States)

    Scillia, Anthony J; Cain, E Lyle

    2015-12-01

    Our technique for acromioclavicular joint reconstruction provides a variation on coracoclavicular ligament reconstruction to also include acromioclavicular ligament reconstruction. An oblique acromial tunnel is drilled, and the medial limb of the gracilis graft, after being crossed and passed beneath the coracoid and through the clavicle, is passed through this acromial tunnel and sutured to the trapezoid graft limb after appropriate tensioning. Tenodesis screws are not placed in the bone tunnels to avoid graft fraying, and initial forces on the graft are offloaded with braided absorbable sutures passed around the clavicle. PMID:27284528

  8. Reconstructing Step by Step

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    On May 22,10 days after the Wenchuan earthquake in Sichuan Province,the State Council formed the Post-earthquake Reconstruction Planning Group,deciding to work out a general recon- struction plan within a period of three months. Sichuan was the worst-hit area of China,so reconstruction work there will have a direct influence on how plans proceed in other areas.On July 18,Beijing Review reporter Feng Jianhua interviewed Wang Guangsi,Vice Director of the Sichuan Development and Reform Commission,about Sichuan’s reconstruction plan.

  9. Pore morphologies of root induced biopores from single pore to network scale investigated by XRCT

    Science.gov (United States)

    Peth, Stephan; Wittig, Marlen C.; Uteau Puschmann, Daniel; Pagenkemper, Sebastian; Haas, Christoph; Holthusen, Dörthe; Horn, Rainer

    2015-04-01

    Biopores are assumed to be an important factor for nutrient acquisition by providing biologically highly active soil-root interfaces to re-colonizing roots and controlling oxygen and water flows at the pedon scale and within the rhizosphere through the formation of branching channel networks which potentially enhance microbial turnover processes. Characteristic differences in pore morphologies are to be expected depending on the genesis of biopores which, for example, can be earthworm-induced or root-induced or subsequently modified by one of the two. Our understanding of biophysical interactions between plants and soil can be significantly improved by quantifying 3D biopore architectures across scales ranging from single biopores to pedon scale pore networks and linking pore morphologies to microscale measurements of transport processes (e.g. oxygen diffusion). While a few studies in the past have investigated biopore networks on a larger scale yet little is known on the micro-morphology of root-induces biopores and their associated rhizosphere. Also little data is available on lateral transport of oxygen through the rhizosphere which will strongly influence microbial turnover processes and consequently control the release and uptake of nutrients. This paper highlights results gathered within a research unit on nutrient acquisition from the subsoil. Here we focus on X-ray microtomography (XRCT) studies ranging from large soil columns (70 cm length and 20 cm diameter) to individual biopores and its surrounding rhizosphere. Samples were collected from sites with different preceding crops (fescue, chicory, alfalfa) and various cropping durations (1-3 years). We will present an approach for quantitative image analysis combined with micro-sensor measurements of oxygen diffusion and spatial gradients of O2 partial pressures to relate pore structure with transport functions. Implications of various biopore architectures for the accessibility of nutrient resources in

  10. Prairie Reconstruction Initiative

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the Prairie Reconstruction Initiative Advisory Team (PRIAT) is to identify and take steps to resolve uncertainties in the process of prairie...

  11. Overview of Image Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Marr, R. B.

    1980-04-01

    Image reconstruction (or computerized tomography, etc.) is any process whereby a function, f, on Rn is estimated from empirical data pertaining to its integrals, ∫f(x) dx, for some collection of hyperplanes of dimension k < n. The paper begins with background information on how image reconstruction problems have arisen in practice, and describes some of the application areas of past or current interest; these include radioastronomy, optics, radiology and nuclear medicine, electron microscopy, acoustical imaging, geophysical tomography, nondestructive testing, and NMR zeugmatography. Then the various reconstruction algorithms are discussed in five classes: summation, or simple back-projection; convolution, or filtered back-projection; Fourier and other functional transforms; orthogonal function series expansion; and iterative methods. Certain more technical mathematical aspects of image reconstruction are considered from the standpoint of uniqueness, consistency, and stability of solution. The paper concludes by presenting certain open problems. 73 references. (RWR)

  12. The evolving breast reconstruction

    DEFF Research Database (Denmark)

    Thomsen, Jørn Bo; Gunnarsson, Gudjon Leifur

    2014-01-01

    The aim of this editorial is to give an update on the use of the propeller thoracodorsal artery perforator flap (TAP/TDAP-flap) within the field of breast reconstruction. The TAP-flap can be dissected by a combined use of a monopolar cautery and a scalpel. Microsurgical instruments are generally...... not needed. The propeller TAP-flap can be designed in different ways, three of these have been published: (I) an oblique upwards design; (II) a horizontal design; (III) an oblique downward design. The latissimus dorsi-flap is a good and reliable option for breast reconstruction, but has been criticized...... for oncoplastic and reconstructive breast surgery and will certainly become an invaluable addition to breast reconstructive methods....

  13. Delayed breast implant reconstruction

    DEFF Research Database (Denmark)

    Hvilsom, Gitte B.; Hölmich, Lisbet R.; Steding-Jessen, Marianne;

    2011-01-01

    Studies of complications following reconstructive surgery with implants among women with breast cancer are needed. As the, to our knowledge, first prospective long-term study we evaluated the occurrence of complications following delayed breast reconstruction separately for one- and two......-stage procedures. From the Danish Registry for Plastic Surgery of the Breast, which has prospectively registered data for women undergoing breast implantations since 1999, we identified 559 women without a history of radiation therapy undergoing 592 delayed breast reconstructions following breast cancer during...... of reoperation was significantly higher following the one-stage procedure. For both procedures, the majority of reoperations were due to asymmetry or displacement of the implant. In conclusion, non-radiated one- and two-stage delayed breast implant reconstructions are associated with substantial risks...

  14. On TPC cluster reconstruction

    CERN Document Server

    Dydak, F; Nefedov, Y; Wotschack, J; Zhemchugov, A

    2004-01-01

    For a bias-free momentum measurement of TPC tracks, the correct determination of cluster positions is mandatory. We argue in particular that (i) the reconstruction of the entire longitudinal signal shape in view of longitudinal diffusion, electronic pulse shaping, and track inclination is important both for the polar angle reconstruction and for optimum r phi resolution; and that (ii) self-crosstalk of pad signals calls for special measures for the reconstruction of the z coordinate. The problem of 'shadow clusters' is resolved. Algorithms are presented for accepting clusters as 'good' clusters, and for the reconstruction of the r phi and z cluster coordinates, including provisions for 'bad' pads and pads next to sector boundaries, respectively.

  15. Permutationally invariant state reconstruction

    CERN Document Server

    Moroder, Tobias; Toth, Geza; Schwemmer, Christian; Niggebaum, Alexander; Gaile, Stefanie; Gühne, Otfried; Weinfurter, Harald

    2012-01-01

    Feasible tomography schemes for large particle numbers must possess, besides an appropriate data acquisition protocol, also an efficient way to reconstruct the density operator from the observed finite data set. Since state reconstruction typically requires the solution of a non-linear large-scale optimization problem, this is a major challenge in the design of scalable tomography schemes. Here we present an efficient state reconstruction scheme for permutationally invariant quantum state tomography. It works for all common state-of-the-art reconstruction principles, including, in particular, maximum likelihood and least squares methods, which are the preferred choices in today's experiments. This high efficiency is achieved by greatly reducing the dimensionality of the problem employing a particular representation of permutationally invariant states known from spin coupling combined with convex optimization, which has clear advantages regarding speed, control and accuracy in comparison to commonly employed n...

  16. Reconstruction Setting Out

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The earthquake-hit Yushu shifts its focus from rescuing survivors to post-quake reconstruction The first phase of earthquake relief, in which rescuing lives was the priority, finished 12 days after a 7.1-magnitude earthquake struck the Tibetan Autonomous Prefecture of Yushu in northwest China’s Qinghai Province on April 14, and reconstruction of the area is now ready to begin.

  17. Reconstructing baryon oscillations

    OpenAIRE

    Noh, Yookyung; White, Martin; Padmanabhan, Nikhil

    2009-01-01

    The baryon acoustic oscillation (BAO) method for constraining the expansion history is adversely affected by non-linear structure formation, which washes out the correlation function peak created at decoupling. To increase the constraining power of low z BAO experiments, it has been proposed that one use the observed distribution of galaxies to "reconstruct'' the acoustic peak. Recently Padmanabhan, White and Cohn provided an analytic formalism for understanding how reconstruction works withi...

  18. Reconstruction after mastectomy.

    Science.gov (United States)

    Bostwick, J

    1990-10-01

    Advances in materials and techniques, especially those involving transposition of muscle and skin flaps, have made breast reconstruction possible for most women who undergo mastectomy for breast cancer. The availability of this option can alleviate the breast and chest wall deformity that results from virtually all local treatment of breast cancer. It is essential that the reconstruction surgeon be part of the breast cancer management team from the beginning of treatment planning and that this surgeon work closely with the general surgeon, medical oncologist, and radiation therapist as well as the adjunctive treatment team members. The patient's clinical status and the type of local treatment will be significant determinants of the reconstructive options. For women with stage I breast cancer, these decisions may be based largely on the oncologist's local and adjunctive therapy procedures and the woman's desire to proceed or delay. For women with systemic disease, all members of the breast management team may need to agree on the advisability and timing of reconstruction. Central to all of the numerous decisions described in this paper regarding the timing, type, and extent of breast reconstruction is the primary goal of the entire team: the best possible management of the breast cancer itself. The promise of attractive, symmetric, and natural appearing breasts, complete with a symmetric nipple-areolar complex, has eased somewhat the diminishment of self-esteem and the threat to femininity that can accompany the loss of a breast. By lowering fear, the widely recognized availability of breast reconstruction may encourage more women to monitor their breasts and seek diagnosis of changes and may influence selection of the type of local treatment if cancer is detected. Because of the psychological and cultural significance of the breast, the reconstructive surgeon must be particularly sensitive to the psychological and aesthetic expectations of the patient. Even in

  19. Chalet. Reconstruction from Memory

    OpenAIRE

    Gheysen, Eva

    2015-01-01

    In the research project several design tactics are developed in order to counteract the phenomenon of experiential erosion. This particular project explored one of the tactics: Reconstruction from Memory. When reconstructing space from memory, isolated spatial fragments from the past are reformed into a new, decontextualized construct that represents the most memorable experiences evoked by that space. These memories give insight in which architectural features strongly affect our experience ...

  20. Ekofisk chalk: core measurements, stochastic reconstruction, network modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, Saifullah

    2002-07-01

    This dissertation deals with (1) experimental measurements on petrophysical, reservoir engineering and morphological properties of Ekofisk chalk, (2) numerical simulation of core flood experiments to analyze and improve relative permeability data, (3) stochastic reconstruction of chalk samples from limited morphological information, (4) extraction of pore space parameters from the reconstructed samples, development of network model using pore space information, and computation of petrophysical and reservoir engineering properties from network model, and (5) development of 2D and 3D idealized fractured reservoir models and verification of the applicability of several widely used conventional up scaling techniques in fractured reservoir simulation. Experiments have been conducted on eight Ekofisk chalk samples and porosity, absolute permeability, formation factor, and oil-water relative permeability, capillary pressure and resistivity index are measured at laboratory conditions. Mercury porosimetry data and backscatter scanning electron microscope images have also been acquired for the samples. A numerical simulation technique involving history matching of the production profiles is employed to improve the relative permeability curves and to analyze hysteresis of the Ekofisk chalk samples. The technique was found to be a powerful tool to supplement the uncertainties in experimental measurements. Porosity and correlation statistics obtained from backscatter scanning electron microscope images are used to reconstruct microstructures of chalk and particulate media. The reconstruction technique involves a simulated annealing algorithm, which can be constrained by an arbitrary number of morphological parameters. This flexibility of the algorithm is exploited to successfully reconstruct particulate media and chalk samples using more than one correlation functions. A technique based on conditional simulated annealing has been introduced for exact reproduction of vuggy

  1. Cosmic tidal reconstruction

    Science.gov (United States)

    Zhu, Hong-Ming; Pen, Ue-Li; Yu, Yu; Er, Xinzhong; Chen, Xuelei

    2016-05-01

    The gravitational coupling of a long-wavelength tidal field with small-scale density fluctuations leads to anisotropic distortions of the locally measured small-scale matter correlation function. Since the local correlation function is known to be statistically isotropic in the absence of such tidal interactions, the tidal distortions can be used to reconstruct the long-wavelength tidal field and large-scale density field in analogy with the cosmic microwave background lensing reconstruction. In this paper we present the theoretical framework of cosmic tidal reconstruction and test the reconstruction in numerical simulations. We find that the density field on large scales can be reconstructed with good accuracy and the cross-correlation coefficient between the reconstructed density field and the original density field is greater than 0.9 on large scales (k ≲0.1 h /Mpc ), with the filter scale ˜1.25 Mpc /h . This is useful in the 21 cm intensity mapping survey, where the long-wavelength radial modes are lost due to a foreground subtraction process.

  2. Improving the ruggedness of silicon pore optics

    Science.gov (United States)

    Ackermann, Marcelo D.; Collon, Maximilien J.; Günther, Ramses; Partapsing, Rakesh; Bavdaz, Marcos; Wallace, Kotska; Wille, Eric; van Baren, Coen; Kampf, Dirk; Erhard, Markus

    2010-07-01

    In this paper we present the latest developments on the ruggedisation of the Silicon Pore Optics (SPO) mirror modules. SPO is one of the candidate technologies for producing the X-ray optics for the future space based Xray telescope, the International X-ray Observatory (IXO). To produce SPO mirror modules, Si mirrors are first bonded together using direct Si bonding to form a stack. These stacks are the glued into brackets, which then connect to the supporting optical bench by invar pins. The combination of brackets and invar pins now forms a full isostatic mount, and is rugged enough to allow the mirror module to survive the high loads of a launch. The mounting system furthermore allows for a certain level of manufacturing tolerances for the support structure, and ensures interchangeability of the mirror modules within one single ring of the optical bench. To prove this, a test interface has been designed and manufactured, on which a single, full fledged mirror module will be mounted to be exposed to environmental tests.

  3. Interface engineering of synthetic pores: towards hypersensitive biosensors.

    Science.gov (United States)

    Mora, Federico; Tran, Duy-Hien; Oudry, Natalie; Hopfgartner, Gerard; Jeannerat, Damien; Sakai, Naomi; Matile, Stefan

    2008-01-01

    Hydrophilic anchoring is introduced as a promising strategy to constructively control the various interactions of synthetic pore sensors with the surrounding biphasic environment. Artificial rigid-rod beta barrels are selected as classical synthetic multifunctional pores and random-coil tetralysines are attached as hydrophilic anchors. The synthesis of this advanced pore is accomplished in 32 steps from commercially available starting materials. With regard to pore activity as such, the key impact of hydrophilic anchoring is a change from a Hill coefficient nEC(50)). These results not only reveal stoichiometric binding as the expected origin of the sensitivity limit of synthetic pore sensors, they also provide promising solutions for this problem. The combination of hydrophilic anchoring with targeted pore formation emerges as a particularly promising strategy to further reduce effective pore concentrations. The scope and limitations of this approach are exemplified with pertinent analyte pairs that are essential for the sensing of sucrose, lactose, acetate, and glutamate with synthetic pores in samples from the supermarket. PMID:18067110

  4. Effect of pore pressure buildup on slowness of rupture propagation

    Science.gov (United States)

    Ougier-Simonin, A.; Zhu, W.

    2015-12-01

    Pore fluid pressure is known to play an important role in brittle fracture initiation and propagation, yet the underlying mechanisms remain unclear. We conducted triaxial experiments on saturated porous sandstones to investigate effects of pore pressure buildup on the slowness of shear rupture propagation at different confining pressures. At low to intermediate confinements, rocks fail by brittle faulting, and pore pressure buildup causes a reduction in rock's shear strength but does not induce measurable differences in slip behavior. When the confinement is high enough to prohibit dynamic faulting, rocks fail in the brittle-ductile transitional regime. In the transitional regime, pore pressure buildup promotes slip instability on an otherwise stably sliding fracture. Compared to those observed in the brittle regime, the slip rate, stress drop, and energy dissipated during rupture propagation with concurrent pore pressure buildup in the transitional regime are distinctively different. When decreasing confining pressure instead, the slip behavior resembles the ones of the brittle regime, emphasizing how the observed slowness is related to excess pore pressure beyond the effective pressure phenomenon. Analysis of the mechanical data using existing theoretical models confirms these observations. Quantitative microstructural analyses reveal that increasing pore pressure lessens the dilatancy hardening during failure, thus enhances slip along the localized zone in the transitional regime. Our experimental results suggest that pore pressure buildup induces slow slip in the transitional regime, and slip rates along a shear fracture may vary considerably depending on effective stress states.

  5. Role of the synaptobrevin C terminus in fusion pore formation

    DEFF Research Database (Denmark)

    Ngatchou, Annita N; Kisler, Kassandra; Fang, Qinghua;

    2010-01-01

    Neurotransmitter release is mediated by the SNARE proteins synaptobrevin II (sybII, also known as VAMP2), syntaxin, and SNAP-25, generating a force transfer to the membranes and inducing fusion pore formation. However, the molecular mechanism by which this force leads to opening of a fusion pore...

  6. Pore size distribution in tablets measured with a morphological sieve

    NARCIS (Netherlands)

    Wu, Yu San; van Vliet, Lucas J.; Frijlink, Henderik W.; van der Voort Maarschalk, Kees

    2007-01-01

    Porosity and pore structure are important characteristics of tablets, since they influence mechanical strength and many other proper-ties. This paper proposes an alternative method for the characterization of pore structure based on image analysis of SEM micrographs. SEM images were made of sodium c

  7. Influence of pore structure on compressive strength of cement mortar.

    Science.gov (United States)

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.

  8. Influence of pore structure on compressive strength of cement mortar.

    Science.gov (United States)

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure. PMID:24757414

  9. Influence of Pore Structure on Compressive Strength of Cement Mortar

    Directory of Open Access Journals (Sweden)

    Haitao Zhao

    2014-01-01

    Full Text Available This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.

  10. Pore capillary pressure and saturation of methane hydrate bearing sediments

    Institute of Scientific and Technical Information of China (English)

    SUN Shicai; LIU Changling; YE Yuguang; LIU Yufeng

    2014-01-01

    To better understand the relationship between the pore capillary pressure and hydrate saturation in sedi-ments, a new method was proposed. First, the phase equilibria of methane hydrate in fine-grained silica sands were measured. As to the equilibrium data, the pore capillary pressure and saturation of methane hydrate were calculated. The results showed that the phase equilibria of methane hydrates in fine-grained silica sands changed due to the depressed activity of pore water caused by the surface group and negatively charged characteristic of silica particles as well as the capillary pressure in small pores together. The capil-lary pressure increased with the increase of methane hydrate saturation due to the decrease of the available pore space. However, the capillary-saturation relationship could not yet be described quantitatively because of the stochastic habit of hydrate growth.

  11. Surface pore tension and adsorption characteristics of polluted sediment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Most natural sediment particles have numerous pores and a complex surface texture which facilitates their adsorption of contaminants. Particle surface structure,therefore,is an important instrumental factor in the transport of contaminants,especially in water environments. This paper reports on the results of adsorption-desorption experiments to analyze polluted sediment surface pore tension characteristics performed on samples from the bottom of Guanting Reservoir. In our analysis,the Frenkel-Halsey-Hill(FHH) equation is applied to calculate the fractal dimensions of particles to quantify the surface roughness and pore tension characteristics. The results show that the surface fractal dimensions of sediment particle surfaces normally measure from 2.6 to 2.85. The volume of pores smaller than 10 nm changes significantly after being contaminated with pollutants and the fractal dimension decreases because the pores adsorb the contaminants.

  12. X-ray CT analysis of pore structure in sand

    Science.gov (United States)

    Mukunoki, Toshifumi; Miyata, Yoshihisa; Mikami, Kazuaki; Shiota, Erika

    2016-06-01

    The development of microfocused X-ray computed tomography (CT) devices enables digital imaging analysis at the pore scale. The applications of these devices are diverse in soil mechanics, geotechnical and geoenvironmental engineering, petroleum engineering, and agricultural engineering. In particular, the imaging of the pore space in porous media has contributed to numerical simulations for single-phase and multiphase flows or contaminant transport through the pore structure as three-dimensional image data. These obtained results are affected by the pore diameter; therefore, it is necessary to verify the image preprocessing for the image analysis and to validate the pore diameters obtained from the CT image data. Moreover, it is meaningful to produce the physical parameters in a representative element volume (REV) and significant to define the dimension of the REV. This paper describes the underlying method of image processing and analysis and discusses the physical properties of Toyoura sand for the verification of the image analysis based on the definition of the REV. On the basis of the obtained verification results, a pore-diameter analysis can be conducted and validated by a comparison with the experimental work and image analysis. The pore diameter is deduced from Young-Laplace's law and a water retention test for the drainage process. The results from previous study and perforated-pore diameter originally proposed in this study, called the voxel-percolation method (VPM), are compared in this paper. In addition, the limitations of the REV, the definition of the pore diameter, and the effectiveness of the VPM for an assessment of the pore diameter are discussed.

  13. Randomization Resilient To Sensitive Reconstruction

    CERN Document Server

    Wang, Ke; Fu, Ada Waichee

    2012-01-01

    With the randomization approach, sensitive data items of records are randomized to protect privacy of individuals while allowing the distribution information to be reconstructed for data analysis. In this paper, we distinguish between reconstruction that has potential privacy risk, called micro reconstruction, and reconstruction that does not, called aggregate reconstruction. We show that the former could disclose sensitive information about a target individual, whereas the latter is more useful for data analysis than for privacy breaches. To limit the privacy risk of micro reconstruction, we propose a privacy definition, called (epsilon,delta)-reconstruction-privacy. Intuitively, this privacy notion requires that micro reconstruction has a large error with a large probability. The promise of this approach is that micro reconstruction is more sensitive to the number of independent trials in the randomization process than aggregate reconstruction is; therefore, reducing the number of independent trials helps a...

  14. Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics.

    Science.gov (United States)

    Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep

    2015-06-23

    Cell-penetrating and antimicrobial peptides show a remarkable ability to translocate across physiological membranes. Along with factors such as electric-potential-induced perturbations of membrane structure and surface tension effects, experiments invoke porelike membrane configurations during the solute transfer process into vesicles and cells. The initiation and formation of pores are associated with a nontrivial free-energy cost, thus necessitating a consideration of the factors associated with pore formation and the attendant free energies. Because of experimental and modeling challenges related to the long time scales of the translocation process, we use umbrella sampling molecular dynamics simulations with a lipid-density-based order parameter to investigate membrane-pore-formation free energy employing Martini coarse-grained models. We investigate structure and thermodynamic features of the pore in 18 lipids spanning a range of headgroups, charge states, acyl chain lengths, and saturation. We probe the dependence of pore-formation barriers on the area per lipid, lipid bilayer thickness, and membrane bending rigidities in three different lipid classes. The pore-formation free energy in pure bilayers and peptide translocating scenarios are significantly coupled with bilayer thickness. Thicker bilayers require more reversible work to create pores. The pore-formation free energy is higher in peptide-lipid systems than in peptide-free lipid systems due to penalties to maintain the solvation of charged hydrophilic solutes within the membrane environment.

  15. Primordial density and BAO reconstruction

    CERN Document Server

    Zhu, Hong-Ming; Chen, Xuelei

    2016-01-01

    We present a new method to reconstruct the primordial (linear) density field using the estimated nonlinear displacement field. The divergence of the displacement field gives the reconstructed density field. We solve the nonlinear displacement field in the 1D cosmology and show the reconstruction results. The new reconstruction algorithm recovers a lot of linear modes and reduces the nonlinear damping scale significantly. The successful 1D reconstruction results imply the new algorithm should also be a promising technique in the 3D case.

  16. Pore Scale Dynamics of Microemulsion Formation.

    Science.gov (United States)

    Unsal, Evren; Broens, Marc; Armstrong, Ryan T

    2016-07-19

    Experiments in various porous media have shown that multiple parameters come into play when an oleic phase is displaced by an aqueous solution of surfactant. In general, the displacement efficiency is improved when the fluids become quasi-miscible. Understanding the phase behavior oil/water/surfactant systems is important because microemulsion has the ability to generate ultralow interfacial tension (microemulsion formation and the resulting properties under equilibrium conditions. However, the majority of applications where microemulsion is present also involve flow, which has received relatively less attention. It is commonly assumed that the characteristics of an oil/water/surfactant system under flowing conditions are identical to the one under equilibrium conditions. Here, we show that this is not necessarily the case. We studied the equilibrium phase behavior of a model system consisting of n-decane and an aqueous solution of olefin sulfonate surfactant, which has practical applications for enhanced oil recovery. The salt content of the aqueous solution was varied to provide a range of different microemulsion compositions and oil-water interfacial tensions. We then performed microfluidic flow experiments to study the dynamic in situ formation of microemulsion by coinjecting bulk fluids of n-decane and surfactant solution into a T-junction capillary geometry. A solvatochromatic fluorescent dye was used to obtain spatially resolved compositional information. In this way, we visualized the microemulsion formation and the flow of it along with the excess phases. A complex interaction between the flow patterns and the microemulsion properties was observed. The formation of microemulsion influenced the flow regimes, and the flow regimes affected the characteristics of the microemulsion formation. In particular, at low flow rates, slug flow was observed, which had profound consequences on the pore scale mixing behavior and resulting microemulsion properties. PMID

  17. Augmented Likelihood Image Reconstruction.

    Science.gov (United States)

    Stille, Maik; Kleine, Matthias; Hägele, Julian; Barkhausen, Jörg; Buzug, Thorsten M

    2016-01-01

    The presence of high-density objects remains an open problem in medical CT imaging. Data of projections passing through objects of high density, such as metal implants, are dominated by noise and are highly affected by beam hardening and scatter. Reconstructed images become less diagnostically conclusive because of pronounced artifacts that manifest as dark and bright streaks. A new reconstruction algorithm is proposed with the aim to reduce these artifacts by incorporating information about shape and known attenuation coefficients of a metal implant. Image reconstruction is considered as a variational optimization problem. The afore-mentioned prior knowledge is introduced in terms of equality constraints. An augmented Lagrangian approach is adapted in order to minimize the associated log-likelihood function for transmission CT. During iterations, temporally appearing artifacts are reduced with a bilateral filter and new projection values are calculated, which are used later on for the reconstruction. A detailed evaluation in cooperation with radiologists is performed on software and hardware phantoms, as well as on clinically relevant patient data of subjects with various metal implants. Results show that the proposed reconstruction algorithm is able to outperform contemporary metal artifact reduction methods such as normalized metal artifact reduction.

  18. Assembly and stability of nisin-lipid II pores.

    Science.gov (United States)

    Hasper, Hester Emilie; de Kruijff, Ben; Breukink, Eefjan

    2004-09-14

    The peptide antibiotic nisin was the first reported example of an antibiotic that kills bacteria via targeted pore formation. The specific target of nisin is Lipid II, an essential intermediate in the bacterial cell-wall synthesis. High-affinity binding of the antibiotic to Lipid II is followed by rapid permeabilization of the membrane. Here, we investigated the assembly and stability of nisin-Lipid II pore complexes by means of pyrene fluorescence and circular dichroism. We demonstrated that nisin uses all available Lipid II molecules in the membrane to form pore complexes. The pore complexes have a uniform structure and consist of 8 nisin and 4 Lipid II molecules. Moreover, the pores displayed a remarkable stability, because they were able to resist the solubilization of the membrane environment by mild detergents. Similar experiments with [N20P/M21P]nisin showed that the hinge region is essential for the assembly into stable pore complexes. The new insights were used to propose a refined model for nisin pore formation. PMID:15350143

  19. Hetero-oligomeric MspA pores in Mycobacterium smegmatis.

    Science.gov (United States)

    Pavlenok, Mikhail; Niederweis, Michael

    2016-04-01

    The porin MspA of Mycobacterium smegmatis is a biological nanopore used for DNA sequencing. The octameric MspA pore can be isolated from M. smegmatis in milligram quantities, is extremely stable against denaturation and rapidly inserts into lipid membranes. Here, we show that MspA pores composed of different Msp subunits are formed in M. smegmatis and that hetero-oligomers of different Msp monomers increase the heterogeneity of MspA pores designed for DNA sequencing. To improve the quality of preparations of mutant MspA proteins, all four msp genes were deleted from the M. smegmatis genome after insertion of an inducible porin gene from M. tuberculosis. In the msp quadruple mutant M. smegmatis ML712 no Msp porins were detected and mutant MspA proteins were produced at wild-type levels. Lipid bilayer experiments demonstrated that MspA pores isolated from ML712 formed functional channels and had a narrower conductance distribution than pores purified from M. smegmatis with background msp expression. Thus, the M. smegmatis msp quadruple mutant improves the homogeneity of MspA pores designed for DNA sequencing and might also facilitate the identification and functional characterization of other mycobacterial pore proteins. PMID:26912121

  20. STATISTICAL ANALYSIS OF TOMOGRAPHIC RECONSTRUCTION ALGORITHMS BY MORPHOLOGICAL IMAGE CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Sebastian Lǖck

    2011-05-01

    Full Text Available We suggest a procedure for quantitative quality control of tomographic reconstruction algorithms. Our task-oriented evaluation focuses on the correct reproduction of phase boundary length and has thus a clear implication for morphological image analysis of tomographic data. Indirectly the method monitors accurate reproduction of a variety of locally defined critical image features within tomograms such as interface positions and microstructures, debonding, cracks and pores. Tomographic errors of such local nature are neglected if only global integral characteristics such as mean squared deviation are considered for the evaluation of an algorithm. The significance of differences in reconstruction quality between algorithms is assessed using a sample of independent random scenes to be reconstructed. These are generated by a Boolean model and thus exhibit a substantial stochastic variability with respect to image morphology. It is demonstrated that phase boundaries in standard reconstructions by filtered backprojection exhibit substantial errors. In the setting of our simulations, these could be significantly reduced by the use of the innovative reconstruction algorithm DIRECTT.

  1. Novel Techniques to Characterize Pore Size of Porous Materials

    KAUST Repository

    Alabdulghani, Ali J.

    2016-04-24

    Porous materials are implemented in several industrial applications such as water desalination, gas separation and pharmaceutical care which they are mainly governed by the pore size and the PSD. Analyzing shale reservoirs are not excluded from these applications and numerous advantages can be gained by evaluating the PSD of a given shale reservoir. Because of the limitations of the conventional characterization techniques, novel methods for characterizing the PSD have to be proposed in order to obtain better characterization results for the porous materials, in general, and shale rocks in particular. Thus, permporosimetry and evapoporometry (EP) technologies were introduced, designed and utilized for evaluating the two key parameters, pore size and pore size distribution. The pore size and PSD profiles of different shale samples from Norway and Argentina were analyzed using these technologies and then confirmed by mercury intrusion porosimeter (MIP). Norway samples showed an average pore diameter of 12.94 nm and 19.22 nm with an average diameter of 13.77 nm and 23.23 nm for Argentina samples using permporosimetry and EP respectively. Both techniques are therefore indicative of the heterogeneity of the shales. The results from permporosimetry are in good agreement with those obtained from MIP technique, but EP for most part over-estimates the average pore size. The divergence of EP results compared to permporosimetry results is referred to the fact that the latter technique measures only the active pores which is not the case with the former technique. Overall, both techniques are complementary to each other which the results from both techniques seem reasonable and reliable and provide two simple techniques to estimate the pore size and pore size distributions for shale rocks.

  2. Reconstructed Jets at RHIC

    CERN Document Server

    Salur, Sevil

    2010-01-01

    To precisely measure jets over a large background such as pile up in high luminosity p+p collisions at LHC, a new generation of jet reconstruction algorithms is developed. These algorithms are also applicable to reconstruct jets in the heavy ion environment where large event multiplicities are produced. Energy loss in the medium created in heavy ion collisions are already observed indirectly via inclusive hadron distributions and di-hadron correlations. Jets can be used to study this energy loss in detail with reduced biases. We review the latest results on jet-medium interactions as seen in A+A collisions at RHIC, focusing on the recent progress on jet reconstruction in heavy ion collisions.

  3. Typology, morphology and connectivity of pore space in claystones from reference site for research using BIB, FIB and cryo-SEM methods

    Directory of Open Access Journals (Sweden)

    Houben M.E.

    2010-06-01

    Full Text Available Detailed investigation of the morphology of the pore space in clay is a key factor in understanding the sealing capacity, coupled flows, capillary processes and associated deformation present in mudstones. Actually, the combination of ion milling tools (FIB and BIB, cryogenic techniques and SEM imaging offers a new alternative to study in-situ elusive microstructures in wet geomaterials and has the high potential to make a step change in our understanding of how fluids occur in pore space. By using this range of techniques, it is possible to quantify porosity, stabilize in-situ fluids in pore space, preserve the natural structures at nm-scale, produce high quality polished cross-sections for high resolution SEM imaging and reconstruct accurately microstructure networks in 3D by serial cross sectioning.

  4. A FILTRATION METHOD AND APPARATUS INCLUDING A ROLLER WITH PORES

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention offers a method for separating dry matter from a medium. A separation chamber is at least partly defined by a plurality of rollers (2,7) and is capable of being pressure regulated. At least one of the rollers is a pore roller (7) having a surface with pores allowing...... permeability for the medium covered with a filter (3) and furthermore having at least one' channel in fluid contact with the pores of the surface. A pressure difference is established across the filter (3) and both, the filter (3) and the filter cake is passed through the rollers (2,7), whereby the medium...

  5. Permutationally invariant state reconstruction

    DEFF Research Database (Denmark)

    Moroder, Tobias; Hyllus, Philipp; Tóth, Géza;

    2012-01-01

    -scale optimization problem, this is a major challenge in the design of scalable tomography schemes. Here we present an efficient state reconstruction scheme for permutationally invariant quantum state tomography. It works for all common state-of-the-art reconstruction principles, including, in particular, maximum...... likelihood and least squares methods, which are the preferred choices in today's experiments. This high efficiency is achieved by greatly reducing the dimensionality of the problem employing a particular representation of permutationally invariant states known from spin coupling combined with convex...

  6. Delayed breast implant reconstruction

    DEFF Research Database (Denmark)

    Hvilsom, Gitte B.; Hölmich, Lisbet R.; Steding-Jessen, Marianne;

    2012-01-01

    We evaluated the association between radiation therapy and severe capsular contracture or reoperation after 717 delayed breast implant reconstruction procedures (288 1- and 429 2-stage procedures) identified in the prospective database of the Danish Registry for Plastic Surgery of the Breast during...... of radiation therapy was associated with a non-significantly increased risk of reoperation after both 1-stage (HR = 1.4; 95% CI: 0.7-2.5) and 2-stage (HR = 1.6; 95% CI: 0.9-3.1) procedures. Reconstruction failure was highest (13.2%) in the 2-stage procedures with a history of radiation therapy. Breast...

  7. Vertex Reconstruction in CMS

    CERN Document Server

    Chabanat, E; D'Hondt, J; Vanlaer, P; Prokofiev, K; Speer, T; Frühwirth, R; Waltenberger, W

    2005-01-01

    Because of the high track multiplicity in the final states expected in proton collisions at the LHC experiments, novel vertex reconstruction algorithms are required. The vertex reconstruction problem can be decomposed into a pattern recognition problem ("vertex finding") and an estimation problem ("vertex fitting"). Starting from least-square methods, ways to render the classical algorithms more robust are discussed and the statistical properties of the novel methods are shown. A whole set of different approaches for the vertex finding problem is presented and compared in relevant physics channels.

  8. Reconstruction of inflation models

    Energy Technology Data Exchange (ETDEWEB)

    Myrzakulov, Ratbay; Sebastiani, Lorenzo [Eurasian National University, Department of General and Theoretical Physics and Eurasian Center for Theoretical Physics, Astana (Kazakhstan); Zerbini, Sergio [Universita di Trento, Dipartimento di Fisica, Trento (Italy); TIFPA, Istituto Nazionale di Fisica Nucleare, Trento (Italy)

    2015-05-15

    In this paper, we reconstruct viable inflationary models by starting from spectral index and tensor-to-scalar ratio from Planck observations. We analyze three different kinds of models: scalar field theories, fluid cosmology, and f(R)-modified gravity. We recover the well-known R{sup 2} inflation in Jordan-frame and Einstein-frame representation, the massive scalar inflaton models and two models of inhomogeneous fluid. A model of R{sup 2} correction to Einstein's gravity plus a ''cosmological constant'' with an exact solution for early-time acceleration is reconstructed. (orig.)

  9. Impact of pore size and pore surface composition on the dynamics of confined water in highly ordered porous silica

    International Nuclear Information System (INIS)

    The impact of pore size and pore surface composition on water dynamics confined in highly ordered porous silica material (MCM-41) was investigated using neutron scattering for correlation times in the picosecond range. Samples were synthesized by the hydrothermal route and grafted via the hydrolytic surface sol-gel method to obtain pore wall surfaces with Si-OH, Al-OH, or Zr-OH terminations and pore sizes from 2 to 2.7 nm. The samples were characterized after grafting using nitrogen adsorption-desorption isotherms and small-angle X-ray scattering. At room temperature, the analysis of the quasi-elastic neutron scattering data shows a decrease of mean square displacement of the mobile protons with the pore size and when Si-OH surface termination is replaced by Al-OH and Zr-OH. The water translational diffusion coefficients are close to the bulk value whatever the samples. The amounts of fixed protons depend on the pore size and the ability of the grafted layers to immobilize the water molecules which were determined also from thermogravimetric and differential thermal analysis. This last result highlights that pore surface composition could be the predominant parameter affecting the fixed proton content at this time scale. (authors)

  10. Microfiltration of distillery stillage: Influence of membrane pore size

    Directory of Open Access Journals (Sweden)

    Vasić Vesna M.

    2012-01-01

    Full Text Available Stillage is one of the most polluted waste products of the food industry. Beside large volume, the stillage contains high amount of suspended solids, high values of chemical oxygen demand and biological oxygen demand, so it should not be discharged in the nature before previous purification. In this work, three ceramic membranes for microfiltration with different pore sizes were tested for stillage purification in order to find the most suitable membrane for the filtration process. Ceramic membranes with a nominal pore size of 200 nm, 450 nm and 800 nm were used for filtration. The influence of pore size on permeate flux and removal efficiency was investigated. A membrane with the pore size of 200 nm showed the best filtration performance so it was chosen for the microfiltration process.

  11. Nano pores evolution in hydroxyapatite microsphere during spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Lin C.

    2011-01-01

    Full Text Available Micron-spherical granules of hydroxyapatite (HAp nanoparticles were prepared by powder granulation methods. Through subsequent sintering, porous HAp microspheres with tailored pore and grain framework structures were obtained. Detailed microstructure investigation by SEM and TEM revealed the correlation of the pore structure and the necking strength with the sintering profiles that determine the coalescence features of the nanoparticles. The partially sintered porous HAp microspheres containing more than 50% porosity consisting of pores and grains both in nano-scale are active in inducing the precipitation of HAp in simulated body fluid. The nano-porous HAp microspheres with an extensive surface and interconnecting pores thus demonstrate the potential of stimulating the formation of collagen and bone and the integration with the newly formed bones during physiological bone remodeling.

  12. Diffusion Pore Imaging by Hyperpolarized Xenon-129 Nuclear Magnetic Resonance

    CERN Document Server

    Kuder, Tristan Anselm; Windschuh, Johannes; Laun, Frederik Bernd

    2012-01-01

    Nuclear magnetic resonance (NMR) diffusion measurements are widely used to derive parameters indirectly related to the microstructure of biological tissues and porous media. However, a direct imaging of cell or pore shapes and sizes would be of high interest. For a long time, determining pore shapes by NMR diffusion acquisitions seemed impossible, because the necessary phase information could not be preserved. Here we demonstrate experimentally using the measurement technique which we have recently proposed theoretically that the shape of arbitrary closed pores can be imaged by diffusion acquisitions, which yield the phase information. For this purpose, we use hyperpolarized xenon gas in well-defined geometries. The signal can be collected from the whole sample which mainly eliminates the problem of vanishing signal at increasing resolution of conventional NMR imaging. This could be used to non-invasively gain structural information inaccessible so far such as pore or cell shapes, cell density or axon integri...

  13. The Pore Structure and Hydration Performance of Sulphoaluminate MDF Cement

    Institute of Scientific and Technical Information of China (English)

    HUANG Cong-yun; YUAN Run-zhang; LONG Shi-zong

    2004-01-01

    The hydration and pore structure of sulphoaluminate MDF cement were studied by X-ray diffractometer ( XRD ), scanning electron microscope (SEM) and mercury intrusion porosimeter ( MIP ) etc. The ex-perimental results indicate that hydration products of the materials are entringites ( Aft ), aluminium hydroxide andCSH (Ⅰ) gel etc. Due to its very low water-cement ratio, hydration function is only confined to the surfaces of ce-ment grains, and there is a lot of sulphoaluminate cement in the hardenite which is unhydrated yet. Hydration re-action was rapidly carried under the condition of the heat-pressing. Therefore cement hydrates Aft, CSH (Ⅰ) andaluminium hydroxide gel fill in pores. The expansibility of Aft makes the porosity of MDF cement lower ( less than1 percent ) and the size of pore smaller (80 percent pore was less than 250A), and enhances its strength.

  14. Reconstruction Setting Out

    Institute of Scientific and Technical Information of China (English)

    YIN PUMIN

    2010-01-01

    @@ The first phase of earthquake relief,in which rescuing lives was the priority,finished 12 days after a 7.1-magnitude earthquake struck the Tibetan Autonomous Prefecture of Yushu in northwest China's Qinghai Province on April 14,and reconstruction of the area is now ready to begin.

  15. Breast reconstruction - natural tissue

    Science.gov (United States)

    ... muscle flap; TRAM; Latissimus muscle flap with a breast implant; DIEP flap; DIEAP flap; Gluteal free flap; ... If you are having breast reconstruction at the same time as mastectomy, the surgeon may do either of the following: Skin-sparing mastectomy. This means ...

  16. Urogenital Reconstructive Surgery

    DEFF Research Database (Denmark)

    Jakobsen, Lotte Kaasgaard

    Urogenital reconstructive surgery Lotte Kaasgaard Jakobsen1 Professor Henning Olsen1 Overlæge Gitte Hvistendahl1 Professor Karl-Erik Andersson2 1 – Dept. of Urology, Aarhus University Hospital 2 – Dept. of Gynecology and Obstetrics, Aarhus University hospital Background: Congenital obstruction...

  17. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases

    OpenAIRE

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K.G.; Wiegand, Simone

    2016-01-01

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007) Proc Natl Acad Sci USA 104(22):9346−9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores...

  18. RNase A Does Not Translocate the Alpha-Hemolysin Pore

    OpenAIRE

    Besnik Krasniqi; Lee, Jeremy S

    2014-01-01

    The application of nanopore sensing utilizing the α-hemolysin pore to probe proteins at single-molecule resolution has expanded rapidly. In some studies protein translocation through the α-hemolysin has been reported. However, there is no direct evidence, as yet, that proteins can translocate the α-hemolysin pore. The biggest challenge to obtaining direct evidence is the lack of a highly sensitive assay to detect very low numbers of protein molecules. Furthermore, if an activity based assay i...

  19. Comparative squamation of the lateral line canal pores in sharks.

    Science.gov (United States)

    McKenzie, R W; Motta, P J; Rohr, J R

    2014-05-01

    The current study collected the first quantitative data on lateral line pore squamation patterns in sharks and assessed whether divergent squamation patterns are similar to experimental models that cause reduction in boundary layer turbulence. In addition, the hypothesis that divergent orientation angles are exclusively found in fast-swimming shark species was tested. The posterior lateral line and supraorbital lateral line pore squamation of the fast-swimming pelagic shortfin mako shark Isurus oxyrinchus and the slow-swimming epi-benthic spiny dogfish shark Squalus acanthias was examined. Pore scale morphology and pore coverage were qualitatively analysed and compared. In addition, pore squamation orientation patterns were quantified for four regions along the posterior lateral line and compared for both species. Isurus oxyrinchus possessed consistent pore scale coverage among sampled regions and had a divergent squamation pattern with multiple scale rows directed dorsally and ventrally away from the anterior margin of the pore with an average divergent angle of 13° for the first row of scales. Squalus acanthias possessed variable amounts of scale coverage among the sampled regions and had a divergent squamation pattern with multiple scale rows directed ventrally away from the anterior margin of the pore with an average angle of 19° for the first row of scales. Overall, the squamation pattern measured in I. oxyrinchus fell within the parameters used in the fluid flow analysis, which suggests that this pattern may reduce boundary layer turbulence and affect lateral line sensitivity. The exclusively ventral oriented scale pattern seen in S. acanthias possessed a high degree of divergence but the pattern did not match that of the fluid flow models. Given current knowledge, it is unclear how this would affect boundary layer flow. By studying the relationship between squamation patterns and the lateral line, new insights are provided into sensory biology that warrant

  20. Low Pore Connectivity Increases Bacterial Diversity in Soil▿

    OpenAIRE

    Carson, Jennifer K.; Gonzalez-Quiñones, Vanesa; Murphy, Daniel V.; Hinz, Christoph; Shaw, Jeremy A.; Gleeson, Deirdre B.

    2010-01-01

    One of soil microbiology's most intriguing puzzles is how so many different bacterial species can coexist in small volumes of soil when competition theory predicts that less competitive species should decline and eventually disappear. We provide evidence supporting the theory that low pore connectivity caused by low water potential (and therefore low water content) increases the diversity of a complex bacterial community in soil. We altered the pore connectivity of a soil by decreasing water ...

  1. Breast reconstruction: Correlation between different procedures, reconstruction timing and complications

    Directory of Open Access Journals (Sweden)

    Anđelkov Katarina

    2011-01-01

    Full Text Available Introduction. Improved psychophysical condition after breast reconstruction in women has been well documented Objective. To determine the most optimal technique with minimal morbidity, the authors examined their results and complications based on reconstruction timing (immediate and delayed reconstruction and three reconstruction methods: TRAM flap, latissimus dorsi flap and reconstruction with tissue expanders and implants. Methods. Reconstruction was performed in 60 women of mean age 51.1 years. We analyzed risk factors: age, body mass index (BMI, smoking history and radiation therapy in correlation with timing and method of reconstruction. Complications of all three methods of reconstruction were under 1.5-2-year follow-up after the reconstruction. All data were statistically analyzed. Results. Only radiation had significant influence on the occurrence of complications both before and after the reconstruction, while age, smoking and BMI had no considerable influence of the development of complications. There were no statistically significant correlation between the incidence of complications, time and method of reconstruction. Conclusion. Any of the aforementioned breast reconstruction techniques can yield good results and a low rate of re-operations. To choose the best method, the patient needs to be as well informed as possible about the options including the risks and benefits of each method.

  2. Pore volume and pore size distribution of cement samples measured by a modified mercury intrusion porosimeter

    International Nuclear Information System (INIS)

    Important parameters for the characterization of cement specimens are mechanical properties and porosity. This work is carried out at the Ispra Establishment of the Joint Research Centre in the scope of the Radioactive Waste Management programme. A commercial Mercury Intrusion Porosimeter was modified in an attempt to improve the performance of the instrument and to provide fast processing of the recorded values: pressure-volume of pores. The dead volume of the instrument was reduced and the possibility of leakage from the moving parts eliminated. In addition, the modification allows an improvement of data acquisition thus increasing data accuracy and reproducibility. In order to test the improved performance of the modified instrument, physical characterizations of cement forms were carried out. Experimental procedures and results are reported

  3. Pore scale definition and computation from tomography data

    Science.gov (United States)

    Dupuy, P. M.; Austin, P.; Delaney, G. W.; Schwarz, M. P.

    2011-10-01

    During recent years characterisation capabilities of porous media have been transformed by advances in computation and visualisation technologies. It is now possible to obtain detailed topological and hydrodynamic information of porous media by combining tomographic and computational fluid dynamic studies. Despite the existence of these new capabilities, the characterisation process itself is based on the same antiquated experimental macroscopic concepts. We are interested in an up-scaling process where we can keep key information for every pore size present in the media in order to feed multi-scale transport models. Hydrometallurgical, environmental, food, pharmaceutical and chemical engineering are industries with process outcomes based on homogeneous and heterogeneous reactions and therefore sensitive to the reaction and transport processes happening at different pore scales. The present work addresses a key step in the information up-scaling process, i.e. a pore identification algorithm similar to alternating sequential filters. In a preliminary study, topological and hydrodynamic variables are correlated with the pore size. Micrometre and millimetre resolution tomographies are used to characterise the pore size distribution of a packed column and different rocks. Finally, we compute the inter-pore-scale redistribution function which is a measure of the heterogeneity of the media and magnitude needed in multi-scale modelling.

  4. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases.

    Science.gov (United States)

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K G; Wiegand, Simone

    2016-04-19

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007)Proc Natl Acad Sci USA104(22):9346-9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ∼85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45-90 d, starting with an initial formamide weight fraction of[Formula: see text]wt % that is typical for concentrations in shallow lakes on early Earth. PMID:27044100

  5. On the Minimum Energy Path to Membrane Pore Formation

    Science.gov (United States)

    Ting, Christina; Wang, Zhen-Gang

    2011-03-01

    Several experimental methods have been developed to study the mechanical response of vesicles under an applied tension. Of particular note are the micropipette aspiration techniques and the use of a viscous solution to extend the lifetime of pores. MD simulations have also been used to study the energetic and structural properties of these transient pores on a molecular level. However, they often require extremely high tensions beyond the regime where pore formation is a thermally-activated event. We approach the nucleation problem by combining the string method with dynamic self-consistent field (DSCF) theory to obtain the full minimum energy path (MEP) to pore formation for a range of surface tensions γ . We compare our results with classical nucleation theory (CNT). Near the coexistence (γ --> 0) the rim of the pore is well-defined and the line tension is well approximated by the macroscopic definition given by CNT. However, when the free energy barrier is within ~ 10 kT , the transition state is somewhere between a stalk-like structure and a thinned membrane leading to a hole that is partially exposed to solvents. These molecular rearrangements involved in the formation of a pore are not captured by CNT.

  6. Local membrane mechanics of pore-spanning bilayers.

    Science.gov (United States)

    Mey, Ingo; Stephan, Milena; Schmitt, Eva K; Müller, Martin Michael; Ben Amar, Martine; Steinem, Claudia; Janshoff, Andreas

    2009-05-27

    The mechanical behavior of lipid bilayers spanning the pores of highly ordered porous silicon substrates was scrutinized by local indentation experiments as a function of surface functionalization, lipid composition, solvent content, indentation velocity, and pore radius. Solvent-containing nano black lipid membranes (nano-BLMs) as well as solvent-free pore-spanning bilayers were imaged by fluorescence and atomic force microscopy prior to force curve acquisition, which allows distinguishing between membrane-covered and uncovered pores. Force indentation curves on pore-spanning bilayers attached to functionalized hydrophobic porous silicon substrates reveal a predominately linear response that is mainly attributed to prestress in the membranes. This is in agreement with the observation that indentation leads to membrane lysis well below 5% area dilatation. However, membrane bending and lateral tension dominate over prestress and stretching if solvent-free supported membranes obtained from spreading giant liposomes on hydrophilic porous silicon are indented. An elastic regime diagram is presented that readily allows determining the dominant contribution to the mechanical response upon indentation as a function of load and pore radius. PMID:19453196

  7. Patch-clamp detection of macromolecular translocation along nuclear pores

    Directory of Open Access Journals (Sweden)

    Bustamante J.O.

    1998-01-01

    Full Text Available The present paper reviews the application of patch-clamp principles to the detection and measurement of macromolecular translocation along the nuclear pores. We demonstrate that the tight-seal 'gigaseal' between the pipette tip and the nuclear membrane is possible in the presence of fully operational nuclear pores. We show that the ability to form a gigaseal in nucleus-attached configurations does not mean that only the activity of channels from the outer membrane of the nuclear envelope can be detected. Instead, we show that, in the presence of fully operational nuclear pores, it is likely that the large-conductance ion channel activity recorded derives from the nuclear pores. We conclude the technical section with the suggestion that the best way to demonstrate that the nuclear pores are responsible for ion channel activity is by showing with fluorescence microscopy the nuclear translocation of ions and small molecules and the exclusion of the same from the cisterna enclosed by the two membranes of the envelope. Since transcription factors and mRNAs, two major groups of nuclear macromolecules, use nuclear pores to enter and exit the nucleus and play essential roles in the control of gene activity and expression, this review should be useful to cell and molecular biologists interested in understanding how patch-clamp can be used to quantitate the translocation of such macromolecules into and out of the nucleus

  8. Pore opening dynamics in the exocytosis of serotonin

    Science.gov (United States)

    Ramirez-Santiago, Guillermo; Cercos, Montserrat G.; Martinez-Valencia, Alejandro; Salinas Hernandez, Israel; Rodríguez-Sosa, Leonardo; de-Miguel, Francisco F.

    2015-03-01

    The current view of the exocytosis of transmitter molecules is that it starts with the formation of a fusion pore that connects the intravesicular and the extracellular spaces, and is completed by the release of the rest of the transmitter contained in the vesicle upon the full fusion and collapse of the vesicle with the plasma membrane. However, under certain circumstances, a rapid closure of the pore before the full vesicle fusion produces only a partial release of the transmitter. Here we show that whole release of the transmitter occurs through fusion pores that remain opened for tens of milliseconds without vesicle collapse. This was demonstrated through amperometric measurements of serotonin release from electrodense vesicles in the axon of leech Retzius neurons and mathematical modelling. By modeling transmitter release with a diffusion equation subjected to boundary conditions that are defined by the experiment, we showed that those pores with a fast half rise time constant remained opened and allowed the full quantum release without vesicle collapse, whereas pores with a slow rise time constant closed rapidly, thus producing partial release. We conclude that a full transmitter release may occur through the fusion pore in the absence of vesicle collapse. This work was founded by a DGAPA-UNAM grants IN200914 and IN118410 CONACYT GRANT 130031, and CONACyT doctoral fellowships.

  9. Mangrove pore water exchange across a latitudinal gradient

    Science.gov (United States)

    Tait, Douglas R.; Maher, Damien T.; Macklin, Paul A.; Santos, Isaac R.

    2016-04-01

    We combined observations of the natural tracer radon (222Rn) with hydrodynamic models across a broad latitudinal gradient covering several climate zones to estimate pore water exchange rates in mangroves. Pore water exchange ranged from 2.1 to 35.5 cm d-1 from temperate to tropical regions and averaged 16.3 ± 5.1 cm d-1. If upscaled to the global weighted mangrove area, pore water exchange in mangroves would recirculate the entire volume of water overlying the continental shelf in less than 153 years. Although pore water exchange (recirculated seawater) and river discharge represent different pathways for water entering the coastal ocean, the estimated global mangrove pore water exchange would be equal to approximately one third of annual global river discharge to the ocean (3.84 × 1013 m3 yr-1). Because biogeochemical processes in mangroves are largely dependent on pore water exchange, these large exchange rates have major implications for coastal nutrient, carbon, and greenhouse gas cycling in tropical marine systems.

  10. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases

    Science.gov (United States)

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K. G.

    2016-04-01

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007) Proc Natl Acad Sci USA 104(22):9346-9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ˜85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45-90 d, starting with an initial formamide weight fraction of 10-310-3 wt % that is typical for concentrations in shallow lakes on early Earth.

  11. Pore size and the lab-field reaction rate riddle

    Science.gov (United States)

    Emmanuel, S.; Ague, J. J.; Walderhaug, O.

    2009-12-01

    Pore size is usually thought to influence the rate of crystal growth during diagenesis and metamorphism by controlling the ratio of surface area to fluid volume. However, theory suggests that in micron-scale to nanometer-scale pores, interfacial energy effects can also become important. We used mercury porosimetry to investigate the pore-size distributions in naturally cemented sandstone adjacent to stylolites and found that quartz precipitation was inhibited in pores smaller than 10 microns in diameter. We demonstrate that standard kinetic models cannot reproduce the observed pore-size patterns in mineralized samples; by contrast, excellent fits with the data are obtained when interfacial energy effects are taken into account. Moreover, as such micron-scale pores comprise the overwhelming majority of surface area in the sandstone, average reaction rates for the rock are significantly reduced. Reaction rates in geological media determined in field studies can be orders of magnitude lower than those measured in laboratory experiments, and we propose that reduced reaction rates in rocks with micron-scale porosity could account for the apparent paradox.

  12. Pore growth in U-Mo/Al dispersion fuel

    Science.gov (United States)

    Kim, Yeon Soo; Jeong, G. Y.; Sohn, D.-S.; Jamison, L. M.

    2016-09-01

    U-Mo/Al dispersion fuel is currently under development in the DOE's Material Management and Minimization program to convert HEU-fueled research reactors to LEU-fueled reactors. In some demanding conditions in high-power and high-performance reactors, large pores form in the interaction layers between the U-Mo fuel particles and the Al matrix, which pose a potential to cause fuel failure. In this study, comprehension of the formation and growth of these pores was explored. As a product, a model to predict pore growth and porosity increase was developed. The model includes three major topics: fission gas release from the U-Mo and the IL to the pores, stress evolution in the fuel meat, and the effect of amorphous IL growth. Well-characterized in-pile data from reduced-size plates were used to fit the model parameters. A data set from full-sized plates, independent and distinctively different from those used to fit the model parameters, was used to examine the accuracy of the model. The model showed fair agreement with the measured data. The model suggested that the growth of the IL has a critical effect on pore growth, as both its material properties and energetics are favorable to pore formation. Therefore, one area of the current effort, focused on suppressing IL growth, appears to be on the right track to improve the performance of this fuel.

  13. Pore Scale Analysis of Oil Shale/Sands Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chen-Luh; Miller, Jan

    2011-03-01

    There are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imaging of core samples was done using multiscale X-ray computed tomography (CT) before and after pyrolysis to establish the pore structure. The pore structure of the unreacted material was not clear. Selected images of a core pyrolyzed at 400oC were obtained at voxel resolutions from 39 microns (Οm) to 60 nanometers (nm). Some of the pore space created during pyrolysis was clearly visible at these resolutions and it was possible to distinguish between the reaction products and the host shale rock. The pore structure deduced from the images was used in Lattice Boltzmann simulations to calculate the permeability in the pore space. The permeabilities of the pyrolyzed samples of the silicate-rich zone were on the order of millidarcies, while the permeabilities of the kerogen-rich zone after pyrolysis were very anisotropic and about four orders of magnitude higher.

  14. Smooth DNA transport through a narrowed pore geometry.

    Science.gov (United States)

    Carson, Spencer; Wilson, James; Aksimentiev, Aleksei; Wanunu, Meni

    2014-11-18

    Voltage-driven transport of double-stranded DNA through nanoscale pores holds much potential for applications in quantitative molecular biology and biotechnology, yet the microscopic details of translocation have proven to be challenging to decipher. Earlier experiments showed strong dependence of transport kinetics on pore size: fast regular transport in large pores (> 5 nm diameter), and slower yet heterogeneous transport time distributions in sub-5 nm pores, which imply a large positional uncertainty of the DNA in the pore as a function of the translocation time. In this work, we show that this anomalous transport is a result of DNA self-interaction, a phenomenon that is strictly pore-diameter dependent. We identify a regime in which DNA transport is regular, producing narrow and well-behaved dwell-time distributions that fit a simple drift-diffusion theory. Furthermore, a systematic study of the dependence of dwell time on DNA length reveals a single power-law scaling of 1.37 in the range of 35-20,000 bp. We highlight the resolution of our nanopore device by discriminating via single pulses 100 and 500 bp fragments in a mixture with >98% accuracy. When coupled to an appropriate sequence labeling method, our observation of smooth DNA translocation can pave the way for high-resolution DNA mapping and sizing applications in genomics. PMID:25418307

  15. Membrane pore formation in atomistic and coarse-grained simulations.

    Science.gov (United States)

    Kirsch, Sonja A; Böckmann, Rainer A

    2016-10-01

    Biological cells and their organelles are protected by ultra thin membranes. These membranes accomplish a broad variety of important tasks like separating the cell content from the outer environment, they are the site for cell-cell interactions and many enzymatic reactions, and control the in- and efflux of metabolites. For certain physiological functions e.g. in the fusion of membranes and also in a number of biotechnological applications like gene transfection the membrane integrity needs to be compromised to allow for instance for the exchange of polar molecules across the membrane barrier. Mechanisms enabling the transport of molecules across the membrane involve membrane proteins that form specific pores or act as transporters, but also so-called lipid pores induced by external fields, stress, or peptides. Recent progress in the simulation field enabled to closely mimic pore formation as supposed to occur in vivo or in vitro. Here, we review different simulation-based approaches in the study of membrane pores with a focus on lipid pore properties such as their size and energetics, poration mechanisms based on the application of external fields, charge imbalances, or surface tension, and on pores that are induced by small molecules, peptides, and lipids. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26748016

  16. Relationship between pore structure and compressive strength of concrete: Experiments and statistical modeling

    Indian Academy of Sciences (India)

    J BU; Z TIAN

    2016-03-01

    Properties of concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the pore structure-compressive strength relationship in concrete. Several concrete mixtures with different pore structures are proportioned and subjected to static compressive tests. The pore structure features such as porosity, pore size distribution are extracted using mercury intrusion porosimetry technique. A statistical model is developed to relate thecompressive strength to relevant pore structure features.

  17. Quantification of subsurface pore pressure through IODP drilling

    Science.gov (United States)

    Saffer, D. M.; Flemings, P. B.

    2010-12-01

    It is critical to understand the magnitude and distribution of subsurface pore fluid pressure: it controls effective stress and thus mechanical strength, slope stability, and sediment compaction. Elevated pore pressures also drive fluid flows that serve as agents of mass, solute, and heat fluxes. The Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) have provided important avenues to quantify pore pressure in a range of geologic and tectonic settings. These approaches include 1) analysis of continuous downhole logs and shipboard physical properties data to infer compaction state and in situ pressure and stress, 2) laboratory consolidation testing of core samples collected by drilling, 3) direct downhole measurements using pore pressure probes, 3) pore pressure and stress measurements using downhole tools that can be deployed in wide diameter pipe recently acquired for riser drilling, and 4) long-term monitoring of formation pore pressure in sealed boreholes within hydraulically isolated intervals. Here, we summarize key advances in quantification of subsurface pore pressure rooted in scientific drilling, highlighting with examples from subduction zones, the Gulf of Mexico, and the New Jersey continental shelf. At the Nankai, Costa Rican, and Barbados subduction zones, consolidation testing of cores samples, combined with analysis of physical properties data, indicates that even within a few km landward of the trench, pore pressures in and below plate boundary décollement zones reach a significant fraction of the lithostatic load (λ*=0.25-0.91). These results document a viable and quantifiable mechanism to explain the mechanical weakness of subduction décollements, and are corroborated by a small number of direct measurements in sealed boreholes and by inferences from seismic reflection data. Recent downhole measurements conducted during riser drilling using the modular formation dynamics tester wireline tool (MDT) in a forearc basin ~50

  18. Determining pore length scales and pore surface relaxivity of rock cores by internal magnetic fields modulation at 2MHz NMR.

    Science.gov (United States)

    Liu, Huabing; Nogueira d'Eurydice, Marcel; Obruchkov, Sergei; Galvosas, Petrik

    2014-09-01

    Pore length scales and pore surface relaxivities of rock cores with different lithologies were studied on a 2MHz Rock Core Analyzer. To determine the pore length scales of the rock cores, the high eigenmodes of spin bearing molecules satisfying the diffusion equation were detected with optimized encoding periods in the presence of internal magnetic fields Bin. The results were confirmed using a 64MHz NMR system, which supports the feasibility of high eigenmode detection at fields as low as 2MHz. Furthermore, this methodology was combined with relaxometry measurements to a two-dimensional experiment, which provides correlation between pore length and relaxation time. This techniques also yields information on the surface relaxivity of the rock cores. The estimated surface relaxivities were then compared to the results using an independent NMR method.

  19. Estimation of water saturated permeability of soils, using 3D soil tomographic images and pore-level transport phenomena modelling

    Science.gov (United States)

    Lamorski, Krzysztof; Sławiński, Cezary; Barna, Gyöngyi

    2014-05-01

    There are some important macroscopic properties of the soil porous media such as: saturated permeability and water retention characteristics. These soil characteristics are very important as they determine soil transport processes and are commonly used as a parameters of general models of soil transport processes used extensively for scientific developments and engineering practise. These characteristics are usually measured or estimated using some statistical or phenomenological modelling, i.e. pedotransfer functions. On the physical basis, saturated soil permeability arises from physical transport processes occurring at the pore level. Current progress in modelling techniques, computational methods and X-ray micro-tomographic technology gives opportunity to use direct methods of physical modelling for pore level transport processes. Physically valid description of transport processes at micro-scale based on Navier-Stokes type modelling approach gives chance to recover macroscopic porous medium characteristics from micro-flow modelling. Water microflow transport processes occurring at the pore level are dependent on the microstructure of porous body and interactions between the fluid and the medium. In case of soils, i.e. the medium there exist relatively big pores in which water can move easily but also finer pores are present in which water transport processes are dominated by strong interactions between the medium and the fluid - full physical description of these phenomena is a challenge. Ten samples of different soils were scanned using X-ray computational microtomograph. The diameter of samples was 5 mm. The voxel resolution of CT scan was 2.5 µm. Resulting 3D soil samples images were used for reconstruction of the pore space for further modelling. 3D image threshholding was made to determine the soil grain surface. This surface was triangulated and used for computational mesh construction for the pore space. Numerical modelling of water flow through the

  20. Determination of the pore size distribution of micro porous layer in PEMFC using pore forming agents under various drying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Jeong Hwan; Park, Ki Tae; Jo, Dong Hyun; Lee, Ji Young; Kim, Sang Gon; Kim, Sung Hyun [Department of Chemical and Biological Engineering, Korea University, 1 Anam-Dong, Seongbuk-Ku, Seoul 136-713 (Korea); Lee, Eun Sook; Jyoung, Jy-Young [Energy Research Center, HyupJin I and C Co., LTD, 143-1 Gwelang-Ri, Jungnam-Myun, Hwasung-Si, Kyunggi-Do (Korea)

    2010-10-15

    In this paper, the effect of the pore size distribution of a micro-porous layer (MPL) on the performance of polymer electrolyte membrane fuel cells (PEMFC) was investigated using self-made gas diffusion layers (GDLs) with different MPLs for which the pore size distribution was modified using pore forming agents under different drying conditions. When MPL dried at high temperature, more macro pores, approximately 1,000-20,000 nm in diameter, and less micro pores, below 100 nm, were observed relative to when MPL was dried at low temperature. Self-made GDLs were characterized by a field-emission scanning electron microscope (FE-SEM), mercury porosimetry and self-made gas permeability measurement equipment. The performance of the single cells was measured under two different humidification conditions. The results demonstrate that the optimum pore size distribution of MPL depended on the cell operating humidification condition. The MPL dried at high temperature performed better than the MPL dried at low temperature under a low humidification condition; however, MPL dried at low temperature performed better under a high humidification condition. (author)

  1. Detecting pore-lining regions in transmembrane protein sequences

    Directory of Open Access Journals (Sweden)

    Nugent Timothy

    2012-07-01

    Full Text Available Abstract Background Alpha-helical transmembrane channel and transporter proteins play vital roles in a diverse range of essential biological processes and are crucial in facilitating the passage of ions and molecules across the lipid bilayer. However, the experimental difficulties associated with obtaining high quality crystals has led to their significant under-representation in structural databases. Computational methods that can identify structural features from sequence alone are therefore of high importance. Results We present a method capable of automatically identifying pore-lining regions in transmembrane proteins from sequence information alone, which can then be used to determine the pore stoichiometry. By labelling pore-lining residues in crystal structures using geometric criteria, we have trained a support vector machine classifier to predict the likelihood of a transmembrane helix being involved in pore formation. Results from testing this approach under stringent cross-validation indicate that prediction accuracy of 72% is possible, while a support vector regression model is able to predict the number of subunits participating in the pore with 62% accuracy. Conclusion To our knowledge, this is the first tool capable of identifying pore-lining regions in proteins and we present the results of applying it to a data set of sequences with available crystal structures. Our method provides a way to characterise pores in transmembrane proteins and may even provide a starting point for discovering novel routes of therapeutic intervention in a number of important diseases. This software is freely available as source code from: http://bioinf.cs.ucl.ac.uk/downloads/memsat-svm/.

  2. Arctic Sea Level Reconstruction

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde

    method.For oceanographic purposes, the altimetric record over the Arctic Ocean is inferiorin quality to that of moderate latitudes, but nonetheless an invaluable set of observations. During this project, newly processed Arctic altimetry from the ERS-1/-2 and Envisat missions has become available......Reconstruction of historical Arctic sea level is very difficult due to the limited coverage and quality of tide gauge and altimetry data in the area. This thesis addresses many of these issues, and discusses strategies to help achieve a stable and plausible reconstruction of Arctic sea level from...... 1950 to today.The primary record of historical sea level, on the order of several decades to a few centuries, is tide gauges. Tide gauge records from around the world are collected in the Permanent Service for Mean Sea Level (PSMSL) database, and includes data along the Arctic coasts. A reasonable...

  3. Fractal classification and natural classification of coal pore structure based on migration of coal bed methane

    Institute of Scientific and Technical Information of China (English)

    FU Xuehai; QIN Yong; ZHANG Wanhong; WEI Chongtao; ZHOU Rongfu

    2005-01-01

    According to the data of 146 coal samples measured by mercury penetration, coal pores are classified into two levels of <65 nm diffusion pore and >65 nm seeping pore by fractal method based on the characteristics of diffusion, seepage of coal bed methane(CBM) and on the research results of specific pore volume and pore structure. The diffusion pores are further divided into three categories: <8 nm micropore, 8-20 nm transitional pore, and 20-65 nm minipore based on the relationship between increment of specific surface area and diameter of pores, while seepage pores are further divided into three categories: 65-325 nm mesopore,325-1000 nm transitional pore, and >1000 nm macropore based on the abrupt change in the increment of specific pore volume.

  4. Reconstructing holographic quintessence

    OpenAIRE

    Zhang, Xin

    2006-01-01

    The holographic dark energy model is an attempt for probing the nature of dark energy within the framework of quantum gravity. The dimensionless parameter $c$ determines the main property of the holographic dark energy. With the choice of $c\\geq 1$, the holographic dark energy can be described completely by a quintessence scalar field. In this paper, we show this quintessential description of the holographic dark energy with $c\\geq 1$ and reconstruct the potential of the quintessence as well ...

  5. LOFAR sparse image reconstruction

    Science.gov (United States)

    Garsden, H.; Girard, J. N.; Starck, J. L.; Corbel, S.; Tasse, C.; Woiselle, A.; McKean, J. P.; van Amesfoort, A. S.; Anderson, J.; Avruch, I. M.; Beck, R.; Bentum, M. J.; Best, P.; Breitling, F.; Broderick, J.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; de Gasperin, F.; de Geus, E.; de Vos, M.; Duscha, S.; Eislöffel, J.; Engels, D.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Hörandel, J.; van der Horst, A.; Juette, E.; Karastergiou, A.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; Mulcahy, D. D.; Munk, H.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pietka, G.; Pizzo, R.; Polatidis, A. G.; Renting, A.; Röttgering, H.; Rowlinson, A.; Schwarz, D.; Sluman, J.; Smirnov, O.; Stappers, B. W.; Steinmetz, M.; Stewart, A.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; Thoudam, S.; Toribio, C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.; Zensus, A.

    2015-03-01

    Context. The LOw Frequency ARray (LOFAR) radio telescope is a giant digital phased array interferometer with multiple antennas distributed in Europe. It provides discrete sets of Fourier components of the sky brightness. Recovering the original brightness distribution with aperture synthesis forms an inverse problem that can be solved by various deconvolution and minimization methods. Aims: Recent papers have established a clear link between the discrete nature of radio interferometry measurement and the "compressed sensing" (CS) theory, which supports sparse reconstruction methods to form an image from the measured visibilities. Empowered by proximal theory, CS offers a sound framework for efficient global minimization and sparse data representation using fast algorithms. Combined with instrumental direction-dependent effects (DDE) in the scope of a real instrument, we developed and validated a new method based on this framework. Methods: We implemented a sparse reconstruction method in the standard LOFAR imaging tool and compared the photometric and resolution performance of this new imager with that of CLEAN-based methods (CLEAN and MS-CLEAN) with simulated and real LOFAR data. Results: We show that i) sparse reconstruction performs as well as CLEAN in recovering the flux of point sources; ii) performs much better on extended objects (the root mean square error is reduced by a factor of up to 10); and iii) provides a solution with an effective angular resolution 2-3 times better than the CLEAN images. Conclusions: Sparse recovery gives a correct photometry on high dynamic and wide-field images and improved realistic structures of extended sources (of simulated and real LOFAR datasets). This sparse reconstruction method is compatible with modern interferometric imagers that handle DDE corrections (A- and W-projections) required for current and future instruments such as LOFAR and SKA.

  6. Orthotopic neobladder reconstruction

    OpenAIRE

    Chang, Dwayne T. S.; Nathan Lawrentschuk

    2015-01-01

    Orthotopic neobladder reconstruction is becoming an increasingly common urinary diversion following cystectomy for bladder cancer. This is in recognition of the potential benefits of neobladder surgery over creation of an ileal conduit related to quality of life (QoL), such as avoiding the need to form a stoma with its cosmetic, psychological and other potential complications. The PubMed database was searched using relevant search terms for articles published electronically between January 19...

  7. The art of reconstruction

    OpenAIRE

    Healey, Michael; Esson, Michael

    2011-01-01

    The ‘Art of Reconstruction Research Project’ is where re-skilling of plastic surgeons by artists is already in an embryonic phase. In integrating the required network of associated skills, expertise and experience, the research collaboration brings together artists within The Drawing Research Group of The Faculty of Art, Architecture and Design (AAD) and the distinguished work of Professor Mike Esson, Director, The International Drawing Research Institute (IDRI). Th...

  8. Final Report for Subcontract B541028, Pore-Scale Modeling to Support "Pore Connectivity" Research Work

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R P

    2009-02-25

    This report covers modeling aspects of a combined experimental and modeling task in support of the DOE Science and Technology Program (formerly OSTI) within the Office of Civilian Radioactive Waste Management (OCRWM). Research Objectives The research for this project dealt with diffusive retardation: solute moving through a fracture diffuses into and out of the rock matrix. This diffusive exchange retards overall solute movement, and retardation both dilutes waste being released, and allows additional decay. Diffusive retardation involves not only fracture conductivity and matrix diffusion, but also other issues and processes: contaminants may sorb to the rock matrix, fracture flow may be episodic, a given fracture may or may not flow depending on the volume of flow and the fracture's connection to the overall fracture network, the matrix imbibes water during flow episodes and dries between episodes, and so on. The objective of the project was to improve understanding of diffusive retardation of radionuclides due to fracture / matrix interactions. Results from combined experimental/modeling work were to (1) determine whether the current understanding and model representation of matrix diffusion is valid, (2) provide insights into the upscaling of laboratory-scale diffusion experiments, and (3) help in evaluating the impact on diffusive retardation of episodic fracture flow and pore connectivity in Yucca Mountain tuffs. Questions explored included the following: (1) What is the relationship between the diffusion coefficient measured at one scale, to that measured or observed at a different scale? In classical materials this relationship is trivial; in low-connectivity materials it is not. (2) Is the measured diffusivity insensitive to the shape of the sample? Again, in classical materials there should be no sample shape effect. (3) Does sorption affect diffusive exchange in low-connectivity media differently than in classical media? (4) What is the effect of

  9. Reconstruction of 3-D digital cores using a hybrid method

    Institute of Scientific and Technical Information of China (English)

    Liu Xuefeng; Sun Jianmeng; Wang Haitao

    2009-01-01

    A 3-D digital core describes the pore space microstructure of rocks. An X-ray micro CT scan is the most accurate and direct but costly method to obtain a 3-D digital core. In this study, we propose a hybrid method which combines sedimentation simulation and simulated annealing (SA) method to generate 3-D digital cores based on 2-D images of rocks. The method starts with the sedimentation simulation to build a 3-D digital core, which is the initial configuration for the SA method. We update the initial digital core using the SA method to match the auto-correlation function of the 2-D rock image and eventually build the final 3-D digital core. Compared with the typical SA method, the hybrid method has significantly reduced the computation time. Local porosity theory is applied to quantitatively compare the reconstructed 3-D digital cores with the X-ray micro CT 3-D images. The results indicate that the 3-D digital cores reconstructed by the hybrid method have homogeneity and geometric connectivity similar to those of the X-ray micro CT image. The formation factors and permeabilities of the reconstructed 3-D digital cores are estimated using the finite element method (FEM) and lattice Boltzmann method (LBM), respectively. The simulated results are in good agreement with the experimental measurements. Comparison of the simulation results suggests that the digital cores reconstructed by the hybrid method more closely reflect the true transport properties than the typical SA method alone.

  10. Canal Wall Reconstruction Mastoidectomy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate the advantages of canal wall reconstruction (CWR) mastoidectomy, a single-stage technique for cholesteatoma removal and posterior external canal wall reconstruction, over the open and closed procedures in terms of cholesteatoma recurrence. Methods: Between June 2002 and December 2005, 38 patients (40 ears) with cholesteatoma were admited to Sun Yat-Sen Memorial Hospital and received surgical treatments. Of these patients, 25 were male with ages ranging between 11 and 60 years (mean = 31.6 years) and 13 were female with ages ranging between 20 and 65 years (mean = 38.8 years). Canal wall reconstruction (CWR)mastoidectomy was performed in 31 ears and canal wall down (CWD) mastoidectomy in 9 ears. Concha cartilage was used for ear canal wall reconstruction in 22 of the 31 CWR procedures and cortical mastoid bone was used in the remaining 9 cases. Results At 0.5 to 4 years follow up, all but one patients remained free of signs of cholesteatoma recurrence, i.e., no retraction pocket or cholesteatoma matrix. One patient, a smoker, needed revision surgery due to cholesteatoma recurrence 1.5 year after the initial operation. The recurrence rate was therefore 3.2% (1/31). Cholesteatoma recurrence was monitored using postoperative CT scans whenever possible. In the case that needed a revision procedure, a retraction pocket was identified by otoendoscopy in the pars flacida area that eventually evolved into a cholesteatoma. A pocket extending to the epitympanum filled with cholesteatoma matrix was confirmed during the revision operation, A decision to perform a modified mastoidectomy was made as the patient refused to quit smoking. The mean air-bone gap in pure tone threshold was 45 dB before surgery and 25 dB after (p < 0.05). There was no difference between using concha cartilage and cortical mastoid bone for the reconstruction regarding air-bone gap improvement, CT findings and otoendoscopic results. Conclusion CWR mastoidectomy can be used for

  11. Reconstruction of the perineum.

    Science.gov (United States)

    Wong, David Sau-Yan

    2014-09-01

    The pelvic and perineal regions are affected by a heterogeneous spectrum of pathologies, many with a tendency to recur. Extensive mutilation carries physical, sexual, and psychological sequelae. Primary reconstruction reduces morbidity and shortens recovery. Modern management calls for a multidisciplinary approach. Not uncommonly, patients come with previous surgery and/or chemoirradiation. They may also be elderly and debilitated. The literature on reconstruction of the perineum can be confusing because knowledge has evolved by an accumulation of isolated short reports of individual methods. This led to the lack of a unifying basis for nomenclature and a failure to relate specific techniques to their roles in repairing particular types of defects. This article gives an overall summary of the approaches in a structured and rational manner. Defects of the external pelvis and perineal lining are usually amenable to coverage with local or regional fasciocutaneous flaps, if primary closure or skin graft is not appropriate. These flaps depend on the integrity of the vascular territories of the internal pudendal, the upper medial thigh plexus, or the descending branches of the inferior gluteal. The location and extent of the resection usually determine the requirements of the reconstruction and may dictate the choice of options. When defects are pelviperineal, particularly when the vagina needs to be reconstructed, myocutaneous flaps are of proven advantage in dealing with both the resurfacing as well as providing the bulk needed to fill the pelvic cavity after extensive resections. The rectus, gluteus, and gracilis are the best known options. Owing to the intrinsic limitations with the gracilis flap, the rectus and gluteus flaps have largely superseded its role in most situations. The rectus flap, in particular, provides good bulk as well as reliable skin. The use of muscle sparing flaps based on the perforator principle in suitable instances has increasingly been

  12. Assessment of Image Processing and Resolution on Permeability and Drainage Simulations Through 3D Pore-networks Obtained Using X-ray Computed Tomography

    Science.gov (United States)

    Mills, G.; Willson, C. S.; Thompson, K. E.; Rivers, M. L.

    2013-12-01

    Typically, continuum-scale flow parameters are obtained through laboratory experiments. Over the past several years, image-based modeling, which is a direct simulation of flow through the structural arrangements of the voids and solids obtained using X-ray computed tomography (XCT) in a sample porous medium, has become a reliable technique for predicting certain flow parameters. Even though XCT is capable of resolving micron-level details, the voxel resolution of the reconstructed image is still dependent upon a number of factors, including the sample size, X-ray energy and XCT beamline setup. Thus, each imaging experiment requires a tradeoff between the sample size that can be imaged, the voxel resolution, and the length scale of the pore space that can be extracted. In addition, the geometric and topological properties of the void space and 3D pore network structure are dictated by the image processing and the choice of pore network generation method. In this research, image-based pore network models are used to quantitatively assess the impact of image resolution, image processing and the choice of pore network generation methods on simulated parameters. A 5 mm diameter and ~15 mm in length Berea sandstone core was scanned two times. First, a ~12 mm long section of the entire cross-section was scanned at 4.1 micron voxel resolution; next, a ~1.4 mm diameter and ~4.12 mm length section within the 1st domain was scanned at 1 micron voxel resolution. The resulting 3D datasets were filtered and segmented into solid and void space. The low resolution image was filtered and segmented using two different approaches in order to evaluate the potential of each approach in identifying the different solid phases in the original 16 bit dataset. A set of networks were created by varying the pore density on both the high and low resolution datasets in order to assess the impact of these factors on flow simulations. Single-phase permeability and a two-phase drainage pore

  13. Role of Pore-Forming Toxins in Neonatal Sepsis

    Directory of Open Access Journals (Sweden)

    Andreas F.-P. Sonnen

    2013-01-01

    Full Text Available Protein toxins are important virulence factors contributing to neonatal sepsis. The major pathogens of neonatal sepsis, group B Streptococci, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, secrete toxins of different molecular nature, which are key for defining the disease. Amongst these toxins are pore-forming exotoxins that are expressed as soluble monomers prior to engagement of the target cell membrane with subsequent formation of an aqueous membrane pore. Membrane pore formation is not only a means for immediate lysis of the targeted cell but also a general mechanism that contributes to penetration of epithelial barriers and evasion of the immune system, thus creating survival niches for the pathogens. Pore-forming toxins, however, can also contribute to the induction of inflammation and hence to the manifestation of sepsis. Clearly, pore-forming toxins are not the sole factors that drive sepsis progression, but they often act in concert with other bacterial effectors, especially in the initial stages of neonatal sepsis manifestation.

  14. Impacts of simulated drought on pore water chemistry of peatlands

    International Nuclear Information System (INIS)

    Northern peatlands are increasingly threatened by climate change and industrial activities. This study examined the impact of simulated droughts on pore water chemistry at six peatlands in Sudbury, Ontario, that differ in copper (Cu), nickel (Ni) and cobalt (Co) contamination, including a site that had been previously limed. All sites responded similarly to simulated drought: pore water pH declined significantly following the 30 day drought and the decline was greater following the 60 day drought treatment. The decline in pore water pH was due to increasing sulphate concentrations, whereas nitrate increased more in the 60 day drought treatment. Decreases in pH were accompanied by large increases in Ni and Co that greatly exceeded provincial water quality guidelines. In contrast, dissolved organic carbon (DOC) concentrations decreased significantly following drought, along with concentrations of Cu and Al, which are strongly complexed by organic acids. -- Highlights: • Assessed impact of simulated 30 and 60 day droughts on peatland pore water chemistry. • Release of SO4 and NO3 induces peatland acidification. • Release of Ni and Co increases with drought duration. • Dissolved organic carbon decreases with drought along with Cu and Al. • Historical liming does not greatly reduce drought impact. -- Simulated drought acidifies pore water of peatlands and increases Ni and Co but decreases DOC, Cu and Al concentration

  15. SCAM analysis of Panx1 suggests a peculiar pore structure.

    Science.gov (United States)

    Wang, Junjie; Dahl, Gerhard

    2010-11-01

    Vertebrates express two families of gap junction proteins: the well-characterized connexins and the pannexins. In contrast to connexins, pannexins do not appear to form gap junction channels but instead function as unpaired membrane channels. Pannexins have no sequence homology to connexins but are distantly related to the invertebrate gap junction proteins, innexins. Despite the sequence diversity, pannexins and connexins form channels with similar permeability properties and exhibit similar membrane topology, with two extracellular loops, four transmembrane (TM) segments, and cytoplasmic localization of amino and carboxy termini. To test whether the similarities extend to the pore structure of the channels, pannexin 1 (Panx1) was subjected to analysis with the substituted cysteine accessibility method (SCAM). The thiol reagents maleimidobutyryl-biocytin and 2-trimethylammonioethyl-methanethiosulfonate reacted with several cysteines positioned in the external portion of the first TM segment (TM1) and the first extracellular loop. These data suggest that portions of TM1 and the first extracellular loop line the outer part of the pore of Panx1 channels. In this aspect, the pore structures of Panx1 and connexin channels are similar. However, although the inner part of the pore is lined by amino-terminal amino acids in connexin channels, thiol modification was detected in carboxyterminal amino acids in Panx1 channels by SCAM analysis. Thus, it appears that the inner portion of the pores of Panx1 and connexin channels may be distinct. PMID:20937692

  16. Regulation of soil organic C mineralisation at the pore scale.

    Science.gov (United States)

    Ruamps, Léo S; Nunan, Naoise; Pouteau, Valérie; Leloup, Julie; Raynaud, Xavier; Roy, Virginie; Chenu, Claire

    2013-10-01

    Little is known about the factors that regulate C mineralisation at the soil pore scale or how these factors vary throughout the pore network. This study sought to understand how the decomposition of organic carbon varies within the soil pore network and to determine the relative importance of local environmental properties relative to biological properties as controlling factors. This was achieved by sterilising samples of soil and reinoculating them with axenic bacterial suspensions using the matric potential to target different locations in the pore network. Carbon mineralisation curves were described with two-compartment first-order models to distinguish CO2 derived from the labile organic carbon released during sterilisation from CO2 derived from organic C unaffected by sterilisation. The data indicated that the size of the labile pool of organic C, possibly of microbial origin, varied as a function of location in the pore network but that the organic carbon unaffected by sterilisation did not. The mineralisation rate of the labile C varied with the bacterial type inoculated, but the mineralisation rate of the organic C unaffected by sterilisation was insensitive to bacterial type. Taken together, the results suggest that microbial metabolism is a less significant regulator of soil organic carbon decomposition than are microbial habitat properties. PMID:23346944

  17. Pore Water Collection, Analysis and Evolution: The Need for Standardization.

    Science.gov (United States)

    Gruzalski, Jacob G; Markwiese, James T; Carriker, Neil E; Rogers, William J; Vitale, Rock J; Thal, David I

    2016-01-01

    Investigating the ecological impacts of contaminants released into the environment requires integration of multiple lines of evidence. Collection and analysis of interstitial water is an often-used line of evidence for developing benthic exposure estimates in aquatic ecosystems. It is a well-established principle that chemical and toxicity data on interstitial water samples should represent in-situ conditions; i.e., sample integrity must be maintained throughout the sample collection process to avoid alteration of the in-situ geochemical conditions. Unfortunately, collection and processing of pore water is not standardized to address possible geochemical transformations introduced by atmospheric exposure. Furthermore, there are no suitable benchmarks (ecological or human health) against which to evaluate adverse effects from chemicals in pore water; i.e., empirical data is lacking on the toxicity of inorganic contaminants in sediment interstitial water. It is clear that pore water data is best evaluated by considering the bioavailability of trace elements and the partitioning of contaminants between the aqueous and solid phases. It is also evident that there is a need for sediment researchers and regulatory agencies to collaborate in developing a standardized approach for sediment/pore water collection and data evaluation. Without such guidelines, the number of different pore water collection and extraction techniques will continue to expand, and investigators will continue to evaluate potentially questionable data by comparison to inappropriate criteria. PMID:26613987

  18. Phase Transitions of 2-Decanol in Nano Pores

    Science.gov (United States)

    Amanuel, Samuel; Turner, Jason; Novins, Caleb; Clain, Alexander

    We studied the melting of 2-decanol confined in nano pores, 10-100 nm, using a power-compensated Differential Scanning Calorimeter (DSC). The melting temperature of the nano confined 2-decanol decreases as pore size decreases and a linear relationship is observed between the melting temperature and the inverse of the pore size. This is in agreement with the Gibbs-Thomson prediction. In addition, the apparent heat of fusion of the 2-decanol confined in the nano pores appears to decrease as the size of the pores decreases. However, the apparent heat of fusion of the nano confined 2-decanol may not necessarily be its true heat of fusion. Annealing, for instance, increases the apparent heat of fusion by as much as 26%. A correction or alternate procedure should be employed to extract the true heat of fusion from DSC measurements, especially when the physical size of the sample is in nano scale or the sample possesses a large surface area to volume ratio. This work was partially supported by NSF-DMR: 1229142.

  19. MODERN ROUTES TO EXPLORE CONCRETE’S COMPLEX PORE SPACE

    Directory of Open Access Journals (Sweden)

    Piet Stroeven

    2011-05-01

    Full Text Available This paper concentrates on discrete element computer-simulation of concrete. It is argued on the basis of stochastic heterogeneity theory that modern concurrent-algorithm-based systems should be employed for the assessment of pore characteristics underlying durability performance of cementitious materials. The SPACE system was developed at Delft University of Technology for producing realistic schematizations of realcrete for a wide range of other particle packing problems, involving aggregate and fresh cement, and for the purpose of exploring characteristics in the hardened state of concrete, including of the pore network structure because of obvious durability problems. Since structure-sensitive properties are involved, schematization of reality should explicitly deal with the configuration of the cement particles in the fresh state. The paper concentrates on the stereological and mathematical morphology operations executed to acquire information on particle size, global porosity, and on distribution of porosity and of the connected pore fraction as a result of the near neighbourhood of aggregate grains. Goal is to provide information obtained along different exploration routes of concrete's pore space for setting up a pore network modelling approach. This type of methodological papers is scarce in concrete technology, if not missing at all. Technical publications that report on obtained results in our investigations are systematically referred to.

  20. Tunable ultrathin membranes with nonvolatile pore shape memory.

    Science.gov (United States)

    Kuroki, Hidenori; Islam, Crescent; Tokarev, Igor; Hu, Heng; Liu, Guojun; Minko, Sergiy

    2015-05-20

    The concept of a responsive nanoporous thin-film gel membranes whose pores could be tuned to a desired size by a specific "molecular signal" and whose pore geometry becomes "memorized" by the gel is reported. The ∼100 nm thick membranes were prepared by dip-coating from a solution mixture of a random copolymer comprising responsive and photo-cross-linkable units and monodisperse latex nanoparticles used as a sacrificial colloidal template. After stabilization of the films by photo-cross-linking the latex template was removed, yielding nanoporous structures with a narrow pore size distribution and a high porosity. The thin-film membranes could be transferred onto porous supports to serve as tunable size-selective barriers in various colloids separation applications. The pore dimensions and hence the membrane's colloidal-particle-size cutoff were reversibly regulated by swelling-shrinking of the polymer network with a specially selected low-molar-mass compound. The attained pore shape was "memorized" in aqueous media and "erased" by treatment in special solvents reverting the membrane to the original state.

  1. Combination of SANS and 3D stochastic reconstruction techniques for the study of nanostructured materials

    CERN Document Server

    Kikkinides, E S; Steriotis, T A; Kanellopoulos, N K; Mitropoulos, A C; Treimer, W

    2002-01-01

    Ceramic nanostructured materials have recently received scientific and industrial interest due to their unique properties. A series of such nanoporous structures were characterised by SANS techniques. The resulting scattering curves were analysed to obtain basic structural information regarding the pore size distribution and autocorrelation function of each material. Furthermore, stochastic reconstruction models were employed to generate 3D images with the same basic structural characteristics obtained from SANS. Finally, simulation results of permeation on the reconstructed images provide very good agreement with experimental data. (orig.)

  2. Pore-scale studies of unconventional reservoir rocks

    Science.gov (United States)

    Silin, D.; Ajo Franklin, J. B.; Cabrini, S.; Kneafsey, T. J.; MacDowell, A.; Nico, P. S.; Tomutsa, L.

    2009-12-01

    Our overall objective is the development of a technique for predicting reservoir behavior from the pore structure of low-permeability rock. Gas shale and tight sands are examples of low-permeability formations containing enormous quantities of natural gas. As the availability of energy resources in conventional reservoirs is declining, the importance of these unconventional reservoirs is increasing. Our approach is based on acquiring micro- and nanometer-scale images of the pore structure of natural rocks using synchrotron X-ray microtomography (Advanced Light Source) and Focused Ion Beam milling (Molecular Foundry), Lawrence Berkeley National Laboratory. These techniques provide three dimensional images of the rich diversity of pore structures present in so called “unconventional resources.” Using these images as input data, Maximal Inscribed Spheres simulations are used to evaluate the two-phase flow properties of the rock.

  3. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn

    2011-01-19

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  4. Translocation of an Incompressible Vesicle through a Pore.

    Science.gov (United States)

    Shojaei, Hamid R; Muthukumar, Murugappan

    2016-07-01

    We have derived the free energy landscape for the translocation of a single vesicle through a narrow pore by accounting for bending and stretching of the vesicle, and the deformation of the vesicle by the pore. Emergence of a free energy barrier for translocation is a general result, and the magnitude of the barrier is calculated in terms of the various material parameters. The extent of the reduction in the barrier by the presence of an external constant force is calculated. Using the Fokker-Planck formalism, we have calculated the average translocation time corresponding to the various free energy landscapes representing different parameter sets. The dependencies of the average translocation time on the strength of the external force, vesicle size, bending and stretching moduli of the vesicle, and radius and length of the pore are derived, and the computed results are discussed. PMID:27089012

  5. Pore-scale simulation of calcium carbonate precipitation and dissolution under highly supersaturated conditions in a microfludic pore network

    Science.gov (United States)

    Yoon, H.; Dewers, T. A.; Valocchi, A. J.; Werth, C. J.

    2011-12-01

    Dissolved CO2 during geological CO2 storage may react with minerals in fractured rocks or confined aquifers and cause mineral precipitation. The overall rate of reaction can be affected by coupled processes among hydrodynamics, transport, and reactions at pore-scale. Pore-scale models of coupled fluid flow, reactive transport, and CaCO3 precipitation and dissolution are applied to account for transient experimental results of CaCO3 precipitation and dissolution under highly supersaturated conditions in a microfluidic pore network (i.e., micromodel). Pore-scale experiments in the micromodel are used as a basis for understanding coupled physics of systems perturbed by geological CO2 injection. In the micromodel, precipitation is induced by transverse mixing along the centerline in pore bodies. Overall, the pore-scale model qualitatively captured the governing physics of reactions such as precipitate morphology, precipitation rate, and maximum precipitation area in first few pore spaces. In particular, we found that proper estimation of the effective diffusion coefficient and the reactive surface area is necessary to adequately simulate precipitation and dissolution rates. As the model domain increases, the effect of flow patterns affected by precipitation on the overall reaction rate also increases. The model is also applied to account for the effect of different reaction rate laws on mineral precipitation and dissolution at pore-scale. Reaction rate laws tested include the linear rate law, nonlinear power law, and newly-developed rate law based on in-situ measurements at nano scale in the literature. Progress on novel methods for upscaling pore-scale models for reactive transport are discussed, and are being applied to mineral precipitation patterns observed in natural analogues. H.Y. and T. D. were supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of

  6. Evaluation of Colloid Retention Site Dominance in Variably Saturated Porous Media: An All Pores Pore-Scale Analysis

    Science.gov (United States)

    Morales, Veronica; Perez-Reche, Francisco; Holzner, Markus; Kinzelbach, Wolfgang

    2016-04-01

    It is well accepted that colloid and nanoparticle transport processes in porous media differ substantially between water saturated and unsaturated conditions. Differences are frequently ascribed to particle immobilization by association with interfaces with the gas, as well as to restrictions of the liquid medium through which colloids are transported. Yet, the current understanding of the importance of particle retention at gas interfaces is based on observations of single pores or two-dimensional pore network representations, leaving open the question of their statistical significance when all pores in the medium are considered. In order to address this question, column experiments were performed using a model porous medium of glass beads through which Silver particles were transported for conditions of varying water content and water chemistry. X-ray microtomography was subsequently employed as a non-destructive imaging technique to obtain pore-scale information of the entire column regarding: i) the presence and distribution of the main locations where colloids can become retained (interfaces with the water-solid, air-water, air-solid, and air-water-solid, grain-grain contacts, and the bulk liquid), ii) deposition profiles of colloids along the column classified by the available retention location, and iii) channel widths of 3-dimensional pore-water network representations. The results presented provide a direct statistical evaluation on the significance of colloid retention by attachment to interfaces or by strainig at contact points where multiple interfaces meet.

  7. RNase A does not translocate the alpha-hemolysin pore.

    Directory of Open Access Journals (Sweden)

    Besnik Krasniqi

    Full Text Available The application of nanopore sensing utilizing the α-hemolysin pore to probe proteins at single-molecule resolution has expanded rapidly. In some studies protein translocation through the α-hemolysin has been reported. However, there is no direct evidence, as yet, that proteins can translocate the α-hemolysin pore. The biggest challenge to obtaining direct evidence is the lack of a highly sensitive assay to detect very low numbers of protein molecules. Furthermore, if an activity based assay is applied then the proteins translocating by unfolding should refold back to an active confirmation for the assay technique to work. To overcome these challenges we selected a model enzyme, ribonuclease A, that readily refolds to an active conformation even after unfolding it with denaturants. In addition we have developed a highly sensitive reverse transcription polymerase chain reaction based activity assay for ribonuclease A. Initially, ribonuclease A, a protein with a positive net charge and dimensions larger than the smallest diameter of the pore, was subjected to nanopore analysis under different experimental conditions. Surprisingly, although the protein was added to the cis chamber (grounded and a positive potential was applied, the interaction of ribonuclease A with α-hemolysin pore induced small and large blockade events in the presence and the absence of a reducing and/or denaturing agent. Upon measuring the zeta potential, it was found that the protein undergoes a charge reversal under the experimental conditions used for nanopore sensing. From the investigation of the effect of voltage on the interaction of ribonuclease A with the α-hemolysin pore, it was impossible to conclude if the events observed were translocations. However, upon testing for ribonuclease A activity on the trans chamber it was found that ribonuclease A does not translocate the α-hemolysin pore.

  8. RNase A Does Not Translocate the Alpha-Hemolysin Pore

    Science.gov (United States)

    Krasniqi, Besnik; Lee, Jeremy S.

    2014-01-01

    The application of nanopore sensing utilizing the α-hemolysin pore to probe proteins at single-molecule resolution has expanded rapidly. In some studies protein translocation through the α-hemolysin has been reported. However, there is no direct evidence, as yet, that proteins can translocate the α-hemolysin pore. The biggest challenge to obtaining direct evidence is the lack of a highly sensitive assay to detect very low numbers of protein molecules. Furthermore, if an activity based assay is applied then the proteins translocating by unfolding should refold back to an active confirmation for the assay technique to work. To overcome these challenges we selected a model enzyme, ribonuclease A, that readily refolds to an active conformation even after unfolding it with denaturants. In addition we have developed a highly sensitive reverse transcription polymerase chain reaction based activity assay for ribonuclease A. Initially, ribonuclease A, a protein with a positive net charge and dimensions larger than the smallest diameter of the pore, was subjected to nanopore analysis under different experimental conditions. Surprisingly, although the protein was added to the cis chamber (grounded) and a positive potential was applied, the interaction of ribonuclease A with α-hemolysin pore induced small and large blockade events in the presence and the absence of a reducing and/or denaturing agent. Upon measuring the zeta potential, it was found that the protein undergoes a charge reversal under the experimental conditions used for nanopore sensing. From the investigation of the effect of voltage on the interaction of ribonuclease A with the α-hemolysin pore, it was impossible to conclude if the events observed were translocations. However, upon testing for ribonuclease A activity on the trans chamber it was found that ribonuclease A does not translocate the α-hemolysin pore. PMID:24505349

  9. 3D reconstruction of porous electrodes and microstructure modelling

    Energy Technology Data Exchange (ETDEWEB)

    Joos, Jochen; Rueger, Bernd; Weber, Andre; Ivers-Tiffee, Ellen [Karlsruher Institute fuer Technologie (KIT), Karlsruhe (DE). Inst. fuer Werkstoffe der Elektrotechnik (IWE); Carraro, Thomas [Heidelberg Univ. (Germany). Inst. fuer Angewandte Mathematik

    2010-07-01

    The performance of a solid oxide fuel cell (SOFC) is limited by electrode polarisation processes, depending both on material composition and microstructure characteristics. To understand and improve electrode performance, a detailed knowledge of the electrode microstructure is essential. Recent developments in 3D image reconstruction combined with Focused Ion Beam (FIB) and Scanning Electron Microscopy (SEM) techniques proved a way to achieve highly detailed microstructural data. From this data the determination of valuable microstructural parameters is possible. The microstructure is commonly described by parameters as volume/porosity fraction, tortuosity of pores/materal (or: tortuosity of electronic and ionic transport in 2-phase materials), three-phase boundary length (electronic conducting electrodes) or electrode surface area (mixed conducting electrodes). Based on these parameters and with the help of adequate models, the electrode performance can be estimated. It is obvious that the accurateness of the model prediction depends on the quality of the parameters. Different groups reported first trials in the reconstruction of SOFC electrodes by FIB/SEM methods. They all used the reconstruction to calculate microstructural parameters. But nevertheless a lot of questions remain, primarily questions concerning the accuracy of the reconstruction or the minimum size of the volume that has to be reconstructed to obtain meaningful results. In this contribution, a ZEISS 1540XB CrossBeam {sup registered} was used to provide over 700 consecutive images of a porous LSCF (La{sub 0.58}Sr{sub 0.4}CO{sub 0.2.}Fe{sub 0.8}O{sub 3-{delta}})-cathode. The calculation of the key microstructural parameters (i) volume/porosity fraction (ii) electrode surface area and (iii) tortuosity of pores and material from 3D FIB/SEM-data will be presented. Additionally the influence of the reconstruction-volume on the calculated parameters will be discussed. Also the presented technique is

  10. Dynamics of phase ordering of nematics in a pore

    International Nuclear Information System (INIS)

    We study the kinetics of phase ordering of a nematic liquid crystal, modeled by a spin-rotor Hamiltonian, confined within a parallel piped pore. The dynamics of the rotor obeys the time-dependent Ginzburg-Landau equation. We study the generation and evolution of a variety of defect structures, and the growth of domains, with different anchoring conditions at the pore surface. Unlike in binary fluids, mere confinement with no anchoring field, does not result in slow dynamics. Homeotropic anchoring, however, leads to slow logarithmic growth. Interestingly, homogeneous anchoring dynamically generates wall defects, resulting in an Ising like structure factor at late times. (author). 27 refs, 4 figs

  11. Inertial effects during irreversible meniscus reconfiguration in angular pores

    Science.gov (United States)

    Ferrari, Andrea; Lunati, Ivan

    2014-12-01

    In porous media, the dynamics of the invading front between two immiscible fluids is often characterized by abrupt reconfigurations caused by local instabilities of the interface. As a prototype of these phenomena we consider the dynamics of a meniscus in a corner as it can be encountered in angular pores. We investigate this process in detail by means of direct numerical simulations that solve the Navier-Stokes equations in the pore space and employ the Volume of Fluid method (VOF) to track the evolution of the interface. We show that for a quasi-static displacement, the numerically calculated surface energy agrees well with the analytical solutions that we have derived for pores with circular and square cross sections. However, the spontaneous reconfigurations are irreversible and cannot be controlled by the injection rate: they are characterized by the amount of surface energy that is spontaneously released and transformed into kinetic energy. The resulting local velocities can be orders of magnitude larger than the injection velocity and they induce damped oscillations of the interface that possess their own time scales and depend only on fluid properties and pore geometry. In complex media (we consider a network of cubic pores) reconfigurations are so frequent and oscillations last long enough that increasing inertial effects leads to a different fluid distribution by influencing the selection of the next pore to be invaded. This calls into question simple pore-filling rules based only on capillary forces. Also, we demonstrate that inertial effects during irreversible reconfigurations can influence the work done by the external forces that is related to the pressure drop in Darcy's law. This suggests that these phenomena have to be considered when upscaling multiphase flow because local oscillations of the menisci affect macroscopic quantities and modify the constitutive relationships to be used in macro-scale models. These results can be extrapolated to other

  12. Diffusion pore imaging with generalized temporal gradient profiles

    CERN Document Server

    Laun, F B

    2012-01-01

    In porous material research, one main interest of nuclear magnetic resonance diffusion (NMR) experiments is the determination of the exact shape of pores. While it has been a longstanding question if this is in principle achievable, it has been shown recently that it is indeed possible to perform NMR-based diffusion pore imaging. In this work we present a generalization of these previous results. We show that the specific temporal gradient profiles that were used so far are not unique as almost arbitrary temporal diffusion gradient profiles may be used.

  13. NMR Based Diffusion Pore Imaging by Double Wave Vector Measurements

    CERN Document Server

    Kuder, Tristan Anselm

    2012-01-01

    In porous material research, one main interest of nuclear magnetic resonance (NMR) diffusion experiments is the determination of the exact shape of pores. It has been a longstanding ques-tion if this is achievable in principle. In this work, we present a method using short diffusion gradient pulses only, which is able to reveal the shape of arbitrary closed pores without rely-ing on a priori knowledge. In comparison to former approaches, the method has reduced de-mands on relaxation times and allows for a more flexible NMR sequence design, since, for example, stimulated echoes can be used.

  14. Benthic invertebrate bioassays with toxic sediment and pore water

    Science.gov (United States)

    Giesy, John P.; Rosiu, Cornell J.; Graney, Robert L.; Henry, Mary G.

    1990-01-01

    The relative sensitivities of bioassays to determine the toxicity of sediments were investigated and three methods of making the sample dilutions required to generate dose-response relationships were compared. The assays studied were: (a) Microtox®, a 15-min assay ofPhotobacterium phosphoreum bioluminescence inhibition by pore water; (b) 48-h Daphnia magnalethality test in pore water; (c) 10-d subchronic assay of lethality to and reduction of weight gain by Chironomus tentans performed in either whole sediment or pore water; (d) 168-h acute lethality assay of Hexagenia limbata in either whole sediment or pore water. The three methods of diluting sediments were: (a) extracting pore water from the toxic location and dilution with pore water from the control station; (b) diluting whole sediment from the toxic location with control whole sediment from a reference location, then extracting pore water; and (c) diluting toxic, whole sediment with whole sediment from a reference location, then using the whole sediment in bioassays. Based on lethality, H. limbata was the most sensitive organism to the toxicity of Detroit River sediment. Lethality of D. magna in pore water was similar to that of H. limbata in whole sediment and can be used to predict effects of whole sediment toxicity to H. limbata. The concentration required to cause a 50% reduction in C. tentans growth (10-d EC50) was approximately that which caused 50% lethality of D. magna (48-h LC50) and was similar to the toxicity that restricts benthic invertebrate colonization of contaminated sediments. While the three dilution techniques gave similar results with some assays, they gave very different results in other assays. The dose-response relationships determined by the three dilution techniques would be expected to vary with sediment, toxicant and bioassay type, and the dose-response relationship derived from each technique needs to be interpreted accordingly.

  15. Piecing together nuclear pore complex assembly during interphase

    OpenAIRE

    Rexach, Michael

    2009-01-01

    All nucleocytoplasmic traffic of macromolecules occurs through nuclear pore complexes (NPCs), which function as stents in the nuclear envelope to keep nuclear pores open but gated. Three studies in this issue (Flemming, D., P. Sarges, P. Stelter, A. Hellwig, B. Böttcher, and E. Hurt. 2009. J. Cell Biol. 185:387–395; Makio, T., L.H. Stanton, C.-C. Lin, D.S. Goldfarb, K. Weis, and R.W. Wozniak. 2009. J. Cell Biol. 185:459–491; Onishchenko, E., L.H. Stanton, A.S. Madrid, T. Kieselbach, and K. We...

  16. Hard Sphere Diffusion Behaviour of Polymer Translocating through Interacting Pores

    Institute of Scientific and Technical Information of China (English)

    SUN Li-Zhen; LUO Meng-Bo

    2008-01-01

    The translocation of polymer chain through a small pore from a high concentration side (cis side) to a low concentration side (trans side) is simulated by using Monte Carlo technique. The effect of the polymer-pore interaction on the translocation is studied. We find a special interaction at which the decay of the number of polymer chain, N, at the cis side obeys Fick's law, i.e. N decreases exponentially with time. The behaviour is analogous to the diffusion of hard sphere.

  17. Effects of pore volume-transmissivity correlation on transport phenomena

    Science.gov (United States)

    Lunati, Ivan; Kinzelbach, Wolfgang; Sørensen, Ivan

    2003-12-01

    The relevant velocity that describes transport phenomena in a porous medium is the pore velocity. For this reason, one needs not only to describe the variability of transmissivity, which fully determines the Darcy velocity field for given source terms and boundary conditions, but also any variability of the pore volume. We demonstrate that hydraulically equivalent media with exactly the same transmissivity field can produce dramatic differences in the displacement of a solute if they have different pore volume distributions. In particular, we demonstrate that correlation between pore volume and transmissivity leads to a much smoother and more homogeneous solute distribution. This was observed in a laboratory experiment performed in artificial fractures made of two plexiglass plates into which a space-dependent aperture distribution was milled. Using visualization by a light transmission technique, we observe that the solute behaviour is much smoother and more regular after the fractures are filled with glass powder, which plays the role of a homogeneous fault gouge material. This is due to a perfect correlation between pore volume and transmissivity that causes pore velocity to be not directly dependent on the transmissivity, but only indirectly through the hydraulic gradient, which is a much smoother function due to the diffusive behaviour of the flow equation acting as a filter. This smoothing property of the pore volume-transmissivity correlation is also supported by numerical simulations of tracer tests in a dipole flow field. Three different conceptual models are used: an empty fracture, a rough-walled fracture filled with a homogeneous material and a parallel-plate fracture with a heterogeneous fault gouge. All three models are hydraulically equivalent, yet they have a different pore volume distribution. Even if piezometric heads and specific flow rates are exactly the same at any point of the domain, the transport process differs dramatically. These

  18. Hydrochromic conjugated polymers for human sweat pore mapping.

    Science.gov (United States)

    Lee, Joosub; Pyo, Minkyeong; Lee, Sang-hwa; Kim, Jaeyong; Ra, Moonsoo; Kim, Whoi-Yul; Park, Bum Jun; Lee, Chan Woo; Kim, Jong-Man

    2014-04-29

    Hydrochromic materials have been actively investigated in the context of humidity sensing and measuring water contents in organic solvents. Here we report a sensor system that undergoes a brilliant blue-to-red colour transition as well as 'Turn-On' fluorescence upon exposure to water. Introduction of a hygroscopic element into a supramolecularly assembled polydiacetylene results in a hydrochromic conjugated polymer that is rapidly responsive (polymer. As a result, the sensor can be used to construct a precise map of active sweat pores on fingertips. The sensor technology, developed in this study, has the potential of serving as new method for fingerprint analysis and for the clinical diagnosis of malfunctioning sweat pores.

  19. Modeling and Simulating Asymmetrical Conductance Changes in Gramicidin Pores

    OpenAIRE

    Xu Shixin; Chen Minxin; Majd Sheereen; Yue Xingye; Liu Chun

    2014-01-01

    Gramicidin A is a small and well characterized peptide that forms an ion channel in lipid membranes. An important feature of gramicidin A (gA) pore is that its conductance is affected by the electric charges near the its entrance. This property has led to the application of gramicidin A as a biochemical sensor for monitoring and quantifying a number of chemical and enzymatic reactions. Here, a mathematical model of conductance changes of gramicidin A pores in response to the presence of elect...

  20. Hard Sphere Diffusion Behaviour of Polymer Translocating through Interacting Pores

    International Nuclear Information System (INIS)

    The translocation of polymer chain through a small pore from a high concentration side (cis side) to a low concentration side (trans side) is simulated by using Monte Carlo technique. The effect of the polymer-pore interaction on the translocation is studied. We find a special interaction at which the decay of the number of polymer chain, N, at the cis side obeys Fick's law, i.e. N decreases exponentially with time. The behaviour is analogous to the diffusion of hard sphere. (fundamental areas of phenomenology(including applications))

  1. Non-microsurgical breast reconstruction

    Directory of Open Access Journals (Sweden)

    Sharma Sheel

    2007-12-01

    Full Text Available Breast reconstruction after mastectomy should aim at resulting in an aesthetic outcome that matches the patient′s expectations and without interfering in the oncologic treatment. Whether the reconstruction is performed immediately or in a delayed fashion depends on various factors, which needs detailed attention. Autologous tissue, implants or both are used in the reconstruction. This article reviews the current concepts in these, with emphasis on non-microsurgical methods of using the autologous tissue for reconstruction. Breast conservation has become an accepted practice of treatment. Reconstruction in these situations as well as in an occasion when the surgery is done for failed breast conservation is discussed in detail. The article also reviews the various methods for nipple reconstruction available.

  2. Reconstructing Experiences through Sketching

    CERN Document Server

    Karapanos, Evangelos; Hassenzahl, Marc

    2009-01-01

    This paper presents iScale, a survey tool that aims at eliciting users' experiences with a product from memory. iScale employs sketching in imposing a process in the reconstruction of one's experiences. Two versions of iScale, the Constructive and the Value-Account iScale, were motivated by two distinct theories on how people reconstruct emotional experiences from memory. These two versions were tested in two separate studies. Study 1 aimed at providing qualitative insight into the use of iScale and compared its performance to that of free-hand sketching. Study 2 compared the two iScale versions to a control condition: that of reporting one's experiences without employing any form of sketching. Significant differences between iScale and the "no-sketching" tool were found. Overall, iScale resulted in a) an increase in the number of experience reports that subjects provided, b) an increase in the amount of contextual information for the reported experiences, and c) an increase in subjects' accuracy in recalling...

  3. Reconstruction in Fourier space

    Science.gov (United States)

    Burden, A.; Percival, W. J.; Howlett, C.

    2015-10-01

    We present a fast iterative fast Fourier transform (FFT) based reconstruction algorithm that allows for non-parallel redshift-space distortions (RSDs). We test our algorithm on both N-body dark matter simulations and mock distributions of galaxies designed to replicate galaxy survey conditions. We compare solenoidal and irrotational components of the redshift distortion and show that an approximation of this distortion leads to a better estimate of the real-space potential (and therefore faster convergence) than ignoring the RSD when estimating the displacement field. Our iterative reconstruction scheme converges in two iterations for the mock samples corresponding to Baryon Oscillation Spectroscopic Survey CMASS Data Release 11 when we start with an approximation of the RSD. The scheme takes six iterations when the initial estimate, measured from the redshift-space overdensity, has no RSD correction. Slower convergence would be expected for surveys covering a larger angle on the sky. We show that this FFT based method provides a better estimate of the real-space displacement field than a configuration space method that uses finite difference routines to compute the potential for the same grid resolution. Finally, we show that a lognormal transform of the overdensity, used as a proxy for the linear overdensity, is beneficial in estimating the full displacement field from a dense sample of tracers. However, the lognormal transform of the overdensity does not perform well when estimating the displacements from sparser simulations with a more realistic galaxy density.

  4. LHCb; LHCb Jet Reconstruction

    CERN Multimedia

    Augusto, O

    2012-01-01

    The Large Hadron Collider (LHC) is the most powerful particle accelerator in the world. It has been designed to collide proton beams at an energy up to 14 TeV in the center of mass. In 2011, the data taking was done with a center of mass energy of 7 TeV, the instant luminosity has reached values greater than $4 \\times 10^{32} cm^{-2} s^{-1}$ and the integrated luminosity reached the value of 1.02 $fb^{-1}$ on the LHCb. The jet reconstruction is fundamental to observe events that can be used to test pertubative QCD (pQCD). It also provides a way to observe standard model channels and searches for new physics like SUSY. The anti-kt algorithm is a jet reconstruction algorithm that is based on the distance of the particles on the space $\\eta \\times \\phi$ and on the transverse momentum of particles. To maximize the energy resolution all information about the trackers and the calo...

  5. Biomaterials for craniofacial reconstruction

    Directory of Open Access Journals (Sweden)

    Neumann, Andreas

    2009-01-01

    Full Text Available Biomaterials for reconstruction of bony defects of the skull comprise of osteosynthetic materials applied after osteotomies or traumatic fractures and materials to fill bony defects which result from malformation, trauma or tumor resections. Other applications concern functional augmentations for dental implants or aesthetic augmentations in the facial region.For ostheosynthesis, mini- and microplates made from titanium alloys provide major advantages concerning biocompatibility, stability and individual fitting to the implant bed. The necessity of removing asymptomatic plates and screws after fracture healing is still a controversial issue. Risks and costs of secondary surgery for removal face a low rate of complications (due to corrosion products when the material remains in situ. Resorbable osteosynthesis systems have similar mechanical stability and are especially useful in the growing skull.The huge variety of biomaterials for the reconstruction of bony defects makes it difficult to decide which material is adequate for which indication and for which site. The optimal biomaterial that meets every requirement (e.g. biocompatibility, stability, intraoperative fitting, product safety, low costs etc. does not exist. The different material types are (autogenic bone and many alloplastics such as metals (mainly titanium, ceramics, plastics and composites. Future developments aim to improve physical and biological properties, especially regarding surface interactions. To date, tissue engineered bone is far from routine clinical application.

  6. Reconstruction of symmetric Potts Models

    OpenAIRE

    Sly, Allan

    2008-01-01

    The reconstruction problem on the tree has been studied in numerous contexts including statistical physics, information theory and computational biology. However, rigorous reconstruction thresholds have only been established in a small number of models. We prove the first exact reconstruction threshold in a non-binary model establishing the Kesten-Stigum bound for the 3-state Potts model on regular trees of large degree. We further establish that the Kesten-Stigum bound is not tight for the $...

  7. Exercises in PET Image Reconstruction

    Science.gov (United States)

    Nix, Oliver

    These exercises are complementary to the theoretical lectures about positron emission tomography (PET) image reconstruction. They aim at providing some hands on experience in PET image reconstruction and focus on demonstrating the different data preprocessing steps and reconstruction algorithms needed to obtain high quality PET images. Normalisation, geometric-, attenuation- and scatter correction are introduced. To explain the necessity of those some basics about PET scanner hardware, data acquisition and organisation are reviewed. During the course the students use a software application based on the STIR (software for tomographic image reconstruction) library 1,2 which allows them to dynamically select or deselect corrections and reconstruction methods as well as to modify their most important parameters. Following the guided tutorial, the students get an impression on the effect the individual data precorrections have on image quality and what happens if they are forgotten. Several data sets in sinogram format are provided, such as line source data, Jaszczak phantom data sets with high and low statistics and NEMA whole body phantom data. The two most frequently used reconstruction algorithms in PET image reconstruction, filtered back projection (FBP) and the iterative OSEM (ordered subset expectation maximation) approach are used to reconstruct images. The exercise should help the students gaining an understanding what the reasons for inferior image quality and artefacts are and how to improve quality by a clever choice of reconstruction parameters.

  8. Unfavourable results in thumb reconstruction

    Directory of Open Access Journals (Sweden)

    Samir M Kumta

    2013-01-01

    Full Text Available The history of thumb reconstruction parallels the history of hand surgery. The attributes that make the thumb unique, and that the reconstructive surgeon must assess and try to restore when reconstructing a thumb, are: Position, stability, strength, length, motion, sensibility and appearance. Deficiency in any of these attributes can reduce the utility of the reconstructed thumb. A detailed assessment of the patient and his requirements needs to be performed before embarking on a thumb reconstruction. Most unsatisfactory results can be attributed to wrong choice of procedure. Component defects of the thumb are commonly treated by tissue from adjacent fingers, hand or forearm. With refinements in microsurgery, the foot has become a major source of tissue for component replacement in the thumb. Bone lengthening, osteoplastic reconstruction, pollicisation, and toe to hand transfers are the commonest methods of thumb reconstruction. Unfavourable results can be classified as functional and aesthetic. Some are common to all types of procedures. However each type of reconstruction has its own unique set of problems. Meticulous planning and execution is essential to give an aesthetic and functionally useful thumb. Secondary surgeries like tendon transfers, bone grafting, debulking, arthrodesis, may be required to correct deficiencies in the reconstruction. Attention needs to be paid to the donor site as well.

  9. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  10. Set Reconstruction on the Hypercube

    OpenAIRE

    Pebody, Luke

    2016-01-01

    Given an action of a group $G$ on a set $S$, the $k$-deck of a subset $T$ of $S$ is the multiset of all subsets of $T$ of size $k$, each given up to translation by $G$. For a given subset $T$, the {\\em reconstruction number} of $T$ is the minimum $k$ such that the $k$-deck uniquely identifies $T$ up to translation by $G$, and the {\\em reconstruction number} of the action $G:S$ is the maximum reconstruction number of any subset of $S$. The concept of reconstruction number extends naturally to ...

  11. Tension-induced vesicle fusion: pathways and pore dynamics

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2008-01-01

    fusion time on membrane tension implies that the fusion process is completed by overcoming two energy barriers with scales of 13kBT and 11kBT. The fusion pore radius as a function of time has also been extracted from the simulations, and provides a quantitative measure of the fusion dynamics which...

  12. Toroidal pores formed by antimicrobial peptides show significant disorder

    NARCIS (Netherlands)

    Sengupta, Durba; Leontiadou, Hari; Mark, Alan E.; Marrink, Siewert-Jan

    2008-01-01

    A large variety of antimicrobial peptides have been shown to act, at least in vitro, by potation of the lipid membrane. The nanometre size of these pores, however, complicates their structural characterization by experimental techniques. Here we use molecular dynamics simulations, to study the inter

  13. On the Mechanism of Pore Formation by Melittin

    NARCIS (Netherlands)

    van den Bogaart, Geert; Guzman, Jeanette Velasquez; Mika, Jacek T.; Poolman, Bert

    2008-01-01

    The mechanism of pore formation of lytic peptides, such as melittin from bee venom, is thought to involve binding to the membrane surface, followed by insertion at threshold levels of bound peptide. We show that in membranes composed of zwitterionic lipids, i.e. phosphatidylcholine, melittin not onl

  14. Modern routes ro explore concrete's complex pore space

    NARCIS (Netherlands)

    Stroeven, P; Guo, Z.

    2006-01-01

    This paper concentrates on discrete element computer-simulation of concrete. It is argued on the basis of stochastic heterogeneity theory that modern concurrent-algorithm-based systems should be employed for the assessment of pore characteristics underlying durability performance of cementitious mat

  15. Alumina ceramics prepared with new pore-forming agents

    Directory of Open Access Journals (Sweden)

    Zuzana Živcová

    2008-06-01

    Full Text Available Porous ceramics have a wide range of applications at all length scales, ranging from fi ltration membranes and catalyst supports to biomaterials (scaffolds for bone ingrowths and thermally or acoustically insulating bulk materials or coating layers. Organic pore-forming agents (PFAs of biological origin can be used to control porosity, pore size and pore shape. This work concerns the characterization and testing of several less common pore-forming agents (lycopodium, coffee, fl our and semolina, poppy seed, which are of potential interest from the viewpoint of size, shape or availability. The performance of these new PFAs is compared to that of starch, which has become a rather popular PFA for ceramics during the last decade. The PFAs investigated in this work are in the size range from 5 μm (rice starch to approximately 1 mm (poppy seed, all with more or less isometric shape. The burnout behavior of PFAs is studied by thermal analysis, i.e. thermogravimetry and differential thermal analysis. For the preparation of porous alumina ceramics from alumina suspensions containing PFAs traditional slip casting (into plaster molds and starch consolidation casting (using metal molds are used in this work. The resulting microstructures are investigated using optical microscopy, combined with image analysis, as well as other methods (Archimedes method of double-weighing in water, mercury intrusion porosimetry.

  16. Upscaling of Nonlinear Reactive Transport: from Pore to Core

    NARCIS (Netherlands)

    Acharya, R.C.

    2004-01-01

    The major objective of this research is to gain a better understanding of the heterogeneous interactions between reactive solutes and the solid phase at the pore scale, to scale up to the core scale and compare with the results of experimental observations and analytical equations. In this research

  17. Closed-pore Insulation Thermal Protection System Design Concept Development

    Science.gov (United States)

    Varisco, A.; Harris, H. G.

    1973-01-01

    The development of a unique closed-pore ceramic foam insulation (CPI) produced from low cost fly ash cenospheres is reported for space shuttle external thermal protection. Two basic design approaches were developed: bonded and mechanically fastened. A description of the concepts is presented in addition to fabrication and test results.

  18. Influence of pore roughness on high-frequency permeability

    NARCIS (Netherlands)

    Cortis, A.; Smeulders, D.M.J.; Guermond, J.L.; Lafarge, D.

    2003-01-01

    The high-frequency behavior of the fluid velocity patterns for smooth and corrugated pore channels is studied. The classical approach of Johnson et al. [J. Fluid Mech. 176, 379 (1987)] for smooth geometries is obtained in different manners, thus clarifying differences with Sheng and Zhou [Phys. Rev.

  19. Tuning the Pore Size in Ionic Nanoparticle Networks

    Directory of Open Access Journals (Sweden)

    Marie-Alexandra Neouze Gauthey

    2013-01-01

    Full Text Available Highly promising hybrid materials consisting of silica, titania, or zirconia nanoparticles linked with ionic liquid-like imidazolium units have been developed. The nanoparticle networks are prepared by click-chemistry-like process through a nucleophilic substitution reaction. The type of metal oxide nanoparticles appears to play a key role regarding the pore size of the hybrid material.

  20. Relationship between elastic moduli and pore radius in clay aggregates

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2011-01-01

    Available experimental data on elastic velocities of clay-air mixtures and clay-brine mixtures as a function of porosity are re-interpreted. Pore radius as calculated from porosity and specific surface measured by BET seems to be the factor controlling stiffness of these un-cemented sediments...... be predicted from porosity and sonic velocity....

  1. A pore scale study on turbulent combustion in porous media

    Science.gov (United States)

    Jouybari, N. F.; Maerefat, M.; Nimvari, M. E.

    2016-02-01

    This paper presents pore scale simulation of turbulent combustion of air/methane mixture in porous media to investigate the effects of multidimensionality and turbulence on the flame within the pores of porous media. In order to investigate combustion in the pores of porous medium, a simple but often used porous medium consisting of a staggered arrangement of square cylinders is considered in the present study. Results of turbulent kinetic energy, turbulent viscosity ratio, temperature, flame speed, convective heat transfer and thermal conductivity are presented and compared for laminar and turbulent simulations. It is shown that the turbulent kinetic energy increases from the inlet of burner, because of turbulence created by the solid matrix with a sudden jump or reduction at the flame front due to increase in temperature and velocity. Also, the pore scale simulation revealed that the laminarization of flow occurs after flame front in the combustion zone and turbulence effects are important mainly in the preheat zone. It is shown that turbulence enhances the diffusion processes in the preheat zone, but it is not enough to affect the maximum flame speed, temperature distribution and convective heat transfer in the porous burner. The dimensionless parameters associated with the Borghi-Peters diagram of turbulent combustion have been analyzed for the case of combustion in porous media and it is found that the combustion in the porous burner considered in the present study concerns the range of well stirred reactor very close to the laminar flame region.

  2. Pore Characteristics of Chitosan Scaffolds Studied by Electrochemical Impedance Spectroscopy

    Science.gov (United States)

    Tully-Dartez, Stephanie; Cardenas, Henry E.

    2010-01-01

    In this study, a novel approach, electrochemical impedance spectroscopy (EIS), was used to examine the pore characteristics of chitosan scaffolds under aqueous conditions. The EIS was run with a constant current of 0.1 mA with the frequency sweep of 106 to 10−4 Hz. The resulting complex impedance measurement was then used to calculate porosity, which was determined to be 71%. Scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP), two commonly used methods for scaffold characterization, were used to independently evaluate the pore characteristics and compare with that of EIS. The SEM and MIP were performed and analyzed under standard conditions. The pore diameter values found by SEM and MIP are 107 μm and 82 μm, respectively, indicating that both the image-based (SEM) and pressure-based (MIP) analyses provide similar results. The porosity of 73% calculated by MIP is comparable to that of EIS. From these results, it can be suggested that EIS, a relatively nondestructive test, is able to obtain comparable data on pore characteristics, as compared to SEM and MIP. The advantage of the EIS as an nondestructive test is that it can be performed under physiologically relevant conditions, whereas SEM and MIP require dry samples and vacuum conditions for measurement. These benefits make EIS a viable option for the characterization and long-term observation of tissue-engineered scaffolds. PMID:19580421

  3. Mesoporous calcium–silicon xerogels with mesopore size and pore volume influence hMSC behaviors by load and sustained release of rhBMP-2

    Directory of Open Access Journals (Sweden)

    Song W

    2015-03-01

    Full Text Available Wenhua Song,1,* Xiangde Li,1,* Jun Qian,1 Guoyu Lv,2 Yonggang Yan,2 Jiacan Su,3 Jie Wei1 1Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China; 2College of Physical Science and Technology, Sichuan University, Chengdu, People’s Republic of China; 3Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China *These authors contributed equally to this paper Abstract: Mesoporous calcium–silicon xerogels with a pore size of 15 nm (MCS-15 and pore volume of 1.43 cm3/g were synthesized by using 1,3,5-mesitylene (TMB as the pore-expanding agent. The MCS-15 exhibited good degradability with the weight loss of 50 wt% after soaking in Tris-HCl solution for 56 days, which was higher than the 30 wt% loss shown by mesoporous calcium–silicon xerogels with a pore size of 4 nm (MCS-4. The pore size and pore volume of MCS-15 had significant influences on load and release of recombinant human bone morphogenetic protein-2 (rhBMP-2. The MCS-15 had a higher capacity to encapsulate a large amount of rhBMP-2; it could adsorb 45 mg/g of rhBMP-2 in phosphate-buffered saline after 24 hours, which was more than twice that with MCS-4 (20 mg/g. Moreover, the MCS-15 system exhibited sustained release of rhBMP-2 as compared with MCS-4 system (showing a burst release. The MCS-15/rhBMP-2 system could promote the proliferation and differentiation of human mesenchymal stem cells, showing good cytocompatibility and bioactivity. The results indicated that MCS-15, with larger mesopore size and higher pore volume, might be a promising carrier for loading and sustained release of rhBMP-2, which could be used as bone repair material with built-in osteoinduction function in bone reconstruction. Keywords: mesoporous calcium–silicon xerogels, pore size, pore volume, load-release, rhBMP-2

  4. Effects of pore-scale precipitation on permeability and flow

    Science.gov (United States)

    Noiriel, Catherine; Steefel, Carl I.; Yang, Li; Bernard, Dominique

    2016-09-01

    The effects of calcite precipitation on porous media permeability and flow were evaluated with a combined experimental and modeling approach. X-ray microtomography images of two columns packed with glass beads and calcite (spar crystals) or aragonite (Bahamas ooids) injected with a supersaturated solution (log Ω = 1.42) were processed in order to calculate rates of calcite precipitation with a spatial resolution of 4.46 μm. Identification and localization of the newly precipitated crystals on the 3D images was performed and results used to calculate the crystal growth rates and velocities. The effects of carbonate precipitation were also evaluated in terms of the integrated precipitation rate over the length of the column, crystal shape, surface area and pore roughness changes. While growth was epitaxial on calcite spar, calcite rhombohedra formed on glass beads and clusters of polyhedrons formed on aragonite ooids. Near the column inlet, calcite precipitation occurred preferentially on carbonate grains compared to glass beads, with almost 100% of calcite spar surface area covered by new crystals versus 92% in the case of aragonite and 11% in the case of glass beads. Although the experimental chemistry and flow boundary conditions in the two columns were similar, their porosity-permeability evolution was different because the nucleation and subsequent crystal growth on the two substrates (i.e., calcite spar and aragonite ooids) was very different. The impact of mineral precipitation on pore-scale flow and permeability was evaluated using a pore-scale Stokes solver that accounted for the changes in pore geometry. For similar magnitude reductions in porosity, the decrease in permeability was highest within the sample that experienced the greatest increase in pore roughness. Various porous media models were generated to show the impact of different crystal growth patterns and pore roughness changes on flow and permeability-porosity relationship. Under constant flow

  5. Structural Insights into Clostridium perfringens Delta Toxin Pore Formation.

    Directory of Open Access Journals (Sweden)

    Jessica Huyet

    Full Text Available Clostridium perfringens Delta toxin is one of the three hemolysin-like proteins produced by C. perfringens type C and possibly type B strains. One of the others, NetB, has been shown to be the major cause of Avian Nectrotic Enteritis, which following the reduction in use of antibiotics as growth promoters, has become an emerging disease of industrial poultry. Delta toxin itself is cytotoxic to the wide range of human and animal macrophages and platelets that present GM2 ganglioside on their membranes. It has sequence similarity with Staphylococcus aureus β-pore forming toxins and is expected to heptamerize and form pores in the lipid bilayer of host cell membranes. Nevertheless, its exact mode of action remains undetermined. Here we report the 2.4 Å crystal structure of monomeric Delta toxin. The superposition of this structure with the structure of the phospholipid-bound F component of S. aureus leucocidin (LukF revealed that the glycerol molecules bound to Delta toxin and the phospholipids in LukF are accommodated in the same hydrophobic clefts, corresponding to where the toxin is expected to latch onto the membrane, though the binding sites show significant differences. From structure-based sequence alignment with the known structure of staphylococcal α-hemolysin, a model of the Delta toxin pore form has been built. Using electron microscopy, we have validated our model and characterized the Delta toxin pore on liposomes. These results highlight both similarities and differences in the mechanism of Delta toxin (and by extension NetB cytotoxicity from that of the staphylococcal pore-forming toxins.

  6. Pore size distribution of a deeply excavated Oxisol after 19 years reclamation

    Science.gov (United States)

    dos Santos Batista Bonini, Carolina; de Cássia Marchini, Débora; Alves, Marlene Cristina; García de Arruda, Otton; Paz-Ferreiro, Jorge

    2013-04-01

    Digging of the local soil and using it as a raw material for construction purposes has been identified as a non-negligible source of land degradation. Techniques aimed at soil profile reconstruction and ecological restoration of soils truncated by mechanical excavation using heavy machinery have been investigated Both, total soil porosity and pore size distribution are important properties for soil management as well as for assessing the recovery of soil function after land degradation. In this way, macropores are responsible for aeration, whereas water storage depends on soil meso- and micropores in the soil and the optimal pore-size distribution is also an indicator of soil quality. We investigated the changes in the pore size distribution of a soil that was beheaded to extract raw materials after a 19 year period of reclamation, which involved the use of green manures, gypsum and pasture for the purpose of profile recovery. The studied area is located in Mato Grosso do Sul State, Brzil. A field trial was performed following a completely randomized experimental design with seven treatments and four replications. Starting 1992, the initial treatments were: 1) control (tilled bare soil), 2)Stizolobium aterrium, 3)Cajanus cajan, 4)lime+S. aterrimum, 5) lime+C. cajan, 6) lime + gypsum + S. aterrimum, 7) lime + gypsum+C. cajan. In 1994, all treatments with C. cajan were replaced by Canavalia ensiformis and in 1999, Brachiaria decumbens was implanted in all the experimental plots. Data from vegetated treatments were compared with bare soil (control) and native vegetation (Savannah). Soil samples were collected in 2011 at the 0.00-0.10, 0.10-0.20, and 0.20-0.40 m depths. Treatment differences were assessed by analysis of variance, following the Scott-Knott test (5%) of probability to compare averages. Macroporosity of the 0.00-0.10 m top layer was above the 0.10 m3m-3 threshold considered as critical for plant growth. On the 0.10-0.20 m layer only treatments with C

  7. A characterization of the coupled evolution of grain fabric and pore space using complex networks: Pore connectivity and optimized flows in the presence of shear bands

    Science.gov (United States)

    Russell, Scott; Walker, David M.; Tordesillas, Antoinette

    2016-03-01

    A framework for the multiscale characterization of the coupled evolution of the solid grain fabric and its associated pore space in dense granular media is developed. In this framework, a pseudo-dual graph transformation of the grain contact network produces a graph of pores which can be readily interpreted as a pore space network. Survivability, a new metric succinctly summarizing the connectivity of the solid grain and pore space networks, measures material robustness. The size distribution and the connectivity of pores can be characterized quantitatively through various network properties. Assortativity characterizes the pore space with respect to the parity of the number of particles enclosing the pore. Multiscale clusters of odd parity versus even parity contact cycles alternate spatially along the shear band: these represent, respectively, local jamming and unjamming regions that continually switch positions in time throughout the failure regime. Optimal paths, established using network shortest paths in favor of large pores, provide clues on preferential paths for interstitial matter transport. In systems with higher rolling resistance at contacts, less tortuous shortest paths thread through larger pores in shear bands. Notably the structural patterns uncovered in the pore space suggest that more robust models of interstitial pore flow through deforming granular systems require a proper consideration of the evolution of in situ shear band and fracture patterns - not just globally, but also inside these localized failure zones.

  8. Reconstructing the Alcatraz escape

    Science.gov (United States)

    Baart, F.; Hoes, O.; Hut, R.; Donchyts, G.; van Leeuwen, E.

    2014-12-01

    In the night of June 12, 1962 three inmates used a raft made of raincoatsto escaped the ultimate maximum security prison island Alcatraz in SanFrancisco, United States. History is unclear about what happened tothe escapees. At what time did they step into the water, did theysurvive, if so, where did they reach land? The fate of the escapees has been the subject of much debate: did theymake landfall on Angel Island, or did the current sweep them out ofthe bay and into the cold pacific ocean? In this presentation, we try to shed light on this historic case using avisualization of a high-resolution hydrodynamic simulation of the San Francisco Bay, combined with historical tidal records. By reconstructing the hydrodynamic conditions and using a particle based simulation of the escapees we show possible scenarios. The interactive model is visualized using both a 3D photorealistic and web based visualization. The "Escape from Alcatraz" scenario demonstrates the capabilities of the 3Di platform. This platform is normally used for overland flooding (1D/2D). The model engine uses a quad tree structure, resulting in an order of magnitude speedup. The subgrid approach takes detailed bathymetry information into account. The inter-model variability is tested by comparing the results with the DFlow Flexible Mesh (DFlowFM) San Francisco Bay model. Interactivity is implemented by converting the models from static programs to interactive libraries, adhering to the Basic ModelInterface (BMI). Interactive models are more suitable for answeringexploratory research questions such as this reconstruction effort. Although these hydrodynamic simulations only provide circumstantialevidence for solving the mystery of what happened during the foggy darknight of June 12, 1962, it can be used as a guidance and provides aninteresting testcase to apply interactive modelling.

  9. Gender Mainstreaming and Sustainable Post Disaster Reconstruction,

    OpenAIRE

    Yumarni, Tri; Amaratunga, Dilanthi; Haigh, Richard

    2013-01-01

    Gender inequalities are barriers to achieve sustainable post disaster reconstruction. Mainstreaming gender equality within post disaster reconstruction process can enhance sustainability of reconstruction. Based on a detailed literature review on post disaster reconstruction, this paper identifies pre-requisite conditions for mainstreaming gender within sustainable post disaster reconstruction as ; awareness of gender needs and concerns, a strong gender policy framework, women ...

  10. Markov Random Field Surface Reconstruction

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Bærentzen, Jakob Andreas; Larsen, Rasmus

    2010-01-01

    A method for implicit surface reconstruction is proposed. The novelty in this paper is the adaption of Markov Random Field regularization of a distance field. The Markov Random Field formulation allows us to integrate both knowledge about the type of surface we wish to reconstruct (the prior...

  11. Ptychographic reconstruction of attosecond pulses

    CERN Document Server

    Lucchini, M; Ludwig, A; Gallmann, L; Keller, U; Feurer, T

    2015-01-01

    We demonstrate a new attosecond pulse reconstruction modality which uses an algorithm that is derived from ptychography. In contrast to other methods, energy and delay sampling are not correlated, and as a result, the number of electron spectra to record is considerably smaller. Together with the robust algorithm, this leads to a more precise and fast convergence of the reconstruction.

  12. Anisotropy of Pore Structure and Permeability in Granite: Preliminary Results

    Science.gov (United States)

    Onishi, C. T.; Shimizu, I.; Mizoguchi, K.; Uehara, S.; Shimamoto, T.

    2001-12-01

    The permeability of rocks is sensitive to pore structures. In fault zones where brittle deformation dominates, connectivity of cracks is perhaps the most important factor to control the fluid permeability. The relationship between microstructure, porosity-pore structures and permeability were investigated, using drill core samples from the Toki Granite in Gifu Prefecture, Central Japan. Core samples taken from a borehole penetrating a fault strand of the Tsukiyoshi Fault at the depth of 700 m were used for analysis and measurements. The Toki Granite shows textural variations. For example, away from the fault zone, the granite is fresh, massive biotite granite. Toward the fault the granitic texture is largely destroyed, reflecting deformation due to fault movement, with extensive fracturing and development of calcite veins. The central part of the fault zone constitutes foliated ultra-cataclasites with a fine grained matrix. Microstructural observations indicate that fragmentation of crystals is the cause of grain size reduction in the fault zone and anisotropy in micro-crack development. The effective porosity of bulk samples measured by Helium pycnometer varies from 0.54% for unaltered fresh granite to over 5.4% for foliated cataclasite from the central part of the fault zone. The pore structures of the granite samples were visualized by the Laser Scanning Microscope (LSM). The samples were impregnated with low viscosity fluorescent resin under vacuum condition, and then observed by the LSM. Quasi 3-D images of pore structures were constructed from optical slices (confocal images) of thick sections. Micro-cracks in granites were successfully filled with the fluorescent resin. Micro-cracks were mainly observed at grain boundaries, and the intra and inter granular fractures. Permeability measurements were performed by a High Pressure Temperature (HPT) gas apparatus using the pore oscillation technique. Confining pressure was increased and then decreased in the range

  13. Direct Measurements of Pore Fluid Density by Vibrating Tube Densimetry

    Energy Technology Data Exchange (ETDEWEB)

    Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Rother, Gernot [ORNL; Wesolowski, David J [ORNL; Cole, David R [ORNL; Wallacher, Dirk [Helmholtz-Zentrum Berlin

    2012-01-01

    The densities of pore-confined fluids were measured for the first time by means of a vibrating tube method. Isotherms of total adsorption capacity were measured directly making the method complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess). A custom-made high-pressure, high-temperature vibrating tube densimeter (VTD) was used to measure the densities of subcritical and supercritical propane (between 35 C and 97 C) and supercritical carbon dioxide (between 32 C and 50 C) saturating hydrophobic silica aerogel (0.2 g/cm3, 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, excess adsorption isotherms for supercritical CO2 and the same porous solid were measured gravimetrically using a precise magnetically-coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum at a subcritical density of the bulk fluid, and then decreased towards zero or negative values at supercritical densities. Compression of the confined fluid significantly beyond the density of the bulk liquid at the same temperature was observed at subcritical temperatures. The features of the isotherms of confined fluid density are interpreted to elucidate the observed behavior of excess adsorption. The maxima of excess adsorption were found to occur below the critical density of the bulk fluid at the conditions corresponding to the beginning of the plateau of total adsorption, marking the end of the transition of pore fluid to a denser, liquid-like pore phase. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. No measurable effect of pore confinement on the liquid-vapor critical point was found. Quantitative agreement was obtained between excess adsorption isotherms determined

  14. Correlation between gas permeability and pore structure of coal matrix

    Science.gov (United States)

    Zhang, J.; Yang, J.; Gao, F.; Li, Y.; Niu, H.; Gao, H.

    2012-04-01

    The sequestration of CO2 in unminable coal seams represents a promising option for CO2 geologic storage, because the injected CO2 may enhance coalbed methane recovery (CO2-ECBM), which could partly offset the costs of the storage process. The CO2-ECBM technology is based on the relative affinity of CO2 and CH4 to coals under given pressure and temperature conditions. The excess sorption capacity of coals for CO2 is generally higher than the sorption capacity for methane. The coal seams are characterized by a dual porosity structure including cleat and matrix pores. The cleats in the coal seams are considered as highways for gas and water flow, while the matrix is the storage location of gas by adsorption. The slow transport process of gas in coal matrix may constrain the efficiency of the displacement of CH4 by CO2 due to the compacted pore structure of the coal matrix. Therefore, a detailed understanding of the correlation between permeability of gas and pore structure in coal matrix is crucial for the CO2-ECBM processes. Yangquan coals originating from the Qingshui basin, which contains gas-rich coals in China, were selected for the tests in this study. Yangquan coals are classified as anthracite. In order to avoid the influence of coal cleats on fluid flow, small coal plugs (~6 mm in diameter, ~13 mm in length) were selected and fixed in the sample compartment by special glue. A test system for simultaneously measuring adsorption-porosity-permeability on the coal matrix blocks in its free state is constructed. The permeability of gas and porosity in coal plugs to He under different gas pressure and temperature conditions were simultaneously investigated. The permeability and excess sorption capacity of the coal plugs to He, N2, CH4 and CO2 were compared at a constant gas pressure and temperature. It is expected that gas break through a cleat-plug is much faster than that through a coal matrix-plug. Different sample plugs with the different pore structure results

  15. Blob-enhanced reconstruction technique

    Science.gov (United States)

    Castrillo, Giusy; Cafiero, Gioacchino; Discetti, Stefano; Astarita, Tommaso

    2016-09-01

    A method to enhance the quality of the tomographic reconstruction and, consequently, the 3D velocity measurement accuracy, is presented. The technique is based on integrating information on the objects to be reconstructed within the algebraic reconstruction process. A first guess intensity distribution is produced with a standard algebraic method, then the distribution is rebuilt as a sum of Gaussian blobs, based on location, intensity and size of agglomerates of light intensity surrounding local maxima. The blobs substitution regularizes the particle shape allowing a reduction of the particles discretization errors and of their elongation in the depth direction. The performances of the blob-enhanced reconstruction technique (BERT) are assessed with a 3D synthetic experiment. The results have been compared with those obtained by applying the standard camera simultaneous multiplicative reconstruction technique (CSMART) to the same volume. Several blob-enhanced reconstruction processes, both substituting the blobs at the end of the CSMART algorithm and during the iterations (i.e. using the blob-enhanced reconstruction as predictor for the following iterations), have been tested. The results confirm the enhancement in the velocity measurements accuracy, demonstrating a reduction of the bias error due to the ghost particles. The improvement is more remarkable at the largest tested seeding densities. Additionally, using the blobs distributions as a predictor enables further improvement of the convergence of the reconstruction algorithm, with the improvement being more considerable when substituting the blobs more than once during the process. The BERT process is also applied to multi resolution (MR) CSMART reconstructions, permitting simultaneously to achieve remarkable improvements in the flow field measurements and to benefit from the reduction in computational time due to the MR approach. Finally, BERT is also tested on experimental data, obtaining an increase of the

  16. Evidence-Based ACL Reconstruction.

    Science.gov (United States)

    Rodriguez-Merchan, E Carlos

    2015-01-01

    There is controversy in the literature regarding a number of topics related to anterior cruciate ligament (ACL) reconstruction. The purpose of this article is to answer the following questions: 1) Bone-patellar tendon-bone reconstruction (BPTB-R) or hamstrimg reconstruction (H-R); 2) Double bundle or single bundle; 3) Allograft or authograft; 4) Early or late reconstruction; 5) Rate of return to sports after ACL reconstruction; 6) Rate of osteoarthritis after ACL reconstruction. A Cochrane Library and PubMed (MEDLINE) search of systematic reviews and meta-analysis related to ACL reconstruction was performed. The key words were: ACL reconstruction, systematic reviews and meta-analysis. The main criteria for selection were that the articles were systematic reviews and meta-analyses focused on the aforementioned questions. Sixty-nine articles were found, but only 26 were selected and reviewed because they had a high grade (I-II) of evidence. BPTB-R was associated with better postoperative knee stability but with a higher rate of morbidity. However, the results of both procedures in terms of functional outcome in the long-term were similar. The double-bundle ACL reconstruction technique showed better outcomes in rotational laxity, although functional recovery was similar between single-bundle and double-bundle. Autograft yielded better results than allograft. There was no difference between early and delayed reconstruction. 82% of patients were able to return to some kind of sport participation. 28% of patients presented radiological signs of osteoarthritis with a follow-up of minimum 10 years. PMID:25692162

  17. AORTOILIAC AND AORTOFEMORAL RECONSTRUCTION OF OBSTRUCTIVE DISEASE

    NARCIS (Netherlands)

    VANDENAKKER, PJ; VANSCHILFGAARDE, R; BRAND, R; VANBOCKEL, JH; TERPSTRA, JL

    1994-01-01

    This retrospective study evaluates our strategy to limit prosthetic reconstructions for aortoiliac obstructive disease to the diseased segments in 518 patients. There were 363 (70%) reconstructions without femoral anastomotic sites (FEM-0), 107 (21%) reconstructions with one femoral anastomotic site

  18. Pore structure of natural and regenerated soil aggregates

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Arthur, Emmanuel; de Jonge, Lis Wollesen;

    2014-01-01

    of the soil type and organic matter amendment, and was vastly different from the state of natural aggregates. Aggregate porosity (> 30 Hm) was observed to be a good predictor for the mechanical properties of aggregates. In general, natural aggregates were stronger than lysimeter aggregates.......Quantitative characterization of aggregate pore structure can reveal the evolution of aggregates under different land use and management practices and their effects on soil processes and functions. Advances in X-ray Computed Tomography (CT) provide powerful means to conduct such characterization....... This study examined aggregate pore structure of three differently managed same textured Danish soils (mixed forage cropping, MFC; mixed cash cropping, MCC; cereal cash cropping, CCC) for (i) natural aggregates, and (ii) aggregates regenerated after 20 months of incubation. In total, 27 aggregates (8-16 mm...

  19. Pore structure of the activated coconut shell charcoal carbon

    Science.gov (United States)

    Budi, E.; Nasbey, H.; Yuniarti, B. D. P.; Nurmayatri, Y.; Fahdiana, J.; Budi, A. S.

    2014-09-01

    The development of activated carbon from coconut shell charcoal has been investigated by using physical method to determine the influence of activation parameters in term of temperature, argon gas pressure and time period on the pore structure of the activated carbon. The coconut shell charcoal was produced by pyrolisis process at temperature of about 75 - 150 °C for 6 hours. The charcoal was activated at various temperature (532, 700 and 868 °C), argon gas pressure (6.59, 15 and 23.4 kgf/cm2) and time period of (10, 60 and 120 minutes). The results showed that the pores size were reduced and distributed uniformly as the activation parameters are increased.

  20. Pore Size Distribution of High Performance Metakaolin Concrete

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The Compressive strength, porosity and pore size distribution of high performance metakaolin (MK) concrete were investigated. Concretes containing 0,5%,10% and 20% metakaolin were prepared at a water/cementitious material ratio (W/C) of 0.30. In parallel, concrete mixtures with the replacement of cement by 20% fly ash or 5 and 10% silica fume were prepared for comparison. The specimens were cured in water at 27℃ for 3 to 90 days. The results show that at the early age of curing (3 days and 7 days), metakaolin replacements increase the compressive strength, but silica fume replacement slightly reduces the compressive strength. At the age of and after 28 days, the compressive strength of the concrete with metakaolin and silica fume replacement increases.A strong reduction in the total porosity and average pore diameter were observed in the concrete with MK 20% and 10% in the first 7 days.

  1. Methane adsorption behavior on coal having different pore structures

    Institute of Scientific and Technical Information of China (English)

    Zhao; Yi; Jiang; Chengfa; Chu; Wei

    2012-01-01

    The adsorption of methane onto five dry coal samples was measured at 298 K over the pressure range from 0 to 3.5 MPa using a volumetric method.The isotherm data were fitted to the Langmuir and the Freundlich equations.The kinetic data were fitted to a pseudo second order equation,the linear driving force equation(LDF),and an intra-particle diffusion model.These results showed that higher methane adsorption is correlated with larger micro-pore volumes and specific surface areas.The adsorption was related to the narrow micro-pore size distribution when the previous two parameters are large.The kinetics study showed that the kinetics of methane adsorption onto these five dry coal samples followed a pseudo second order model very well.Methane adsorption rates are controlled by intra-particle diffusion.The faster the intra-particle diffusion,the faster the methane adsorption rate will be.

  2. Methane adsorption behavior on coal having different pore structures

    Institute of Scientific and Technical Information of China (English)

    Zhao Yi; Jiang Chengfa; Chu Wei

    2012-01-01

    The adsorption of methane onto five dry coal samples was measured at 298 K over the pressure range from 0 to 3.5 MPa using a volumetric method.The isotherm data were fitted to the Langmuir and the Freundlich equations.The kinetic data were fitted to a pseudo second order equation,the linear driving force equation (LDF),and an intra-particle diffusion model.These results showed that higher methane adsorption is correlated with larger micro-pore volumes and specific surface areas.The adsorption was related to the narrow micro-pore size distribution when the previous two parameters are large.The kinetics study showed that the kinetics of methane adsorption onto these five dry coal samples followed a pseudo second order model very well.Methane adsorption rates are controlled by intra-particle diffusion.The faster the intra-particle diffusion,the faster the methane adsorption rate will be.

  3. Deformed coal types and pore characteristics in Hancheng coalmines in Eastern Weibei coalfields

    Institute of Scientific and Technical Information of China (English)

    Xue Guangwu; Liu Hongfu; Li Wei

    2012-01-01

    Based on SEM observance,the methods of low-temperature nitrogen and isothermal adsorption were used to test and analyze the coal samples of Hancheng,and pore structure characteristics of tectonic coals were discussed.The results indicate that in the same coal rank,stratification and crack are well developed in cataclastic coal,which is mostly filled by mineral substance in the geohydrologic element abundance,results in pore connectivity variation.Granulated and mylonitic coal being of these characteristics,as develop microstructures and exogenous fractures as well as large quantity of pores resulted from gas generation and strong impermeability,stimulate the recovery of seepage coal,improve coal connectivity and enhance reservoir permeability.Absorption pore (micro-pore) is dominant in coal pore for different coal body structure,the percentage of which pore aperture is from 1 to 100 nm is 71.44% to 88.15%,including large of micro-pore with the 74.56%-94.70%; with the deformation becoming more intense in the same coal rank,mesopore enlarge further,open-end pores become thin-neck-bottle-shaped pores step by step,specific surface area of micro-pore for cataclastic coal is 0.0027 m2/g,while mylonitic coal increases to 7.479 m2/g,micro-pore gradually play a dominant role in effecting pore structural parameters.

  4. A mechanistic view of mitochondrial death decision pores

    Directory of Open Access Journals (Sweden)

    J.E. Belizário

    2007-08-01

    Full Text Available Mitochondria increase their outer and inner membrane permeability to solutes, protons and metabolites in response to a variety of extrinsic and intrinsic signaling events. The maintenance of cellular and intraorganelle ionic homeostasis, particularly for Ca2+, can determine cell survival or death. Mitochondrial death decision is centered on two processes: inner membrane permeabilization, such as that promoted by the mitochondrial permeability transition pore, formed across inner membranes when Ca2+ reaches a critical threshold, and mitochondrial outer membrane permeabilization, in which the pro-apoptotic proteins BID, BAX, and BAK play active roles. Membrane permeabilization leads to the release of apoptogenic proteins: cytochrome c, apoptosis-inducing factor, Smac/Diablo, HtrA2/Omi, and endonuclease G. Cytochrome c initiates the proteolytic activation of caspases, which in turn cleave hundreds of proteins to produce the morphological and biochemical changes of apoptosis. Voltage-dependent anion channel, cyclophilin D, adenine nucleotide translocase, and the pro-apoptotic proteins BID, BAX, and BAK may be part of the molecular composition of membrane pores leading to mitochondrial permeabilization, but this remains a central question to be resolved. Other transporting pores and channels, including the ceramide channel, the mitochondrial apoptosis-induced channel, as well as a non-specific outer membrane rupture may also be potential release pathways for these apoptogenic factors. In this review, we discuss the mechanistic models by which reactive oxygen species and caspases, via structural and conformational changes of membrane lipids and proteins, promote conditions for inner/outer membrane permeabilization, which may be followed by either opening of pores or a rupture of the outer mitochondrial membrane.

  5. A mechanistic view of mitochondrial death decision pores

    OpenAIRE

    Belizário, J E; Alves, J.; J.M. Occhiucci; M. Garay-Malpartida; Sesso, A.

    2007-01-01

    Mitochondria increase their outer and inner membrane permeability to solutes, protons and metabolites in response to a variety of extrinsic and intrinsic signaling events. The maintenance of cellular and intraorganelle ionic homeostasis, particularly for Ca2+, can determine cell survival or death. Mitochondrial death decision is centered on two processes: inner membrane permeabilization, such as that promoted by the mitochondrial permeability transition pore, formed across inner membranes whe...

  6. Membranes with functionalized carbon nanotube pores for selective transport

    Energy Technology Data Exchange (ETDEWEB)

    Bakajin, Olgica; Noy, Aleksandr; Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K; Kim, Sangil

    2015-01-27

    Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  7. Pore Distribution and Water Uptake in a Cenosphere–Cement

    OpenAIRE

    Baroniņš, J; Sētiņa, J; Šahmenko, G; Lagzdiņa, S; Šiškins, A

    2015-01-01

    Alumina silicate cenospheres (CS) is a significant waste material from power plants that use a coal. Use CS as Portland cement replacement material gives opportunity to control physical and mechanical properties and makes a product lighter and more cost-effective. In the frame of this study, Portland cement paste samples were produced by adding CS in the concentration range from 0 to 40 volume %. Water uptake of hardened samples was checked and pore ...

  8. Laboratory tidal triggering in the presence of pore fluid

    Science.gov (United States)

    Bartlow, N. M.; Lockner, D. A.; Beeler, N. M.

    2011-12-01

    The physical mechanism by which the low-frequency earthquakes (LFEs) that make up tremor are created is poorly understood. In many areas of the world, it is consistently observed that LFEs appear to be strongly tidally modulated, whereas ordinary earthquakes are not (e.g. Thomas et al., Nature, 2009; Vidale et al., JGR, 1998). Here we build upon the work of Lockner and Beeler, JGR, 1999, and Beeler and Lockner, JGR, 2003, which investigated the response of laboratory stick-slip to oscillatory, tide-like loading. These previous experiments determined ranges of amplitude and frequency of the oscillatory loading that resulted in tidally correlated populations, and explained the results in a theoretical framework. Two modes were found: the threshold failure mode in which the necessary amplitude for correlated populations decreased with increasing frequency, and the delayed failure mode in which the amplitude stayed the same or increased with increasing frequency. The frequency of transition between the two modes, which scales with event nucleation time, is predicted to depend on effective stress. This dependence was never tested, since all previous experiments were carried out at one effective stress. The previous experiments were also carried out using room dry samples of Westerly granite. Here we update these results with new experiments on Westerly granite, with the addition of varying effective stress and pore fluid at two pressures. The addition of pore fluid is especially important as pore fluid pressure is thought to be high in LFE regions. We verify the effective stress dependence of the mode transition predicted in Beeler and Lockner, JGR, 2003, allowing extrapolation of the results to other effective stresses. We also find that pore fluid effects become important at high frequencies, when the period of oscillation is comparable to the diffusion time over the sample. These results help constrain the conditions at depth that give rise to tidally modulated LFEs

  9. Fabrication and Visualization of Capillary Bridges in Slit Pore Geometry

    OpenAIRE

    Broesch, David J.; Frechette, Joelle

    2014-01-01

    A procedure for creating and imaging capillary bridges in slit-pore geometry is presented. High aspect ratio hydrophobic pillars are fabricated and functionalized to render their top surfaces hydrophilic. The combination of a physical feature (the pillar) with a chemical boundary (the hydrophilic film on the top of the pillar) provides both a physical and chemical heterogeneity that pins the triple contact line, a necessary feature to create stable long but narrow capillary bridges. The subst...

  10. Pore Space Connectivity and the Transport Properties of Rocks

    Directory of Open Access Journals (Sweden)

    Bernabé Yves

    2016-07-01

    Full Text Available Pore connectivity is likely one of the most important factors affecting the permeability of reservoir rocks. Furthermore, connectivity effects are not restricted to materials approaching a percolation transition but can continuously and gradually occur in rocks undergoing geological processes such as mechanical and chemical diagenesis. In this study, we compiled sets of published measurements of porosity, permeability and formation factor, performed in samples of unconsolidated granular aggregates, in which connectivity does not change, and in two other materials, sintered glass beads and Fontainebleau sandstone, in which connectivity does change. We compared these data to the predictions of a Kozeny-Carman model of permeability, which does not account for variations in connectivity, and to those of Bernabé et al. (2010, 2011 model, which does [Bernabé Y., Li M., Maineult A. (2010 Permeability and pore connectivity: a new model based on network simulations, J. Geophys. Res. 115, B10203; Bernabé Y., Zamora M., Li M., Maineult A., Tang Y.B. (2011 Pore connectivity, permeability and electrical formation factor: a new model and comparison to experimental data, J. Geophys. Res. 116, B11204]. Both models agreed equally well with experimental data obtained in unconsolidated granular media. But, in the other materials, especially in the low porosity samples that had undergone the greatest amount of sintering or diagenesis, only Bernabé et al. model matched the experimental data satisfactorily. In comparison, predictions of the Kozeny-Carman model differed by orders of magnitude. The advantage of the Bernabé et al. model was its ability to account for a continuous, gradual reduction in pore connectivity during sintering or diagenesis. Although we can only speculate at this juncture about the mechanisms responsible for the connectivity reduction, we propose two possible mechanisms, likely to be active at different stages of sintering and diagenesis

  11. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore

    Science.gov (United States)

    Song, Langzhou; Hobaugh, Michael R.; Shustak, Christopher; Cheley, Stephen; Bayley, Hagan; Gouaux, J. Eric

    1996-12-01

    The structure of the Staphylococcus aureus α-hemolysin pore has been determined to 1.9 overset{circ}{mathrm A} resolution. Contained within the mushroom-shaped homo-oligomeric heptamer is a solvent-filled channel, 100 overset{circ}{mathrm A} in length, that runs along the sevenfold axis and ranges from 14 overset{circ}{mathrm A} to 46 overset{circ}{mathrm A} in diameter. The lytic, transmembrane domain comprises the lower half of a 14-strand antiparallel β barrel, to which each protomer contributes two β strands, each 65 overset{circ}{mathrm A} long. The interior of the β barrel is primarily hydrophilic, and the exterior has a hydrophobic belt 28 overset{circ}{mathrm A} wide. The structure proves the heptameric subunit stoichiometry of the α-hemolysin oligomer, shows that a glycine-rich and solvent-exposed region of a water-soluble protein can self-assemble to form a transmembrane pore of defined structure, and provides insight into the principles of membrane interaction and transport activity of β barrel pore-forming toxins.

  12. Simulation of Multiphase FLOW at the Pore Scale: Doable, Useful?

    Science.gov (United States)

    Tchelepi, H.; Abu AlSaud, M.; Soulaine, C.

    2014-12-01

    We discuss the shotcomings of Darcy-scale formulations and constitutive relations for (unstable) immiscible multiphase flow in natural porous media, and we argue for a more rigorous connection between the Darcy-scale representation and the pore-scale dynamics. We then discuss the challenges associated with so-called Direct Numerical Simulation (DNS) at the pore scale. The emphasis is on contact-line dynamics for non-zero contact angles. We argue that accurate description of the (1) fluid-fluid and (2) fluid-fluid-solid contact lines, as well as, (3) the hysteretic ‎behavior of immiscible displacement processes are needed before claims that Direct Numerical Simulation (DNS) of pore-scale physics is doable. Then, we describe our early attempts to devise a hybrid level-set and volume-of-fluid approach to model the evolution of sharp immiscible interfaces in natural porous media. We also discuss the challenges associated with the translation of two-phase flow dynamics to "Darcy" scales.

  13. Hydrogeology and hydrodynamics of coral reef pore waters

    Energy Technology Data Exchange (ETDEWEB)

    Buddemeier, R.W.; Oberdorfer, J.A.

    1988-06-29

    A wide variety of forces can produce head gradients that drive the flow and advective mixing of internal coral reef pore waters. Oscillatory gradients that produce mixing result from wave and tide action. Sustained gradients result from wave and tide-induced setup and ponding, from currents impinging on the reef structure, from groundwater heads, and from density differenced (temperature or salinity gradients). These gradients and the permeabilities and porosities of reef sediments are such that most macropore environments are dominated by advection rather than diffusion. The various driving forces must be analyzed to determine the individual and combined magnitudes of their effects on a specific reef pore-water system. Pore-water movement controls sediment diagenesis, the exchange of nutrients between sediments and benthos, and coastal/island groundwater resources. Because of the complexity of forcing functions, their interactions with specific local reef environments, experimental studies require careful incorporation of these considerations into their design and interpretation. 8 refs., 3 figs., 1 tab.

  14. Integrated pore blockage-cake filtration model for crossflow filtration

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Richard C.; Billing, Justin M.; Russell, Renee L.; Shimskey, Rick W.; Smith, Harry D.; Peterson, Reid A.

    2011-07-01

    Crossflow filtration is to be a key process in the treatment and disposal of approximately 60,000 metric tons of high-level radioactive waste stored at the Hanford Site in Richland, Washington. Pacific Northwest National Laboratory is assessing filter performance with waste simulant materials that mimic the chemical and physical properties of Hanford tank waste. Prior simulant studies indicated that waste filtration performance may be limited by pore and cake fouling. To limit the shutdown of waste treatment operations, the pre-treatment facility plans to recover filter flux losses from cake formation and filter fouling by frequently backpulsing the filter elements. The objective of the current paper is to develop a simple model of flux decline resulting from cake and pore fouling and potential flux recovery through backpulsing of the filters for Hanford waste filtration operations. To this end, a model capable of characterizing the decline in waste-simulant filter flux as a function of both irreversible pore blockage and reversible cake formation is proposed. This model is used to characterize the filtration behavior of Hanford waste simulants in both continuous and backpulsed operations. The model is then used to infer the optimal backpulse frequency under specific operating conditions.

  15. Integrated pore blockage-cake filtration model for crossflow filtration

    International Nuclear Information System (INIS)

    Crossflow filtration is to be a key process in the treatment and disposal of approximately 60,000 metric tons of high-level radioactive waste stored at the Hanford Site in Richland, Washington. Pacific Northwest National Laboratory is assessing filter performance with waste simulant materials that mimic the chemical and physical properties of Hanford tank waste. Prior simulant studies indicated that waste filtration performance may be limited by pore and cake fouling. To limit the shutdown of waste treatment operations, the pre-treatment facility plans to recover filter flux losses from cake formation and filter fouling by frequently backpulsing the filter elements. The objective of the current paper is to develop a simple model of flux decline resulting from cake and pore fouling and potential flux recovery through backpulsing of the filters for Hanford waste filtration operations. To this end, a model capable of characterizing the decline in waste-simulant filter flux as a function of both irreversible pore blockage and reversible cake formation is proposed. This model is used to characterize the filtration behavior of Hanford waste simulants in both continuous and backpulsed operations. The model is then used to infer the optimal backpulse frequency under specific operating conditions.

  16. Single long-polymer translocation through a long pore

    Institute of Scientific and Technical Information of China (English)

    Ding Ke-Jian; Cai Dong-Qing; Zhan Fu-Ru; Wu Li-Jun; Wu Yue-Jin; Yu Zeng-Liang

    2006-01-01

    This paper theoretically studies the free energy and conformational entropy of a long polymer threading a long nanopore (n0/N ≥0.1) on external electric field. The polymer expanded model is built in this paper, that is, a single long polymer chain with N monomers (each of size a) threading a pore with n0 monomers can be regarded as polymer with N + n0 monomers translocating a 2-dimension hole embedded in membrane. A theoretical approach is presented which explicitly takes into account the nucleation theory. Our calculations imply that, the structure of polymer changes more acutely than other situation, while its leading monomer reaches the second vacuum and its end monomer escapes the first vacuum. And it is also shown that the length scale of polymer and pore play a very important role for polymer translocation dynamics. The present model predicts that the translocation time depends on the chemical potential gradient and the property of the solvent on sides of pore to some extent.

  17. Pool boiling on rectangular fins with tunnel-pore structure

    Directory of Open Access Journals (Sweden)

    Pastuszko A.

    2013-04-01

    Full Text Available Complex experimental investigations were conducted in the area of pool boiling heat transfer on extended surfaces with internal tunnels limited by perforated foil. The experiments were carried out for water and R-123 at atmospheric pressure. The tunnel surfaces were fabricated from 0.05 – 0.1 mm thick perforated copper foil (pore diameters: 0.3, 0.4, 0.5 mm sintered with mini-fins formed by 5 and 10 mm high rectangular fins and horizontal inter-fin surface. The effect of the main fin height, pore diameters and tunnel pitch on nucleate pool boiling was examined. Substantial enhancement of heat transfer coefficient was observed for the investigated surfaces. The highest increase in the heat transfer coefficient was obtained for the 10 mm high fins – about 50kW/m2K for water and 15 kW/m2K for R-123. The investigated surfaces showed boiling heat transfer coefficients similar to those of existing tunnel-pore structures.

  18. High-pressure alchemy on a small-pore zeolite

    Science.gov (United States)

    Lee, Y.

    2011-12-01

    While an ever-expanding variety of zeolites with a wide range of framework topology is available, it is desirable to have a way to tailor the chemistry of the zeolitic nanopores for a given framework topology via controlling both the coordination-inclusion chemistry and framework distortion/relaxation. This is, however, subjected to the ability of a zeolitic nanopore to allow the redistribution of cations-water assembly and/or insertion of foreign molecules into the pores and channels. Small-pore zeolites such as natrolite (Na16Al16Si24O80x16H2O), however, have been known to show very limited capacity for any changes in the confinement chemistry. We have recently shown that various cation-exchanged natrolites can be prepared under modest conditions from natural sodium natrolite and exhibit cation-dependent volume expansions by up to 18.5% via converting the elliptical channels into progressively circular ones. Here, we show that pressure can be used as a unique and clean tool to further manipulate the chemistry of the natrolite nanopores. Our recent crystallographic and spectroscopic studies of pressure-insertion of foreign molecules, trivalent-cation exchange under pressure, and pressure-induced inversion of cation-water coordination and pore geometry in various cation-exchanged natrolites will be presented.

  19. MCU encodes the pore conducting mitochondrial calcium currents.

    Science.gov (United States)

    Chaudhuri, Dipayan; Sancak, Yasemin; Mootha, Vamsi K; Clapham, David E

    2013-06-04

    Mitochondrial calcium (Ca(2+)) import is a well-described phenomenon regulating cell survival and ATP production. Of multiple pathways allowing such entry, the mitochondrial Ca(2+) uniporter is a highly Ca(2+)-selective channel complex encoded by several recently-discovered genes. However, the identity of the pore-forming subunit remains to be established, since knockdown of all the candidate uniporter genes inhibit Ca(2+) uptake in imaging assays, and reconstitution experiments have been equivocal. To definitively identify the channel, we use whole-mitoplast voltage-clamping, the technique that originally established the uniporter as a Ca(2+) channel. We show that RNAi-mediated knockdown of the mitochondrial calcium uniporter (MCU) gene reduces mitochondrial Ca(2+) current (I MiCa ), whereas overexpression increases it. Additionally, a classic feature of I MiCa , its sensitivity to ruthenium red inhibition, can be abolished by a point mutation in the putative pore domain without altering current magnitude. These analyses establish that MCU encodes the pore-forming subunit of the uniporter channel. DOI:http://dx.doi.org/10.7554/eLife.00704.001.

  20. Electrically tunable pore morphology in nanoporous gold thin films

    Institute of Scientific and Technical Information of China (English)

    Tatiana S. Dorofeeva; Erkin Seker

    2015-01-01

    Nanoporous gold (np-Au) is an emerging nanostructured material that exhibits many desirable properties, including high electrical and thermal conductivity, high surface area-to-volume ratio, tunable pore morphology well-established surface-binding chemistry, and compatibility with microfabrication. These features make np-Au a popular material for use in fuel cells, optical and electrical biosensors, drug delivery vehicles, neural electrode coatings, and as a model system for nanoscale mechanics. In each of its many applications, np-Au morphology plays an essential role in the overall device operation. Therefore, precise morphological control is necessary to attain optimal device performance. Traditionally thermal treatment by furnaces and hot plates is used to obtain np-Au with self-similar but coarser morphologies. However, this approach lacks the ability to create different morphologies on a single substrate and requires high temperatures (〉 250 ℃) incompatible with most plastic substrates. Herein, we report electro-annealing as a novel method that permits control of the extent and location of pore coarsening on a single substrate in one fast treatment step. The electro-annealing entails much lower temperatures (〈 150 ℃) than traditional thermal treatment, putatively due to electrically assisted phenomena contributing to the thermally activated surface diffusion of gold atoms, responsible for coarsening. Overall, this approach is easily scaled to display multiple pore morphologies on a single chip, therefore enabling high-throughput screening of optimal nanostructures for specific applications.

  1. Formation of Anodic Aluminum Oxide with Branched and Meshed Pores.

    Science.gov (United States)

    Kim, Byeol; Lee, Jin Seok

    2016-06-01

    Anodic aluminum oxide (AAO), with a self-ordered hexagonal array, is important for various applications in nanofabrication including as the fabrication of nanotemplates and other nanostructures. With the consideration, there have been many efforts to control the characteristic parameters of porous anodic alumina by adjustment of the anodizing conditions such as the electrolyte, temperature, applied potential, and Al purity. In particular, impurities in Al are changing the morphology of an alumina film; however, the formation mechanism has not yet been explained. In this work, we anodized a high purity (99.999%, Al(high)) and low purity (99.8%, Al(low)) aluminum foil by a two-step anodization process in an oxalic acid solution or phosphoric acid. It was found that the purity of aluminum foil has influenced the morphology of the alumina film resulting in branched and meshed pores. Also, electrochemical analysis indicated that the branched and meshed pores in the low-purity Al foil formed by the presence of impurities. Impurities act as defects and change the general growth mechanism for pore formation by inducing an electric field imbalance during anodization. This work contributes to the research field of topographical chemistry and applied fields including nanofabrication. PMID:27427755

  2. Effects of Quenching Temperature and Time on Pore Diameter of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Porous Scaffolds and MC3T3-E1 Osteoblast Response to the Scaffolds

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) scaffolds were prepared by thermally inducing phase separation (TIPS) for bone reconstruction. Scanning electron microscopy and porosity measurements were used to analyze the structure and properties of the scaffolds. The pore diameter of the scaffolds could be easily controlled by changing the quenching temperature and time. The biocompatibility was assessed by examining the proliferation and morphology of MC 3T3-E1 osteoprogenitor cells seeded on the scaffolds. Cultures grown in the presence of a source of phosphate ions showed the formation of a mineralized extracellular matrix. The results indicate that PHBHHx scaffolds prepared using TIPS are a promising candidate for bone reconstruction.

  3. Evidence-Based ACL Reconstruction

    Directory of Open Access Journals (Sweden)

    E. Carlos RODRIGUEZ-MERCHAN

    2015-01-01

    Full Text Available There is controversy in the literature regarding a number of topics related to anterior cruciate ligament (ACLreconstruction. The purpose of this article is to answer the following questions: 1 Bone patellar tendon bone (BPTB reconstruction or hamstring reconstruction (HR; 2 Double bundle or single bundle; 3 Allograft or authograft; 4 Early or late reconstruction; 5 Rate of return to sports after ACL reconstruction; 6 Rate of osteoarthritis after ACL reconstruction. A Cochrane Library and PubMed (MEDLINE search of systematic reviews and meta-analysis related to ACL reconstruction was performed. The key words were: ACL reconstruction, systematic reviews and meta-analysis. The main criteria for selection were that the articles were systematic reviews and meta-analysesfocused on the aforementioned questions. Sixty-nine articles were found, but only 26 were selected and reviewed because they had a high grade (I-II of evidence. BPTB-R was associated with better postoperative knee stability but with a higher rate of morbidity. However, the results of both procedures in terms of functional outcome in the long-term were similar. The double-bundle ACL reconstruction technique showed better outcomes in rotational laxity, although functional recovery was similar between single-bundle and double-bundle. Autograft yielded better results than allograft. There was no difference between early and delayed reconstruction. 82% of patients were able to return to some kind of sport participation. 28% of patients presented radiological signs of osteoarthritis with a follow-up of minimum 10 years.

  4. Reconstructing human evolution

    CERN Document Server

    Cavalli-Sforza, M

    1999-01-01

    One can reconstruct human evolution using modern genetic data and models based on the mathematical theory of evolution and its four major factors : mutation, natural selection, statistical fluctuations in finite populations (random genetic drift), and migration. Archaeology gives some help on the major dates and events of the process. Chances of studying ancient DNA are very limited but there have been a few successful results. Studying DNA instead of proteins, as was done until a few years ago, and in particular the DNA of mitochondria and of the Y chromosome which are transmitted, respectively, by the maternal line and the paternal line, has greatly simplified the analysis. It is now possible to carry the analysis on individuals, while earlier studies were of necessity based on populations. Also the evolution of ÒcultureÓ (i.e. what we learn from others), in particular that of languages, gives some help and can be greatly enlightened by genetic studies. Even though it is largely based on mechanisms of mut...

  5. Facial Reconstruction and Rehabilitation.

    Science.gov (United States)

    Guntinas-Lichius, Orlando; Genther, Dane J; Byrne, Patrick J

    2016-01-01

    Extracranial infiltration of the facial nerve by salivary gland tumors is the most frequent cause of facial palsy secondary to malignancy. Nevertheless, facial palsy related to salivary gland cancer is uncommon. Therefore, reconstructive facial reanimation surgery is not a routine undertaking for most head and neck surgeons. The primary aims of facial reanimation are to restore tone, symmetry, and movement to the paralyzed face. Such restoration should improve the patient's objective motor function and subjective quality of life. The surgical procedures for facial reanimation rely heavily on long-established techniques, but many advances and improvements have been made in recent years. In the past, published experiences on strategies for optimizing functional outcomes in facial paralysis patients were primarily based on small case series and described a wide variety of surgical techniques. However, in the recent years, larger series have been published from high-volume centers with significant and specialized experience in surgical and nonsurgical reanimation of the paralyzed face that have informed modern treatment. This chapter reviews the most important diagnostic methods used for the evaluation of facial paralysis to optimize the planning of each individual's treatment and discusses surgical and nonsurgical techniques for facial rehabilitation based on the contemporary literature. PMID:27093062

  6. Orthotopic neobladder reconstruction

    Directory of Open Access Journals (Sweden)

    Dwayne T. S. Chang

    2015-01-01

    Full Text Available Orthotopic neobladder reconstruction is becoming an increasingly common urinary diversion following cystectomy for bladder cancer. This is in recognition of the potential benefits of neobladder surgery over creation of an ileal conduit related to quality of life (QoL, such as avoiding the need to form a stoma with its cosmetic, psychological and other potential complications. The PubMed database was searched using relevant search terms for articles published electronically between January 1994 and April 2014. Full-text articles in English or with English translation were assessed for relevance to the topic before being included in the review. Patients with neobladders have comparable or better post-operative sexual function than those with ileal conduits. They also have comparable QoL to those with ileal conduits. Orthotopic neobladder is a good alternative to ileal conduit in suitable patients who do not want a stoma and are motivated to comply with neobladder training. However, the selection of a neobladder as the urinary diversion of choice requires that patients have good renal and liver functions and are likely to be compliant with neobladder training. With benefits also come potential risks of neobladder formation. These include electrolyte abnormalities and nocturnal incontinence. This short review highlights current aspects of neobladder formation and its potential advantages.

  7. Facial Reconstruction and Rehabilitation.

    Science.gov (United States)

    Guntinas-Lichius, Orlando; Genther, Dane J; Byrne, Patrick J

    2016-01-01

    Extracranial infiltration of the facial nerve by salivary gland tumors is the most frequent cause of facial palsy secondary to malignancy. Nevertheless, facial palsy related to salivary gland cancer is uncommon. Therefore, reconstructive facial reanimation surgery is not a routine undertaking for most head and neck surgeons. The primary aims of facial reanimation are to restore tone, symmetry, and movement to the paralyzed face. Such restoration should improve the patient's objective motor function and subjective quality of life. The surgical procedures for facial reanimation rely heavily on long-established techniques, but many advances and improvements have been made in recent years. In the past, published experiences on strategies for optimizing functional outcomes in facial paralysis patients were primarily based on small case series and described a wide variety of surgical techniques. However, in the recent years, larger series have been published from high-volume centers with significant and specialized experience in surgical and nonsurgical reanimation of the paralyzed face that have informed modern treatment. This chapter reviews the most important diagnostic methods used for the evaluation of facial paralysis to optimize the planning of each individual's treatment and discusses surgical and nonsurgical techniques for facial rehabilitation based on the contemporary literature.

  8. Reconstruction tomography from incomplete projections

    International Nuclear Information System (INIS)

    In some instances, reconstruction radionuclide tomography must be carried out from projections that do not include projection values for all portions of the object to be reconstructed. This may occur, for example, when the field of view of the detector is limited, or when an opaque foreign body is present within the object. The effects of such incomplete projections upon reconstructions of computer-simulated phantoms were studied, using iterative and convolution methods. Several methods for reducing the resulting artifacts and inaccuracies are discussed

  9. Image Interpolation Through Surface Reconstruction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ling; LI Xue-mei

    2013-01-01

    Reconstructing an HR (high-resolution) image which preserves the image intrinsic structures from its LR ( low-resolution) counterpart is highly challenging. This paper proposes a new surface reconstruction algorithm applied to image interpolation. The interpolation surface for the whole image is generated by putting all the quadratic polynomial patches together. In order to eliminate the jaggies of the edge, a new weight function containing edge information is incorporated into the patch reconstruction procedure as a constraint. Extensive experimental results demonstrate that our method produces better results across a wide range of scenes in terms of both quantitative evaluation and subjective visual quality.

  10. Pore-scale study of dissolution-induced changes in hydrologic properties of rocks with binary minerals

    CERN Document Server

    Chen, Li; Viswanathan, Hari S; Tao, Wenquan

    2014-01-01

    A pore-scale numerical model for reactive transport processes based on the Lattice Boltzmann method is used to study the dissolution-induced changes in hydrologic properties of a fractured medium and a porous medium. The solid phase of both media consists of two minerals, and a structure reconstruction method called quartet structure generation set is employed to generate the distributions of both minerals. Emphasis is put on the effects of undissolved minerals on the changes of permeability and porosity under different Peclet and Damkohler numbers. The simulation results show porous layers formed by the undissolved mineral remain behind the dissolution reaction front. Due to the large flow resistance in these porous layers, the permeability increases very slowly or even remains at a small value although the porosity increases by a large amount. Besides, due to the heterogeneous characteristic of the dissolution, the chemical, mechanical and hydraulic apertures are very different from each other. Further, sim...

  11. Evaluation of Optimal Pore Size of (3-Aminopropyltriethoxysilane Grafted MCM-41 for Improved CO2 Adsorption

    Directory of Open Access Journals (Sweden)

    Zhilin Liu

    2015-01-01

    Full Text Available An array of new MCM-41 with substantially larger average pore diameters was synthesized through adding 1,3,5-trimethylbenzene (TMB as the swelling agent to explore the effect of pore size on final adsorbent properties. The pore expanded MCM-41 was also grafted with (3-Aminopropyltriethoxysilane (APTES to determine the optimal pore size for CO2 adsorption. The pore-expanded mesoporous MCM-41s showed relatively less structural regularity but significant increments of pore diameter (4.64 to 7.50 nm; the fraction of mesopore volume also illustrated an increase. The adsorption heat values were correlated with the order of the adsorption capacities for pore expanded MCM-41s. After amine functionalization, the adsorption capacities and heat values showed a significant increase. APTES-grafted pore-expanded MCM-41s depicted a high potential for CO2 capture regardless of the major drawback of the high energy required for regeneration.

  12. Pore morphology: a vital factor in determining electrochemical properties of electrical double layer capacitors.

    Science.gov (United States)

    Liang, Yeru; Li, Zhenghui; Yang, Xiaoqing; Fu, Ruowen; Wu, Dingcai

    2013-11-01

    The ordered 2D reverse hexagonal pore morphology facilitates rapid ion diffusion more than the disordered wormhole-like pore morphology, thus leading to superior electrochemical properties such as rate capabilities. PMID:24042434

  13. Nuclear pore complex assembly studied with a biochemical assay for annulate lamellae formation

    OpenAIRE

    1995-01-01

    Formation of the nuclear pore is an intricate process involving membrane fusion and the ordered assembly of up to 1,000 pore proteins. As such, the study of pore assembly is not a simple one. Interestingly, annulate lamellae, a cytoplasmic organelle consisting of stacks of flattened membrane cisternae perforated by numerous pore complexes, have been found to form spontaneously in a reconstitution system derived from Xenopus egg extracts, as determined by electron microscopy (Dabauvalle et al....

  14. Diagenetic facies controls on pore structure and rock electrical parameters in tight gas sandstone

    Science.gov (United States)

    Liu, Hongping; Zhao, Yanchao; Luo, Yang; Chen, Zhaoyou; He, Sheng

    2015-08-01

    Rock electrical parameters of tight gas sandstone show large variations in the T2 member in Dingbei Block, Ordos Basin, China. Applying the same rock electrical parameters in water saturation calculations would lead to large errors. Based on casting thin sections, x-ray diffraction, scanning electron microscopy (SEM), cathode luminescence, porosity and permeability, image analysis, and high-pressure mercury intrusion/withdrawal method, identification of the diagenetic facies are first conducted, and then their pore structure and their relationship with rock electrical parameters are investigated. Five diagenetic facies (A-E), which are identified based mainly on pore types and authigenic minerals, have different pore structure and rock electrical parameters. Conceptual models that incorporate the rock properties of each diagenetic facies have been built, before applying the electrical efficiency theory to explain the values of cementation exponent (m) and saturation exponent (n). A conventional network model, a shunt pore model, a netted pore model, and a dotted line model are utilized to mimic the intergranular pores, authigenic kaolinite intercrystal pores, carbonate-cement dissolution pores, and clay-matrix intercrystal pores, respectively. A decrease of the contents of large pores increases electrical efficiency and therefore reduces m. The saturation exponent, which depends on the distribution of water and gas, can be better understood by applying the different pore models. In the shunt and netted pore models, gas displacement starts from the larger pores and smaller pores provide alternative conduction pathways, hence sustaining electrical efficiency and decreasing n. Clay-matrix intercrystal pores are mainly micropores, since the brine in the rocks are isolated after gas displacement, reducing overall electrical efficiency and dramatically increasing the value of n in the diagenetic facies, which is dominated by clay-matrix intercrystal pores.

  15. Assembly of the nuclear pore: biochemically distinct steps revealed with NEM, GTP gamma S, and BAPTA

    OpenAIRE

    1996-01-01

    A key event in nuclear formation is the assembly of functional nuclear pores. We have used a nuclear reconstitution system derived from Xenopus eggs to examine the process of nuclear pore assembly in vitro. With this system, we have identified three reagents which interfere with nuclear pore assembly, NEM, GTP gamma S, and the Ca++ chelator, BAPTA. These reagents have allowed us to determine that the assembly of a nuclear pore requires the prior assembly of a double nuclear membrane. Inhibiti...

  16. Compression Process of Pore inside Explosive Charge in a Warhead under Launching Load

    OpenAIRE

    Li, W; Yan, H; Q. Zhang; Y.H. Ji

    2010-01-01

    In this paper, the compression process of the pore inside explosive charge in a warhead under launching load is simulated and its influence on premature explosion is discussed. The relationship between the pore compression, distortion, and the form of 'igniting hot spot' has been established. The analysis of result indicates that the stress wave in the explosive charge developed due to launching load is a key factor in the pore compression process. The volume change of the pore, which is rela...

  17. Formation of the postmitotic nuclear envelope from extended ER cisternae precedes nuclear pore assembly

    OpenAIRE

    Ladinsky, Mark S.; Lu, Lei; Kirchhausen, Tomas Leopold

    2011-01-01

    During mitosis, the nuclear envelope merges with the endoplasmic reticulum (ER), and nuclear pore complexes are disassembled. In a current model for reassembly after mitosis, the nuclear envelope forms by a reshaping of ER tubules. For the assembly of pores, two major models have been proposed. In the insertion model, nuclear pore complexes are embedded in the nuclear envelope after their formation. In the prepore model, nucleoporins assemble on the chromatin as an intermediate nuclear pore c...

  18. Molecular dynamics simulation of benzene in graphite and amorphous carbon slit pores.

    Science.gov (United States)

    Fomin, Yu D

    2013-11-15

    It is well known that confining a liquid into a pore strongly alters the liquid behavior. Investigations of the effect of confinement are of great importance for many scientific and technological applications. Here, we present a study of the behavior of benzene confined in carbon slit pores. Two types of pores are considered-graphite and amorphous carbon ones. We show that the effect of different pore structure is of crucial importance for the benzene behavior.

  19. Self-assembly, structural, and retrostructural analysis of dendritic dipeptide pores undergoing reversible circular to elliptical shape change.

    Science.gov (United States)

    Peterca, Mihai; Percec, Virgil; Dulcey, Andrés E; Nummelin, Sami; Korey, Stephanie; Ilies, Monica; Heiney, Paul A

    2006-05-24

    The synthesis of dendritic dipeptides (4-3,4-3,5-4)12G2-CH(2)-Boc-L-Tyr-L-Ala-OMe and (4-3, 4-3,5-4)12G2-CH(2)-Boc-D-Tyr-D-Ala-OMe is described. These dendritic dipeptides self-assemble into porous elliptical and circular columns that in turn self-organize into centered rectangular columnar and hexagonal columnar periodic arrays. The transition from porous elliptical to porous circular columns is mediated in a reversible or irreversible way by the thermal history of the sample. A method to determine the dimensions of hollow elliptical and circular columns by the reconstruction of the small-angle powder X-ray diffractograms of the centered rectangular or hexagonal columnar lattices was elaborated. This technique together with wide-angle X-ray experiments performed on aligned fibers provided access to the structural and retrostructural analysis of elliptical supramolecular pores. This procedure is general and can be adapted for the determination of the dimensions of pores of any columnar shape. PMID:16704274

  20. Weakly nonlinear thermoacoustics for stacks with slowly varying pore cross-sections

    NARCIS (Netherlands)

    Panhuis, in 't P.H.M.W.; Rienstra, S.W.; Molenaar, J.; Slot, J.J.M.

    2009-01-01

    A general theory of thermoacoustics is derived for arbitrary stack pores. Previous theoretical treatments of porous media are extended by considering arbitrarily shaped pores with the only restriction that the pore cross-sections vary slowly in the longitudinal direction. No boundary-layer approxima

  1. Prediction of Hydraulic Conductivity as Related to Pore Size Distribution in Unsaturated Soils

    Science.gov (United States)

    Soil pore volume as well as pore size, shape, type (i.e. biopore versus crack), continuity, and distribution in soil affect soil water and gas exchange. Vertical and lateral drainage of water by gravitational forces occurs through large, non-capillary soil pores, but redistribution and upward moveme...

  2. Permporometry study on the size distribution of active pores in porous ceramic membranes

    NARCIS (Netherlands)

    Cao, G.Z.; Meijerink, J.; Brinkman, H.W.; Burggraaf, A.J.

    1993-01-01

    Permporometry as well as nitrogen adsorption-desorption techniques have been applied to study the pore size distribution in γ-alumina membranes with a pore radius ranging from about 2 nm to 10 nm. The permporometry technique measures the active pores only, while nitrogen adsorption-desorption measur

  3. Hard, charged spheres in spherical pores. Grand canonical ensemble Monte Carlo calculations

    DEFF Research Database (Denmark)

    Sloth, Peter; Sørensen, T. S.

    1992-01-01

    A model consisting of hard charged spheres inside hard spherical pores is investigated by grand canonical ensemble Monte Carlo calculations. It is found that the mean ionic density profiles in the pores are almost the same when the wall of the pore is moderately charged as when it is uncharged...

  4. Performance of slotted pores in particle manufacture using rotating membrane emulsification

    Institute of Scientific and Technical Information of China (English)

    Qingchun Yuan; Nita Aryanti; Ruozhou Hou; Richard A.Williams

    2009-01-01

    This paper addresses the use of different slotted pores in rotating membrane emulsification technology.Pores of square and rectangular shapes were studied to understand the effect of aspect ratio (1-3.5) and their orientation on oil droplet formation.Increasing the membrane rotation speed decreased the droplet size,and the oil droplets produced were more uniform using slotted pores as compared to circular geometry.At a given rotation speed,the droplet size was mainly determined by the pore size and the fluid velocity of oil through the pore (pore fluid velocity).The ratio of droplet diameter to the equivalent diameter of the slotted pore increased with the pore fluid velocity.At a given pore fluid velocity and rotation speed,pore orientation significantly influences the droplet formation rate: horizontally disposed pores (with their longer side perpendicular to the membrane axis) generate droplets at double the rate of vertically disposed pores.This work indicates practical benefits in the use of slotted membranes over conventional methods.

  5. Hologram-reconstruction signal enhancement

    Science.gov (United States)

    Mezrich, R. S.

    1977-01-01

    Principle of heterodyne detection is used to combine object beam and reconstructed virtual image beam. All light valves in page composer are opened, and virtual-image beam is allowed to interfere with light from valves.

  6. Reconstruction techniques for optoacoustic imaging

    Science.gov (United States)

    Frenz, Martin; Koestli, Kornel P.; Paltauf, Guenther; Schmidt-Kloiber, Heinz; Weber, Heinz P.

    2001-06-01

    Optoacoustics is a method to gain information from inside a tissue. This is done by irradiating a tissue with a short light pulse, which generates a pressure distribution inside the tissue that mirrors the absorber distribution. The pressure distribution measured on the tissue-surface allows, by applying a back-projection method, to calculate a tomography image of the absorber distribution. This study presents a novel computational algorithm based on Fourier transform, which, at least in principle, yields an exact 3D reconstruction of the distribution of absorbed energy density inside turbid media. The reconstruction is based on 2D pressure distributions captured outside at different times. The FFT reconstruction algorithm is first tested in the back projection of simulated pressure transients of small model absorbers, and finally applied to reconstruct the distribution of artificial blood vessels in three dimensions.

  7. Vermilion Reconstruction with Genital Mucosa.

    Science.gov (United States)

    Müller-Richter, Urs D A; Weyandt, Gerhard H; Woeckel, Achim; Kübler, Alexander C

    2016-05-01

    Functional and aesthetical reconstruction, especially of the upper lip after ablative tumor surgery, can be very challenging. The skin of the lip might be sufficiently reconstructed by transpositional flaps from the nasolabial or facial area. Large defects of the lip mucosa, including the vestibule, are even more challenging due to the fact that flaps from the inner lining of the oral cavity often lead to functional impairments. We present a case of multiple vermilion and skin resections of the upper lip. At the last step, we had to resect even the whole vermilion mucosa, including parts of the oral mucosa of the vestibule, leaving a bare orbicularis oris muscle. To reconstruct the mucosal layer, we used a mucosal graft from the labia minora and placed it on the compromised lip and the former transpositional flaps for the reconstructed skin of the upper lip with very good functional and aesthetic results. PMID:27579226

  8. Arapahoe NWR diversion reconstruction : Preliminary

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a preliminary plan for a diversion reconstruction for Hubbard #2. Oklahoma #1, Dryer, Hill and Crowder sites on the Arapahoe National Wildlife Refuge.

  9. Provincial reconstruction teams improving effectiveness

    OpenAIRE

    Sellers, Cameron S.

    2007-01-01

    Provincial Reconstruction Teams (PRTs) are currently prominent constructs for stabilization and reconstruction in Afghanistan and Iraq. PRTs are composed of civil-military teams, including elements from coalition partners and the host-nation, and involve multiple military services and civilian agencies. Their missions are to extend the legitimacy of the central government throughout the country and to use Civil Military Operations (CMO) to counter anti-government forces. PRTs are prominent,...

  10. Erectile function after urethral reconstruction

    Institute of Scientific and Technical Information of China (English)

    Joshua Carlton; Maharshi Patel; Allen F. Morey

    2008-01-01

    Advances in urogenital plastic surgical tissue transfer techniques have enabled urethral reconstruction surgery to become the new gold-standard for treatment of refractory urethral stricture disease. Questions remain, however,regarding the long-term implications on sexual function after major genital reconstructive surgery. In this article, we review the pathologic features of urethral stricture disease and urologic trauma that may affect erectile function (EF) and assess the impact of various specific contemporary urethroplasty surgical techniques on male sexual function.

  11. Equilibrium Reconstruction in EAST Tokamak

    Institute of Scientific and Technical Information of China (English)

    QIAN Jinping; WAN Baonian; L. L. LAO; SHEN Biao; S. A. SABBAGH; SUN Youwen; LIU Dongmei; XIAO Singjia; REN Qilong; GONG Xianzu; LI Jiangang

    2009-01-01

    Reconstruction of experimental axisymmetric equilibria is an important part of toka-mak data analysis. Fourier expansion is applied to reconstruct the vessel current distribution in EFIT code. Benchmarking and testing calculations are performed to evaluate and validate this algorithm. Two cases for circular and non-circular plasma discharges are presented. Fourier ex-pansion used to fit the eddy current is a robust method and the real time EFIT can be introduced to the plasma control system in the coming campaign.

  12. Molecular Characterization and Functional Analysis of Annulate Lamellae Pore Complexes in Nuclear Transport in Mammalian Cells.

    Directory of Open Access Journals (Sweden)

    Sarita Raghunayakula

    Full Text Available Annulate lamellae are cytoplasmic organelles containing stacked sheets of membranes embedded with pore complexes. These cytoplasmic pore complexes at annulate lamellae are morphologically similar to nuclear pore complexes at the nuclear envelope. Although annulate lamellae has been observed in nearly all types of cells, their biological functions are still largely unknown. Here we show that SUMO1-modification of the Ran GTPase-activating protein RanGAP1 not only target RanGAP1 to its known sites at nuclear pore complexes but also to annulate lamellae pore complexes through interactions with the Ran-binding protein RanBP2 and the SUMO-conjugating enzyme Ubc9 in mammalian cells. Furthermore, upregulation of annulate lamellae, which decreases the number of nuclear pore complexes and concurrently increases that of annulate lamellae pore complexes, causes a redistribution of nuclear transport receptors including importin α/β and the exportin CRM1 from nuclear pore complexes to annulate lamellae pore complexes and also reduces the rates of nuclear import and export. Moreover, our results reveal that importin α/β-mediated import complexes initially accumulate at annulate lamellae pore complexes upon the activation of nuclear import and subsequently disassociate for nuclear import through nuclear pore complexes in cells with upregulation of annulate lamellae. Lastly, CRM1-mediated export complexes are concentrated at both nuclear pore complexes and annulate lamellae pore complexes when the disassembly of these export complexes is inhibited by transient expression of a Ran GTPase mutant arrested in its GTP-bound form, suggesting that RanGAP1/RanBP2-activated RanGTP hydrolysis at these pore complexes is required for the dissociation of the export complexes. Hence, our findings provide a foundation for further investigation of how upregulation of annulate lamellae decreases the rates of nuclear transport and also for elucidation of the biological

  13. Detectability limitations with 3-D point reconstruction algorithms using digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Erik, E-mail: erik.lindgren@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Göteborg, 412 96 (Sweden)

    2015-03-31

    The estimated impact of pores in clusters on component fatigue will be highly conservative when based on 2-D rather than 3-D pore positions. To 3-D position and size defects using digital radiography and 3-D point reconstruction algorithms in general require a lower inspection time and in some cases work better with planar geometries than X-ray computed tomography. However, the increase in prior assumptions about the object and the defects will increase the intrinsic uncertainty in the resulting nondestructive evaluation output. In this paper this uncertainty arising when detecting pore defect clusters with point reconstruction algorithms is quantified using simulations. The simulation model is compared to and mapped to experimental data. The main issue with the uncertainty is the possible masking (detectability zero) of smaller defects around some other slightly larger defect. In addition, the uncertainty is explored in connection to the expected effects on the component fatigue life and for different amount of prior object-defect assumptions made.

  14. Helium measurements of pore-fluids obtained from SAFOD drillcore

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.; Kennedy, B.M.

    2010-04-15

    {sup 4}He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk {sup 4}He diffusion coefficient of 3.5 {+-} 1.3 x 10{sup -8} cm{sup 2}s{sup -1} at 21 C, compared to previously published diffusion coefficients of 1.2 x 10{sup -18} cm{sup 2}s{sup -1} (21 C) to 3.0 x 10{sup -15} cm{sup 2}s{sup -1} (150 C) in the sands and clays. Correcting the diffusion coefficient of {sup 4}He{sub water} for matrix porosity ({approx}3%) and tortuosity ({approx}6-13) produces effective diffusion coefficients of 1 x 10{sup -8} cm{sup 2}s{sup -1} (21 C) and 1 x 10{sup -7} (120 C), effectively isolating pore fluid {sup 4}He from the {sup 4}He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8 {+-} 0.4% (SD, n=4) and mudstones 3.1 {+-} 0.8% (SD, n=4).

  15. Pore water colloid properties in argillaceous sedimentary rocks.

    Science.gov (United States)

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  16. Relationship between chloride diffusivity and pore structure of hardened cement paste

    Institute of Scientific and Technical Information of China (English)

    Guo-wen SUN; Wei SUN; Yun-sheng ZHANG; Zhi-yong LIU

    2011-01-01

    Based on effective media theory, a predictive model, relating chloride diffusivity to the capillary pores, gel pores,tortuosity factor, and pore size distribution of hardened cement, is proposed. To verify the proposed model, the diffusion coefficient of chloride ions, the degree of hydration, and peak radius of capillary pores of cement paste specimens were measured. The predicted results for chloride diffusivity were compared with published data. The results showed that the predicted chloride diffusivity of hardened cement paste was in good agreement with the experimental results. The effect of the evolution of pore structures in cement paste on chloride diffusivity could be deduced simultaneously using the proposed model.

  17. In-pore exchange and diffusion of carbonate solvent mixtures in nanoporous carbon

    Science.gov (United States)

    Alam, Todd M.; Osborn Popp, Thomas M.

    2016-08-01

    High resolution magic angle spinning (HRMAS) 1H NMR spectroscopy has been used to resolve different surface and in-pore solvent environments of ethylene carbonate (EC) and dimethyl carbonate (DMC) mixtures absorbed within nanoporous carbon (NPC). Two dimensional (2D) 1H HRMAS NMR exchange measurements revealed that the inhomogeneous broadened in-pore resonances have pore-to-pore exchange rates on the millisecond timescale. Pulsed-field gradient (PFG) NMR diffusometry revealed the in-pore self-diffusion constants for both EC and DMC were reduced by up to a factor of five with respect to the diffusion in the non-absorbed solvent mixtures.

  18. Effect of Fiber Properties on Nonwovens' Pore Structures with Fractal Geometry Analysis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Nonwovens' pore structures are very important to their mechanical and physical properties. And the pore structures are influenced by the fiber properties and fibers arrangement in web. In this paper, the fractal geometry, in combination with computer image analysis, is used to express the irregularity of pore size distribution in nonwovens, and the effect of fiber properties on fractal dimension of pore size distribution isdiscussed by using simulated images which are composed of nonlinear staple fibers. The results show that the fiber properties,such as crimp, diameer, angular distribution, and especially the number of fibers prominently influence the pore structure.

  19. Experimental study on pore pressure in rock-soil slope during reservoir water level fluctuation

    Institute of Scientific and Technical Information of China (English)

    LIU; Yuewu; CHEN; Huixin; LIU; Qingquan; GONG; Xin; ZHANG

    2005-01-01

    A test system was developed for measuring the pore pressure in porous media, and a new model was devised for the pore pressure testing in both saturated and unsaturated rock-soil. Laboratory experiments were carried out to determine the pore pressure during water level fluctuation. The variations of transient pore pressure vs. time at different locations of the simulated rock-soil system were acquired and processed, and meanwhile the deformation and failure of the model are observed. The experiment results show that whether the porous media are saturated or not, the transient pore pressure is mainly dependent on the water level fluctuation, and coupled with the variation of the stress field.

  20. Pore former induced porosity in LSM/CGO cathodes for electrochemical cells for flue gas purification

    DEFF Research Database (Denmark)

    Skovgaard, M.; Andersen, Kjeld Bøhm; Kammer Hansen, Kent

    2012-01-01

    In this study the effect of the characteristics of polymethyl methacrylate (PMMA) pore formers on the porosity, pore size distribution and the air flow through the prepared lanthanum strontium manganate/gadolinium-doped cerium oxide (LSM/CGO) cathodes was investigated. Porous cathodes were obtained...... and the highest porosity measured was 46.4% with an average pore diameter of 0.98 μm. The air flow through this cathode was measured to 5.8 ml/(min mm2). Also the effect of exposure time to the solvent was tested for the most promising PMMA pore former and it was found that the average pore diameter decreases...

  1. A stochastic model for filtration of particulate suspensions with incomplete pore plugging

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Santos, A; Bedrikovetsky, P. G.;

    2007-01-01

    through the overall pore space, and for particle flux reduction, due to transport of particles by the fraction of the overall flux. The novel feature of the model is the residual pore conductivity after the particle retention in the pore and the possibility of one pore to capture several particles. A...... closed system of governing stochastic equations determines the evolution of size distributions for suspended particles and pores. Its averaging results in the closed system of hydrodynamic equations accounting for permeability and porosity reduction due to plugging. The problem of deep bed filtration of...

  2. Long n-alkanes isomerization by medium pore zeolites with pore mouth and key lock mechanisms; Isomerisation des paraffines longues par des zeolithes a pores moyens selon les mecanismes ouverture de pore et cle serrure

    Energy Technology Data Exchange (ETDEWEB)

    Claude, M.

    1999-10-01

    Skeletal isomerization of long n-alkanes is practiced to improve cold flow properties of diesel and lubricant fractions. In this work, model long n-alkanes (n-C{sub 10} - n-C{sub 24}) were hydro-isomerized in a fixed bed down flow vapour phase reactor loaded with bifunctional Pt/H-ZSM-22 zeolite catalyst. The skeletal isomers were analysed and identified with GC/MS. High isomer yields were obtained. The distribution of positional mono-methyl-branched isomers obtained from n-C{sub 12} to n-C{sub 24} are typically bimodal. This is explained by adsorption and reaction of the alkanes in pore mouths and locks on the external surface of the zeolite crystals. The pore mouth mode favours branching at C{sub 2} and C{sub 3}. The 'key lock' type proceeds by penetration of the two ends of the hydrocarbon chain into a different pore opening and favours more central mono-branching of the chain. The contribution of the key lock mode increases with increasing chain length and with the reaction temperature. The preferentially formed dimethyl-branched isomers have a separation between branchings of three up to fourteen carbon atoms. The formation of the second methyl-branching occurs preferentially from a centrally branched mono-methyl-branched isomer, so that the second branching is generated always more toward the end of the chain. Owing to the differences in adsorption entropy among the locks, at higher temperatures the largest lock is preferred and the distance between the two branching along the carbon chain in the preferred isomers is biggest. Thus the work resulted in the formulation of structure-selectivity relationships. n-C{sub 18} was hydro-isomerized on other zeolites. The nature and distribution of the isomers obtained suggest that the tubular 10-ring zeolites ZSM-23, ZSM-35 and SAPO-11 also operate according to pore mouth and key lock concepts. Zeolites with 12-rings show typical product patterns for catalysis in absence of steric hindrance. (author)

  3. Dynamics of pore synthesis and degradation in protocells

    Science.gov (United States)

    Kubitschke, H.; Fütterer, C.

    2012-10-01

    Liposomes have found countless applications as microreactors or for studying the evolution of protocells. However, to keep reactions ongoing, exchange with the environment is required. Based on experiments with nanopores expressed by an enclosed gene expression system, we developed a model describing the observed growth dynamics quantitatively. The model depends on one parameter only and allowed estimations of hitherto unknown parameters: the diffusion coefficient of amino acids through a single pore and the initial amino acid concentration. The long-term consequences of different degradation mechanisms are also discussed: we found a surprisingly sharp threshold deciding on the question of survival of the protocell.

  4. Dynamics of pore synthesis and degradation in protocells

    International Nuclear Information System (INIS)

    Liposomes have found countless applications as microreactors or for studying the evolution of protocells. However, to keep reactions ongoing, exchange with the environment is required. Based on experiments with nanopores expressed by an enclosed gene expression system, we developed a model describing the observed growth dynamics quantitatively. The model depends on one parameter only and allowed estimations of hitherto unknown parameters: the diffusion coefficient of amino acids through a single pore and the initial amino acid concentration. The long-term consequences of different degradation mechanisms are also discussed: we found a surprisingly sharp threshold deciding on the question of survival of the protocell. (paper)

  5. Pore Structures in the Biomineralized Byssus of Anomia simplex

    DEFF Research Database (Denmark)

    Frølich, Simon; Leemreize, Hanna; Thomsen, Jesper Skovhus;

    2016-01-01

    Underwater attachment is a significant challenge, for which we have no good general solutions in our technology. Yet, a number of biological organisms have evolved solutions to this problem. One intriguing approach to underwater attachment is that of the marine bivalve mussel Anomia simplex...... that uses a biomineralized byssus to permanently anchor itself to substrates. The byssus has a highly complex hierarchical structure and contains over 90 wt% CaCO3. The byssus features a complex set of porosities, presumed to be highly important for the function of the attachment system. The pore space...

  6. Low atomic number coating for XEUS silicon pore optics

    DEFF Research Database (Denmark)

    Lumb, D.H.; Cooper-Jensen, Carsten P.; Krumrey, M.;

    2008-01-01

    We describe a set of measurements on coated silicon substrates that are representative of the material to be used for the XEUS High Performance Pore Optics (HPO) technology. X-ray angular reflectance measurements at 2.8 and 8 keV, and energy scans of reflectance at a fixed angle representative...... of XEUS graze angles are presented. Reflectance is significantly enhanced for low energies when a low atomic number over-coating is applied. Modeling of the layer thicknesses and roughness is used to investigate the dependence on the layer thicknesses, metal and over coat material choices. We compare...

  7. Dendrimer-like hybrid particles with tunable hierarchical pores

    Science.gov (United States)

    Du, Xin; Li, Xiaoyu; Huang, Hongwei; He, Junhui; Zhang, Xueji

    2015-03-01

    Dendrimer-like silica particles with a center-radial dendritic framework and a synergistic hierarchical porosity have attracted much attention due to their unique open three-dimensional superstructures with high accessibility to the internal surface areas; however, the delicate regulation of the hierarchical porosity has been difficult to achieve up to now. Herein, a series of dendrimer-like amino-functionalized silica particles with tunable hierarchical pores (HPSNs-NH2) were successfully fabricated by carefully regulating and optimizing the various experimental parameters in the ethyl ether emulsion systems via a one-pot sol-gel reaction. Interestingly, the simple adjustment of the stirring rate or reaction temperature was found to be an easy and effective route to achieve the controllable regulation towards center-radial large pore sizes from ca. 37-267 (148 +/- 45) nm to ca. 8-119 (36 +/- 21) nm for HPSNs-NH2 with particle sizes of 300-700 nm and from ca. 9-157 (52 +/- 28) nm to ca. 8-105 (30 +/- 16) nm for HPSNs-NH2 with particle sizes of 100-320 nm. To the best of our knowledge, this is the first successful regulation towards center-radial large pore sizes in such large ranges. The formation of HPSNs-NH2 may be attributed to the complex cross-coupling of two processes: the dynamic diffusion of ethyl ether molecules and the self-assembly of partially hydrolyzed TEOS species and CTAB molecules at the dynamic ethyl ether-water interface of uniform small quasi-emulsion droplets. Thus, these results regarding the elaborate regulation of center-radial large pores and particle sizes not only help us better understand the complicated self-assembly at the dynamic oil-water interface, but also provide a unique and ideal platform as carriers or supports for adsorption, separation, catalysis, biomedicine, and sensor.Dendrimer-like silica particles with a center-radial dendritic framework and a synergistic hierarchical porosity have attracted much attention due to their

  8. Comparative study of pore structure evolution during solvent and thermal debinding of powder injection molded parts

    Science.gov (United States)

    Hwang, K. S.; Hsieh, Y. M.

    1996-02-01

    The solvent debinding process has been widely accepted in the powder injection molding (PIM) industry due to its short debinding cycle. In the current study, specimens were immersed in a heptane bath for different lengths of time, and the pore structure evolvement in the compact was analyzed. Mercury porosimetry analyses and scanning electron micrographs showed that the binder extraction started from the surface and progressed toward the center of the compacts. As the debinding contin-ued, the pores grew and were widely distributed in size. This pore structure evolvement was different from that of straight thermal debinding in which the pore size distribution was quite narrow and the mean pore diameter shifted toward smaller sizes as debinding time increased. After the soluble binders were extracted, parts were subjected to a subsequent thermal debinding during which these pores served as conduits for decomposed gas to escape. Concurrently, the remaining binder became fluidlike and was redistributed within the compact due to capillarity. This pore structure, as observed from the mercury intrusion curves, showed a sharp increase in the pore volume at the 0.8-µm size, followed by a series of fine pores, which is different from the pore structure of straight thermal debinding. The difference in the pore structure evolvement between solvent and thermal debinding and its effect on the debinding rate are discussed.

  9. Comparative study of pore structure evolution during solvent and thermal debinding of powder injection molded parts

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, K.S.; Hsieh, Y.M. [National Taiwan Univ., Taipei (Taiwan, Province of China). Inst. of Materials Science and Engineering

    1996-02-01

    The solvent debinding process has been widely accepted in the powder injection molding (PIM) industry due to its short debinding cycle. In the current study, specimens were immersed in a heptane bath for different lengths of time, and the pore structure evolvement in the compact was analyzed. Mercury porosimetry analyses and scanning electron micrographs showed that the binder extraction started from the surface and progressed toward the center of the compacts. As the debinding continued, the pores grew and were widely distributed in size. This pore structure evolvement was different from that of straight thermal debinding in which the pore size distribution was quite narrow and the mean pore diameter shifted toward smaller sizes as debinding time increased. After the soluble binders were extracted, parts were subjected to a subsequent thermal debinding during which these pores served as conduits for decomposed gas to escape. Concurrently, the remaining binder became fluidlike and was redistributed within the compact due to capillarity. This pore structure, as observed from the mercury intrusion curves, showed a sharp increase in the pore volume at the 0.8-{micro}m size, followed by a series of fine pores, which is different from the pore structure of straight thermal debinding. The difference in the pore structure evolvement between solvent and thermal debinding and its effect on the debinding rate are discussed.

  10. Transport properties of track-etched membranes having variable effective pore-lengths

    Science.gov (United States)

    Nguyen, Quoc Hung; Ali, Mubarak; Nasir, Saima; Ensinger, Wolfgang

    2015-12-01

    The transport rate of molecules through polymeric membranes is normally limited because of their micrometer-scale thickness which restricts their suitability for more practical application. To study the effect of effective pore length on the transport behavior, polymer membranes containing cylindrical and asymmetric-shaped nanopores were prepared through a two-step ion track-etching technique. Permeation experiments were performed separately to investigate the transport properties (molecular flux and selectivity) of these track-etched membranes. The permeation data shows that the molecular flux across membranes containing asymmetric nanopores is higher compared to those having cylindrical pores. On the other hand, the cylindrical pore membranes exhibit higher selectivity than asymmetric pores for the permeation of charged molecules across the membrane. Current-voltage (I-V) measurements of single-pore membranes further verify that asymmetric pores exhibit lower resistance for the flow of ions and therefore show higher currents than cylindrical pores. Moreover, unmodified and polyethyleneimine (PEI) modified asymmetric-shaped pore membranes were successfully used for the separation of cationic and anionic analyte molecules from their mixture, respectively. In this study, two distinct effects (pore geometry and pore density, i.e. number of pores cm-2), which mainly influence membrane selectivity and molecular transport rates, were thoroughly investigated in order to optimize the membrane performance. In this context, we believe that membranes with high molecular transport rates could readily find their application in molecular separation and controlled drug delivery processes.

  11. Scale parameter-estimating method for adaptive fingerprint pore extraction model

    Science.gov (United States)

    Yi, Yao; Cao, Liangcai; Guo, Wei; Luo, Yaping; He, Qingsheng; Jin, Guofan

    2011-11-01

    Sweat pores and other level 3 features have been proven to provide more discriminatory information about fingerprint characteristics, which is useful for personal identification especially in law enforcement applications. With the advent of high resolution (>=1000 ppi) fingerprint scanning equipment, sweat pores are attracting increasing attention in automatic fingerprint identification system (AFIS), where the extraction of pores is a critical step. This paper presents a scale parameter-estimating method in filtering-based pore extraction procedure. Pores are manually extracted from a 1000 ppi grey-level fingerprint image. The size and orientation of each detected pore are extracted together with local ridge width and orientation. The quantitative relation between the pore parameters (size and orientation) and local image parameters (ridge width and orientation) is statistically obtained. The pores are extracted by filtering fingerprint image with the new pore model, whose parameters are determined by local image parameters and the statistically established relation. Experiments conducted on high resolution fingerprints indicate that the new pore model gives good performance in pore extraction.

  12. Investigating the effects of stress on the pore structures of nuclear grade graphites

    Science.gov (United States)

    Taylor, Joshua E. L.; Hall, Graham N.; Mummery, Paul M.

    2016-03-01

    Graphite is used as a moderating material and as a structural component in a number of current generation nuclear reactors. During reactor operation stresses develop in the graphite components, causing them to deform. It is important to understand how the microstructure of graphite affects the material's response to these stresses. A series of experiments were performed to investigate how the pore structures of Pile Grade A and Gilsocarbon graphites respond to loading stresses. A compression rig was used to simulate the build-up of operational stresses in graphite components, and a confocal laser microscope was used to study variation of a number of important pore properties. Values of elastic modulus and Poisson's ratio were calculated and compared to existing literature to confirm the validity of the experimental techniques. Mean pore areas were observed to decrease linearly with increasing applied load, mean pore eccentricity increased linearly, and a small amount of clockwise pore rotation was observed. The response to build-up of stresses was dependent on the orientation of the pores and basal planes and the shapes of the pores with respect to the loading axis. It was proposed that pore closure and pore reorientation were competing processes. Pore separation was quantified using 'nearest neighbour' and Voronoi techniques, and non-pore regions were found to shrink linearly with increasing applied load.

  13. Using X-Ray Computed Tomography in Pore Structure Characterization for a Berea Sandstone: Resolution Effect

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Sheng; Hu, Qinhong; Dultz, Stefan; Zhang, Ming

    2012-11-23

    X-raycomputedtomography (XCT) is a powerful tool for detecting the micro-scale porestructure and has been applied to many natural and synthetic porous media. However, due to the resolution limitations, either non-representative view of the sample or inaccurate results can be produced from the XCT image processing. In this paper, two XCT (micro-CT and CT with synchrotron radiation) with different resolutions of 12.7 μm and 0.35 μm, as well as mercury intrusion porosimetry (MIP) with a minimum detection limit of 3 nm, were used for Berea sandstone to investigate the effect of detecting resolution on the porestructure. Several key porestructure parameters, including porosity, pore size distribution, pore connectivity, surface area, hydraulic radius, and aspect ratio were analyzed in a manner of quantitative comparison between different resolutions of XCT and MIP. The low resolution XCT can capture the large-pore porosity, while overestimates the pore size and pore connectivity. The high resolution XCT is more accurate in describing the pore shape, porosity, pore size; however, it is not representative since narrower detecting pore size range and small volume represented. A representative element volume related to large-pore porosity and probably large-pore connectivity with diameter and height of 2.8 mm is obtained through scale effect analysis. Therefore, selecting an appropriate resolution should be a compromise between the pore size and the representative element volume for the specific property or process of interest.

  14. Construction of Nuclear Envelope Shape by a High-Genus Vesicle with Pore-Size Constraint.

    Science.gov (United States)

    Noguchi, Hiroshi

    2016-08-23

    Nuclear pores have an approximately uniform distribution in the nuclear envelope of most living cells. Hence, the morphology of the nuclear envelope is a spherical stomatocyte with a high genus. We have investigated the morphology of high-genus vesicles under pore-size constraint using dynamically triangulated membrane simulations. Bending-energy minimization without volume or other constraints produces a circular-cage stomatocyte, where the pores are aligned in a circular line on an oblate bud. As the pore radius is reduced, the circular-pore alignment is more stabilized than a random pore distribution on a spherical bud. However, we have clarified the conditions for the formation of a spherical stomatocyte: a small perinuclear volume, osmotic pressure within nucleoplasm, and repulsion between the pores. When area-difference elasticity is taken into account, the formation of cylindrical or budded tubules from the stomatocyte and discoidal stomatocyte is found. PMID:27558725

  15. Pore Structure Control of Ordered Mesoporous Silica Film Using Mixed Surfactants

    Directory of Open Access Journals (Sweden)

    Tae-Jung Ha

    2011-01-01

    Full Text Available Materials with nanosized and well-arranged pores have been researched actively in order to be applied to new technology fields. Especially, mesoporous material containing various pore structures is expected to have different pore structure. To form a mixed pore structure, ordered mesoporous silica films were prepared with a mixture of surfactant; Brij-76 and P-123 block copolymer. In mixed surfactant system, mixed pore structure was observed in the region of P-123/(Brij-76 + P-123 with about 50.0 wt.% while a single pore structure was observed in regions which have large difference in ratio between Brij-76 and P-123 through the X-ray diffraction analysis. Regardless of surfactant ratio, porosity was retained almost the same. It is expected that ordered mesoporous silica film with mixed pore structure can be one of the new materials which has distinctive properties.

  16. Pore Network Modeling of Drainage and Imbibition in Highly Porous Media

    Science.gov (United States)

    Riasi, S.; Huang, G.; Montemagno, C.; Yeghiazarian, L.

    2012-12-01

    Several macro- and micro-scale approaches have been used in multiphase flow modeling in porous media. Among different micro-scale models, pore network modeling is known as a computationally efficient and algorithmically simple model. The critical step in pore network modeling is to extract a pore network, which represents the void space structure and consist of pore bodies and throats. Pore bodies are key contributors to the so-called geometrical hysteresis in the capillary pressure-saturation curves, through gradual pore body filling during imbibition. Gradual pore body filling depends on the geometry of pore bodies and on the coordination number, i.e. the number of pore throats connected to the pore body. In previous studies, researchers used analytical solutions for gradual pore body filling, typically assuming that the wetting phase invades the pore body only through one pore throat. Another limitation is the fixed coordination number. We removed these limitations in this study. We have developed a 2D quasi-static pore network model for drainage and imbibition in a 95%-porous nonwoven fiber structure. Since in unstructured highly porous media large void spaces are not distinctly separated, defining specific pore bodies is cumbersome. In order to solve this problem we propose a new strategy to define the pore network, where we employed the medial axis transform and skeletonization to find the medial axis of the void space. A continuous medial axis is determined using the swelling algorithm, a new fast and simple pixel-based distance transform algorithm. We have defined the pore network as a network of pores along this medial axis, with the radius equal to the local perpendicular distance between the medial axis and solid phase. Therefore, in the resulting pore network, instead of having pore bodies and throats of predetermined and fixed geometry, we employ variable pore radii that obey the exact topology of porous structure. There are several advantages to using

  17. Diffusion and electromigration in clay bricks influenced by differences in the pore system resulting from firing

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge; Ottosen, Lisbeth M.; Hansen, Kurt Kielsgaard

    2012-01-01

    Ion transport in porous materials has been subject of study for several decades. However, the interaction between the pores and the overall pore system make it complicated to obtain a clear picture and predict diffusion and electromigration (transport induced by an applied electric field). Specific...... the pore system to contribute to an overall understanding of ion transport in porous materials.The pore system in bricks are influenced by the firing degree, clay mixture composition and ion content. The present paper focuses on the pore system and effects from clay mixture composition and ion content were...... to the distance to the surface.The influence of the pore system on ion transport through the water saturated pore system of the bricks was supported by measurements for calculation of the electrical resistance and an increasing resistance was found for increasing brick firing temperatures. The effective diffusion...

  18. Construction of Nuclear Envelope Shape by a High-Genus Vesicle with Pore-Size Constraint

    Science.gov (United States)

    Noguchi, Hiroshi

    2016-08-01

    Nuclear pores have an approximately uniform distribution in the nuclear envelope of most living cells. Hence, the morphology of the nuclear envelope is a spherical stomatocyte with a high genus. We have investigated the morphology of high-genus vesicles under pore-size constraint using dynamically triangulated membrane simulations. Bending-energy minimization without volume or other constraints produces a circular-cage stomatocyte, where the pores are aligned in a circular line on an oblate bud. As the pore radius is reduced, the circular-pore alignment is more stabilized than a random pore distribution on a spherical bud. However, we have clarified the conditions for the formation of a spherical stomatocyte: a small perinuclear volume, osmotic pressure within nucleoplasm, and repulsion between the pores. When area-difference elasticity is taken into account, the formation of cylindrical or budded tubules from the stomatocyte and discoidal stomatocyte is found.

  19. Formation of spherical stomatocyte of high-genus vesicle under pore-size constraint

    CERN Document Server

    Noguchi, Hiroshi

    2016-01-01

    Nuclear pores have an approximately uniform distribution in the nuclear envelope of most living cells. Hence, the morphology of the nuclear envelope is a spherical stomatocyte with a high genus. We have investigated the morphology of high-genus vesicles under pore-size constraint using dynamically triangulated membrane simulations. Bending-energy minimization without volume or other constraints produces a circular-cage stomatocyte, where the pores are aligned in a circular line on an oblate inner bud. As the pore radius is reduced, the circular-pore alignment is more stabilized than a random pore distribution on a spherical bud. However, we have clarified the conditions for the formation of a spherical stomatocyte: a small reduced volume, osmotic pressure within the inner bud, and repulsion between the pores. When area-difference elasticity is taken into account, the formation of cylindrical or budded tubules from the stomatocyte and discoidal stomatocyte is found.

  20. Simulation of Pore Width and Pore Charge Effects on Selectivities of CO2 vs. H2 from a Syngas-like Mixture in Carbon Mesopores

    NARCIS (Netherlands)

    Trinh, T.T.; Vlugt, T.J.H.; Hägg, M.B.; Bedeaux, D.; Kjelstrup, S.

    2014-01-01

    Classical molecular dynamics simulations were performed to study the effect of pore width and surface charge in carbon mesoporous materials on adsorption and diffusion selectivities of CO2/H2 in a syngas-like mixture (mole fraction of CO2 = 0.30). The pore width of the graphite slit varied from 2.5

  1. The effect of pore fluid on seismicity: a computer model

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The influence of fluid on seismicity of a computerized system is analyzed in this paper. The diffusion equation of fluid in a crustal fault area is developed and used in the calculation of a spring-slide-damper model. With mirror imagin boundary condition and three initial conditions, the equation is solved for a dynamic model that consists of six seismic belts and eight seismogenous sources in each belt with both explicit algorithm and implicit algorithm. The analysis of the model with water sources shows that the implicit algorithm is better to be used to calculate the model. Taking a constant proportion of the pore pressure of a broken element to that of its neighboring elements, the seismicity of the model is calculated with mirror boundary condition and no-water-source initial condition. The results shows that the frequency and magnitude of shocks are both higher than those in the model with no water pore pressure, which provides more complexity to earthquake prediction.

  2. Wave-induced stresses and pore pressures near a mudline

    Directory of Open Access Journals (Sweden)

    Andrzej Sawicki

    2008-12-01

    Full Text Available Conventional methods for the determination of water-wave induced stresses inseabeds composed of granular soils are based on Biot-type models, in which the soilskeleton is treated as an elastic medium. Such methods predict effective stressesin the soil that are unacceptable from the physical point of view, as they permittensile stresses to occur near the upper surface of the seabed. Therefore, in thispaper the granular soil is assumed to behave as an elastic-ideally plastic material,with the Coulomb-Mohr yield criterion adopted to bound admissible stress states inthe seabed. The governing equations are solved numerically by a~finite differencemethod. The results of simulations, carried out for the case of time-harmonicwater waves, illustrate the depth distributions of the excess pore pressures and theeffective stresses in the seabed, and show the shapes of zones of soil in the plastic state.~In particular, the effects on the seabed behaviour of suchparameters as the degree of pore water saturation, the soil permeability, and theearth pressure coefficient, are illustrated.

  3. The Pore-Forming Haemolysins of Bacillus Cereus: A Review

    Directory of Open Access Journals (Sweden)

    Vincent Sanchis

    2013-06-01

    Full Text Available The Bacillus cereus sensu lato group contains diverse Gram-positive spore-forming bacteria that can cause gastrointestinal diseases and severe eye infections in humans. They have also been incriminated in a multitude of other severe, and frequently fatal, clinical infections, such as osteomyelitis, septicaemia, pneumonia, liver abscess and meningitis, particularly in immuno-compromised patients and preterm neonates. The pathogenic properties of this organism are mediated by the synergistic effects of a number of virulence products that promote intestinal cell destruction and/or resistance to the host immune system. This review focuses on the pore-forming haemolysins produced by B. cereus: haemolysin I (cereolysin O, haemolysin II, haemolysin III and haemolysin IV (CytK. Haemolysin I belongs to the cholesterol-dependent cytolysin (CDC family whose best known members are listeriolysin O and perfringolysin O, produced by L. monocytogenes and C. perfringens respectively. HlyII and CytK are oligomeric ß-barrel pore-forming toxins related to the α-toxin of S. aureus or the ß-toxin of C. perfringens. The structure of haemolysin III, the least characterized haemolytic toxin from the B. cereus, group has not yet been determined.

  4. The effect of pore structure on ebullition from peat

    Science.gov (United States)

    Ramirez, Jorge A.; Baird, Andy J.; Coulthard, Tom J.

    2016-06-01

    The controls on methane (CH4) bubbling (ebullition) from peatlands are uncertain, but evidence suggests that physical factors related to gas transport and storage within the peat matrix are important. Variability in peat pore size and the permeability of layers within peat can produce ebullition that ranges from steady to erratic in time and can affect the degree to which CH4 bubbles bypass consumption by methanotrophic bacteria and enter the atmosphere. Here we investigate the role of peat structure on ebullition in structurally different peats using a physical model that replicates bubble production using air injection into peat. We find that the frequency distributions of number of ebullition events per time and the magnitude of bubble loss from the physical model were similar in shape to ebullition from peatlands and incubated peats. This indicates that the physical model could be a valid proxy for naturally occurring ebullition from peat. For the first time, data on bubble sizes from peat were collected to conceptualize ebullition, and we find that peat structure affects bubble sizes. Using a new method to measure peat macrostructure, we collected evidence that supports the hypothesis that structural differences in peat determine if bubble release is steady or erratic and extreme. Collected pore size data suggest that erratic ebullition occurs when large amounts of gas stored at depth easily move through shallower layers of open peat. In contrast, steady ebullition occurs when dense shallower layers of peat regulate the flow of gas emitted from peat.

  5. In situ structural analysis of the human nuclear pore complex.

    Science.gov (United States)

    von Appen, Alexander; Kosinski, Jan; Sparks, Lenore; Ori, Alessandro; DiGuilio, Amanda L; Vollmer, Benjamin; Mackmull, Marie-Therese; Banterle, Niccolo; Parca, Luca; Kastritis, Panagiotis; Buczak, Katarzyna; Mosalaganti, Shyamal; Hagen, Wim; Andres-Pons, Amparo; Lemke, Edward A; Bork, Peer; Antonin, Wolfram; Glavy, Joseph S; Bui, Khanh Huy; Beck, Martin

    2015-10-01

    Nuclear pore complexes are fundamental components of all eukaryotic cells that mediate nucleocytoplasmic exchange. Determining their 110-megadalton structure imposes a formidable challenge and requires in situ structural biology approaches. Of approximately 30 nucleoporins (Nups), 15 are structured and form the Y and inner-ring complexes. These two major scaffolding modules assemble in multiple copies into an eight-fold rotationally symmetric structure that fuses the inner and outer nuclear membranes to form a central channel of ~60 nm in diameter. The scaffold is decorated with transport-channel Nups that often contain phenylalanine-repeat sequences and mediate the interaction with cargo complexes. Although the architectural arrangement of parts of the Y complex has been elucidated, it is unclear how exactly it oligomerizes in situ. Here we combine cryo-electron tomography with mass spectrometry, biochemical analysis, perturbation experiments and structural modelling to generate, to our knowledge, the most comprehensive architectural model of the human nuclear pore complex to date. Our data suggest previously unknown protein interfaces across Y complexes and to inner-ring complex members. We show that the transport-channel Nup358 (also known as Ranbp2) has a previously unanticipated role in Y-complex oligomerization. Our findings blur the established boundaries between scaffold and transport-channel Nups. We conclude that, similar to coated vesicles, several copies of the same structural building block--although compositionally identical--engage in different local sets of interactions and conformations. PMID:26416747

  6. Heat of fusion of primary alcohol confined in Nano pores

    Science.gov (United States)

    Griffin, Harrisonn; Amanue, Samuel

    Melting behavior of physically confined 1-decanol in nano porous silica was probed using a Differential Scanning Calorimeter (DSC). In agreement with the Gibbs-Thompson prediction, we observe that the melting temperature of the confined 1-decanol scales inversely with the physical size of the pores. Contrary to the assumption used in developing the Gibbs-Thompson equation, however, the apparent heat of fusion decreases as the the pore size decreases. Previously, several models have been proposed where the interfacial layer/s of molecules do not participate in the phase transition and thereby would not contribute to the heat of fusion. While these could reconcile the seeming contradiction, annealing the nano confined materials enables some of the interfacial layers to be incorporated into an existing crystal. This leads to an increase in the apparent heat of fusion and a systematic relationship exists between the annealing temperature and the increase in the apparent heat of fusion. This work was partially supported by NSF-DMR: 1229142.

  7. Modeling and Simulating Asymmetrical Conductance Changes in Gramicidin Pores

    Directory of Open Access Journals (Sweden)

    Xu Shixin

    2014-01-01

    Full Text Available Gramicidin A is a small and well characterized peptide that forms an ion channel in lipid membranes. An important feature of gramicidin A (gA pore is that its conductance is affected by the electric charges near the its entrance. This property has led to the application of gramicidin A as a biochemical sensor for monitoring and quantifying a number of chemical and enzymatic reactions. Here, a mathematical model of conductance changes of gramicidin A pores in response to the presence of electrical charges near its entrance, either on membrane surface or attached to gramicidin A itself, is presented. In this numerical simulation, a two dimensional computational domain is set to mimic the structure of a gramicidin A channel in the bilayer surrounded by electrolyte. The transport of ions through the channel is modeled by the Poisson-Nernst-Planck (PNP equations that are solved by Finite Element Method (FEM. Preliminary numerical simulations of this mathematical model are in qualitative agreement with the experimental results in the literature. In addition to the model and simulations, we also present the analysis of the stability of the solution to the boundary conditions and the convergence of FEM method for the two dimensional PNP equations in our model.

  8. The reconstruction of inflationary potentials

    Science.gov (United States)

    Lin, Jianmang; Gao, Qing; Gong, Yungui

    2016-07-01

    The observational data on the anisotropy of the cosmic microwave background constraints the scalar spectral tilt ns and the tensor to scalar ratio r which depend on the first and second derivatives of the inflaton potential. The information can be used to reconstruct the inflaton potential in the polynomial form up to some orders. However, for some classes of potentials, ns and r behave as ns(N) and r(N) universally in terms of the number of e-folds N. The universal behaviour of ns(N) can be used to reconstruct a class of inflaton potentials. By parametrizing one of the parameters ns(N), ɛ(N) and φ(N), and fitting the parameters in the models to the observational data, we obtain the constraints on the parameters and reconstruct the classes of the inflationary models which include the chaotic inflation, T-model, hilltop inflation, s-dual inflation, natural inflation and R2 inflation.

  9. Network reconstruction from infection cascades

    CERN Document Server

    Braunstein, Alfredo

    2016-01-01

    Reconstructing propagation networks from observations is a fundamental inverse problem, and it's crucial to understand and control dynamics in complex systems. Here we show that it is possible to reconstruct the whole structure of an interaction network and to simultaneously infer the complete time course of activation spreading, relying just on single snapshots of a small number of activity cascades. The method, that we called Inverse Dynamics Network Reconstruction (IDNR), is shown to work successfully on several synthetic and real networks, inferring the networks and the sources of infection based on sparse observations, including single snapshots. IDNR is built on a Belief Propagation approximation, that has an impressive performance in a wide variety of topological structures. The method can be applied in absence of complete time-series data by providing a detailed modeling of the posterior distribution of trajectories conditioned to the observations. Furthermore, we show by experiments that the informat...

  10. Reconstructing Ancient Forms of Life

    Science.gov (United States)

    Benner, Steven A.

    1998-01-01

    Progress in the past three months has occurred in two areas, reconstruction of ancestral proteins and improved understanding of chemical features that are likely to be universal in generic matter regardless of its genesis. Ancestral ribonucleases have been reconstructed, and an example has been developed that shows how physiological function can be assigned to in vitro behaviors observed in biological systems. Sequence data have been collected to permit the reconstruction of src homology 2 domains that underwent radiative divergence at the time of the radiative divergence of chordates. New studies have been completed that show how genetic matter (or its remnants) might be detected on Mars (or other non-terrean locations.) Last, the first in vitro selection experiments have been completed using a nucleoside library carrying positively charged functionality, illustrating the importance of non-standard nucleotides to those attempting to obtain evidence for an "RNA world" as an early episode of life on earth.

  11. CURRENT CONCEPTS IN ACL RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Freddie H. Fu

    2008-09-01

    Full Text Available Current Concepts in ACL Reconstruction is a complete reference text composed of the most thorough collection of topics on the ACL and its surgical reconstruction compiled, with contributions from some of the world's experts and most experienced ACL surgeons. Various procedures mentioned throughout the text are also demonstrated in an accompanying video CD-ROM. PURPOSE Composing a single, comprehensive and complete information source on ACL including basic sciences, clinical issues, latest concepts and surgical techniques, from evaluation to outcome, from history to future, editors and contributors have targeted to keep the audience pace with the latest concepts and techniques for the evaluation and the treatment of ACL injuries. FEATURES The text is composed of 27 chapters in 6 sections. The first section is mostly about basic sciences, also history of the ACL, imaging, clinical approach to adolescent and pediatric patients are subjected. In the second section, Graft Choices and Arthroscopy Portals for ACL Reconstruction are mentioned. The third section is about the technique and the outcome of the single-bundle ACL reconstruction. The fourth chapter includes the techniques and outcome of the double-bundle ACL reconstruction. In the fifth chapter revision, navigation technology, rehabilitation and the evaluation of the outcome of ACL reconstruction is subjected. The sixth/the last chapter is about the future advances to reach: What We Have Learned and the Future of ACL Reconstruction. AUDIENCE Orthopedic residents, sports traumatology and knee surgery fellows, orthopedic surgeons, also scientists in basic sciences or clinicians who are studying or planning a research on ACL forms the audience group of this book. ASSESSMENT This is the latest, the most complete and comprehensive textbook of ACL reconstruction produced by the editorial work up of two pioneer and masters "Freddie H. Fu MD and Steven B. Cohen MD" with the contribution of world

  12. Transport of Ions and Particles Through Single Pores of Controlled Geometry and Surface Chemistry

    Science.gov (United States)

    Pevarnik, Matthew A.

    Synthetic nanopores are a powerful tool to control the transport of ions, molecules, and water at the molecular level, mimicking biological systems. In this research, polymer pores are prepared of different geometries, sizes, and surface chemistry to utilize features seen in naturally occurring systems. Specifically, it was one of the goals of this research to prepare and characterize single polymer pores that rectify the current due to a combination of electrostatic and hydrophobic interactions, similar to naturally occurring ion channels. Prior to modification, aqueous electrolytic solutions are able to conduct readily through the single polymer pores, but after the chemisorption of hydrophobic chemical groups, the pore demonstrates open and closed states. This behavior is also observed to be voltage dependent. Increasing voltage increases the probability of the pore to be in the open states. There is also a voltage range where the pore does not conduct at all. The hydrophobic gating was studied as a function of pore diameter and charge of the residual groups and could be used for an on demand drug delivery system. Another technique that was utilized in this research is the resistive-pulse technique, which is a powerful approach to detect single molecules and particles. A single particle passing through a pore can be observed as a transient drop of the transmembrane current. This research focuses on resistive-pulse sensing experiments performed with track-etched polymer pores characterized by an undulating diameter along the pore length. The resistive pulses generated by spherical beads passing through these pores have a repeatable pattern of large variations corresponding to these diameter changes. We show that this pattern of variations enables the unambiguous resolution of multiple particles simultaneously in the pore, the detection of transient sticking of particles within the pore, and confirmation whether any individual particle completely translocates the

  13. Clinical applications of iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Eberl, S. [Royal Prince Alfred Hospital, Camperdown, NSW (Australia). Department of PET and Nuclear Medicine

    1998-03-01

    Expectation maximisation (EM) reconstruction largely eliminates the hot and cold streaking artifacts characteristic of filtered-back projection (FBP) reconstruction around localised hot areas, such as the bladder. It also substantially reduces the problem of decreased inferior wall counts in MIBI myocardial perfusion studies due to ``streaking`` from high liver uptake. Non-uniform attenuation and scatter correction, resolution recovery, anatomical information, e.g. from MRI or CT tracer kinetic modelling, can all be built into the EM reconstruction imaging model. The properties of ordered subset EM (OSEM) have also been used to correct for known patient motion as part of the reconstruction process. These uses of EM are elaborated more fully in some of the other abstracts of this meeting. Currently we use OSEM routinely for: (i) studies where streaking is a problem, including all MIBI myocardial perfusion studies, to avoid hot liver inferior wall artifact, (ii) all whole body FDG PET, all lung V/Q SPECT (which have a short acquisition time) and all gated {sup 201}TI myocardial perfusion studies due to improved noise characteristics of OSEM in these studies; (iii) studies with measured, non-uniform attenuation correction. With the accelerated OSEM algorithm, iterative reconstruction is practical for routine clinical applications and we have found OSEM to provide clearly superior reconstructions for the areas listed above and are investigating its application to other studies. In clinical use, we have not found OSEM to introduce artifacts which would not also occur with FBP, e.g. uncorrected patient motion will cause artifacts with both OSEM and FBP.

  14. Reconstructing WKB from topological recursion

    CERN Document Server

    Bouchard, Vincent

    2016-01-01

    We prove that the topological recursion reconstructs the WKB expansion of a quantum curve for all spectral curves whose Newton polygons have no interior point (and that are smooth as affine curves). This includes nearly all previously known cases in the literature, and many more; in particular, it includes many quantum curves of order greater than two. We also explore the connection between the choice of ordering in the quantization of the spectral curve and the choice of integration divisor to reconstruct the WKB expansion.

  15. Preparation of Metakaolin Based Geopolymer and Its Three- dimensional Pore Structural Characterization

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yunsheng; ZHANG Wenhua; SUN Wei; LI Zongjin; LIU Zhiyong

    2015-01-01

    Three types of pure geopolymer pastes (poly-sialate PS, poly- sialate-siloxo PSS, and poly-sialate-siloxo PSDS) werefi rst prepared by alkali (NaOH and KOH) activated metakaolin. Then a void space network was employed to simulate the 3-D pore-throat distribution across the unit cell of the various hardened geopolymer pastes with reference to their experimental mercury intrusion curves. Based on the simulated 3-D pore-throat structure models, a wide range of pore-level properties such as porosity, connectivity, permeability and tortuosity of various geopolymer pastes were calculated. The 3-D structural model and calculated parameters showed that most of the pores in Na-PS geopolymer paste was very small size pores ranging from 0 to 100 nm. A few very large pores were spread amongst the small pores, resulting in a very high penetration pressure, permeability resistance. Unlike Na-PS geopolymer paste, pore size with medium size of Na-PSS, K-PS and K-PSS geopolymer pastes distributed uniformly across the unit cell, and the size changes of adjacent pores in the 3 geopolymer pastes were little, producing higher penetration pressure, lower permeability, smaller connectivity and larger tortuosity. In contrast, pores in Na-PSDS and K-PSDS geopolymer pastes were relatively large and distributed concentratively, which caused samples to be easily penetrated by mercury, methane and nitrogenetc under relatively low pressures.

  16. Multiple Approaches to Characterizing Nano-Pore Structure of Barnett Shale

    Science.gov (United States)

    Hu, Q.; Gao, Z.; Ewing, R. P.; Dultz, S.; Kaufmann, J.; Hamamoto, S.; Webber, B.; Ding, M.

    2013-12-01

    Microscopic characteristics of porous media - pore shape, pore-size distribution, and pore connectivity - control fluid flow and mass transport. This presentation discusses various approaches to investigating nano-pore structure of Barnett shale, with its implications in gas production behavior. The innovative approaches include imbibition, tracer diffusion, edge-accessible porosity, porosimetry (mercury intrusion porosimetry, nitrogen and water vapor sorption isotherms, and nuclear magnetic resonance cyroporometry), and imaging (Wood's metal impregnation followed with laser ablation-inductively coupled plasma-mass spectrometry, focused ion beam/scanning electron microscopy, and small angle neutron scattering). Results show that the shale pores are predominantly in the nm size range, with measured median pore-throat diameters about 5 nm. But small pore size is not the major contributor to low gas recovery; rather, the low mass diffusivity appears to be caused by low pore connectivity of Barnett shale. Chemical diffusion in sparsely-connected pore spaces is not well described by classical Fickian behavior; anomalous behavior is suggested by percolation theory, and confirmed by results of imbibition and diffusion tests. Our evolving complementary approaches, with their several advantages and disadvantages, provide a rich toolbox for tackling the nano-pore structure characteristics of shales and other natural rocks.

  17. Simulations of Pore Formation in Lipid Membranes: Reaction Coordinates, Convergence, Hysteresis, and Finite-Size Effects.

    Science.gov (United States)

    Awasthi, Neha; Hub, Jochen S

    2016-07-12

    Transmembrane pores play an important role in various biophysical processes such as membrane permeation, membrane fusion, and antimicrobial peptide activity. In principal, all-atom molecular dynamics (MD) simulations provide an accurate model of pore formation in lipid membranes. However, the free energy landscape of transmembrane pore formation remains poorly understood, partly because potential of mean force (PMF) calculations of pore formation strongly depend on the choice of the reaction coordinate. In this study, we used umbrella sampling to compute PMFs for pore formation using three different reaction coordinates, namely, (i) a coordinate that steers the lipids in the lateral direction away from the pore center, (ii) the distance of a single lipid phosphate group from the membrane center, and (iii) the average water density inside a membrane-spanning cylinder. Our results show that while the three reaction coordinates efficiently form pores in membranes, they suffer from strong hysteresis between pore-opening and pore-closing simulations, suggesting that they do not restrain the systems close to the transition state for pore formation. The two reaction coordinates that act via restraining the lipids lead to more pronounced hysteresis compared with the coordinate acting on the water molecules. By comparing PMFs computed from membranes with different numbers of lipids, we observed significant artifacts from the periodic boundary conditions in small simulation systems. Further analysis suggests that the formation and disruption of a continuous hydrogen-bonding network across the membrane corresponds to the transition state for pore formation. Our study provides molecular insights into the critical steps of transmembrane pore formation, and it may guide the development of efficient reaction coordinates for pore formation.

  18. Compressive behavior of pervious concretes and a quantification of the influence of random pore structure features

    Energy Technology Data Exchange (ETDEWEB)

    Deo, Omkar [Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699 (United States); Neithalath, Narayanan, E-mail: nneithal@clarkson.edu [Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699 (United States)

    2010-11-25

    Research highlights: {yields} Identified the relevant pore structure features of pervious concretes, provided methodologies to extract those, and quantified the influence of these features on compressive response. {yields} A model for stress-strain relationship of pervious concretes, and relationship between model parameters and parameters of the stress-strain relationship developed. {yields} Statistical model for compressive strength as a function of pore structure features; and a stochastic model for the sensitivity of pore structure features in strength prediction. - Abstract: Properties of a random porous material such as pervious concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the material structure-compressive response relationships in pervious concretes. Several pervious concrete mixtures with different pore structure features are proportioned and subjected to static compression tests. The pore structure features such as pore area fractions, pore sizes, mean free spacing of the pores, specific surface area, and the three-dimensional pore distribution density are extracted using image analysis methods. The compressive stress-strain response of pervious concretes, a model to predict the stress-strain response, and its relationship to several of the pore structure features are outlined. Larger aggregate sizes and increase in paste volume fractions are observed to result in increased compressive strengths. The compressive response is found to be influenced by the pore sizes, their distributions and spacing. A statistical model is used to relate the compressive strength to the relevant pore structure features, which is then used as a base model in a Monte-Carlo simulation to evaluate the sensitivity of the predicted compressive strength to the model terms.

  19. Simulations of Pore Formation in Lipid Membranes: Reaction Coordinates, Convergence, Hysteresis, and Finite-Size Effects.

    Science.gov (United States)

    Awasthi, Neha; Hub, Jochen S

    2016-07-12

    Transmembrane pores play an important role in various biophysical processes such as membrane permeation, membrane fusion, and antimicrobial peptide activity. In principal, all-atom molecular dynamics (MD) simulations provide an accurate model of pore formation in lipid membranes. However, the free energy landscape of transmembrane pore formation remains poorly understood, partly because potential of mean force (PMF) calculations of pore formation strongly depend on the choice of the reaction coordinate. In this study, we used umbrella sampling to compute PMFs for pore formation using three different reaction coordinates, namely, (i) a coordinate that steers the lipids in the lateral direction away from the pore center, (ii) the distance of a single lipid phosphate group from the membrane center, and (iii) the average water density inside a membrane-spanning cylinder. Our results show that while the three reaction coordinates efficiently form pores in membranes, they suffer from strong hysteresis between pore-opening and pore-closing simulations, suggesting that they do not restrain the systems close to the transition state for pore formation. The two reaction coordinates that act via restraining the lipids lead to more pronounced hysteresis compared with the coordinate acting on the water molecules. By comparing PMFs computed from membranes with different numbers of lipids, we observed significant artifacts from the periodic boundary conditions in small simulation systems. Further analysis suggests that the formation and disruption of a continuous hydrogen-bonding network across the membrane corresponds to the transition state for pore formation. Our study provides molecular insights into the critical steps of transmembrane pore formation, and it may guide the development of efficient reaction coordinates for pore formation. PMID:27254744

  20. Real Time Pore Structure Evolution during Olivine Mineral Carbonation

    Science.gov (United States)

    Zhu, W.; Fusseis, F.; Lisabeth, H. P.; Xiao, X.

    2014-12-01

    Aqueous carbonation of ultramafic rocks has been proposed as a promising method for long-term, secure sequestration of carbon dioxide. While chemical kinetics data indicate that carbonation reaction in olivine is one of the fastest among the mg-bearing minerals, in practice, the factors that limit the extent and rate of carbonation in ultramafic rocks are fluid supply and flux. On the one hand, reaction products could produce passivating layer that prohibits further reactions. On the other hand, the increases in solid volume during carbonation could lead to cracking and create new fluid paths. Whether carbonation in ultramafic rocks is self-limiting or self-sustaining has been hotly debated. Experimental evidence of precipitation of reaction products during olivine carbonation was reported. To date, reaction-driven cracking has not been observed. In this paper, we present the first real-time pore structure evolution data using the x-ray synchrotron microtomography. Sodium bicarbonate (NaHCO3) solution was injected into porous olivine aggregates and in-situ pore structure change during olivine carbonation at a constant confining pressure (12 MPa) and a temperature of 200oC was captured at 30 min. interval for ~160 hours. Shortly after the experiment started, filling-in of the existing pores by precipitation of reaction products was visible. The size of the in-fills kept increasing as reactions continued. After ~48 hours, cracking around the in-fill materials became visible. After ~60 hours, these cracks started to show a clear polygonal pattern, similar to the crack patterns usually seen on the surface of drying mud. After ~72 hours, some of the cracks coalesced into large fractures that cut-through the olivine aggregates. New fractures continued to develop and at the end of the experiment, the sample was completely disintegrated by these fractures. We also conducted nanotomography experiments on a sub-volume of the reacted olivine aggregate. Orthogonal sets of

  1. Creating transient cell membrane pores using a standard inkjet printer.

    Science.gov (United States)

    Owczarczak, Alexander B; Shuford, Stephen O; Wood, Scott T; Deitch, Sandra; Dean, Delphine

    2012-03-16

    Bioprinting has a wide range of applications and significance, including tissue engineering, direct cell application therapies, and biosensor microfabrication. Recently, thermal inkjet printing has also been used for gene transfection. The thermal inkjet printing process was shown to temporarily disrupt the cell membranes without affecting cell viability. The transient pores in the membrane can be used to introduce molecules, which would otherwise be too large to pass through the membrane, into the cell cytoplasm. The application being demonstrated here is the use of thermal inkjet printing for the incorporation of fluorescently labeled g-actin monomers into cells. The advantage of using thermal ink-jet printing to inject molecules into cells is that the technique is relatively benign to cells. Cell viability after printing has been shown to be similar to standard cell plating methods. In addition, inkjet printing can process thousands of cells in minutes, which is much faster than manual microinjection. The pores created by printing have been shown to close within about two hours. However, there is a limit to the size of the pore created (~10 nm) with this printing technique, which limits the technique to injecting cells with small proteins and/or particles. A standard HP DeskJet 500 printer was modified to allow for cell printing. The cover of the printer was removed and the paper feed mechanism was bypassed using a mechanical lever. A stage was created to allow for placement of microscope slides and coverslips directly under the print head. Ink cartridges were opened, the ink was removed and they were cleaned prior to use with cells. The printing pattern was created using standard drawing software, which then controlled the printer through a simple print command. 3T3 fibroblasts were grown to confluence, trypsinized, and then resuspended into phosphate buffered saline with soluble fluorescently labeled g-actin monomers. The cell suspension was pipetted into the

  2. Thermal conductivity of granular porous media: A pore scale modeling approach

    Directory of Open Access Journals (Sweden)

    R. Askari

    2015-09-01

    Full Text Available Pore scale modeling method has been widely used in the petrophysical studies to estimate macroscopic properties (e.g. porosity, permeability, and electrical resistivity of porous media with respect to their micro structures. Although there is a sumptuous literature about the application of the method to study flow in porous media, there are fewer studies regarding its application to thermal conduction characterization, and the estimation of effective thermal conductivity, which is a salient parameter in many engineering surveys (e.g. geothermal resources and heavy oil recovery. By considering thermal contact resistance, we demonstrate the robustness of the method for predicting the effective thermal conductivity. According to our results obtained from Utah oil sand samples simulations, the simulation of thermal contact resistance is pivotal to grant reliable estimates of effective thermal conductivity. Our estimated effective thermal conductivities exhibit a better compatibility with the experimental data in companion with some famous experimental and analytical equations for the calculation of the effective thermal conductivity. In addition, we reconstruct a porous medium for an Alberta oil sand sample. By increasing roughness, we observe the effect of thermal contact resistance in the decrease of the effective thermal conductivity. However, the roughness effect becomes more noticeable when there is a higher thermal conductivity of solid to fluid ratio. Moreover, by considering the thermal resistance in porous media with different grains sizes, we find that the effective thermal conductivity augments with increased grain size. Our observation is in a reasonable accordance with experimental results. This demonstrates the usefulness of our modeling approach for further computational studies of heat transfer in porous media.

  3. Transport and Deposition of Nanoparticles in the Pore Network of a Reservoir Rock: Effects of Pore Surface Heterogeneity and Radial Diffusion

    Science.gov (United States)

    Pham, Ngoc; Papavassiliou, Dimitrios

    2014-03-01

    In this study, transport behavior of nanoparticles under different pore surface conditions of consolidated Berea sandstone is numerically investigated. Micro-CT scanning technique is applied to obtain 3D grayscale images of the rock sample geometry. Quantitative characterization, which is based on image analysis is done to obtain physical properties of the pore network, such as the pore size distribution and the type of each pore (dead-end, isolated, and fully connected pore). Transport of water through the rock is simulated by employing a 3D lattice Boltzmann method. The trajectories of nanopaticles moving under convection in the simulated flow field and due to molecular diffusion are monitored in the Lagrangian framework. It is assumed in the model that the particle adsorption on the pore surface, which is modeled as a pseudo-first order adsorption, is the only factor hindering particle propagation. The effect of pore surface heterogeneity to the particle breakthrough is considered, and the role of particle radial diffusion is also addressed in details. The financial support of the Advanced Energy Consortium (AEC BEG08-022) and the computational support of XSEDE (CTS090017) are acknowledged.

  4. Boiling visualization on vertical fins with tunnel-pore structures

    Directory of Open Access Journals (Sweden)

    Kaniowski Robert

    2012-04-01

    Full Text Available The paper presents experimental studies of nucleate boiling heat transfer from a system of connected horizontal and vertical subsurface tunnels. The experiments were carried out for water at atmospheric pressure. The tunnel external covers were manufactured out of perforated copper foil (holes diameter 0.3 mm, sintered with the mini-fins, formed on the vertical side of the 10 mm high rectangular fins and horizontal inter-fin surface. The image acquisition speed was 493 fps (at resolution 400 × 300 pixels with Photonfocus PHOT MV-D1024-160-CL camera. Visualization investigations aimed to identify nucleation sites and flow patterns and to determine the bubble departure diameter and frequency at various superheats for vertical tunnels. At low superheat vapor bubbles are generated nearly exclusively by the vertical tunnel. At medium values of superheat, pores of the horizontal tunnel activate.

  5. Pathophysiological role of omega pore current in channelopathies

    Directory of Open Access Journals (Sweden)

    Karin eJurkat-Rott

    2012-06-01

    Full Text Available In voltage-gated cation channels, a recurrent pattern for mutations is the neutralization of positively charged residues in the voltage-sensing S4 transmembrane segments. These mutations cause dominant ion channelopathies affecting many tissues such as brain, heart, and skeletal muscle. Recent studies suggest that the pathogenesis of associated phenotypes is not limited to alterations in the gating of the ion-conducting alpha pore. Instead, aberrant so-called omega currents facilitated by the movement of the S4 segments during activation and during recovery are thought to cause symptoms. Surprisingly, these omega currents display uni- or bi-directionality and conduct cations with varying ion selectivity. Additionally, the voltage-sensitivity enables the channels to conduct different omega currents in the various voltage ranges. This review gives an overview of voltage sensor channelopathies in general and focuses on pathogenesis of skeletal muscle S4 disorders for which current knowledge is most advanced.

  6. Adsorption hysteresis for a slit-like pore model

    Science.gov (United States)

    Kutarov, V. V.; Tarasevich, Yu. I.; Aksenenko, E. V.; Ivanova, Z. G.

    2011-07-01

    The Frenkel-Halsey-Hill equation is used to describe the adsorption branch of a hysteresis loop upon polylayer adsorption with an H3 loop according to IUPAC nomenclature. The equation for the desorption branch of a hysteresis loop is derived from a combined solution to the equation for the Gibbs potential change, given the adsorbent swelling and pore connectivity function, and the Laplace equation taken for the conditions of infinitely elongated meniscus. This equation is shown to connect the adsorbate relative pressure in a bulk phase for the desorption branch of a hysteresis loop with the key parameters of the adsorption system. The equation obtained was verified by a water adsorption isotherm on natural mineral schungite.

  7. Dynamic Encounters of Genes and Transcripts with the Nuclear Pore.

    Science.gov (United States)

    Ben-Yishay, Rakefet; Ashkenazy, Asaf J; Shav-Tal, Yaron

    2016-07-01

    Transcribed mRNA molecules must reach the cytoplasm to undergo translation. Technological developments in imaging have placed mRNAs under the spotlight, allowing the quantitative study of the spatial and temporal dynamics of the nucleocytoplasmic mRNA export process. Here, we discuss studies that have used such experimental approaches to demonstrate that gene tethering at the nuclear pore complex (NPC) regulates mRNA expression, and to characterize mRNA dynamics during transport in real time. The paths taken by mRNAs as they move from their sites of transcription and travel through the nucleoplasm, in between chromatin domains, and finally through the NPC, can now be observed in detail. PMID:27185238

  8. Dynamics of polynucleotide transport through nanometre-scale pores

    CERN Document Server

    Meller, A

    2003-01-01

    The transport of biopolymers through large membrane channels is a ubiquitous process in biology. It is central to processes such as gene transfer by transduction and RNA transport through nuclear pore complexes. The transport of polymers through nanoscopic channels is also of interest to physicists and chemists studying the effects of steric, hydrodynamic, and electrostatic interactions between polymers and confining walls. Single-channel ion current measurements have been recently used to study the transport of biopolymers, and in particular single-stranded DNA and RNA molecules, through nanometre-size channels. Under the influence of an electric field, the negatively charged polynucleotides can be captured and drawn through the channel in a process termed 'translocation'. During translocation, the ion current flowing through the channel is mostly blocked, indicating the presence of the polymer inside the channel. The current blockades were found to be sensitive to the properties of the biopolymers such as t...

  9. Integrated landslide monitoring: rainfalls, pore water pressures and surface movements

    Science.gov (United States)

    Berti, M.; Casula, G.; Elmi, C.; Fabris, M.; Ghirotti, M.; Loddo, F.; Mora, P.; Pesci, A.; Simoni, A.

    2003-04-01

    Rainfall-induced landslides involving clay-rich soils are widely represented in the Apennines. They cover up to 30% of the slopes forming the relief constituted by chaotic clayey units and are typically subject to repeated reactivations of the movement which are often triggered by a series of discrete failures located in the upper part (headscarp). Failures and movement can then propagate downslope and reactivate the whole landslide deposit which displays a typical elongated body, limited depth and a fan-shaped toe as a result of successive slow earth-flow like movements. An experimental monitoring programme was designed and is currently operating on the Rocca Pitigliana landslide whose characteristics well represent the above described type of movements. Its last parossistic movement date back to 1999 and, since then, remedial works were realized on behalf of local authorities. They basically consist of surficial and deep drainage works located on the landslide body. Experimental activities focus on the main headscarp whose morphology and sub-surface water circulation scheme were unaffected by the interventions. The monitoring approach includes measuring rainfalls and pore-pressure responses in both saturated and unsaturated soils. Surficial movements are continuously measured by means of GPS permanent stations and by wire extensometers which allow real time control of headscarp activity. Main aim of the monitoring activities is to provide experimental data, which can be used to test various existing hydrologic models and to identify triggering conditions. Since the ‘70s, many hydrologic models have been proposed to describe the pore water pressure distribution within the soil and its response to precipitation. The topic has recently drawn growing attention because of the recognized importance in landslide triggering but still experimental data are very much needed in order to obtain and validate capable predicting tools. This is mostly due to the multiple and

  10. Thermally stable crystalline mesoporous metal oxides with substantially uniform pores

    Energy Technology Data Exchange (ETDEWEB)

    Wiesner, Ulrich; Orilall, Mahendra Christopher; Lee, Jinwoo; DiSalvo, Jr., Francis J

    2015-01-27

    Highly crystalline metal oxide-carbon composites, as precursors to thermally stable mesoporous metal oxides, are coated with a layer of amorphous carbon. Using a `one-pot` method, highly crystalline metal oxide-carbon composites are converted to thermally stable mesoporous metal oxides, having highly crystalline mesopore walls, without causing the concomitant collapse of the mesostructure. The `one-pot` method uses block copolymers with an sp or sp 2 hybridized carbon containing hydrophobic block as structure directing agents which converts to a sturdy, amorphous carbon material under appropriate heating conditions, providing an in-situ rigid support which maintains the pores of the oxides intact while crystallizing at temperatures as high as 1000 deg C. A highly crystalline metal oxide-carbon composite can be heated to produce a thermally stable mesoporous metal oxide consisting of a single polymorph.

  11. A melanosomal two-pore sodium channel regulates pigmentation.

    Science.gov (United States)

    Bellono, Nicholas W; Escobar, Iliana E; Oancea, Elena

    2016-01-01

    Intracellular organelles mediate complex cellular functions that often require ion transport across their membranes. Melanosomes are organelles responsible for the synthesis of the major mammalian pigment melanin. Defects in melanin synthesis result in pigmentation defects, visual deficits, and increased susceptibility to skin and eye cancers. Although genes encoding putative melanosomal ion transporters have been identified as key regulators of melanin synthesis, melanosome ion transport and its contribution to pigmentation remain poorly understood. Here we identify two-pore channel 2 (TPC2) as the first reported melanosomal cation conductance by directly patch-clamping skin and eye melanosomes. TPC2 has been implicated in human pigmentation and melanoma, but the molecular mechanism mediating this function was entirely unknown. We demonstrate that the vesicular signaling lipid phosphatidylinositol bisphosphate PI(3,5)P2 modulates TPC2 activity to control melanosomal membrane potential, pH, and regulate pigmentation. PMID:27231233

  12. Trapping virtual pores by crystal retro-engineering

    Science.gov (United States)

    Little, Marc A.; Briggs, Michael E.; Jones, James T. A.; Schmidtmann, Marc; Hasell, Tom; Chong, Samantha Y.; Jelfs, Kim E.; Chen, Linjiang; Cooper, Andrew I.

    2015-02-01

    Stable guest-free porous molecular crystals are uncommon. By contrast, organic molecular crystals with guest-occupied cavities are frequently observed, but these cavities tend to be unstable and collapse on removal of the guests—this feature has been referred to as ‘virtual porosity’. Here, we show how we have trapped the virtual porosity in an unstable low-density organic molecular crystal by introducing a second molecule that matches the size and shape of the unstable voids. We call this strategy ‘retro-engineering’ because it parallels organic retrosynthetic analysis, and it allows the metastable two-dimensional hexagonal pore structure in an organic solvate to be trapped in a binary cocrystal. Unlike the crystal with virtual porosity, the cocrystal material remains single crystalline and porous after removal of guests by heating.

  13. A Dynamic Pore-Scale Model of Imbibition

    DEFF Research Database (Denmark)

    Mogensen, Kristian; Stenby, Erling Halfdan

    1998-01-01

    We present a dynamic pore-scale network model of imbibition, capable of calculating residual oil saturation for any given capillary number, viscosity ratio, contact angle and aspect ratio. Our goal is not to predict the outcome of core floods, but rather to perform a sensitivity analysis...... been entirely inhibited, in agreement with results obtained by Blunt using a quasi-static model. For higher aspect ratios, the effect of rate and contact angle is more pronounced. Many core floods are conducted at capillary numbers in the range 10 to10.6. We believe that the excellent recoveries...... observed during our waterfloods on tight chalk may be explained by the combined effect of rate, non-zero contact angle and existence of long-range correlations. Vast reductions in residual oil saturations are largely due to suppression of snap- off in favour of frontal displacement, whereas ganglion...

  14. Thermal Motion of DNA in an MspA Pore.

    Science.gov (United States)

    Lu, Bo; Fleming, Stephen; Szalay, Tamas; Golovchenko, Jene

    2015-10-01

    We report on an experiment and calculations that determine the thermal motion of a voltage-clamped single-stranded DNA-NeutrAvidin complex in a Mycobacterium smegmatis porin A nanopore. The electric force and diffusion constant of DNA inside a Mycobacterium smegmatis porin A pore were determined to evaluate the thermal position fluctuations of DNA. We show that an out-of-equilibrium state returns to equilibrium so quickly that experiments usually measure a weighted average over the equilibrium position distribution. Averaging over the equilibrium position distribution is consistent with results of state-of-the-art nanopore sequencing experiments. It is shown how a reduction in thermal position fluctuations can be achieved by increasing the electrophoretic force used in nanopore sequencing devices. PMID:26445444

  15. Diffusion of Macromolecules across the Nuclear Pore Complex

    CERN Document Server

    Chakrabarti, Rajarshi; Sebastian, K L

    2007-01-01

    Nuclear pore complexes (NPCs) are very selective filters that monitor the transport between the cytoplasm and the nucleoplasm. Two models have been suggested for the plug of the NPC. They are (i) it is a reversible hydrogel or (ii) it is a polymer brush. We propose a mesoscopic model for the transport of a protein through the plug, that is general enough to cover both. The protein stretches the plug and creates a local deformation. The bubble so created (prtoein+deformation) executes random walk in the plug. We find that for faster relaxation of the gel, the diffusion of the bubble is greater. Further, on using parameters appropriate for the brush, we find that the diffusion coefficient is much lower. Hence the gel model seems to be more likely explanation for the workings of the plug.

  16. Macroscopic ordering of helical pores for arraying guest molecules noncentrosymmetrically

    Science.gov (United States)

    Li, Chunji; Cho, Joonil; Yamada, Kuniyo; Hashizume, Daisuke; Araoka, Fumito; Takezoe, Hideo; Aida, Takuzo; Ishida, Yasuhiro

    2015-09-01

    Helical nanostructures have attracted continuous attention, not only as media for chiral recognition and synthesis, but also as motifs for studying intriguing physical phenomena that never occur in centrosymmetric systems. To improve the quality of signals from these phenomena, which is a key issue for their further exploration, the most straightforward is the macroscopic orientation of helices. Here as a versatile scaffold to rationally construct this hardly accessible structure, we report a polymer framework with helical pores that unidirectionally orient over a large area (~10 cm2). The framework, prepared by crosslinking a supramolecular liquid crystal preorganized in a magnetic field, is chemically robust, functionalized with carboxyl groups and capable of incorporating various basic or cationic guest molecules. When a nonlinear optical chromophore is incorporated in the framework, the resultant complex displays a markedly efficient nonlinear optical output, owing to the coherence of signals ensured by the macroscopically oriented helical structure.

  17. Tailoring particle translocation via dielectrophoresis in pore channels.

    Science.gov (United States)

    Tanaka, Shoji; Tsutsui, Makusu; Theodore, Hu; Yuhui, He; Arima, Akihide; Tsuji, Tetsuro; Doi, Kentaro; Kawano, Satoyuki; Taniguchi, Masateru; Kawai, Tomoji

    2016-01-01

    Understanding and controlling electrophoretic motions of nanoscopic objects in fluidic channels are a central challenge in developing nanopore technology for molecular analyses. Although progress has been made in slowing the translocation velocity to meet the requirement for electrical detections of analytes via picoampere current measurements, there exists no method useful for regulating particle flows in the transverse directions. Here, we report the use of dielectrophoresis to manipulate the single-particle passage through a solid-state pore. We created a trap field by applying AC voltage between electrodes embedded in a low-aspect-ratio micropore. We demonstrated a traffic control of particles to go through center or near side surface via the voltage frequency. We also found enhanced capture efficiency along with faster escaping speed of particles by virtue of the AC-mediated electroosmosis. This method is compatible with nanopore sensing and would be widely applied for reducing off-axis effects to achieve single-molecule identification. PMID:27527126

  18. Defect evolution and pore collapse in crystalline energetic materials

    Science.gov (United States)

    Barton, Nathan R.; Winter, Nicholas W.; Reaugh, John E.

    2009-04-01

    This work examines the use of crystal based continuum mechanics in the context of dynamic loading. In particular, we examine model forms and simulations which are relevant to pore collapse in crystalline energetic materials. Strain localization and the associated generation of heat are important for the initiation of chemical reactions in this context. The crystal mechanics based model serves as a convenient testbed for the interactions among wave motion, slip kinetics, defect generation kinetics and physical length scale. After calibration to available molecular dynamics and single crystal gas gun data for HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), the model is used to predict behaviors for the collapse of pores under various conditions. Implications for experimental observations are discussed. This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

  19. Pores in the epidermis: aquaporins and tight junctions.

    Science.gov (United States)

    Brandner, J M

    2007-12-01

    Water homeostasis of the epidermis is important for the appearance and physical properties of the skin, as well as for water balance in the body. It depends on several factors, e.g. barrier quality, uptake of water into the epidermis, concentration of water-retaining humectants, and external humidity. Aquaporins (AQPs) are pores in the plasmamembranes of cells. Monomeric AQPs form barrel-like structures that are primarily water selective, some AQPs also transport glycerol and possibly other small solutes. In the epidermis, AQP3 is the predominant AQP. It is localized mainly in basal but also in suprabasal layers of the epidermis and is permeable for water as well as for glycerol, a humectant. Mice deficient in AQP3 exhibit reduced stratum corneum (SC) hydration and impaired SC barrier recovery after SC removal. In skin diseases associated with elevated transepidermal water loss (TEWL) and reduced SC hydration, altered expression of AQP3 was shown. Tight junctions (TJ) are cell-cell junctions, which play a central role in sealing the intercellular space of cell sheets and thereby establishing a paracellular barrier. Within the TJ, pores are postulated to exist, which allow the controlled diffusion of water and solutes via the paracellular pathway. In the epidermis, TJ structures were demonstrated in the stratum granulosum whereas TJ proteins were found in all viable layers. Mice which overexpress or are deficient of key-proteins of TJ die soon after birth because of a tremendous TEWL. In various skin diseases that are accompanied by elevated TEWL and reduced skin hydration, staining patterns of TJ proteins are altered. This review will summarize our current knowledge of the involvement of AQPs and TJ in the water homeostasis of the epidermis. PMID:18489380

  20. Transient streaming potentials under varying pore-water ionic strength

    Science.gov (United States)

    Malama, B.

    2014-12-01

    Streaming potentials (SP) are generated when polar fluids such as groundwater flow through porous media that have charged mineral surfaces. This is due to the flow-shearing of the diffuse layer of the electric double layer (EDL), which is known to form in the fluid phase at the fluid-rock interface. Previous works have suggested that the EDL vanishes at high pore-fluid ionic strengths resulting in vanishing SP signals. However, recent observations in sea-water intrusion applications by Jackson and coworkers indicate that measurable SP signals are obtainable in flows of fluids with high ionic strengths through silica sand. We demonstrate the repeatability of these observations through a series of laboratory flow experiments performed on 98% silica sand in a falling-head permeameter with brines of concentrations ranging from 0.001M to about 5 M NaCl. The results of the experiments, which clearly show measurable SP signals even at the highest concentration of 5 M NaCl, are reported. They are also used to estimate the hydraulic conductivity and electrokinetic coupling coefficient. The linearity assumption for the relation between pressure and SP differentials is evaluated for high pore-water NaCl concentrations. Additionally, displacement of one brine by another of different NaCl concentration yields dramatic transient SP responses that may be harnessed in the development of early-detection/warning technologies for sea-water intrusion applications. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.

  1. Breast Reconstruction with Tissue Expansion

    Medline Plus

    Full Text Available RECONSTRUCTIVE BREAST SURGERY ALBANY MEDICAL CENTER HOSPITAL ALBANY, NY July 31, 2008 00:00:10 ANNOUNCER: Welcome to this OR-Live webcast presentation, brought to ... webcast screen and open the door to informed medical care. 00:00:28 DIMITRI KOUMANIS, M.D.: ...

  2. A survey of urban reconstruction

    KAUST Repository

    Musialski, Przemyslaw

    2013-05-10

    This paper provides a comprehensive overview of urban reconstruction. While there exists a considerable body of literature, this topic is still under active research. The work reviewed in this survey stems from the following three research communities: computer graphics, computer vision and photogrammetry and remote sensing. Our goal is to provide a survey that will help researchers to better position their own work in the context of existing solutions, and to help newcomers and practitioners in computer graphics to quickly gain an overview of this vast field. Further, we would like to bring the mentioned research communities to even more interdisciplinary work, since the reconstruction problem itself is by far not solved. This paper provides a comprehensive overview of urban reconstruction. While there exists a considerable body of literature, this topic is still under active research. The work reviewed in this survey stems from the following three research communities: computer graphics, computer vision and photogrammetry and remote sensing. Our goal is to provide a survey that will help researchers to better position their own work in the context of existing solutions, and to help newcomers and practitioners in computer graphics to quickly gain an overview of this vast field. Further, we would like to bring the mentioned research communities to even more interdisciplinary work, since the reconstruction problem itself is by far not solved. © 2013 The Eurographics Association and John Wiley & Sons Ltd.

  3. pH controlled gating of toxic protein pores by dendrimers

    Science.gov (United States)

    Mandal, Taraknath; Kanchi, Subbarao; Ayappa, K. G.; Maiti, Prabal K.

    2016-06-01

    Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent bacterial strains, on a target cell membrane is a challenging and active area of research. Here we demonstrate that PAMAM dendrimers can act as effective pH controlled gating devices once the pore has been formed. We have used fully atomistic molecular dynamics (MD) simulations to characterize the cytolysin A (ClyA) protein pores modified with fifth generation (G5) PAMAM dendrimers. Our results show that the PAMAM dendrimer, in either its protonated (P) or non-protonated (NP) states can spontaneously enter the protein lumen. Protonated dendrimers interact strongly with the negatively charged protein pore lumen. As a consequence, P dendrimers assume a more expanded configuration efficiently blocking the pore when compared with the more compact configuration adopted by the neutral NP dendrimers creating a greater void space for the passage of water and ions. To quantify the effective blockage of the protein pore, we have calculated the pore conductance as well as the residence times by applying a weak force on the ions/water. Ionic currents are reduced by 91% for the P dendrimers and 31% for the NP dendrimers. The preferential binding of Cl- counter ions to the P dendrimer creates a zone of high Cl- concentration in the vicinity of the internalized dendrimer and a high concentration of K+ ions in the transmembrane region of the pore lumen. In addition to steric effects, this induced charge segregation for the P dendrimer effectively blocks ionic transport through the pore. Our investigation shows that the bio-compatible PAMAM dendrimers can potentially be used to develop therapeutic protocols based on the pH sensitive gating of pores formed by pore forming toxins to mitigate bacterial infections.Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent

  4. A Microfluidic Pore Network Approach to Investigate Water Transport in Fuel Cell Porous Transport Layers

    CERN Document Server

    Bazylak, A; Markicevic, B; Sinton, D; Djilali, N

    2008-01-01

    Pore network modelling has traditionally been used to study displacement processes in idealized porous media related to geological flows, with applications ranging from groundwater hydrology to enhanced oil recovery. Very recently, pore network modelling has been applied to model the gas diffusion layer (GDL) of a polymer electrolyte membrane (PEM) fuel cell. Discrete pore network models have the potential to elucidate transport phenomena in the GDL with high computational efficiency, in contrast to continuum or molecular dynamics modelling that require extensive computational resources. However, the challenge in studying the GDL with pore network modelling lies in defining the network parameters that accurately describe the porous media as well as the conditions of fluid invasion that represent realistic transport processes. In this work, we discuss the first stage of developing and validating a GDL-representative pore network model. We begin with a two-dimensional pore network model with a single mobile pha...

  5. Quantification of soil pore network complexity with X-ray computed tomography and gas transport measurements

    DEFF Research Database (Denmark)

    Katuwal, Sheela; Arthur, Emmanuel; Tuller, M.;

    2015-01-01

    Flow and transport of gases through soils are largely controlled by pore structural attributes. The quantification of pore network characteristics is therefore essential for accurate prediction of air permeability and gas diffusivity. In this study, the pore network characteristics of seven...... different soils subjected to 22 mo of field regeneration were quantified with X-ray computed tomography (CT) and compared with functional pore characteristics estimated from measurements of air permeability and gas diffusivity. Furthermore, predictive models for air permeability and gas diffusivity were...... equivalent pore diameter in predictive gas diffusivity and air permeability models significantly improved their performance. The obtained results suggest that the application of X-ray CT-derived pore-structural parameters has great potential for predicting gas diffusivity and air permeability....

  6. Analysis of Pore Structures and Their Relations with Strength of Hardened Cement Paste

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wensheng; LI Beixing; WANG Hongxia; WEI Jiangxiong; CHEN Yimin

    2005-01-01

    Three cement samples were prepared, including OPC consisted of 100wt% portland cement, PFA consisted of 70wt% portland cement and 30wt% fly-ash, and CA consisted of 70wt% portland cement and 30wt% modified fly ash. The strength of hardened cement paste of these samples was tested and their pore structures were determined by a mercury intrusion porosimeter. Moreover,the data of the pore structures of three samples were comprehensively analyzed. The relations between the pore structures and the compressive strength of the three samples were studied. The experimental results show that the relations between the porosity determined by the mercury intrusion porosimeter and the compressive strength are not notable, and the total pore surface area, the average pore diameter and the median pore diameter could be used to explain the difference of the strength of the tested samples.

  7. Determination of a Pore Structure Parameter of Porous Media by Analysis of Percolation Network Model

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    According to the simulation of nitrogen sorption process in porous media with three-dimensional network model, and the analysis for such a process with percolation theory, a new method is proposed to determine a pore structure parameter-mean coordination number of pore network, which represents the connectivity among a great number of pores. Here the “chamber-throat” model and the Weibull distribution are used to describe the pore geometry and the pore size distribution respectively. This method is based on the scaling law of percolation theory after both effects of sorption thermodynamics and pore size on the sorption hysteresis loops are considered. The results show that it is an effective procedure to calculate the mean coordination number for micro- and meso-porous media.

  8. Pore Structure Characteristics after 2 Years of Biochar Application to a Sandy Loam Field

    DEFF Research Database (Denmark)

    Sun, Zhencai; Arthur, Emmanuel; de Jonge, Lis Wollesen;

    2015-01-01

    Soil pore structure comprises the size and shape of soil pores and has a major impact on water retention and gas movement. The porous nature of biochar suggests that its application to soil can potentially alter soil pore structure characteristics, and the purpose of this study was to evaluate...... the effects of birch wood biochar (20, 40, and 100 Mg ha-1) applied to a sandy loam on soil total porosity and pore structure indices. Bulk and intact soil samples were collected for physicochemical analyses and water retention and gas diffusivity measurements between pF 1.0 and pF 3.0. Biochar application......, biochar increased soil air-filled porosity by up to 25%. However, there was no difference in gas diffusivities between biochar-amended soil and the reference soil. At pF 3.0, the soil pore system became more tortuous after biochar application, with a trend that pore tortuosity increased with increasing...

  9. TAILORING OF PORE SIZE IN MESOPOROUS SILICA WITH STEARIC ACID AND PVP

    Institute of Scientific and Technical Information of China (English)

    Haidi Liu; Shufeng Ye; Yunfa Chen

    2005-01-01

    Mesoporous silica was prepared using tetrathoxysilane (TEOS), cetadecyltrimethylammonium bromide (CTAB), aqueous ammonia, acetone and water as silica source, template agent, precipitator and solvent respectively.Stearic acid and polyvinylpyrrolidone (PVP) were employed as additional templates to tailor the pore size in the resultant porous silica. BET, SAXRD and SEM analyses were used to characterize the surface area, pore size, pore structure,pore regularity and morphology of the sample. BET measurement results showed that PVP could increase the surface area but diminish the pore size while stearic acid could decrease the surface area but enlarge the pore size. SAXRD analysis indicated that more additional template introduction gave rise to less order-structured products. All these various results could be attributed to the differently modified CTAB micelles involving stearic acid and PVP addition.

  10. Pore structure effect on reservoir electrical properties and well logging evaluation

    Institute of Scientific and Technical Information of China (English)

    Bian Huan-Lin; Guan Ju; Mao Zhi-Qiang; Ju Xiao-Dong; Han Gui-Qing

    2014-01-01

    The reservoir pore structure controls the reservoir quality and resistivity response of hydrocarbon-bearing zones and thus, critically affects logging interpretation. We use petrophysical data in three types of reservoir with different pore structure characteristics to show that the complexity of pore structure had a significant effect on the effective porosity and permeability regardless of geological factors responsible for the formation of pore structure. Moreover,, the distribution and content of conductive fluids in the reservoir varies dramatically owing to pore structure differences, which also induces resistivity variations in reservoir rocks. Hence, the origin of low-resistivity hydrocarbon-bearing zones, except for those with conductive matrix and mud filtrate invasion, is attributed to the complexity of the pore structures. Consequently, reservoir-specific evaluation models, parameters, and criteria should be chosen for resistivity log interpretation to make a reliable evaluation of reservoir quality and fluids.

  11. Ancestral reconstruction of tick lineages.

    Science.gov (United States)

    Mans, Ben J; de Castro, Minique H; Pienaar, Ronel; de Klerk, Daniel; Gaven, Philasande; Genu, Siyamcela; Latif, Abdalla A

    2016-06-01

    Ancestral reconstruction in its fullest sense aims to describe the complete evolutionary history of a lineage. This depends on accurate phylogenies and an understanding of the key characters of each parental lineage. An attempt is made to delineate our current knowledge with regard to the ancestral reconstruction of the tick (Ixodida) lineage. Tick characters may be assigned to Core of Life, Lineages of Life or Edges of Life phenomena depending on how far back these characters may be assigned in the evolutionary Tree of Life. These include housekeeping genes, sub-cellular systems, heme processing (Core of Life), development, moulting, appendages, nervous and organ systems, homeostasis, respiration (Lineages of Life), specific adaptations to a blood-feeding lifestyle, including the complexities of salivary gland secretions and tick-host interactions (Edges of Life). The phylogenetic relationships of lineages, their origins and importance in ancestral reconstruction are discussed. Uncertainties with respect to systematic relationships, ancestral reconstruction and the challenges faced in comparative transcriptomics (next-generation sequencing approaches) are highlighted. While almost 150 years of information regarding tick biology have been assembled, progress in recent years indicates that we are in the infancy of understanding tick evolution. Even so, broad reconstructions can be made with relation to biological features associated with various lineages. Conservation of characters shared with sister and parent lineages are evident, but appreciable differences are present in the tick lineage indicating modification with descent, as expected for Darwinian evolutionary theory. Many of these differences can be related to the hematophagous lifestyle of ticks. PMID:26868413

  12. Stability indicators in network reconstruction.

    Science.gov (United States)

    Filosi, Michele; Visintainer, Roberto; Riccadonna, Samantha; Jurman, Giuseppe; Furlanello, Cesare

    2014-01-01

    The number of available algorithms to infer a biological network from a dataset of high-throughput measurements is overwhelming and keeps growing. However, evaluating their performance is unfeasible unless a 'gold standard' is available to measure how close the reconstructed network is to the ground truth. One measure of this is the stability of these predictions to data resampling approaches. We introduce NetSI, a family of Network Stability Indicators, to assess quantitatively the stability of a reconstructed network in terms of inference variability due to data subsampling. In order to evaluate network stability, the main NetSI methods use a global/local network metric in combination with a resampling (bootstrap or cross-validation) procedure. In addition, we provide two normalized variability scores over data resampling to measure edge weight stability and node degree stability, and then introduce a stability ranking for edges and nodes. A complete implementation of the NetSI indicators, including the Hamming-Ipsen-Mikhailov (HIM) network distance adopted in this paper is available with the R package nettools. We demonstrate the use of the NetSI family by measuring network stability on four datasets against alternative network reconstruction methods. First, the effect of sample size on stability of inferred networks is studied in a gold standard framework on yeast-like data from the Gene Net Weaver simulator. We also consider the impact of varying modularity on a set of structurally different networks (50 nodes, from 2 to 10 modules), and then of complex feature covariance structure, showing the different behaviours of standard reconstruction methods based on Pearson correlation, Maximum Information Coefficient (MIC) and False Discovery Rate (FDR) strategy. Finally, we demonstrate a strong combined effect of different reconstruction methods and phenotype subgroups on a hepatocellular carcinoma miRNA microarray dataset (240 subjects), and we validate the

  13. Stability indicators in network reconstruction.

    Directory of Open Access Journals (Sweden)

    Michele Filosi

    Full Text Available The number of available algorithms to infer a biological network from a dataset of high-throughput measurements is overwhelming and keeps growing. However, evaluating their performance is unfeasible unless a 'gold standard' is available to measure how close the reconstructed network is to the ground truth. One measure of this is the stability of these predictions to data resampling approaches. We introduce NetSI, a family of Network Stability Indicators, to assess quantitatively the stability of a reconstructed network in terms of inference variability due to data subsampling. In order to evaluate network stability, the main NetSI methods use a global/local network metric in combination with a resampling (bootstrap or cross-validation procedure. In addition, we provide two normalized variability scores over data resampling to measure edge weight stability and node degree stability, and then introduce a stability ranking for edges and nodes. A complete implementation of the NetSI indicators, including the Hamming-Ipsen-Mikhailov (HIM network distance adopted in this paper is available with the R package nettools. We demonstrate the use of the NetSI family by measuring network stability on four datasets against alternative network reconstruction methods. First, the effect of sample size on stability of inferred networks is studied in a gold standard framework on yeast-like data from the Gene Net Weaver simulator. We also consider the impact of varying modularity on a set of structurally different networks (50 nodes, from 2 to 10 modules, and then of complex feature covariance structure, showing the different behaviours of standard reconstruction methods based on Pearson correlation, Maximum Information Coefficient (MIC and False Discovery Rate (FDR strategy. Finally, we demonstrate a strong combined effect of different reconstruction methods and phenotype subgroups on a hepatocellular carcinoma miRNA microarray dataset (240 subjects, and we

  14. Finite Element and Experimental Analysis of Closure and Contact Bonding of Pores During Hot Rolling of Steel

    Science.gov (United States)

    Joo, Soo-Hyun; Jung, Jaimyun; Chun, Myung Sik; Moon, Chang Ho; Lee, Sunghak; Kim, Hyoung Seop

    2014-08-01

    The closure and contact bonding behavior of internal pores in steel slabs during hot rolling was studied using experiments and the finite element method (FEM). Effects of pore size and shape were investigated, and three different cases of pore closure results were observed: no closure, partial closure, and full closure. The FEM results well reproduced various closure events. Bonding strengths of unsuccessfully closed pores, measured by tensile tests, showed critical effects. Also, there was a difference in bonding strengths of several fully closed pores. Fracture surfaces showed that welded regions could be divided into three (not, partially, and perfectly) welded regions. The pressure-time curves obtained from the FEM results indicate that pore surface contact time and deformed surface length are important parameters in pore welding. Pore size, pore shape, time of pressure contact, and deformed surface length should be considered to completely eliminate pores in final products.

  15. A Microfluidic Pore Network Approach to Investigate Water Transport in Fuel Cell Porous Transport Layers

    OpenAIRE

    Bazylak, A; Berejnov, V.; Markicevic, B.; Sinton, D.; Djilali, N.

    2008-01-01

    Pore network modelling has traditionally been used to study displacement processes in idealized porous media related to geological flows, with applications ranging from groundwater hydrology to enhanced oil recovery. Very recently, pore network modelling has been applied to model the gas diffusion layer (GDL) of a polymer electrolyte membrane (PEM) fuel cell. Discrete pore network models have the potential to elucidate transport phenomena in the GDL with high computational efficiency, in cont...

  16. Probing the intrinsically oil-wet surfaces of pores in North Sea chalk at subpore resolution

    OpenAIRE

    Hassenkam, T.; Skovbjerg, L. L.; Stipp, S. L. S.

    2009-01-01

    Pore surface properties control oil recovery. This is especially true for chalk reservoirs, where pores are particularly small. Wettability, the tendency for a surface to cover itself with fluid, is traditionally defined by the angle a droplet makes with a surface, but this macroscopic definition is meaningless when the particles are smaller than even the smallest droplet. Understanding surface wetting, at the pore scale, will provide clues for more effective oil recovery. We used a special m...

  17. pH controlled gating of toxic protein pores by dendrimers.

    Science.gov (United States)

    Mandal, Taraknath; Kanchi, Subbarao; Ayappa, K G; Maiti, Prabal K

    2016-07-14

    Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent bacterial strains, on a target cell membrane is a challenging and active area of research. Here we demonstrate that PAMAM dendrimers can act as effective pH controlled gating devices once the pore has been formed. We have used fully atomistic molecular dynamics (MD) simulations to characterize the cytolysin A (ClyA) protein pores modified with fifth generation (G5) PAMAM dendrimers. Our results show that the PAMAM dendrimer, in either its protonated (P) or non-protonated (NP) states can spontaneously enter the protein lumen. Protonated dendrimers interact strongly with the negatively charged protein pore lumen. As a consequence, P dendrimers assume a more expanded configuration efficiently blocking the pore when compared with the more compact configuration adopted by the neutral NP dendrimers creating a greater void space for the passage of water and ions. To quantify the effective blockage of the protein pore, we have calculated the pore conductance as well as the residence times by applying a weak force on the ions/water. Ionic currents are reduced by 91% for the P dendrimers and 31% for the NP dendrimers. The preferential binding of Cl(-) counter ions to the P dendrimer creates a zone of high Cl(-) concentration in the vicinity of the internalized dendrimer and a high concentration of K(+) ions in the transmembrane region of the pore lumen. In addition to steric effects, this induced charge segregation for the P dendrimer effectively blocks ionic transport through the pore. Our investigation shows that the bio-compatible PAMAM dendrimers can potentially be used to develop therapeutic protocols based on the pH sensitive gating of pores formed by pore forming toxins to mitigate bacterial infections. PMID:27328315

  18. Mesostructural Design and Manufacturing of Open-Pore Metal Foams by Investment Casting

    OpenAIRE

    Alexander Martin Matz; Bettina Stefanie Mocker; Daniel Wyn Müller; Norbert Jost; Gunther Eggeler

    2014-01-01

    The present paper describes the manufacturing process of open-pore metal foams by investment casting and the mesostructural/morphological evolution resulting from a new technique of modifying the precursor. By this technique, the precursor is coated with a polymer layer whereby a thickening of the struts occurs. Relative densities in the range of 1.85≤ρrel≤25% of open-pore metal foams can be achieved with high accuracy. The samples investigated have pore densities of ρ...

  19. Membrane Bending Energy and Fusion Pore Kinetics in Ca2+-Triggered Exocytosis

    OpenAIRE

    Zhang, Zhen; Jackson, Meyer B.

    2010-01-01

    A fusion pore composed of lipid is an obligatory kinetic intermediate of membrane fusion, and its formation requires energy to bend membranes into highly curved shapes. The energetics of such deformations in viral fusion is well established, but the role of membrane bending in Ca2+-triggered exocytosis remains largely untested. Amperometry recording showed that during exocytosis in chromaffin and PC12 cells, fusion pores formed by smaller vesicles dilated more rapidly than fusion pores formed...

  20. High Surface Area of Nano Pores Activated Carbon Derived From Agriculture Waste

    International Nuclear Information System (INIS)

    In this study, the high surface area of nano pores activated carbon rice husk originated from local biomass was investigated. The comparison in terms of surface area, porosity and behavior in electrochemical analysis with commercial activated carbon was studied in details. The nano pores activated carbon rice husk was synthesis using consecutive of carbonization and activation under purified nitrogen and carbon dioxide purge. Interestingly, the surface area and capacity of the nano pores activated carbon rice indicated higher in comparison to commercial activated carbon. This indicated that the nano pores activated carbon has potential to be developed further as an alternative material in reducing suspension on commercial activated carbon. (author)

  1. Preparation and Selectivity of Molecularly Imprinted Polymer Coating on the Micro Pore Membrane of Polytetrafluoroethylene

    Institute of Scientific and Technical Information of China (English)

    Hong Sheng GUO; Yu Mei JIA; Xi Wen HE

    2003-01-01

    In order to obtain mechanically stable membrane for practical application, the imprintedpolymer was synthesized in the pores of polyfluoromembrane, the binding and transport ability ofthe membrane were studied.

  2. Antamanide, a derivative of Amanita phalloides, is a novel inhibitor of the mitochondrial permeability transition pore.

    Directory of Open Access Journals (Sweden)

    Luca Azzolin

    Full Text Available Antamanide is a cyclic decapeptide derived from the fungus Amanita phalloides. Here we show that antamanide inhibits the mitochondrial permeability transition pore, a central effector of cell death induction, by targeting the pore regulator cyclophilin D. Indeed, (i permeability transition pore inhibition by antamanide is not additive with the cyclophilin D-binding drug cyclosporin A, (ii the inhibitory action of antamanide on the pore requires phosphate, as previously shown for cyclosporin A; (iii antamanide is ineffective in mitochondria or cells derived from cyclophilin D null animals, and (iv abolishes CyP-D peptidyl-prolyl cis-trans isomerase activity. Permeability transition pore inhibition by antamanide needs two critical residues in the peptide ring, Phe6 and Phe9, and is additive with ubiquinone 0, which acts on the pore in a cyclophilin D-independent fashion. Antamanide also abrogates mitochondrial depolarization and the ensuing cell death caused by two well-characterized pore inducers, clotrimazole and a hexokinase II N-terminal peptide. Our findings have implications for the comprehension of cyclophilin D activity on the permeability transition pore and for the development of novel pore-targeting drugs exploitable as cell death inhibitors.

  3. The study of the relationship between pore structure and photocatalysis of mesoporous TiO2

    Indian Academy of Sciences (India)

    Bing Guo; Hangyan Shen; Kangying Shu; Yaowu Zeng; Wensheng Ning

    2009-05-01

    Mesoporous titania was synthesized by a sol-gel method using the surfactants Span85 and X114 as the template. The pore structure was determined by the N2 adsorption/desorption method below 73 K and calculated using the BJH model. TEM characterizations show that the pores are formed through particle accumulation. Two kinds of channels, straight channels made of cylindrical capillaries and curved channels made of slit-shaped pores, exist in the bulk materials. The influence of the pore structure of mesoporous TiO2 on its photocatalytic performance was studied. The sample with higher porosity, better textural properties and straight channels are good for photocatalytic performance.

  4. Communication: Activation energy of tension-induced pore formation in lipid membranes

    Science.gov (United States)

    Karal, Mohammad Abu Sayem; Yamazaki, Masahito

    2015-08-01

    Tension plays a vital role in pore formation in biomembranes, but the mechanism of pore formation remains unclear. We investigated the temperature dependence of the rate constant of constant tension (σ)-induced pore formation in giant unilamellar vesicles of lipid membranes using an experimental method we developed. By analyzing this result, we determined the activation energy (Ua) of tension-induced pore formation as a function of tension. A constant (U0) that does not depend on tension was found to contribute significantly to Ua. Analysis of the activation energy clearly indicated that the dependence of Ua on σ in the classical theory is correct, but that the classical theory of pore formation is not entirely correct due to the presence of U0. We can reasonably consider that U0 is a nucleation free energy to form a hydrophilic pre-pore from a hydrophobic pre-pore or a region with lower lateral lipid density. After obtaining U0, the evolution of a pre-pore follows a classical theory. Our data provide valuable information that help explain the mechanism of tension-induced pore formation in biomembranes and lipid membranes.

  5. Origin of melting point depression for rare gas solids confined in carbon pores

    Energy Technology Data Exchange (ETDEWEB)

    Morishige, Kunimitsu, E-mail: morishi@chem.ous.ac.jp; Kataoka, Takaaki [Department of Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005 (Japan)

    2015-07-21

    To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point.

  6. Bridging the Gap between an Isolated Nanochannel/pore System and Communicating Multipore Heterogeneous Membrane System

    CERN Document Server

    Green, Yoav; Yossifon, Gilad

    2014-01-01

    To bridge the gap between single/isolated pore systems to multi-pore systems, such as membranes/electrodes, we studied an array of nanochannels with varying interchannel spacing that controlled the degree of channel communication. Instead of treating them as individual channels connected in parallel or an assembly like a homogeneous membrane, this study resolves the pore-pore interaction. We found that increased channel isolation leads to current intensification whereas at high voltages electro-convective effects control the degree of communication via suppression of the diffusion layer growth

  7. Investigation of the pore geometrical structure of nanofibrous membranes using statistical modelling

    Science.gov (United States)

    Khanmohammadi Khoshui, Sedigheh; Hosseini Ravandi, Seyed Abdolkarim; Bagherzadeh, Roohollah; Saberi, Zahra; Karimi, Mohammad

    2016-10-01

    The pore size and its distribution are the two main geometrical properties of nanofibrous membranes in various applications such as filtration and tissue engineering. In the current paper, a modified approach (model) is suggested to predict pore size and its distribution in nanofibrous membranes. In the present work, inter-fibre pores are considered as polygons arising from the fibre contacts. For the first time, these polygons are assumed to be three-, four- and five-gons, and the hydraulic radius of the pores was obtained instead of the equal radius. The pore size of multilayer mats was provided with a different insight. The pore mean size and its distribution were obtained by statistical methods. In order to validate the model, polycaprolactone (PCL) nanofibrous mats were electrospun, and the mean pore size and its distribution were measured using porosimetry. It was found that the probability distribution function of the pore size in both single and multi nanofibrous layers was the Gamma function with two parameters. The effect of the fibre width and porosity raise was increasing of mean pore diameter of multilayer networks. A comparison between the modified model and previous models revealed that the modified approach was more realistic.

  8. Transition from long- to short-lived transient pores in giant vesicles in an aqueous medium

    Science.gov (United States)

    Rodriguez, Nicolas; Cribier, Sophie; Pincet, Frédéric

    2006-12-01

    We have observed large pores in the membrane of giant vesicles in an aqueous medium. The lifetime of the pores can reach 2min and their size (a few micrometers) enables their visualization by fluorescence microscopy. These pores are obtained thanks to a destabilization of the membrane due to the synergistic action of a cone-shaped and nitrobenzodiazole (NBD) labeled phospholipid illuminated in the presence of dithionite. The opening of the pore occurs immediately after illumination starts so that it can be accurately triggered. A concomitant decrease of the vesicle radius is observed; we interpret it as a solubilization of the membrane. Depending on the rate of this solubilization, long- or short-lived pores were observed. At the transition between both regimes for a 30μm vesicle, the solubilization rate was about 1/300s-1 . In order to interpret these observations, we have revisited the current model of pore opening to take into account this solubilization. This proposed model along with simulations enables us to prove that solubilization explains why the large long-lived pores are observed even in an aqueous medium. The model also predicts the solubilization rate at the transition between a single long-lived pore and a cascade of short-lived pores.

  9. Effect of Pore Size on the Biodegradation Rate of Silk Fibroin Scaffolds

    Directory of Open Access Journals (Sweden)

    Zuwei Luo

    2015-01-01

    Full Text Available Controlling the degradation rate of silk fibroin-based biomaterial is an important capability for the fabrication of silk-based tissue engineering scaffolds. In this study, scaffolds with different pore sizes were prepared by controlling the freezing temperature and the silk fibroin concentration. In vitro degradation results showed that the internal pore walls of the scaffolds with a larger pore size collapsed upon exposure to collagenase IA for times ranging from 6 to 12 days, and the silk scaffolds exhibited a faster rate of weight loss. The morphological and structural features of the silk scaffolds with a smaller pore size maintained structural integrity after incubation in the protease solution for 18 days, and the rate of weight loss was relatively slow. Scaffolds with a smaller pore size or a higher pore density degraded more slowly than scaffolds with a larger pore size or lower pore density. These results demonstrate that the pore size of silk biomaterials is crucial in controlling the degradation rate of tissue engineering scaffolds.

  10. Effect of support structure on CO2 adsorption properties of pore-expanded hyperbranched aminosilicas

    KAUST Repository

    Drese, Jeffrey H.

    2012-03-01

    Hyperbranched aminosilica (HAS) CO 2 adsorbents are prepared by the ring-opening polymerization of aziridine from SBA-15 mesoporous silica, as in the original synthesis of HAS materials, as well as over an array of new support materials with substantially larger average pore diameters to elucidate the effect of support porosity on final adsorbent properties. Pore-expanded hyperbranched aminosilica (PEHAS) CO 2 adsorbents are prepared from several different pore-expanded, ordered mesoporous silicas including pore-expanded SBA-15, mesocellular foam, and a large-pore commercial silica. The effect of the nature of the silica support is determined by examining the degree of aziridine polymerization and the CO 2 adsorption kinetics and capacities of the resulting organic/inorganic hybrid materials. Comparisons are made to non-pore-expanded SBA-15 based HAS adsorbents, reported previously, where pores become blocked at higher amine loadings. The PEHAS materials unexpectedly possess lower amine loadings than the previously reported HAS materials and do not exhibit pore blocking. The use of acetic acid as a catalyst during PEHAS synthesis only marginally increases amine loading. The adsorption kinetics of PEHAS adsorbents are similar to HAS adsorbents with low amine loadings and do not show the detrimental effects of pore-blocking. However, the inability to synthesize PEHAS adsorbents with high amine loadings via this approach limits the total amount of CO 2 captured per gram of material, compared to HAS adsorbents with high amine loadings. © 2011 Elsevier Inc. All rights reserved.

  11. Origin of melting point depression for rare gas solids confined in carbon pores

    International Nuclear Information System (INIS)

    To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point

  12. Pore-scale dispersion: Bridging the gap between microscopic pore structure and the emerging macroscopic transport behavior.

    Science.gov (United States)

    Meyer, Daniel W; Bijeljic, Branko

    2016-07-01

    We devise an efficient methodology to provide a universal statistical description of advection-dominated dispersion (Péclet→∞) in natural porous media including carbonates. First, we investigate the dispersion of tracer particles by direct numerical simulation (DNS). The transverse dispersion is found to be essentially determined by the tortuosity and it approaches a Fickian limit within a dozen characteristic scales. Longitudinal dispersion was found to be Fickian in the limit for bead packs and superdiffusive for all other natural media inspected. We demonstrate that the Lagrangian velocity correlation length is a quantity that characterizes the spatial variability for transport. Finally, a statistical transport model is presented that sheds light on the connection between pore-scale characteristics and the resulting macroscopic transport behavior. Our computationally efficient model accurately reproduces the transport behavior in longitudinal direction and approaches the Fickian limit in transverse direction. PMID:27575217

  13. Pore-scale dispersion: Bridging the gap between microscopic pore structure and the emerging macroscopic transport behavior

    Science.gov (United States)

    Meyer, Daniel W.; Bijeljic, Branko

    2016-07-01

    We devise an efficient methodology to provide a universal statistical description of advection-dominated dispersion (Péclet→∞ ) in natural porous media including carbonates. First, we investigate the dispersion of tracer particles by direct numerical simulation (DNS). The transverse dispersion is found to be essentially determined by the tortuosity and it approaches a Fickian limit within a dozen characteristic scales. Longitudinal dispersion was found to be Fickian in the limit for bead packs and superdiffusive for all other natural media inspected. We demonstrate that the Lagrangian velocity correlation length is a quantity that characterizes the spatial variability for transport. Finally, a statistical transport model is presented that sheds light on the connection between pore-scale characteristics and the resulting macroscopic transport behavior. Our computationally efficient model accurately reproduces the transport behavior in longitudinal direction and approaches the Fickian limit in transverse direction.

  14. Reconstructing the inflaton potential: Perturbative reconstruction to second order

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.; Lidsey, James E.

    1993-08-01

    One method to reconstruct the scalar field potential of inflation is a perturbative approach, where the values of the potential and its derivatives are calculated as an expansion in departures from the slow-roll approximation. They can then be expressed in terms of observable quantities, such as the square of the ratio of the gravitational wave amplitude to the density perturbation amplitude, the deviation of the spectral index from the Harrison--Zel'dovich value, etc. Here, we calculate complete expressions for the second-order contributions to the coefficients of the expansion by including for the first time corrections to the standard expressions for the perturbation spectra. As well as offering an improved result, these corrections indicate the expected accuracy of the reconstruction. Typically the corrections are only a few percent.

  15. Thermographic image reconstruction using ultrasound reconstruction from virtual waves

    CERN Document Server

    Burgholzer, Peter; Gruber, Jürgen; Mayr, Günther

    2016-01-01

    Reconstruction of subsurface features from ultrasound signals measured on the surface is widely used in medicine and non-destructive testing. In this work, we introduce a concept how to use image reconstruction methods known from ultrasonic imaging for thermographic signals, i.e. on the measured temperature evolution on a sample surface. Before using these imaging methods a virtual signal is calculated by applying a transformation to the measured temperature evolution. The virtual signal is calculated locally for every detection point and has the same initial temperature distribution as the measured signal, but is a solution of the wave equation. The introduced transformation can be used for every shape of the detection surface and in every dimension. It describes all the irreversibility of the heat diffusion, which is responsible that the spatial resolution gets worse with increasing depth. Up to now, for thermographic imaging mostly one-dimensional methods, e.g., for depth-profiling were used, which are sui...

  16. 3D Reconstruction Technique for Tomographic PIV

    Institute of Scientific and Technical Information of China (English)

    姜楠; 包全; 杨绍琼

    2015-01-01

    Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for three-dimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light inten-sity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding recon-struction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image recon-struction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computa-tional analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.

  17. Top reconstruction and boosted top experimental overview

    CERN Document Server

    Skinnari, Louise

    2015-01-01

    An overview of techniques used to reconstruct resolved and boosted top quarks is presented. Techniques for resolved top quark reconstruction include kinematic likelihood fitters and pseudo- top reconstruction. Many tools and methods are available for the reconstruction of boosted top quarks, such as jet grooming techniques, jet substructure variables, and dedicated top taggers. Different techniques as used by ATLAS and CMS analyses are described and the performance of different variables and top taggers are shown.

  18. Reconstructing Deweyan Pragmatism: A Review Essay

    Science.gov (United States)

    Neubert, Stefan

    2009-01-01

    In this essay Stefan Neubert argues that John Dewey was a philosopher of reconstruction and that the best use we can make of him today is to reconstruct his work in and for our own contexts. Neubert distinguishes three necessary and equally important components of the overall project of reconstructing Deweyan pragmatism: first, to make strong and…

  19. Set-reconstructibility of Post classes

    OpenAIRE

    Couceiro, Miguel; Lehtonen, Erkko; Schölzel, Karsten

    2013-01-01

    The clones of Boolean functions are classified in regard to set-reconstructibility via a strong dichotomy result: the clones containing only affine functions, conjunctions, disjunctions or constant functions are set-reconstructible, whereas the remaing clones are not weakly reconstructible.

  20. Vertex Reconstruction in ATLAS Run II

    CERN Document Server

    Zhang, Matt; The ATLAS collaboration

    2016-01-01

    Vertex reconstruction is the process of taking reconstructed tracks and using them to determine the locations of proton collisions. In this poster we present the performance of our current vertex reconstruction algorithm, and look at investigations into potential improvements from a new seed finding method.

  1. Reconstruction of three-dimensional porous media from a single two-dimensional image using three-step sampling

    Science.gov (United States)

    Gao, MingLiang; He, XiaoHai; Teng, QiZhi; Zuo, Chen; Chen, DongDong

    2015-01-01

    A random three-dimensional (3D) porous medium can be reconstructed from a two-dimensional (2D) image by reconstructing an image from the original 2D image, and then repeatedly using the result to reconstruct the next 2D image. The reconstructed images are then stacked together to generate the entire reconstructed 3D porous medium. To perform this successfully, a very important issue must be addressed, i.e., controlling the continuity and variability among adjacent layers. Continuity and variability, which are consistent with the statistics characteristic of the training image (TI), ensure that the reconstructed result matches the TI. By selecting the number and location of the sampling points in the sampling process, the continuity and variability can be controlled directly, and thus the characteristics of the reconstructed image can be controlled indirectly. In this paper, we propose and develop an original sampling method called three-step sampling. In our sampling method, sampling points are extracted successively from the center of 5 ×5 and 3 ×3 sampling templates and the edge area based on a two-point correlation function. The continuity and variability of adjacent layers were considered during the three steps of the sampling process. Our method was tested on a Berea sandstone sample, and the reconstructed result was compared with the original sample, using tests involving porosity distribution, the lineal path function, the autocorrelation function, the pore and throat size distributions, and two-phase flow relative permeabilities. The comparison indicates that many statistical characteristics of the reconstructed result match with the TI and the reference 3D medium perfectly.

  2. Reconstruction of three-dimensional porous media from a single two-dimensional image using three-step sampling.

    Science.gov (United States)

    Gao, MingLiang; He, XiaoHai; Teng, QiZhi; Zuo, Chen; Chen, DongDong

    2015-01-01

    A random three-dimensional (3D) porous medium can be reconstructed from a two-dimensional (2D) image by reconstructing an image from the original 2D image, and then repeatedly using the result to reconstruct the next 2D image. The reconstructed images are then stacked together to generate the entire reconstructed 3D porous medium. To perform this successfully, a very important issue must be addressed, i.e., controlling the continuity and variability among adjacent layers. Continuity and variability, which are consistent with the statistics characteristic of the training image (TI), ensure that the reconstructed result matches the TI. By selecting the number and location of the sampling points in the sampling process, the continuity and variability can be controlled directly, and thus the characteristics of the reconstructed image can be controlled indirectly. In this paper, we propose and develop an original sampling method called three-step sampling. In our sampling method, sampling points are extracted successively from the center of 5×5 and 3×3 sampling templates and the edge area based on a two-point correlation function. The continuity and variability of adjacent layers were considered during the three steps of the sampling process. Our method was tested on a Berea sandstone sample, and the reconstructed result was compared with the original sample, using tests involving porosity distribution, the lineal path function, the autocorrelation function, the pore and throat size distributions, and two-phase flow relative permeabilities. The comparison indicates that many statistical characteristics of the reconstructed result match with the TI and the reference 3D medium perfectly.

  3. Pore network microarchitecture influences human cortical bone elasticity during growth and aging.

    Science.gov (United States)

    Bala, Yohann; Lefèvre, Emmanuelle; Roux, Jean-Paul; Baron, Cécile; Lasaygues, Philippe; Pithioux, Martine; Kaftandjian, Valérie; Follet, Hélène

    2016-10-01

    Cortical porosity is a major determinant of bone strength. Haversian and Volkmann׳s canals are׳seen' as pores in 2D cross-section but fashion a dynamic network of interconnected channels in 3D, a quantifiable footprint of intracortical remodeling. Given the changes in bone remodeling across life, we hypothesized that the 3D microarchitecture of the cortical pore network influences its stiffness during growth and ageing. Cubes of cortical bone of 2 mm side-length were harvested in the distal 1/3 of the fibula in 13 growing children (mean age±SD: 13±4 yrs) and 16 adults (age: 75±13 yrs). The cubes were imaged using desktop micro-CT (8.14µm isotropic voxel size). Pores were segmented as a solid to assess pore volume fraction, number, diameter, separation, connectivity and structure model index. Elastic coefficients were derived from measurements of ultrasonic bulk compression and shear wave velocities and apparent mass density. The pore volume fraction did not significantly differ between children and adults but originates from different microarchitectural patterns. Compared to children, adults had 42% (p=0.033) higher pore number that were more connected (Connective Density: +205%, p=0.001) with a 18% (p=0.007) lower pore separation. After accounting for the contribution of pore volume fraction, axial elasticity in traction-compression mode was significantly correlated with better connectivity in growing children and with pore separation among adults. The changes in intracortical remodeling across life alter the distribution, size and connectedness of the channels from which cortical void fraction originates. These alterations in pore network microarchitecture participate in changes in compressive and shear mechanical behavior, partly in a porosity-independent manner. The assessment of pore volume fraction (i.e., porosity) provides only a limited understanding of the role of cortical void volume fraction in its mechanical properties. PMID:27389322

  4. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    Science.gov (United States)

    Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.; Pasquali, Andrea; Schönherr, Martin; Kim, Kyungjoo; Perego, Mauro; Parks, Michael L.; Trask, Nathaniel; Balhoff, Matthew T.; Richmond, Marshall C.; Geier, Martin; Krafczyk, Manfred; Luo, Li-Shi; Tartakovsky, Alexandre M.; Scheibe, Timothy D.

    2016-09-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based on the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence

  5. Nuclear pore complex assembly studied with a biochemical assay for annulate lamellae formation.

    Science.gov (United States)

    Meier, E; Miller, B R; Forbes, D J

    1995-06-01

    Formation of the nuclear pore is an intricate process involving membrane fusion and the ordered assembly of up to 1,000 pore proteins. As such, the study of pore assembly is not a simple one. Interestingly, annulate lamellae, a cytoplasmic organelle consisting of stacks of flattened membrane cisternae perforated by numerous pore complexes, have been found to form spontaneously in a reconstitution system derived from Xenopus egg extracts, as determined by electron microscopy (Dabauvalle et al., 1991). In this work, a biochemical assay for annulate lamellae (AL) formation was developed and used to study the mechanism of AL assembly in general and the assembly of individual nucleoporins into pore complexes in particular. Upon incubation of Xenopus egg cytosol and membrane vesicles, the nucleoporins nup58, nup60, nup97, nup153, and nup200 initially present in a disassembled form in the cytosol became associated with membranes and were pelletable. The association was time and temperature dependent and could be measured by immunoblotting. Thin-section electron microscopy as well as negative staining confirmed that annulate lamellae were forming coincident with the incorporation of pore proteins into membranes. Homogenization and subsequent flotation of the membrane fraction allowed us to separate a population of dense membranes, containing the integral membrane pore protein gp210 and all other nucleoporins tested, from the bulk of cellular membranes. Electron microscopy indicated that annulate lamellae were enriched in this dense, pore protein-containing fraction. GTP gamma S prevented incorporation of the soluble pore proteins into membranes. To address whether AL form in the absence of N-acetylglucosaminylated pore proteins, AL assembly was carried out in WGA-sepharose-depleted cytosol. Under these conditions, annulate lamellae formed but were altered in appearance. When the membrane fraction containing this altered AL was homogenized and subjected to flotation, the

  6. Effects of Coke Calcination Level on Pore Structure in Carbon Anodes

    Science.gov (United States)

    Fang, Ning; Xue, Jilai; Lang, Guanghui; Bao, Chongai; Gao, Shoulei

    2016-02-01

    Effects of coke calcination levels on pore structure of carbon anodes have been investigated. Bench anodes were prepared by 3 types of cokes with 4 calcination temperatures (800°C, 900°C, 1000°C and 1100°C). The cokes and anodes were characterized using hydrostatic method, air permeability determination, mercury porosimetry, image analysis and confocal microscopy (CSLM). The cokes with different calcination levels are almost the same in LC values (19-20 Å) and real density (1.967-1.985 g/cm3), while the anode containing coke calcined at 900°C has the lowest open porosity and air permeability. Pore size distribution (represented by Anode H sample) can be roughly divided into two ranges: small and medium pores in diameter of 10-400 μm and large pores of 400-580 μm. For the anode containing coke calcined at 800°C, a number of long, narrow pores in the pore size range of 400-580 μm are presented among cokes particles. Formation of these elongated pores may be attributed to coke shrinkages during the anode baking process, which may develop cracking in the anode under cell operations. More small or medium rounded pores with pore size range of 10-400 μm emerge in the anodes with coke calcination temperatures of 900°C, 1000°C and 1100°C, which may be generated due to release of volatiles from the carbon anode during baking. For the anode containing coke calcined at 1100°C, it is found that many rounded pores often closely surround large coke particles, which have potential to form elongated, narrow pores.

  7. Geometry-driven cell organization determines tissue growths in scaffold pores: consequences for fibronectin organization.

    Directory of Open Access Journals (Sweden)

    Pascal Joly

    Full Text Available To heal tissue defects, cells have to bridge gaps and generate new extracellular matrix (ECM. Macroporous scaffolds are frequently used to support the process of defect filling and thus foster tissue regeneration. Such biomaterials contain micro-voids (pores that the cells fill with their own ECM over time. There is only limited knowledge on how pore geometry influences cell organization and matrix production, even though it is highly relevant for scaffold design. This study hypothesized that 1 a simple geometric description predicts cellular organization during pore filling at the cell level and that 2 pore closure results in a reorganization of ECM. Scaffolds with a broad distribution of pore sizes (macroporous starPEG-heparin cryogel were used as a model system and seeded with primary fibroblasts. The strategies of cells to fill pores could be explained by a simple geometrical model considering cells as tensioned chords. The model matched qualitatively as well as quantitatively by means of cell number vs. open cross-sectional area for all pore sizes. The correlation between ECM location and cell position was higher when the pores were not filled with tissue (Pearson's coefficient ρ = 0.45±0.01 and reduced once the pores were closed (ρ = 0.26±0.04 indicating a reorganization of the cell/ECM network. Scaffold pore size directed the time required for pore closure and furthermore impacted the organization of the fibronectin matrix. Understanding how cells fill micro-voids will help to design biomaterial scaffolds that support the endogenous healing process and thus allow a fast filling of tissue defects.

  8. Storage of hydrogen at 303 K in graphite slitlike pores from grand canonical Monte Carlo simulation.

    Science.gov (United States)

    Kowalczyk, Piotr; Tanaka, Hideki; Hołyst, Robert; Kaneko, Katsumi; Ohmori, Takumi; Miyamoto, Junichi

    2005-09-15

    Grand canonical Monte Carlo (GCMC) simulations were used for the modeling of the hydrogen adsorption in idealized graphite slitlike pores. In all simulations, quantum effects were included through the Feynman and Hibbs second-order effective potential. The simulated surface excess isotherms of hydrogen were used for the determination of the total hydrogen storage, density of hydrogen in graphite slitlike pores, distribution of pore sizes and volumes, enthalpy of adsorption per mole, total surface area, total pore volume, and average pore size of pitch-based activated carbon fibers. Combining experimental results with simulations reveals that the density of hydrogen in graphite slitlike pores at 303 K does not exceed 0.014 g/cm(3), that is, 21% of the liquid-hydrogen density at the triple point. The optimal pore size for the storage of hydrogen at 303 K in the considered pore geometry depends on the pressure of storage. For lower storage pressures, p graphite slitlike pores in the whole range of the hydrogen pressure as well as in wider ones at high pressures of bulk hydrogen. The enthalpies of adsorption per mole for the considered carbonaceous materials are practically constant with hydrogen loading and vary within the narrow range q(st) congruent with 7.28-7.85 kJ/mol. Our systematic study of hydrogen adsorption at 303 K in graphite slitlike pores gives deep insight into the timely problem of hydrogen storage as the most promising source of clean energy. The calculated maximum storage of hydrogen is equal to approximately 1.4 wt %, which is far from the United States Department of Energy (DOE) target (i.e., 6.5 wt %), thus concluding that the total storage amount of hydrogen obtained at 303 K in graphite slitlike pores of carbon fibers is not sufficient yet.

  9. Stochastic generation of explicit pore structures by thresholding Gaussian random fields

    Energy Technology Data Exchange (ETDEWEB)

    Hyman, Jeffrey D., E-mail: jhyman@lanl.gov [Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721-0089 (United States); Computational Earth Science, Earth and Environmental Sciences (EES-16), and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Winter, C. Larrabee, E-mail: winter@email.arizona.edu [Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721-0089 (United States); Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721-0011 (United States)

    2014-11-15

    We provide a description and computational investigation of an efficient method to stochastically generate realistic pore structures. Smolarkiewicz and Winter introduced this specific method in pores resolving simulation of Darcy flows (Smolarkiewicz and Winter, 2010 [1]) without giving a complete formal description or analysis of the method, or indicating how to control the parameterization of the ensemble. We address both issues in this paper. The method consists of two steps. First, a realization of a correlated Gaussian field, or topography, is produced by convolving a prescribed kernel with an initial field of independent, identically distributed random variables. The intrinsic length scales of the kernel determine the correlation structure of the topography. Next, a sample pore space is generated by applying a level threshold to the Gaussian field realization: points are assigned to the void phase or the solid phase depending on whether the topography over them is above or below the threshold. Hence, the topology and geometry of the pore space depend on the form of the kernel and the level threshold. Manipulating these two user prescribed quantities allows good control of pore space observables, in particular the Minkowski functionals. Extensions of the method to generate media with multiple pore structures and preferential flow directions are also discussed. To demonstrate its usefulness, the method is used to generate a pore space with physical and hydrological properties similar to a sample of Berea sandstone. -- Graphical abstract: -- Highlights: •An efficient method to stochastically generate realistic pore structures is provided. •Samples are generated by applying a level threshold to a Gaussian field realization. •Two user prescribed quantities determine the topology and geometry of the pore space. •Multiple pore structures and preferential flow directions can be produced. •A pore space based on Berea sandstone is generated.

  10. Highly ordered periodic mesoporous organosilica nanoparticles with controllable pore structures

    Science.gov (United States)

    Guan, Buyuan; Cui, Yan; Ren, Zhongyuan; Qiao, Zhen-An; Wang, Li; Liu, Yunling; Huo, Qisheng

    2012-09-01

    A general synthetic procedure for highly ordered and well-dispersed periodic mesoporous organosilica (PMO) nanoparticles is reported based on a single cationic surfactant cetyltrimethylammonium bromide (CTAB) and simple silica sources with organic bridging groups via an ammonia-catalyzed sol-gel reaction. By changing the bridging group in the silica sources, the pore structures of the as-made particles with three-dimensional hexagonal (P63/mmc), cubic (Pm3n), two-dimensional hexagonal (P6mm), and wormlike structure were evidenced by powder X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). The size range of the nanoparticles can be adjusted from 30 nm to 500 nm by variation of the ammonia concentration or the co-solvent content of the reaction medium. The PMO nanoparticles with high concentration of organic groups in the framework offered good thermal stability, good dispersion in low polarity solvent and high adsorption of small hydrophobic molecules. Finally, the dye functionalized PMO nanoparticles show low cytotoxicity and excellent cell permeability, which offers great potential for biomedical applications.A general synthetic procedure for highly ordered and well-dispersed periodic mesoporous organosilica (PMO) nanoparticles is reported based on a single cationic surfactant cetyltrimethylammonium bromide (CTAB) and simple silica sources with organic bridging groups via an ammonia-catalyzed sol-gel reaction. By changing the bridging group in the silica sources, the pore structures of the as-made particles with three-dimensional hexagonal (P63/mmc), cubic (Pm3n), two-dimensional hexagonal (P6mm), and wormlike structure were evidenced by powder X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). The size range of the nanoparticles can be adjusted from 30 nm to 500 nm by variation of the ammonia concentration or the co-solvent content of the reaction medium. The PMO nanoparticles with high concentration of organic

  11. Pore structure and carbonation in blended lime-cement pastes

    Directory of Open Access Journals (Sweden)

    Álvarez, J. I.

    2006-06-01

    Full Text Available The present study aims to gain a fuller understandingof the curing process in lime pastes (100, 90, 80, 70,60, 50 and 40% lime blended with cement by analyzingcarbonation in these materials. A hydrated, airslaked lime powder and CEM II A/L 32.5 Portlandcement were used for the blends. These materialswere singled out for research primarily because theymay be used in the restoration of heritage monuments.Variation in weight was used as an indicator for carbonation.A new parameter, A, was found to vary inverselywith the percentage of the cement because of theprevalence of Knudsen diffusion in the paste, in turndue to the characteristics of the pore structure, whichwas studied by mercury intrusion porosimetry (MIP.The hygroscopic study conducted on the different pastesprovided information on water content at a givenhumidity and its location, i.e., adsorbed on the surfaceof the pores or condensed inside them, obstructing thediffusion of CO2. The conclusion drawn from this studyof the curing process was that neither drying nor C3Shydration retarded lime carbonation.En este trabajo se estudia el proceso de carbonatacionen pastas mixtas de cal y cemento (100, 90, 80, 70, 60,50 y 40% de cal con el objeto de obtener un mejorconocimiento del proceso de curado en estos materiales.Para ello se ha empleado una cal aerea hidratada en polvoy un cemento Portland del tipo CEM II A/L 32,5. Enparticular, este estudio investiga estos materiales ya quepueden ser utilizados en la restauracion del PatrimonioCultural. Se ha utilizado la variacion de peso como indicadordel proceso de carbonatacion. Se ha establecidoun nuevo parametro, A, que varia inversamente con elporcentaje de cemento en la pasta, debido al predominiode la difusion de Knudsen como consecuencia de laestructura porosa, que ha sido estudiada por medio deporosimetria de intrusion de mercurio (PIM. El estudiohigroscopico realizado sobre las diversas pastas permiteconocer el contenido en agua a una

  12. Simulation of the Effects of Elevated Pore Pressure on Seismicity

    Science.gov (United States)

    Foxall, W.; Johnson, S.; Hutchings, L. J.; Richards-Dinger, K. B.; Dieterich, J. H.

    2012-12-01

    Risks associated with induced seismicity are a significant factor in the design, permitting and operation of stimulation and other fluid injection operations, especially enhanced geothermal, geological CO2 sequestration and wastewater disposal. Conventional risk assessment for such operations usually neglects treatment of site-specific conditions, such as in situ stress, pore pressure evolution, and the mechanical and hydrologic properties of the reservoir. As one component of a physics-based probabilistic seismic hazard approach designed to address these issues, we discuss the development of an induced earthquake simulation method that represents hydromechanical effects explicitly. This capability is developed within the GEOS framework [Settgast and Johnson, 37th Stanford Geothermal Workshop, 2012], and is based on the earthquake simulation code RSQSim [Dieterich and Richards-Dinger, PAGEOP, 2010]. The GEOS implementation augments RSQSim by coupling an evolving pore pressure distribution into the fault response via multi-phase flow simulations of fluid injection and plume migration over relevant time scales. The present implementation is uni-directional (effective stress effects) with no feedback to the permeability response. The application allows for the use of realistic fault geometries and fractal spatial distributions of constitutive properties generated along two-dimensional fault surfaces. Constant strain rate boundary conditions are applied to mimic regional tectonic loading. RSQSim uses a rate- and state-dependent friction law to evolve the stresses along the fault. In general, significant uncertainties remain in the scaling of empirically determined constitutive parameters from laboratory to field scale, particularly at the shallow crustal depths characteristic of injection-induced seismicity. In order to understand the sensitivity of the simulations to these parameters, we have sampled multiple model realizations using Livermore's PSUADE code [Tong

  13. Sequential protein unfolding through a carbon nanotube pore

    Science.gov (United States)

    Xu, Zhonghe; Zhang, Shuang; Weber, Jeffrey K.; Luan, Binquan; Zhou, Ruhong; Li, Jingyuan

    2016-06-01

    An assortment of biological processes, like protein degradation and the transport of proteins across membranes, depend on protein unfolding events mediated by nanopore interfaces. In this work, we exploit fully atomistic simulations of an artificial, CNT-based nanopore to investigate the nature of ubiquitin unfolding. With one end of the protein subjected to an external force, we observe non-canonical unfolding behaviour as ubiquitin is pulled through the pore opening. Secondary structural elements are sequentially detached from the protein and threaded into the nanotube, interestingly, the remaining part maintains native-like characteristics. The constraints of the nanopore interface thus facilitate the formation of stable ``unfoldon'' motifs above the nanotube aperture that can exist in the absence of specific native contacts with the other secondary structure. Destruction of these unfoldons gives rise to distinct force peaks in our simulations, providing us with a sensitive probe for studying the kinetics of serial unfolding events. Our detailed analysis of nanopore-mediated protein unfolding events not only provides insight into how related processes might proceed in the cell, but also serves to deepen our understanding of structural arrangements which form the basis for protein conformational stability.An assortment of biological processes, like protein degradation and the transport of proteins across membranes, depend on protein unfolding events mediated by nanopore interfaces. In this work, we exploit fully atomistic simulations of an artificial, CNT-based nanopore to investigate the nature of ubiquitin unfolding. With one end of the protein subjected to an external force, we observe non-canonical unfolding behaviour as ubiquitin is pulled through the pore opening. Secondary structural elements are sequentially detached from the protein and threaded into the nanotube, interestingly, the remaining part maintains native-like characteristics. The constraints of

  14. Atmospheric muons reconstruction with Antares

    International Nuclear Information System (INIS)

    The ANTARES collaboration is building a neutrino telescope in the Mediterranean Sea. This detector contains 900 photomultiplier tubes, dispatched on 12 lines, in order to detect Cerenkov light from muon induced by neutrino interactions in the the vicinity of the detector. Currently the first 5 lines have been deployed. A first task consists in studying the stability of the detector calibration, which is a necessary step to understand the detector response. Then we studied optical properties of water, for this we developed a reconstruction method dedicated to LED Beacon. The extracted parameters are compatible with earlier measurements. A quality criteria to reject badly reconstructed track has been developed based on the likelihood of the tracks fit versus point fit. This has been applied to real data and a preliminary analysis of atmospheric muons with a 5-lines detector is performed. (author)

  15. Reconstruction of complete interval tournaments

    CERN Document Server

    Iványi, Antal

    2010-01-01

    Let $a, b$ and $n$ be nonnegative integers $(b \\geq a, \\ b > 0, \\ n \\geq 1)$, $\\mathcal{G}_n(a,b)$ be a multigraph on $n$ vertices in which any pair of vertices is connected with at least $a$ and at most $b$ edges and \\textbf{v =} $(v_1, v_2, ..., v_n)$ be a vector containing $n$ nonnegative integers. We give a necessary and sufficient condition for the existence of such orientation of the edges of $\\mathcal{G}_n(a,b)$, that the resulted out-degree vector equals to \\textbf{v}. We describe a reconstruction algorithm. In worst case checking of \\textbf{v} requires $\\Theta(n)$ time and the reconstruction algorithm works in $O(bn^3)$ time. Theorems of H. G. Landau (1953) and J. W. Moon (1963) on the score sequences of tournaments are special cases $b = a = 1$ resp. $b = a \\geq 1$ of our result.

  16. Blind reconstruction of linear scrambler

    Institute of Scientific and Technical Information of China (English)

    Hui Xie; Fenghua Wang; Zhitao Huang

    2014-01-01

    An algorithm based on eigenanalysis technique and Walsh-Hadamard transform (WHT) is proposed. The algorithm contains two steps. Firstly, the received sequence is divided into temporal windows, and a covariance matrix is computed. The li-near feedback shift register (LFSR) sequence is reconstructed from the first eigenvector of this matrix. Secondly, equations ac-cording to the recovered LFSR sequence are constructed, and the Walsh spectrum corresponding to the equations is computed. The feedback polynomial of LFSR is estimated from the Walsh spec-trum. The validity of the algorithm is verified by the simulation result. Final y, case studies are presented to il ustrate the perfor-mance of the blind reconstruction method.

  17. Ear Reconstruction in Young Children.

    Science.gov (United States)

    Reinisch, John

    2015-12-01

    The use of a porous high-density polyethylene ear implant, rather than a costal cartilage framework, allows ear reconstruction in young children before they enter school. The fact that the growth of the normal ear matures early allows for good symmetry. If the implant is covered completely with a large, well-vascularized superficial parietal fascia flap and appropriately color-matched skin, an ear with excellent projection and definition can be obtained with minimal complications and long-term viability. Ear reconstruction in young children is preferred by the author because the necessary fascial flap coverage is thinner, easier to harvest than in older patients, and can be done in a single outpatient procedure with minimal discomfort or psychological trauma. PMID:26667634

  18. Optimal Reconstruction of Inviscid Vortices

    CERN Document Server

    Danaila, Ionut

    2014-01-01

    This study addresses the question whether, given {some} measurements of the velocity field induced by a vortex, one can stably determine the structure of the vortex. Assuming that the flow is incompressible, inviscid and stationary in the frame of reference moving with the vortex, the "structure" of the vortex is uniquely characterized by the functional relation between the streamfunction and vorticity. It is demonstrated how the inverse problem of reconstructing this functional relation from data can be framed as an optimization problem which can be efficiently solved using variational techniques. To focus attention, we consider 3D axisymmetric vortex rings and use measurements of the tangential velocity on the boundary of the vortex bubble. In contrast to earlier studies, the vorticity function defining the streamfunction-vorticity relation is reconstructed in the continuous setting subject to a minimum number of assumptions. To validate our approach, two test cases are presented, involving Hill's and Norbu...

  19. Growing self-reconstruction maps.

    Science.gov (United States)

    do Rêgo, Renata Lúcia Mendonça Ernesto; Araújo, Aluizio Fausto Ribeiro; de Lima Neto, Fernando Buarque

    2010-02-01

    In this paper, we propose a new method for surface reconstruction based on growing self-organizing maps (SOMs), called growing self-reconstruction maps (GSRMs). GSRM is an extension of growing neural gas (GNG) that includes the concept of triangular faces in the learning algorithm and additional conditions in order to include and remove connections, so that it can produce a triangular two-manifold mesh representation of a target object given an unstructured point cloud of its surface. The main modifications concern competitive Hebbian learning (CHL), the vertex insertion operation, and the edge removal mechanism. The method proposed is able to learn the geometry and topology of the surface represented in the point cloud and to generate meshes with different resolutions. Experimental results show that the proposed method can produce models that approximate the shape of an object, including its concave regions, boundaries, and holes, if any. PMID:20007030

  20. Network reconstruction via density sampling

    CERN Document Server

    Squartini, Tiziano; Gabrielli, Andrea; Garlaschelli, Diego

    2016-01-01

    Reconstructing weighted networks from partial information is necessary in many important circumstances, e.g. for a correct estimation of systemic risk. It has been shown that, in order to achieve an accurate reconstruction, it is crucial to reliably replicate the empirical degree sequence, which is however unknown in many realistic situations. More recently, it has been found that the knowledge of the degree sequence can be replaced by the knowledge of the strength sequence, which is typically accessible, complemented by that of the total number of links, thus considerably relaxing the observational requirements. Here we further relax these requirements and devise a procedure valid when even the the total number of links is unavailable. We assume that, apart from the heterogeneity induced by the degree sequence itself, the network is homogeneous, so that its link density can be estimated by sampling subsets of nodes with representative density. We show that the best way of sampling nodes is the random selecti...