WorldWideScience

Sample records for al4o2cl102 oxide species

  1. Anaerobic Benzene Oxidation by Geobacter Species

    Science.gov (United States)

    Bain, Timothy S.; Nevin, Kelly P.; Barlett, Melissa A.; Lovley, Derek R.

    2012-01-01

    The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which there was significant capacity for anaerobic benzene oxidation. Strain Ben grew in a medium with benzene as the sole electron donor and Fe(III) oxide as the sole electron acceptor. Furthermore, additional evaluation of Geobacter metallireducens demonstrated that it could also grow in benzene-Fe(III) medium. In both strain Ben and G. metallireducens the stoichiometry of benzene metabolism and Fe(III) reduction was consistent with the oxidation of benzene to carbon dioxide with Fe(III) serving as the sole electron acceptor. With benzene as the electron donor, and Fe(III) oxide (strain Ben) or Fe(III) citrate (G. metallireducens) as the electron acceptor, the cell yields of strain Ben and G. metallireducens were 3.2 × 109 and 8.4 × 109 cells/mmol of Fe(III) reduced, respectively. Strain Ben also oxidized benzene with anthraquinone-2,6-disulfonate (AQDS) as the sole electron acceptor with cell yields of 5.9 × 109 cells/mmol of AQDS reduced. Strain Ben serves as model organism for the study of anaerobic benzene metabolism in petroleum-contaminated aquifers, and G. metallireducens is the first anaerobic benzene-degrading organism that can be genetically manipulated. PMID:23001648

  2. Oxidation of Reduced Sulfur Species: Carbonyl Sulfide

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2013-01-01

    A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts satisfact......A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts...... satisfactorily oxidation of OCS over a wide range of stoichiometric air–fuel ratios (0.5 ≤λ≤7.3), temperatures (450–1700 K), and pressures (0.02–3.0 atm) under dry conditions. The governing reaction mechanisms are outlined based on calculations with the kinetic model. The oxidation rate of OCS is controlled...

  3. Pairing of cholesterol with oxidized phospholipid species in lipid bilayers

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Loubet, Bastien; Olzynska, Agnieszka

    2014-01-01

    We claim that (1) cholesterol protects bilayers from disruption caused by lipid oxidation by sequestering conical shaped oxidized lipid species such as 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PZPC) away from phospholipid, because cholesterol and the oxidized lipid have complementary...... shapes and (2) mixtures of cholesterol and oxidized lipids can self-assemble into bilayers much like lysolipid–cholesterol mixtures. The evidence for bilayer protection comes from molecular dynamics (MD) simulations and dynamic light scattering (DLS) measurements. Unimodal size distributions of extruded...... vesicles (LUVETs) made up of a mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and PZPC containing high amounts of PZPC are only obtained when cholesterol is present in high concentrations. In simulations, bilayers containing high amounts of PZPC become porous, unless cholesterol is also present...

  4. Reactive Oxygen Species and Nitric Oxide in Cutaneous Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Maria Fátima Horta

    2012-01-01

    Full Text Available Cutaneous leishmaniasis affects millions of people around the world. Several species of Leishmania infect mouse strains, and murine models closely reproduce the cutaneous lesions caused by the parasite in humans. Mouse models have enabled studies on the pathogenesis and effector mechanisms of host resistance to infection. Here, we review the role of nitric oxide (NO, reactive oxygen species (ROS, and peroxynitrite (ONOO− in the control of parasites by macrophages, which are both the host cells and the effector cells. We also discuss the role of neutrophil-derived oxygen and nitrogen reactive species during infection with Leishmania. We emphasize the role of these cells in the outcome of leishmaniasis early after infection, before the adaptive Th-cell immune response.

  5. Nitric oxide and reactive oxygen species in plant biotic interactions.

    Science.gov (United States)

    Scheler, Claudia; Durner, Jörg; Astier, Jeremy

    2013-08-01

    Nitric oxide (NO) and reactive oxygen species (ROS) are important signaling molecules in plants. Recent progress has been made in defining their role during plant biotic interactions. Over the last decade, their function in disease resistance has been highlighted and focused a lot of investigations. Moreover, NO and ROS have recently emerged as important players of defense responses after herbivore attacks. Besides their role in plant adaptive response development, NO and ROS have been demonstrated to be involved in symbiotic interactions between plants and microorganisms. Here we review recent data concerning these three sides of NO and ROS functions in plant biotic interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation

    Science.gov (United States)

    He, Qian; Freakley, Simon J.; Edwards, Jennifer K.; Carley, Albert F.; Borisevich, Albina Y.; Mineo, Yuki; Haruta, Masatake; Hutchings, Graham J.; Kiely, Christopher J.

    2016-01-01

    The identity of active species in supported gold catalysts for low temperature carbon monoxide oxidation remains an unsettled debate. With large amounts of experimental evidence supporting theories of either gold nanoparticles or sub-nm gold species being active, it was recently proposed that a size-dependent activity hierarchy should exist. Here we study the diverging catalytic behaviours after heat treatment of Au/FeOx materials prepared via co-precipitation and deposition precipitation methods. After ruling out any support effects, the gold particle size distributions in different catalysts are quantitatively studied using aberration corrected scanning transmission electron microscopy (STEM). A counting protocol is developed to reveal the true particle size distribution from HAADF-STEM images, which reliably includes all the gold species present. Correlation of the populations of the various gold species present with catalysis results demonstrate that a size-dependent activity hierarchy must exist in the Au/FeOx catalyst. PMID:27671143

  7. Oxidation of glycosaminoglycans by free radicals and reactive oxidative species: A review of investigative methods.

    Science.gov (United States)

    Parsons, B J

    2015-05-01

    Glycosaminoglycans, in particular hyaluronan (HA), and proteoglycans are components of the extracellular matrix (ECM). The ECM plays a key role in the regulation of cellular behaviour and alterations to it can modulate both the development of human diseases as well as controlling normal biochemical processes such as cell signalling and pro-inflammatory responses. For these reasons, in vitro fragmentation studies of glycosaminoglycans by free radicals and oxidative species are seen to be relevant to the understanding of in vivo studies of damage to the ECM. A wide range of investigative techniques have therefore been applied to gain insights into the relative fragmentation effects of several reactive oxidative species with the ultimate goal of determining mechanisms of fragmentation at the molecular level. These methods are reviewed here.

  8. Aqueous chemistry of chlorine: chemistry, analysis, and environmental fate of reactive oxidant species

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R.L.; Carpenter, J.H.

    1982-01-01

    This report reviews (1) the chemistry of chlorine relative to its reactions in fresh, estuarine, and marine waters and the formation of reactive oxidant species; (2) the current status of chemical analysis of reactive chlorine species and chlorine-produced oxidant species relative to analysis of low concentrations (microgram-per-liter range) and determination of accuracy and precision of methods; and (3) the environmental fate of chlorine and chlorine-produced oxidant species.

  9. Hydrous Ferric Oxides in Sediment Catalyze Formation of Reactive Oxygen Species during Sulfide Oxidation

    Directory of Open Access Journals (Sweden)

    Sarah A. Murphy

    2016-11-01

    Full Text Available Abstract: This article describes the formation of reactive oxygen species as a result of the oxidation of dissolved sulfide by Fe(III-containing sediments suspended in oxygenated seawater over the pH range 7.00 and 8.25. Sediment samples were obtained from across the coastal littoral zone in South Carolina, US, at locations from the beach edge to the forested edge of a Spartina dominated estuarine salt marsh and suspended in aerated seawater. Reactive oxygen species (superoxide and hydrogen peroxide production was initiated in sediment suspensions by the addition of sodium bisulfide. The subsequent loss of HS-, formation of Fe(II (as indicated by Ferrozine, and superoxide and hydrogen peroxide were monitored over time. The concentration of superoxide rose from the baseline and then persisted at an apparent steady state concentration of approximately 500 nanomolar at pH 8.25 and 200 nanomolar at pH 7.00 respectively until >97% hydrogen sulfide was consumed. Measured superoxide was used to predict hydrogen peroxide yield based on superoxide dismutation. Dismutation alone quantitatively predicted hydrogen peroxide formation at pH 8.25 but over predicted hydrogen peroxide formation at pH 7 by a factor of approximately 102. Experiments conducted with episodic spikes of added hydrogen peroxide indicated rapid hydrogen peroxide consumption could account for its apparent low instantaneous yield, presumably the result of its reaction with Fe(II species, polysulfides or bisulfite. All sediment samples were characterized for total Fe, Cu, Mn, Ni, Co and hydrous ferric oxide by acid extraction followed by mass spectrometric or spectroscopic characterization. Sediments with the highest loadings of hydrous ferric oxide were the only sediments that produced significant dissolved Fe(II species or ROS as a result of sulfide exposure.

  10. Nitric oxide and reactive oxygen species in the nucleus revisited.

    Science.gov (United States)

    Provost, Chantale; Choufani, Faten; Avedanian, Levon; Bkaily, Ghassan; Gobeil, Fernand; Jacques, Danielle

    2010-03-01

    Recent work from our group showed that the nuclear envelope membranes contain several G protein-coupled receptors, including prostaglandin E2 (EP3R) and endothelin-1 (ET-1) receptors. Activation of EP3R increased endothelial nitric oxide synthase (eNOS) RNA expression in nuclei. eNOS and inducible NOS (iNOS) are reported to also be present at the nuclear level. Furthermore, reactive oxygen species (ROS) were also localized at the nuclear level. In this review, we show that stimulation with NO donor sodium nitroprusside results in an increase of intranuclear calcium that was dependent on guanylate cyclase activation, but independent of MAPK. This increase in nuclear calcium correlated with an increase in nuclear transcription of iNOS. H2O2 and ET-1 increase both cytosolic and nuclear ROS in human endocardial endothelial cells and in human aortic vascular smooth muscle cells. This increase in ROS levels by H2O2 and ET-1 was reversed by the antioxidant glutathione. In addition, our results strongly suggest that cytosolic signalization is not only transmitted to the nucleus but is also generated by the nucleus. Furthermore, we demonstrate that oxidative stress can be sensed by the nucleus. These results highly suggest that ROS formation is also generated directly by the nucleus and that free radicals may contribute to ET-1 regulation of nuclear Ca2+ homeostasis.

  11. Former land-use and tree species affect nitrogen oxide emissions from a tropical dry forest.

    Science.gov (United States)

    Heather Erickson; Eric A. Davidson; Michael Keller

    2002-01-01

    Species composition in successional dry forests in the tropics varies widely, but the effect of this variation on biogeochemical processes is not well known. We examined fluxes of N oxides (nitrous and nitric oxide), soil N cycling, and litter chemistry (C/N ratio) in four successional dry forests on similar soils in western Puerto Rico with differing species...

  12. Comparing and interpreting laboratory results of Hg oxidation by a chlorine species

    International Nuclear Information System (INIS)

    Agarwal, Hans; Romero, Carlos E.; Stenger, Harvey G.

    2007-01-01

    Several researchers have performed experimental work in attempts to explain the effects of various flue-gas components on the oxidation of elemental mercury (Hg 0 ). Some have concluded that water (H 2 O) inhibits Hg oxidation by chlorine (Cl 2 ). In recently published work, it was found that sulfur dioxide (SO 2 ) and nitric oxide (NO) also have an inhibitory effect on Hg oxidation. This paper aims to serve three purposes. First, to present data obtained in a laboratory scale apparatus, designed to test the effects of Cl 2 on the oxidation of Hg 0 with respect to temperature. The results show that as temperature increases, Cl 2 is less effective as an Hg oxidizing agent. Second, this paper presents a consolidation of data taken from several sources, where the effects of various flue-gas components on the oxidation of Hg 0 is observed and discussed. The summary of these results shows the following general trends: at high temperatures, hydrogen chloride (HCl) is the primary chlorine species responsible for Hg 0 oxidation, while at lower temperatures, Cl 2 is the dominant species. Third, a simple two reaction model is suggested to predict the experimental data shown in this paper. The results show that the predicted percent Hg oxidation values correspond very well with the observed experimental values

  13. HIF and reactive oxygen species regulate oxidative phosphorylation in cancer

    Czech Academy of Sciences Publication Activity Database

    Hervouet, E.; Čížková, Alena; Demont, J.; Vojtíšková, Alena; Pecina, Petr; Franssen-van Hal, N.; Keijer, J.; Simonnet, H.; Ivánek, Robert; Kmoch, S.; Godinot, C.; Houštěk, Josef

    2008-01-01

    Roč. 29, č. 8 (2008), s. 1528-1537 ISSN 0143-3334 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR GA303/07/0781 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50520514 Keywords : carcinoma * mitochondrial biogenesis * reactive oxygen species Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.930, year: 2008

  14. Nitric oxide and reactive oxygen species in limb vascular function

    DEFF Research Database (Denmark)

    Gliemann, Lasse; Nyberg, Michael Permin; Hellsten, Ylva

    2014-01-01

    , the extent of enzymatic and non-enzymatic formation of NO and on the other hand, removal of NO, which in part is dependent on the reaction of NO with reactive oxygen species (ROS). The presence of ROS is dependent on the extent of ROS formation via mitochondria and/or enzymes such as NAD(P)H oxidase...... the bioavailability of NO but may also cause cellular damage in the cardiovascular system. Physical activity has been shown to greatly improve cardiovascular function, in part through improved bioavailability of NO, enhanced endogenous antioxidant defense and a lowering of the expression of ROS forming enzymes...

  15. Titania supported tungsten oxide species studied by Raman spectroscopy

    International Nuclear Information System (INIS)

    Han, Sang Hoon; Kim, Hack Sung; Kim, Kwan

    1991-01-01

    Laser Raman spectroscopy has been used to study the tungsta catalyst supported on titania. The surface tungsten species which forms on titania after calcination appeared to possess a structure that is independent of the initial impregnation condition. The surface polytungstate seemed to be stable only at the interfacial region since the crystalline WO 3 phase was observed as long as the tungsta loading was in excess of monolayer coverage. The close intact and strong interaction between the polytungstate and the titania could be evidenced from the inhibition of the phase transition of TiO 2 from anatase to rutile.(Author)

  16. Reducing Systematic Errors in Oxide Species with Density Functional Theory Calculations

    DEFF Research Database (Denmark)

    Christensen, Rune; Hummelshøj, Jens S.; Hansen, Heine Anton

    2015-01-01

    Density functional theory calculations can be used to gain valuable insight into the fundamental reaction processes in metal−oxygen systems, e.g., metal−oxygen batteries. Here, the ability of a range of different exchange-correlation functionals to reproduce experimental enthalpies of formation...... for different types of alkali and alkaline earth metal oxide species has been examined. Most examined functionals result in significant overestimation of the stability of superoxide species compared to peroxides and monoxides, which can result in erroneous prediction of reaction pathways. We show that if metal...... chlorides are used as reference structures instead of metals, the systematic errors are significantly reduced and functional variations decreased. Using a metal chloride reference, where the metal atoms are in the same oxidation state as in the oxide species, will provide a computationally inexpensive...

  17. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates

    DEFF Research Database (Denmark)

    Quinlan, Casey L; Perevoshchikova, IrinaV; Hey-Mogensen, Martin

    2013-01-01

    Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H2O2 production from different defined sites in rat skeletal muscle mitochondria oxidizing...... of specific sites to the production of reactive oxygen species in isolated mitochondria depend very strongly on the substrates being oxidized, and the same is likely true in cells and in vivo....

  18. Stability of oxidized iron species and the redox budget of slab-derived fluids

    Science.gov (United States)

    Sanchez-Valle, C.; Hin, R.; Testemale, D.; Borca, C.; Grolimund, D.

    2017-12-01

    The high oxidation state of subduction zone magmas compared to magmas from other locations might result from the influx of oxidized fluid from the subducted oceanic plate into the mantle wedge. However, the nature of the chemical agent(s) and the mechanism responsible for the transfer of the oxidized signature from the slab to the mantle wedge remains poorly understood. In this contribution, we will discuss the oxidizing capacity of slab-derived fluids in the light of experimental results of the solubility and speciation of iron in high-pressure fluids that mimic the slab flux. Iron-bearing mineral assemblages were equilibrated with chlorinated aqueous fluids and hydrous granitic melts at different oxygen fugacities relevant for the present day crust/mantle. The concentration of iron and the distribution of stability of oxidized iron species were monitored up to 2.5 GPa and 800 °C using a combination of diamond trap experiments and XANES measurements in diamond anvil cells. The results illustrate the role of coordination chemistry involving halogen and polymerized species in the stability of oxidized iron in the fluids. The concentration of Fe3+ in the fluids progressively decreases as temperature increases, regardless of fluid composition and pressure. This implies that the fluid capacity to transport Fe3+ at high temperature may be limited, even at the redox conditions relevant for the present day crust and mantle. With the new experimental results, we place constrains on the oxidizing capacity of Fe-bearing metasomatic fluids and discuss the transfer of the oxidizing signature and the conditions for the genesis of oxidized arc magmas.

  19. Dandelion (Taraxacum officinale) flower extract suppresses both reactive oxygen species and nitric oxide and prevents lipid oxidation in vitro.

    Science.gov (United States)

    Hu, C; Kitts, D D

    2005-08-01

    Flavonoids and coumaric acid derivatives were identified from dandelion flower (Taraxacum officinale). Characteristics of chain-breaking antioxidants, such as extended lag phase and reduced propagation rate, were observed in oxidation of linoleic acid emulsion with the addition of dandelion flower extract (DFE). DFE suppressed both superoxide and hydroxyl radical, while the latter was further distinguished by both site-specific and non-specific hydroxyl radical inhibition. DPPH-radical-scavenging activity and a synergistic effect with alpha-tocopherol were attributed to the reducing activity derived from phenolic content of DFE. A significant (p < 0.05) and concentration-dependent, reduced nitric oxide production from acterial-lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells was observed with the addition of DFE. Moreover, peroxyl-radical-induced intracellular oxidation of RAW264.7 cells was inhibited significantly (p < 0.05) by the addition of DFE over a range of concentrations. These results showed that the DFE possessed marked antioxidant activity in both biological and chemical models. Furthermore, the efficacy of DFE in inhibiting both reactive oxygen species and nitric oxide were attributed to its phenolic content.

  20. Actinides in Hanford Tank Waste Simulants: Chemistry of Selected Species in Oxidizing Alkaline Solutions

    International Nuclear Information System (INIS)

    Nash, Kenneth L.; Laszak, Ivan; Borkowski, Marian; Hancock, Melissa; Rao, Linfeng; Reed, Wendy

    2004-01-01

    To enhance removal of selected troublesome nonradioactive matrix elements (P, Cr, Al, S) from the sludges in radioactive waste tanks at the Hanford site, various chemical washing procedures have been evaluated. It is intended that leaching should leave the actinides in the residual sludge phase for direct vitrification. Oxidative treatment with strongly alkaline solutions has emerged as the best approach to accomplishing this feat. However, because the most important actinide ions in the sludge can exist in multiple oxidation states, it is conceivable that changes in actinide oxidation state speciation could interfere with hopes and plans for actinide insolubility. In this presentation, we discuss both the impact of oxidative alkaline leachants on actinide oxidation state speciation and the chemistry of oxidized actinide species in the solution phase. Actinide oxidation does occur during leaching, but the solubility behavior is complex. Mixed ligand complexes may dominate solution phase speciation of actinides under some circumstances. This work was supported by the U.S. Department of Energy, Offices of Science and Waste Management, Environmental Management Science Program under Contract DEAC03- 76SF0098 at Lawrence Berkeley National Laboratory and Contract W-31-109- ENG-38 at Argonne National Laboratory

  1. Phenol by direct hydroxylation of benzene with nitrous oxide - role of surface oxygen species in the reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Reitzmann, A.; Klemm, E.; Emig, G. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Technische Chemie 1; Buchholz, S.A.; Zanthoff, H.W. [Bochum Univ. (Germany). Inst. of Technical Chemistry

    1998-12-31

    Transient experiments in a Temporal Analysis of Products (TAP) Reactor were performed to elucidate the role of surface oyxgen species in the oxidation of benzene to phenol on ZSM-5 type zeolites with nitrous oxide as a selective oxidant. It was shown by puls experiments with nitrous oxide that the mean lifetime of the generated surface oxygen species is between 0.2s at 500 C and about 4.2 s at 400 C. Afterwards the surface oxygen species desorb as molecular oxygen into the gas phase where total oxidation will take place if hydrocarbons are present. Dual puls experiments consisting of a nitrous oxide puls followed by a benzene puls allowed studying the reactivity of the surface oxygen species formed during the first puls. The observation of the phenol formation was impeded due to the strong sorption of phenol. Multipulse experiments were necessary to reach a pseudo steady state phenol yield. (orig.)

  2. Mitochondrial redox signaling: Interaction of mitochondrial reactive oxygen species with other sources of oxidative stress.

    Science.gov (United States)

    Schulz, Eberhard; Wenzel, Philip; Münzel, Thomas; Daiber, Andreas

    2014-01-10

    Oxidative stress is a well established hallmark of cardiovascular disease and there is strong evidence for a causal role of reactive oxygen and nitrogen species (RONS) therein. Improvement of cardiovascular complications by genetic deletion of RONS producing enzymes and overexpression of RONS degrading enzymes proved the involvement of these species in cardiovascular disease at a molecular level. Vice versa, overexpression of RONS producing enzymes as well as deletion of antioxidant enzymes was demonstrated to aggravate cardiovascular complications. With the present overview we present and discuss different pathways how mitochondrial RONS interact (crosstalk) with other sources of oxidative stress, namely NADPH oxidases, xanthine oxidase and an uncoupled nitric oxide synthase. The potential mechanisms of how this crosstalk proceeds are discussed in detail. Several examples from the literature are summarized (including hypoxia, angiotensin II mediated vascular dysfunction, cellular starvation, nitrate tolerance, aging, hyperglycemia, β-amyloid stress and others) and the underlying mechanisms are put together to a more general concept of redox-based activation of different sources of RONS via enzyme-specific "redox switches". Mitochondria play a key role in this concept providing redox triggers for oxidative damage in the cardiovascular system but also act as amplifiers to increase the burden of oxidative stress. Based on these considerations, the characterization of the role of mitochondrial RONS formation in cardiac disease as well as inflammatory processes but also the role of mitochondria as potential therapeutic targets in these pathophysiological states should be addressed in more detail in the future.

  3. Reactive oxygen species and nitric oxide mediate plasticity of neuronal calcium signaling

    Science.gov (United States)

    Yermolaieva, Olena; Brot, Nathan; Weissbach, Herbert; Heinemann, Stefan H.; Hoshi, Toshinori

    2000-01-01

    Reactive oxygen species (ROS) and nitric oxide (NO) are important participants in signal transduction that could provide the cellular basis for activity-dependent regulation of neuronal excitability. In young rat cortical brain slices and undifferentiated PC12 cells, paired application of depolarization/agonist stimulation and oxidation induces long-lasting potentiation of subsequent Ca2+ signaling that is reversed by hypoxia. This potentiation critically depends on NO production and involves cellular ROS utilization. The ability to develop the Ca2+ signal potentiation is regulated by the developmental stage of nerve tissue, decreasing markedly in adult rat cortical neurons and differentiated PC12 cells.

  4. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction.

    Science.gov (United States)

    Weidinger, Adelheid; Kozlov, Andrey V

    2015-04-15

    In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity.

  5. Chemically emulsified crude oil as substrate for bacterial oxidation : differences in species response

    International Nuclear Information System (INIS)

    Bruheim, P.; Eimhjellen, K.

    1998-01-01

    The ability of bacterial species to oxidize alkanes in crude oil in water emulsions was studied. Alkanes in crude oil need specific physiological adaptations to the microorganisms. Synthesis of biosurfactants has been considered as a prerequisite for either specific adhesion mechanisms to large oil drops or emulsification of oil followed by uptake of submicron oil droplets. In this study four bacterial species were tested. Emulsions were prepared by nonionic sorbitan ester and polyoxyethylene ether surfactants. The oxidation rates were measured. Both positive and negative effects of surfactant amendments were observed. The same surfactant affected different bacteria in different ways. The response to the surfactant amendment depended on the physiological state of the bacteria. The results showed that surfactants resulted in decreased cell adhesion to the oil phase for all the bacteria. 19 refs., 3 tabs., 4 figs

  6. Oxidative stress in cerebral small vessel disease. Role of reactive species.

    Science.gov (United States)

    Grochowski, Cezary; Litak, Jakub; Kamieniak, Piotr; Maciejewski, Ryszard

    2018-01-01

    Cerebral small vessel disease (CSVD) is a wide term describing the condition affecting perforating arterial branches as well as arterioles, venules, and capillaries. Cerebral vascular net is one of the main targets of localised oxidative stress processes causing damage to vasculature, changes in the blood flow and blood-brain barrier and, in consequence, promoting neurodegenerative alterations in the brain tissue. Numerous studies report the fact of oxidation to proteins, sugars, lipids and nucleic acids, occurring in most neurodegenerative diseases mainly in the earliest stages and correlations with the development of cognitive and motor disturbances. The dysfunction of endothelium can be caused by oxidative stress and inflammatory mechanisms as a result of reactions and processes generating extensive reactive oxygen species (ROS) production such as high blood pressure, oxidised low density lipoproteins (oxLDL), very low density lipoproteins (vLDL), diabetes, homocysteinaemia, smoking, and infections. Several animal studies show positive aspects of ROS, especially within cerebral vasculature.

  7. Biochemical leaf traits as indicators of tolerance potential in tree species from the Brazilian Atlantic Forest against oxidative environmental stressors.

    Science.gov (United States)

    Brandão, Solange E; Bulbovas, Patricia; Lima, Marcos E L; Domingos, Marisa

    2017-01-01

    The tolerance potential against the oxidative injury in native plants from forest ecosystems affected by environmental stressors depends on how efficiently they keep their pro-oxidant/antioxidant balance. Great variations in plant tolerance are expected, highlighting the higher relevance of measuring biochemical leaf trait indicators of oxidative injury in species with similar functions in the forest than in single species. The use of this functional approach seems very useful in the Brazilian Atlantic Forest because it still holds high plant diversity and was the focus of this study. We aimed at determining the tolerance potential of tree species from the Atlantic Forest remnants in SE Brazil against multiple oxidative environmental stressors. We assumed that pioneer tree species are more tolerant against oxidative stress than non-pioneer tree species and that their tolerance potential vary spatially in response to distinct combined effects of oxidative environmental stressors. The study was carried out in three Atlantic Forest remnants, which differ in physiognomy, species composition, climatic characteristics and air pollution exposure. Leaves of three pioneer and three non-pioneer species were collected from each forest remnant during wet (January 2015) and dry periods (June 2015), for analyses of non-enzymatic and enzymatic antioxidants and oxidative injury indicators. Both hypotheses were confirmed. The pioneer tree species displayed biochemical leaf traits (e.g. high levels of ascorbic acid, glutathione and carotenoids and lower lipid peroxidation) that indicate their higher potential tolerance against oxidative environmental stressors than non-pioneer species. The biochemical leaf traits of both successional groups of species varied between the forest remnants, in response to a linear combination of oxidative environmental stressors, from natural (relative humidity and temperature) and anthropogenic sources (ozone and nitrogen dioxide). Copyright © 2016

  8. Oxidative Stability of Tc(I) Tricarbonyl Species Relevant to the Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sayandev [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hall, Gabriel B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walter, Eric D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Washton, Nancy M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-17

    Technetium (Tc), which exists predominately in the liquid supernatant and salt cake fractions of the nuclear tank waste stored at the U.S. DOE Hanford Site, is one of the most difficult contaminants to dispose of and/or remediate. In the strongly alkaline environments prevalent in the tank waste, its dominant chemical form is pertechnetate (TcO4-, oxidation state +7). However, based on experimentation to-date, a significant fraction of the soluble Tc cannot be effectively separated from the wastes and may be present as a non-pertechnetate species. The presence of a non pertechnetate species significantly complicates disposition of low-activity waste (LAW), and the development of methods to either convert them to pertechnetate or to separate the non-pertechnetate species directly is needed. The challenge is the uncertainty regarding the nature and stability of the alkaline-soluble, low-valence, non pertechnetate species in the liquid tank waste. One objective of the Tc management project is to address this knowledge gap. This fiscal year (FY) 2015 report summarizes experimental work exploring the oxidative stability of model low-valence Tc(I) tricarbonyl species, derived from the [Tc(CO)3]+ moiety. These compounds are of interest due to their implied presence in several Hanford tank waste supernatants. Work in part was initiated in FY 2014, and a series of samples containing non-pertechnetate Tc generated ex situ or in situ in pseudo-Hanford tank supernatant simulant solutions was prepared and monitored for oxidation to Tc(VII) (Levitskaia et al. 2014). This experimentation continued in FY 2015, and new series of samples containing Tc(I) as [Tc(CO)3]+•Ligand was tested. The monitoring method used for these studies was a combination of 99Tc NMR and EPR spectroscopies.

  9. Nitric Oxide and Reactive Oxygen Species in the Pathogenesis of Preeclampsia

    Directory of Open Access Journals (Sweden)

    Keiichi Matsubara

    2015-03-01

    Full Text Available Preeclampsia (PE is characterized by disturbed extravillous trophoblast migration toward uterine spiral arteries leading to increased uteroplacental vascular resistance and by vascular dysfunction resulting in reduced systemic vasodilatory properties. Its pathogenesis is mediated by an altered bioavailability of nitric oxide (NO and tissue damage caused by increased levels of reactive oxygen species (ROS. Furthermore, superoxide (O2− rapidly inactivates NO and forms peroxynitrite (ONOO−. It is known that ONOO− accumulates in the placental tissues and injures the placental function in PE. In addition, ROS could stimulate platelet adhesion and aggregation leading to intravascular coagulopathy. ROS-induced coagulopathy causes placental infarction and impairs the uteroplacental blood flow in PE. The disorders could lead to the reduction of oxygen and nutrients required for normal fetal development resulting in fetal growth restriction. On the other hand, several antioxidants scavenge ROS and protect tissues against oxidative damage. Placental antioxidants including catalase, superoxide dismutase (SOD, and glutathione peroxidase (GPx protect the vasculature from ROS and maintain the vascular function. However, placental ischemia in PE decreases the antioxidant activity resulting in further elevated oxidative stress, which leads to the appearance of the pathological conditions of PE including hypertension and proteinuria. Oxidative stress is defined as an imbalance between ROS and antioxidant activity. This review provides new insights about roles of oxidative stress in the pathophysiology of PE.

  10. Low temperature diffusion of hydrogenic species in oxide crystals: Radiation induced diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. [Oak Ridge National Lab., TN (United States); Gonzalez, R. [Universidad `Carlos III` de Madrid (Spain). Dept. de Ingenieria

    1993-10-01

    Normally stable configurations of substitutional protons or deuterons in oxide crystal become highly unstable during ionizing radiation at room temperature, resulting in the displacements of these species. The cross section for radiation-induced-displacements of protons is exceedingly large and is a strong function of temperature. The displacement cross section of protons from cation sites is twice that of deuterons. Diffusion of these species can be induced at temperatures not otherwise possible by thermal means. For example, using electron irradiation near room temperature the O-H bond is readily broken and the hydrogenic species can be channeled along the c-axis in TiO{sub 2} by an applied electric field. Radiation induced displacements of protons from anion sites (hydride ions) at room temperature are also discussed.

  11. Rethinking Dithiothreitol-Based Particulate Matter Oxidative Potential: Measuring Dithiothreitol Consumption versus Reactive Oxygen Species Generation.

    Science.gov (United States)

    Xiong, Qianshan; Yu, Haoran; Wang, Runran; Wei, Jinlai; Verma, Vishal

    2017-06-06

    We measured the rate of generation of reactive oxygen species (ROS) [hydroxyl radicals ( • OH) and hydrogen peroxide (H 2 O 2 )] catalyzed by ambient particulate matter (PM) in the dithiothreitol (DTT) assay. To understand the mechanism of ROS generation, we tested several redox-active substances, such as 9,10-phenanthrenequinone (PQ), 5-hydroxy-1,4-naphthoquinone (5H-1,4NQ), 1,2-naphthoquinone (1,2-NQ), 1,4-naphthoquinone (1,4-NQ), copper(II), manganese(II), and iron (II and III). Both pure compounds and their mixtures show different patterns in DTT oxidation versus ROS generation. The quinones, known to oxidize DTT in the efficiency order of PQ > 5H-1,4NQ > 1,2-NQ > 1,4-NQ, show a different efficiency order (5H-1,4NQ > 1,2-NQ ≈ PQ > 1,4-NQ) in the ROS generation. Cu(II), a dominant metal in DTT oxidation, contributes almost negligibly to the ROS generation. Fe is mostly inactive in DTT oxidation, but shows synergistic effect in • OH formation in the presence of other quinones (mixture/sum > 1.5). Ten ambient PM samples collected from an urban site were analyzed, and although DTT oxidation was significantly correlated with H 2 O 2 generation (Pearson's r = 0.91), no correlation was observed between DTT oxidation and • OH formation. Our results show that measuring both DTT consumption and ROS generation in the DTT assay is important to incorporate the synergistic contribution from different aerosol components and to provide a more inclusive picture of the ROS activity of ambient PM.

  12. Oxidative Stress in the Developing Rat Brain due to Production of Reactive Oxygen and Nitrogen Species.

    Science.gov (United States)

    Wilhelm, Jiří; Vytášek, Richard; Uhlík, Jiří; Vajner, Luděk

    2016-01-01

    Oxidative stress after birth led us to localize reactive oxygen and nitrogen species (RONS) production in the developing rat brain. Brains were assessed a day prenatally and on postnatal days 1, 2, 4, 8, 14, 30, and 60. Oxidation of dihydroethidium detected superoxide; 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate revealed hydrogen peroxide; immunohistochemical proof of nitrotyrosine and carboxyethyllysine detected peroxynitrite formation and lipid peroxidation, respectively. Blue autofluorescence detected protein oxidation. The foetuses showed moderate RONS production, which changed cyclically during further development. The periods and sites of peak production of individual RONS differed, suggesting independent generation. On day 1, neuronal/glial RONS production decreased indicating that increased oxygen concentration after birth did not cause oxidative stress. Dramatic changes in the amount and the sites of RONS production occurred on day 4. Nitrotyrosine detection reached its maximum. Day 14 represented other vast alterations in RONS generation. Superoxide production in arachnoidal membrane reached its peak. From this day on, the internal elastic laminae of blood vessels revealed the blue autofluorescence. The adult animals produced moderate levels of superoxide; all other markers reached their minimum. There was a strong correlation between detection of nitrotyrosine and carboxyethyllysine probably caused by lipid peroxidation initiated with RONS.

  13. Oxidative Stress in the Developing Rat Brain due to Production of Reactive Oxygen and Nitrogen Species

    Directory of Open Access Journals (Sweden)

    Jiří Wilhelm

    2016-01-01

    Full Text Available Oxidative stress after birth led us to localize reactive oxygen and nitrogen species (RONS production in the developing rat brain. Brains were assessed a day prenatally and on postnatal days 1, 2, 4, 8, 14, 30, and 60. Oxidation of dihydroethidium detected superoxide; 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate revealed hydrogen peroxide; immunohistochemical proof of nitrotyrosine and carboxyethyllysine detected peroxynitrite formation and lipid peroxidation, respectively. Blue autofluorescence detected protein oxidation. The foetuses showed moderate RONS production, which changed cyclically during further development. The periods and sites of peak production of individual RONS differed, suggesting independent generation. On day 1, neuronal/glial RONS production decreased indicating that increased oxygen concentration after birth did not cause oxidative stress. Dramatic changes in the amount and the sites of RONS production occurred on day 4. Nitrotyrosine detection reached its maximum. Day 14 represented other vast alterations in RONS generation. Superoxide production in arachnoidal membrane reached its peak. From this day on, the internal elastic laminae of blood vessels revealed the blue autofluorescence. The adult animals produced moderate levels of superoxide; all other markers reached their minimum. There was a strong correlation between detection of nitrotyrosine and carboxyethyllysine probably caused by lipid peroxidation initiated with RONS.

  14. Identification of Subnanometric Ag Species, Their Interaction with Supports and Role in Catalytic CO Oxidation

    Directory of Open Access Journals (Sweden)

    Yulia Kotolevich

    2016-04-01

    Full Text Available The nature and size of the real active species of nanoparticulated metal supported catalysts is still an unresolved question. The technique of choice to measure particle sizes at the nanoscale, HRTEM, has a practical limit of 1 nm. This work is aimed to identify the catalytic role of subnanometer species and methods to detect and characterize them. In this frame, we investigated the sensitivity to redox pretreatments of Ag/Fe/TiO2, Ag/Mg/TiO2 and Ag/Ce/TiO2 catalysts in CO oxidation. The joint application of HRTEM, SR-XRD, DRS, XPS, EXAFS and XANES methods indicated that most of the silver in all samples is in the form of Ag species with size <1 nm. The differences in catalytic properties and sensitivity to pretreatments, observed for the studied Ag catalysts, could not be explained taking into account only the Ag particles whose size distribution is measured by HRTEM, but may be explained by the presence of the subnanometer Ag species, undetectable by HRTEM, and their interaction with supports. This result highlights their role as active species and the need to take them into account to understand integrally the catalysis by supported nanometals.

  15. Fluorinated methacrylamide chitosan sequesters reactive oxygen species to relieve oxidative stress while delivering oxygen.

    Science.gov (United States)

    Patil, Pritam S; Leipzig, Nic D

    2017-08-01

    Antioxidants play an important role in regulating overabundant reactive oxygen species (ROS) in wound healing to reduce oxidative stress and inflammation. In this work, we demonstrate for the first time that functionalization of methacrylamide chitosan (MAC) with aliphatic pentadecafluoro chains, to synthesize pentadecafluoro-octanoyl methacrylamide chitosan (MACF), enhances the antioxidant capacity of the MAC base hydrogel material, while being able to deliver oxygen for future enhanced wound healing applications. As such, MACF was shown to sequester more nitric oxide (p oxygen. MACF's beneficial antioxidant capacity was further confirmed in in vitro cell culture experiments using human dermal fibroblasts stressed with 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2368-2374, 2017. © 2017 Wiley Periodicals, Inc.

  16. Nature of active tin species and promoting effect of nickle in silica supported tin oxide for dehydrogenation of propane

    Science.gov (United States)

    Wang, Haoren; Wang, Hui; Li, Xiuyi; Li, Chunyi

    2017-06-01

    Different with Wang et. al.'s study, we found that polymeric Si-O-Sn2+ rather than Ni-Sn alloy and metallic Sn are active species in silica-supported tin oxide catalysts for dehydrogenation of propane. The results showed that high surface area of mesoporous silica brought about high dispersion of tin oxide species, as a result, catalytic activity and stability were both improved. DRUV-vis, XPS, TPR and XRD studies of fresh and reduced catalysts indicated that the deactivation was related to the reduction of active species rather than the coke formation since active tin species cannot maintain its oxidation state at reaction conditions (high temperature and reducing atmosphere). The formed Ni3Sn2 alloy after reduction just functioned as promoter which accelerated the desorption of H2 and regeneration of active site. A synergy effect between active tin species and Ni3Sn2 alloy were observed.

  17. Low glucose induces mitochondrial reactive oxygen species via fatty acid oxidation in bovine aortic endothelial cells.

    Science.gov (United States)

    Kajihara, Nobuhiro; Kukidome, Daisuke; Sada, Kiminori; Motoshima, Hiroyuki; Furukawa, Noboru; Matsumura, Takeshi; Nishikawa, Takeshi; Araki, Eiichi

    2017-11-01

    Overproduction of reactive oxygen species (ROS) in endothelial cells (ECs) plays a pivotal role in endothelial dysfunction. Mitochondrial ROS (mtROS) is one of the key players in the pathogenesis of diabetic vascular complications. Hypoglycemia is linked to increased ROS production and vascular events; however, the underlying mechanisms remain unclear. In the present study, we aimed to determine whether and how low glucose (LG) mediates mtROS generation in ECs, and to examine the impact of LG-induced mtROS on endothelial dysfunction. Metabolomic profiling, cellular oxygen consumption rate, mtROS, endothelial nitric oxide synthase phosphorylation, and the expression of vascular cell adhesion molecule-1 or intercellular adhesion molecule-1 were evaluated in bovine aortic ECs. We found that LG increased mtROS generation in ECs; which was suppressed by overexpression of manganese superoxide dismutase. Comprehensive metabolic analysis using capillary electrophoresis-mass spectrometry and oxygen consumption rate assessment showed that the pathway from fatty acid to acetyl-CoA through fatty acid oxidation was upregulated in ECs under LG conditions. In addition, etomoxir, a specific inhibitor of the free fatty acid transporter, decreased LG-induced mtROS production. These results suggested that LG increased mtROS generation through activation of fatty acid oxidation. We further revealed that LG inhibited endothelial nitric oxide synthase phosphorylation, and increased the expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1. These effects were suppressed either by overexpression of manganese superoxide dismutase or by treatment with etomoxir. The activation of fatty acid oxidation followed by mtROS production could be one of the causes for endothelial dysfunction during hypoglycemia. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  18. Mechanistic investigation of Fe(III) oxide reduction by low molecular weight organic sulfur species

    Science.gov (United States)

    Eitel, Eryn M.; Taillefert, Martial

    2017-10-01

    Low molecular weight organic sulfur species, often referred to as thiols, are known to be ubiquitous in aquatic environments and represent important chemical reductants of Fe(III) oxides. Thiols are excellent electron shuttles used during dissimilatory iron reduction, and in this capacity could indirectly affect the redox state of sediments, release adsorbed contaminants via reductive dissolution, and influence the carbon cycle through alteration of bacterial respiration processes. Interestingly, the reduction of Fe(III) oxides by thiols has not been previously investigated in environmentally relevant conditions, likely due to analytical limitations associated with the detection of thiols and their oxidized products. In this study, a novel electrochemical method was developed to simultaneously determine thiol/disulfide pair concentrations in situ during the reduction of ferrihydrite in batch reactors. First order rate laws with respect to initial thiol concentration were confirmed for Fe(III) oxyhydroxide reduction by four common thiols: cysteine, homocysteine, cysteamine, and glutathione. Zero order was determined for both Fe(III) oxyhydroxide and proton concentration at circumneutral pH. A kinetic model detailing the molecular mechanism of the reaction was optimized with proposed intermediate surface structures. Although metal oxide overall reduction rate constants were inversely proportional to the complexity of the thiol structure, the extent of metal reduction increased with structure complexity, indicating that surface complexes play a significant role in the ability of these thiols to reduce iron. Taken together, these results demonstrate the importance of considering the molecular reaction mechanism at the iron oxide surface when investigating the potential for thiols to act as electron shuttles during dissimilatory iron reduction in natural environments.

  19. Antimicrobial Effect of Copper Oxide Nanoparticles on Some Oral Bacteria and Candida Species

    Directory of Open Access Journals (Sweden)

    Amiri M

    2017-03-01

    Full Text Available Statement of Problem: Acid producing bacteria including Streptococcus mutans and lactobacilli cause tooth demineralization and lead to tooth decay. Also, oral colonization of the species of Candida has been reported in many studies that are resistant to antifungal agents. Objectives: In this study, antibacterial and antifungal effects of nano-CuO were studied against some oral bacteria and yeast fungi. Materials and Methods: The minimum inhibitory concentrations (MICs of copper oxide nanoparticles (CuO NPs for oral bacterial and fungal test strains were determined in 96-well microtiter plate technique. The agar diffusion test (ADT was employed to assess the antifungal properties of nystatin. Results: The MIC50 value of CuO NPs was determined at the range of 1–10 µg/ml for S. mutans, < 1 µg/ml for L. acidophilus, and 10 µg/ml for L. casei. Higher concentrations of CuO NPs (100-1000 µg/ml were effective on the bacterial cell growth, resulting in 100% reduction in the optical density in TSB medium. The cells of Candida albicans, C. krusei and C. glabrata were treated with CuO NPs and the results showed a decrease in fungal growth at a concentration of 1-1000 µg/ml in TSB medium. The MIC50 value of CuO NPs was determined 1000 µg/ml for three species of Candida. The diameter of growth inhibition zones of 1100 µg/ml nystatin was obtained 15-21 mm for clinical isolates of three species of Candida. Conclusions: With respect to the potential bactericidal activity of CuO NPs on various cariogenic bacteria examined in this study, these NPs could be introduce as a candidate control agent for preventing dental caries or dental infections. In our study, on the other hand, Nano copper oxide had a weak effect on the candida species.

  20. Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy

    Science.gov (United States)

    Wang, Meng; Wu, Xin-Ping; Zheng, Sujuan; Zhao, Li; Li, Lei; Shen, Li; Gao, Yuxian; Xue, Nianhua; Guo, Xuefeng; Huang, Weixin; Gan, Zhehong; Blanc, Frédéric; Yu, Zhiwu; Ke, Xiaokang; Ding, Weiping; Gong, Xue-Qing; Grey, Clare P.; Peng, Luming

    2015-01-01

    Nanostructured oxides find multiple uses in a diverse range of applications including catalysis, energy storage, and environmental management, their higher surface areas, and, in some cases, electronic properties resulting in different physical properties from their bulk counterparts. Developing structure-property relations for these materials requires a determination of surface and subsurface structure. Although microscopy plays a critical role owing to the fact that the volumes sampled by such techniques may not be representative of the whole sample, complementary characterization methods are urgently required. We develop a simple nuclear magnetic resonance (NMR) strategy to detect the first few layers of a nanomaterial, demonstrating the approach with technologically relevant ceria nanoparticles. We show that the 17O resonances arising from the first to third surface layer oxygen ions, hydroxyl sites, and oxygen species near vacancies can be distinguished from the oxygen ions in the bulk, with higher-frequency 17O chemical shifts being observed for the lower coordinated surface sites. H217O can be used to selectively enrich surface sites, allowing only these particular active sites to be monitored in a chemical process. 17O NMR spectra of thermally treated nanosized ceria clearly show how different oxygen species interconvert at elevated temperature. Density functional theory calculations confirm the assignments and reveal a strong dependence of chemical shift on the nature of the surface. These results open up new strategies for characterizing nanostructured oxides and their applications. PMID:26601133

  1. Oxygen reactivity of PutA from Helicobacter species and proline-linked oxidative stress.

    Science.gov (United States)

    Krishnan, Navasona; Becker, Donald F

    2006-02-01

    Proline is converted to glutamate in two successive steps by the proline utilization A (PutA) flavoenzyme in gram-negative bacteria. PutA contains a proline dehydrogenase domain that catalyzes the flavin adenine dinucleotide (FAD)-dependent oxidation of proline to delta1-pyrroline-5-carboxylate (P5C) and a P5C dehydrogenase domain that catalyzes the NAD+-dependent oxidation of P5C to glutamate. Here, we characterize PutA from Helicobacter hepaticus (PutA(Hh)) and Helicobacter pylori (PutA(Hp)) to provide new insights into proline metabolism in these gastrointestinal pathogens. Both PutA(Hh) and PutA(Hp) lack DNA binding activity, in contrast to PutA from Escherichia coli (PutA(Ec)), which both regulates and catalyzes proline utilization. PutA(Hh) and PutA(Hp) display catalytic activities similar to that of PutA(Ec) but have higher oxygen reactivity. PutA(Hh) and PutA(Hp) exhibit 100-fold-higher turnover numbers (approximately 30 min(-1)) than PutA(Ec) (PutA(Hh) forms a reversible FAD-sulfite adduct. The significance of increased oxygen reactivity in PutA(Hh) and PutA(Hp) was probed by oxidative stress studies in E. coli. Expression of PutA(Ec) and PutA from Bradyrhizobium japonicum, which exhibit low oxygen reactivity, does not diminish stress survival rates of E. coli cell cultures. In contrast, PutA(Hp) and PutA(Hh) expression dramatically reduces E. coli cell survival and is correlated with relatively lower proline levels and increased hydrogen peroxide formation. The discovery of reduced oxygen species formation by PutA suggests that proline catabolism may influence redox homeostasis in the ecological niches of these Helicobacter species.

  2. Oxidation and evaporation of sulfur species at atmospheric entry of iron sulfide fine particles

    Science.gov (United States)

    Isobe, H.; Murozono, K.

    2017-12-01

    Micrometeorites have the most abundant flux in current accumulation of planetary materials to the Earth. Micrometeorites are heated and reacted with upper atmosphere at atmospheric entry. Evaporation of meteoritic materials, especially sulfur species, may have environmental effect at upper atmosphere (e.g. Court and Sephton, 2011; Tomkins et al., 2016). Troilite is typical FeS phase in chondritic meteorites. In this study, quick heating and cooling experiments of FeS reagent particles were carried out with a fine particles free falling apparatus with controlled gas flow (Isobe and Gondo, 2013). Starting material reagent is inhomogeneous mixture of troilite, iron oxide and iron metal. Oxygen fugacity was controlled to FMQ +1.5 log unit. Maximum temperature of the particles was higher than 1400°C for approximately 0.5 seconds. Run products with rounded shape and smooth surface show the particles were completely melted. Chemical compositions of particles analyzed on cross sections are generally well homogenized from inhomogeneous starting materials by complete melting. Molar ratios of Fe in melted regions are close to 0.5, while compositions of S and O are various. Varieties of S and O compositions show various degree of oxidation and evaporation of sulfur. Distribution of compositions of melted regions in Fe-S-O system is plotted in liquidus compositions of FeO and FeS saturated melt. Troilite in micrometeorite is melted and oxidized by atmospheric entry. Compositions of FeS melt in fine spherules are following Fe-S-O phase relations even in a few seconds. Molar ratios of Fe in melt are close to 0.5, while compositions of S and O are various. Varieties of S and O compositions show various degree of oxidation and evaporation of sulfur. Evaporation of sulfur from meteoritic materials in atmospheric entry heating may depend on oxygen fugacity of the upper atmosphere. Sulfur supply from meteoritic materials to atmosphere may be limited on planets with oxygen

  3. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates

    Directory of Open Access Journals (Sweden)

    Casey L. Quinlan

    2013-01-01

    Full Text Available Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H2O2 production from different defined sites in rat skeletal muscle mitochondria oxidizing a variety of conventional substrates in the absence of added inhibitors: succinate; glycerol 3-phosphate; palmitoylcarnitine plus carnitine; or glutamate plus malate. In all cases, the sum of the estimated rates accounted fully for the measured overall rates. There were two striking results. First, the overall rates differed by an order of magnitude between substrates. Second, the relative contribution of each site was very different with different substrates. During succinate oxidation, most of the superoxide production was from the site of quinone reduction in complex I (site IQ, with small contributions from the flavin site in complex I (site IF and the quinol oxidation site in complex III (site IIIQo. However, with glutamate plus malate as substrate, site IQ made little or no contribution, and production was shared between site IF, site IIIQo and 2-oxoglutarate dehydrogenase. With palmitoylcarnitine as substrate, the flavin site in complex II (site IIF was a major contributor (together with sites IF and IIIQo, and with glycerol 3-phosphate as substrate, five different sites all contributed, including glycerol 3-phosphate dehydrogenase. Thus, the relative and absolute contributions of specific sites to the production of reactive oxygen species in isolated mitochondria depend very strongly on the substrates being oxidized, and the same is likely true in cells and in vivo.

  4. Investigation of atmospheric particle-bound reactive oxidative species (ROS): Their sources, characterization, and measurement

    Science.gov (United States)

    Venkatachari, Prasanna

    The relationships between the observed ROS concentrations in the New York City PMTACS study and various other atmospheric indicator species such as O3, HOx radicals, organic carbon (OC), elemental carbon (EC) and secondary organic carbon (SOC), as well as the statistical significance of any observable correlations were explored. A statistically significant moderate positive correlation between the O3 and the ROS concentrations, that indicated the local intensity of photochemistry was a moderate factor affecting the formation of particulate ROS in the daytime atmosphere, was observed. The results of the comparison between ROS and HO x concentrations indicated the existence of, at best, a weak positive correlation. The lack of a more positive correlation of the particle-bound ROS, both with ozone as well as other gas phase oxidants, showed the decoupling of the particulate matter ROS from the gas phase oxidants. The comparison of ROS concentrations with OC, EC, and SOC concentrations revealed a statistically significant relationship (P-value generator was developed, that could deliver known exposures of ROS. It was seen that the system was generally stable with an average ROS generation capability of 5.6 nanomoles of equivalent H2O2/m3 of (aerosol+ozone) flow sampled. Additionally, the alpha-pinene-O3 oxidation chemical system, used in the ROS generator, was studied to elucidate the structures of reaction products using liquid chromatography-multiple stage mass spectrometry (LC/MSn). The classes of compounds identified based on their multiple stage-MS fragmentation patterns, mechanistic considerations of alpha-pinene-O 3 oxidation, and general fragmentation rules, of the products from this reaction system were highly oxygenated species, predominantly containing hydroperoxide and peroxide functional groups. The oxidant species observed were clearly stable for the 1-3 hrs that elapsed during aerosol collection and analysis, and probably for much longer, thus rendering

  5. Enhanced innate immune responses in a brood parasitic cowbird species: degranulation and oxidative burst

    Science.gov (United States)

    Hahn, D. Caldwell; Summers, Scott G.; Genovese, Kenneth J.; He, Haiqi; Kogut, Michael H.

    2013-01-01

    We examined the relative effectiveness of two innate immune responses in two species of New World blackbirds (Passeriformes, Icteridae) that differ in resistance to West Nile virus (WNV). We measured degranulation and oxidative burst, two fundamental components of phagocytosis, and we predicted that the functional effectiveness of these innate immune responses would correspond to the species' relative resistance to WNV. The brown-headed cowbird (Molothrus ater), an obligate brood parasite, had previously shown greater resistance to infection with WNV, lower viremia and faster recovery when infected, and lower subsequent antibody titers than the red-winged blackbird (Agelaius phoeniceus), a close relative that is not a brood parasite. We found that cowbird leukocytes were significantly more functionally efficient than those of the blackbird leukocytes and 50% more effective at killing the challenge bacteria. These results suggest that further examination of innate immunity in the cowbird may provide insight into adaptations that underlie its greater resistance to WNV. These results support an eco-immunological interpretation that species like the cowbird, which inhabit ecological niches with heightened exposure to parasites, experience evolutionary selection for more effective immune responses.

  6. Comparative Genome Analysis of Three Thiocyanate Oxidizing Thioalkalivibrio Species Isolated from Soda Lakes

    Science.gov (United States)

    Berben, Tom; Overmars, Lex; Sorokin, Dimitry Y.; Muyzer, Gerard

    2017-01-01

    Thiocyanate is a C1 compound containing carbon, nitrogen, and sulfur. It is a (by)product in a number of natural and industrial processes. Because thiocyanate is toxic to many organisms, including humans, its removal from industrial waste streams is an important problem. Although a number of bacteria can use thiocyanate as a nitrogen source, only a few can use it as an electron donor. There are two distinct pathways to use thiocyanate: (i) the “carbonyl sulfide pathway,” which has been extensively studied, and (ii) the “cyanate pathway,” whose key enzyme, thiocyanate dehydrogenase, was recently purified and studied. Three species of Thioalkalivibrio, a group of haloalkaliphilic sulfur-oxidizing bacteria isolated from soda lakes, have been described as thiocyanate oxidizers: (i) Thioalkalivibrio paradoxus (“cyanate pathway”), (ii) Thioalkalivibrio thiocyanoxidans (“cyanate pathway”) and (iii) Thioalkalivibrio thiocyanodenitrificans (“carbonyl sulfide pathway”). In this study we provide a comparative genome analysis of these described thiocyanate oxidizers, with genomes ranging in size from 2.5 to 3.8 million base pairs. While focusing on thiocyanate degradation, we also analyzed the differences in sulfur, carbon, and nitrogen metabolism. We found that the thiocyanate dehydrogenase gene is present in 10 different Thioalkalivibrio strains, in two distinct genomic contexts/genotypes. The first genotype is defined by having genes for flavocytochrome c sulfide dehydrogenase upstream from the thiocyanate dehydrogenase operon (present in two strains including the type strain of Tv. paradoxus), whereas in the second genotype these genes are located downstream, together with two additional genes of unknown function (present in eight strains, including the type strains of Tv. thiocyanoxidans). Additionally, we found differences in the presence/absence of genes for various sulfur oxidation pathways, such as sulfide:quinone oxidoreductase, dissimilatory

  7. Emissions of nitric oxide from 79 plant species in response to simulated nitrogen deposition.

    Science.gov (United States)

    Chen, Juan; Wu, Fei-Hua; Liu, Ting-Wu; Chen, Lei; Xiao, Qiang; Dong, Xue-Jun; He, Jun-Xian; Pei, Zhen-Ming; Zheng, Hai-Lei

    2012-01-01

    To assess the potential contribution of nitric oxide (NO) emission from the plants grown under the increasing nitrogen (N) deposition to atmospheric NO budget, the effects of simulated N deposition on NO emission and various leaf traits (e.g., specific leaf area, leaf N concentration, net photosynthetic rate, etc.) were investigated in 79 plant species classified by 13 plant functional groups. Simulated N deposition induced the significant increase of NO emission from most functional groups, especially from conifer, gymnosperm and C(3) herb. Moreover, the change rate of NO emission was significantly correlated with the change rate of various leaf traits. We conclude that the plants grown under atmospheric N deposition, especially in conifer, gymnosperm and C(3) herb, should be taken into account as an important biological source of NO and potentially contribute to atmospheric NO budget. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Oxidative and nitrosative stress defences of Helicobacter and Campylobacter species that counteract mammalian immunity.

    Science.gov (United States)

    Flint, Annika; Stintzi, Alain; Saraiva, Lígia M

    2016-11-01

    Helicobacter and Campylobacter species are Gram-negative microaerophilic host-associated heterotrophic bacteria that invade the digestive tract of humans and animals. Campylobacter jejuni is the major worldwide cause of foodborne gastroenteritis in humans, while Helicobacter pylori is ubiquitous in over half of the world's population causing gastric and duodenal ulcers. The colonisation of the gastrointestinal system by Helicobacter and Campylobacter relies on numerous cellular defences to sense the host environment and respond to adverse conditions, including those imposed by the host immunity. An important antimicrobial tool of the mammalian innate immune system is the generation of harmful oxidative and nitrosative stresses to which pathogens are exposed during phagocytosis. This review summarises the regulators, detoxifying enzymes and subversion mechanisms of Helicobacter and Campylobacter that ultimately promote the successful infection of humans.

  9. Anionic Cerium Oxide Nanoparticles Protect Plant Photosynthesis from Abiotic Stress by Scavenging Reactive Oxygen Species.

    Science.gov (United States)

    Wu, Honghong; Tito, Nicholas; Giraldo, Juan P

    2017-11-28

    Plant abiotic stress leads to accumulation of reactive oxygen species (ROS) and a consequent decrease in photosynthetic performance. We demonstrate that a plant nanobionics approach of localizing negatively charged, sub-11 nm, spherical cerium oxide nanoparticles (nanoceria) inside chloroplasts in vivo augments ROS scavenging and photosynthesis of Arabidopsis thaliana plants under excess light (2000 μmol m -2 s -1 , 1.5 h), heat (35 °C, 2.5 h), and dark chilling (4 °C, 5 days). Poly(acrylic acid) nanoceria (PNC) with a hydrodynamic diameter (10.3 nm)-lower than the maximum plant cell wall porosity-and negative ζ-potential (-16.9 mV) exhibit significantly higher colocalization (46%) with chloroplasts in leaf mesophyll cells than aminated nanoceria (ANC) (27%) of similar size (12.6 nm) but positive charge (9.7 mV). Nanoceria are transported into chloroplasts via nonendocytic pathways, influenced by the electrochemical gradient of the plasma membrane potential. PNC with a low Ce 3+ /Ce 4+ ratio (35.0%) reduce leaf ROS levels by 52%, including hydrogen peroxide, superoxide anion, and hydroxyl radicals. For the latter ROS, there is no known plant enzyme scavenger. Plants embedded with these PNC that were exposed to abiotic stress exhibit an increase up to 19% in quantum yield of photosystem II, 67% in carbon assimilation rates, and 61% in Rubisco carboxylation rates relative to plants without nanoparticles. In contrast, PNC with high Ce 3+ /Ce 4+ ratio (60.8%) increase overall leaf ROS levels and do not protect photosynthesis from oxidative damage during abiotic stress. This study demonstrates that anionic, spherical, sub-11 nm PNC with low Ce 3+ /Ce 4+ ratio can act as a tool to study the impact of oxidative stress on plant photosynthesis and to protect plants from abiotic stress.

  10. Reactive Oxygene Species and Thioredoxin Activity in Plants at Development of Hypergravity and Oxidative Stresses

    Science.gov (United States)

    Jadko, Sergiy

    Early increasing of reactive oxygen species (ROS) content, including H2O2, occurs in plant cells under various impacts and than these ROS can function as signaling molecules in starting of cell stress responses. At the same time thioredoxins (TR) are significant ROS and H2O2 sensors and transmitters to activation of various redox sensitive proteins, transcription factors and MAP kinases. This study was aimed to investigate early increasing of ROS and H2O2 contents and TR activity in the pea roots and in tissue culture under hypergravity and oxidative stresses. Pea roots of 3-5 days old seedlings and 12-14 days old tissue culture of Arabidopsis thaliana were studied. The pea seedlings were grown on wet filter paper and the tissue culture was grown on MS medium in dark conditions under 24oC. Hypergravity stress was induced by centrifugation at 10 and 15 g. Chemiluminescence (ChL) intensity for ROS concentration, H2O2 content and TR activity were determined. All experiments were repeated by 3-5 times. Early and reliable increasing of ChL intensity and H2O2 contents in the pea roots and in the tissue culture took place under hypergravity and oxidative stresses to 30, 60 and 90 min. At the same time TR activity increased on 11 and 19 percents only to 60 and 90 min. Thus under hypergravity and oxidative stresses in both investigated plants take place early increasing of ROS and H2O2 contents which as second messengers lead to increasing of TR activity with creating of ROS-TR stress signaling pathway.

  11. New insights into reactive oxygen species and nitric oxide signalling under low oxygen in plants.

    Science.gov (United States)

    Pucciariello, Chiara; Perata, Pierdomenico

    2017-04-01

    Plants produce reactive oxygen species (ROS) when exposed to low oxygen (O 2 ). Much experimental evidence has demonstrated the existence of an oxidative burst when there is an O 2 shortage. This originates at various subcellular sites. The activation of NADPH oxidase(s), in complex with other proteins, is responsible for ROS production at the plasma membrane. Another source of low O 2 -dependent ROS is the mitochondrial electron transport chain, which misfunctions when low O 2 limits its activity. Arabidopsis mutants impaired in proteins playing a role in ROS production display an intolerant phenotype to anoxia and submergence, suggesting a role in acclimation to stress. In rice, the presence of the submergence 1A (SUB1A) gene for submergence tolerance is associated with a higher capacity to scavenge ROS. Additionally, the destabilization of group VII ethylene responsive factors, which are involved in the direct O 2 sensing mechanism, requires nitric oxide (NO). All this evidence suggests the existence of a ROS and NO - low O 2 mechanism interplay which likely includes sensing, anaerobic metabolism and acclimation to stress. In this review, we summarize the most recent findings on this topic, formulating hypotheses on the basis of the latest advances. © 2016 John Wiley & Sons Ltd.

  12. Interaction between Mitochondrial Reactive Oxygen Species, Heme Oxygenase, and Nitric Oxide Synthase Stimulates Phagocytosis in Macrophages

    Directory of Open Access Journals (Sweden)

    Andrea Müllebner

    2018-01-01

    Full Text Available BackgroundMacrophages are cells of the innate immune system that populate every organ. They are required not only for defense against invading pathogens and tissue repair but also for maintenance of tissue homeostasis and iron homeostasis.AimThe aim of this study is to understand whether heme oxygenase (HO and nitric oxide synthase (NOS contribute to the regulation of nicotinamide adenine dinucleotide phosphate oxidase (NOX activity and phagocytosis, two key components of macrophage function.MethodsThis study was carried out using resting J774A.1 macrophages treated with hemin or vehicle. Activity of NOS, HO, or NOX was inhibited using specific inhibitors. Reactive oxygen species (ROS formation was determined by Amplex® red assay, and phagocytosis was measured using fluorescein isothiocyanate-labeled bacteria. In addition, we analyzed the fate of the intracellular heme by using electron spin resonance.ResultsWe show that both enzymes NOS and HO are essential for phagocytic activity of macrophages. NOS does not directly affect phagocytosis, but stimulates NOX activity via nitric oxide-triggered ROS production of mitochondria. Treatment of macrophages with hemin results in intracellular accumulation of ferrous heme and an inhibition of phagocytosis. In contrast to NOS, HO products, including carbon monoxide, neither clearly affect NOX activity nor clearly affect phagocytosis, but phagocytosis is accelerated by HO-mediated degradation of heme.ConclusionBoth enzymes contribute to the bactericidal activity of macrophages independently, by controlling different pathways.

  13. Antioxidant, antityrosinase, anticholinesterase, and nitric oxide inhibition activities of three malaysian macaranga species.

    Science.gov (United States)

    Mazlan, Nor Aishah; Mediani, Ahmed; Abas, Faridah; Ahmad, Syahida; Shaari, Khozirah; Khamis, Shamsul; Lajis, N H

    2013-01-01

    The methanol extracts of three Macaranga species (M. denticulata, M. pruinosa, and M. gigantea) were screened to evaluate their total phenolic contents and activities as cholinesterase inhibitors, nitric oxide (NO) production inhibitors, tyrosinase inhibitors, and antioxidants. The bark of M. denticulata showed the highest total phenolic content (2682 mg gallic acid equivalent (GAE)/100 g) and free radical scavenging activity (IC50 = 0.063 mg/mL). All of the samples inhibited linoleic acid peroxidation by greater than 80%, with the leaves of M. gigantea exhibiting the highest inhibition of 92.21%. Most of the samples exhibited significant antioxidant potential. The bark of M. denticulata and the leaves of both M. pruinosa and M. gigantea exhibited greater than 50% tyrosinase inhibition, with the bark of M. denticulata having the highest percentage of inhibition (68.7%). The bark and leaves of M. denticulata exhibited greater than 50% inhibition (73.82% and 54.50%, resp.) of the acetylcholinesterase enzyme (AChE), while none of the samples showed any significant inhibition of butyrylcholinesterase (BChE). Only the bark of M. denticulata and M. gigantea displayed greater than 50% inhibition of nitric oxide production in cells (81.79% and 56.51%, resp.). These bioactivities indicate that some Macaranga spp. have therapeutic potential in medicinal research.

  14. Antioxidant, Antityrosinase, Anticholinesterase, and Nitric Oxide Inhibition Activities of Three Malaysian Macaranga Species

    Directory of Open Access Journals (Sweden)

    Nor Aishah Mazlan

    2013-01-01

    Full Text Available The methanol extracts of three Macaranga species (M. denticulata, M. pruinosa, and M. gigantea were screened to evaluate their total phenolic contents and activities as cholinesterase inhibitors, nitric oxide (NO production inhibitors, tyrosinase inhibitors, and antioxidants. The bark of M. denticulata showed the highest total phenolic content (2682 mg gallic acid equivalent (GAE/100 g and free radical scavenging activity (IC50 = 0.063 mg/mL. All of the samples inhibited linoleic acid peroxidation by greater than 80%, with the leaves of M. gigantea exhibiting the highest inhibition of 92.21%. Most of the samples exhibited significant antioxidant potential. The bark of M. denticulata and the leaves of both M. pruinosa and M. gigantea exhibited greater than 50% tyrosinase inhibition, with the bark of M. denticulata having the highest percentage of inhibition (68.7%. The bark and leaves of M. denticulata exhibited greater than 50% inhibition (73.82% and 54.50%, resp. of the acetylcholinesterase enzyme (AChE, while none of the samples showed any significant inhibition of butyrylcholinesterase (BChE. Only the bark of M. denticulata and M. gigantea displayed greater than 50% inhibition of nitric oxide production in cells (81.79% and 56.51%, resp.. These bioactivities indicate that some Macaranga spp. have therapeutic potential in medicinal research.

  15. Thermoelectric misfit-layered cobalt oxides with interlayers of hydroxide and peroxide species

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Ta-Lei; Lybeck, Jenni [Laboratory of Inorganic Chemistry, Department of Chemistry, Aalto University, FI-00076 Aalto (Finland); Chan, Ting-Shan [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Hsu, Ying-Ya [Program for Science and Technology of Accelerator Light Source, National Chiao Tung University, Hsinchu 30076, Taiwan (China); Tewari, Girish C.; Rautama, Eeva-Leena; Yamauchi, Hisao [Laboratory of Inorganic Chemistry, Department of Chemistry, Aalto University, FI-00076 Aalto (Finland); Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi [Laboratory of Inorganic Chemistry, Department of Chemistry, Aalto University, FI-00076 Aalto (Finland)

    2013-12-15

    Among the thermoelectric misfit-layered cobalt oxides, [M{sub m}A{sub 2}O{sub m+2}]{sub q}CoO{sub 2}, the parent m=0 phases exhibit divergent chemical features but are less understood than the more common m>0 members of the series. Here we synthesize Sr-for-Ca substituted [(Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2}]{sub q}CoO{sub 2} zero phases up to x=0.2 through low-temperature hydrothermal conversion of precursor powders of the m=1 misfit system, [Co(Ca{sub 1−x}Sr{sub x}){sub 2}O{sub 3}]{sub q}CoO{sub 2}. In the zero-phase [(Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2}]{sub q}CoO{sub 2} system, as the Sr content x increases the lattice expands anisotropically along the c axis such that the ab-plane dimension and the misfit parameter q remain essentially constant. X-ray absorption spectroscopy data suggest the presence of peroxide-type oxygen species in the (Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2} rock-salt block and together with infrared spectroscopy, thermogravimetric and low-temperature resistivity and thermopower measurements evidence that the isovalent Sr-for-Ca substitution controls the balance between the peroxide and hydroxide species in the (Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2} block but leaves the valence of Co essentially intact in the CoO{sub 2} block. The higher electrical conductivity of the Sr-substituted phases is explained as a consequence of increased carrier mobility. - Graphical abstract: Among the thermoelectric misfit-layered cobalt oxides, [M{sub m}A{sub 2}O{sub m+2}]{sub q}CoO{sub 2}, the parent zero (m=0) phases exhibit divergent chemical features. For [(Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2}]{sub q}CoO{sub 2}, X-ray absorption spectroscopy data suggest the presence of peroxide-type oxygen species in the (Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2} rock-salt block and together with thermogravimetric and low-temperature transport-property measurements evidence that the isovalent Sr-for-Ca substitution controls the

  16. Interactions between metal oxides and species of nitrogen and iodine in bioturbated marine sediments

    Science.gov (United States)

    Anschutz, Pierre; Sundby, Bjørn; Lefrançois, Lucie; Luther, George W.; Mucci, Alfonso

    2000-08-01

    oxidation of ammonia to N 2 by manganese oxides is a potential removal mechanism. It would require one quarter of the total oxygen flux. The high-resolution profiles of redox species support the conceptualization of bioturbated sediments as a spatially and temporally changing mosaic of redox reactions. They show evidence for a multitude of reactions whose relative importance will vary over time, and for reaction pathways complementing those usually considered in diagenetic studies.

  17. Oleic acid increases mitochondrial reactive oxygen species production and decreases endothelial nitric oxide synthase activity in cultured endothelial cells.

    Science.gov (United States)

    Gremmels, Hendrik; Bevers, Lonneke M; Fledderus, Joost O; Braam, Branko; van Zonneveld, Anton Jan; Verhaar, Marianne C; Joles, Jaap A

    2015-03-15

    Elevated plasma levels of free fatty acids (FFA) are associated with increased cardiovascular risk. This may be related to FFA-induced elevation of oxidative stress in endothelial cells. We hypothesized that, in addition to mitochondrial production of reactive oxygen species, endothelial nitric oxide synthase (eNOS)-mediated reactive oxygen species production contributes to oleic acid (OA)-induced oxidative stress in endothelial cells, due to eNOS uncoupling. We measured reactive oxygen species production and eNOS activity in cultured endothelial cells (bEnd.3) in the presence of OA bound to bovine serum albumin, using the CM-H2DCFDA assay and the L-arginine/citrulline conversion assay, respectively. OA induced a concentration-dependent increase in reactive oxygen species production, which was inhibited by the mitochondrial complex II inhibitor thenoyltrifluoroacetone (TTFA). OA had little effect on eNOS activity when stimulated by a calcium-ionophore, but decreased both basal and insulin-induced eNOS activity, which was restored by TTFA. Pretreatment of bEnd.3 cells with tetrahydrobiopterin (BH4) prevented OA-induced reactive oxygen species production and restored inhibition of eNOS activity by OA. Elevation of OA levels leads to both impairment in receptor-mediated stimulation of eNOS and to production of mitochondrial-derived reactive oxygen species and hence endothelial dysfunction. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Enzymatic and chemical oxidation of polygalactomannans from the seeds of a few species of leguminous plants and characterization of the oxidized products.

    Science.gov (United States)

    Merlini, Luca; Boccia, Antonella Caterina; Mendichi, Raniero; Galante, Yves M

    2015-03-20

    Plant polysaccharides are used in a growing number of applications, in their native or in chemically and/or biochemically modified forms. In the present work, we compare TEMPO-mediated oxidation with laccase of polygalactomannans (PGM) from different species of plant leguminous to chemical oxidation with NaClO/NaBr/TEMPO. We have investigated the gums from: locust bean (Ceratonia siliqua), tara (Caesalpinia spinosa), guar (Cyamopsis tetragonolobus), sesbania (Sesbania bispinosa) and fenugreek (Trigonella foenum-graecum). Upon laccase/TEMPO oxidation, PGM viscosity and concentration of reducing groups increased up to five-fold and structured, elastic, stable gels were formed, which could be degraded by hydrolysis with β-mannanase. Conversely, chemical oxidation with NaClO/NaBr/TEMPO caused a rapid, intermediate transition of the gum solutions to compact gels, that immediately reverted to liquid, with a lower viscosity than at the start and an increased concentration of reducing groups, similar to the reaction with laccase. We interpret the above as due to, in the case of laccase, oxidation of primary hydroxyl groups to aldehydes, able to form stable hemiacetalic bonds with free hydroxyl groups. While upon chemical oxidation, primary OH's are only transiently oxidized to aldehydes, followed by rapid oxidation of all carbonyl groups to carboxylates. In either cases, TEMPO appeared to cause a limited splitting of glycosidic bonds of PGM. Native and oxidized PGM were further characterized by 1D and 2D NMR spectroscopy and by rheology. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Standards development of global warming gas species: methane, nitrous oxide, trichlorofluoromethane, and dichlorodifluoromethane.

    Science.gov (United States)

    Rhoderick, George C; Dorko, William D

    2004-05-01

    Environmental scientists from federal agencies, such as the National Oceanic and Atmospheric Administration (NOAA), and academia have long suspected that increasing anthropogenic inputs of various trace gases into the atmosphere can cause changes in the earth's climate and protective ozone layer. Nitrous oxide and methane, cited in the Kyoto Protocol, as well astrichlorofluoromethane (CFC-11) and dichlorodifluoromethane (CFC-12), cited in the Montreal Protocol, are all greenhouse gases and are implicated in the destruction of the stratospheric ozone layer. The lack of national standards prompted research to determine the feasibility of preparing accurate and stable standards containing these four compounds. Development of these standards would support the measurement of these species by those in the atmospheric research community not having their own source of standards. A suite of eight primary gas standards containing methane, nitrous oxide, CFC-11, and CFC-12 in a balance of air were prepared gravimetrically to bracket the ambient atmospheric concentrations. The combined uncertainties (uc) were calculated from error propagation analysis that included the weighing data from the gravimetric preparation and other sources of error such as the purity analysis of the compounds and air matrix. The expanded uncertainties (U) for the gravimetric standards were < 0.5% as calculated from the equation U = kuc, where the coverage factor k is equal to 2 for a 95% confidence interval. Analyses of the suite of standards by gas chromatography with flame-ionization and electron capture detection resulted in average absolute residuals of < 0.25% from regression models. The NIST suite of eight gravimetric standards was used to determine the concentrations in two standardsfrom NOAA. Those analyses resulted in bias across the two laboratories of < or = 2.1%.

  20. Nitric oxide and reactive oxygen species mediate metabolic changes in barley seed embryo during germination

    Directory of Open Access Journals (Sweden)

    Zhenguo eMa

    2016-02-01

    Full Text Available The levels of nitric oxide (NO and reactive oxygen species (ROS, ATP/ADP ratios, reduction levels of ascorbate and glutathione, expression of the genes encoding proteins involved in metabolism of NO and activities of the enzymes involved in fermentation and in metabolism of NO and ROS were studied in the embryos of germinating seeds of two barley (Hordeum vulgare L. cultivars differing in dormancy level. The level of NO production continuously increased after imbibition while the level of nitrosylated SH-groups in proteins increased. This corresponded to the decrease of free SH-groups in proteins. At early stage of germination (0-48 h postimbibition the genes encoding class 1 phytoglobin (the protein scavenging NO and S-nitrosoglutathione reductase (scavenging S-nitrosoglutathione were markedly expressed. More dormant cultivar exhibited lower ATP/ADP and ascorbate/dehydroascorbate ratios and lower lactate and alcohol dehydrogenase activities, while the production of NO and nitrosylation of proteins was higher as compared to the non-dormant cultivar. The obtained data indicate that at the onset of germination NO is actively generated causing nitrosylation of SH-groups and a switch from respiration to fermentation. After radicle protrusion the metabolism changes in a more reducing type as recorded by ratio of reduced and oxidized glutathione and ascorbate. The turnover of NO by the scavenging systems (phytoglobin, S-nitrosoglutathione reductase and interaction with ROS might contribute to the maintenance of redox and energy balance of germinating seeds and lead to alleviation of dormancy.

  1. Involvement of reactive oxygen species and nitric oxide radicals in activation and proliferation of rat hepatic stellate cells

    NARCIS (Netherlands)

    Svegliati-Baroni, G; Saccomanno, S; van Goor, H; Jansen, P; Benedetti, A; Moshage, H

    Background/Aims: Reactive oxygen species (ROS) induce HSCs activation, proliferation and collagen gene expression in vitro. Nitric oxide (NO) represents a reactive molecule that reacts with ROS, yielding peroxynitrite. We thus verified the effect of NO on ROS-induced HSCs proliferation in vitro and

  2. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...

  3. Oxidative species-induced excitonic transport in tubulin aromatic networks: Potential implications for neurodegenerative disease.

    Science.gov (United States)

    Kurian, P; Obisesan, T O; Craddock, T J A

    2017-10-01

    Oxidative stress is a pathological hallmark of neurodegenerative tauopathic disorders such as Alzheimer's disease and Parkinson's disease-related dementia, which are characterized by altered forms of the microtubule-associated protein (MAP) tau. MAP tau is a key protein in stabilizing the microtubule architecture that regulates neuron morphology and synaptic strength. When MAP tau is degraded in tauopathic disorders, neuron dysfunction results. The precise role of reactive oxygen species (ROS) in the tauopathic disease process, however, is poorly understood. Classically, mitochondrial dysfunction has been viewed as the major source of oxidative stress and has been shown to precede tau and amyloid pathology in various dementias, but the exact mechanisms are not clear. It is known that the production of ROS by mitochondria can result in ultraweak photon emission (UPE) within cells. While of low intensity, surrounding proteins within the cytosol can still absorb these energetic photons via aromatic amino acids (e.g., tryptophan and tyrosine). One likely absorber of these photons is the microtubule cytoskeleton, as it forms a vast network spanning neurons, is highly co-localized with mitochondria, and shows a high density of aromatic amino acids. Functional microtubule networks may traffic this ROS-generated endogenous photon energy for cellular signaling, or they may serve as dissipaters/conduits of such energy to protect the cell from potentially harmful effects. Experimentally, after in vitro exposure to exogenous photons, microtubules have been shown to reorient and reorganize in a dose-dependent manner with the greatest effect being observed around 280nm, in the tryptophan and tyrosine absorption range. In this paper, recent modeling efforts based on ambient temperature experiment are presented, showing that tubulin polymers can feasibly absorb and channel these photoexcitations via resonance energy transfer, on the order of dendritic length scales and neuronal

  4. Annato extract and β-carotene modulate the production of reactive oxygen species/nitric oxide in neutrophils from diabetic rats

    OpenAIRE

    Rossoni-Júnior, Joamyr Victor; Araújo, Glaucy Rodrigues; Pádua, Bruno da Cruz; Chaves, Míriam Martins; Pedrosa, Maria Lúcia; Silva, Marcelo Eustáquio; Costa, Daniela Caldeira

    2011-01-01

    Annatto has been identified asecarotenoids that havetantioxidative effects. It is well known that one of the key elements in the development of diabetic complications is oxidative stress. The immune system is especially vulnerable to oxidative damage because many immune cells, such as neutrophils, produce reactive oxygen species and reactive nitrogen species as part of the body’s defense mechanisms to destroy invading pathogens. Reactive oxygen species/reactive nitrogen species are excessivel...

  5. Differences in ATP Generation Via Glycolysis and Oxidative Phosphorylation and Relationships with Sperm Motility in Mouse Species.

    Science.gov (United States)

    Tourmente, Maximiliano; Villar-Moya, Pilar; Rial, Eduardo; Roldan, Eduardo R S

    2015-08-14

    Mouse sperm produce enough ATP to sustain motility by anaerobic glycolysis and respiration. However, previous studies indicated that an active glycolytic pathway is required to achieve normal sperm function and identified glycolysis as the main source of ATP to fuel the motility of mouse sperm. All the available evidence has been gathered from the studies performed using the laboratory mouse. However, comparative studies of closely related mouse species have revealed a wide range of variation in sperm motility and ATP production and that the laboratory mouse has comparatively low values in these traits. In this study, we compared the relative reliance on the usage of glycolysis or oxidative phosphorylation as ATP sources for sperm motility between mouse species that exhibit significantly different sperm performance parameters. We found that the sperm of species with higher oxygen consumption/lactate excretion rate ratios were able to produce higher amounts of ATP, achieving higher swimming velocities. Additionally, we show that the species with higher respiration/glycolysis ratios have a higher degree of dependence upon active oxidative phosphorylation. Moreover, we characterize for the first time two mouse species in which sperm depend on functional oxidative phosphorylation to achieve normal performance. Finally, we discuss that sexual selection could promote adaptations in sperm energetic metabolism tending to increase the usage of a more efficient pathway for the generation of ATP (and faster sperm). © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Emulsification of crude oil by an alkane-oxidizing Rhodococcus species isolated from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Bredholt, H.; Bruheim, P.; Eimhjellen, K. [Norwegian Univ. of Scince and Technology, Trondheim (Norway); Josefsen, K.; Vatland, A. [SINTEF SI, Oslo (Norway). Industrial Chemistry Div.

    1998-04-01

    A Rhodococcus species, which has proven to be the best of 99 oil-emulsifying bacteria isolated from seawater, was characterized. This bacterium produced very stable oil-in-water emulsions from different crude oils with various content of aliphatic and aromatic compounds, by utilizing C{sub 1}1 and C{sub 3}3 n-alkanes as carbon and energy sources. Bacteria that produce stable emulsions are often able to adhere strongly to hydrocarbons or hydrophobic surfaces. It was at these surfaces that extensive emulsification of the residual oil and accumulation of acidic oxidation products occurred. The acidic products were consumed in a second step. This step was characterized by linear growth and an increasing number of cells growing in the water phase. The most extensive emulsification occurred at the end of the exponential phase. There was no evidence of surfactants at the end of the exponential phase, however, a polymeric compound with emulsifying activity, tightly bound to the oil droplets, was isolated, suggesting that the emulsification resulted from the release of the hydrophobic cell surface discarded during growth limitations. 38 refs., 7 figs.

  7. Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation.

    Science.gov (United States)

    Yu, Kyeong-Nam; Yoon, Tae-Jong; Minai-Tehrani, Arash; Kim, Ji-Eun; Park, Soo Jin; Jeong, Min Sook; Ha, Shin-Woo; Lee, Jin-Kyu; Kim, Jun Sung; Cho, Myung-Haing

    2013-06-01

    Zinc oxide nanoparticles (ZnO-np) are used in an increasing number of industrial products such as paint, coating and cosmetics, and in other biological applications. There have been many suggestions of a ZnO-np toxicity paradigm but the underlying molecular mechanisms about the toxicity of ZnO-np remain unclear. This study was done to determine the potential toxicity of ZnO-np and to assess the toxicity mechanism in normal skin cells. Synthesized ZnO-np generated reactive oxygen species (ROS), as determined by electron spin resonance. After uptake into cells, ZnO-np induced ROS in a concentration- and time-dependent manner. To demonstrate ZnO-np toxicity mechanism related to ROS, we detected abnormal autophagic vacuoles accumulation and mitochondria dysfunction after ZnO-np treatment. Furthermore mitochondria membrane potential and adenosine-5'-triphosphate (ATP) production are decreased for culture with ZnO-np. We conclude that ZnO-np leads to cell death through autophagic vacuole accumulation and mitochondria damage in normal skin cells via ROS induction. Accordingly, ZnO-np may cause toxicity and the results highlight and need for careful regulation of ZnO-np production and use. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Reactive Oxygen and Nitrogen Species in Carcinogenesis: Implications of Oxidative Stress on the Progression and Development of Several Cancer Types.

    Science.gov (United States)

    Kruk, Joanna; Aboul-Enein, Hassan Y

    2017-01-01

    The body of evidence available from published literature during the past three decades indicates that reactive oxygen species and reactive nitrogen species can induce, promote and modulate carcinogenesis. The purpose of this review was to present the current status of knowledge on the possible role of oxidative/nitrosative stress in the development and progression of several human cancers. Moreover, we discuss briefly the formation and decomposition of oxygen and nitrogen species within cells and their physiological and damaging influences. Given that some antitumor treatments are based on the formation of ROS, we also summarize what is currently known about supplementing the diet with antioxidants. We conducted literature searches to review the recent progress toward the potential role of reactive oxygen and nitrogen species and associated oxidative stress in carcinogenesis. The epidemiological and laboratory studies showed that excessive production of reactive oxygen/ nitrogen species may lead to consequent alteration in the intracellular homeostasis and cause damage to all important cellular components when the excess of oxidants is not balanced by antioxidant defence and/or DNA repair mechanisms. Chronic oxidative stress can drive carcinogenesis by altering expression of cancer-related genes causing mutation and transformation. There is now common agreement that reactive oxygen and nitrogen species are involved in the development and progression of several human cancers like breast, prostate, colorectal, gynecological, cervical, eye, skin, leukemia, gastric. Antioxidant supplements at low doses can promote health, while excess supplementation can be harmful and even carcinogenic. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Comparative Study of Different Methods to Determine the Role of Reactive Oxygen Species Induced by Zinc Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Nigar A. Najim

    2016-08-01

    Full Text Available Accumulation of reactive oxygen species (ROS followed by an increase in oxidative stress is associated with cellular responses to nanoparticle induced cell damages. Finding the best method for assessing intracellular ROS production is the key step in the detection of oxidative stress induced injury. This study evaluates and compares four different methods for the measurement of intracellular ROS generation using fluorogenic probe, 2´,7´-dichlorofluorescein diacetate (DCFH-DA. Hydrogen peroxide (H2O2 was utilised as a positive control to assess the reactivity of the probe. Spherically shaped zinc oxide (ZnO nanoparticles with an average particle size of 85.7 nm were used to determine the diverse roles of ROS in nanotoxicity in Hs888Lu and U937 cell lines. The results showed that different methods exhibit different patterns of ROS measurement. In conclusion this study found that the time point at which the DCFH-DA is added to the reaction, the incubation time and the oxidative species that is responsible for the oxidation of DCFH, have impact on the intracellular ROS measurement.

  10. Oxidative DNA Adducts Following Cu2+-Mediated Activation of Dihydroxy PCBs: Role of Reactive Oxygen Species1

    Science.gov (United States)

    Spencer, Wendy A.; Lehmler, Hans-Joachim; Robertson, Larry W.; Gupta, Ramesh C.

    2009-01-01

    Polychlorinated biphenyls (PCBs) are toxic industrial chemicals, complete carcinogens and efficacious tumor promoters. However, the mechanism(s) of PCB-mediated carcinogenicity remains largely undefined. One likely pathway by which these agents may play a role in carcinogenesis is the generation of oxidative DNA damage by redox cycling of dihydroxylated PCB metabolites. We have now employed a new 32P-postlabeling system to examine novel oxidative DNA lesions induced by Cu2+-mediated activation of PCB metabolites. 32P-Postlabeling of DNA incubated with various PCB metabolites resulted in over a dozen novel polar oxidative DNA adducts that were chromatographically similar for all active agents. The most potent metabolites tested were the hydroquinones (hydroxyl groups arranged para to each other) yielding polar oxidative adduct levels ranging from 55 to 142 adducts/106 nucleotides. PCB catechols, or ortho-dihydroxy metabolites, were up to 40% less active than their corresponding hydroquinone congeners while mono hydroxylated and quinone metabolites did not produce detectable oxidative damage over that of vehicle. With the exception of 2,4,5-Cl-2′,5′-dihydroxybiphenyl, this oxidative DNA damage appeared to be inversely related to chlorine content: no chlorine ≈ mono- > di- > tri-chlorinated metabolites. Importantly, copper, but not iron, was essential for activation of the PCB metabolites to these polar oxidative DNA adducts since in its absence or in the presence of the Cu+-specific scavenger, bathocuproine, no adducts were detected. Intervention studies with known reactive oxygen species (ROS) modifiers suggested that H2O2, singlet oxygen, hydroxyl radical and superoxide may also be involved in this PCB-mediated oxidative DNA damage. These data indicate a mechanistic role of several ROS, in addition to copper, in PCB-induced DNA damage and provide further support for oxidative DNA damage in PCB-mediated carcinogenesis. PMID:19233261

  11. Species-Dependent Effects of the Urban Environment on Fatty Acid Composition and Oxidative Stress in Birds

    Directory of Open Access Journals (Sweden)

    Caroline Isaksson

    2017-05-01

    Full Text Available Ecological impacts of urbanization include the loss of biodiversity and changes in species composition and population densities. However, how the urban environment affects fundamental physiological parameters is largely unknown. Here, we investigated physiological components related to health and nutrition, namely, plasma fatty acids (FA and lipid peroxidation at inter-habitat and interspecific levels. Specifically, we compared four passerine bird species—the great tit (Parus major, the blue tit (Cyanistes caeruleus, the house sparrow (Passer domesticus, and the tree sparrow (P. montanus—from urban and rural environments. Significant interactions between species and habitat were revealed for the majority of the FAs. Interestingly, the observed inter-habitat variation in FAs was frequently in opposite directions when comparing species from the two families (tits, Paridae; sparrows, Passeridae. These patterns suggest that sparrows and tits feed on different food sources, or modulate their FA metabolism differently, across the urban-rural gradient. By using canonical discriminant analyses (CDA, we further demonstrated species-specific signals in FA composition, with misclassification of species being <1% within habitats and <7% between habitats. Finally, the urban-rural FA differences between species and families were manifested in two indices of health. Firstly, urban blue tits had a higher total ω-6/ω-3 polyunsaturated FA ratio than rural conspecifics, which is believed to increase inflammatory responses. Secondly, urban sparrows of both species showed higher lipid peroxidation indices (indicating a higher susceptibility to lipid peroxidation if exposed to pro-oxidants, and consequently, a higher level of lipid peroxidation compared to their rural conspecifics. Collectively, the species- and habitat-specific differences in plasma FA composition, which are linked to nutrition and metabolism, suggest that the urban environment affect tits and

  12. Iron(III) species formed during iron(II) oxidation and iron-core formation in bacterioferritin of Escherichia coli

    International Nuclear Information System (INIS)

    Hawkins, C.; Treffry, A.; Mackey, J.; Williams, J.M.; Andrews, S.C.; Guest, J.R.; Harrison, P.M.

    1996-01-01

    This paper describes a preliminary investigation of the mechanisms of Fe(II) oxidation and storage of Fe(III) in the bacterioferritin of Escherichia coli (EcBFR). Using Moessbauer spectroscopy to examine the initial oxidation of iron by EcBFR it is confirmed that this ferritin exhibits 'ferroxidase' activity and is shown that dimeric and monomeric iron species are produced as intermediates. The characteristics of ferroxidase activity in EcBFR is compare d with those of human H-chain ferritin (HuHF) and discuss the different Moessbauer parameters of their dimeric iron with reference to the structures of their di-metal sites. In addition, it is presented preliminary findings suggesting that after an initial 'burst', the rate of oxidation is greatly reduced, possibly due to blockage of the ferroxidase centre by bound iron. A new component, not found in HuHF and probably representing a small cluster of Fe(III) atoms, is reported

  13. Lanthanide ions (III) as sensitizers of melatonin oxidation in reaction mixtures providing reactive species of oxygen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarek, Małgorzata, E-mail: mkaczmar@amu.edu.pl

    2015-06-15

    Chemiluminescence (CL) of the reactive systems providing strong oxidants (reactive species of oxygen and nitrogen) containing lanthanide ions (III) and melatonin, was studied. Kinetic curves of emission decay and spectral distributions of chemiluminescence were obtained. Analysis of differences in the intensity of chemiluminescence and CL spectra proved that excitation of Tb(III) and Dy(III) ions takes place with the energy transfer from the products of melatonin oxidation: N{sup 1}-acetyl-N{sup 2}-formyl-5-methoxykynuramine (AFMK) and N{sup 1}-acetyl-5-methoxykynuramine (AMK) to the lanthanide ions. In the system Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) a linear correlation was established between the integrated CL intensity and melatonin concent. - Highlights: • Chemiluminescence (CL) of melatonin (Mel) oxidation by reactive species of oxygen and nitrogen. • Tb(III) and Dy(III) ions as sensitizers of a melatonin oxidation process. • New CL method for determination of melatonin in pharmaceutical preparations based on CL of Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) system.

  14. Antioxidant effects of crude extracts from Baccharis species: inhibition of myeloperoxidase activity, protection against lipid peroxidation, and action as oxidative species scavenger

    Directory of Open Access Journals (Sweden)

    Tiago O. Vieira

    2011-05-01

    Full Text Available The objective of this study was to show a comparison of the antioxidant properties of aqueous and ethanolic extracts obtained from Baccharis articulata (Lam. Pers., Baccharis trimera (Less. DC., Baccharis spicata (Lam. Baill. and Baccharis usterii Heering, Asteraceae, by several techniques covering a range of oxidant species and of biotargets. We have investigated the ability of the plant extracts to scavenge DPPH (1,1-diphenyl-2-picryl-hydrazyl free radical, action against lipid peroxidation of membranes including rat liver microsomes and soy bean phosphatidylcholine liposomes by ascorbyl radical and peroxynitrite. Hydroxyl radical scavenger activity was measured monitoring the deoxyribose oxidation. The hypochlorous acid scavenger activity was also evaluated by the prevention of protein carbonylation and finally the myeloperoxidase (MPO activity inhibition. The results obtained suggest that the Baccharis extracts studied present a significant antioxidant activity scavenging free radicals and protecting biomolecules from the oxidation. We can suggest that the supposed therapeutic efficacy of this plant could be due, in part, to these properties.

  15. Application of powerful oxidizers in the synthesis of new high-oxidation state actinide and related species

    International Nuclear Information System (INIS)

    Yeh, S.M.

    1984-11-01

    The fluorinating and oxide scavenging ability of XeF 6 have been studied by bringing XeF 6 into interaction with oxide-fluoride compounds of the third-transition-series elements (W, Re and Os) and uranium, in their highest oxidation states. A + MOF 5 - and A + M 2 O 2 F 9 - (A = K or Cs, M = W or U) were converted to A + MF 7 - by XeF 6 , but the rhenium and osmium compounds, K + ReO 2 F 4 - and XeF 5 + OsO 3 F 3 - , resisted interaction with XeF 6 . Strong interactions between XeF 2 or KrF 2 and the solvent have been observed for their solutions in anhydrous HF. Both XeF 2 and KrF 2 are seen to be effective in breaking up the polymeric (HF)/sub n/ chains. Only weak interactions occur between cations and anions of KrF + AuF 6 - and Kr 2 F 3 + AuF 6 - in HF. The AuF 6 - anions are slightly distorted from O/sub h/ symmetry. Kr 2 F 3 + cations in HF have the same dissymmetric V-shape which occurs in crystalline salts. A low-temperature orthorhombic form, β-ReF 6 + SbF 6 - , a high-temperature rhombohedral form, α-ReF 6 + SbF 6 - , and a ReF 6 + AuF 6 - have been prepared. These compounds possess only kinetic stability at ambient temperature and at approx. 20 0 C are best represented as ReF 6 + ReF 7 MF 6 - MF 5 . Thermochemical energy evaluations indicate that the ionization potential of ReF 6 is 261 kcal mole -1 and that the fluoride-ion affinity of ReF 6 + is -214 kcal mole -1 . This is more exothermal than the corresponding process for IF 6 + (-208 kcal mole -1 ). In contrast, ReOF 5 is shown to be a better fluoro-base than IOF 5 and also is a better base than ReF 7 . ReOF 4 + MF 6 - (M = Sb, Au and As) salts are of higher thermal stability than their ReF 6 + MF 6 - analogues

  16. Increased Reactive Oxygen Species Formation and Oxidative Stress in Rheumatoid Arthritis.

    Directory of Open Access Journals (Sweden)

    Somaiya Mateen

    Full Text Available Rheumatoid arthritis (RA is an autoimmune inflammatory disorder. Highly reactive oxygen free radicals are believed to be involved in the pathogenesis of the disease. In this study, RA patients were sub-grouped depending upon the presence or absence of rheumatoid factor, disease activity score and disease duration. RA Patients (120 and healthy controls (53 were evaluated for the oxidant-antioxidant status by monitoring ROS production, biomarkers of lipid peroxidation, protein oxidation and DNA damage. The level of various enzymatic and non-enzymatic antioxidants was also monitored. Correlation analysis was also performed for analysing the association between ROS and various other parameters.Intracellular ROS formation, lipid peroxidation (MDA level, protein oxidation (carbonyl level and thiol level and DNA damage were detected in the blood of RA patients. Antioxidant status was evaluated by FRAP assay, DPPH reduction assay and enzymatic (SOD, catalase, GST, GR and non-enzymatic (vitamin C and GSH antioxidants.RA patients showed a higher ROS production, increased lipid peroxidation, protein oxidation and DNA damage. A significant decline in the ferric reducing ability, DPPH radical quenching ability and the levels of antioxidants has also been observed. Significant correlation has been found between ROS and various other parameters studied.RA patients showed a marked increase in ROS formation, lipid peroxidation, protein oxidation, DNA damage and decrease in the activity of antioxidant defence system leading to oxidative stress which may contribute to tissue damage and hence to the chronicity of the disease.

  17. Characterization of divalent and trivalent species generated in the chemical and electrochemical oxidation of a dimeric pincer complex of nickel.

    Science.gov (United States)

    Spasyuk, Denis M; Gorelsky, Serge I; van der Est, Art; Zargarian, Davit

    2011-03-21

    The electrolytic and chemical oxidation of the dimeric pincer complex [κ(P),κ(C),κ(N),μ(N)-(2,6-(i-Pr(2)POC(6)H(3)CH(2)NBn)Ni](2) (1; Bn = CH(2)Ph) has been investigated by various analytic techniques. Cyclic voltammetry measurements have shown that 1 undergoes a quasi-reversible, one electron, Ni-based redox process (ΔE(0)(1/2) = -0.07 V vs Cp(2)Fe/[Cp(2)Fe](+)), and spectroelectrochemical measurements conducted on the product of the electrolytic oxidation, [1](+•), have shown multiple low-energy electronic transitions in the range of 10,000-15,000 cm(-1). Computational studies using Density Functional Theory (B3LYP) have corroborated the experimentally obtained structure of 1, provided the electronic structure description, and helped interpret the experimentally obtained absorption spectra for 1 and [1](+·). These calculations indicate that the radical cation [1](+·) is a dimeric, mixed-valent species (class III) wherein most of the spin density is delocalized over the two nickel centers (Ni(+2.5)(2)N(2)), but some spin density is also present over the two nitrogen atoms (Ni(2+)(2)N(2)·). Examination of alternative structures for open shell species generated from 1 has shown that the spin density distribution is highly sensitive toward changes in the ligand environment of the Ni ions. NMR, UV-vis, electron paramagnetic resonance (EPR), and single crystal X-ray diffraction analyses have shown that chemical oxidation of 1 with N-Bromosuccinimide (NBS) follows a complex process that gives multiple products, including the monomeric trivalent species κ(P),κ(C),κ(N)-{2,6-(i-Pr(2)PO)(C(6)H(3))(CH═NBn)}NiBr(2) (2). These studies also indicate that oxidation of 1 with 1 equiv of NBS gives an unstable, paramagnetic intermediate that decomposes to a number of divalent species, including succinimide and the monomeric divalent complexes κ(P),κ(C),κ(N)-{2,6-(i-Pr(2)PO)(C(6)H(3))(CH═NBn)}NiBr (3) and κ(P),κ(C),κ(N)-{2,6-(i-Pr(2)PO)(C(6)H(3))(CH(2)N

  18. The Role of Reactive Oxygen and Nitrogen Species in the Expression and Splicing of Nitric Oxide Receptor.

    Science.gov (United States)

    Sharina, Iraida G; Martin, Emil

    2017-01-20

    Nitric oxide (NO)-dependent signaling is critical to many cellular functions and physiological processes. Soluble guanylyl cyclase (sGC) acts as an NO receptor and mediates the majority of NO functions. The signaling between NO and sGC is strongly altered by reactive oxygen and nitrogen species. Recent Advances: Besides NO scavenging, sGC is affected by oxidation/loss of sGC heme, oxidation, or nitrosation of cysteine residues and phosphorylation. Apo-sGC or sGC containing oxidized heme is targeted for degradation. sGC transcription and the stability of sGC mRNA are also affected by oxidative stress. Studies cited in this review suggest the existence of compensatory processes that adapt cellular processes to diminished sGC function under conditions of short-term or moderate oxidative stress. Alternative splicing of sGC transcripts is discussed as a mechanism with the potential to both enhance and reduce sGC function. The expression of α1 isoform B, a functional and stable splice variant of human α1 sGC subunit, is proposed as one of such compensatory mechanisms. The expression of dysfunctional splice isoforms is discussed as a contributor to decreased sGC function in vascular disease. Targeting the process of sGC splicing may be an important approach to maintain the composition of sGC transcripts that are expressed in healthy tissues under normal conditions. Emerging new strategies that allow for targeted manipulations of RNA splicing offer opportunities to use this approach as a preventive measure and to control the composition of sGC splice isoforms. Rational management of expressed sGC splice forms may be a valuable complementary treatment strategy for existing sGC-directed therapies. Antioxid. Redox Signal. 26, 122-136.

  19. Nitrous oxide fluxes from forest floor, tree stems and canopies of boreal tree species during spring

    Science.gov (United States)

    Haikarainen, Iikka; Halmeenmäki, Elisa; Machacova, Katerina; Pihlatie, Mari

    2017-04-01

    Boreal forests are considered as small sources of atmospheric nitrous oxide (N2O) due to microbial N2O production in the soils. Recent evidence shows that trees may play an important role in N2O exchange of forest ecosystems by offering pathways for soil produced N2O to the atmosphere. To confirm magnitude, variability and the origin of the tree mediated N2O emissions more research is needed, especially in boreal forests which have been in a minority in such investigation. We measured forest floor, tree stem and shoot N2O exchange of three boreal tree species at the beginning of the growing season (13.4.-13.6.2015) at SMEAR II station in Hyytiälä, located in Southern Finland (61˚ 51´N, 24˚ 17´E, 181 a.s.l.). The fluxes were measured in silver birch (Betula pendula), downy birch (B. pubescens) and Norway spruce (Picea abies) on two sites with differing soil type and characteristics (paludified and mineral soil), vegetation cover and forest structure. The aim was to study the vertical profile of N2O fluxes at stem level and to observe temporal changes in N2O fluxes over the beginning of the growing season. The N2O exchange was determined using the static chamber technique and gas chromatographic analyses. Scaffold towers were used for measurements at multiple stem heights and at the canopy level. Overall, the N2O fluxes from the forest floor and trees at both sites were very small and close to the detection limit. The measured trees mainly emitted N2O from their stems and shoots, while the forest floor acted as a sink of N2O at the paludified site and as a small source of N2O at the mineral soil site. Stem emissions from all the trees at both sites were on average below 0.5 μg N2O m-2 of stem area h-1, and the shoot emissions varied between 0.2 and 0.5 ng N2O m-2 g-1 dry biomass. When the N2O fluxes were scaled up to the whole forest ecosystem, based on the tree biomass and stand density, the N2O emissions from birch and spruce trees at the paludified site

  20. Size, shape, and composition of luminescent species in oxidized Si nanocrystals and H-passivated porous Si

    Science.gov (United States)

    Schuppler, S.; Friedman, S. L.; Marcus, M. A.; Adler, D. L.; Xie, Y.-H.; Ross, F. M.; Chabal, Y. J.; Harris, T. D.; Brus, L. E.; Brown, W. L.; Chaban, E. E.; Szajowski, P. F.; Christman, S. B.; Citrin, P. H.

    1995-08-01

    Near-edge and extended x-ray-absorption fine-structure measurements from a wide variety of oxidized Si nanocrystals and H-passivated porous Si samples, combined with electron microscopy, ir absorption, forward recoil scattering, and luminescence emission data, provide a consistent structural picture of the species responsible for the luminescence observed in these systems. For porous Si samples whose luminescence wavelengths peak in the visible region, i.e., at <700 nm, their mass-weighted-average structures are determined here to be particles (not wires) whose short-range character is crystalline and whose dimensions-typically <15 Å-are significantly smaller than previously reported or proposed. Results are also presented which demonstrate that the observed visible luminescence is not related to either a photo-oxidized Si species in porous Si or an interfacial suboxide species in the Si nanocrystals. The structural and compositional findings reported here depend only on sample luminescence behavior, not on how the luminescent particles are produced, and thus have general implications in assigning quantum confinement as the mechanism responsible for the visible luminescence observed in both nanocrystalline and porous silicon.

  1. Graphene/graphene oxide and their derivatives in the separation/isolation and preconcentration of protein species: A review

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuwei; Hai, Xin; Wang, Jianhua, E-mail: jianhuajrz@mail.neu.edu.cn

    2016-05-30

    The distinctive/unique electrical, chemical and optical properties make graphene/graphene oxide-based materials popular in the field of analytical chemistry. Its large surface offers excellent capacity to anchor target analyte, making it an powerful sorbent in the adsorption and preconcentration of trace level analyte of interest in the field of sample preparation. The large delocalized π-electron system of graphene framework provides strong affinity to species containing aromatic rings, such as proteins, and the abundant active sites on its surface offers the chance to modulate adsorption tendency towards specific protein via functional modification/decoration. This review provides an overview of the current research on graphene/graphene oxide-based materials as attractive and powerful adsorption media in the separation/isolation and preconcentration of protein species from biological sample matrixes. These practices are aiming at providing protein sample of high purity for further investigations and applications, or to achieve certain extent of enrichment prior to quantitative assay. In addition, the challenges and future perspectives in the related research fields have been discussed. - Highlights: • This review provides an updated overview of G/GO-materials in the separation, isolation/preconcentration of protein species. • The strategies to improve protein extraction performance by G/GO-materials are summarized. • The challenges and future perspectives in the related research fields are discussed.

  2. Nitric oxide increases tolerance responses to moderate water deficit in leaves of Phaseolus vulgaris and Vigna unguiculata bean species.

    Science.gov (United States)

    Zimmer-Prados, Lucas Martins; Moreira, Ana Sílvia Franco Pinheiro; Magalhaes, Jose Ronaldo; França, Marcel Giovanni Costa

    2014-07-01

    Drought stress is one of the most intensively studied and widespread constraints, and nitric oxide (NO) is a key signaling molecule involved in the mediation of abiotic stresses in plants. We demonstrated that a sprayed solution of NO from donor sodium nitroprusside increased drought stress tolerance responses in both sensitive (Phaseolus vulgaris) and tolerant (Vigna unguiculata) beans. In intact plants subjected to halting irrigation, NO increased the leaf relative water content and stomatal conductance in both species. After cutting leaf discs and washing them, NO induced increased electrolyte leakage, which was more evident in the tolerant species. These leaf discs were then subjected to different water deficits, simulating moderate and severe drought stress conditions through polyethylene glycol solutions. NO supplied at moderate drought stress revealed a reduced membrane injury index in sensitive species. In hydrated discs and at this level of water deficit, NO increased the electron transport rate in both species, and a reduction of these rates was observed at severe stress levels. Taken together, it can be shown that NO has an effective role in ameliorating drought stress effects, activating tolerance responses at moderate water deficit levels and in both bean species which present differential drought tolerance.

  3. Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species

    Energy Technology Data Exchange (ETDEWEB)

    Malato, S.; Blanco, J.; Richter, C.; Braun, B.; Maldonado, M.I. [Plataforma Solar de Almeria PSA, Crta Senes s/n, Tabernas, Almeriav 04200 (Spain)

    1998-08-31

    Particulate suspensions of TiO{sub 2} irradiated with natural solar light in a large experimental plant catalyze the oxidation of a typical organic contaminant: pentachlorophenol (PCP). The addition of oxidants, concentration of which is kept constant during treatment, such as hydrogen peroxide, peroxymonosulphate (oxone) and peroxydisulphate increases the rate of photodegradation of PCP in the following order: S{sub 2}O{sup 2-}{sub 8}->Oxone->H{sub 2}O{sub 2}. Peroxydisulphate (10mM), selected as the best oxidant studied, has been applied to the development of a solar photocatalytic plant for the treatment of commercial pesticide rinsates found in the wastewater produced by a pesticide container recycling plant, which includes the correct treatment of this highly contaminating effluent. The first results, without process or hardware optimisation, show that peroxydisulphate enhances the photocatalytic mineralization rate at least five times

  4. Krebs Cycle Intermediates Protective against Oxidative Stress by Modulating the Level of Reactive Oxygen Species in Neuronal HT22 Cells.

    Science.gov (United States)

    Sawa, Kenta; Uematsu, Takumi; Korenaga, Yusuke; Hirasawa, Ryuya; Kikuchi, Masatoshi; Murata, Kyohei; Zhang, Jian; Gai, Xiaoqing; Sakamoto, Kazuichi; Koyama, Tomoyuki; Satoh, Takumi

    2017-03-16

    Krebs cycle intermediates (KCIs) are reported to function as energy substrates in mitochondria and to exert antioxidants effects on the brain. The present study was designed to identify which KCIs are effective neuroprotective compounds against oxidative stress in neuronal cells. Here we found that pyruvate, oxaloacetate, and α-ketoglutarate, but not lactate, citrate, iso-citrate, succinate, fumarate, or malate, protected HT22 cells against hydrogen peroxide-mediated toxicity. These three intermediates reduced the production of hydrogen peroxide-activated reactive oxygen species, measured in terms of 2',7'-dichlorofluorescein diacetate fluorescence. In contrast, none of the KCIs-used at 1 mM-protected against cell death induced by high concentrations of glutamate-another type of oxidative stress-induced neuronal cell death. Because these protective KCIs did not have any toxic effects (at least up to 10 mM), they have potential use for therapeutic intervention against chronic neurodegenerative diseases.

  5. Krebs Cycle Intermediates Protective against Oxidative Stress by Modulating the Level of Reactive Oxygen Species in Neuronal HT22 Cells

    Directory of Open Access Journals (Sweden)

    Kenta Sawa

    2017-03-01

    Full Text Available Krebs cycle intermediates (KCIs are reported to function as energy substrates in mitochondria and to exert antioxidants effects on the brain. The present study was designed to identify which KCIs are effective neuroprotective compounds against oxidative stress in neuronal cells. Here we found that pyruvate, oxaloacetate, and α-ketoglutarate, but not lactate, citrate, iso-citrate, succinate, fumarate, or malate, protected HT22 cells against hydrogen peroxide-mediated toxicity. These three intermediates reduced the production of hydrogen peroxide-activated reactive oxygen species, measured in terms of 2′,7′-dichlorofluorescein diacetate fluorescence. In contrast, none of the KCIs—used at 1 mM—protected against cell death induced by high concentrations of glutamate—another type of oxidative stress-induced neuronal cell death. Because these protective KCIs did not have any toxic effects (at least up to 10 mM, they have potential use for therapeutic intervention against chronic neurodegenerative diseases.

  6. Reactive Electrophilic OI-Species Evidenced in High-Performance Iridium Oxohydroxide Water Oxidation Electrocatalysts.

    Science.gov (United States)

    Massué, Cyriac; Pfeifer, Verena; van Gastel, Maurice; Noack, Johannes; Algara-Siller, Gerardo; Cap, Sébastien; Schlögl, Robert

    2017-12-08

    Although quasi-amorphous iridium oxohydroxides have been identified repeatedly as superior electrocatalysts for the oxygen evolution reaction (OER), an exact description of the performance-relevant species has remained a challenge. In this context, we report the characterization of hydrothermally prepared iridium(III/IV) oxohydroxides that exhibit exceptional OER performances. Holes in the O 2p states of the iridium(III/IV) oxohydroxides result in reactive O I- species, which are identified by characteristic near-edge X-ray absorption fine structure (NEXAFS) features. A prototypical titration reaction with CO as a probe molecule shows that these O I- species are highly susceptible to nucleophilic attack at room temperature. Similarly to the preactivated oxygen involved in the biological OER in photosystem II, the electrophilic O I- species evidenced in the iridium(III/IV) oxohydroxides are suggested to be precursors to species involved in the O-O bond formation during the electrocatalytic OER. The CO titration also highlights a link between the OER performance and the surface/subsurface mobility of the O I- species. Thus, the superior electrocatalytic properties of the iridium (III/IV) oxohydroxides are explained by their ability to accommodate preactivated electrophilic O I- species that can migrate within the lattice. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reactive Electrophilic OI− Species Evidenced in High‐Performance Iridium Oxohydroxide Water Oxidation Electrocatalysts

    Science.gov (United States)

    Massué, Cyriac; Pfeifer, Verena; van Gastel, Maurice; Noack, Johannes; Algara‐Siller, Gerardo; Schlögl, Robert

    2017-01-01

    Abstract Although quasi‐amorphous iridium oxohydroxides have been identified repeatedly as superior electrocatalysts for the oxygen evolution reaction (OER), an exact description of the performance‐relevant species has remained a challenge. In this context, we report the characterization of hydrothermally prepared iridium(III/IV) oxohydroxides that exhibit exceptional OER performances. Holes in the O 2p states of the iridium(III/IV) oxohydroxides result in reactive OI− species, which are identified by characteristic near‐edge X‐ray absorption fine structure (NEXAFS) features. A prototypical titration reaction with CO as a probe molecule shows that these OI− species are highly susceptible to nucleophilic attack at room temperature. Similarly to the preactivated oxygen involved in the biological OER in photosystem II, the electrophilic OI− species evidenced in the iridium(III/IV) oxohydroxides are suggested to be precursors to species involved in the O−O bond formation during the electrocatalytic OER. The CO titration also highlights a link between the OER performance and the surface/subsurface mobility of the OI− species. Thus, the superior electrocatalytic properties of the iridium (III/IV) oxohydroxides are explained by their ability to accommodate preactivated electrophilic OI− species that can migrate within the lattice. PMID:28941180

  8. Acetone sensors based on TiO2 nanocrystals modified with tungsten oxide species

    International Nuclear Information System (INIS)

    Epifani, Mauro; Comini, Elisabetta; Díaz, Raül; Genç, Aziz; Andreu, Teresa; Siciliano, Pietro; Morante, Joan R.

    2016-01-01

    TiO 2 nanocrystals were prepared by sol–gel/solvothermal processing and modified by the addition of W precursor before the solvothermal step. The W: Ti nominal atomic ratio (R W ) was fixed to 0.16 and 0.64. Surface modification of TiO 2 occurred for R W = 0.16 while for R W = 0.64 nanocomposites with WO 3 nanocrystals were obtained after heat-treatment at 500 °C. Pure TiO 2 proved to be very poorly performing in acetone sensing in all the operating conditions. Instead, the addition of both W concentrations largely enhanced the sensor response. It ranged over two orders of magnitude of conductance variation for all the tested concentrations at as low as 200 °C operating temperature. The results showed that it is possible to enhance the performance of an otherwise almost inactive oxide like TiO 2 by proper combination with another more active oxide like WO 3 . - Highlights: • Sensing architecture are synthesized, combining WO 3 and of TiO 2 nanocrystals. • Surface layers of W oxides or heterojunctions of TiO 2 and WO 3 are obtained. • Simple TiO 2 surface modification by W oxides boosts the TiO 2 acetone response. • High responses even at 200 °C show catalytic effect of WO 3 addition.

  9. Effects of pollution on oxidative stress in aquatic species: case of the ...

    African Journals Online (AJOL)

    This study aimed to assess heavy metals accumulation and oxidative stress biomarkers in the fish Sarotherodon melanotheron from a site receiving discharges from industrial and harbor activities (Bè Lagoon) and a reference or control site in Lake Togo, Togo. Atomic absorption spectrophotometry (AAS) targeting four ...

  10. Oxidative Stress in the Developing Rat Brain due to Production of Reactive Oxygen and Nitrogen Species

    Czech Academy of Sciences Publication Activity Database

    Wilhelm, Jiří; Vytášek, Richard; Uhlík, Jiří; Vajner, Luděk

    2016-01-01

    Roč. 2016, č. 2016 (2016), č. článku 5057610. ISSN 1942-0900 R&D Projects: GA ČR(CZ) GAP303/11/0298 Institutional support: RVO:67985823 Keywords : oxidative stress * developing rat brain * lipid peroxidation Subject RIV: ED - Physiology Impact factor: 4.593, year: 2016

  11. Catalytically active Au-O(OH)x- species stabilized by alkali ions on zeolites and mesoporous oxides

    Energy Technology Data Exchange (ETDEWEB)

    Yang, M.; Li, S.; Wang, Y.; Herron, J. A.; Xu, Y.; Allard, L. F.; Lee, S.; Huang, J.; Mavrikakis, M.; Flytzani-Stephanopoulos, M.

    2014-11-27

    We report that the addition of alkali ions (sodium or potassium) to gold on KLTL-zeolite and mesoporous MCM-41 silica stabilizes mononuclear gold in Au-O(OH)x-(Na or K) ensembles. This single-site gold species is active for the low-temperature (< 200°C) water-gas shift (WGS) reaction. Unexpectedly, gold is thus similar to platinum in creating –O and –OH linkages with more than eight alkali ions and establishing an active site on various supports. The intrinsic activity of the single-site gold species is the same on irreducible supports as on reducible ceria, iron oxide, and titania supports; apparently all sharing a common, similarly structured gold active site. This finding paves the way for using earth-abundant supports to disperse and stabilize precious metal atoms with alkali additives for the WGS and potentially other fuel processing reactions.

  12. Candidatus "Scalindua brodae", sp. nov., Candidatus "Scalindua wagneri", sp. nov., two new species of anaerobic ammonium oxidizing bacteria.

    Science.gov (United States)

    Schmid, Markus; Walsh, Kerry; Webb, Rick; Rijpstra, W Irene C; van de Pas-Schoonen, Katinka; Verbruggen, Mark Jan; Hill, Thomas; Moffett, Bruce; Fuerst, John; Schouten, Stefan; Damsté, Jaap S Sinninghe; Harris, James; Shaw, Phil; Jetten, Mike; Strous, Marc

    2003-11-01

    Anaerobic ammonium oxidation (anammox) is both a promising process in wastewater treatment and a long overlooked microbial physiology that can contribute significantly to biological nitrogen cycling in the world's oceans. Anammox is mediated by a monophyletic group of bacteria that branches deeply in the Planctomycetales. Here we describe a new genus and species of anaerobic ammonium oxidizing planctomycetes, discovered in a wastewater treatment plant (wwtp) treating landfill leachate in Pitsea, UK. The biomass from this wwtp showed high anammox activity (5.0 +/- 0.5 nmol/mg protein/min) and produced hydrazine from hydroxylamine, one of the unique features of anammox bacteria. Eight new planctomycete 16S rRNA gene sequences were present in the 16S rRNA gene clone library generated from the biomass. Four of these were affiliated to known anammox 16S rRNA gene sequences, but branched much closer to the root of the planctomycete line of descent. Fluorescence in situ hybridization (FISH) with oligonucleotide probes specific for these new sequences showed that two species (belonging to the same genus) together made up > 99% of the planctomycete population which constituted 20% of the total microbial community. The identification of these organisms as typical anammox bacteria was confirmed with electron microscopy and lipid analysis. The new species, provisionally named Candidatus "Scalindua brodae" and "Scalindua wagneri" considerably extend the biodiversity of the anammox lineage on the 16S rRNA gene level, but otherwise resemble known anammox bacteria. Simultaneously, another new species of the same genus, Candidatus "Scalindua sorokinii", was detected in the water column of the Black Sea, making this genus the most widespread of all anammox bacteria described so far.

  13. Multiphase composition changes and reactive oxygen species formation during limonene oxidation in the new Cambridge Atmospheric Simulation Chamber (CASC

    Directory of Open Access Journals (Sweden)

    P. J. Gallimore

    2017-08-01

    Full Text Available The chemical composition of organic aerosols influences their impacts on human health and the climate system. Aerosol formation from gas-to-particle conversion and in-particle reaction was studied for the oxidation of limonene in a new facility, the Cambridge Atmospheric Simulation Chamber (CASC. Health-relevant oxidising organic species produced during secondary organic aerosol (SOA formation were quantified in real time using an Online Particle-bound Reactive Oxygen Species Instrument (OPROSI. Two categories of reactive oxygen species (ROS were identified based on time series analysis: a short-lived component produced during precursor ozonolysis with a lifetime of the order of minutes, and a stable component that was long-lived on the experiment timescale (∼ 4 h. Individual organic species were monitored continuously over this time using Extractive Electrospray Ionisation (EESI Mass Spectrometry (MS for the particle phase and Proton Transfer Reaction (PTR MS for the gas phase. Many first-generation oxidation products are unsaturated, and we observed multiphase aging via further ozonolysis reactions. Volatile products such as C9H14O (limonaketone and C10H16O2 (limonaldehyde were observed in the gas phase early in the experiment, before reacting again with ozone. Loss of C10H16O4 (7-hydroxy limononic acid from the particle phase was surprisingly slow. A combination of reduced C = C reactivity and viscous particle formation (relative to other SOA systems may explain this, and both scenarios were tested in the Pretty Good Aerosol Model (PG-AM. A range of characterisation measurements were also carried out to benchmark the chamber against existing facilities. This work demonstrates the utility of CASC, particularly for understanding the reactivity and health-relevant properties of organic aerosols using novel, highly time-resolved techniques.

  14. The role of iron species on the turbidity of oxidized phenol solutions in a photo-Fenton system.

    Science.gov (United States)

    Villota, Natalia; Camarero, Luis M; Lomas, Jose M; Perez-Arce, Jonatan

    2015-01-01

    This work aims at establishing the contribution of the iron species to the turbidity of phenol solutions oxidized with photo-Fenton technology. During oxidation, turbidity increases linearly with time till a maximum value, according to a formation rate that shows a dependence of second order with respect to the catalyst concentration. Next, the decrease in turbidity shows the evolution of second-order kinetics, where the kinetics constant is inversely proportional to the dosage of iron, of order 0.7. The concentration of iron species is analysed at the point of maximum turbidity, as a function of the total amount of iron. Then, it is found that using dosages FeT=0-15.0 mg/L, the majority iron species was found to be ferrous ions, indicating that its concentration increases linearly with the dosage of total iron. This result may indicate that the photo-reaction of ferric ion occurs leading to the regeneration of ferrous ion. The results, obtained by operating with initial dosages FeT=15.0 and 25.0 mg/L, suggest that ferrous ion concentration decreases while ferric ion concentration increases in a complementary manner. This fact could be explained as a regeneration cycle of the iron species. The observed turbidity is generated due to the iron being added as a catalyst and the organic matter present in the system. Later, it was found that at the point of maximum turbidity, the concentration of ferrous ions is inversely proportional to the concentration of phenol and its dihydroxylated intermediates.

  15. Multiphase composition changes and reactive oxygen species formation during limonene oxidation in the new Cambridge Atmospheric Simulation Chamber (CASC)

    Science.gov (United States)

    Gallimore, Peter J.; Mahon, Brendan M.; Wragg, Francis P. H.; Fuller, Stephen J.; Giorio, Chiara; Kourtchev, Ivan; Kalberer, Markus

    2017-08-01

    The chemical composition of organic aerosols influences their impacts on human health and the climate system. Aerosol formation from gas-to-particle conversion and in-particle reaction was studied for the oxidation of limonene in a new facility, the Cambridge Atmospheric Simulation Chamber (CASC). Health-relevant oxidising organic species produced during secondary organic aerosol (SOA) formation were quantified in real time using an Online Particle-bound Reactive Oxygen Species Instrument (OPROSI). Two categories of reactive oxygen species (ROS) were identified based on time series analysis: a short-lived component produced during precursor ozonolysis with a lifetime of the order of minutes, and a stable component that was long-lived on the experiment timescale (˜ 4 h). Individual organic species were monitored continuously over this time using Extractive Electrospray Ionisation (EESI) Mass Spectrometry (MS) for the particle phase and Proton Transfer Reaction (PTR) MS for the gas phase. Many first-generation oxidation products are unsaturated, and we observed multiphase aging via further ozonolysis reactions. Volatile products such as C9H14O (limonaketone) and C10H16O2 (limonaldehyde) were observed in the gas phase early in the experiment, before reacting again with ozone. Loss of C10H16O4 (7-hydroxy limononic acid) from the particle phase was surprisingly slow. A combination of reduced C = C reactivity and viscous particle formation (relative to other SOA systems) may explain this, and both scenarios were tested in the Pretty Good Aerosol Model (PG-AM). A range of characterisation measurements were also carried out to benchmark the chamber against existing facilities. This work demonstrates the utility of CASC, particularly for understanding the reactivity and health-relevant properties of organic aerosols using novel, highly time-resolved techniques.

  16. Reproductive effort affects oxidative status and stress in an Antarctic penguin species: An experimental study.

    Science.gov (United States)

    Colominas-Ciuró, Roger; Santos, Mercedes; Coria, Néstor; Barbosa, Andrés

    2017-01-01

    The oxidative cost of reproduction has been a matter of debate in recent years presumably because of the lack of proper experimental studies. Based on the hypothesis that different brood sizes produce differential reproductive costs, an experimental manipulation during breeding of Adélie penguins was conducted at Hope Bay, Antarctica, to study oxidative status and stress. We predict that a lower reproductive effort should be positively related to low oxidative and physiological stress. We randomly assigned nests with two chicks to a control reproductive effort group (CRE), and by removing one chick from some nests with two chicks, formed a second, low reproductive effort group (LRE). We examined how oxidative status in blood plasma (reactive oxygen metabolites, ROMs, and total antioxidant capacity, OXY) and stress (heterophil/lymphocyte ratio, H/L) responded to a lower production of offspring total biomass. Our nest manipulation showed significant differences in offspring total biomass, which was lower in the LRE group. As predicted, the LRE group had higher antioxidant capacity than individuals in the CRE group. We have also found, although marginally significant, interactions between sex and treatment in the three variables analysed. Females had higher OXY, lower ROMs and lower H/L ratio when rearing one chick, whereas males did so when rearing two except for OXY which was high regardless of treatment. Moreover, there was a significant negative correlation between the H/L ratio and OXY in females. Finally, we have found a negative and significant relationship between the duration of the experiment and OXY and ROMs and positive with H/L ratio which suggests that indeed breeding penguins are paying an effort in physiological terms in relation to the duration of the chick rearing. In conclusion, a reduction of the reproductive effort decreased oxidative stress in this long-lived bird meaning that a link exists between breeding effort and oxidative stress. However

  17. Reproductive effort affects oxidative status and stress in an Antarctic penguin species: An experimental study.

    Directory of Open Access Journals (Sweden)

    Roger Colominas-Ciuró

    Full Text Available The oxidative cost of reproduction has been a matter of debate in recent years presumably because of the lack of proper experimental studies. Based on the hypothesis that different brood sizes produce differential reproductive costs, an experimental manipulation during breeding of Adélie penguins was conducted at Hope Bay, Antarctica, to study oxidative status and stress. We predict that a lower reproductive effort should be positively related to low oxidative and physiological stress. We randomly assigned nests with two chicks to a control reproductive effort group (CRE, and by removing one chick from some nests with two chicks, formed a second, low reproductive effort group (LRE. We examined how oxidative status in blood plasma (reactive oxygen metabolites, ROMs, and total antioxidant capacity, OXY and stress (heterophil/lymphocyte ratio, H/L responded to a lower production of offspring total biomass. Our nest manipulation showed significant differences in offspring total biomass, which was lower in the LRE group. As predicted, the LRE group had higher antioxidant capacity than individuals in the CRE group. We have also found, although marginally significant, interactions between sex and treatment in the three variables analysed. Females had higher OXY, lower ROMs and lower H/L ratio when rearing one chick, whereas males did so when rearing two except for OXY which was high regardless of treatment. Moreover, there was a significant negative correlation between the H/L ratio and OXY in females. Finally, we have found a negative and significant relationship between the duration of the experiment and OXY and ROMs and positive with H/L ratio which suggests that indeed breeding penguins are paying an effort in physiological terms in relation to the duration of the chick rearing. In conclusion, a reduction of the reproductive effort decreased oxidative stress in this long-lived bird meaning that a link exists between breeding effort and oxidative

  18. An Overview of Seasonal Changes in Oxidative Stress and Antioxidant Defence Parameters in Some Invertebrate and Vertebrate Species

    Directory of Open Access Journals (Sweden)

    Gagan Bihari Nityananda Chainy

    2016-01-01

    Full Text Available Antioxidant defence system, a highly conserved biochemical mechanism, protects organisms from harmful effects of reactive oxygen species (ROS, a by-product of metabolism. Both invertebrates and vertebrates are unable to modify environmental physical factors such as photoperiod, temperature, salinity, humidity, oxygen content, and food availability as per their requirement. Therefore, they have evolved mechanisms to modulate their metabolic pathways to cope their physiology with changing environmental challenges for survival. Antioxidant defences are one of such biochemical mechanisms. At low concentration, ROS regulates several physiological processes, whereas at higher concentration they are toxic to organisms because they impair cellular functions by oxidizing biomolecules. Seasonal changes in antioxidant defences make species able to maintain their correct ROS titre to take various physiological functions such as hibernation, aestivation, migration, and reproduction against changing environmental physical parameters. In this paper, we have compiled information available in the literature on seasonal variation in antioxidant defence system in various species of invertebrates and vertebrates. The primary objective was to understand the relationship between varied biological phenomena seen in different animal species and conserved antioxidant defence system with respect to seasons.

  19. Increased Reactive Oxygen Species Formation and Oxidative Stress in Rheumatoid Arthritis

    OpenAIRE

    Mateen, Somaiya; Moin, Shagufta; Khan, Abdul Qayyum; Zafar, Atif; Fatima, Naureen

    2016-01-01

    Background Rheumatoid arthritis (RA) is an autoimmune inflammatory disorder. Highly reactive oxygen free radicals are believed to be involved in the pathogenesis of the disease. In this study, RA patients were sub-grouped depending upon the presence or absence of rheumatoid factor, disease activity score and disease duration. RA Patients (120) and healthy controls (53) were evaluated for the oxidant?antioxidant status by monitoring ROS production, biomarkers of lipid peroxidation, protein oxi...

  20. Influence of reactive oxygen species during deposition of iron oxide films by high power impulse magnetron sputtering

    Science.gov (United States)

    Stranak, V.; Hubicka, Z.; Cada, M.; Bogdanowicz, R.; Wulff, H.; Helm, C. A.; Hippler, R.

    2018-03-01

    Iron oxide films were deposited using high power impulse magnetron sputtering (HiPIMS) of an iron cathode in an argon/oxygen gas mixture at different gas pressures (0.5 Pa, 1.5 Pa, and 5.0 Pa). The HiPIMS system was operated at a repetition frequency f  =  100 Hz with a duty cycle of 1%. A main goal is a comparison of film growth during conventional and electron cyclotron wave resonance-assisted HiPIMS. The deposition plasma was investigated by means of optical emission spectroscopy and energy-resolved mass spectrometry. Active oxygen species were detected and their kinetic energy was found to depend on the gas pressure. Deposited films were characterized by means of spectroscopic ellipsometry and grazing incidence x-ray diffraction. Optical properties and crystallinity of as-deposited films were found to depend on the deposition conditions. Deposition of hematite iron oxide films with the HiPIMS–ECWR discharge is attributed to the enhanced production of reactive oxygen species.

  1. Changes of paramagnetic species in cereal grains upon short-term ozone action as a marker of oxidative stress tolerance.

    Science.gov (United States)

    Łabanowska, Maria; Kurdziel, Magdalena; Filek, Maria

    2016-01-15

    The increase of the concentration of ozone in the atmosphere, being the direct source of reactive oxygen species, results in the yield loss of agronomic crops. On the other hand, ozone is also used as a protector against microorganisms, living in plants and present in materials obtained from them, dangerous for human and animal health. In this work it has been studied if ozone in doses similar to those used for removal of microorganisms can have significant influence on the generation of stable organic radicals and changes in the character of transition metal ions and in the antioxidative biochemical parameters of cereal grains. The aim of this work was to find if the response of grains of three cereals (wheat, oat and barley) to ozone depended on their oxidative stress tolerance. The influence of direct short-term ozone application on grains of these cereals, each represented by two genotypes with different oxidative stress tolerance, was studied by biochemical analyses and by electron paramagnetic resonance (EPR) technique. Whole grains as well as their parts: embryo, endosperm and seed coat were subjected to ozone treatment for 30 min. Biochemical investigation of control samples showed that their antioxidant activity increased in order: wheatmethod revealed that character and the number of paramagnetic species (transition metal ions: Fe(III), Cu(II), Mn(II) and stable organic radicals) changed upon ozone exposure, depending on the kind of cereal, stress tolerance of particular genotype and the part of grain. The control samples of whole grains and their parts originating from sensitive genotypes contained higher amounts of stable organic radicals (semiquinone, phenoxyl and carbohydrate types) than those from tolerant ones. In embryos of grains from sensitive genotypes their amount increased upon ozone treatment stronger than in embryos from grains of tolerant cultivars. In seed coats and endosperms such relation was not found and the changes in the content of

  2. Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions

    Czech Academy of Sciences Publication Activity Database

    Hefny, M.M.; Pattyn, C.; Lukeš, Petr; Benedikt, J.

    2016-01-01

    Roč. 49, č. 40 (2016), s. 404002 ISSN 0022-3727 R&D Projects: GA MŠk(CZ) LD14080 Grant - others:European Cooperation in Science and Technology(XE) COST TD1208 Institutional support: RVO:61389021 Keywords : atmospheric pressure plasma * transport of reactive species * reactive oxygen species * aqueous phase chemistry * plasma and liquids * phenol aqueous chemistry Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/0022-3727/49/40/404002

  3. Annato extract and β-carotene modulate the production of reactive oxygen species/nitric oxide in neutrophils from diabetic rats

    Science.gov (United States)

    Rossoni-Júnior, Joamyr Victor; Araújo, Glaucy Rodrigues; Pádua, Bruno da Cruz; Chaves, Míriam Martins; Pedrosa, Maria Lúcia; Silva, Marcelo Eustáquio; Costa, Daniela Caldeira

    2012-01-01

    Annatto has been identified as carotenoids that have antioxidative effects. It is well known that one of the key elements in the development of diabetic complications is oxidative stress. The immune system is especially vulnerable to oxidative damage because many immune cells, such as neutrophils, produce reactive oxygen species and reactive nitrogen species as part of the body’s defense mechanisms to destroy invading pathogens. Reactive oxygen species/reactive nitrogen species are excessively produced by active peripheral neutrophils, and may damage essential cellular components, which in turn can cause vascular complications in diabetes. The present study was undertaken to evaluate the possible protective effects of annatto on the reactive oxygen species and nitric oxide (NO) inhibition in neutrophils from alloxan-induced diabetic rats. Adult female rats were divided into six groups based on receiving either a standard diet with or without supplementation of annatto extract or beta carotene. All animals were sacrificed 30 days after treatment and the neutrophils were isolated using two gradients of different densities. The reactive oxygen species and NO were quantified by a chemiluminescence and spectrophotometric assays, respectively. Our results show that neutrophils from diabetic animals produce significantly more reactive oxygen species and NO than their respective controls and that supplementation with beta carotene and annatto is able to modulate the production of these species. Annatto extract may have therapeutic potential for modulation of the balance reactive oxygen species/NO induced by diabetes. PMID:22573917

  4. Annato extract and β-carotene modulate the production of reactive oxygen species/nitric oxide in neutrophils from diabetic rats.

    Science.gov (United States)

    Rossoni-Júnior, Joamyr Victor; Araújo, Glaucy Rodrigues; Pádua, Bruno da Cruz; Chaves, Míriam Martins; Pedrosa, Maria Lúcia; Silva, Marcelo Eustáquio; Costa, Daniela Caldeira

    2012-05-01

    Annatto has been identified as carotenoids that have antioxidative effects. It is well known that one of the key elements in the development of diabetic complications is oxidative stress. The immune system is especially vulnerable to oxidative damage because many immune cells, such as neutrophils, produce reactive oxygen species and reactive nitrogen species as part of the body's defense mechanisms to destroy invading pathogens. Reactive oxygen species/reactive nitrogen species are excessively produced by active peripheral neutrophils, and may damage essential cellular components, which in turn can cause vascular complications in diabetes. The present study was undertaken to evaluate the possible protective effects of annatto on the reactive oxygen species and nitric oxide (NO) inhibition in neutrophils from alloxan-induced diabetic rats. Adult female rats were divided into six groups based on receiving either a standard diet with or without supplementation of annatto extract or beta carotene. All animals were sacrificed 30 days after treatment and the neutrophils were isolated using two gradients of different densities. The reactive oxygen species and NO were quantified by a chemiluminescence and spectrophotometric assays, respectively. Our results show that neutrophils from diabetic animals produce significantly more reactive oxygen species and NO than their respective controls and that supplementation with beta carotene and annatto is able to modulate the production of these species. Annatto extract may have therapeutic potential for modulation of the balance reactive oxygen species/NO induced by diabetes.

  5. Mitochondrial role of Apoptosis-Inducing Factor (AIF): Oxidative Phosphorylation and Reactive Oxygen Species.

    OpenAIRE

    Apostolova, Nadezda

    2008-01-01

    The apoptotic function of Apoptosis-inducing factor (AIF) is well documented in the literature, but its physiological role in the mitochondrion is less certain. Using a small interfering RNA (siRNA) strategy, we studied whether modulation of AIF expression in cultured cells influenced the production of reactive oxygen species (ROS). We found that siAIF-transfected cells had reduced AIF protein levels and this was paralleled by a significant increase in ROS. We tested the genera...

  6. Variability in the composition of anti-oxidant compounds in Echinacea species by HPLC.

    Science.gov (United States)

    Pellati, Federica; Benvenuti, Stefania; Melegari, Michele; Lasseigne, Todd

    2005-01-01

    A fast and reliable HPLC method for the determination of caffeic acid derivatives (caftaric acid, chlorogenic acid, caffeic acid, cynarin, echinacoside and cichoric acid) in various species of the genus Echinacea has been developed. Extraction of root samples by magnetic stirring with 80% methanol aqueous solution at room temperature allowed the complete recovery of all compounds of interest. Root extracts were analysed on a reversed-phase column with gradient elution and photodiode array detection. Caffeic acid derivatives showed differential qualitative and quantitative distributions in Echinacea species. The total amount of phenolic compounds ranged from 33.95 to 0.32 mg/g. The highest contents of caffeic acid derivatives were found in E. paradoxa var. paradoxa, E. paradoxa var. neglecta and E. purpurea, followed by E. angustifolia var. angustifolia, E. simulata, E. pallida and E. laevigata, whilst E. tennesseensis, E. sanguinea and E. atrorubens had low amounts of phenolic compounds. The radical scavenging activities of methanolic extracts of roots of Echinacea species was evaluated in vitro using the DPPH* radical scavenging method. The EC50 values of the samples ranged from 122 to 1223 microg/mL. The radical scavenging activities of the root extracts were correlated with the content of phenolic compounds, with a correlation coefficient (r2) of 0.923.

  7. DFT studies of the substituent effects of dimethylamino on non-heme active oxidizing species: iron(V)-oxo species or iron(IV)-oxo acetate aminopyridine cation radical species?

    Science.gov (United States)

    Wang, Fang; Sun, Wei; Xia, Chungu; Wang, Yong

    2017-10-01

    Through the introduction of dimethylamino (Me 2 N) substituent at the pyridine ring of 2-((R)-2-[(R)-1-(pyridine-2-ylmethyl)pyrrolidin-2-yl]pyrrolidin-1-ylmethyl)pyridine (PDP) ligand, the non-heme Fe II ( Me2N PDP)/H 2 O 2 /AcOH catalyst system was found to exhibit significant higher catalytic activity and enantioselectivity than the non-substituent one in the asymmetric epoxidation experiments. The mechanistic origin of the remarkable substituent effects in these oxidation reactions has not been well established. To ascertain the potent oxidant and the related reaction mechanism, a detailed DFT calculation was performed. Interestingly, a novel Fe(IV)-oxo Me2N PDP cation radical species, [( Me2N PDP) + · Fe IV (O)(OAc)] 2+ ( Me2N 5), with about one spin spreading over the non-heme Me2N PDP ligand was formed via a carboxylic-acid-assisted O-O bond heterolysis, which is reminiscent of Compound I (an Fe(IV)(O)(porphyrin cation radical) species) in cytochrome P450 chemistry. Me2N 5 is energetically comparable with the cyclic ferric peracetate species Me2N 6, while in the pristine Fe(PDP) catalyst system, H 6 is more stable than H 5. Comparison of the activation energy for the ethylene epoxidation promoted by Me2N 5 and Me2N 6, Me2N 5 is supposed as the true oxidant triggering the epoxidation of olefins. In addition, a systematic research on the substituent effects varied from the electron-donating substituent (dMM, the substituents at sites 3, 4, and 5 of the pyridine ring: methyl, methoxyl, and methyl) to the electron-withdrawing one (CF 3 , 2,6-bis(trifluoromethyl)phenyl) on the electronic structure of the reaction intermediates has also been investigated. An alternative cyclic ferric peracetate complex is obtained, indicating that the substituents at the pyridine ring of PDP ligands have significant impacts on the electronic structure of the oxidants.

  8. Studies on a Novel Actinobacteria Species Capable of Oxidizing Ammonium under Iron Reduction Conditions

    Science.gov (United States)

    Huanh, Shan; Ruiz-Urigüen, Melany; Jaffe, Peter R.

    2014-05-01

    Ammonium (NH4+) oxidation coupled to iron reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) was noted in a forested riparian wetland in New Jersey (1,2), and in tropical rainforest soils (3), and was coined Feammox (4). Through a 180-days anaerobic incubation of soil samples collected at the New Jersey site, and using 16S rDNA PCR-DGGE, 454-pyosequecing, and qPCR analysis, we have shown that an Acidimicrobiaceae bacterium A6, belonging to the phylum Actinobacteria, is responsible for this Feammox process, described previously (1,2). We have enriched these Feammox bacteria in a high efficiency Feammox membrane reactor (with 85% NH4+removal per 48h), and isolated the pure Acidimicrobiaceae bacterium A6 strain 5, in an autotrophic medium. To determine if the Feammox bacteria found in this study are common, at least at the regional scale, we analyzed a series of local wetland-, upland-, as well as storm-water detention pond-sediments. Through anaerobic incubations and molecular biology analysis, the Feammox reaction and Acidimicrobiaceae bacterium A6 were found in three of twenty soil samples collected, indicating that the Feammox pathway might be widespread in selected soil environments. Results show that soil pH and Fe(III) content are key environmental factors controlling the distributions of Feammox bacteria, which require acidic conditions and the presence of iron oxides. Results from incubation experiments conducted at different temperatures have shown that, in contrast to another anaerobic ammonium oxidation pathways (e.g., anammox), the optimal temperature of the Feammox process is ~ 20° and that the organisms are still active when the temperature is around 10°. An incubation experiment amended with acetylene gas (C2H2) as a selected inhibitor showed that in the Feammox reaction, Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+is the electron donor, which is oxidized to NO2-. After this process, NO2- is converted to

  9. The optical constants of several atmospheric aerosol species - Ammonium sulfate, aluminum oxide, and sodium chloride

    Science.gov (United States)

    Toon, O. B.; Pollack, J. B.; Khare, B. N.

    1976-01-01

    An investigation is conducted of problems which are related to a use of measured optical constants in the simulation of the optical constants of real atmospheric aerosols. The techniques of measuring optical constants are discussed, taking into account transmission measurements through homogeneous and inhomogeneous materials, the immersion of a material in a liquid of a known refractive index, the consideration of the minimum deviation angle of prism measurement, the interference of multiply reflected light, reflectivity measurements, and aspects of mathematical analysis. Graphs show the real and the imaginary part of the refractive index as a function of wavelength for aluminum oxide, NaCl, and ammonium sulfate. Tables are provided for the dispersion parameters and the optical constants.

  10. Zinc Oxide (ZnO) nanoparticles toxic potency on different microalgae species

    Science.gov (United States)

    Aravantinou, Andriana F.; Tsarpali, Vasiliki; Dailianis, Stefanos; Manariotis, Ioannis D.

    2013-04-01

    Nanoparticles are widely used in many products such as cosmetics, material coatings, and pigments and they are released into enviroment. Recently, nanoparticles have been found in municipal wastewater and wastewater treatment plants, which are consequently discharged to receiving bodies. Since their versatile use and application is increasing, their environmental impact is of great concern and needs to be clarified. The aim of this work was to investigate the effect of nanoparticles on aquatic species, such as unicellular microalgae. This is considered as a necessary step in order to assess their impact on coastal food chain and the ecosystems that they support as well as on natural wastewater treatment systems. More specifically, the potential toxic effects of ZnO nanoparticles (ZnO NPs) on three aquatic organisms, Dunaliella tertiolecta, Tetraselmis suesica, and Chlorococcum sp. were investigated. The microalgae species exposed to different periods of time (24, 48, 72 and 96 h) and different concentrations of ZnO NPs (1 to 100 μM, 1 to10 mM), and showed significant differences on their growth rates. Algae exposed to ZnO NPs concentrations from 1 to 100 μΜ exhibited increased levels of the half maximum inhibitory concentration values (IC50) in all cases, while at higher concentrations (from 1 to 10 mM) algae showed excessive lysis, probably due to disturbances occurred in cellular structure and function. According to the results of the present study, ZnO nanoparticles appeared to have toxic effects on all species tested, showing type- and time-dependent alterations.

  11. Elucidation of the molecular structure of hydrated vanadium oxide species by X-ray absorption spectroscopy: correlation between the V...V coordination number and distance and the point of zero charge of the support oxide.

    Science.gov (United States)

    Keller, Daphne E; Koningsberger, Diek C; Weckhuysen, Bert M

    2006-11-07

    The effect of the point of zero charge (PZC) of the support oxide (Al(2)O(3), Nb(2)O(5), SiO(2) and ZrO(2)) on the molecular structure of hydrated vanadium oxide species has been investigated with EXAFS spectroscopy for low-loaded vanadium oxide catalysts. It was found that the degree of clustering (i.e., the V[dot dot dot]V coordination number) and the V...V distance increase with decreasing PZC of the support oxide; i.e., Al(2)O(3) (8.7) vanadium oxide exhibited a clear alteration in the position of the oxygen atoms surrounding the central vanadium atom and the number of oxygen atoms around vanadium increased to five. In contrast, only minor changes in the molecular structure were detected for the alumina-, niobia- and zirconia-supported vanadium oxide catalysts. Based on a detailed analysis of the EXAFS data a semi-quantitative distribution of vanadium oxide species present on the surface of the different support oxides can be obtained, which is in good agreement with earlier characterization studies primarily making use of Raman spectroscopy.

  12. Role of reactive oxygene species, peroxiredoxins and thioredoxins in reaction of plants to hypergravity and oxidative stresses

    Science.gov (United States)

    Jadko, Sergiy

    Early increasing of reactive oxygen species (ROS) concentration, including H2O2, occur in plant cells under various impacts and these ROS can function as signaling molecules in starting of cell stress responses. Peroxiredoxins (Prx) and thioredoxins (Trx) are significant cell ROS/H2O2 sensors and transmitters. Prx besides its antioxidant activity, participate in creating of stress redox signals by destroying of H2O2 and reducing of Trx. Than these reduced Trx lead to activation of various redox sensitive proteins, transcription factors and MAP kinases. This study aimed to investigate early increasing of ROS and H2O2 contents and Prx and Trx activities in pea roots and arabidopsis tissue culture cells under hypergravity and oxidative stresses. Pea roots of 3-5 days old seedlings and 12 days old tissue culture of Arabidopsis thaliana from leaves were studied. Pea seedlings were grown on wet filter paper and the tissue culture was grown on MS medium in dark conditions under 24oC. Hypergravity stress was induced by centrifugation at 15 g. Chemiluminescence (ChL) intensity for ROS concentration, H2O2 content and Prx and Trx activities were determined. All experiments were repeated by 3-4 times. Early increasing of ChL intensity and H2O2 content in the pea roots and arabidopsis tissue culture cells took place under hypergravity and oxidative stresses and its were higher corresponding controls on average on 25, 21 and 17 percents to 30, 60 and 90 min. At the same time Prx and Trx activities increased on 7, 13 and 16 percents. Thus under hypergravity and oxidative stresses in both investigated plants take place early increasing of ROS and H2O2 contents which as second messengers can lead to ROS/H2O2-dependent increasing of Prx and Trx activities with creating of H2O2-Prx-Trx signaling pathway.

  13. Essential oil of Artemisia scoparia inhibits plant growth by generating reactive oxygen species and causing oxidative damage.

    Science.gov (United States)

    Singh, Harminder Pal; Kaur, Shalinder; Mittal, Sunil; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2009-02-01

    We investigated the chemical composition and phytotoxicity of the essential oil extracted from leaves of Artemisia scoparia Waldst. et Kit. (red stem wormwood, Asteraceae). GC/GC-MS analyses revealed 33 chemical constituents representing 99.83% of the oil. The oil, in general, was rich in monoterpenes that constitute 71.6%, with beta-myrcene (29.27%) as the major constituent followed by (+)-limonene (13.3%), (Z)-beta-ocimene (13.37%), and gamma-terpinene (9.51%). The oil and beta-myrcene were evaluated in a dose-response bioassay under laboratory conditions for phytotoxicity against three weeds-Avena fatua, Cyperus rotundus, and Phalaris minor. A significant reduction in germination, seedling growth, and dry matter accumulation was observed in the test weeds. At the lowest treatment of 0.07 mg/ml Artemisia oil, germination was reduced by 39%, 19%, and 10.6% in C. rotundus, P. minor, and A. fatua, respectively. However, the inhibitory effect of beta-myrcene was less. In general, a dose-dependent effect was observed and the growth declined with increasing concentration. Among the three weeds, the inhibitory effect was greatest on C. rotundus, so it was selected for further studies. We explored the explanation for observed growth inhibition in terms of reactive oxygen species (ROS: lipid peroxidation, membrane integrity, and amounts of conjugated dienes and hydrogen peroxide)-induced oxidative stress. Exposure of C. rotundus to Artemisia oil or beta-myrcene enhanced solute leakage, indicating membrane disintegration. There were increased levels of malondialdehyde and hydrogen peroxide, indicating lipid peroxidation and induction of oxidative stress. We conclude that Artemisia oil inhibits plant root growth through generation of ROS-induced oxidative damage.

  14. A Brief Overview of Nitric Oxide and Reactive Oxygen Species Signaling in Hypoxia-Induced Pulmonary Hypertension.

    Science.gov (United States)

    Jaitovich, Ariel; Jourd'heuil, David

    2017-01-01

    Pulmonary hypertension (PH) is characterized by increased vasoconstriction and smooth muscle cell hyperplasia driving pathological vascular remodeling of arterial vessels. In this short review, we discuss the primary source of reactive oxygen species (ROS) and nitric oxide (NO) relevant to PH and the mechanism by which dysregulation of their production contributes to PH. Specifically, hypoxia-induced PH is associated with diminished endothelial nitric oxide synthase (eNOS)-derived NO production and increased production of superoxide (O 2 •- ) through eNOS uncoupling and defective mitochondrial respiration. This drives the inhibition of the NO/soluble guanylate cyclase (sGC) pathway and activation of the transcription factor hypoxia-inducible factor-1α (HIF-1α) with consequential dysregulation of the pulmonary vasculature. Therapeutics aimed at increasing NO or cGMP bioavailabilities are amenable to hypoxia disease-induced PH. Similarly, strategies targeting HIF-1α are now considered. Overall, pulmonary hypertension including hypoxia-induced PH offers unique opportunities for the rational development of therapeutics centered on modulating redox signaling.

  15. Oxidative activation of indole-3-acetic acids to cytotoxic species- a potential new role for plant auxins in cancer therapy.

    Science.gov (United States)

    Folkes, L K; Wardman, P

    2001-01-15

    Indole-3-acetic acid (IAA) and some derivatives can be oxidised by horseradish peroxidase (HRP) to cytotoxic species. Upon treatment with IAA/HRP, liposomes undergo lipid peroxidation, strand breaks and adducts are formed in supercoiled plasmid DNA, and mammalian cells in culture lose colony-forming ability. IAA is only toxic after oxidative decarboxylation; no effects are seen when IAA or HRP is incubated independently in these systems at equivalent concentrations. Toxicity is similar in both hamster fibroblasts and some human tumour cells. The effect of IAA/HRP is thought to be due in part to the formation of 3-methylene-2-oxindole, which may conjugate with DNA bases and protein thiols. Our hypothesis is that IAA/HRP could be used as the basis for targeted cancer therapy involving antibody-, polymer-, or gene-directed approaches. HRP can thus be targeted to a tumour allowing non-toxic IAA delivered systemically to be activated only in the tumour. Exposure to newly synthesised analogues of IAA shows a range of four orders of magnitude difference in cellular toxicity but no structure-activity relationships are apparent, in contrast to well-defined redox dependencies of oxidation by HRP intermediates or rates of decarboxylation of radical-cation intermediates.

  16. Therapeutic Strategies for Oxidative Stress-Related Cardiovascular Diseases: Removal of Excess Reactive Oxygen Species in Adult Stem Cells

    Directory of Open Access Journals (Sweden)

    Hyunyun Kim

    2016-01-01

    Full Text Available Accumulating evidence indicates that acute and chronic uncontrolled overproduction of oxidative stress-related factors including reactive oxygen species (ROS causes cardiovascular diseases (CVDs, atherosclerosis, and diabetes. Moreover ROS mediate various signaling pathways underlying vascular inflammation in ischemic tissues. With respect to stem cell-based therapy, several studies clearly indicate that modulating antioxidant production at cellular levels enhances stem/progenitor cell functionalities, including proliferation, long-term survival in ischemic tissues, and complete differentiation of transplanted cells into mature vascular cells. Recently emerging therapeutic strategies involving adult stem cells, including endothelial progenitor cells (EPCs, for treating ischemic CVDs have highlighted the need to control intracellular ROS production, because it critically affects the replicative senescence of ex vivo expanded therapeutic cells. Better understanding of the complexity of cellular ROS in stem cell biology might improve cell survival in ischemic tissues and enhance the regenerative potentials of transplanted stem/progenitor cells. In this review, we will discuss the nature and sources of ROS, drug-based therapeutic strategies for scavenging ROS, and EPC based therapeutic strategies for treating oxidative stress-related CVDs. Furthermore, we will discuss whether primed EPCs pretreated with natural ROS-scavenging compounds are crucial and promising therapeutic strategies for vascular repair.

  17. Achillolide A Protects Astrocytes against Oxidative Stress by Reducing Intracellular Reactive Oxygen Species and Interfering with Cell Signaling.

    Science.gov (United States)

    Elmann, Anat; Telerman, Alona; Erlank, Hilla; Ofir, Rivka; Kashman, Yoel; Beit-Yannai, Elie

    2016-03-02

    Achillolide A is a natural sesquiterpene lactone that we have previously shown can inhibit microglial activation. In this study we present evidence for its beneficial effects on astrocytes under oxidative stress, a situation relevant to neurodegenerative diseases and brain injuries. Viability of brain astrocytes (primary cultures) was determined by lactate dehydrogenase (LDH) activity, intracellular ROS levels were detected using 2',7'-dichlorofluorescein diacetate, in vitro antioxidant activity was measured by differential pulse voltammetry, and protein phosphorylation was determined using specific ELISA kits. We have found that achillolide A prevented the H₂O₂-induced death of astrocytes, and attenuated the induced intracellular accumulation of reactive oxygen species (ROS). These activities could be attributed to the inhibition of the H₂O₂-induced phosphorylation of MAP/ERK kinase 1 (MEK1) and p44/42 mitogen-activated protein kinases (MAPK), and to the antioxidant activity of achillolide A, but not to H₂O₂ scavenging. This is the first study that demonstrates its protective effects on brain astrocytes, and its ability to interfere with MAPK activation. We propose that achillolide A deserves further evaluation for its potential to be developed as a drug for the prevention/treatment of neurodegenerative diseases and brain injuries where oxidative stress is part of the pathophysiology.

  18. The application of Fe–Mn hydrous oxides based adsorbent for removing selenium species from water

    KAUST Repository

    Szlachta, Małgorzata

    2013-02-01

    In this study, the adsorptive removal of selenium(IV) and selenium(VI) from water by a newly developed ion exchange adsorbent, based on Fe(III) and Mn(III) hydrous oxides, was examined. This study was conducted to determine the influence of various operating parameters, such as initial anion concentration, contact time, adsorbent dose, pH, solution temperature, and the presence of competitive anions, on the treatment performance. The high Se(IV) adsorptive capacity of the adsorbent (up to 41.02. mg/g at pH 4) was due to its high affinity for selenite, as reflected in the fast rate of uptake (batch studies) and an efficient long-term removal (column experiments). Although adsorption of anions traditionally decreases as pH increases, the mixed adsorbent was capable of purifying large volumes of Se(IV)-containing water (at pH 7) to reach concentrations lower than 10 μg/L, which meets the European Commission standards. The presence of sulphate and carbonate did not influence Se(IV) adsorption. However, high phosphate and silicate concentrations may have decreased the removal efficiency of Se(IV). Data from the batch and column adsorption experiments were fitted with a number of approved models, which revealed the adsorption mechanism and allowed for a comparison of the results. © 2012 Elsevier B.V.

  19. Sporothrix brasiliensis produces the highest levels of oxidative stress in a murine model among the species of the Sporothrix schenckii complex

    Directory of Open Access Journals (Sweden)

    Débora Nunes Mario

    Full Text Available Abstract INTRODUCTION: We compared indicators of oxidative stress in the tissue of mice infected with strains from Sporothrix schenckii complex. METHODS: Mice were inoculated with Sporothrix brasiliensis, Sporothrix schenckii sensu stricto, Sporothrix globosa, Sporothrix mexicana or Sporothrix albicans. The activity of catalase and glutathione were accessed in the liver and spleen. RESULTS: Animals infected with S. brasiliensis exhibited splenomegaly and significant decrease in catalase activity, and protein and non-protein thiol content compared to animals infected with the other species. CONCLUSIONS: Sporothrix brasiliensis exhibits higher pathogenicity compared to other species of the Sporothrix schenckii complex by increasing oxidative stress in animal tissue.

  20. Thermochemical data and additivity group values for ten species of o-xylene low-temperature oxidation mechanism.

    Science.gov (United States)

    Canneaux, Sébastien; Vandeputte, Romain; Hammaecher, Catherine; Louis, Florent; Ribaucour, Marc

    2012-01-12

    o-Xylene could be a good candidate to represent the family of aromatic hydrocarbons in a surrogate fuel. This study uses computational chemistry to calculate standard enthalpies of formation at 298 K, Δ(f)H°(298 K), standard entropies at 298 K, S°(298 K), and standard heat capacities C(p)°(T) over the temperature range 300 K to 1500 K for ten target species present in the low-temperature oxidation mechanism of o-xylene: o-xylene (1), 2-methylbenzyl radical (2), 2-methylbenzylperoxy radical (3), 2-methylbenzyl hydroperoxide (4), 2-(hydroperoxymethyl)benzyl radical (5), 2-(hydroperoxymethyl)benzaldehyde (6), 1-ethyl-2-methylbenzene (7), 2,3-dimethylphenol (8), 2-hydroxybenzaldehyde (9), and 3-hydroxybenzaldehyde (10). Δ(f)H°(298 K) values are weighted averages across the values calculated using five isodesmic reactions and five composite calculation methods: CBS-QB3, G3B3, G3MP2, G3, and G4. The uncertainty in Δ(f)H°(298 K) is also evaluated. S°(298 K) and C(p)°(T) values are calculated at B3LYP/6-311G(d,p) level of theory from molecular properties and statistical thermodynamics through evaluation of translational, rotational, vibrational, and electronic partition functions. S°(298 K) and C(p)°(300 K) values are evaluated using the rigid-rotor-harmonic-oscillator model. C(p)°(T) values at T ≥ 400 K are calculated by treating separately internal rotation contributions and translational, external rotational, vibrational, and electronic contributions. The thermochemical properties of six target species are used to develop six new additivity groups taking into account the interaction between two substituents in ortho (ORT/CH2OOH/ME, ORT/ET/ME, ORT/CHO/OH, ORT/CHO/CH2OOH) or meta (MET/CHO/OH) positions, and the interaction between three substituents (ME/ME/OH123) located one beside the other (positions numbered 1, 2, 3) for two- or three-substituted benzenic species. Two other additivity groups are also developed using the thermochemical properties of

  1. Atomic species recognition on oxide surfaces using low temperature scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zong Min, E-mail: mzmncit@163.com [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China); Shi, Yun Bo; Mu, Ji Liang; Qu, Zhang; Zhang, Xiao Ming; Qin, Li [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China); Liu, Jun, E-mail: liuj@nuc.edu.cn [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China)

    2017-02-01

    Highlights: • The coexisted phase of p(2 × 1)and c(6 × 2) on Cu(110)-O surface using AFM under UHV at low temperature. • Two different c(6 × 2) phase depending on the status of the tip apex. • Electronic state of tip seriously effect the resolution and stability of the sample surface. - Abstract: In scanning probe microscopy (SPM), the chemical properties and sharpness of the tips of the cantilever greatly influence the scanning of a sample surface. Variation in the chemical properties of the sharp tip apex can induce transformation of the SPM images. In this research, we explore the relationship between the tip and the structure of a sample surface using dynamic atomic force microscopy (AFM) on a Cu(110)-O surface under ultra-high vacuum (UHV) at low temperature (78 K). We observed two different c(6 × 2) phase types in which super-Cu atoms show as a bright spot when the tip apex is of O atoms and O atoms show as a bright spot when the tip apex is of Cu atoms. We also found that the electronic state of the tip has a serious effect on the resolution and stability of the sample surface, and provide an explanation for these phenomena. This technique can be used to identify atom species on sample surfaces, and represents an important development in the SPM technique.

  2. Metal- versus Ligand-Centered Oxidations in Phenolato-Vanadium and -Cobalt Complexes: Characterization of Phenoxyl-Cobalt(III) Species.

    Science.gov (United States)

    Sokolowski, Achim; Adam, Britta; Weyhermüller, Thomas; Kikuchi, Akihiro; Hildenbrand, Knut; Schnepf, Robert; Hildebrandt, Peter; Bill, Eckhard; Wieghardt, Karl

    1997-08-13

    The coordination chemistry of the pendent-arm macrocycles 1,4,7-tris(3,5-dimethyl-2-hydroxybenzyl)-1,4,7-triazacyclononane, L(Me)H(3), 1,4,7-tris(3,5-di-tert-butyl-2-hydroxybenzyl)-1,4,7-triazacyclononane, L(Bu)H(3), 1,4,7-tris(3-tert-butyl-5-methoxy-2-hydroxybenzyl)-1,4,7-triazacyclononane, L(OCH)()3H(3), and Tolman's ligand 1,4-diisopropyl-7-(3,5-di-tert-butyl-2-hydroxybenzyl)-1,4,7-triazacyclononane, L(Pr)H, with vanadium and cobalt(III) has been studied. The following complexes containing a fac-N(3)O(3) donor set have been synthesized: [L(Me)V(III)] (1), [L(Me)V(IV)]PF(6) (2), [(L(Me)H)V(V)(O)]PF(6) (3), [L(Bu)V(IV)]PF(6) (4), [L(OCH)()3V(IV)]PF(6) (5), [L(Me)Co(III)] (6), [L(Bu)Co(III)] (7), [L(OCH)()3Co(III)] (8). In addition, two complexes containing the L(Pr)Co(III) fragment have been prepared: [L(Pr)Co(III)(acac)](ClO(4)) (9) and [L(Pr)Co(III)(Cl(4)cat)].CH(3)CN (10), where acac(-) represents the ligand pentane-2,4-dionate and Cl(4)cat(2)(-) is tetrachlorocatecholate. Complexes 9 and 10 have been characterized by single-crystal X-ray crystallography: 9 crystallizes in the triclinic space group P&onemacr; with a = 9.493(1) Å, b = 9.760(1) Å, c = 18.979(2) Å, alpha = 88.57(1) degrees, beta = 78.60(1) degrees, gamma = 79.24(1) degrees, V = 1693.3(3) Å(3), and Z = 2; 10 crystallizes in the monoclinic space group P2(1)/n with a = 10.184(2) Å, b = 24.860(5) Å, c = 14.872(3) Å, beta = 97.95(3) degrees, V = 3729(1) Å(3), and Z = 4. Electrochemically, complexes 2, 4, and 5 can be reversibly oxidized by one electron, yielding vanadium(V), and one-electron-reduced, affording vanadium(III) species; 3 can be reduced to [L(Me)HV(IV)(O)]. These redox processes are shown to be metal-centered. In contrast, the cyclic voltammograms of 7 and 8 display three reversible one-electron oxidations. For the monocations [7](*)(+) and [8](*)(+), EPR and UV-vis spectroscopies reveal that these are phenoxyl-cobalt(III) species. Thus, the redox processes are ligand

  3. Evolution of Active Sites in Pt-Based Nanoalloy Catalysts for the Oxidation of Carbonaceous Species by Combined in Situ Infrared Spectroscopy and Total X-ray Scattering.

    Science.gov (United States)

    Petkov, Valeri; Maswadeh, Yazan; Lu, Aolin; Shan, Shiyao; Kareem, Haval; Zhao, Yinguang; Luo, Jin; Zhong, Chuan-Jian; Beyer, Kevin; Chapman, Karena

    2018-03-23

    We present results from combined in situ infrared spectroscopy and total X-ray scattering studies on the evolution of catalytically active sites in exemplary binary and ternary Pt-based nanoalloys during a sequence of CO oxidation-reactivation-CO oxidation reactions. We find that when within a particular compositional range, the fresh nanoalloys may exhibit high catalytic activity for low-temperature CO oxidation. Using surface-specific atomic pair distribution functions (PDFs) extracted from the in situ total X-ray scattering data, we find that, regardless of their chemical composition and initial catalytic activity, the fresh nanoalloys suffer a significant surface structural disorder during CO oxidation. Upon reactivation in oxygen atmosphere, the surface of used nanoalloy catalysts both partially oxidizes and orders. Remarkably, it largely retains its structural state when the nanoalloys are reused as CO oxidation catalysts. The seemingly inverse structural changes of studied nanoalloy catalysts occurring under CO oxidation and reactivation conditions affect the active sites on their surface significantly. In particular, through different mechanisms, both appear to reduce the CO binding strength to the nanoalloy's surface and thus increase the catalytic stability of the nanoalloys. The findings provide clues for further optimization of nanoalloy catalysts for the oxidation of carbonaceous species through optimizing their composition, activation, and reactivation. Besides, the findings demonstrate the usefulness of combined in situ infrared spectroscopy and total X-ray scattering coupled to surface-specific atomic PDF analysis to the ongoing effort to produce advanced catalysts for environmentally and technologically important applications.

  4. Effect of oxidative stress induced by Brevibacterium sp. BS01 on a HAB causing species--Alexandrium tamarense.

    Directory of Open Access Journals (Sweden)

    Huajun Zhang

    Full Text Available Harmful algal blooms occur all over the world, destroying aquatic ecosystems and threatening other organisms. The culture supernatant of the marine algicidal actinomycete BS01 was able to lysis dinoflagellate Alexandrium tamarense ATGD98-006. Physiological and biochemical responses to oxidative stress in A. tamarense were investigated to elucidate the mechanism involved in BS01 inhibition of algal growth. Transmission electron microscope analysis revealed that there were some chloroplast abnormalities in response to BS01 supernatant. The decrease in cellular-soluble protein content suggested that cell growth was greatly inhibited at high concentration of BS01 supernatant. The increase in the levels of reactive oxygen species (ROS and malondialdehyde contents following exposure to BS01 supernatant indicated that algal cells suffered from oxidative damage. The content of pigment was significantly decreased after 12 h treatment, which indicated that the accumulation of ROS destroyed pigment synthesis. Moreover, the decrease of Fv/Fm ratio suggested that in the photosynthetic system, the dominant sites producing ROS were destroyed by the supernatant of the BS01 culture. The activities of the antioxidant enzymes including superoxide dismutase and peroxidase increased in a short time and decreased slightly with increasing exposure time. A real-time PCR assay showed changes in the transcript abundances of two photosynthetic genes, psbA and psbD. The results showed that BS01 supernatant reduced the expression of the psbA gene after 2 h exposure, but the expression of the psbD gene was increased at concentrations of 1.0 and 1.5%. Our results demonstrated that the expression of the psbA gene was inhibited by the BS01 supernatant, which might block the electron transport chain, significantly enhancing ROS level and excess activity of the antioxidant system. The accumulation of ROS destoryed pigment synthesis and membrane integrity, and inhibited or

  5. Reactive oxygen species mediate nitric oxide production through ERK/JNK MAPK signaling in HAPI microglia after PFOS exposure

    International Nuclear Information System (INIS)

    Wang, Cheng; Nie, Xiaoke; Zhang, Yan; Li, Ting; Mao, Jiamin; Liu, Xinhang; Gu, Yiyang; Shi, Jiyun; Xiao, Jing; Wan, Chunhua; Wu, Qiyun

    2015-01-01

    Perfluorooctane sulfonate (PFOS), an emerging persistent contaminant that is commonly encountered during daily life, has been shown to exert toxic effects on the central nervous system (CNS). However, the molecular mechanisms underlying the neurotoxicity of PFOS remain largely unknown. It has been widely acknowledged that the inflammatory mediators released by hyper-activated microglia play vital roles in the pathogenesis of various neurological diseases. In the present study, we examined the impact of PFOS exposure on microglial activation and the release of proinflammatory mediators, including nitric oxide (NO) and reactive oxidative species (ROS). We found that PFOS exposure led to concentration-dependent NO and ROS production by rat HAPI microglia. We also discovered that there was rapid activation of the ERK/JNK MAPK signaling pathway in the HAPI microglia following PFOS treatment. Moreover, the PFOS-induced iNOS expression and NO production were attenuated after the inhibition of ERK or JNK MAPK by their corresponding inhibitors, PD98059 and SP600125. Interestingly, NAC, a ROS inhibitor, blocked iNOS expression, NO production, and activation of ERK and JNK MAPKs, which suggested that PFOS-mediated microglial NO production occurs via a ROS/ERK/JNK MAPK signaling pathway. Finally, by exposing SH-SY5Y cells to PFOS-treated microglia-conditioned medium, we demonstrated that NO was responsible for PFOS-mediated neuronal apoptosis. - Highlights: • PFOS exposure induced expression of iNOS and production of NO in HAPI microglia. • PFOS induced the production of ROS in HAPI microglia. • ERK/JNK MAPK pathways were activated following PFOS exposure in HAPI microglia. • NO released by HAPI microglia participated in the apoptosis of SH-SY5Y cells.

  6. Active and Stable Methane Oxidation Nano-Catalyst with Highly-Ionized Palladium Species Prepared by Solution Combustion Synthesis

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Khader

    2018-02-01

    Full Text Available We report on the synthesis and testing of active and stable nano-catalysts for methane oxidation. The nano-catalyst was palladium/ceria supported on alumina prepared via a one-step solution-combustion synthesis (SCS method. As confirmed by X-ray photoelectron spectroscopy (XPS and high-resolution transmission electron microscopy (HTEM, SCS preparative methodology resulted in segregating both Pd and Ce on the surface of the Al2O3 support. Furthermore, HTEM showed that bigger Pd particles (5 nm and more were surrounded by CeO2, resembling a core shell structure, while smaller Pd particles (1 nm and less were not associated with CeO2. The intimate Pd-CeO2 attachment resulted in insertion of Pd ions into the ceria lattice, and associated with the reduction of Ce4+ into Ce3+ ions; consequently, the formation of oxygen vacancies. XPS showed also that Pd had three oxidation states corresponding to Pd0, Pd2+ due to PdO, and highly ionized Pd ions (Pd(2+x+ which might originate from the insertion of Pd ions into the ceria lattice. The formation of intrinsic Ce3+ ions, highly ionized (Pd2+ species inserted into the lattice of CeO2 Pd ions (Pd(2+x+ and oxygen vacancies is suggested to play a major role in the unique catalytic activity. The results indicated that the Pd-SCS nano-catalysts were exceptionally more active and stable than conventional catalysts. Under similar reaction conditions, the methane combustion rate over the SCS catalyst was ~18 times greater than that of conventional catalysts. Full methane conversions over the SCS catalysts occurred at around 400 °C but were not shown at all with conventional catalysts. In addition, contrary to the conventional catalysts, the SCS catalysts exhibited superior activity with no sign of deactivation in the temperature range between ~400 and 800 °C.

  7. Oxidative stress and antioxidant responses to increasing concentrations of trivalent chromium in the Andean crop species Chenopodium quinoa Willd.

    Science.gov (United States)

    Scoccianti, Valeria; Bucchini, Anahi E; Iacobucci, Marta; Ruiz, Karina B; Biondi, Stefania

    2016-11-01

    Quinoa (Chenopodium quinoa Willd), an ancient Andean seed crop, exhibits exceptional nutritional properties and resistance to abiotic stress. The species' tolerance to heavy metals has, however, not yet been investigated nor its ability to take up and translocate chromium (Cr). This study aimed to investigate the metabolic adjustments occurring upon exposure of quinoa to several concentrations (0.01-5mM) of CrCl3. Young hydroponically grown plants were used to evaluate Cr uptake, growth, oxidative stress, and other biochemical parameters three and/or seven days after treatment. Leaves accumulated the lowest amounts of Cr, while roots and stems accumulated the most at low and at high metal concentrations, respectively. Fresh weight and photosynthetic pigments were reduced only by the higher Cr(III) doses. Substantially increased lipid peroxidation, hydrogen peroxide, and proline levels were observed only with 5mM Cr(III). Except for a significant decrease at day 7 with 5mM Cr(III), total polyphenols and flavonoids maintained control levels in Cr(III)-treated plants, whereas antioxidant activity increased in a dose-dependent manner. Maximum polyamine accumulation was observed in 1mM CrCl3-treated plants. Even though α- and γ-tocopherols also showed enhanced levels only with the 1mM concentration, tyrosine aminotransferase (TAT, EC 2.6.1.5) activity increased under Cr(III) treatment in a dose- and time-dependent manner. Taken together, results suggest that polyamines, tocopherols, and TAT activity could contribute to tolerance to 1mM Cr(III), but not to the highest concentration that, instead, generated oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Expression of inducible and endothelial nitric oxide synthases, formation of peroxynitrite and reactive oxygen species in human chronic renal transplant failure

    NARCIS (Netherlands)

    Albrecht, EWJA; Stegeman, CA; Tiebosch, ATMG; Tegzess, Adam; van Goor, H

    Nitric oxide (NO.) is produced by NO syntheses (NOS) and can interact with reactive oxygen species (ROS) to form peroxynitrite, which induces protein damage by formation of nitrotyrosine. NO. has a promotional effect on acute rejection. To investigate the role of NO. during chronic renal transplant

  9. High-valent iron (Fe(VI), Fe(V), and Fe(IV)) species in water: characterization and oxidative transformation of estrogenic hormones

    Czech Academy of Sciences Publication Activity Database

    Machalová-Šišková, K.; Jančula, Daniel; Drahoš, B.; Machala, L.; Babica, Pavel; Godoy Alonso, Paula; Trávníček, Z.; Tuček, J.; Maršálek, Blahoslav; Sharma, V. K.; Zbořil, R.

    2016-01-01

    Roč. 18, č. 28 (2016), s. 18802-18810 ISSN 1463-9076 R&D Projects: GA MPO FR-TI3/196 Institutional support: RVO:67985939 Keywords : high-valent iron species * estrogenic hormones * oxidative transformation Subject RIV: DJ - Water Pollution ; Quality Impact factor: 4.123, year: 2016

  10. Scavenging reactive oxygen species using tempol in the acute phase of renal ischemia/reperfusion and its effects on kidney oxygenation and nitric oxide levels

    NARCIS (Netherlands)

    Aksu, Ugur; Ergin, Bulent; Bezemer, Rick; Kandil, Asli; Milstein, Dan M. J.; Demirci-Tansel, Cihan; Ince, Can

    2015-01-01

    Renal ischemia/reperfusion (I/R) injury is commonly seen in kidney transplantation and affects the allograft survival rates. We aimed to test our hypothesis that scavenging reactive oxygen species (ROS) with tempol would protect renal oxygenation and nitric oxide (NO) levels in the acute phase of

  11. Peroxynitrite Chemistry Derived from Nitric Oxide Reaction with a Cu(II)-OOH Species and a new Copper Mediated NO Reductive Coupling Reaction

    Science.gov (United States)

    Kim, Sunghee; Siegler, Maxime A.; Karlin, Kenneth D.

    2014-01-01

    New peroxynitrite-copper chemistry ensues via addition of nitric oxide (•NO(g)) to a CuII-hydroperoxo species. In characterizing the system, the ligand-Cu(I) complex was shown to effect •NO(g) reductive coupling, a new reaction type. Biological implications are discussed. PMID:24322625

  12. Peroxynitrite chemistry derived from nitric oxide reaction with a Cu(II)-OOH species and a copper mediated NO reductive coupling reaction.

    Science.gov (United States)

    Kim, Sunghee; Siegler, Maxime A; Karlin, Kenneth D

    2014-03-18

    New peroxynitrite-copper chemistry ensues via addition of nitric oxide (˙NO(g)) to a Cu(II)-hydroperoxo species. In characterizing the system, the ligand-Cu(i) complex was shown to effect a seldom observed ˙NO(g) reductive coupling reaction. Biological implications are discussed.

  13. Spectroscopic studies of neutral and chemically oxidized species of β-carotene, lycopene and norbixin in CH{sub 2}Cl{sub 2}: Fluorescence from intermediate compounds

    Energy Technology Data Exchange (ETDEWEB)

    Alwis, D.D.D.H [Department of Chemistry, The Open University of Sri Lanka, Nawala (Sri Lanka); Department of Chemistry, University of Sri Jayewardenepura, Nugegoda (Sri Lanka); Chandrika, U.G. [Department of Biochemistry, University of Sri Jayewardenepura, Nugegoda (Sri Lanka); Jayaweera, P.M., E-mail: pradeep@sjp.ac.lk [Department of Chemistry, University of Sri Jayewardenepura, Nugegoda (Sri Lanka)

    2015-02-15

    Radical cations, dications and oxidized intermediate species of three carotenoids, namely, β-carotene, lycopene and norbixin, were generated in CH{sub 2}Cl{sub 2} solutions via chemical oxidation using anhydrous FeCl{sub 3}. UV–vis, fluorescence and fluorescence-excitation spectroscopic studies were performed to understand and compare the nature of intermediate species generated during the chemical oxidation process and subsequent degradation. The intense emission observed at 550 nm can be assigned to the S{sub 2}→S{sub 0} (1{sup 1}B{sub u}→1{sup 1}A{sub g}) transition of the carotenoid molecules. The 350 nm excitation during the oxidation process for β-carotene, lycopene and norbixin exhibit intense fluorescence peaks at 492 nm, 493 nm and 500 nm, respectively. These peaks are assigned to intermediate peroxy/epoxy compounds of the three molecules that are formed with molecular oxygen prior to the formation of oxidized short-chain stable compounds. - Highlights: • Fluorescence and UV–vis studies on β-carotene, lycopene and norbixin. • Oxidation, induced by FeCl{sub 3} in CH{sub 2}Cl{sub 2} shows blue shifted fluorescence peaks. • Fluorescence peaks were assigned to intermediate peroxy/epoxy forms of carotenoids. • The D0→D3 transition of radical cations are observed in the near IR region.

  14. Integrated use of antioxidant enzymes and oxidative damage in two fish species to assess pollution in man-made hydroelectric reservoirs.

    Science.gov (United States)

    Sakuragui, M M; Paulino, M G; Pereira, C D S; Carvalho, C S; Sadauskas-Henrique, H; Fernandes, M N

    2013-07-01

    This study investigated the relationship between contaminant body burden and the oxidative stress status of the gills and livers of two wild fish species in the Furnas Hydroelectric Power Station (HPS) reservoir (Minas Gerais, Brazil). Gills and livers presented similar pathways of metals and organochlorine bioaccumulation. During June, organochlorines were associated with lipid peroxidation (LPO), indicating oxidative stress due to the inhibition of the antioxidant enzymes superoxide dismutase and glutathione peroxidase. In the most polluted areas, metal concentrations in the liver were associated with metallothionein. During December, contaminants in the gills and liver were associated with catalase activity and LPO. Aldrin/dieldrin was the contaminant most associated with oxidative damage in the livers of both species. This integrated approach shed light on the relationship between adverse biological effects and bioaccumulation of contaminants inputted by intensive agricultural practices and proved to be a suitable tool for assessing the environmental quality of man-made reservoirs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling

    Directory of Open Access Journals (Sweden)

    Shi Xianglin

    2009-01-01

    Full Text Available Abstract Background Engineered iron nanoparticles are being explored for the development of biomedical applications and many other industry purposes. However, to date little is known concerning the precise mechanisms of translocation of iron nanoparticles into targeted tissues and organs from blood circulation, as well as the underlying implications of potential harmful health effects in human. Results The confocal microscopy imaging analysis demonstrates that exposure to engineered iron nanoparticles induces an increase in cell permeability in human microvascular endothelial cells. Our studies further reveal iron nanoparticles enhance the permeability through the production of reactive oxygen species (ROS and the stabilization of microtubules. We also showed Akt/GSK-3β signaling pathways are involved in iron nanoparticle-induced cell permeability. The inhibition of ROS demonstrate ROS play a major role in regulating Akt/GSK-3β – mediated cell permeability upon iron nanoparticle exposure. These results provide new insights into the bioreactivity of engineered iron nanoparticles which can inform potential applications in medical imaging or drug delivery. Conclusion Our results indicate that exposure to iron nanoparticles induces an increase in endothelial cell permeability through ROS oxidative stress-modulated microtubule remodeling. The findings from this study provide new understandings on the effects of nanoparticles on vascular transport of macromolecules and drugs.

  16. Exposure to 17β-Oestradiol Induces Oxidative Stress in the Non-Oestrogen Receptor Invertebrate Species Eisenia fetida.

    Directory of Open Access Journals (Sweden)

    Zbynek Heger

    Full Text Available The environmental impacts of various substances on all levels of organisms are under investigation. Among these substances, endocrine-disrupting compounds (EDCs present a threat, although the environmental significance of these compounds remains largely unknown. To shed some light on this field, we assessed the effects of 17β-oestradiol on the growth, reproduction and formation of free radicals in Eisenia fetida.Although the observed effects on growth and survival were relatively weak, a strong impact on reproduction was observed (50.70% inhibition in 100 μg/kg of E2. We further demonstrated that the exposure of the earthworm Eisenia fetida to a contaminant of emerging concern, 17β-oestradiol (E2, significantly affected the molecules involved in antioxidant defence. Exposure to E2 results in the production of reactive oxygen species (ROS and the stimulation of antioxidant systems (metallothionein and reduced oxidized glutathione ratio but not phytochelatins at both the mRNA and translated protein levels. Matrix-assisted laser desorption/ionization (MALDI-imaging revealed the subcuticular bioaccumulation of oestradiol-3,4-quinone, altering the levels of local antioxidants in a time-dependent manner.The present study illustrates that although most invertebrates do not possess oestrogen receptors, these organisms can be affected by oestrogen hormones, likely reflecting free diffusion into the cellular microenvironment with subsequent degradation to molecules that undergo redox cycling, producing ROS, thereby increasing environmental contamination that also perilously affects keystone animals, forming lower trophic levels.

  17. Human Leukemic Cells performing Oxidative Phosphorylation (OXPHOS Generate an Antioxidant Response Independently of Reactive Oxygen species (ROS Production

    Directory of Open Access Journals (Sweden)

    Abrar Ul Haq Khan

    2016-01-01

    Full Text Available Tumor cell metabolism is altered during leukemogenesis. Cells performing oxidative phosphorylation (OXPHOS generate reactive oxygen species (ROS through mitochondrial activity. To limit the deleterious effects of excess ROS, certain gene promoters contain antioxidant response elements (ARE, e.g. the genes NQO-1 and HO-1. ROS induces conformational changes in KEAP1 and releases NRF2, which activates AREs. We show in vitro and in vivo that OXPHOS induces, both in primary leukemic cells and cell lines, de novo expression of NQO-1 and HO-1 and also the MAPK ERK5 and decreases KEAP1 mRNA. ERK5 activates the transcription factor MEF2, which binds to the promoter of the miR-23a–27a–24-2 cluster. Newly generated miR-23a destabilizes KEAP1 mRNA by binding to its 3′UTR. Lower KEAP1 levels increase the basal expression of the NRF2-dependent genes NQO-1 and HO-1. Hence, leukemic cells performing OXPHOS, independently of de novo ROS production, generate an antioxidant response to protect themselves from ROS.

  18. Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms

    Directory of Open Access Journals (Sweden)

    Spyridon Loridas

    2013-08-01

    Full Text Available Reactive oxygen or nitrogen species (ROS, RNS and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.. Cells in aerobic organisms are protected against oxidative damage by enzymatic and non-enzymatic antioxidant systems. Recent epidemiologic investigations have shown associations between increased incidence of respiratory diseases and lung cancer from exposure to low levels of various forms of respirable fibers and particulate matter (PM, at occupational or urban air polluting environments. Lung cancer increases substantially for tobacco smokers due to the synergistic effects in the generation of ROS, leading to oxidative stress and inflammation with high DNA damage potential. Physical and chemical characteristics of particles (size, transition metal content, speciation, stable free radicals, etc. play an important role in oxidative stress. In turn, oxidative stress initiates the synthesis of mediators of pulmonary inflammation in lung epithelial cells and initiation of carcinogenic mechanisms. Inhalable quartz, metal powders, mineral asbestos fibers, ozone, soot from gasoline and diesel engines, tobacco smoke and PM from ambient air pollution (PM10 and PM2.5 are involved in various oxidative stress mechanisms. Pulmonary cancer initiation and promotion has been linked to a series of biochemical pathways of oxidative stress, DNA oxidative damage, macrophage stimulation, telomere shortening, modulation of gene expression and activation of transcription factors with important role in carcinogenesis. In this review we are presenting the role of ROS and oxidative stress in the production of mediators of pulmonary inflammation and mechanisms of carcinogenesis.

  19. Study on the effect of reactive oxygen species-mediated oxidative stress on the activation of mitochondrial apoptosis and the tenderness of yak meat.

    Science.gov (United States)

    Wang, Lin-Lin; Yu, Qun-Li; Han, Ling; Ma, Xiu-Li; Song, Ren-De; Zhao, Suo-Nan; Zhang, Wen-Hua

    2018-04-01

    This study investigated the effect of reactive oxygen species-mediated oxidative stress on activation of mitochondrial apoptosis and tenderness of yak meat during postmortem ageing. Oxidative stress degree, Ca 2+ levels, membrane permeability transition pore opening, mitochondrial membrane potential, apoptotic factors and the shear force were examined. Results showed that the ROS generated by H 2 O 2 significantly increased mitochondrial oxidative stress by decreasing the activities of superoxide dismutase, catalase and glutathione peroxidase, and increasing lipid peroxidation. Furthermore, oxidative stress enhanced Ca 2+ production and cytochrome c release, changed the levels of Bcl-2 family proteins and activated caspase-9 and -3 activities. Ultimately, oxidative stress increased the apoptosis rate and tenderness of yak meat. These observations confirmed that ROS-mediated oxidative stress participates in the activation of the apoptotic cascade reaction involving Ca 2+ and Bcl-2 family proteins. The results further suggested that ROS-mediated oxidative stress plays a significant role in meat tenderization through the mitochondrial apoptotic pathway. Copyright © 2017. Published by Elsevier Ltd.

  20. Characterizations of Platinum Catalysts Supported on Ce, Zr, Pr-oxides and Formation of Carbonate Species in Catalytic Wet Air Oxidation of Acetic Acid

    Czech Academy of Sciences Publication Activity Database

    Mikulová, Jana; Rossignol, S.; Barbier Jr., J.; Duprez, D.; Kappenstein, C.

    2007-01-01

    Roč. 124, 3-4 (2007), s. 185-190 ISSN 0920-5861 Institutional research plan: CEZ:AV0Z40720504 Keywords : acetic acid * cerium oxide * catalytic wet air oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.764, year: 2007

  1. Insulin Reverses D-Glucose–Increased Nitric Oxide and Reactive Oxygen Species Generation in Human Umbilical Vein Endothelial Cells

    Science.gov (United States)

    González, Marcelo; Rojas, Susana; Avila, Pía; Cabrera, Lissette; Villalobos, Roberto; Palma, Carlos; Aguayo, Claudio; Peña, Eduardo; Gallardo, Victoria; Guzmán-Gutiérrez, Enrique; Sáez, Tamara; Salsoso, Rocío; Sanhueza, Carlos; Pardo, Fabián; Leiva, Andrea; Sobrevia, Luis

    2015-01-01

    Vascular tone is controlled by the L-arginine/nitric oxide (NO) pathway, and NO bioavailability is strongly affected by hyperglycaemia-induced oxidative stress. Insulin leads to high expression and activity of human cationic amino acid transporter 1 (hCAT-1), NO synthesis and vasodilation; thus, a protective role of insulin on high D-glucose–alterations in endothelial function is likely. Vascular reactivity to U46619 (thromboxane A2 mimetic) and calcitonin gene related peptide (CGRP) was measured in KCl preconstricted human umbilical vein rings (wire myography) incubated in normal (5 mmol/L) or high (25 mmol/L) D-glucose. hCAT-1, endothelial NO synthase (eNOS), 42 and 44 kDa mitogen-activated protein kinases (p42/44mapk), protein kinase B/Akt (Akt) expression and activity were determined by western blotting and qRT-PCR, tetrahydrobiopterin (BH4) level was determined by HPLC, and L-arginine transport (0–1000 μmol/L) was measured in response to 5–25 mmol/L D-glucose (0–36 hours) in passage 2 human umbilical vein endothelial cells (HUVECs). Assays were in the absence or presence of insulin and/or apocynin (nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase] inhibitor), tempol or Mn(III)TMPyP (SOD mimetics). High D-glucose increased hCAT-1 expression and activity, which was biphasic (peaks: 6 and 24 hours of incubation). High D-glucose–increased maximal transport velocity was blocked by insulin and correlated with lower hCAT-1 expression and SLC7A1 gene promoter activity. High D-glucose–increased transport parallels higher reactive oxygen species (ROS) and superoxide anion (O2•–) generation, and increased U46619-contraction and reduced CGRP-dilation of vein rings. Insulin and apocynin attenuate ROS and O2•– generation, and restored vascular reactivity to U46619 and CGRP. Insulin, but not apocynin or tempol reversed high D-glucose–increased NO synthesis; however, tempol and Mn(III)TMPyP reversed the high D-glucose–reduced BH4

  2. Profiling of dehydropyrrolizidine alkaloids and their N-oxides in herbarium-preserved specimens of amsinckia species using HPLC-esi(+)MS.

    Science.gov (United States)

    Colegate, Steven M; Welsh, Stanley L; Gardner, Dale R; Betz, Joseph M; Panter, Kip E

    2014-07-30

    Species of the Amsinckia genus (Boraginaceae) are known to produce potentially hepato-, pneumo-, and/or genotoxic dehydropyrrolizidine alkaloids. However, the taxonomic differentiation of Amsinckia species can be very subtle and there seems to be marked differences in toxicity toward grazing livestock. Methanol extracts of mass-limited leaf samples from herbarium specimens (collected from 1899 to 2013) of 10 Amsinckia species and one variety were analyzed using HPLC-esi(+)MS and MS/MS for the presence of potentially toxic dehydropyrrolizidine alkaloids and/or their N-oxides. Dehydropyrrolizidine alkaloids were detected in all specimens examined ranging from about 1 to 4000 μg/g of plant. Usually occurring mainly as their N-oxides, the predominant alkaloids were the epimeric lycopsamine and intermedine. Also sometimes observed in higher concentrations were the 3'- and 7-acetyl derivatives of lycopsamine/intermedine and their N-oxides. Within a designated species, an inconsistent profile was often observed that may be due to natural variation, taxonomic misassignment, or nonuniform degradation due to plant collection and storage differences.

  3. Nitrogen and Sulfur Codoped Reduced Graphene Oxide as a General Platform for Rapid and Sensitive Fluorescent Detection of Biological Species.

    Science.gov (United States)

    Chen, Lu; Song, Liping; Zhang, Yichi; Wang, Ping; Xiao, Zhidong; Guo, Yuguo; Cao, Feifei

    2016-05-11

    Nitrogen (N) and sulfur (S) codoped reduced graphene oxide (N,S-rGO) was synthesized through a facile solvothermal process. The introduction of N and S heteroatoms into GO effectively activated the sp(2)-hybridized carbon lattice and made the material an ideal electron/energy acceptor. Such unique properties enable this material to perform as a general platform for rapid and sensitive detection of various biological species through simple fluorescence quenching and recovering. When quantum dot (QD)-labeled HBV (human being disease-related gene hepatitis B virus DNA) and HIV (human being disease-related gene human immunodeficiency virus DNA) molecular beacon probes were mixed with N,S-rGO, QD fluorescence was quenched; when target HBV and HIV DNA were added, QD fluorescence was recovered. By the recovered fluorescence intensity, the target virus DNA detection limits were reduced to 2.4 nM for HBV and 3.0 nM for HIV with detection time of less than 5 min. It must be stressed out that different viruses in the same homogeneous aqueous media could be discriminated and quantified simultaneously through choosing diverse QD probes with different colors. Moreover, even one mismatched target DNA could be distinguished using this method. When altering the molecular beacon loop domain to protein aptamers, this sensing strategy was also able to detect thrombin and IgE in 5 min with detection limits of 0.17 ng mL(-1) and 0.19 ng mL(-1), respectively, which was far more rapid and sensitive than bare GO-based fluorescence detection strategy.

  4. Nitric oxide and reactive oxygen species coordinately regulate the germination of Puccinia striiformis f. sp. tritici urediniospores

    Directory of Open Access Journals (Sweden)

    Shuining eYin

    2016-02-01

    Full Text Available Nitric oxide (NO and reactive oxygen species (ROS function as signaling molecules in a number of critical signal transduction pathways in plants, including plant biotic interactions. In addition to the role of plant-derived NO and ROS in plant resistance, which has been well documented, pathogen-produced NO and ROS have recently emerged as important players in fungal development and pathogenesis. However, the effects of pathogenic fungi-derived NO and ROS on signaling pathways during fungal pre-infection development remain unknown. Here, using a combination of pharmacological approaches and confocal microscopy, we investigated the roles of NO and ROS during the germination of Puccinia striiformis Westend f. sp. tritici (Pst the wheat stripe rust pathogen. Both NO and ROS have a crucial role in uredinial germination. The scavengers of NO and ROS delayed spore germination and decreased the lengths of germ tubes. A similar phenotype was produced after treatment with the promoter. However, the spores germinated and grew normally when the levels of NO and ROS were simultaneously elevated by the application of a promoter of NO and a donor of ROS. Confocal laser microscopy indicated that both NO and ROS preferentially localized at the germ pores and apexes of growing germ tubes when the ROS/NO ratio in the spores was maintained in a specific range. We concluded that both NO and ROS are critical signaling molecules in the pre-infection development of Pst and that the polar growth of the germ tube is coordinately regulated by NO and ROS.

  5. Carbamazepine-mediated pro-oxidant effects on the unicellular marine algal species Dunaliella tertiolecta and the hemocytes of mussel Mytilus galloprovincialis.

    Science.gov (United States)

    Tsiaka, Pinelopi; Tsarpali, Vasiliki; Ntaikou, Ioanna; Kostopoulou, Maria N; Lyberatos, Gerasimos; Dailianis, Stefanos

    2013-10-01

    This study investigates the pro-oxidant behavior of the antiepileptic drug carbamazepine (CBZ) on the marine algal species Dunaliella tertiolecta and the immune defense-related hemocytes of mussel Mytilus galloprovincialis. A phytotoxicity test, performed in a first step, showed a significant inhibition of the growth rate and the chlorophyll alpha (Chl-α) content in algae after exposure for 24 h to different concentrations of CBZ (1-200 mg L(-1)). On the other hand, the increased levels of lipid peroxidation products, such as MDA, measured in 24 h CBZ-treated cells were attenuated with time (48-96 h), followed by a significant recovery of both the algal growth rate and the Chl-α content in all cases. The latter could be related to the concomitant enhancement of total carotenoids in CBZ-treated algae with time, which in turn could protect algal growth and survival against CBZ-induced oxidative stress. On the other hand, the increased levels of cell death, superoxide anions ((·)O2 (-)), nitric oxides (NO, in terms of nitrites, NO2 (-)) and MDA content observed in mussel hemocytes exposed to environmentally relevant (0.01-1 μg L(-1)) and/or higher (10 and 100 μg L(-1)) concentrations of the drug, clearly indicate the ability of CBZ to induce oxidative effects on cells of non-target species, such as mussels, affecting thus their overall health status. The significant relationships occurred among the tested biological parameters in both bioassays, further reinforce CBZ-mediated pro-oxidant effects on species, widely used in ecotoxicological and toxicological studies and provide a more comprehensive view on its environmental fate and ecotoxicological risk evaluation.

  6. The effect of lipid peroxidation products on reactive oxygen species formation and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Gabriela; Pekarová, Michaela; Lojek, Antonín

    2011-01-01

    Roč. 25, č. 1 (2011), s. 145-152 ISSN 0887-2333 R&D Projects: GA MŠk(CZ) OC08058; GA ČR(CZ) GA524/08/1753 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : lipid peroxidation products * reactive oxygen species * nitric oxide Subject RIV: BO - Biophysics Impact factor: 2.775, year: 2011

  7. The effect of lipid peroxidation products on reactive oxygen species formation and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Ambrozova, Gabriela; Pekarova, Michaela; Lojek, Antonin

    2011-02-01

    Lipid peroxidation induced by oxidants leads to the formation of highly reactive metabolites. These can affect various immune functions, including reactive oxygen species (ROS) and nitric oxide (NO) production. The aim of the present study was to investigate the effects of lipid peroxidation products (LPPs) - acrolein, 4-hydroxynonenal, and malondialdehyde - on ROS and NO production in RAW 264.7 macrophages and to compare these effects with the cytotoxic properties of LPPs. Macrophages were stimulated with lipopolysaccharide (0.1 μg/ml) and treated with selected LPPs (concentration range: 0.1-100 μM). ATP test, luminol-enhanced chemiluminescence, Griess reaction, Western blotting analysis, amperometric and total peroxyl radical-trapping antioxidant parameter assay were used for determining the LPPs cytotoxicity, ROS and NO production, inducible nitric oxide synthase expression, NO scavenging, and antioxidant properties of LPPs, respectively. Our study shows that the cytotoxic action of acrolein and 4-hydroxynonenal works in a dose- and time-dependent manner. Further, our results imply that acrolein, 4-hydroxynonenal, and malondialdehyde can inhibit, to a different degree, ROS and NO production in stimulated macrophages, partially independently of their toxic effect. Also, changes in enzymatic pathways (especially NADPH-oxidase and nitric oxide synthase inhibition) and NO scavenging properties are included in the downregulation of reactive species formation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Properties of photocatalytically generated oxygen species produced by Ag2Se-graphene oxide heterojunction and its application for the visible-light degradation of ammonia

    Science.gov (United States)

    Meng, Ze-Da; Zhao, Wei; Kim, Sukyoung

    2017-11-01

    Reactive oxygen species (ROS) can be produced by the interactions between sunlight and light-absorbing substances in aqueous environments, and these ROS are capable of destroying various organic pollutants in wastewater. In this study, the photocatalytic degradation of ammonia in petrochemical wastewater was investigated by solar light photocatalysis. We used graphene oxide modified Ag2Se nanoparticles to enhance the activity of photochemically generated oxygen (PGO) species. There was a catastrophic decrease in the surface area and pore volume of the Ag2Se-graphene oxide (Ag2Se-G) samples because of the deposition of Ag2Se. The generation of ROS was detected by the oxidation of 1,5- diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It was revealed that the photocurrent density and PGO effect increased with the graphene oxide modified. The experimental results indicate that this heterogeneous catalyst achieved a degradation of 88.43% under visiblelight irradiation. The NH3 degradation product was N2 and neither NO2- nor NO3- were detected.[Figure not available: see fulltext.

  9. Theoretical Evidence for Low-Ligated Palladium(0): [Pd-L] as the Active Species in Oxidative Addition Reactions

    DEFF Research Database (Denmark)

    Ahlquist, Mårten Sten Gösta; Fristrup, Peter; Tanner, David Ackland

    2006-01-01

    The oxidative addition of PhI to Pd0 has been studied by DFT with a continuum representation of the solvent. It is shown that the preferred number of ligands on palladium is lower than would be expected from “conventional wisdom” and the 18-electron rule. The most favored oxidative addition is ob...

  10. The Protective Effect of Different Extracts of Three Artemisia Species against H2O2-Induced Oxidative Stress and Apoptosis in PC12 Neuronal Cells.

    Science.gov (United States)

    Hosseinzadeh, Leila; Malekshahi, Alireza; Ahmadi, Farahnaz; Emami, Seyed Ahmad; Hajialyani, Marziyeh; Mojarrab, Mahdi

    2018-01-01

    Oxidative stress causes cell damage and is involved in many neurological diseases. The antioxidant properties of plant materials for the maintenance of health and protecting against different diseases stimulated scientist to investigate different herbs. Different Artemisia species have exhibited antioxidant activity. This study aims to investigate whether different Artemisia species could protect the PC12 cells against oxidative stress mediated by H 2 O 2 . For this purpose, different extracts of three Artemisia species ( Artemisia aucheri , Artemisia turanica , and Artemisia turcomanica ) were prepared using petroleum ether, dichloromethane, ethyl acetate, ethanol, and Water: Ethanol mixture (1:1 volume ratio). The protective effect of the prepared extracts against H 2 O 2 -induced cytotoxicity and reactive oxygen species production were compared. The effect of treatment of PC12 cells with different extracts on total glutathione (GSH) level, caspase-3 activity, and mitochondrial membrane potential were also compared. The A. aucheri extracts could not rescue the PC12 cells from oxidative stress consequences. The A. turanica and A. turcomanica extracts were found potent in suppressing the toxicity and apoptosis of PC12 cells mediated by H 2 O 2 and significantly antagonized the H 2 O 2 -induced GSH depletion. The hydroethanolic and ethyl acetate extracts of A. turanica and the petroleum ether and hydroethanolic extracts of A. turcomanica more efficiently suppressed cytotoxicity and loss of GSH caused by H 2 O 2 . This study shows the protective effects of Artemisia extracts on PC12 cell line and suggested that these species could be also considered as promising neuroprotective agents in treatment of different neurodegenerative diseases. Artemisia turanica and Artemisia turcomanica extracts were found to potentially exert neuroprotective effect on PC12 cells. The results exhibited that the cytoprotective potential and anti-apoptotic mechanism of these species is not

  11. A model of reduced oxidation kinetics using constituents and species: Iso-octane and its mixtures with n-pentane, iso-hexane and n-heptane

    Energy Technology Data Exchange (ETDEWEB)

    Harstad, Kenneth; Bellan, Josette [California Institute of Technology, Jet Propulsion Laboratory, 4800 Oak Grove Drive, M/S 125-109, Pasadena, CA 91109-8099 (United States)

    2010-11-15

    A previously described methodology for deriving a reduced kinetic mechanism for alkane oxidation and tested for n-heptane is here shown to be valid, in a slightly modified version, for iso-octane and its mixtures with n-pentane, iso-hexane and n-heptane. The model is still based on partitioning the species into lights, defined as those having a carbon number smaller than 3, and heavies, which are the complement in the species ensemble, and mathematically decomposing the heavy species into constituents which are radicals. For the same similarity variable found from examining the n-heptane LLNL mechanism in conjunction with CHEMKIN II, the appropriately scaled total constituent molar density still exhibits a self-similar behavior over a very wide range of equivalence ratios, initial pressures and initial temperatures in the cold ignition regime. When extended to larger initial temperatures than for cold ignition, the self-similar behavior becomes initial temperature dependent, which indicates that rather than using functional fits for the enthalpy generation due to the heavy species' oxidation, an ideal model based on tabular information extracted from the complete LLNL kinetics should be used instead. Similarly to n-heptane, the oxygen and water molar densities are shown to display a quasi-linear behavior with respect to the similarity variable, but here their slope variation is no longer fitted and instead, their rate equations are used with the ideal model to calculate them. As in the original model, the light species ensemble is partitioned into quasi-steady and unsteady species; the quasi-steady light species mole fractions are computed using the ideal model and the unsteady species are calculated as progress variables using rates extracted from the ideal model. Results are presented comparing the performance of the model with that of the LLNL mechanism using CHEMKIN II. The model reproduces excellently the temperature and species evolution versus time or

  12. High concentrations of genistein exhibit pro-oxidant effects in primary muscle cells through mechanisms involving 5-lipoxygenase-mediated production of reactive oxygen species.

    Science.gov (United States)

    Chen, Wei; Lin, Ying Cai; Ma, Xian Yong; Jiang, Zong Yong; Lan, Si Ping

    2014-05-01

    Genistein, a typical soy isoflavone, is an important antioxidant for improving human health and animal production but the compound possesses some pro-oxidant potential. In order to explore the latter, the dose-response relationship of various concentrations of genistein on both cellular proliferation and the redox system were examined. The proliferation of primary muscle cells was promoted by a low concentration of genistein but was inhibited by high concentrations, which also enhanced lipid oxidation and suppressed membrane fluidity. By selecting a high concentration (200 μM) as a pro-oxidant treatment, the mechanism underlying the pro-oxidant function of genistein was then explored. The generation of intracellular reactive oxygen species (ROS) was stimulated by 200 μM genistein, with inhibited expression of NADPH oxidase 4 and cyclooxygenase 1 and 2 as well as increased activity of the glutathione redox system. The cellular expression of 5-lipoxygenase, however, was up-regulated by 200 μM genistein and the addition of 5-lipoxygenase inhibitor (Zileuton) decreased genistein-induced intracellular ROS level, close to that from the addition of the ROS scavenger, N-acetylcysteine. It is concluded that higher concentrations of genistein exert pro-oxidant potential in the primary muscle cells through enhancing ROS production in a 5-lipoxygenase-dependent manner. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Anti-Oxidative and Cholinesterase Inhibitory Effects of Leaf Extracts and Their Isolated Compounds from Two Closely Related Croton Species

    Directory of Open Access Journals (Sweden)

    Johannes Van Staden

    2013-02-01

    Full Text Available A comparative evaluation of the antioxidant and acetylcholinesterase inhibitory activity of the leaf extracts of Croton gratissimus and Croton zambesicus (subgratissimus and compounds isolated from the extracts was carried out to determine their potential and suitability or otherwise as a substitute for each other in the management of oxidative and neurodegenerative conditions. Different antioxidant assays (DPPH, FRAP, β-carotene-linoleic and the lipid peroxidation models and the microplate assay for acetylcholinesterase (AChE inhibition were carried out separately to study the activities of the crude leaf extracts and four solvent fractions from each of the two Croton species. Bioassay guided fractionation was used to target antioxidant constituents of the crude extracts and ethyl acetate fractions of 20% aqueous methanol extract of C. gratissimus on silica gel and Sephadex LH-20 columns resulted in the isolation of kaempferol-3-O-β-6''(p-coumaroyl glucopyranoside (tiliroside, 2, apigenin-6-C-glucoside (isovitexin, 3 and kampferol (4. The extract of C. zambesicus yielded quercetin-3-O-β-6''(p-coumaroyl glucopyranoside-3'-methyl ether (helichrysoside- 3'-methyl ether, 1, kaempferol-3-O-β-6''(p-coumaroyl glucopyranoside (tiliroside, 2 and apigenin-6-C-glucoside (isovitexin, 3. Three of the isolated compounds and their different combinations were also included in the bioassays. In all the assays performed, the antioxidant capacity and AChE inhibitory effects of C. zambesicus extracts were weaker than those of C. gratissimus. This suggests that C. gratissimus may not be substituted by C. zambesicus, despite the similarity in some of their constituents. Generally, the combinations made from the isolated compounds showed better activities in most of the assays compared to the individual isolated compounds. This suggests mechanisms such as synergism and/or additive effects to be taking place. This study established low, moderate and high

  14. Transcriptome sequencing of three Pseudo-nitzschia species reveals comparable gene sets and the presence of Nitric Oxide Synthase genes in diatoms.

    Science.gov (United States)

    Di Dato, Valeria; Musacchia, Francesco; Petrosino, Giuseppe; Patil, Shrikant; Montresor, Marina; Sanges, Remo; Ferrante, Maria Immacolata

    2015-07-20

    Diatoms are among the most diverse eukaryotic microorganisms on Earth, they are responsible for a large fraction of primary production in the oceans and can be found in different habitats. Pseudo-nitzschia are marine planktonic diatoms responsible for blooms in coastal and oceanic waters. We analyzed the transcriptome of three species, Pseudo-nitzschia arenysensis, Pseudo-nitzschia delicatissima and Pseudo-nitzschia multistriata, with different levels of genetic relatedness. These species have a worldwide distribution and the last one produces the neurotoxin domoic acid. We were able to annotate about 80% of the sequences in each transcriptome and the analysis of the relative functional annotations allowed comparison of the main metabolic pathways, pathways involved in the biosynthesis of isoprenoids (MAV and MEP pathways), and pathways putatively involved in domoic acid synthesis. The search for homologous transcripts among the target species and other congeneric species resulted in the discovery of a sequence annotated as Nitric Oxide Synthase (NOS), found uniquely in Pseudo-nitzschia multistriata. The predicted protein product contained all the domains of the canonical metazoan sequence. Putative NOS sequences were found in other available diatom datasets, supporting a role for nitric oxide as signaling molecule in this group of microalgae.

  15. Efficient oxidative dissolution of V2O3 by the in situ electro-generated reactive oxygen species on N-doped carbon felt electrodes

    International Nuclear Information System (INIS)

    Xue, Yudong; Wang, Yunting; Zheng, Shili; Sun, Zhi; Zhang, Yi; Jin, Wei

    2017-01-01

    Highlights: • Novel alkaline electro-Fenton-like was applied for V 2 O 3 oxidative dissolution. • N-doped carbon felt electrode was fabricated for the two-electron ORR. • ROS including ·OH and HO 2 − was in-situ generated from the electrochemical system. • A significant enhancement of V 2 O 3 dissolution was achieved due to the ROS. - Abstract: Oxidative dissolution is a critical step for the efficient remediation of heavy metal oxides in large-scale solid wastes. In the present study, a novel electro-oxidative dissolution process of V 2 O 3 to VO 4 3− is achieved by the in-situ generated reactive oxygen species on the N-doped carbon felt cathode in alkaline media. The electro-catalytic HO 2 − generation and hydrophilic behavior were significantly enhanced by the introduction of nitrogen-containing functional groups. Besides, the mechanism of electrochemical vanadium conversion is systematically illustrated, and a vanadium self-induced electro-Fenton-like reaction is proposed. By employing the radical quenching and ESR measurements, the contributions for V(III) dissolution is determined to be 43.5% by HO 2 − and 56.5% by hydroxyl radicals, respectively. It should be noted that the V 2 O 3 solid particles can be efficiently dissolved via adsorption-reaction scheme on the carbon felt electrode. This novel electrochemical strategy provides a promising solution for the heavy metal oxide treatment and further understanding for the in situ reactive oxygen species.

  16. Enhanced production of nitric oxide, reactive oxygen species, and pro-inflammatory cytokines in very long chain saturated fatty acid-accumulated macrophages

    Directory of Open Access Journals (Sweden)

    Kiyanagi Takashi

    2008-11-01

    Full Text Available Abstract Background Deterioration of peroxisomal β-oxidation activity causes an accumulation of very long chain saturated fatty acids (VLCSFA in various organs. We have recently reported that the levels of VLCSFA in the plasma and/or membranes of blood cells were significantly higher in patients with metabolic syndrome and in patients with coronary artery disease than the controls. The aim of the present study is to investigate the effect of VLCSFA accumulation on inflammatory and oxidative responses in VLCSFA-accumulated macrophages derived from X-linked adrenoleukodystrophy (X-ALD protein (ALDP-deficient mice. Results Elevated levels of VLCSFA were confirmed in macrophages from ALDP-deficient mice. The levels of nitric oxide (NO production stimulated by lipopolysaccharide (LPS and interferon-γ (IFN-γ, intracellular reactive oxygen species (ROS, and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α, interluekin-6 (IL-6, and interleukin-12p70 (IL-12p70, were significantly higher in macrophages from ALDP-deficient mice than in those from wild-type mice. The inducible NO synthase (iNOS mRNA expression also showed an increase in macrophages from ALDP-deficient mice. Conclusion These results suggested that VLCSFA accumulation in macrophages may contribute to the pathogenesis of inflammatory diseases through the enhancement of inflammatory and oxidative responses.

  17. Morphological evolution of various fungal species in the presence and absence of aluminum oxide microparticles: Comparative and quantitative insights into microparticle-enhanced cultivation (MPEC).

    Science.gov (United States)

    Kowalska, Anna; Boruta, Tomasz; Bizukojć, Marcin

    2018-03-05

    The application of microparticle-enhanced cultivation (MPEC) is an attractive method to control mycelial morphology, and thus enhance the production of metabolites and enzymes in the submerged cultivations of filamentous fungi. Unfortunately, most literature data deals with the spore-agglomerating species like aspergilli. Therefore, the detailed quantitative study of the morphological evolution of four different fungal species (Aspergillus terreus, Penicillium rubens, Chaetomium globosum, and Mucor racemosus) based on the digital analysis of microscopic images was presented in this paper. In accordance with the current knowledge, these species exhibit different mechanisms of agglomerates formation. The standard submerged shake flask cultivations (as a reference) and MPEC involving 10 μm aluminum oxide microparticles (6 g·L -1 ) were performed. The morphological parameters, including mean projected area, elongation, roughness, and morphology number were determined for the mycelial objects within the first 24 hr of growth. It occurred that heretofore observed and widely discussed effect of microparticles on fungi, namely the decrease in pellet size, was not observed for the species whose pellet formation mechanism is different from spore agglomeration. In the MPEC, C. globosum developed core-shell pellets, and M. racemosus, a nonagglomerative species, formed the relatively larger, compared to standard cultures, pellets with distinct cores. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  18. Nitric Oxide is Required for Homeostasis of Oxygen and Reactive Oxygen Species in Barley Roots under Aerobic Conditions

    DEFF Research Database (Denmark)

    Gupta, Kapuganti J; Hebelstrup, Kim; Kruger, Nicholas J

    2014-01-01

    Oxygen, the terminal electron acceptor for mitochondrial electron transport, is vital for plants because of its role in the production of ATP by oxidative phosphorylation. While photosynthetic oxygen production contributes to the oxygen supply in leaves, reducing the risk of oxygen limitation...... of mitochondrial metabolism under most conditions, root tissues often suffer oxygen deprivation during normal development due to the lack of an endogenous supply and isolation from atmospheric oxygen. Since changes in oxygen concentration have multiple effects on metabolism and energy production (Geigenberger......, 2003), tight control of oxygen consumption and homeostasis is likely to be particularly important in underground tissues such as roots. Nitric oxide (NO) is involved in many plant processes (Mur et al., 2013) and, under hypoxia, there is good evidence that nitric oxide (NO) contributes to the recycling...

  19. Biofilm Formation by Pseudomonas Species Onto Graphene Oxide-TiO2 Nanocomposite-Coated Catheters: In vitro Analysis

    Science.gov (United States)

    Deb, Ananya; Vimala, R.

    The present study focuses on the development of an in vitro model system for biofilm growth by Pseudomonas aerouginosa onto small discs of foley catheter. Catheter disc used for the study was coated with graphene oxide-titanium oxide composite (GO-TiO2) and titanium oxide (TiO2) and characterized through XRD, UV-visible spectroscopy. Morphological analysis was done by scanning electron microscopy (SEM). The biofilm formed on the catheter surface was quantified by crystal violet (CV) staining method and a colorimetric assay (MTT assay) which involves the reduction of tetrazolium salt. The catheter coated with GO-TiO2 showed reduced biofilm growth in comparison to the TiO2-coated and uncoated catheter, thus indicating that it could be successfully used in coating biomedical devices to prevent biofilm formation which is a major cause of nosocomial infection.

  20. Identification of oxidized organic atmospheric species during the Southern Oxidant and Aerosol Study (SOAS) using a novel Ion Mobility Time-of-Flight Chemical Ionization Mass Spectrometer (IMS-ToF-CIMS)

    Science.gov (United States)

    Krechmer, J.; Canagaratna, M.; Kimmel, J.; Junninen, H.; Knochenmuss, R.; Cubison, M.; Massoli, P.; Stark, H.; Jayne, J. T.; Surratt, J. D.; Jimenez, J. L.; Worsnop, D. R.

    2013-12-01

    We present results from the field deployment of a novel Ion Mobility Time-of-flight Chemical Ionization Mass Spectrometer (CI-IMS-TOF) during the Southern Oxidant and Aerosol Study (SOAS). IMS-TOF is a 2-dimensional analysis method, which separates gas-phase ions by mobility prior to determination of mass-to-charge ratio by mass spectrometry. Ion mobility is a unique physical property that is determined by the collisional cross section of an ion. Because mobility depends on size and shape, the IMS measurement is able to resolve isomers and isobaric compounds. Additionally, trends in IMS-TOF data space can be used to identify relationships between ions, such as common functionality or polymeric series. During SOAS we interfaced the IMS-TOF to a nitrate ion (NO3-) chemical ionization source that enables the selective ionization of highly oxidized gas phase species (those having a high O:C ratio) through clustering with the reagent ion. Highly oxidized products of terpenes and isoprene are important secondary organic aerosol precursors (SOA) that play an uncertain but important role in particle-phase chemistry. We present several case studies of atmospheric events during SOAS that exhibited elevated concentrations of sulfuric acid and/or organics. These events exhibited a rise in particle number and provide an opportunity to examine the role that organic species may have in local atmospheric new particle formation events. We also present the results from the field deployment and subsequent laboratory studies utilizing a Potential Aerosol Mass (PAM) flow reactor as the inlet for the CI-IMS-TOF. The reactor draws in ambient air and exposes it to high concentrations of the OH radical, created by photolysis O3 in the presence of water. The highly oxidized products are then sampled directly by the CI-IMS-TOF. We performed several experiments including placing pine and deciduous plants directly in front of the reactor opening and observed large increases in the number and

  1. Scavenging reactive oxygen species using tempol in the acute phase of renal ischemia/reperfusion and its effects on kidney oxygenation and nitric oxide levels

    OpenAIRE

    Aksu, Ugur; Ergin, Bulent; Bezemer, Rick; Kandil, Asli; Milstein, Dan M J; Demirci-Tansel, Cihan; Ince, Can

    2015-01-01

    Background Renal ischemia/reperfusion (I/R) injury is commonly seen in kidney transplantation and affects the allograft survival rates. We aimed to test our hypothesis that scavenging reactive oxygen species (ROS) with tempol would protect renal oxygenation and nitric oxide (NO) levels in the acute phase of renal I/R. Methods Rats were randomly divided: (1) no I/R, no tempol; (2) no I/R, but with tempol; (3) I/R without tempol; and (4) I/R with tempol. I/R was induced by 30-min clamping of th...

  2. Candidatus "Scalindua brodaea", spec. nov., Candidatus "Scalindua wagneri", spec. nov., two new species of anaerobic ammonium oxidizing bacteria

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schmid, M.; Walsh, K.; Webb, R.; Rijpstra, W.I.C.; Pas-Schoonen, K. van de; Verbruggen, M.J.; Hill, T.; Moffett, B.; Fuerst, J.; Schouten, S.; Harris, James; Shaw, P.; Jetten, M.S.M.; Strous, M.

    2003-01-01

    Anaerobic ammonium oxidation (anammox) is both a promising process in wastewater treatment and a long overlooked microbial physiology that can contribute significantly to biological nitrogen cycling in the world's oceans. Anammox is mediated by a monophyletic group of bacteria that branches deeply

  3. Metformin prevents ischemia reperfusion-induced oxidative stress in the fatty liver by attenuation of reactive oxygen species formation

    Czech Academy of Sciences Publication Activity Database

    Cahová, M.; Páleníčková, E.; Danková, H.; Sticová, E.; Burian, M.; Drahota, Zdeněk; Červinková, Z.; Kučera, O.; Gladkova, Ch.; Stopka, Pavel; Křížová, Jana; Papáčková, Z.; Oliyarnyk, O.; Kazdová, L.

    2015-01-01

    Roč. 309, č. 2 (2015), G100-G111 ISSN 0193-1857 R&D Projects: GA MŠk(CZ) LL1204 Institutional support: RVO:67985823 ; RVO:61388980 Keywords : metformin * oxidative stress * mitochondrial respiration * liver injury * 31P MR spectroscopy Subject RIV: EB - Genetics ; Molecular Biology; CA - Inorganic Chemistry (UACH-T) Impact factor: 3.297, year: 2015

  4. Elimination of microcystin-LR and residual Mn species using permanganate and powdered activated carbon: Oxidation products and pathways.

    Science.gov (United States)

    Jeong, Boyoung; Oh, Min-Seok; Park, Hyun-Mee; Park, Chanhyuk; Kim, Eun-Ju; Hong, Seok Won

    2017-05-01

    The oxidation of microcystin-LR (MC-LR) in deionized water (DI) and river water using potassium permanganate (KMnO 4 ) at a neutral pH and at 23 ± 2 °C was investigated. These two aqueous systems (i.e., DI and river water) gave comparable second-order rate constants (289.9 and 285.5 M -1 s -1 (r 2  > 0.99), respectively), which confirmed the effectiveness of this oxidation process for the treatment of natural surface water. The presence of either humic or fulvic acid reduced the removal efficiency of MC-LR, with the latter exhibiting a greater inhibitory effect. Monitoring of MC-LR and residual Mn 2+ levels with adding KMnO 4 (1 mg/L) and powdered activated carbon (PAC, 5-20 mg L -1 ) before and during coagulation, respectively, revealed that 60 min of permanganate pre-oxidation followed by coagulant addition with PAC was the most effective approach for reducing both levels below limits stated by WHO guidelines. The MC-LR degradation products were the result of oxidation occurring at the diene and aromatic moieties of the Adda (3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid) side-chain, in addition to amine bond hydrolysis of the Mdha (N-methyldehydroalanine) moiety. Several toxic by-products with an intact Adda chain were observed during the reaction, but completely disappeared after 60 min. This further supports the conclusion that sufficient contact time with permanganate (i.e., >60 min) is essential to reducing the residual toxicity and maximizing the efficiency of MC-LR oxidation when treating raw water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Influence of Culture Media on Biofilm Formation by Candida Species and Response of Sessile Cells to Antifungals and Oxidative Stress

    OpenAIRE

    Serrano-Fujarte, Isela; L?pez-Romero, Everardo; Reyna-L?pez, Georgina Elena; Mart?nez-G?mez, Ma. Alejandrina; Vega-Gonz?lez, Arturo; Cu?llar-Cruz, Mayra

    2015-01-01

    The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS) as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrati...

  6. Activation of PPARβ/δ protects cardiac myocytes from oxidative stress-induced apoptosis by suppressing generation of reactive oxygen/nitrogen species and expression of matrix metalloproteinases.

    Science.gov (United States)

    Barlaka, Eleftheria; Görbe, Anikó; Gáspár, Renáta; Pálóczi, János; Ferdinandy, Péter; Lazou, Antigone

    2015-01-01

    Heart failure still remains one of the leading causes of morbidity and mortality worldwide. A major contributing factor is reactive oxygen/nitrogen species (RONS) overproduction which is associated with cardiac remodeling partly through cardiomyocyte apoptosis. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear receptor superfamily and have been implicated in cardioprotection. However, the molecular mechanisms are largely unexplored. In this study we sought to investigate the potential beneficial effects evoked by activation of PPARβ/δ under the setting of oxidative stress induced by H2O2 in adult rat cardiac myocytes. The selective PPARβ/δ agonist GW0742 inhibited the H2O2-induced apoptosis and increased cell viability. In addition, generation of RONS was attenuated in cardiac myocytes in the presence of PPARβ/δ agonist. These effects were abolished in the presence of the PPARβ/δ antagonist indicating that the effect was through PPARβ/δ receptor activation. Treatment with PPARβ/δ agonist was also associated with attenuation of caspase-3 and PARP cleavage, upregulation of anti-apoptotic Bcl-2 and concomitant downregulation of pro-apoptotic Bax. In addition, activation of PPARβ/δ inhibited the oxidative-stress-induced MMP-2 and MMP-9 mRNA upregulation. It is concluded that PPARβ/δ activation exerts a cytoprotective effect in adult rat cardiac myocytes subjected to oxidative stress via inhibition of oxidative stress, MMP expression, and apoptosis. Our data suggest that the novel connection between PPAR signaling and MMP down-regulation in cardiac myocytes might represent a new target for the management of oxidative stress-induced cardiac dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Restriction of glucose and fructose causes mild oxidative stress independently of mitochondrial activity and reactive oxygen species in Drosophila melanogaster.

    Science.gov (United States)

    Rovenko, Bohdana M; Kubrak, Olga I; Gospodaryov, Dmytro V; Yurkevych, Ihor S; Sanz, Alberto; Lushchak, Oleh V; Lushchak, Volodymyr I

    2015-09-01

    Our recent study showed different effects of glucose and fructose overconsumption on the development of obese phenotypes in Drosophila. Glucose induced glucose toxicity due to the increase in circulating glucose, whereas fructose was more prone to induce obesity promoting accumulation of reserve lipids and carbohydrates (Rovenko et al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 180, 75-85). Searching for mechanisms responsible for these phenotypes in this study, we analyzed mitochondrial activity, mitochondrial density, mtROS production, oxidative stress markers and antioxidant defense in fruit flies fed 0.25%, 4% and 10% glucose or fructose. It is shown that there is a complex interaction between dietary monosaccharide concentrations, mitochondrial activity and oxidative modifications to proteins and lipids. Glucose at high concentration (10%) reduced mitochondrial protein density and consequently respiration in flies, while fructose did not affect these parameters. The production of ROS by mitochondria did not reflect activities of mitochondrial complexes. Moreover, there was no clear connection between mtROS production and antioxidant defense or between antioxidant defense and developmental survival, shown in our previous study (Rovenko et al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 180, 75-85). Instead, mtROS and antioxidant machinery cooperated to maintain a redox state that determined survival rates, and paradoxically, pro-oxidant conditions facilitated larva survival independently of the type of carbohydrate. It seems that in this complex system glucose controls the amount of oxidative modification regulating mitochondrial activity, while fructose regulates steady-state mRNA levels of antioxidant enzymes. Copyright © 2015. Published by Elsevier Inc.

  8. Hormone replacement therapy increases levels of antibodies against heat shock protein 65 and certain species of oxidized low density lipoprotein

    Directory of Open Access Journals (Sweden)

    Uint L.

    2003-01-01

    Full Text Available Hormone replacement therapy (HRT reduces cardiovascular risks, although the initiation of therapy may be associated with transient adverse ischemic and thrombotic events. Antibodies against heat shock protein (Hsp and oxidized low density lipoprotein (LDL have been found in atherosclerotic lesions and plasma of patients with coronary artery disease and may play an important role in the pathogenesis of atherosclerosis. The aim of the present study was to assess the effects of HRT on the immune response by measuring plasma levels of antibodies against Hsp 65 and LDL with a low and high degree of copper-mediated oxidative modification of 20 postmenopausal women before and 90 days after receiving orally 0.625 mg equine conjugate estrogen plus 2.5 mg medroxyprogesterone acetate per day. HRT significantly increased antibodies against Hsp 65 (0.316 ± 0.03 vs 0.558 ± 0.11 and against LDL with a low degree of oxidative modification (0.100 ± 0.01 vs 0.217 ± 0.02 (P<0.05 and P<0.001, respectively, ANOVA. The hormone-mediated immune response may trigger an inflammatory response within the vessel wall and potentially increase plaque burden. Whether or not this immune response is temporary or sustained and deleterious requires further investigation.

  9. Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells: III. Role of volatile boron species on LSM/YSZ and LSCF

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiao Dong; Templeton, Jared W.; Zhu, Zihua; Chou, Y. S.; Maupin, Gary D.; Lu, Zigui; Brow, R. K.; Stevenson, Jeffry W.

    2010-09-02

    Boron oxide is a key component to tailor the softening temperature and viscosity of the sealing glass for solid oxide fuel cells. The primary concern regarding the use of boron containing sealing glasses is the volatility of boron species, which possibly results in cathode degradation. In this paper, we report the role of volatile boron species on the electrochemical performance of LSM/YSZ and LSCF cathodes at various SOFC operation temperatures. The transport rate of boron, ~ 3.24×10-12 g/cm2•sec was measured at 750°C with air saturated with 2.8% moisture. A reduction in power density was observed in cells with LSM/YSZ cathodes after introduction of the boron source to the cathode air stream. Partial recovery of the power density was observed after the boron source was removed. Results from post-test secondary ion mass spectroscopy (SIMS) analysis the partial recovery in power density correlated with partil removal of the deposited boron by the clean air stream. The presence of boron was also observed in LSCF cathodes by SIMS analysis, however the effect of boron on the electrochemical performance of LSCF cathode was negligible. Coverage of triple phase boundaries in LSM/YSZ was postulated as the cause for the observed reduction in electrochemical performance.

  10. Prediction of overpotential and effective thickness of Ni/YSZ anode for solid oxide fuel cell by improved species territory adsorption model

    Science.gov (United States)

    Nagasawa, Tsuyoshi; Hanamura, Katsunori

    2017-06-01

    The reliability of analytical model for hydrogen oxidation at Ni/YSZ anode in solid oxide fuel cell named as species territory adsorption model has been improved by introducing referenced thermodynamic and kinetic parameters predicted by density function theory calculations. The model can explicitly predict anode overpotential using unknown values of quantities of state for oxygen migration process in YSZ near a triple phase boundary (TPB), frequency factor for hydrogen oxidation, and effective anode thickness. The former two are determined through careful fitting process between the predicted and experimental results of Ni/YSZ cermet and Ni-patterned anodes. This makes it possible to estimate effective anode thickness, which tends to increase with temperature in six kinds of Ni/YSZ anodes in references. In addition, the comparison between the proposed model and a published numerical simulation indicates that the model can predict more precise dependence of anode overpotential on steam partial pressure than that by Butler-Volmer equation with empirical exchange current density. The introduction of present model into numerical simulation instead of Butler-Volmer equation can give more accurate prediction of anode polarization.

  11. Evidence of novel plant-species specific ammonia oxidizing bacterial clades in acidic South African fynbos soils

    CSIR Research Space (South Africa)

    Ramond, JB

    2015-02-01

    Full Text Available identified in a wide range of natural (e.g. soils, sediments, estuarine, and freshwaters) and man created or impacted habitats (e.g. wastewater treatment plants and agricultural soils). However, little is known on the plant-species association of AOBs...

  12. The effect of histamine on the oxidative burst of HL60 cells before and after exposure to reactive oxygen species.

    NARCIS (Netherlands)

    Ching, T.L.; Koelemij, J.G.; Bast, A.

    1995-01-01

    During an inflammation neutrophils are stimulated to produce reactive oxygen species (ROS). These ROS induce the release of histamine from mast cells, which are also present at the inflammation site. In this study dibutyryl cAMP differentiated HL60 cells are used as a model for human neutrophils.

  13. Oxidative phosphorylation efficiency, proton conductance and reactive oxygen species production of liver mitochondria correlates with body mass in frogs.

    Science.gov (United States)

    Roussel, Damien; Salin, Karine; Dumet, Adeline; Romestaing, Caroline; Rey, Benjamin; Voituron, Yann

    2015-10-01

    Body size is a central biological parameter affecting most biological processes (especially energetics) and the mitochondrion is a key organelle controlling metabolism and is also the cell's main source of chemical energy. However, the link between body size and mitochondrial function is still unclear, especially in ectotherms. In this study, we investigated several parameters of mitochondrial bioenergetics in the liver of three closely related species of frog (the common frog Rana temporaria, the marsh frog Pelophylax ridibundus and the bull frog Lithobates catesbeiana). These particular species were chosen because of their differences in adult body mass. We found that mitochondrial coupling efficiency was markedly increased with animal size, which led to a higher ATP production (+70%) in the larger frogs (L. catesbeiana) compared with the smaller frogs (R. temporaria). This was essentially driven by a strong negative dependence of mitochondrial proton conductance on body mass. Liver mitochondria from the larger frogs (L. catesbeiana) displayed 50% of the proton conductance of mitochondria from the smaller frogs (R. temporaria). Contrary to our prediction, the low mitochondrial proton conductance measured in L. catesbeiana was not associated with higher reactive oxygen species production. Instead, liver mitochondria from the larger individuals produced significantly lower levels of radical oxygen species than those from the smaller frogs. Collectively, the data show that key bioenergetics parameters of mitochondria (proton leak, ATP production efficiency and radical oxygen species production) are correlated with body mass in frogs. This research expands our understanding of the relationship between mitochondrial function and the evolution of allometric scaling in ectotherms. © 2015. Published by The Company of Biologists Ltd.

  14. Quantitative iTRAQ-based secretome analysis reveals species-specific and temporal shifts in carbon utilization strategies among manganese(II)-oxidizing Ascomycete fungi

    Energy Technology Data Exchange (ETDEWEB)

    Zeiner, Carolyn A.; Purvine, Samuel O.; Zink, Erika M.; Paša-Tolić, Ljiljana; Chaput, Dominique L.; Wu, Si; Santelli, Cara M.; Hansel, Colleen M.

    2017-09-01

    Fungi generate a wide range of extracellular hydrolytic and oxidative enzymes and reactive metabolites, collectively known as the secretome, that synergistically drive plant litter decomposition in the environment. While secretome studies of model organisms have greatly expanded our knowledge of these enzymes, few have extended secretome characterization to environmental isolates or directly compared temporal patterns of enzyme utilization among diverse species. Thus, the mechanisms of carbon (C) degradation by many ubiquitous soil fungi remain poorly understood. Here we use a combination of iTRAQ proteomics and custom bioinformatic analyses to compare the protein composition of the secretomes of four manganese(II)-oxidizing Ascomycete fungi over a three-week time course. We demonstrate that although the fungi produce a similar suite of extracellular enzymes, they exhibit striking differences in the regulation of these enzymes among species and over time, revealing species-specific and temporal shifts in C utilization strategies as they degrade the same substrate. Specifically, our findings suggest that Paraconiothyrium sporulosum AP3s5-JAC2a and Alternaria alternata SRC1lrK2f employ sequential enzyme secretion patterns concomitant with decreasing resource availability, Stagonospora sp. SRC1lsM3a preferentially degrades proteinaceous substrate before switching to carbohydrates, and Pyrenochaeta sp. DS3sAY3a utilizes primarily peptidases to aggressively attack carbon sources in a concentrated burst. This work highlights the diversity of operative metabolic strategies among cellulose-degrading Ascomycetes and enhances our understanding of their role in C turnover in the environment.

  15. Antibacterial and Anti-oxidant activity of three species of green, brown and red algae from Northern coast of Persian Gulf

    Directory of Open Access Journals (Sweden)

    Mohseen Heidari

    2015-05-01

    Full Text Available Background: Marine algae are shown to contain a wide range of bioactive compounds, which have commercial application in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. The biological activity of the natural bio-active compounds in algae has wide effects on bacteria, tumors and antioxidant activities. The purpose of this study was to determine antioxidant and antibacterial activity of the marine algae. Materials and Methods: The ethanol extracts of three species of green, brown and red algae were done by soaking method from northern coast of the Persian Gulf in Busheher province. Antibacterial activity of L. monocytogenes and E. Coli were performed using disk diffusion and well method, and also antioxidant activities of ethanol extracts of added three species accomplished using DPPH, FRAP and PMB tests. Results: The highest antioxidant activity was belonged to brown algae C. trinodis. Meanwhile Algae extraction was not revealed antibacterial activity against E. coli, but showed antibacterial activity against L. monocytogenes. Conclusion: In this study algae species was exhibited excellent antioxidant activity when compared with their antibacterial effects. The highest anti-oxidant activitie was found in brown algae C. trinodis.

  16. Effect of chronic apocynin treatment on nitric oxide and reactive oxygen species production in borderline and spontaneous hypertension

    Czech Academy of Sciences Publication Activity Database

    Pecháňová, Olga; Jendeková, L.; Vranková, S.

    2009-01-01

    Roč. 61, č. 1 (2009), s. 116-122 ISSN 1734-1140 Grant - others:VEGA(SK) 2/0178/09; APVV(SK) 0538-07; VEGA(SK) 1/0142/09; APVT(SK) 51-017902; APVV(SK) 0586-06 Institutional research plan: CEZ:AV0Z50110509 Keywords : NO synthase * rective oxygen species * apocynin Subject RIV: ED - Physiology Impact factor: 2.086, year: 2009

  17. Reactive oxygen species up-regulate CD11b in microglia via nitric oxide: Implications for neurodegenerative diseases

    OpenAIRE

    Roy, Avik; Jana, Arundhati; Yatish, Kavitha; Freidt, Matthew B.; Fung, Yiu K.; Martinson, Jeffrey A.; Pahan, Kalipada

    2008-01-01

    Microglial activation is considered as a hallmark of several neurodegenerative disorders. During microglial activation, the expression of CD11b, the beta-integrin marker of microglia, is increased. However, the molecular mechanism behind increased microglial CD11b expression is poorly understood. The present study was undertaken to explore the role of reactive oxygen species (ROS) in the expression of CD11b in microglial cells. Bacterial lipopolysaccharide (LPS) stimulated the expression of C...

  18. Influence of culture media on biofilm formation by Candida species and response of sessile cells to antifungals and oxidative stress.

    Science.gov (United States)

    Serrano-Fujarte, Isela; López-Romero, Everardo; Reyna-López, Georgina Elena; Martínez-Gámez, Ma Alejandrina; Vega-González, Arturo; Cuéllar-Cruz, Mayra

    2015-01-01

    The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS) as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrations of antifungals, H2O2, menadione or silver nanoparticles (AgNPs). Biofilms were observed by scanning electron microscopy (SEM) and quantified by the XTT assay. C. albicans formed biofilms preferentially in YPD containing 2% glucose (YPD/2%), C. glabrata in glucose-free YNB or supplemented with 0.2% glucose (YNB/0.2%), while C. krusei and C. parapsilosis preferred YP, YPD/0.2%, and YPD/2%. Interestingly, only C. albicans produced an exopolymeric matrix. This is the first report dealing with the in vitro effect of the culture medium and glucose on the formation of biofilms in four Candida species as well as the resistance of sessile cells to antifungals, AgNPs, and ROS. Our results suggest that candidiasis in vivo is a multifactorial and complex process where the nutritional conditions, the human immune system, and the adaptability of the pathogen should be considered altogether to provide an effective treatment of the patient.

  19. Influence of Culture Media on Biofilm Formation by Candida Species and Response of Sessile Cells to Antifungals and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Isela Serrano-Fujarte

    2015-01-01

    Full Text Available The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrations of antifungals, H2O2, menadione or silver nanoparticles (AgNPs. Biofilms were observed by scanning electron microscopy (SEM and quantified by the XTT assay. C. albicans formed biofilms preferentially in YPD containing 2% glucose (YPD/2%, C. glabrata in glucose-free YNB or supplemented with 0.2% glucose (YNB/0.2%, while C. krusei and C. parapsilosis preferred YP, YPD/0.2%, and YPD/2%. Interestingly, only C. albicans produced an exopolymeric matrix. This is the first report dealing with the in vitro effect of the culture medium and glucose on the formation of biofilms in four Candida species as well as the resistance of sessile cells to antifungals, AgNPs, and ROS. Our results suggest that candidiasis in vivo is a multifactorial and complex process where the nutritional conditions, the human immune system, and the adaptability of the pathogen should be considered altogether to provide an effective treatment of the patient.

  20. Influence of Culture Media on Biofilm Formation by Candida Species and Response of Sessile Cells to Antifungals and Oxidative Stress

    Science.gov (United States)

    Serrano-Fujarte, Isela; Reyna-López, Georgina Elena; Martínez-Gámez, Ma. Alejandrina; Vega-González, Arturo; Cuéllar-Cruz, Mayra

    2015-01-01

    The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS) as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrations of antifungals, H2O2, menadione or silver nanoparticles (AgNPs). Biofilms were observed by scanning electron microscopy (SEM) and quantified by the XTT assay. C. albicans formed biofilms preferentially in YPD containing 2% glucose (YPD/2%), C. glabrata in glucose-free YNB or supplemented with 0.2% glucose (YNB/0.2%), while C. krusei and C. parapsilosis preferred YP, YPD/0.2%, and YPD/2%. Interestingly, only C. albicans produced an exopolymeric matrix. This is the first report dealing with the in vitro effect of the culture medium and glucose on the formation of biofilms in four Candida species as well as the resistance of sessile cells to antifungals, AgNPs, and ROS. Our results suggest that candidiasis in vivo is a multifactorial and complex process where the nutritional conditions, the human immune system, and the adaptability of the pathogen should be considered altogether to provide an effective treatment of the patient. PMID:25705688

  1. Identification of Scedosporium boydii catalase A1 gene, a reactive oxygen species detoxification factor highly expressed in response to oxidative stress and phagocytic cells.

    Science.gov (United States)

    Mina, Sara; Staerck, Cindy; d'Almeida, Sènan M; Marot, Agnès; Delneste, Yves; Calenda, Alphonse; Tabiasco, Julie; Bouchara, Jean-Philippe; Fleury, Maxime J J

    2015-12-01

    Scedosporium boydii is an opportunistic filamentous fungus which may be responsible for a large variety of infections in both immunocompetent and immunocompromised individuals. This fungus belongs to the Scedosporium apiospermum species complex which usually ranks second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF). Species of the S. apiospermum complex are able to chronically colonize the CF airways suggesting pathogenic mechanisms allowing persistence and growth of these fungi in the respiratory tract. Few putative virulence factors have been purified and characterized so far in the S. apiospermum complex including a cytosolic Cu,Zn-superoxide dismutase (SOD) and a monofunctional catalase (catalase A1). Upon microbial infection, host phagocytes release reactive oxygen species (ROS), such as hydrogen peroxide, as part of the antimicrobial response. Catalases are known to protect pathogens against ROS by degradation of the hydrogen peroxide. Here, we identified the S. boydii catalase A1 gene (CATA1) and investigated its expression in response to the environmental conditions encountered in the CF airways and to the oxidative stress. Results showed that S. boydii CATA1 gene expression is not affected by hypoxia, hypercapnia or pH changes. In contrast, CATA1 gene was overexpressed in response to a chemically induced oxidative stress with a relative gene expression 37-fold higher in the presence of 250 μM H(2)O(2), 20-fold higher with 250 μM menadione and 5-fold higher with 2 mM paraquat. Moreover, S. boydii CATA1 gene expression progressively increased upon exposure to activated THP-1-derived macrophages, reaching a maximum after 12 h (26 fold). Activated HL60-derived neutrophils and activated human peripheral blood neutrophils more rapidly induced S. boydii CATA1 gene overexpression, a maximum gene expression level being reached at 75 min (17 fold) and 60 min (15 fold), respectively. In contrast expression of the gene

  2. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  3. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    International Nuclear Information System (INIS)

    Sunil, Vasanthi R.; Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-01-01

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  4. Interferences of oxide, hydroxide and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dulski, P. (GeoForschungsZentrum (GFZ), Potsdam (Germany))

    1994-10-01

    The analytical procedure for the determination of Ba and rare earth elements in rocks and minerals by ICP-MS is described. The yield of mono-oxide and hydroxide ions of Ba and rare earth elements, and chloride ions of Ba has been determined. A Microsoft Excel spreadsheet template has been written to calculate the expected peak intensities for all possible analyte species (M[sup +], MO[sup +], MOH[sup +] and MCl[sup +]) as a function of the mass number. The degree of interferences of different analyte isotopes is estimated and interferent equivalent concentrations are given for elements, for which no isotope free from interferences is available. The method is applied to the analysis of the four Geo-Reference samples AC-E, GSP-1, G-2 and AGV-1; the analytical accuracy is better than [+-] 10% for most of the elements when compared with recommended reference values. (orig.)

  5. Pyrrolizidine Alkaloids and Fatty Acids from the Endemic Plant Species Rindera umbellata and the Effect of Lindelofine-N-oxide on Tubulin Polymerization

    Directory of Open Access Journals (Sweden)

    Vlatka V. Vajs

    2013-09-01

    Full Text Available The examination of the aerial parts, roots, and seeds of the endemic plant Rindera umbellata is reported in this paper for the first time. Phytochemical investigation of R. umbellata led to the isolation and characterization of ten pyrrolizidine alkaloids and eleven fatty acids in the form of triglycerides. Pyrrolizidine alkaloids 1–9 were found in the aerial parts, 7 and 8 in the roots, and 6–10, together with eleven fatty acids, in the seeds of this plant species. The structures of compounds 1–10 were established based on spectroscopic studies (1H- and 13C-NMR, 2D NMR, IR and CI-MS. After trans-esterification, methyl esters of the fatty acids were analyzed using GC-MS. The effect of lindelofine-N-oxide (7 on tubulin polymerization was determined.

  6. Measurements and kinetic modeling of atomic species in fuel-oxidizer mixtures excited by a repetitive nanosecond pulse discharge

    Science.gov (United States)

    Winters, C.; Eckert, Z.; Yin, Z.; Frederickson, K.; Adamovich, I. V.

    2018-01-01

    This work presents the results of number density measurements of metastable Ar atoms and ground state H atoms in diluted mixtures of H2 and O2 with Ar, as well as ground state O atoms in diluted H2–O2–Ar, CH4–O2–Ar, C3H8–O2–Ar, and C2H4–O2–Ar mixtures excited by a repetitive nanosecond pulse discharge. The measurements have been made in a nanosecond pulse, double dielectric barrier discharge plasma sustained in a flow reactor between two plane electrodes encapsulated within dielectric material, at an initial temperature of 500 K and pressures ranging from 300 Torr to 700 Torr. Metastable Ar atom number density distribution in the afterglow is measured by tunable diode laser absorption spectroscopy, and used to characterize plasma uniformity. Temperature rise in the reacting flow is measured by Rayleigh scattering. H atom and O atom number densities are measured by two-photon absorption laser induced fluorescence. The results are compared with kinetic model predictions, showing good agreement, with the exception of extremely lean mixtures. O atoms and H atoms in the plasma are produced mainly during quenching of electronically excited Ar atoms generated by electron impact. In H2–Ar and O2–Ar mixtures, the atoms decay by three-body recombination. In H2–O2–Ar, CH4–O2–Ar, and C3H8–O2–Ar mixtures, O atoms decay in a reaction with OH, generated during H atom reaction with HO2, with the latter produced by three-body H atom recombination with O2. The net process of O atom decay is O  +  H  →  OH, such that the decay rate is controlled by the amount of H atoms produced in the discharge. In extra lean mixtures of propane and ethylene with O2–Ar the model underpredicts the O atom decay rate. At these conditions, when fuel is completely oxidized by the end of the discharge burst, the net process of O atom decay, O  +  O  →  O2, becomes nearly independent of H atom number density. Lack of agreement with the

  7. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species

    International Nuclear Information System (INIS)

    Saleh, Navid B.; Milliron, Delia J.; Aich, Nirupam; Katz, Lynn E.; Liljestrand, Howard M.; Kirisits, Mary Jo

    2016-01-01

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics. - Highlights: • Metal oxide nanoparticles (MONPs) produce reactive oxygen species (ROS) • Band structure of pristine MONPs is different than those with dopants/defects • Dopants/defects modulate

  8. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Navid B., E-mail: navid.saleh@utexas.edu [Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712 (United States); Milliron, Delia J. [McKetta Department of Chemical Engineering, University of Texas, Austin, TX 78712 (United States); Aich, Nirupam [Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 (United States); Katz, Lynn E.; Liljestrand, Howard M.; Kirisits, Mary Jo [Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712 (United States)

    2016-10-15

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics. - Highlights: • Metal oxide nanoparticles (MONPs) produce reactive oxygen species (ROS) • Band structure of pristine MONPs is different than those with dopants/defects • Dopants/defects modulate

  9. Recognition of oxidized albumin and thyroid antigens by psoriasis autoantibodies. A possible role of reactive-oxygen-species induced epitopes in chronic plaque psoriasis

    Directory of Open Access Journals (Sweden)

    Hani A. Al-Shobaili

    2015-12-01

    Full Text Available Objectives: To investigate the role of reactive-oxygen-species (ROS induced epitopes on human-serum-albumin (HSA and thyroid antigens in psoriasis autoimmunity. Methods: This study was performed in the College of Medicine, Qassim University, Buraidah, Saudi Arabia between May 2014 and February 2015. The study was designed to explore the role of ROS-induced epitopes in psoriasis autoimmunity. Singlet-oxygen (or ROS-induced epitopes on protein (ROS-epitopes-albumin was characterized by in-vitro and in-vivo. Thyroid antigens were prepared from rabbit thyroid, and thyroglobulin was isolated from thyroid extract. Immunocross-reactions of protein-A purified anti-ROS-epitopes-HSA-immunoglobulin G (IgGs with thyroid antigen, thyroglobulin, and their oxidized forms were determined. Binding characteristics of autoantibodies in chronic plaque psoriasis patients (n=26 against ROS-epitopes-HSA and also with native and oxidized thyroid antigens were screened, and the results were compared with age-matched controls (n=22. Results: The anti-ROS-epitopes-HSA-IgGs showed cross-reactions with thyroid antigen, thyroglobulin and with their oxidized forms. High degree of specific binding by psoriasis IgGs to ROS-epitopes-HSA, ROS-thyroid antigen and ROS-thyroglobulin was observed. Immunoglobulin G from normal-human-controls showed negligible binding with all tested antigens. Moreover, sera from psoriasis patients had higher levels of carbonyl contents compared with control sera. Conclusion: Structural alterations in albumin, thyroid antigens by ROS, generate unique neo-epitopes that might be one of the factors for the induction of autoantibodies in psoriasis.

  10. Tobacco Smoke: Involvement of Reactive Oxygen Species and Stable Free Radicals in Mechanisms of Oxidative Damage, Carcinogenesis and Synergistic Effects with Other Respirable Particles

    Directory of Open Access Journals (Sweden)

    Konstantinos Fiotakis

    2009-02-01

    Full Text Available Tobacco smoke contains many toxic, carcinogenic and mutagenic chemicals, as well as stable and unstable free radicals and reactive oxygen species (ROS in the particulate and the gas phase with the potential for biological oxidative damage. Epidemiological evidence established that smoking is one of the most important extrinsic factor of premature morbidity and mortality. The objective of this study was to investigate oxidative and carcinogenic mechanisms of tobacco and synergistic action with other respirable particles in the respiratory system of smokers. Electron Paramagnetic Resonance (EPR and spin- trapping techniques were used to study stable free radicals in the cigarette tar, and unstable superoxide anion (O2·- and hydroxyl (HO· radicals in the smoke Results showed that the semiquinone radical system has the potential for redox recycling and oxidative action. Further, results proved that aqueous cigarette tar (ACT solutions can generate adducts with DNA nucleobases, particularly the mutagenic 8-hydroxy-2’-deoxyguanosine (a biomarker for carcinogenesis.Also, we observed synergistic effects in the generation of HO·, through the Fenton reaction, with environmental respirable particles (asbestos fibres, coal dust, etc. and ambient particulate matter (PM, such as PM10, PM2.5 and diesel exhaust particles (DEP. The highest synergistic effects was observed with the asbestos fibres (freshly grounded, PM2.5 and DEP. Finally, we discuss results from our previous study of conventional cellulose acetate filters and “bio-filters” with hemoglobin impregnated activated carbon, which showed that these filters do not substantially alter the free radical content of smoke in the particulate and in the gaseous phase.

  11. Mitochondrial reactive oxygen species perturb AKT/cyclin D1 cell cycle signaling via oxidative inactivation of PP2A in lowdose irradiated human fibroblasts.

    Science.gov (United States)

    Shimura, Tsutomu; Sasatani, Megumi; Kamiya, Kenji; Kawai, Hidehiko; Inaba, Yohei; Kunugita, Naoki

    2016-01-19

    Here we investigated the cellular response of normal human fibroblasts to repeated exposure to low-dose radiation. In contrast to acute single radiation, low-dose fractionated radiation (FR) with 0.01 Gy/fraction or 0.05 Gy/fraction for 31 days increased in mitochondrial mass, decreased cellular levels of the antioxidant glutathione and caused persistent accumulation of mitochondrial reactive oxygen species (ROS). Excess ROS promoted oxidative inactivation of protein phosphatase PP2A which in turn led to disruption of normal negative feed-back control of AKT/cyclin D1 signaling in cells treated with long-term FR. The resulting abnormal nuclear accumulation of cyclin D1 causes growth retardation, cellular senescence and genome instability in low-dose irradiated cells. Thus, loss of redox control and subsequently elevated levels of ROS perturb signal transduction as a result of oxidative stress. Our study highlights a specific role of mitochondrial ROS in perturbation of AKT/cyclin D1 cell cycle signaling after low-dose long-term FR. The antioxidants N-acetyl-L-cysteine, TEMPO and mitochondrial-targeted antioxidant Mito-TEMPO provided protection against the harmful cell cycle perturbations induced by low-dose long-term FR.

  12. Tamarind seed coat extract restores reactive oxygen species through attenuation of glutathione level and antioxidant enzyme expression in human skin fibroblasts in response to oxidative stress

    Science.gov (United States)

    Nakchat, Oranuch; Nalinratana, Nonthaneth; Meksuriyen, Duangdeun; Pongsamart, Sunanta

    2014-01-01

    Objective To investigate the role and mechanism of tamarind seed coat extract (TSCE) on normal human skin fibroblast CCD-1064Sk cells under normal and oxidative stress conditions induced by hydrogen peroxide (H2O2). Methods Tamarind seed coats were extracted with boiling water and then partitioned with ethyl acetate before the cell analysis. Effect of TSCE on intracellular reactive oxygen species (ROS), glutathione (GSH) level, antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase activity including antioxidant protein expression was investigated. Results TSCE significantly attenuated intracellular ROS in the absence and presence of H2O2 by increasing GSH level. In the absence of H2O2, TSCE significantly enhanced SOD and catalase activity but did not affected on GPx. Meanwhile, TSCE significantly increased the protein expression of SOD and GPx in H2O2-treated cells. Conclusions TSCE exhibited antioxidant activities by scavenging ROS, attenuating GSH level that could protect human skin fibroblast cells from oxidative stress. Our results highlight the antioxidant mechanism of tamarind seed coat through an antioxidant enzyme system, the extract potentially benefits for health food and cosmeceutical application of tamarind seed coat. PMID:25182723

  13. Scavenging reactive oxygen species using tempol in the acute phase of renal ischemia/reperfusion and its effects on kidney oxygenation and nitric oxide levels.

    Science.gov (United States)

    Aksu, Ugur; Ergin, Bulent; Bezemer, Rick; Kandil, Asli; Milstein, Dan M J; Demirci-Tansel, Cihan; Ince, Can

    2015-12-01

    Renal ischemia/reperfusion (I/R) injury is commonly seen in kidney transplantation and affects the allograft survival rates. We aimed to test our hypothesis that scavenging reactive oxygen species (ROS) with tempol would protect renal oxygenation and nitric oxide (NO) levels in the acute phase of renal I/R. Rats were randomly divided: (1) no I/R, no tempol; (2) no I/R, but with tempol; (3) I/R without tempol; and (4) I/R with tempol. I/R was induced by 30-min clamping of the renal artery. Tempol (200 μmol/kg/h/i.v) was administered 15 min prior to I/R. I/R without tempol led to a significant decrease in renal oxygen delivery and microvascular oxygenation. Tempol, however, protected renal oxygenation after I/R. At R90, the creatinine clearance rate was lower in the I/R-subjected group that did not receive tempol compared to that in the other groups. I/R injury without tempol treatment led to a significant increase in tissue malondialdehyde levels and a significant decrease in tissue NO levels. Tempol administration before I/R could prevent oxidative stress and altered tissue NO levels. This underscores that unbalance between oxygen, NO, and ROS forms an important component of the pathogenesis of I/R-induced AKI and should therefore be taken into account when designing a prevention/treatment strategy for renal I/R injury in transplantation.

  14. Transcription, Signaling Receptor Activity, Oxidative Phosphorylation, and Fatty Acid Metabolism Mediate the Presence of Closely Related Species in Distinct Intertidal and Cold-Seep Habitats.

    Science.gov (United States)

    Van Campenhout, Jelle; Vanreusel, Ann; Van Belleghem, Steven; Derycke, Sofie

    2015-12-03

    Bathyal cold seeps are isolated extreme deep-sea environments characterized by low species diversity while biomass can be high. The Håkon Mosby mud volcano (Barents Sea, 1,280 m) is a rather stable chemosynthetic driven habitat characterized by prominent surface bacterial mats with high sulfide concentrations and low oxygen levels. Here, the nematode Halomonhystera hermesi thrives in high abundances (11,000 individuals 10 cm(-2)). Halomonhystera hermesi is a member of the intertidal Halomonhystera disjuncta species complex that includes five cryptic species (GD1-5). GD1-5's common habitat is characterized by strong environmental fluctuations. Here, we compared the transcriptomes of H. hermesi and GD1, H. hermesi's closest relative. Genes encoding proteins involved in oxidative phosphorylation are more strongly expressed in H. hermesi than in GD1, and many genes were only observed in H. hermesi while being completely absent in GD1. Both observations could in part be attributed to high sulfide concentrations and low oxygen levels. Additionally, fatty acid elongation was also prominent in H. hermesi confirming the importance of highly unsaturated fatty acids in this species. Significant higher amounts of transcription factors and genes involved in signaling receptor activity were observed in GD1 (many of which were completely absent in H. hermesi), allowing fast signaling and transcriptional reprogramming which can mediate survival in dynamic intertidal environments. GC content was approximately 8% higher in H. hermesi coding unigenes resulting in differential codon usage between both species and a higher proportion of amino acids with GC-rich codons in H. hermesi. In general our results showed that most pathways were active in both environments and that only three genes are under natural selection. This indicates that also plasticity should be taken in consideration in the evolutionary history of Halomonhystera species. Such plasticity, as well as possible

  15. Nitrous oxide emission potentials of Burkholderia species isolated from the leaves of a boreal peat moss Sphagnum fuscum.

    Science.gov (United States)

    Nie, Yanxia; Li, Li; Wang, Mengcen; Tahvanainen, Teemu; Hashidoko, Yasuyuki

    2015-01-01

    Using a culture-based nitrous oxide (N2O) emission assay, three active N2O emitters were isolated from Sphagnum fuscum leaves and all identified as members of Burkholderia. These isolates showed N2O emission in the medium supplemented with [Formula: see text] but not with [Formula: see text], and Burkholderia sp. SF-E2 showed the most efficient N2O emission (0.20 μg·vial(-1)·day(-1)) at 1.0 mM KNO3. In Burkholderia sp. SF-E2, the optimum pH for N2O production was 5.0, close to that of the phyllosphere of Sphagnum mosses, while the optimum temperature was uniquely over 30 °C. The stimulating effect of additional 1.5 mM sucrose on N2O emission was ignorable, but Burkholderia sp. SF-E2 upon exposure to 100 mg·L(-1) E-caffeic acid showed uniquely 67-fold higher N2O emission. All of the three N2O emitters were negative in both acetylene inhibition assay and PCR assay for nosZ-detection, suggesting that N2O reductase or the gene itself is missing in the N2O-emitting Burkholderia.

  16. Fate of isotopically labeled zinc oxide nanoparticles in sediment and effects on two endobenthic species, the clam Scrobicularia plana and the ragworm Hediste diversicolor.

    Science.gov (United States)

    Buffet, Pierre-Emmanuel; Amiard-Triquet, Claude; Dybowska, Agnieszka; Risso-de Faverney, Christine; Guibbolini, Marielle; Valsami-Jones, Eugénia; Mouneyrac, Catherine

    2012-10-01

    Although it is reported that metal and metal oxide nanoparticles, which are among the most rapidly commercialized materials, can cause toxicity to organisms, their fate in the environment and toxicity to marine organisms are not well understood. In this study, we used a stable isotope labelling approach to trace the fate of nanoparticles (NPs) in sediments and also investigated bio-uptake in two estuarine intra-sedimentary invertebrates Scrobicularia plana and Nereis diversicolor. We selected exposure to 3 mg kg(-1) sediment ZnO NPs since this level is a realistic prediction of the environmental concentration in sediments. 67ZnO NPs (DLS: 21-34 nm, positively charged: 31.3 mV) suspensions were synthesised in diethylene glycol (DEG). We explored the fate of 67ZnO NPs in sediment, 67Zn bioaccumulation and the biochemical (biomarkers of defence and damage) and behavioural (burrowing kinetics and feeding rates) biomarkers in both species to 67ZnO NPs and DEG on its own during a 16 d laboratory exposure. After exposure, 67Zn concentrations in sediment showed higher levels in the upper section (1cm: 2.59 mg kg(-1)) decreasing progressively (2 cm: 1.63 mg kg(-1), 3 cm: 0.90 mg kg(-1), 4 cm: 0.67 mg kg(-1)) to a minimum value at the bottom (5 cm: 0.31 mg kg(-1)). 67Zn bioaccumulation was observed in both organisms exposed to 67ZnO NPs in DEG but no major inter-species differences were found. At the biochemical level, 67ZnO NPs exposure significantly induced increased glutathione-S-transferase activity in worms and catalase activity in clams whereas superoxide dismutase activity and thiobarbituric acid reactive substance levels were not affected in any species. Exposure to DEG on its own leads to a significant increase of metallothionein-like protein levels in clams compared with those exposed to 67ZnO NPs or controls. Burrowing behaviour as well as feeding rate were significantly impaired in both species exposed to 67ZnO NPs. Concerning exposure to DEG on its own

  17. Surface Species and Metal Oxidation State during H2-Assisted NH3-SCR of NOx over Alumina-Supported Silver and Indium

    Directory of Open Access Journals (Sweden)

    Linda Ström

    2018-01-01

    Full Text Available Alumina-supported silver and indium catalysts are investigated for the hydrogen-assisted selective catalytic reduction (SCR of NOx with ammonia. Particularly, we focus on the active phase of the catalyst and the formation of surface species, as a function of the gas environment. Diffuse reflectance ultraviolet-visible (UV-vis spectroscopy was used to follow the oxidation state of the silver and indium phases, and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS was used to elucidate the formation of surface species during SCR conditions. In addition, the NOx reduction efficiency of the materials was evaluated using H2-assisted NH3-SCR. The DRIFTS results show that the Ag/Al2O3 sample forms NO-containing surface species during SCR conditions to a higher extent compared to the In/Al2O3 sample. The silver sample also appears to be more reduced by H2 than the indium sample, as revealed by UV-vis spectroscopic experiments. Addition of H2, however, may promote the formation of highly dispersed In2O3 clusters, which previously have been suggested to be important for the SCR reaction. The affinity to adsorb NH3 is confirmed by both temperature programmed desorption (NH3-TPD and in situ DRIFTS to be higher for the In/Al2O3 sample compared to Ag/Al2O3. The strong adsorption of NH3 may inhibit (self-poison the NH3 activation, thereby hindering further reaction over this catalyst, which is also shown by the lower SCR activity compared to Ag/Al2O3.

  18. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials.

    Science.gov (United States)

    Jeong, Min Sook; Yu, Kyeong-Nam; Chung, Hyun Hoon; Park, Soo Jin; Lee, Ah Young; Song, Mi Ryoung; Cho, Myung-Haing; Kim, Jun Sung

    2016-05-19

    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials.

  19. Bioaccumulation of Cry1Ab protein from an herbivore reduces anti-oxidant enzyme activities in two spider species.

    Directory of Open Access Journals (Sweden)

    Ji Zhou

    Full Text Available Cry proteins are expressed in rice lines for lepidopteran pest control. These proteins can be transferred from transgenic rice plants to non-target arthropods, including planthoppers and then to a predatory spider. Movement of Cry proteins through food webs may reduce fitness of non-target arthropods, although recent publications indicated no serious changes in non-target populations. Nonetheless, Cry protein intoxication influences gene expression in Cry-sensitive insects. We posed the hypothesis that Cry protein intoxication influences enzyme activities in spiders acting in tri-trophic food webs. Here we report on the outcomes of experiments designed to test our hypothesis with two spider species. We demonstrated that the movement of CryAb protein from Drosophila culture medium into fruit flies maintained on the CryAb containing medium and from the flies to the spiders Ummeliata insecticeps and Pardosa pseudoannulata. We also show that the activities of three key metabolic enzymes, acetylcholine esterase (AchE, glutathione peroxidase (GSH-Px, and superoxide dismutase (SOD were significantly influenced in the spiders after feeding on Cry1Ab-containing fruit flies. We infer from these data that Cry proteins originating in transgenic crops impacts non-target arthropods at the physiological and biochemical levels, which may be one mechanism of Cry protein-related reductions in fitness of non-target beneficial predators.

  20. Reactive Oxygen Species-Reducing Strategies Improve Pulmonary Arterial Responses to Nitric Oxide in Piglets with Chronic Hypoxia-Induced Pulmonary Hypertension

    Science.gov (United States)

    Dikalova, Anna; Slaughter, James C.; Kaplowitz, M.R.; Zhang, Y.; Aschner, Judy L.

    2013-01-01

    Abstract Aims: There are no effective treatments for chronic pulmonary hypertension in infants with cardiopulmonary disorders associated with hypoxia, such as those with chronic lung disease. These patients often have poor or inconsistent pulmonary dilator responses to inhaled nitric oxide (iNO) therapy for unknown reasons. One possible explanation for poor responsiveness to iNO is reduced NO bioavailability caused by interactions between reactive oxygen species (ROS) and NO. Our major aim was to determine if strategies to reduce ROS improve dilator responses to the NO donor, S-nitroso-N-acetyl-penicillamine (SNAP), in resistance pulmonary arteries (PRAs) from a newborn piglet model of chronic pulmonary hypertension. Results: The dilation to SNAP was significantly impaired in PRAs from piglets with chronic hypoxia-induced pulmonary hypertension. ROS scavengers, including cell-permeable and impermeable agents to degrade hydrogen peroxide (H2O2), improved dilation to SNAP in PRAs from chronically hypoxic piglets. Treatment with agents to inhibit nitric oxide synthase and NADPH oxidase, potential enzymatic sources of ROS, also improved dilation to SNAP in PRAs from hypoxic piglets. Innovation: Our studies are the first to utilize a newborn model of chronic pulmonary hypertension to evaluate the impact of a number of potential therapeutic strategies for ROS removal on responses to exogenous NO in the vessels most relevant to the regulation of pulmonary vascular resistance (PRA). Conclusions: Strategies aimed at reducing ROS merit further evaluation and consideration as therapeutic approaches to improve responses to iNO in infants with chronic pulmonary hypertension. Antioxid. Redox Signal. 18, 1727–1738. PMID:23244497

  1. Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo Oxidative stress: relations between the formation of reactive species and the organism's defense

    Directory of Open Access Journals (Sweden)

    André L. B. S. Barreiros

    2006-02-01

    Full Text Available This work describes the mechanism of action of some reactive oxygen species (ROS and reactive nitrogen species (RNS in the oxidative stress of the human body, and their consequences on damage to DNA, RNA, proteins and lipids. It also illustrates the defense system of our organism against these ROS and RNS species. The action of nonenzymatic protection systems is reported, with emphasis on micromolecules like Q10 coenzyme, vitamin C, alpha-tocopherol, carotenoids and flavonoids. The importance of flavonoids is also emphasized, and their body protection mechanism is detailed.

  2. When Bad Guys Become Good Ones: The Key Role of Reactive Oxygen Species and Nitric Oxide in the Plant Responses to Abiotic Stress

    Science.gov (United States)

    Farnese, Fernanda S.; Menezes-Silva, Paulo E.; Gusman, Grasielle S.; Oliveira, Juraci A.

    2016-01-01

    The natural environment of plants is composed of a complex set of abiotic stresses and their ability to respond to these stresses is highly flexible and finely balanced through the interaction between signaling molecules. In this review, we highlight the integrated action between reactive oxygen species (ROS) and reactive nitrogen species (RNS), particularly nitric oxide (NO), involved in the acclimation to different abiotic stresses. Under stressful conditions, the biosynthesis transport and the metabolism of ROS and NO influence plant response mechanisms. The enzymes involved in ROS and NO synthesis and scavenging can be found in different cells compartments and their temporal and spatial locations are determinant for signaling mechanisms. Both ROS and NO are involved in long distances signaling (ROS wave and GSNO transport), promoting an acquired systemic acclimation to abiotic stresses. The mechanisms of abiotic stresses response triggered by ROS and NO involve some general steps, as the enhancement of antioxidant systems, but also stress-specific mechanisms, according to the stress type (drought, hypoxia, heavy metals, etc.), and demand the interaction with other signaling molecules, such as MAPK, plant hormones, and calcium. The transduction of ROS and NO bioactivity involves post-translational modifications of proteins, particularly S-glutathionylation for ROS, and S-nitrosylation for NO. These changes may alter the activity, stability, and interaction with other molecules or subcellular location of proteins, changing the entire cell dynamics and contributing to the maintenance of homeostasis. However, despite the recent advances about the roles of ROS and NO in signaling cascades, many challenges remain, and future studies focusing on the signaling of these molecules in planta are still necessary. PMID:27148300

  3. When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress

    Directory of Open Access Journals (Sweden)

    Fernanda Dos Santos Farnese

    2016-04-01

    Full Text Available The natural environment of plants is composed of a complex set of abiotic stresses and their ability to respond to these stresses is highly flexible and finely balanced through the interaction between signaling molecules. In this review, we highlight the integrated action between reactive oxygen species (ROS and reactive nitrogen species (RNS, particularly nitric oxide (NO, involved in the acclimation to different abiotic stresses. Under stressful conditions, the biosynthesis transport and the metabolism of ROS and NO influence plant response mechanisms. The enzymes involved in ROS and NO synthesis and scavenging can be found in different cells compartments and their temporal and spatial locations are determinant for signaling mechanisms. Both ROS and NO are involved in long distances signaling (ROS wave and GSNO transport, promoting an acquired systemic acclimation to abiotic stresses. The mechanisms of abiotic stresses response triggered by ROS and NO involve some general steps, as the enhancement of antioxidant systems, but also stress-specific mechanisms, according to the stress type (drought, hypoxia, heavy metals, etc, and demand the interaction with other signaling molecules, such as MAPK, plant hormones and calcium. The transduction of ROS and NO bioactivity involves post-translational modifications of proteins, particularly S-glutathionylation for ROS, and S-nitrosylation for NO. These changes may alter the activity, stability, and interaction with other molecules or subcellular location of proteins, changing the entire cell dynamics and contributing to the maintenance of homeostasis. However, despite the recent advances about the roles of ROS and NO in signaling cascades, many challenges remain, and future studies focusing on the signaling of these molecules in planta are still necessary.

  4. When Bad Guys Become Good Ones: The Key Role of Reactive Oxygen Species and Nitric Oxide in the Plant Responses to Abiotic Stress.

    Science.gov (United States)

    Farnese, Fernanda S; Menezes-Silva, Paulo E; Gusman, Grasielle S; Oliveira, Juraci A

    2016-01-01

    The natural environment of plants is composed of a complex set of abiotic stresses and their ability to respond to these stresses is highly flexible and finely balanced through the interaction between signaling molecules. In this review, we highlight the integrated action between reactive oxygen species (ROS) and reactive nitrogen species (RNS), particularly nitric oxide (NO), involved in the acclimation to different abiotic stresses. Under stressful conditions, the biosynthesis transport and the metabolism of ROS and NO influence plant response mechanisms. The enzymes involved in ROS and NO synthesis and scavenging can be found in different cells compartments and their temporal and spatial locations are determinant for signaling mechanisms. Both ROS and NO are involved in long distances signaling (ROS wave and GSNO transport), promoting an acquired systemic acclimation to abiotic stresses. The mechanisms of abiotic stresses response triggered by ROS and NO involve some general steps, as the enhancement of antioxidant systems, but also stress-specific mechanisms, according to the stress type (drought, hypoxia, heavy metals, etc.), and demand the interaction with other signaling molecules, such as MAPK, plant hormones, and calcium. The transduction of ROS and NO bioactivity involves post-translational modifications of proteins, particularly S-glutathionylation for ROS, and S-nitrosylation for NO. These changes may alter the activity, stability, and interaction with other molecules or subcellular location of proteins, changing the entire cell dynamics and contributing to the maintenance of homeostasis. However, despite the recent advances about the roles of ROS and NO in signaling cascades, many challenges remain, and future studies focusing on the signaling of these molecules in planta are still necessary.

  5. Investigation into the effects of trace coal syn gas species on the performance of solid oxide fuel cell anodes, PhD. thesis, Russ College of Engineering and Technology of Ohio University

    Energy Technology Data Exchange (ETDEWEB)

    Trembly, Jason P. [Ohio Univ., Athens, OH (United States). Russ College of Engineering and Technology

    2007-06-01

    Coal is the United States’ most widely used fossil fuel for the production of electric power. Coal’s availability and cost dictates that it will be used for many years to come in the United States for power production. As a result of the environmental impact of burning coal for power production more efficient and environmentally benign power production processes using coal are sought. Solid oxide fuel cells (SOFCs) combined with gasification technologies represent a potential methodology to produce electric power using coal in a much more efficient and cleaner manner. It has been shown in the past that trace species contained in coal, such as sulfur, severely degrade the performance of solid oxide fuel cells rendering them useless. Coal derived syngas cleanup technologies have been developed that efficiently remove sulfur to levels that do not cause any performance losses in solid oxide fuel cells. The ability of these systems to clean other trace species contained in syngas is not known nor is the effect of these trace species on the performance of solid oxide fuel cells. This works presents the thermodynamic and diffusion transport simulations that were combined with experimental testing to evaluate the effects of the trace species on the performance of solid oxide fuel cells. The results show that some trace species contained in coal will interact with the SOFC anode. In addition to the transport and thermodynamic simulations that were completed experimental tests were completed investigating the effect of HCl and AsH3 on the performance of SOFCs.

  6. Protective effects of luteolin-7-O-beta-D-glucuronide methyl ester from the ethyl acetate fraction of Lycopi Herba against pro-oxidant reactive species and low-density lipoprotein peroxidation.

    Science.gov (United States)

    Lee, Min-Ja; Lee, Hye-Sook; Park, Sun-Dong; Moon, Hyung-In; Park, Won-Hwan

    2010-10-01

    In this study the potent scavenging activity of "Lycopi Herba" (LH) extract was studied using the following: evaluation of the total phenolics, measuring the antioxidant activity by Trolox equivalent antioxidant concentration, measuring the scavenging effects on reactive oxygen species, on reactive nitrogen species, and measuring the inhibitory effect on Cu(2+) induced human low-density lipoprotein oxidation in vitro. The ethyl acetate fraction from the LH extracts were found to have a potent scavenging activity against all of the reactive species tested, as well as an inhibitory effect on LDL oxidation. Therefore, we isolated and identified luteolin-7-O-beta-D-glucuronide methyl ester as the major compound from the ethyl acetate fraction of LH and their antioxidant activities were evaluated.

  7. Iron-dependent formation of reactive oxygen species and glutathione depletion after accumulation of magnetic iron oxide nanoparticles by oligodendroglial cells

    International Nuclear Information System (INIS)

    Hohnholt, Michaela C.; Dringen, Ralf

    2011-01-01

    Magnetic iron oxide nanoparticles (IONP) are currently used for various neurobiological applications. To investigate the consequences of a treatment of brain cells with such particles, we have applied dimercaptosuccinate (DMSA)-coated IONP that had an average hydrodynamic diameter of 60 nm to oligodendroglial OLN-93 cells. After exposure to 4 mM iron applied as DMSA–IONP, these cells increased their total specific iron content within 8 h 600-fold from 7 to 4,200 nmol/mg cellular protein. The strong iron accumulation was accompanied by a change in cell morphology, although the cell viability was not compromized. DMSA–IONP treatment caused a concentration-dependent increase in the iron-dependent formation of reactive oxygen species and a decrease in the specific content of the cellular antioxidative tripeptide glutathione. During a 16 h recovery phase in IONP-free culture medium following exposure to DMSA–IONP, OLN-93 cells maintained their high iron content and replenished their cellular glutathione content. These data demonstrate that viable OLN-93 cells have a remarkable potential to deal successfully with the consequences of an accumulation of large amounts of iron after exposure to DMSA–IONP.

  8. Differentiation of cGMP-dependent and -independent nitric oxide effects on platelet apoptosis and reactive oxygen species production using platelets lacking soluble guanylyl cyclase.

    Science.gov (United States)

    Rukoyatkina, N; Walter, U; Friebe, A; Gambaryan, S

    2011-11-01

    Platelet activation is an irreversible process resulting in platelet apoptosis and necrosis, and circulating platelets contain many components of the apoptotic machinery. Cyclic guanosine monophosphate (cGMP) generated by nitric oxide (NO) activated soluble guanylyl cyclase (sGC) plays a crucial role in preventing platelet activation. However, in addition to activation of sGC, cGMP-independent NO effects in platelets have been described. To differentiate between cGMP-dependent and -independent NO effects on platelet apoptosis and reactive oxygen species (ROS) production, we generated platelet-specific sGC-deficient mice (PS-GCKO). Platelet apoptosis was induced by a combination of thrombin/convulxin (Thr/Cvx) and assessed by phosphatidylserine (PS) surface exposure, and loss of the mitochondrial membrane potential. NO-induced inhibition of PS externalisation was mediated only by cGMP-dependent mechanisms. Inhibition of the mitochondrial membrane potential decrease at low NO concentration was also cGMP-dependent but became cGMP-independent at high NO concentrations. In contrast, inhibition of ROS formation at any NO concentration was mediated by cGMP-independent mechanisms, very likely due to direct radical scavenging. NO inhibits platelet apoptosis by cGMP-dependent mechanisms and ROS production by cGMP-independent mechanisms. The PS-GCKO mouse model is an important tool for the differentiation of cGMP-dependent and -independent NO effects on platelets.

  9. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants.

    Science.gov (United States)

    Armada, E; Probanza, A; Roldán, A; Azcón, R

    2016-03-15

    This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B. thuringiensis maximized plant biomass and compensated drought stress as values of antioxidant activities [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase APX)] shown. The AMF-bacteria interactions highly reduced the plant oxidative damage of lipids [malondialdehyde (MDA)] and increased the mycorrhizal development (mainly arbuscular formation representative of symbiotic functionality). These microbial interactions explain the highest potential of dually inoculated plants to tolerate drought stress. B. thuringiensis "in vitro" under osmotic stress does not reduce its PGPB (plant growth promoting bacteria) abilities as indole acetic acid (IAA) and ACC deaminase production and phosphate solubilization indicating its capacity to improve plant growth under stress conditions. Each one of the autochthonous fungal strains maintained their particular interaction with B. thuringiensis reflecting the diversity, intrinsic abilities and inherent compatibility of these microorganisms. In general, autochthonous AM fungal species and particularly their mixture with B. thuringiensis demonstrated their potential for protecting plants against drought and helping plants to thrive in semiarid ecosystems. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy.

    Science.gov (United States)

    Allen, David G; Whitehead, Nicholas P; Froehner, Stanley C

    2016-01-01

    Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease. Copyright © 2016 the American Physiological Society.

  11. Mechanical strain stimulates vasculogenesis and expression of angiogenesis guidance molecules of embryonic stem cells through elevation of intracellular calcium, reactive oxygen species and nitric oxide generation.

    Science.gov (United States)

    Sharifpanah, Fatemeh; Behr, Sascha; Wartenberg, Maria; Sauer, Heinrich

    2016-12-01

    Differentiation of embryonic stem (ES) cells may be regulated by mechanical strain. Herein, signaling molecules underlying mechanical stimulation of vasculogenesis and expression of angiogenesis guidance cues were investigated in ES cell-derived embryoid bodies. Treatment of embryoid bodies with 10% static mechanical strain using a Flexercell strain system significantly increased CD31-positive vascular structures and the angiogenesis guidance molecules plexinB1, ephrin B2, neuropilin1 (NRP1), semaphorin 4D (sem4D) and robo4 as well as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) as evaluated by Western blot and real time RT-PCR. In contrast ephrin type 4 receptor B (EphB4) expression was down-regulated upon mechanical strain, indicating an arterial-type differentiation. Robo1 protein expression was modestly increased with no change in mRNA expression. Mechanical strain increased intracellular calcium as well as reactive oxygen species (ROS) and nitric oxide (NO). Mechanical strain-induced vasculogenesis was abolished by the NOS inhibitor L-NAME, the NADPH oxidase inhibitor VAS2870, upon chelation of intracellular calcium by BAPTA as well as upon siRNA inactivation of ephrin B2, NRP1 and robo4. BAPTA blunted the strain-induced expression of angiogenic growth factors, the increase in NO and ROS as well as the expression of NRP1, sem4D and plexinB1, whereas ephrin B2, EphB4 as well as robo1 and robo4 expression were not impaired. Mechanical strain stimulates vasculogenesis of ES cells by the intracellular messengers ROS, NO and calcium as well as by upregulation of angiogenesis guidance molecules and the angiogenic growth factors VEGF, FGF-2 and PDGF-BB. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species.

    Science.gov (United States)

    Saleh, Navid B; Milliron, Delia J; Aich, Nirupam; Katz, Lynn E; Liljestrand, Howard M; Kirisits, Mary Jo

    2016-10-15

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Responses of nitrous oxide emissions to nitrogen and phosphorus additions in two tropical plantations with N-fixing vs. non-N-fixing tree species

    Science.gov (United States)

    Zhang, W.; Zhu, X.; Luo, Y.; Rafique, R.; Chen, H.; Huang, J.; Mo, J.

    2014-09-01

    Leguminous tree plantations at phosphorus (P) limited sites may result in excess nitrogen (N) and higher rates of nitrous oxide (N2O) emissions. However, the effects of N and P applications on soil N2O emissions from plantations with N-fixing vs. non-N-fixing tree species have rarely been studied in the field. We conducted an experimental manipulation of N and/or P additions in two plantations with Acacia auriculiformis (AA, N-fixing) and Eucalyptus urophylla (EU, non-N-fixing) in South China. The objective was to determine the effects of N or P addition alone, as well as NP application together on soil N2O emissions from these tropical plantations. We found that the average N2O emission from control was greater in the AA (2.3 ± 0.1 kg N2O-N ha-1 yr-1) than in EU plantation (1.9 ± 0.1 kg N2O-N ha-1 yr-1). For the AA plantation, N addition stimulated N2O emission from the soil while P addition did not. Applications of N with P together significantly decreased N2O emission compared to N addition alone, especially in the high-level treatments (decreased by 18%). In the EU plantation, N2O emissions significantly decreased in P-addition plots compared with the controls; however, N and NP additions did not. The different response of N2O emission to N or P addition was attributed to the higher initial soil N status in the AA than that of EU plantation, due to symbiotic N fixation in the former. Our result suggests that atmospheric N deposition potentially stimulates N2O emissions from leguminous tree plantations in the tropics, whereas P fertilization has the potential to mitigate N-deposition-induced N2O emissions from such plantations.

  14. Oxidatively generated DNA damage after Cu(II) catalysis of dopamine and related catecholamine neurotransmitters and neurotoxins: Role of reactive oxygen species.

    Science.gov (United States)

    Spencer, Wendy A; Jeyabalan, Jeyaprakash; Kichambre, Sunita; Gupta, Ramesh C

    2011-01-01

    There is increasing evidence supporting a causal role for oxidatively damaged DNA in neurodegeneration during the natural aging process and in neurodegenerative diseases such as Parkinson and Alzheimer. The presence of redox-active catecholamine neurotransmitters coupled with the localization of catalytic copper to DNA suggests a plausible role for these agents in the induction of oxidatively generated DNA damage. In this study we have investigated the role of Cu(II)-catalyzed oxidation of several catecholamine neurotransmitters and related neurotoxins in inducing oxidatively generated DNA damage. Autoxidation of all catechol neurotransmitters and related congeners tested resulted in the formation of nearly a dozen oxidation DNA products resulting in a decomposition pattern that was essentially identical for all agents tested. The presence of Cu(II), and to a lesser extent Fe(III), had no effect on the decomposition pattern but substantially enhanced the DNA product levels by up to 75-fold, with dopamine producing the highest levels of unidentified oxidation DNA products (383±46 adducts/10(6) nucleotides), nearly 3-fold greater than 8-oxo-7,8-dihydro-2'-deoxyguanosine (122±19 adducts/10(6) nucleotides) under the same conditions. The addition of sodium azide, 2,2,6,6-tetramethyl-4-piperidone, tiron, catalase, bathocuproine, or methional to the dopamine/Cu(II) reaction mixture resulted in a substantial decrease (>90%) in oxidation DNA product levels, indicating a role for singlet oxygen, superoxide, H(2)O(2), Cu(I), and Cu(I)OOH in their formation. Whereas the addition of N-tert-butyl-α-phenylnitrone significantly decreased (67%) dopamine-mediated oxidatively damaged DNA, three other hydroxyl radical scavengers, ascorbic acid, sodium benzoate, and mannitol, had little to no effect on these oxidation DNA product levels, suggesting that free hydroxyl radicals may have limited involvement in this dopamine/Cu(II)-mediated oxidatively generated DNA damage. These

  15. Caryophyllene oxide exhibits anti-cancer effects in MG-63 human osteosarcoma cells via the inhibition of cell migration, generation of reactive oxygen species and induction of apoptosis

    Directory of Open Access Journals (Sweden)

    Zheng Pan

    2016-12-01

    Full Text Available The main objective of the present study was to evaluate the antitumor and apoptotic effects of caryophyllene oxide in MG-63 human osteosarcoma cells. Cell viability of these cells was evaluated by MTT assay while as in vitro wound healing assay was used to study the effect of caryophyllene oxide on cell migration. Fluorescence microscopy and transmission electron microscopy were used to study the changes in cell morphology once the cells undergo apoptosis. Caryophyllene oxide significantly led to cytotoxicity in MG-63 cells showing dose-dependent as well as time-dependent effects. Caryophyllene oxide led to an inhibition of wound closure significantly. At caryophyllene oxide doses of 20, 80 and 120 µM, the percentage of cell migration was shown to be 94.2, 67.1 and 14.8% respectively. With an increase in the caryophyllene oxide dose, the extent of apoptosis also increased characterized by cellular shrinkage, membrane blebbing, chromatin condensation and apoptotic body formation.

  16. Expression of TGF-betas and their receptors is differentially modulated by reactive oxygen species and nitric oxide in human articular chondrocytes.

    Science.gov (United States)

    Ayache, N; Boumediene, K; Mathy-Hartert, M; Reginster, J-Y; Henrotin, Y; Pujol, J-P

    2002-05-01

    To study the effects exerted by two antioxidants, N-monomethyl-L-arginine (L-NMMA), as an inhibitor of nitric oxide (NO) synthesis, and N-acetylcysteine (NAC), a reactive oxygen species (ROS) scavenger, on the expression of the major growth factor involved in cartilage repair, TGF-beta, under the three isoforms beta1, beta2 and beta3, and the receptors I and II of this factor, using lipopolysaccharide (LPS)-treated human chondrocytes in culture. Suspension cultures of human chondrocytes derived from the knee of osteoarthritic patients were treated for 48 h with lipopolysaccharide (LPS) (10 microg/ml), L-NMMA (0.5 mM) or NAC (1 mM). Nitrite levels were assayed on the culture media using the Griess spectrophotometric method. After total RNA extraction, the expression of inducible NO synthase (iNOS), TGF-beta1, TGF-beta2, TGF-beta3, TGF-beta receptors I and II, was determined by semi-quantitative polymerase chain-reaction (RT-PCR). LPS induced a dramatic increase of both NO production and iNOS mRNA level. The addition of L-NMMA (0.5 mM) abolished NO production without affecting iNOS mRNA levels. In contrast NAC (1 mM) strongly synergized with LPS to stimulate NO synthesis. LPS treatment did not significantly alter TGF-beta1 expression whereas L-NMMA inhibited its production. TGF-beta2 mRNA level was decreased by LPS and was not changed in the presence of L-NMMA. On the other hand, NAC was capable of counteracting the LPS-induced inhibition of TGF-beta2 expression. TGFbeta3 mRNA level was markedly reduced by LPS alone, or with both L-NMMA and NAC. Finally, the expression of TGF-betaRI was slightly increased in the presence of combined LPS and L-NMMA or NAC whereas that of TGFbeta-RII was reduced in the same conditions. The modulation of TGF-beta system was found to be differentially controlled by NO and ROS productions. Indeed, the control exerted on TGF-beta expression varied according to the isoform: TGF-beta1 mRNA level depends on NO whereas that of TGF-beta2 is

  17. Genes Involved in Oxidation and Prostate Cancer Progression

    National Research Council Canada - National Science Library

    Platz, Elizabeth A

    2008-01-01

    We are evaluating whether polymorphisms in genes involved in the genesis of oxidative species, detoxification of oxidative species, or repair of oxidative DNA damage influence risk of prostate cancer...

  18. Substrate and Lewis Acid Coordination Promote O-O Bond Cleavage of an Unreactive L2CuII2(O22-) Species to Form L2CuIII2(O)2 Cores with Enhanced Oxidative Reactivity.

    Science.gov (United States)

    Garcia-Bosch, Isaac; Cowley, Ryan E; Díaz, Daniel E; Peterson, Ryan L; Solomon, Edward I; Karlin, Kenneth D

    2017-03-01

    Copper-dependent metalloenzymes are widespread throughout metabolic pathways, coupling the reduction of O 2 with the oxidation of organic substrates. Small-molecule synthetic analogs are useful platforms to generate L/Cu/O 2 species that reproduce the structural, spectroscopic, and reactive properties of some copper-/O 2 -dependent enzymes. Landmark studies have shown that the conversion between dicopper(II)-peroxo species (L 2 Cu II 2 (O 2 2- ) either side-on peroxo, S P, or end-on trans-peroxo, T P) and dicopper(III)-bis(μ-oxo) (L 2 Cu III 2 (O 2- ) 2 : O) can be controlled through ligand design, reaction conditions (temperature, solvent, and counteranion), or substrate coordination. We recently published ( J. Am. Chem. Soc. 2012 , 134 , 8513 , DOI: 10.1021/ja300674m ) the crystal structure of an unusual S P species [(MeAN) 2 Cu II 2 (O 2 2- )] 2+ ( S P MeAN , MeAN: N-methyl-N,N-bis[3-(dimethylamino)propyl]amine) that featured an elongated O-O bond but did not lead to O-O cleavage or reactivity toward external substrates. Herein, we report that S P MeAN can be activated to generate O MeAN and perform the oxidation of external substrates by two complementary strategies: (i) coordination of substituted sodium phenolates to form the substrate-bound O MeAN -RPhO - species that leads to ortho-hydroxylation in a tyrosinase-like fashion and (ii) addition of stoichiometric amounts (1 or 2 equiv) of Lewis acids (LA's) to form an unprecedented series of O-type species (O MeAN -LA) able to oxidize C-H and O-H bonds. Spectroscopic, computational, and mechanistic studies emphasize the unique plasticity of the S P MeAN core, which combines the assembly of exogenous reagents in the primary (phenolates) and secondary (Lewis acids association to the MeAN ligand) coordination spheres with O-O cleavage. These findings are reminiscent of the strategy followed by several metalloproteins and highlight the possible implication of O-type species in copper-/dioxygen-dependent enzymes

  19. EPR spectroscopy on irradiated nickel tetracyanide in NaCl host lattice: mechanism for the simultaneous formation of reduced and oxidized species

    Energy Technology Data Exchange (ETDEWEB)

    Braga de Araujo, M.; Pinhal, Nelson Moreira; Vugman, Ney Vernon E-mail: ney@if.ufrj.br

    2002-08-01

    The kinetics of oxidized and reduced Ni{sup 2+} complexes produced by X-ray irradiation on single crystals of NaCl doped with [Ni(CN){sub 4}]{sup 2-} is studied by Electron Paramagnetic Resonance at room temperature. The interdependent generation of these two complexes is attributed to migration of the charge compensating vacancy from the reduced to the oxidized complex in a reversible reaction. At higher X-ray doses, there is a predominant formation of the reduced complex.

  20. Ultra-violet absorption cross sections of isotopically substituted nitrous oxide species: 14N14NO, 15N14NO, 14N15NO and 15N15NO

    Directory of Open Access Journals (Sweden)

    P. von Hessberg

    2004-01-01

    Full Text Available The isotopically substituted nitrous oxide species 14N14NO, 15N14NO, 14N15NO and 15N15NO were investigated by ultra-violet (UV absorption spectroscopy. High precision cross sections were obtained for the wavelength range 181 to 218nm at temperatures of 233 and 283K. These data are used to calculate photolytic isotopic fractionation constants as a function of wavelength. The fractionation constants were used in a three-dimensional chemical transport model in order to simulate the actual fractionation of N2O in the stratosphere, and the results were found to be in good agreement with field studies.

  1. Endothelial Nitric Oxide Synthase Phosphorylation at Threonine 495 and Mitochondrial Reactive Oxygen Species Formation in Response to a High H2O2 Concentration

    DEFF Research Database (Denmark)

    Guterbaum, Thomas Jeremy; Braunstein, Thomas Hartig; Fossum, A

    2013-01-01

    Hydrogen peroxide (H₂O₂) is produced in vessels during ischemia/reperfusion and during inflammation, both leading to vascular dysfunction. We investigated cellular pathways involved in endothelial nitric oxide synthase (eNOS) phosphorylation at Threonine 495 (Thr(495)) in human umbilical vein end...

  2. Transcriptome sequencing of three Pseudo-nitzschia species reveals comparable gene sets and the presence of Nitric Oxide Synthase genes in diatoms

    OpenAIRE

    Di Dato, Valeria; Musacchia, Francesco; Petrosino, Giuseppe; Patil, Shrikant; Montresor, Marina; Sanges, Remo; Ferrante, Maria Immacolata

    2015-01-01

    Diatoms are among the most diverse eukaryotic microorganisms on Earth, they are responsible for a large fraction of primary production in the oceans and can be found in different habitats. Pseudo-nitzschia are marine planktonic diatoms responsible for blooms in coastal and oceanic waters. We analyzed the transcriptome of three species, Pseudo-nitzschia arenysensis, Pseudo-nitzschia delicatissima and Pseudo-nitzschia multistriata, with different levels of genetic relatedness. These species hav...

  3. Oxidative Stress in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Varsha Shukla

    2011-01-01

    Full Text Available It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5 hyperactivity associated with neurodegeneration.

  4. Protein oxidation in aquatic foods

    DEFF Research Database (Denmark)

    Baron, Caroline P.

    2014-01-01

    The chapter discusses general considerations about protein oxidation and reviews the mechanisms involved in protein oxidation and consequences of protein oxidation on fish proteins. It presents two case studies, the first deals with protein and lipid oxidation in frozen rainbow trout......, and the second with oxidation in salted herring. The mechanisms responsible for initiation of protein oxidation are unclear, but it is generally accepted that free radical species initiating lipid oxidation can also initiate protein oxidation. The chapter focuses on interaction between protein and lipid...... oxidation. The protein carbonyl group measurement is the widely used method for estimating protein oxidation in foods and has been used in fish muscle. The chapter also talks about the impact of protein oxidation on protein functionality, fish muscle texture, and food nutritional value. Protein oxidation...

  5. ?-Cell protection and antidiabetic activities of Crassocephalum crepidioides (Asteraceae) Benth. S. Moore extract against alloxan-induced oxidative stress via regulation of apoptosis and reactive oxygen species (ROS)

    OpenAIRE

    Bahar, Entaz; Akter, Kazi-Marjahan; Lee, Geum-Hwa; Lee, Hwa-Young; Rashid, Harun-Or; Choi, Min-Kyung; Bhattarai, Kashi Raj; Hossain, Mir Mohammad Monir; Ara, Joushan; Mazumder, Kishor; Raihan, Obayed; Chae, Han-Jung; Yoon, Hyonok

    2017-01-01

    Background Medicinal plants are becoming more popular in the treatment of various diseases because of the adverse effects of the current therapy, especially antioxidant plant components such as phenols and flavonoids have a protective role against oxidative stress-induced degenerative diseases like diabetes. Thus, the purpose of this study was to investigate ?-cell protection and antidiabetic activities of Crassocephalum crepidioides (Asteraceae) Benth. S. Moore. Method The in-vitro study was...

  6. Absorption mechanisms for cationic and anionic mineral species on ferric iron polymer hydroxides and oxidation products of ferrous iron in aqueous media

    International Nuclear Information System (INIS)

    Gandon, Remi

    1982-01-01

    Adsorbents obtained by hydrolysing the Fe 3+ , 6H 2 O ion are made of polymers with aquo (H 2 O), hydroxo (-OH...) and oxo (...O...) ligands. Radioactive tracers reveal the importance of chemical mechanisms in adsorption phenomena on ferric oxide in aqueous media. Zn 2+ , Co 2+ and Mn 2+ cations are exchanged with hydrogen from hydroxo groups. CrO 4 2- , SeO 3 2- and Sb(OH) 6 - anions form covalent associations in place of iron ligands. The adsorption of hydrolyzed ions results in strong oxygen bridge bonds. In fresh water, Co and Mn participate alone in physical electrostatic adsorption. Iron II oxidation products generate chemical adsorptions. Zn 2+ and Sb(OH) 6 - associate with ferric hydroxides from oxidized Fe 2+ . 60 Co, 54 Mn and 51 Cr form covalent associations between unpaired 3d iron electrons and the adsorbed element. This process is not predominant with selenium IV or VI reduced to the metallic state or fixed on ferric hydroxide in the selenite form. These conclusions can be applied to pollutant analysis and to water purification and contribute to our understanding of the role of iron in the distribution of oligo-elements in aqueous media. (author) [fr

  7. Biotransformation of Daclatasvir In Vitro and in Nonclinical Species: Formation of the Main Metabolite by Pyrrolidine δ-Oxidation and Rearrangement.

    Science.gov (United States)

    Li, Wenying; Zhao, Weiping; Liu, Xiaohong; Huang, Xiaohua; Lopez, Omar D; Leet, John E; Fancher, R Marcus; Nguyen, Van; Goodrich, Jason; Easter, John; Hong, Yang; Caceres-Cortes, Janet; Chang, Shu Y; Ma, Li; Belema, Makonen; Hamann, Lawrence G; Gao, Min; Zhu, Mingshe; Shu, Yue-Zhong; Humphreys, W Griffith; Johnson, Benjamin M

    2016-06-01

    Daclatasvir is a first-in-class, potent, and selective inhibitor of the hepatitis C virus nonstructural protein 5A replication complex. In support of nonclinical studies during discovery and exploratory development, liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance were used in connection with synthetic and radiosynthetic approaches to investigate the biotransformation of daclatasvir in vitro and in cynomolgus monkeys, dogs, mice, and rats. The results of these studies indicated that disposition of daclatasvir was accomplished mainly by the release of unchanged daclatasvir into bile and feces and, secondarily, by oxidative metabolism. Cytochrome P450s were the main enzymes involved in the metabolism of daclatasvir. Oxidative pathways included δ-oxidation of the pyrrolidine moiety, resulting in ring opening to an aminoaldehyde intermediate followed by an intramolecular reaction between the aldehyde and the proximal imidazole nitrogen atom. Despite robust formation of the resulting metabolite in multiple systems, rates of covalent binding to protein associated with metabolism of daclatasvir were modest (55.2-67.8 pmol/mg/h) in nicotinamide adenine dinucleotide phosphate (reduced form)-supplemented liver microsomes (human, monkey, rat), suggesting that intramolecular rearrangement was favored over intermolecular binding in the formation of this metabolite. This biotransformation profile supported the continued development of daclatasvir, which is now marketed for the treatment of chronic hepatitis C virus infection. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  8. High Density Lipoprotein Protects Mesenchymal Stem Cells from Oxidative Stress-Induced Apoptosis via Activation of the PI3K/Akt Pathway and Suppression of Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Jianfeng Xu

    2012-12-01

    Full Text Available The therapeutic effect of transplantation of mesenchymal stem cells (MSCs in myocardial infarction (MI appears to be limited by poor cell viability in the injured tissue, which is a consequence of oxidative stress and pro-apoptotic factors. High density lipoprotein (HDL reverses cholesterol transport and has anti-oxidative and anti-apoptotic properties. We, therefore, investigated whether HDL could protect MSCs from oxidative stress-induced apoptosis. MSCs derived from the bone marrow of rats were pre-incubated with or without HDL, and then were exposed to hydrogen peroxide (H2O2 in vitro, or were transplanted into experimentally infarcted hearts of rats in vivo. Pre-incubation of MSCs with HDL increased cell viability, reduced apoptotic indices and resulted in parallel decreases in reactive oxygen species (ROS in comparison with control MSCs. Each of the beneficial effects of HDL on MSCs was attenuated by inhibiting the PI3K/Akt pathway. Preconditioning with HDL resulted in higher MSC survival rates, improved cardiac remodeling and better myocardial function than in the MSC control group. Collectively, these results suggest that HDL may protect against H2O2-induced apoptosis in MSCs through activation of a PI3K/Akt pathway, and by suppressing the production of ROS.

  9. Vapor-phase photo-oxidation of methanol over nano-size titanium dioxide clusters dispersed in MCM-41 host material part 2: catalytic properties and surface transient species.

    Science.gov (United States)

    Bhattacharyya, K; Varma, S; Kumar, D; Tripathi, A K; Gupta, N M

    2005-05-01

    We report in this paper on the ultraviolet-assisted vapor-phase oxidation of methanol at room temperature, with the help of nano-size clusters of titanium dioxide dispersed in an MCM-41 silicate matrix. The surface species formed during the adsorption/oxidation of methanol and the transformation that they undergo as a result of ultraviolet irradiation were monitored using in-situ Fourier transform infrared and thermal desorption spectroscopy techniques. Parallel experiments conducted on TiO2/MCM, bulk titania, and pristine MCM-41 samples helped in identifying the individual role of titanium dioxide and host matrix in these processes. The photo-catalytic oxidation of methanol, at concentrations of 0.1 to 1.1 mol% in air, gave rise to formation of CO2 and H2O as products, for both the TiO2/MCM and bulk TiO2 samples. No such reaction occurred on titania-free MCM. Furthermore, the rate of reaction depended upon the TiO2 content of a sample and also on the concentration of methanol in reaction mixture. Thus, the rate of conversion increased progressively with the increase in TiO2 loading from 5 to 21 wt% in TiO2/MCM samples, particularly for the experiments with high concentration of methanol. For low methanol concentration (0.1 mol%) in air, the effect of titania content in MCM was very small. The specific activity (per g of titania) of a sample, on the other hand, showed an inverse relationship with the loading of titanium dioxide in a sample. Infrared and temperature-programmed desorption results revealed that the mode of CH3OH adsorption and the reactivity of the transient species formed during the oxidation process were independent of the size of dispersed titania particles. Thus, the particles of approximately 2-6 nm size, present in TiO2/MCM, exhibited a chemisorption behavior similar to that of the bulk titania. The results of the present study provide strong evidence that the hydroxyl groups, both on the host matrix and at the titania sites, participate

  10. VOx species supported on Al2O3-SBA-15 prepared by the grafting of alumina onto SBA-15: structure and activity in the oxidative dehydrogenation of ethane

    Czech Academy of Sciences Publication Activity Database

    Botková, Š.; Čapek, L.; Setnička, M.; Bulánek, R.; Čičmanec, P.; Kalužová, A.; Pastva, Jakub; Zukal, Arnošt

    2016-01-01

    Roč. 119, č. 1 (2016), s. 319-333 ISSN 1878-5190 R&D Projects: GA ČR GAP106/10/0196 Institutional support: RVO:61388955 Keywords : Ethane * UV-Vis * VOx species * Al2O3-SBA-15 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.264, year: 2016

  11. Propensity to metal accumulation and oxidative stress responses of two benthic species (Cerastoderma edule and Nephtys hombergii): are tolerance processes limiting their responsiveness?

    KAUST Repository

    Marques, Ana

    2016-02-24

    The chronic exposure of benthic organisms to metals in sediments can lead to the development of tolerance mechanisms, thus diminishing their responsiveness. This study aims to evaluate the accumulation profiles of V, Cr, Co, Ni, As, Cd, Pb and Hg and antioxidant system responses of two benthic organisms (Cerastoderma edule, Bivalvia; Nephtys hombergii, Polychaeta). This approach will provide clarifications about the ability of each species to signalise metal contamination. Organisms of both species were collected at the Tagus estuary, in two sites with distinct contamination degrees (ALC, slightly contaminated; BAR, highly contaminated). Accordingly, C. edule accumulated higher concentrations of As, Pb and Hg at BAR compared to ALC. However, antioxidant responses of C. edule were almost unaltered at BAR and no peroxidative damage occurred, suggesting adjustment mechanisms to the presence of metals. In contrast, N. hombergii showed a minor propensity to metal accumulation, only signalising spatial differences for As and Pb and accumulating lower concentrations of metals than C. edule. The differences in metal accumulation observed between species might be due to their distinctive foraging behaviour and/or the ability of N. hombergii to minimise the metal uptake. Despite that, the accumulation of As and Pb was on the basis of the polychaete antioxidant defences inhibition at BAR, including CAT, SOD, GR and GPx. The integrated biomarker response index (IBRv2) confirmed that N. hombergii was more affected by metal exposure than C. edule. In the light of current findings, in field-based studies, the information of C. edule as a bioindicator should be complemented by that provided by another benthic species, since tolerance mechanisms to metals can hinder a correct diagnosis of sediment contamination and of the system’s health. Overall, the present study contributed to improve the lack of fundamental knowledge of two widespread and common estuarine species, providing

  12. Centella asiatica Fraction-3 Suppresses the Nuclear Factor Erythroid 2-Related Factor 2 Anti-Oxidant Pathway and Enhances Reactive Oxygen Species-Mediated Cell Death in Cancerous Lung A549 Cells.

    Science.gov (United States)

    Naidoo, Dhaneshree Bestinee; Phulukdaree, Alisa; Anand, Krishnan; Sewram, Vikash; Chuturgoon, Anil Amichund

    2017-10-01

    Centella asiatica is a tropical medicinal plant that is commonly used in traditional medicine. Medicinal properties of C. asiatica include anti-oxidant, anti-inflammatory, and anti-cancer activity. We investigated the anti-oxidant and anti-proliferative/cytotoxic effects of a semi-purified fraction of C. asiatica ethanolic leaf extract (C3) in cancerous lung A549 cells. C3 was obtained by silica column fractionation and identified by using thin-layer chromatography and gas chromatography mass spectrometry. Cytotoxicity of C3 in A549 cells was evaluated (cell viability assay-WST-1; 24 h; [0.2-3 mg/mL]) to determine an inhibitory concentration (IC 50 ). Intracellular reactive oxygen species (IROS), mitochondrial membrane potential (flow cytometry), malondialdehyde (MDA), lactate dehydrogenase (LDH) (spectrophotometry), glutathione (GSH), oxidised glutathione (GSSG), adenosine triphosphate levels, caspase activity (luminometry), and DNA damage (comet assay) were evaluated. Protein expression (Nrf-2, p53, Bax, Bcl-2, and HSP-70) and gene expression (Nrf-2, GPx, SOD, CAT, c-myc, and OGG-1) were quantified by western blotting and quantitative polymerase chain reaction (qPCR), respectively. C3 dose dependently decreased A549 cell viability. The IC 50 of C3 increased MDA, IROS, mitochondrial depolarization, LDH, caspase (-8, -9, -3/7) activity, DNA damage, GSH levels, Nrf-2 protein expression, HSP-70 protein expression, and OGG-1 gene expression (P < .05). GSSG levels, anti-oxidant (Nrf-2, GPx, SOD) gene expression, p53, Bax, and Bcl-2 protein expression were decreased by C3 (P < .02). C3 diminished the anti-oxidant gene expression and induced anti-proliferative/cytotoxic effects in A549 cells.

  13. A Central Role for JNK/AP-1 Pathway in the Pro-Oxidant Effect of Pyrrolidine Dithiocarbamate through Superoxide Dismutase 1 Gene Repression and Reactive Oxygen Species Generation in Hematopoietic Human Cancer Cell Line U937.

    Science.gov (United States)

    Riera, Humberto; Afonso, Valéry; Collin, Pascal; Lomri, Abderrahim

    2015-01-01

    Pyrrolidine dithiocarbamate (PDTC) known as antioxidant and specific inhibitor of NF-κB was also described as pro-oxidant by inducing cell death and reactive oxygen species (ROS) accumulation in cancer. However, the mechanism by which PDTC indices its pro-oxidant effect is unknown. Therefore, we aimed to evaluate the effect of PDTC on the human Cu/Zn superoxide dismutase 1 (SOD1) gene transcription in hematopoietic human cancer cell line U937. We herein show for the first time that PDTC decreases SOD1 transcripts, protein and promoter activity. Furthermore, SOD1 repression by PDTC was associated with an increase in oxidative stress as evidenced by ROS production. Electrophoretic mobility-shift assays (EMSA) show that PDTC increased binding of activating protein-1 (AP-1) in dose dependent-manner suggesting that the MAPkinase up-stream of AP-1 is involved. Ectopic NF-κB p65 subunit overexpression had no effect on SOD1 transcription. In contrast, in the presence of JNK inhibitor (SP600125), p65 induced a marked increase of SOD1 promoter, suggesting that JNK pathway is up-stream of NF-κB signaling and controls negatively its activity. Indeed, using JNK deficient cells, PDTC effect was not observed nether on SOD1 transcription or enzymatic activity, nor on ROS production. Finally, PDTC represses SOD1 in U937 cells through JNK/c-Jun phosphorylation. Taken together, these results suggest that PDTC acts as pro-oxidant compound in JNK/AP-1 dependent-manner by repressing the superoxide dismutase 1 gene leading to intracellular ROS accumulation.

  14. Ethylene promotes germination of Arabidopsis seed under salinity by decreasing reactive oxygen species: evidence for the involvement of nitric oxide simulated by sodium nitroprusside.

    Science.gov (United States)

    Lin, Yingchao; Yang, Lei; Paul, Matthew; Zu, Yuangang; Tang, Zhonghua

    2013-12-01

    Both ethylene and nitric oxide (NO) are involved in modulating seed germination in adverse environments. However, the mechanisms by which they interact and affect germination have not been explained. In this study, the relationship between ethylene and NO during germination of Arabidopsis seed under salinity was analysed. Application of exogenous 1-aminocyclopropane-1-carboxylate (ACC, a precursor of ethylene biosynthesis) or sodium nitroprusside (SNP, an NO donor) largely overcame the inhibition of germination induced by salinity. The effects of ACC and SNP were decreased by 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO), a specific NO scavenger, or by aminoisobutyric acid (AIB), an inhibitor of ethylene biosynthesis, indicating that ethylene and NO interact during germination under salinity. Further, we demonstrated that ACC increased NO production and that SNP greatly induced the expression of the ACS2 gene involved in ethylene synthesis in Arabidopsis seeds germinating under salinity stress, suggesting that each substance influences the production of the other. Application of exogenous ACC increased germination under oxidative stress induced by hydrogen peroxide (H2O2) while SNP had a much smaller effect on wild-type Arabidopsis (Col-0) and no effect on the ethylene insensitive mutant (ein3-1) seeds, respectively. This shows that NO increased germination under salinity indirectly through H2O2 acting via the ethylene pathway. The endogenous concentration of H2O2 was increased by salinity in germinating seeds but was decreased by exogenous ACC, which stimulated germination ultimately. To explain all these results and the regulation of germination of Arabidopsis seed under salinity we propose a model involving ethylene, NO and H2O2 interaction. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Genotoxic and oxidative stress-inducing effects of deltamethrin in the erythrocytes of a freshwater biomarker fish species, Channa punctata Bloch.

    Science.gov (United States)

    Ansari, Rizwan A; Kaur, Manpreet; Ahmad, Firoz; Rahman, Shakilur; Rashid, Hina; Islam, Fakhrul; Raisuddin, Sheikh

    2009-10-01

    Deltamethrin, an alpha-cyano class of pyrethroid insecticide is used in insect pest control and antimalaria programs in several countries including India. Although various toxic manifestations of deltamethrin are reported in mammals, its ecotoxicologic dimensions are not adequately researched in ecologically and commercially important fishes. In this study, we report genotoxic effect of deltamethrin in a biomarker fish Channa punctata (Bloch). Adult fish were exposed to three concentrations of technical grade deltamethrin (0.4, 0.8, and 1.2 microg/L) for 48 and 72 h. Ethyl methane sulfonate was used as a positive control. Fish were analyzed for induction of micronucleus (MN), nuclear abnormalities (NAs), and oxidative stress biomarkers in erythrocytes. Deltamethrin significantly induced MN and NAs accompanied by increased lipid peroxidation. Activity of antioxidant enzyme superoxide dismutase was significantly decreased but an increase was observed in reduced glutathione level after 72 h of exposure. The NAs in exposed fish included blebbed, lobed and notched nuclei, and binucleated erythrocytes. Our findings suggest that oxidative stress may, in part, be contributing to deltamethrin-induced genotoxic damage to erythrocytes. Although MN induction is a nonspecific biomarker, it may provide an indication of pollution load of deltamethrin in the affected fish population when used as part of suite of other biomarkers.

  16. Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: Potential use in environmental risk assessment

    International Nuclear Information System (INIS)

    Rust Neves, Natalia; Oliva, Marco Antonio; Cruz Centeno, Danilo da; Costa, Alan Carlos; Ferreira Ribas, Rogerio; Gusmao Pereira, Eduardo

    2009-01-01

    The Brazilian sandy coastal plain named restinga is frequently subjected to particulate and gaseous emissions from iron ore factories. These gases may come into contact with atmospheric moisture and produce acid rain. The effects of the acid rain on vegetation, combined with iron excess in the soil, can lead to the disappearance of sensitive species and decrease restinga biodiversity. The effects of iron ore dust deposition and simulated acid rain on photosynthesis and on antioxidant enzymes were investigated in Eugenia uniflora, a representative shrub species of the restinga. This study aimed to determine the possible utility of this species in environmental risk assessment. After the application of iron ore dust as iron solid particulate matter (SPM Fe ) and simulated acid rain (pH 3.1), the 18-month old plants displayed brown spots and necrosis, typical symptoms of iron toxicity and injuries caused by acid rain, respectively. The acidity of the rain intensified leaf iron accumulation, which reached phytotoxic levels, mainly in plants exposed to iron ore dust. These plants showed the lowest values for net photosynthesis, stomatal conductance, transpiration, chlorophyll a content and electron transport rate through photosystem II (PSII). Catalase and superoxide dismutase activities were decreased by simulated acid rain. Peroxidase activity and membrane injury increased following exposure to acid rain and simultaneous SPM Fe application. Eugenia uniflora exhibited impaired photosynthetic and antioxidative metabolism in response to combined iron and acid rain stresses. This species could become a valuable tool in environmental risk assessment in restinga areas near iron ore pelletizing factories. Non-invasive evaluations of visual injuries, photosynthesis and chlorophyll a fluorescence, as well as invasive biochemical analysis could be used as markers.

  17. Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: Potential use in environmental risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rust Neves, Natalia; Oliva, Marco Antonio; Cruz Centeno, Danilo da; Costa, Alan Carlos; Ferreira Ribas, Rogerio [Departamento de Biologia Vegetal, Universidade Federal de Vicosa, Av. PH Rolfs, Campus, Vicosa, Minas Gerais, 36570-000 (Brazil); Gusmao Pereira, Eduardo, E-mail: egpereira@gmail.com [Departamento de Biologia Vegetal, Universidade Federal de Vicosa, Av. PH Rolfs, Campus, Vicosa, Minas Gerais, 36570-000 (Brazil)

    2009-06-01

    The Brazilian sandy coastal plain named restinga is frequently subjected to particulate and gaseous emissions from iron ore factories. These gases may come into contact with atmospheric moisture and produce acid rain. The effects of the acid rain on vegetation, combined with iron excess in the soil, can lead to the disappearance of sensitive species and decrease restinga biodiversity. The effects of iron ore dust deposition and simulated acid rain on photosynthesis and on antioxidant enzymes were investigated in Eugenia uniflora, a representative shrub species of the restinga. This study aimed to determine the possible utility of this species in environmental risk assessment. After the application of iron ore dust as iron solid particulate matter (SPM{sub Fe}) and simulated acid rain (pH 3.1), the 18-month old plants displayed brown spots and necrosis, typical symptoms of iron toxicity and injuries caused by acid rain, respectively. The acidity of the rain intensified leaf iron accumulation, which reached phytotoxic levels, mainly in plants exposed to iron ore dust. These plants showed the lowest values for net photosynthesis, stomatal conductance, transpiration, chlorophyll a content and electron transport rate through photosystem II (PSII). Catalase and superoxide dismutase activities were decreased by simulated acid rain. Peroxidase activity and membrane injury increased following exposure to acid rain and simultaneous SPM{sub Fe} application. Eugenia uniflora exhibited impaired photosynthetic and antioxidative metabolism in response to combined iron and acid rain stresses. This species could become a valuable tool in environmental risk assessment in restinga areas near iron ore pelletizing factories. Non-invasive evaluations of visual injuries, photosynthesis and chlorophyll a fluorescence, as well as invasive biochemical analysis could be used as markers.

  18. Dose-dependent intracellular reactive oxygen and nitrogen species (ROS/RNS) production from particulate matter exposure: comparison to oxidative potential and chemical composition

    Science.gov (United States)

    Tuet, Wing Y.; Fok, Shierly; Verma, Vishal; Tagle Rodriguez, Marlen S.; Grosberg, Anna; Champion, Julie A.; Ng, Nga L.

    2016-11-01

    Elevated particulate matter (PM) concentrations have been associated with cardiopulmonary risks. In this study, alveolar macrophages and ventricular myocytes were exposed to PM extracts from 104 ambient filters collected in multiple rural and urban sites in the greater Atlanta area. PM-induced reactive oxygen/nitrogen species (ROS/RNS) were measured to investigate the effect of chemical composition and determine whether chemical assays are representative of cellular responses. For summer samples, the area under the ROS/RNS dose-response curve per volume of air (AUCvolume) was significantly correlated with dithiothreitol (DTT) activity, water-soluble organic carbon (WSOC), brown carbon, titanium, and iron, while a relatively flat response was observed for winter samples. EC50 was also correlated with max response for all filters investigated, which suggests that certain PM constituents may be involved in cellular protective pathways. Although few metal correlations were observed, exposure to laboratory-prepared metal solutions induced ROS/RNS production, indicating that a lack of correlation does not necessarily translate to a lack of response. Collectively, these results suggest that complex interactions may occur between PM species. Furthermore, the strong correlation between organic species and ROS/RNS response highlights a need to understand the contribution of organic aerosols, especially photochemically driven secondary organic aerosols (SOA), to PM-induced health effects.

  19. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2012-01-01

    Full Text Available The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others. There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others, a series of disorders is developed that are jointly called „oxidative stress.“ The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source. [Projekat Ministarstva nauke Republike Srbije, br. 173034, br. 175061 i br. 31085

  20. Ab initio MO calculations on the Structure and Raman and Infrared Spectra of the [Al4O2Cl10]2- oxide species in chloroaluminate melts

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    2007-01-01

    system of staggered (approximate D3d symmetry), in analogy with the linear Al-O-Al geometry of the analogous [Al2OF6]2- ion, found previously. The calculations included determination of the vibrational harmonic normal modes and the infrared and Raman spectra, (vibrational band wavenumbers and intensities......), without any empiric adjustments of the harmonic force constants, using constants directly predicted from the Gaussian 03W program. Previously obtained IR absorption and Raman scattering spectra of melts are assigned, by comparing to the ab initio quantum mechanical vibrational analysis results....... It is concluded that the small oxide content commonly found in basic and neutral tetrachloroaluminate melts, most probably consist of [Al4O2Cl10]2- ions and the vibrational spectra are given....

  1. Effect of ozone on ruthenium species in alkaline medium. Pt. II. Oxidation of pentahydroxo nitrosyl ruthenate(II) ion RuNO(OH)52-

    International Nuclear Information System (INIS)

    Floquet, S.; Eysseric, C.

    2006-01-01

    Oxidation of the nitrosyl ruthenium complex RuNO(OH) 5 2- has been carried out in sodium hydroxide solutions in contact with a gas flow containing ozone. The RuNO(OH) 5 2- complex is converted successively into ruthenate and perruthenate ions. An empirical kinetic rate law for the first step has been determined and was shown to depend on concentrations of (i) the ruthenium complex, (ii) the hydroxide ions and (iii) ozone concentration in the gas flow. The second step of the reaction, corresponding to the perruthenate ion formation, shows a complex mechanism and four competing reactions have been proposed to represent it. The influences on the second step kinetics of several parameters such as ozone or hydroxide concentrations or the conditions of the gas-liquid exchange area are also qualitatively discussed. (orig.)

  2. Effect of ozone on ruthenium species in alkaline medium. Pt. II. Oxidation of pentahydroxo nitrosyl ruthenate(II) ion RuNO(OH){sub 5}{sup 2-}

    Energy Technology Data Exchange (ETDEWEB)

    Floquet, S. [Commissariat a l' Energie Atomique (CEA/Valrho), Bagnols-sur-Ceze (France); Inst. Lavoisier, IREM UMR 8637, Univ. de Versailles Saint-Quentin, Versailles (France); Eysseric, C. [Commissariat a l' Energie Atomique (CEA/Valrho), Bagnols-sur-Ceze (France)

    2006-07-01

    Oxidation of the nitrosyl ruthenium complex RuNO(OH){sub 5}{sup 2-} has been carried out in sodium hydroxide solutions in contact with a gas flow containing ozone. The RuNO(OH){sub 5}{sup 2-} complex is converted successively into ruthenate and perruthenate ions. An empirical kinetic rate law for the first step has been determined and was shown to depend on concentrations of (i) the ruthenium complex, (ii) the hydroxide ions and (iii) ozone concentration in the gas flow. The second step of the reaction, corresponding to the perruthenate ion formation, shows a complex mechanism and four competing reactions have been proposed to represent it. The influences on the second step kinetics of several parameters such as ozone or hydroxide concentrations or the conditions of the gas-liquid exchange area are also qualitatively discussed. (orig.)

  3. Tropospheric profiles of nitrogen oxides, ozone, and other related trace species measured over the Atlantic near the west coast of Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, F.; Bruening, D.; Grobler, E.S.; Koppmann, R.; Kraus, A.B.; Schrimpf, W.; Weber, M.; Ehhalt, D.H. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Atmosphaerische Chemie

    1997-12-31

    In June and December 1994, the concentrations of the nitrogen oxides NO, NO{sub 2} and NO{sub y} were measured together with ozone, photolysis frequency of NO{sub 2}, methane, CO, CO{sub 2}, PAN, and light hydrocarbons near the west coast of Europe above the Atlantic Ocean. Two vertical profiles for each season were obtained in the altitude range 1.5 to 12 km at four locations: near Prestwick (56 deg N, 9 deg W), Brest (49 deg N, 6 deg W), Faro (37 deg N, 12 deg W) and Tenerife (30 deg N, 18 deg W). The measured vertical profiles of NO are compared to the results of a low resolution 3-D chemical tracer model. (author)

  4. No evidence for parasitism-linked changes in immune function or oxidative physiology over the annual cycle of an avian species.

    Science.gov (United States)

    Pap, Péter L; Sesarman, Alina; Vágási, Csongor I; Buehler, Deborah M; Pătraş, Laura; Versteegh, Maaike A; Banciu, Manuela

    2014-01-01

    Temporally changing environmental conditions occur in most parts of the world and can exert strong pressure on the immune defense of organisms. Seasonality may result in changes in physiological traits over the year, and such changes may be essential for the optimization of defense against infections. Evidence from field and laboratory studies suggest the existence of links between environmental conditions, such as infection risk, and the ability of animals to mount an immune response or to overcome infections; however, the importance of parasites in mediating seasonal change in immune defense is still debated. In this study, we test the hypothesis that seasonal change in immune function and connected physiological traits is related to parasite infection. We sampled captive house sparrows (Passer domesticus) once every 2 mo over 14 mo and compared the annual variation in 12 measures of condition, immune function, antioxidant status, and oxidative damage among birds naturally infested with coccidians or medicated against these parasites. We found significant variation in 10 of 12 traits over the year. However, we found little support for parasite-mediated change in immune function and oxidative status in captive house sparrows. Of the 12 measures, only one was slightly affected by parasite treatment. In support of the absence of any effect of coccidians on the annual profile of the condition and physiological traits, we found no consistent relationships between the intensity of infestation and these response variables over the year. Our results show that chronic coccidian infections have limited effect on the seasonal changing of physiological traits and that the patterns of these measures are probably more affected by acute infection and/or virulent parasite strains.

  5. Tandem mass spectrometry and hydrogen/deuterium exchange studies of protonated species of 1,1'-bis(diphenylphosphino)-ferrocene oxidative impurity generated during a Heck reaction.

    Science.gov (United States)

    Wu, Lianming; Hernandez-Soto, Heriberto; Liu, David Q; Vogt, Frederick G; O'Neill-Slawecki, Stacy A; Su, Qiaogong

    2008-01-01

    Oxidation of 1,1'-bis(diphenylphosphino)-ferrocene (DPPF) was found to occur when it served as the ligand for Pd(II)(CH3COO)2 in a Heck reaction. This oxidative impurity of DPPF, referred to as DPPF(O), was identified by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) and exact mass measurements. Protonated DPPF(O) exhibited unique fragmentation pathways in the gas phase. Hydrogen/deuterium (H/D) exchange experiments provided important insights into the dissociation mechanisms of protonated DPPF(O), suggesting the existence of isomeric structures of the product ions by retaining or losing a proton (or deuteron) upon collision-induced dissociation (CID). The specific fate of the proton (or deuteron) upon CID is postulated to be dependent on the distance between the exchangeable proton (or deuteron) and the sites of bond cleavage. Density functional theory (DFT) calculations at the B3LYP/LANL2DZ level of theory showed that oxygen in DPPF(O) plays a pivotal role in invoking pi-cation interactions between the p-type lone pair electrons (n pi) in oxygen and the anti-bonding orbital of Fe(II), accounting for the major fragmentation pathways of protonated DPPF(O). Facile formation of organometallic distonic ions in dissociation of protonated DPPF(O), and especially of protonated DPPF, could be useful for further exploration of their chemical properties by gas-phase ion/molecule reactions. Copyright (c) 2008 John Wiley & Sons, Ltd.

  6. Endangered Species

    Science.gov (United States)

    EPA's Endangered Species Protection Program helps promote recovery of listed species. The ESPP determines if pesticide use in a geographic area may affect any listed species. Find needed limits on pesticide use in Endangered Species Protection Bulletins.

  7. Observations and Explicit Modeling of Summertime Carbonyl Formation in Beijing: Identification of Key Precursor Species and Their Impact on Atmospheric Oxidation Chemistry

    Science.gov (United States)

    Yang, Xue; Xue, Likun; Wang, Tao; Wang, Xinfeng; Gao, Jian; Lee, Shuncheng; Blake, Donald R.; Chai, Fahe; Wang, Wenxing

    2018-01-01

    Carbonyls are an important group of volatile organic compounds (VOCs) that play critical roles in tropospheric chemistry. To better understand the formation mechanisms of carbonyl compounds, extensive measurements of carbonyls and related parameters were conducted in Beijing in summer 2008. Formaldehyde (11.17 ± 5.32 ppbv), acetone (6.98 ± 3.01 ppbv), and acetaldehyde (5.27 ± 2.24 ppbv) were the most abundant carbonyl species. Two dicarbonyls, glyoxal (0.68 ± 0.26 ppbv) and methylglyoxal (MGLY; 1.10 ± 0.44 ppbv), were also present in relatively high concentrations. An observation-based chemical box model was used to simulate the in situ production of formaldehyde, acetaldehyde, glyoxal, and MGLY and quantify their contributions to ozone formation and ROx budget. All four carbonyls showed similar formation mechanisms but exhibited different precursor distributions. Alkenes (mainly isoprene and ethene) were the dominant precursors of formaldehyde, while both alkenes (e.g., propene, i-butene, and cis-2-pentene) and alkanes (mainly i-pentane) were major precursors of acetaldehyde. For dicarbonyls, both isoprene and aromatic VOCs were the dominant parent hydrocarbons of glyoxal and MGLY. Photolysis of oxygenated VOCs was the dominant source of ROx radicals (approximately >80% for HO2 and approximately >70% for RO2) in Beijing. Ozone production occurred under a mixed-control regime with carbonyls being the key VOC species. Overall, this study provides some new insights into the formation mechanisms of carbonyls, especially their parent hydrocarbon species, and underlines the important role of carbonyls in radical chemistry and ozone pollution in Beijing. Reducing the emissions of alkenes and aromatics would be an effective way to mitigate photochemical pollution in Beijing.

  8. Sublethal concentrations of salicylic acid decrease the formation of reactive oxygen species but maintain an increased nitric oxide production in the root apex of the ethylene-insensitive never ripe tomato mutants.

    Science.gov (United States)

    Tari, Irma; Poór, Péter; Gémes, Katalin

    2011-09-01

    The pattern of salicylic acid (SA)-induced production of reactive oxygen species (ROS) and nitric oxide (NO) were different in the apex of adventitious roots in wild-type and in the ethylene-insensitive never ripe (Nr) mutants of tomato (Solanum lycopersicum L. cv Ailsa Craig). ROS were upregulated, while NO remained at the control level in apical root tissues of wildtype plants exposed to sublethal concentrations of SA. In contrast, Nr plants expressing a defective ethylene receptor displayed a reduced level of RO S and a higher NO content in the apical root cells. In wild-type plants NO production seems to be RO S(H2O2)-dependent at cell death-inducing concentrations of SA, indicating that ROS and NO may interact to trigger oxidative cell death. In the absence of significant RO S accumulation, the increased NO production caused moderate reduction in cell viability in root apex of Nr plants exposed to 10(-3) M SA. This suggests that a functional ethylene signaling pathway is necessary for the control of ROS and NO production induced by SA.

  9. Micro-oxygenation does not eliminate hydrogen sulfide and mercaptans from wine; it simply shifts redox and complex-related equilibria to reversible oxidized species and complexed forms.

    Science.gov (United States)

    Vela, Eduardo; Hernandez-Orte, Purificación; Franco-Luesma, Ernesto; Ferreira, Vicente

    2018-03-15

    This work seeks to assess the effects of micro-oxygenation (MOX) on the present and potential levels of Volatile Sulfur Compounds (VSCs) of wine. With such purpose, three red wines with a tendency to develop sulfury off-odors were subjected to three different MOX conditions (4.4-20mg/L delivered at 0.05 or 0.2mg/L/day). Samples were further subjected to Accelerated Reductive aging (AR) and analyzed for free and Brine Releasable (BR) VSCs and redox potential. Although MOX induced strong decreases in the levels of all free VSCs, hardly affected the ability of the wine to release back hydrogen sulfide and other mercaptans during AR-aging. During aging BR-levels of MOX samples became in most cases similar or higher than non-oxygenated controls. BR-levels and the fractions free/BR follow characteristic sigmoid plots when represented versus redox potential suggesting that all changes are the result of reversible equilibria between free, metal-complexed and oxidized forms of VSCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Both the stimulation and inhibition of root hair growth induced by extracellular nucleotides in Arabidopsis are mediated by nitric oxide and reactive oxygen species.

    Science.gov (United States)

    Clark, Greg; Wu, Michael; Wat, Noel; Onyirimba, James; Pham, Trieu; Herz, Niculin; Ogoti, Justin; Gomez, Delmy; Canales, Arinda A; Aranda, Gabriela; Blizard, Misha; Nyberg, Taylor; Terry, Anne; Torres, Jonathan; Wu, Jian; Roux, Stanley J

    2010-11-01

    Root hairs secrete ATP as they grow, and extracellular ATP and ADP can trigger signaling pathways that regulate plant cell growth. In several plant tissues the level of extracellular nucleotides is limited in part by ectoapyrases (ecto-NTPDases), and the growth of these tissues is strongly influenced by their level of ectoapyrase expression. Both chemical inhibition of ectoapyrase activity and suppression of the expression of two ectoapyrase enzymes by RNAi in Arabidopsis resulted in inhibition of root hair growth. As assayed by a dose-response curve, different concentrations of the poorly hydrolysable nucleotides, ATPγS and ADPβS, could either stimulate (at 7.5-25 μM) or inhibit (at ≥ 150 μM) the growth rate of root hairs in less than an hour. Equal amounts of AMPS, used as a control, had no effect on root hair growth. Root hairs of nia1nia2 mutants, which are suppressed in nitric oxide (NO) production, and of atrbohD/F mutants, which are suppressed in the production of H(2)O(2), did not show growth responses to applied nucleotides, indicating that the growth changes induced by these nucleotides in wild-type plants were likely transduced via NO and H(2)O(2) signals. Consistent with this interpretation, treatment of root hairs with different concentrations of ATPγS induced different accumulations of NO and H(2)O(2) in root hair tips. Two mammalian purinoceptor antagonists also blocked the growth responses induced by extracellular nucleotides, suggesting that they were initiated by a receptor-based mechanism.

  11. The role of respiration, reactive oxygen species and oxidative stress in mother cell-specific ageing of yeast strains defective in the RAS signalling pathway.

    Science.gov (United States)

    Heeren, Gino; Jarolim, Stefanie; Laun, Peter; Rinnerthaler, Mark; Stolze, Klaus; Perrone, Gabriel G; Kohlwein, Sepp D; Nohl, Hans; Dawes, Ian W; Breitenbach, Michael

    2004-11-01

    We show that the dominant activated allele of the yeast RAS gene, RAS2(ala18,val19), led to redox imbalance in exponential-phase cells and to excretion of almost all of the cellular glutathione into the medium when the cells reached early-stationary phase. The mitochondria of the mutant stained strongly with dihydrorhodamine 123 (DHR) and the cells displayed a very short mother cell-specific lifespan. Adding 1 mM reduced glutathione (GSH) to the medium partly restored the lifespan. The corresponding RAS2(+) rho-zero strain also displayed a short lifespan, excreted nearly all of its GSH, and stained positively with DHR. Adding 1 mM GSH completely restored the lifespan of the RAS2(+) rho-zero strain to that of the wild-type cells. The double mutant RAS2(ala18,val19) rho-zero cells showed the same lifespan as the RAS2(ala18,val19) cells, and the effect of glutathione in restoring the lifespan was the same, indicating that both mutations shorten lifespan through a similar mechanism. In the RAS2(ala18,val19) mutant strain and its rho-zero derivative we observed for the first time a strong electron spin resonance (ESR) signal characteristic of the superoxide radical anion. The mutant cells were, therefore, producing superoxide in the absence of a complete mitochondrial electron transport chain, pointing to the existence of a possible non-mitochondrial source for ROS generation. Our results indicate that oxidative stress resulting from a disturbance of redox balance can play a major role in mother cell-specific lifespan determination of yeast cells.

  12. The effect of camphorquinone (CQ) and CQ-related photosensitizers on the generation of reactive oxygen species and the production of oxidative DNA damage.

    Science.gov (United States)

    Pagoria, Dustin; Lee, Abert; Geurtsen, Werner

    2005-07-01

    Recent evidence suggests that following visible-light (VL) irradiation, CQ and the CQ-related photosensitizers benzil (BZ), benzophenone (BP), and 9-fluorenone (9-F) generate initiating radicals that may indiscriminately react with molecular oxygen forming reactive oxygen species (ROS). The purpose of this investigation was to determine whether VL-irradiated CQ, BZ, BP, and 9-F cause DNA damage due to the generation of ROS in vitro. ROS formation by CQ and CQ-related photosensitizers+/-dimethyl-p-toluidine (DMT) was investigated in a cell-free system with VL irradiation. DNA damage was determined using PhiX-174 RF I supercoiled double-stranded plasmid DNA and ROS quantified with 4-((9-acridinecarbonyl)amino)-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO-9-AC), a fluorogenic ROS-sensitive probe. VL-irradiated CQ, BZ, BP, and 9-F (+/-DMT) produced significant DNA damage at 0.1, 0.5, and 1.0 mM and in a concentration-dependent manner (p<0.05). TEMPO-9-AC revealed that all investigated VL-irradiated photosensitizers produced significant amounts of ROS with BZ in the presence of DMT generating the most ROS after 30, 60, and 90 min. VL-irradiated CQ, BZ, BP, and 9-F +/-DMT continued to generate significant amounts of ROS 90 min after VL irradiation. As a result, future investigations should evaluate the effect of VL-irradiated photosensitizers in cells and possible protective effects provided by antioxidants.

  13. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Costa, Cristina Henning da; Perreault, François; Oukarroum, Abdallah; Melegari, Sílvia Pedroso; Popovic, Radovan; Matias, William Gerson

    2016-01-01

    With the growth of nanotechnology and widespread use of nanomaterials, there is an increasing risk of environmental contamination by nanomaterials. However, the potential implications of such environmental contamination are hard to evaluate since the toxicity of nanomaterials if often not well characterized. The objective of this study was to evaluate the toxicity of a chromium-based nanoparticle, Cr 2 O 3 -NP, used in a wide diversity of industrial processes and commercial products, on the unicellular green alga Chlamydomonas reinhardtii. The deleterious impacts of Cr 2 O 3 -NP were characterized using cell density measurements, production of reactive oxygen species (ROS), esterase enzymes activity, and photosystem II electron transport as indicators of toxicity. Cr 2 O 3 -NP exposure inhibited culture growth and significantly lowered cellular Chlorophyll a content. From cell density measurements, EC50 values of 2.05 ± 0.20 and 1.35 ± 0.06 g L −1 Cr 2 O 3 -NP were obtained after 24 and 72 h of exposure, respectively. In addition, ROS levels were increased to 160.24 ± 2.47% and 59.91 ± 0.15% of the control value after 24 and 72 h of exposition to 10 g L −1 Cr 2 O 3 -NP. At 24 h of exposure, the esterase activity increased to 160.24% of control value, revealing a modification of the short-term metabolic response of algae to Cr 2 O 3 -NP exposure. In conclusion, the metabolism of C. reinhardtii was the most sensitive to Cr 2 O 3 -NP after 24 h of treatment. - Highlights: • Cr 2 O 3 nanoparticles are unstable and form large aggregates in the medium. • EC50 for growth inhibition of C. reinhardtii is 1.35 g L −1 at 72 h. • Cr 2 O 3 nanoparticles increase ROS levels at 10 g L −1 . • Cr 2 O 3 nanoparticles affect photosynthetic electron transport.

  14. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Cristina Henning da [Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC (Brazil); Perreault, François [School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005 (United States); Oukarroum, Abdallah [Department of Chemistry, University of Quebec in Montréal, 2101, Jeanne Mance Street, Station Centre-Ville, Montréal, QC H2X 2J6 (Canada); Melegari, Sílvia Pedroso [Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC (Brazil); Center of Marine Studies, Federal University of Parana, Beira-mar Avenue, 83255-976, Pontal do Parana, PR (Brazil); Popovic, Radovan [Department of Chemistry, University of Quebec in Montréal, 2101, Jeanne Mance Street, Station Centre-Ville, Montréal, QC H2X 2J6 (Canada); Matias, William Gerson, E-mail: william.g.matias@ufsc.br [Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC (Brazil)

    2016-09-15

    With the growth of nanotechnology and widespread use of nanomaterials, there is an increasing risk of environmental contamination by nanomaterials. However, the potential implications of such environmental contamination are hard to evaluate since the toxicity of nanomaterials if often not well characterized. The objective of this study was to evaluate the toxicity of a chromium-based nanoparticle, Cr{sub 2}O{sub 3}-NP, used in a wide diversity of industrial processes and commercial products, on the unicellular green alga Chlamydomonas reinhardtii. The deleterious impacts of Cr{sub 2}O{sub 3}-NP were characterized using cell density measurements, production of reactive oxygen species (ROS), esterase enzymes activity, and photosystem II electron transport as indicators of toxicity. Cr{sub 2}O{sub 3}-NP exposure inhibited culture growth and significantly lowered cellular Chlorophyll a content. From cell density measurements, EC50 values of 2.05 ± 0.20 and 1.35 ± 0.06 g L{sup −1} Cr{sub 2}O{sub 3}-NP were obtained after 24 and 72 h of exposure, respectively. In addition, ROS levels were increased to 160.24 ± 2.47% and 59.91 ± 0.15% of the control value after 24 and 72 h of exposition to 10 g L{sup −1} Cr{sub 2}O{sub 3}-NP. At 24 h of exposure, the esterase activity increased to 160.24% of control value, revealing a modification of the short-term metabolic response of algae to Cr{sub 2}O{sub 3}-NP exposure. In conclusion, the metabolism of C. reinhardtii was the most sensitive to Cr{sub 2}O{sub 3}-NP after 24 h of treatment. - Highlights: • Cr{sub 2}O{sub 3} nanoparticles are unstable and form large aggregates in the medium. • EC50 for growth inhibition of C. reinhardtii is 1.35 g L{sup −1} at 72 h. • Cr{sub 2}O{sub 3} nanoparticles increase ROS levels at 10 g L{sup −1}. • Cr{sub 2}O{sub 3} nanoparticles affect photosynthetic electron transport.

  15. Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent.

    Science.gov (United States)

    Sitko, Rafal; Janik, Paulina; Zawisza, Beata; Talik, Ewa; Margui, Eva; Queralt, Ignasi

    2015-03-17

    A new method based on dispersive microsolid phase extraction (DMSPE) and total-reflection X-ray fluorescence spectrometry (TXRF) is proposed for multielemental ultratrace determination of heavy metal ions and arsenic species. In the developed methodology, the crucial issue is a novel adsorbent synthesized by grafting 3-mercaptopropyl trimethoxysilane on a graphene oxide (GO) surface. Mercapto-modified graphene oxide (GO-SH) can be applied in quantitative adsorption of cobalt, nickel, copper, cadmium, and lead ions. Moreover, GO-SH demonstrates selectivity toward arsenite in the presence of arsenate. Due to such features of GO-SH nanosheets as wrinkled structure and excellent dispersibility in water, GO-SH seems to be ideal for fast and simple preconcentration and determination of heavy metal ions using methodology based on DMSPE and TXRF measurement. The suspension of GO-SH was injected into an analyzed water sample; after filtration, the GO-SH nanosheets with adsorbed metal ions were redispersed in a small volume of internal standard solution and deposited onto a quartz reflector. The high enrichment factor of 150 allows obtaining detection limits of 0.11, 0.078, 0.079, 0.064, 0.054, and 0.083 ng mL(-1) for Co(II), Ni(II), Cu(II), As(III), Cd(II), and Pb(II), respectively. Such low detection limits can be obtained using a benchtop TXRF system without cooling media and gas consumption. The method is suitable for the analysis of water, including high salinity samples difficult to analyze using other spectroscopy techniques. Moreover, GO-SH can be applied to the arsenic speciation due to its selectivity toward arsenite.

  16. Aerobic Oxidations of Light Alkanes over Solid Metal Oxide Catalysts.

    Science.gov (United States)

    Grant, Joseph T; Venegas, Juan M; McDermott, William P; Hermans, Ive

    2017-11-07

    Heterogeneous metal oxide catalysts are widely studied for the aerobic oxidations of C 1 -C 4 alkanes to form olefins and oxygenates. In this review, we outline the properties of supported metal oxides, mixed-metal oxides, and zeolites and detail their most common applications as catalysts for partial oxidations of light alkanes. By doing this we establish similarities between different classes of metal oxides and identify common themes in reaction mechanisms and research strategies for catalyst improvement. For example, almost all partial alkane oxidations, regardless of the metal oxide, follow Mars-van Krevelen reaction kinetics, which utilize lattice oxygen atoms to reoxidize the reduced metal centers while the gaseous O 2 reactant replenishes these lattice oxygen vacancies. Many of the most-promising metal oxide catalysts include V 5+ surface species as a necessary constituent to convert the alkane. Transformations involving sequential oxidation steps (i.e., propane to acrylic acid) require specific reaction sites for each oxidation step and benefit from site isolation provided by spectator species. These themes, and others, are discussed in the text.

  17. Invasive Species

    Science.gov (United States)

    Invasive species have significantly changed the Great Lakes ecosystem. An invasive species is a plant or animal that is not native to an ecosystem, and whose introduction is likely to cause economic, human health, or environmental damage.

  18. The impact of a short-term high-fat diet on mitochondrial respiration, reactive oxygen species production, and dynamics in oxidative and glycolytic skeletal muscles of young rats.

    Science.gov (United States)

    Leduc-Gaudet, Jean-Philippe; Reynaud, Olivier; Chabot, François; Mercier, Jocelyne; Andrich, David E; St-Pierre, David H; Gouspillou, Gilles

    2018-02-01

    Multiple aspects of mitochondrial function and dynamics remain poorly studied in the skeletal muscle of pediatric models in response to a short-term high-fat diet (HFD). This study investigated the impact of a short-term HFD on mitochondrial function and dynamics in the oxidative soleus (SOL) and glycolytic extensor digitorum longus (EDL) muscles in young rats. Young male Wistar rats were submitted to either HFD or normal chow (NCD) diets for 14 days. Permeabilized myofibers from SOL and EDL were prepared to assess mitochondrial respiration and reactive oxygen species (ROS) production. The expression and content of protein involved in mitochondrial metabolism and dynamics (fusion/fission) were also quantified. While no effects of HFD was observed on mitochondrial respiration when classical complex I and II substrates were used, both SOL and EDL of rats submitted to a HFD displayed higher basal and ADP-stimulated respiration rates when Malate + Palmitoyl-L-carnitine were used as substrates. HFD did not alter ROS production and markers of mitochondrial content. The expression of CPT1b was significantly increased in SOL and EDL of HFD rats. Although the expression of UCP3 was increased in SOL and EDL muscles from HFD rats, mitochondrial coupling efficiency was not altered. In SOL of HFD rats, the transcript levels of Mfn2 and Fis1 were significantly upregulated. The expression and content of proteins regulating mitochondrial dynamics was not modulated by HFD in the EDL. Finally, DRP1 protein content was increased by over fourfold in the SOL of HFD rats. Taken altogether, our findings show that exposing young animals to short-term HFD results in an increased capacity of skeletal muscle mitochondria to oxidize fatty acids, without altering ROS production, coupling efficiency, and mitochondrial content. Our results also highlight that the impact of HFD on mitochondrial dynamics appears to be muscle specific. © 2018 The Authors. Physiological Reports published by

  19. Protein oxidation and peroxidation

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard...... and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals...... and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function...

  20. β-Cell protection and antidiabetic activities of Crassocephalum crepidioides (Asteraceae) Benth. S. Moore extract against alloxan-induced oxidative stress via regulation of apoptosis and reactive oxygen species (ROS).

    Science.gov (United States)

    Bahar, Entaz; Akter, Kazi-Marjahan; Lee, Geum-Hwa; Lee, Hwa-Young; Rashid, Harun-Or; Choi, Min-Kyung; Bhattarai, Kashi Raj; Hossain, Mir Mohammad Monir; Ara, Joushan; Mazumder, Kishor; Raihan, Obayed; Chae, Han-Jung; Yoon, Hyonok

    2017-03-29

    Medicinal plants are becoming more popular in the treatment of various diseases because of the adverse effects of the current therapy, especially antioxidant plant components such as phenols and flavonoids have a protective role against oxidative stress-induced degenerative diseases like diabetes. Thus, the purpose of this study was to investigate β-cell protection and antidiabetic activities of Crassocephalum crepidioides (Asteraceae) Benth. S. Moore. The in-vitro study was conducted by the pancreatic β-cell culture and α-amylase inhibition technique which includes two methods, namely starch-iodine method and 3,5-dinitrosalicylic acid (DNSA) method. On the other hand, the in-vivo study was performed by oral glucose tolerance test (OGTT) method and alloxan-induced diabetes method by using Wistar albino rat. At the end pancreatic specimens were removed and processed for histopathological study. The plant extract showed significant (*p < 0.05, **p < 0.01) effect on hyperglycemia as compared to standard (Gliclazide) in OGTT. The plant extract showed efficient protection activity of pancreatic β-cell from cell death in INS-1 cell line by significantly reduced (*p < 0.05, **p < 0.01) the levels alloxan-induced apoptosis and intracellular reactive oxygen species (ROS) accumulation. In addition, the plant extract showed a significant (*p < 0.05, **p < 0.01) effect on hyperglycemia by increases in percent of β-cells present in each islet (45% - 60%) compared to the diabetic group. The result showed that C. crepidioides had β-cell protection and antidiabetic activities in pancreatic β-cell culture and Wistar albino rat.

  1. Bilirubin inhibits the up-regulation of inducible nitric oxide synthase by scavenging reactive oxygen species generated by the toll-like receptor 4-dependent activation of NADPH oxidase

    Directory of Open Access Journals (Sweden)

    Gila Idelman

    2015-08-01

    Full Text Available It has been previously shown that bilirubin prevents the up-regulation of inducible nitric oxide synthase (iNOS in response to LPS. The present study examines whether this effect is exerted through modulation of Toll-Like Receptor-4 (TLR4 signaling. LPS-stimulated iNOS and NADPH oxidase (Nox activity in RAW 264.7 murine macrophages was assessed by measuring cellular nitrate and superoxide (O2− production, respectively. The generation of both nitrate and O2− in response to LPS was suppressed by TLR4 inhibitors, indicating that activation of iNOS and Nox is TLR4-dependent. While treatment with superoxide dismutase (SOD and bilirubin effectively abolished LPS-mediated O2− production, hydrogen peroxide and nitrate release were inhibited by bilirubin and PEG-catalase, but not SOD, supporting that iNOS activation is primarily dependent upon intracellular H2O2. LPS treatment increased nuclear translocation of the redox-sensitive transcription factor Hypoxia Inducible Factor-1α (HIF-1α, an effect that was abolished by bilirubin. Cells transfected with murine iNOS reporter constructs in which the HIF-1α-specific hypoxia response element was disrupted exhibited a blunted response to LPS, supporting that HIF-1α mediates Nox-dependent iNOS expression. Bilirubin, but not SOD, blocked the cellular production of interferon-β, while interleukin-6 production remained unaffected. These data support that bilirubin inhibits the TLR4-mediated up-regulation of iNOS by preventing activation of HIF-1α through scavenging of Nox-derived reactive oxygen species. Bilirubin also suppresses interferon-β release via a ROS-independent mechanism. These findings characterize potential mechanisms for the anti-inflammatory effects of bilirubin.

  2. Bilirubin inhibits the up-regulation of inducible nitric oxide synthase by scavenging reactive oxygen species generated by the toll-like receptor 4-dependent activation of NADPH oxidase.

    Science.gov (United States)

    Idelman, Gila; Smith, Darcey L H; Zucker, Stephen D

    2015-08-01

    It has been previously shown that bilirubin prevents the up-regulation of inducible nitric oxide synthase (iNOS) in response to LPS. The present study examines whether this effect is exerted through modulation of Toll-Like Receptor-4 (TLR4) signaling. LPS-stimulated iNOS and NADPH oxidase (Nox) activity in RAW 264.7 murine macrophages was assessed by measuring cellular nitrate and superoxide ( [Formula: see text] ) production, respectively. The generation of both nitrate and [Formula: see text] in response to LPS was suppressed by TLR4 inhibitors, indicating that activation of iNOS and Nox is TLR4-dependent. While treatment with superoxide dismutase (SOD) and bilirubin effectively abolished LPS-mediated [Formula: see text] production, hydrogen peroxide and nitrate release were inhibited by bilirubin and PEG-catalase, but not SOD, supporting that iNOS activation is primarily dependent upon intracellular H2O2. LPS treatment increased nuclear translocation of the redox-sensitive transcription factor Hypoxia Inducible Factor-1α (HIF-1α), an effect that was abolished by bilirubin. Cells transfected with murine iNOS reporter constructs in which the HIF-1α-specific hypoxia response element was disrupted exhibited a blunted response to LPS, supporting that HIF-1α mediates Nox-dependent iNOS expression. Bilirubin, but not SOD, blocked the cellular production of interferon-β, while interleukin-6 production remained unaffected. These data support that bilirubin inhibits the TLR4-mediated up-regulation of iNOS by preventing activation of HIF-1α through scavenging of Nox-derived reactive oxygen species. Bilirubin also suppresses interferon-β release via a ROS-independent mechanism. These findings characterize potential mechanisms for the anti-inflammatory effects of bilirubin. Copyright © 2015. Published by Elsevier B.V.

  3. Ethylene Oxide

    Science.gov (United States)

    Learn about ethylene oxide, which can raise your risk of lymphoma and leukemia. Exposure may occur through industrial emissions, tobacco smoke, and the use of products sterilized with ethylene oxide, such as certain medical products or cosmetics.

  4. Nitrous Oxide Production by Abundant Benthic Macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Schramm, Andreas

    screened more than 20 macrofauna species for nitrous oxide production and identified filter-feeders and deposit-feeders that occur ubiquitously and at high abundance (e.g., chironomids, ephemeropterans, snails, and mussels) as the most important emitters of nitrous oxide. In contrast, predatory species...... and temperature. Given the increasing nitrate pollution of freshwater ecosystems, the collective gut of benthic macrofauna might constitute an increasingly important yet hitherto overlooked link in the global nitrous oxide budget....

  5. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  6. Biochemical basis of the high resistance to oxidative stress

    Indian Academy of Sciences (India)

    Aerobic organisms experience oxidative stress due to generation of reactive oxygen species during normal aerobic metabolism. In addition, several chemicals also generate reactive oxygen species which induce oxidative stress. Thus oxidative stress constitutes a major threat to organisms living in aerobic environments.

  7. Biochemical basis of the high resistance to oxidative stress in ...

    Indian Academy of Sciences (India)

    Aerobic organisms experience oxidative stress due to generation of reactive oxygen species during normal aerobic metabolism. In addition, several chemicals also generate reactive oxygen species which induce oxidative stress. Thus oxidative stress constitutes a major threat to organisms living in aerobic environments.

  8. Periodontitis and increase in circulating oxidative stress

    OpenAIRE

    Takaaki Tomofuji; Koichiro Irie; Toshihiro Sanbe; Tetsuji Azuma; Daisuke Ekuni; Naofumi Tamaki; Tatsuo Yamamoto; Manabu Morita

    2009-01-01

    Reactive oxygen species (ROS) are products of normal cellular metabolism. However, excessive production of ROS oxidizes DNA, lipids and proteins, inducing tissue damage. Studies have shown that periodontitis induces excessive ROS production in periodontal tissue. When periodontitis develops, ROS produced in the periodontal lesion diffuse into the blood stream, resulting in the oxidation of blood molecules (circulating oxidative stress). Such oxidation may be detrimental to systemic health. Fo...

  9. Methodology for the effective stabilization of tin-oxide-based oxidation/reduction catalysts

    Science.gov (United States)

    Jordan, Jeffrey D. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Leighty, Bradley D. (Inventor); Watkins, Anthony N. (Inventor); Schryer, Jacqueline L. (Inventor); Oglesby, Donald M. (Inventor); Gulati, Suresh T. (Inventor); Summers, Jerry C. (Inventor)

    2011-01-01

    The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.

  10. Interactions of silica with iron oxides: Effects on oxide transformations and sorption properties

    International Nuclear Information System (INIS)

    Taylor, P.

    1995-08-01

    This report is a review of the literature on the adsorption of silica species on iron oxides and oxyhydroxides, and its effects on the adsorption of other species and on oxide interconversion reactions. The information is discussed briefly in the contexts of nuclear waste disposal and boiler-water chemistry. (author). 76 refs

  11. Biological nitric oxide signalling: chemistry and terminology

    Science.gov (United States)

    Heinrich, Tassiele A; da Silva, Roberto S; Miranda, Katrina M; Switzer, Christopher H; Wink, David A; Fukuto, Jon M

    2013-01-01

    Biological nitrogen oxide signalling and stress is an area of extreme clinical, pharmacological, toxicological, biochemical and chemical research interest. The utility of nitric oxide and derived species as signalling agents is due to their novel and vast chemical interactions with a variety of biological targets. Herein, the chemistry associated with the interaction of the biologically relevant nitrogen oxide species with fundamental biochemical targets is discussed. Specifically, the chemical interactions of nitrogen oxides with nucleophiles (e.g. thiols), metals (e.g. hemeproteins) and paramagnetic species (e.g. dioxygen and superoxide) are addressed. Importantly, the terms associated with the mechanisms by which NO (and derived species) react with their respective biological targets have been defined by numerous past chemical studies. Thus, in order to assist researchers in referring to chemical processes associated with nitrogen oxide biology, the vernacular associated with these chemical interactions is addressed. PMID:23617570

  12. RNA oxidation

    DEFF Research Database (Denmark)

    Kjaer, L. K.; Cejvanovic, V.; Henriken, T.

    2015-01-01

    RNA modification has attracted increasing interest as it is realized that epitranscriptomics is important in disease development. In type 2 diabetes we have suggested that high urinary excretion of 8-oxo-2'-Guanosine (8oxoGuo), as a measure of global RNA oxidation, is associated with poor survival.......9 significant hazard ratio for death compared with the quartile with the lowest 8oxoGuo excretion when adjusted for age, sex, BMI, smoker status, s-HbA1c, urine protein excretion and s-cholesterol. We conclude that it is now established that RNA oxidation is an independent risk factor for death in type 2...... diabetes. In agreement with our previous finding, DNA oxidation did not show any prognostic value. RNA oxidation represents oxidative stress intracellularly, presumably predominantly in the cytosol. The mechanism of RNA oxidation is not clear, but hypothesized to result from mitochondrial dysfunction...

  13. Heterogeneously Catalyzed Oxidation Reactions Using Molecular Oxygen

    DEFF Research Database (Denmark)

    Beier, Matthias Josef

    properties to the widely discussed gold catalysts. Literature results were summarized for alcohol oxidation, epoxidation, amine oxidation, phenol hydroxylation, silane and sulfide oxidation, (side-chain) oxidation of alkyl aromatic compounds, hydroquinone oxidation and cyclohexane oxidation. It was found...... that both copper and silver can function as complementary catalyst materials to gold showing different catalytic properties and being more suitable for hydrocarbon oxidation reactions. Potential opportunities for future research were outlined. In an experimental study, the potential of silver as a catalyst...... contact while leaching could be excluded. The silver catalyst was most active when calcined over a short time at 500 °C potentially due to the formation of silver-oxygen species. Removal of these species might be a deactivation mechanism as was suggested by X-ray absorption spectroscopy (XAS) analysis...

  14. High Performance Nitrous Oxide Analyzer for Atmospheric Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project targets the development of a highly sensitive gas sensor to monitor atmospheric nitrous oxide. Nitrous oxide is an important species in Earth science...

  15. High Performance Nitrous Oxide Analyzer for Atmospheric Research, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project targets the development of a highly sensitive gas sensor to monitor atmospheric nitrous oxide. Nitrous oxide is an important species in Earth science...

  16. Selective oxidation

    International Nuclear Information System (INIS)

    Cortes Henao, Luis F.; Castro F, Carlos A.

    2000-01-01

    It is presented a revision and discussion about the characteristics and factors that relate activity and selectivity in the catalytic and not catalytic partial oxidation of methane and the effect of variables as the temperature, pressure and others in the methane conversion to methanol. It thinks about the zeolites use modified for the catalytic oxidation of natural gas

  17. (Annonaceae) species

    African Journals Online (AJOL)

    Aghomotsegin

    2016-03-09

    Mar 9, 2016 ... 2Bioactivity Programme, Natural Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor. Darul Ehsan, Malaysia. ... The genus Xylopia comprises about 170 species and they are widely .... American Type Culture Collection (ATCC) while VRSA156 and. VISA24 were lab ...

  18. Fingerprinting Bacterial and Fungal Manganese Oxidation via Stable Oxygen Isotopes of Manganese Oxides

    Science.gov (United States)

    Sutherland, K. M.; Wankel, S. D.; Hansel, C. M.

    2016-12-01

    Manganese (Mn) oxides are a ubiquitous mineralogical component of surface Earth and Mars. Mn(III/IV) oxides are potent environmental sorbents and oxidants that play a crucial role in the fate of organic matter. The processes by which Mn(II) oxidation occurs in natural systems are poorly understood, but a number of studies have implicated microogranisms as the primary agents of Mn(II) oxidation in terrestrial and marine environments. The ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides transcends the boundaries of biological domain, with an abundance of well-characterized prokaryotes as well as eukaryotic fungi with the ability to oxidize Mn(II) to Mn(III/IV) oxides. Biological Mn(II) oxidation proceeds directly through enzymatic activity or indirectly through the production of reactive oxygen species. Building upon earlier research suggesting that stable oxygen isotope fractionation could be used to fingerprint unique Mn(II)-oxidizing organisms or distinct oxidation pathways, here we use culture-based studies of Mn(II)-oxidizing bacteria and fungi to determine the kinetic oxygen isotope effects associated with Mn(II) oxidation. Since the oxygen molecules in Mn(III/IV) oxides are comprised of oxygen from both precursor water and molecular oxygen, we used a two-fold approach to constrain isotope fractionation with respect to each oxygen source. We used open system oxidation experiments using oxygen-18 labeled water in parallel with closed system Rayleigh distillation oxidation experiments to fully constrain isotope fractionation associated with oxygen atom incorporation during Mn(II) oxidation. Our results suggest commonalities among fractionation factors from groups of Mn(II)-oxidizing organisms that have similar oxidation mechanisms. These results suggest that stable oxygen isotopes of Mn(III/IV) oxides have the potential to distinguish between Mn(II) oxidation pathways in nature, providing a way to determine which groups of Mn(II) oxidizers may be

  19. BRCA1 and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yong Weon Yi

    2014-04-01

    Full Text Available The breast cancer susceptibility gene 1 (BRCA1 has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS is implicated in carcinogenesis and is used strategically to treat human cancer. Thus, it is essential to understand the function of BRCA1 in oxidative stress regulation. In this review, we briefly summarize BRCA1’s many binding partners and mechanisms, and discuss data supporting the function of BRCA1 in oxidative stress regulation. Finally, we consider its significance in prevention and/or treatment of BRCA1-related cancers.

  20. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  1. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  2. Magnesium Oxide

    Science.gov (United States)

    Magnesium is an element your body needs to function normally. Magnesium oxide may be used for different reasons. Some people use it as ... one to four times daily depending on which brand is used and what condition you have. Follow ...

  3. Iron Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla; Amonette, James E.

    2016-09-19

    Abstract: Fe oxides are common clay-sized oxide, oxyhydroxide and hydroxide soil minerals. They are compounds of Fe, O, and H that have structures based on close-packed arrays of O. The octahedral and tetrahedral cavities within these arrays are filled with either Fe3+ or Fe2+ to form Fe(O/OH)6, FeO6, or FeO4 structural units. All of the naturally occurring Fe oxide minerals usually undergo some degree of isomorphous substitution of other metal ions for Fe in their structures. Relatively simple techniques may be used to identify Fe oxides in the field based on their typical colors and magnetic properties. In the laboratory, a variety of instrumental techniques can be used to confirm phase identity and to quantify amount. Of these, X-ray diffraction, infrared spectroscopy, electron microscopy, thermal analysis, and Mössbauer spectroscopy are the most commonly used techniques. As oxides, the functional groups on their surfaces may have positive, negative, or no charge depending on pH and on the concentration and nature of other ions in the contact solution. A net positive surface charge usually is observed in soils because Fe oxides have a point-of-zero-charge in the neutral or slightly basic pHs. The functional groups on the surface form complexes with cations and anions from the aqueous phase. Their sorption and electron-buffering properties significantly affect the geochemical cycles of almost all elements having agronomic or environmental significance.

  4. Protective effect of nitric oxide against arsenic-induced oxidative ...

    African Journals Online (AJOL)

    The effects of NO on alleviating arsenic-induced oxidative damage in tall fescue leaves were investigated. Arsenic (25 M) treatment induced significantly accumulation of reactive oxygen species (ROS) and led to serious lipid peroxidation in tall fescue leaves and the application of 100 M SNP before arsenic stress resulted ...

  5. Association of Oxidative Stress with Psychiatric Disorders.

    Science.gov (United States)

    Hassan, Waseem; Noreen, Hamsa; Castro-Gomes, Vitor; Mohammadzai, Imdadullah; da Rocha, Joao Batista Teixeira; Landeira-Fernandez, J

    2016-01-01

    When concentrations of both reactive oxygen species and reactive nitrogen species exceed the antioxidative capability of an organism, the cells undergo oxidative impairment. Impairments in membrane integrity and lipid and protein oxidation, protein mutilation, DNA damage, and neuronal dysfunction are some of the fundamental consequences of oxidative stress. The purpose of this work was to review the associations between oxidative stress and psychological disorders. The search terms were the following: "oxidative stress and affective disorders," "free radicals and neurodegenerative disorders," "oxidative stress and psychological disorders," "oxidative stress, free radicals, and psychiatric disorders," and "association of oxidative stress." These search terms were used in conjunction with each of the diagnostic categories of the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders and World Health Organization's International Statistical Classification of Diseases and Related Health Problems. Genetic, pharmacological, biochemical, and preclinical therapeutic studies, case reports, and clinical trials were selected to explore the molecular aspects of psychological disorders that are associated with oxidative stress. We identified a broad spectrum of 83 degenerative syndromes and psychiatric disorders that were associated with oxidative stress. The multi-dimensional information identified herein supports the role of oxidative stress in various psychiatric disorders. We discuss the results from the perspective of developing novel therapeutic interventions.

  6. A novel mechanism of oxidative genotoxicity

    Indian Academy of Sciences (India)

    The genotoxicity of reactive oxygen species (ROS) is well established. The underlying mechanism involves oxidation of DNA by ROS. However, we have recently shown that hydrogen peroxide (H2O2), the major mediator of oxidative stress, can also cause genomic damage indirectly. Thus, H2O2 at pathologically relevant ...

  7. New french uranium mineral species

    International Nuclear Information System (INIS)

    Branche, G.; Chervet, J.; Guillemin, C.

    1952-01-01

    In this work, the authors study the french new uranium minerals: parsonsite and renardite, hydrated phosphates of lead and uranium; kasolite: silicate hydrated of uranium and lead uranopilite: sulphate of uranium hydrated; bayleyite: carbonate of uranium and of hydrated magnesium; β uranolite: silicate of uranium and of calcium hydrated. For all these minerals, the authors give the crystallographic, optic characters, and the quantitative chemical analyses. On the other hand, the following species, very rare in the french lodgings, didn't permit to do quantitative analyses. These are: the lanthinite: hydrated uranate oxide; the α uranotile: silicate of uranium and of calcium hydrated; the bassetite: uranium phosphate and of hydrated iron; the hosphuranylite: hydrated uranium phosphate; the becquerelite: hydrated uranium oxide; the curite: oxide of uranium and lead hydrated. Finally, the authors present at the end of this survey a primary mineral: the brannerite, complex of uranium titanate. (author) [fr

  8. Oxidation pathways underlying the pro-oxidant effects of apigenin.

    Science.gov (United States)

    Andueza, Aitor; García-Garzón, Antonia; Ruiz de Galarreta, Marina; Ansorena, Eduardo; Iraburu, María J; López-Zabalza, María J; Martínez-Irujo, Juan J

    2015-10-01

    Apigenin, a natural flavone, is emerging as a promising compound for the treatment of several diseases. One of the hallmarks of apigenin is the generation of intracellular reactive oxygen species (ROS), as judged by the oxidation of reduced dichlorofluorescein derivatives seen in many cell types. This study aimed to reveal some mechanisms by which apigenin can be oxidized and how apigenin-derived radicals affect the oxidation of 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein (H(2)DCF), a probe usually employed to detect intracellular ROS. Apigenin induced a rapid oxidation of H(2)DCF in two different immortalized cell lines derived from rat and human hepatic stellate cells. However, apigenin did not generate ROS in these cells, as judged by dihydroethidium oxidation and extracellular hydrogen peroxide production. In cell-free experiments we found that oxidation of apigenin leads to the generation of a phenoxyl radical, which directly oxidizes H(2)DCF with catalytic amounts of hydrogen peroxide. The net balance of the reaction was the oxidation of the probe by molecular oxygen due to redox cycling of apigenin. This flavonoid was also able to deplete NADH and glutathione by a similar mechanism. Interestingly, H(2)DCF oxidation was significantly accelerated by apigenin in the presence of horseradish peroxidase and xanthine oxidase, but not with other enzymes showing peroxidase-like activity, such as cytochrome c or catalase. We conclude that in cells treated with apigenin oxidation of reduced dichlorofluorescein derivatives does not measure intracellular ROS and that pro- and antioxidant effects of flavonoids deduced from these experiments are inconclusive and must be confirmed by other techniques. Copyright © 2015. Published by Elsevier Inc.

  9. Oxidative stress in cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Shyamal K Goswami

    2015-01-01

    Full Text Available Oxidative stress caused by various oxygen containing free radicals and reactive species (collectively called "Reactive Oxygen Species" or ROS has long been attributed to cardiovascular diseases. In human body, major oxidizing species are super oxide, hydrogen peroxide, hydroxyl radical, peroxy nitrite etc. ROS are produced from distinct cellular sources, enzymatic and non-enzymatic; have specific physicochemical properties and often have specific cellular targets. Although early studies in nineteen sixties and seventies highlighted the deleterious effects of these species, later it was established that they also act as physiological modulators of cellular functions and diseases occur only when ROS production is deregulated. One of the major sources of cellular ROS is Nicotinamide adenine dinucleotide phosphate oxidases (Noxes that are expressed in almost all cell types. Superoxide and hydrogen peroxide generated from them under various conditions act as signal transducers. Due to their immense importance in cellular physiology, various Nox inhibitors are now being developed as therapeutics. Another free radical of importance in cardiovascular system is nitric oxide (a reactive nitrogen species generated from nitric oxide synthase(s. It plays a critical role in cardiac function and its dysregulated generation along with superoxide leads to the formation of peroxynitrite a highly deleterious agent. Despite overwhelming evidences of association between increased level of ROS and cardiovascular diseases, antioxidant therapies using vitamins and omega 3 fatty acids have largely been unsuccessful till date. Also, there are major discrepancies between studies with laboratory animals and human trials. It thus appears that the biology of ROS is far complex than anticipated before. A comprehensive understanding of the redox biology of diseases is thus needed for developing targeted therapeutics.

  10. Electrochemical oxidation of organic waste

    International Nuclear Information System (INIS)

    Almon, A.C.; Buchanan, B.R.

    1990-01-01

    Both silver catalyzed and direct electrochemical oxidation of organic species are examined in analytical detail. This paper describes the mechanisms, reaction rates, products, intermediates, capabilities, limitations, and optimal reaction conditions of the electrochemical destruction of organic waste. A small bench-top electrocell being tested for the treatment of small quantities of laboratory waste is described. The 200-mL electrochemical cell used has a processing capacity of 50 mL per day, and can treat both radioactive and nonradioactive waste. In the silver catalyzed process, Ag(I) is electrochemically oxidized to Ag(II), which attacks organic species such as tributylphosphate (TBP), tetraphenylborate (TPB), and benzene. In direct electrochemical oxidation, the organic species are destroyed at the surface of the working electrode without the use of silver as an electron transfer agent. This paper focuses on the destruction of tributylphosphate (TBP), although several organic species have been destroyed using this process. The organic species are converted to carbon dioxide, water, and inorganic acids

  11. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  12. Oligostilbenoids from Vatica Species and Bioactivities

    Science.gov (United States)

    Kamarozaman, A. S.; Rajab, N. F.; Latip, J.

    Reactive species (RS) which are generated from the pollution, deep fried and spicy foods, leakage of electrons from mitochondrial electron transport chains etc. may result in an oxidative damage in the body. The oxidative damage may lead to various diseases such as Alzheimer, atherosclerosis and cancer. In order to prevent such diseases, antioxidants play important roles in reducing the powerful oxidizing agents. Vatica species that belongs to the family of Dipterocarpaceae has been widely known to contain abundant source of oligostilbenoids which demonstrated interesting result in biological activities such as anticancer and antioxidant. This may lead to a development of drugs as well as natural antioxidants. In this chapter, we are highlighting the oligostilbenoids isolated from Vatica species from various researcher as well as the biological activities.

  13. Toxicity assessment of textile effluents treated by advanced oxidative process (UV/TiO2 and UV/TiO2/H2O2) in the species Artemia salina L.

    Science.gov (United States)

    Garcia, Juliana Carla; de Souza Freitas, Thábata Karoliny Formicoly; Palácio, Soraya Moreno; Ambrósio, Elizangela; Souza, Maísa Tatiane Ferreira; Santos, Lídia Brizola; de Cinque Almeida, Vitor; de Souza, Nilson Evelázio

    2013-03-01

    Textile industry wastes raise a great concern due to their strong coloration and toxicity. The objective of the present work was to characterize the degradation and mineralization of textile effluents by advanced oxidative processes using either TiO(2) or TiO(2)/H(2)O(2) and to monitor the toxicity of the products formed during 6-h irradiation in relation to that of the in natura effluent. The results demonstrated that the TiO(2)/H(2)O(2) association was more efficient in the mineralization of textile effluents than TiO(2), with high mineralized ion concentrations (NH (4) (+) , NO (3) (-) , and SO (4) (2-) ) and significantly decreased organic matter ratios (represented by the chemical oxygen demand and total organic carbon). The toxicity of the degradation products after 4-h irradiation to Artemia salina L. was not significant (below 10 %). However, the TiO(2)/H(2)O(2) association produced more toxicity under irradiation than the TiO(2) system, which was attributed to the increased presence of oxidants in the first group. Comparatively, the photogenerated products of both TiO(2) and the TiO(2)/H(2)O(2) association were less toxic than the in natura effluent.

  14. A novel hydrogen oxidizer amidst the sulfur-oxidizing Thiomicrospira lineage

    Science.gov (United States)

    Hansen, Moritz; Perner, Mirjam

    2015-01-01

    Thiomicrospira species are ubiquitously found in various marine environments and appear particularly common in hydrothermal vent systems. Members of this lineage are commonly classified as sulfur-oxidizing chemolithoautotrophs. Although sequencing of Thiomicrospira crunogena's genome has revealed genes that encode enzymes for hydrogen uptake activity and for hydrogenase maturation and assembly, hydrogen uptake ability has so far not been reported for any Thiomicrospira species. We isolated a Thiomicrospira species (SP-41) from a deep sea hydrothermal vent and demonstrated that it can oxidize hydrogen. We show in vivo hydrogen consumption, hydrogen uptake activity in partially purified protein extracts and transcript abundance of hydrogenases during different growth stages. The ability of this strain to oxidize hydrogen opens up new perspectives with respect to the physiology of Thiomicrospira species that have been detected in hydrothermal vents and that have so far been exclusively associated with sulfur oxidation. PMID:25226028

  15. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage

    Science.gov (United States)

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked: considerable variation in oxidative stress resistance exists among and within species and ...

  16. Cerium and yttrium oxide nanoparticles are neuroprotective

    International Nuclear Information System (INIS)

    Schubert, David; Dargusch, Richard; Raitano, Joan; Chan, S.-W.

    2006-01-01

    The responses of cells exposed to nanoparticles have been studied with regard to toxicity, but very little attention has been paid to the possibility that some types of particles can protect cells from various forms of lethal stress. It is shown here that nanoparticles composed of cerium oxide or yttrium oxide protect nerve cells from oxidative stress and that the neuroprotection is independent of particle size. The ceria and yttria nanoparticles act as direct antioxidants to limit the amount of reactive oxygen species required to kill the cells. It follows that this group of nanoparticles could be used to modulate oxidative stress in biological systems

  17. Oxidative damage to macromolecules in the thyroid - experimental evidence

    OpenAIRE

    Karbownik-Lewi?ska, Ma?gorzata; Kokoszko-Bilska, Agnieszka

    2012-01-01

    Abstract Whereas oxidative reactions occur in all tissues and organs, the thyroid gland constitutes such an organ, in which oxidative processes are indispensable for thyroid hormone synthesis. It is estimated that huge amount of reactive oxygen species, especially of hydrogen peroxide (H2O2), are produced in the thyroid under physiological conditions, justifying the statement that the thyroid gland is an organ of “oxidative nature”. Apart from H2O2, also other free radicals or reactive specie...

  18. Solar light-induced production of reactive oxygen species by single walled carbon nanotubes in water

    Science.gov (United States)

    Photosensitizing processes of engineered nanomaterials (ENMs) which include photo-induced production of reactive oxygen species (ROS) convert light energy into oxidizing chemical energy that mediates transformations of nanomaterials. The oxidative stress associated with ROS may p...

  19. The role of water in ethanol oxidation over SnO2-supported molybdenum oxides

    OpenAIRE

    Medeiros, Paulo R. S; Eon, Jean G; Appel, Lúcia Gorenstin

    2010-01-01

    The role of water in the oxidation of ethanol to acetic acid on SnMoO catalysts was studied by catalytic test and FTIR spectroscopy of adsorbed species. The reaction showed a typical behavior of series reactions involving oxidation of ethanol to acetaldehyde and of the latter to acetic acid and CO2. Addition of water to the feed gas decreased the oxidation rate and significantly increased the selectivity to acetic acid, strongly contributing to decreasing the number of secondary products. ...

  20. Is the Oxidative Stress Really a Disease?

    Directory of Open Access Journals (Sweden)

    Fogarasi Erzsébet

    2016-03-01

    Full Text Available Oxidative stress is an imbalance between free radicals or other reactive species and the antioxidant activity of the organism. Oxidative stress can induce several illnesses such as cardiovascular disease, neurodegenerative disorders, diabetes, cancer, Alzheimer and Parkinson. The biomarkers of oxidative stress are used to test oxidative injury of biomolecules. The indicators of lipid peroxidation (malondialdehyde, 4-hydroxy- 2-nonenal, 2-propenal, isoprostanes, of protein oxidation (carbonylated proteins, tyrosine derivatives, of oxidative damage of DNA, and other biomarkers (glutathione level, metallothioneins, myeloperoxidase activity are the most used oxidative stress markers. Diseases caused by oxidative stress can be prevented with antioxidants. In human body are several enzymes with antioxidant capacity (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and spin traps. Antioxidants are synthetized in the organism (glutathione or arrive in the body by nutrition (ascorbic acid, vitamin E, carotenoids, flavonoids, resveratrol, xanthones. Different therapeutic strategies to reduce oxidative stress with the use of synthetic molecules such as nitrone-based antioxidants (phenyl-α-tert-butyl-nitrone (PBN, 2,4-disulphophenyl- N-tert-butylnitrone (NXY-059, stilbazulenyl nitrone (STAZN, which scavenge a wide variety of free radical species, increase endogenous antioxidant levels and inhibits free radical generation are also tested in animal models.

  1. Nylon/Graphene Oxide Electrospun Composite Coating

    Directory of Open Access Journals (Sweden)

    Carmina Menchaca-Campos

    2013-01-01

    Full Text Available Graphite oxide is obtained by treating graphite with strong oxidizers. The bulk material disperses in basic solutions yielding graphene oxide. Starting from exfoliated graphite, different treatments were tested to obtain the best graphite oxide conditions, including calcination for two hours at 700°C and ultrasonic agitation in acidic, basic, or peroxide solutions. Bulk particles floating in the solution were filtered, rinsed, and dried. The graphene oxide obtained was characterized under SEM and FTIR techniques. On the other hand, nylon 6-6 has excellent mechanical resistance due to the mutual attraction of its long chains. To take advantage of the properties of both materials, they were combined as a hybrid material. Electrochemical cells were prepared using porous silica as supporting electrode of the electrospun nylon/graphene oxide films for electrochemical testing. Polarization curves were performed to determine the oxidation/reduction potentials under different acidic, alkaline, and peroxide solutions. The oxidation condition was obtained in KOH and the reduction in H2SO4 solutions. Potentiostatic oxidation and reduction curves were applied to further oxidize carbon species and then reduced them, forming the nylon 6-6/functionalized graphene oxide composite coating. Electrochemical impedance measurements were performed to evaluate the coating electrochemical resistance and compared to the silica or nylon samples.

  2. Management of oxidative stress by microalgae.

    Science.gov (United States)

    Cirulis, Judith T; Scott, J Ashley; Ross, Gregory M

    2013-01-01

    The aim of this review is to provide an overview of the current research on oxidative stress in eukaryotic microalgae and the antioxidant compounds microalgae utilize to control oxidative stress. With the potential to exploit microalgae for the large-scale production of antioxidants, interest in how microalgae manage oxidative stress is growing. Microalgae can experience increased levels of oxidative stress and toxicity as a result of environmental conditions, metals, and chemicals. The defence mechanisms for microalgae include antioxidant enzymes such as superoxide dismutase, catalase, peroxidases, and glutathione reductase, as well as non-enzymatic antioxidant molecules such as phytochelatins, pigments, polysaccharides, and polyphenols. Discussed herein are the 3 areas the literature has focused on, including how conditions stress microalgae and how microalgae respond to oxidative stress by managing reactive oxygen species. The third area is how beneficial microalgae antioxidants are when administered to cancerous mammalian cells or to rodents experiencing oxidative stress.

  3. Novel synthesis and shape-dependent catalytic performance of Cu-Mn oxides for CO oxidation

    Science.gov (United States)

    Li, Zhixun; Wang, Honglei; Wu, Xingxing; Ye, Qinglan; Xu, Xuetang; Li, Bin; Wang, Fan

    2017-05-01

    Transition metal oxides with large specific surface area are attractive for high-activity catalysts, and hierarchical structures of transition metal oxides with porous feature possess the structural advantage in the transfer of gaseous reactant and product. In this work, porous Cu-Mn oxides with high surface area were successfully obtained through low-temperature coprecipitation method in alcohol/water solvent and then post-annealing. The addition of alcohol showed great influences on the shape and catalytic performances for CO oxidation. Dumbbell-like Cu-Mn oxide particles with splitting ends displayed high catalytic activity and a complete conversion of CO was achieved at 45 °C, suggesting a shape-dependent catalytic activity. The oxidative activity was attributed to a combination of factors including specific surface area, active surface oxygen species and Mn(IV) cations. The results may supply a new thought to design high-performance Cu-Mn oxide catalysts.

  4. Formation and Detoxification of Reactive Oxygen Species

    Science.gov (United States)

    Kuciel, Radoslawa; Mazurkiewicz, Aleksandra

    2004-01-01

    A model of reactive oxygen species metabolism is proposed as a laboratory exercise for students. The superoxide ion in this model is generated during the reaction of oxidation of xanthine, catalyzed by xanthine oxidase. The effect of catalase, superoxide dismutase, and allopurinol on superoxide ion generation and removal in this system is also…

  5. Differential reduction of reactive oxygen species by human ...

    Indian Academy of Sciences (India)

    In this study, for the first time, we investigated the differences in the reactive oxygen species (ROS) reductionabilities of tissue-specific MSCs to mitigate cellular damage in oxidative stress. Hepatic Stellate cells (LX-2) and cardiomyocyteswere treated with Antimycin A (AMA) to induce oxidative stress and tissue specific ...

  6. Reactive oxygen species in cancer: a dance with the devil.

    Science.gov (United States)

    Schumacker, Paul T

    2015-02-09

    Reactive oxygen species (ROS) can initiate cancer, but oxidant generation in tumors leaves them vulnerable to further stresses. In this issue of Cancer Cell, Harris and colleagues show that augmenting oxidant stress in normal cells limits tumor initiation and progression. Hence, strategic targeting of antioxidant systems may undermine survival of new tumor cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Nitrous Oxide Emission by Aquatic Macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Nielsen, Lars Peter; Schramm, Andreas

    -term metabolic induction of gut denitrification is the preferential production of nitrous oxide rather than dinitrogen. These observations were made in detailed studies on the larvae of the freshwater insects Chironomus plumosus and Ephemera danica which both can be very abundant in lake and stream sediments......, respectively. Aside from these case studies, we screened more than 20 macrofauna species in various aquatic habitats for nitrous oxide production. Filter- and deposit-feeders that ingest large quantities of microorganisms were the most important emitters of nitrous oxide. In contrast, predatory species that do...... not ingest large quantities of microorganisms produced insignificant amounts of nitrous oxide. With increasing eutrophication, filter- and deposit-feeders often become the dominant feeding guilds of benthic communities. Thus, with increasing nitrate pollution, aquatic macrofauna has the potential to further...

  8. Oxidative stress, protein damage and repair in bacteria.

    Science.gov (United States)

    Ezraty, Benjamin; Gennaris, Alexandra; Barras, Frédéric; Collet, Jean-François

    2017-07-01

    Oxidative damage can have a devastating effect on the structure and activity of proteins, and may even lead to cell death. The sulfur-containing amino acids cysteine and methionine are particularly susceptible to reactive oxygen species (ROS) and reactive chlorine species (RCS), which can damage proteins. In this Review, we discuss our current understanding of the reducing systems that enable bacteria to repair oxidatively damaged cysteine and methionine residues in the cytoplasm and in the bacterial cell envelope. We highlight the importance of these repair systems in bacterial physiology and virulence, and we discuss several examples of proteins that become activated by oxidation and help bacteria to respond to oxidative stress.

  9. Birds sacrifice oxidative protection for reproduction.

    OpenAIRE

    Wiersma, Popko; Selman, Colin; Speakman, John R; Verhulst, Simon

    2004-01-01

    Oxidative metabolism has reactive oxygen species (ROS) as unavoidable by-products, and the damage ROS inflicts on DNA, proteins and lipids is considered to be a major agent of senescence. Increasing reproductive effort accelerates senescence, but whether reproductive effort is increased at the expense of protection against oxidative damage has not yet been tested. We manipulated reproductive effort in zebra finches through brood size manipulation and measured the activity of two major antioxi...

  10. Protein cysteine oxidation in redox signaling

    DEFF Research Database (Denmark)

    Forman, Henry Jay; Davies, Michael J; Krämer, Anna C

    2017-01-01

    Oxidation of critical signaling protein cysteines regulated by H2O2 has been considered to involve sulfenic acid (RSOH) formation. RSOH may subsequently form either a sulfenyl amide (RSNHR') with a neighboring amide, or a mixed disulfide (RSSR') with another protein cysteine or glutathione...... of the species previously identified as the "sulfenome" - the cellular complement of reversibly-oxidized thiol proteins generated via sulfenic acids....

  11. Oxidative stress and leaf senescence

    Directory of Open Access Journals (Sweden)

    Sedigheh Hatami

    2011-11-01

    Full Text Available Abstract Background Senescence is an important developmental process that leads to the cell death through highly regulated genetically controlled processes in plants. Biotic and abiotic Oxidative stresses can also artificially induce senescence and increase the production of reactive oxygen species (ROS specifically in chloroplast. One of the important oxidative stresses is paraquat that induces deviation of electron from photosynthesis electron chain and lead to the production of more ROS in chloroplast. Plants have evolved special adoptive mechanism to reallocate nutrient to reproductive and juvenile organs in senescence and different oxidative stresses. Rubisco seems to be the most abundant protein in plants and is involved in many changes during senescence. Results In the present study, the effects of ROS on Rubisco during senescence and oxidative stresses were evaluated by measuring photosynthesis factors such as net photosynthesis rate (Pn, stomatal conductance (G, evaporation rate (E, intra cellular CO2 concentration (Ci, fluorescence and total protein during three stages of development. Our results showed that in paraquat treated plants, CO2 assimilation is the most effective factor that refers to Rubisco damages. The highest correlation and regression coefficient belonged to Ci, while correlation coefficient between photosynthesis rate and total protein was much smaller. Conclusion It appears in the early stage of oxidative stresses such as exposing to paraquat, ROS has the most effect on Rubisco activity that induces more susceptibility to Rubisco specific protease. Moreover, Rubisco deactivation acts as an initiative signal for Rubisco degradation.

  12. Aromatics oxidation and soot formation in flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  13. Oxidative shielding and the cost of reproduction.

    Science.gov (United States)

    Blount, Jonathan D; Vitikainen, Emma I K; Stott, Iain; Cant, Michael A

    2016-05-01

    Life-history theory assumes that reproduction and lifespan are constrained by trade-offs which prevent their simultaneous increase. Recently, there has been considerable interest in the possibility that this cost of reproduction is mediated by oxidative stress. However, empirical tests of this theory have yielded equivocal support. We carried out a meta-analysis to examine associations between reproduction and oxidative damage across markers and tissues. We show that oxidative damage is positively associated with reproductive effort across females of various species. Yet paradoxically, categorical comparisons of breeders versus non-breeders reveal that transition to the reproductive state is associated with a step-change reduction in oxidative damage in certain tissues and markers. Developing offspring may be particularly sensitive to harm caused by oxidative damage in mothers. Therefore, such reductions could potentially function to shield reproducing mothers, gametes and developing offspring from oxidative insults that inevitably increase as a consequence of reproductive effort. According to this perspective, we hypothesise that the cost of reproduction is mediated by dual impacts of maternally-derived oxidative damage on mothers and offspring, and that mothers may be selected to diminish such damage. Such oxidative shielding may explain why many existing studies have concluded that reproduction has little or no oxidative cost. Future advance in life-history theory therefore needs to take account of potential transgenerational impacts of the mechanisms underlying life-history trade-offs. © 2015 Cambridge Philosophical Society.

  14. Periodontitis and increase in circulating oxidative stress

    Directory of Open Access Journals (Sweden)

    Takaaki Tomofuji

    2009-05-01

    Full Text Available Reactive oxygen species (ROS are products of normal cellular metabolism. However, excessive production of ROS oxidizes DNA, lipids and proteins, inducing tissue damage. Studies have shown that periodontitis induces excessive ROS production in periodontal tissue. When periodontitis develops, ROS produced in the periodontal lesion diffuse into the blood stream, resulting in the oxidation of blood molecules (circulating oxidative stress. Such oxidation may be detrimental to systemic health. For instance, previous animal studies suggested that experimental periodontitis induces oxidative damage of the liver and descending aorta by increasing circulating oxidative stress. In addition, it has been revealed that clinical parameters in chronic periodontitis patients showed a significant improvement 2 months after periodontal treatment, which was accompanied by a significant reduction of reactive oxygen metabolites in plasma. Improvement of periodontitis by periodontal treatment could reduce the occurrence of circulating oxidative stress. Furthermore, recent studies indicate that the increase in circulating oxidative stress following diabetes mellitus and inappropriate nutrition damages periodontal tissues. In such cases, therapeutic approaches to systemic oxidative stress might be necessary to improve periodontal health.

  15. Simvastatin and oxidative stress in humans

    DEFF Research Database (Denmark)

    Rasmussen, Sanne Tofte; Andersen, Jon Thor Trærup; Nielsen, Torben Kjær

    2016-01-01

    -blinded, placebo-controlled study in which subjects were treated with either 40 mg of simvastatin or placebo for 14 days. The endpoints were six biomarkers for oxidative stress, which represent intracellular oxidative stress to nucleic acids, lipid peroxidation and plasma antioxidants, that were measured in urine...... in mitochondrial respiratory complexes I and II and might thereby reduce the formation of reactive oxygen species, which have been implicated in the pathogenesis of arteriosclerosis. Therefore, we hypothesized that simvastatin may reduce oxidative stress in humans in vivo. We conducted a randomized, double...... in parallel with the reduction in plasma cholesterol. In healthy young male volunteers, short-term simvastatin treatment, which considerably reduces cholesterol, does not lead to a clinically relevant reduction in a panel of measures of oxidative stress. Whether simvastatin has effects on oxidative stress...

  16. Oxidative Stress Related Diseases in Newborns

    Directory of Open Access Journals (Sweden)

    Yasemin Ozsurekci

    2016-01-01

    Full Text Available We review oxidative stress-related newborn disease and the mechanism of oxidative damage. In addition, we outline diagnostic and therapeutic strategies and future directions. Many reports have defined oxidative stress as an imbalance between an enhanced reactive oxygen/nitrogen species and the lack of protective ability of antioxidants. From that point of view, free radical-induced damage caused by oxidative stress seems to be a probable contributing factor to the pathogenesis of many newborn diseases, such as respiratory distress syndrome, bronchopulmonary dysplasia, periventricular leukomalacia, necrotizing enterocolitis, patent ductus arteriosus, and retinopathy of prematurity. We share the hope that the new understanding of the concept of oxidative stress and its relation to newborn diseases that has been made possible by new diagnostic techniques will throw light on the treatment of those diseases.

  17. Hidden interactions - Trace species governing combustion and emissions

    DEFF Research Database (Denmark)

    Glarborg, Peter

    2007-01-01

    Concern about pollutant formation and emissions continues to be a driving force for research in combustion chemistry. Important pollutants include nitrogen oxides (NO,), sulfur oxides (SO,), chlorine species, unburned or partly burned fuel components (e.g., UHC, aldehydes, CO), aromatic...... is their ability to sensitize or inhibit oxidation of fuel and CO, depending on the reaction conditions; the impact of S, Cl and K/Na on formation of NOx, PAH, and soot; and the interaction of sulfur, chlorine and alkali species, which may have significant implications for emissions of SO, HCl, and aerosols....

  18. Diversity of Mn oxides produced by Mn(II)-oxidizing fungi

    Science.gov (United States)

    Santelli, Cara M.; Webb, Samuel M.; Dohnalkova, Alice C.; Hansel, Colleen M.

    2011-05-01

    Manganese (Mn) oxides are environmentally abundant, highly reactive mineral phases that mediate the biogeochemical cycling of nutrients, contaminants, carbon, and numerous other elements. Despite the belief that microorganisms (specifically bacteria and fungi) are responsible for the majority of Mn oxide formation in the environment, the impact of microbial species, physiology, and growth stage on Mn oxide formation is largely unresolved. Here, we couple microscopic and spectroscopic techniques to characterize the Mn oxides produced by four different species of Mn(II)-oxidizing Ascomycete fungi ( Plectosphaerella cucumerina strain DS2psM2a2 , Pyrenochaeta sp. DS3sAY3a, Stagonospora sp. SRC1lsM3a, and Acremonium strictum strain DS1bioAY4a) isolated from acid mine drainage treatment systems in central Pennsylvania. The site of Mn oxide formation varies greatly among the fungi, including deposition on hyphal surfaces, at the base of reproductive structures (e.g., fruiting bodies), and on envisaged extracellular polymers adjacent to the cell. The primary product of Mn(II) oxidation for all species growing under the same chemical and physical conditions is a nanoparticulate, poorly-crystalline hexagonal birnessite-like phase resembling synthetic δ-MnO 2. The phylogeny and growth conditions (planktonic versus surface-attached) of the fungi, however, impact the conversion of the initial phyllomanganate to more ordered phases, such as todorokite ( A. strictum strain DS1bioAY4a) and triclinic birnessite ( Stagonospora sp. SRC1lsM3a). Our findings reveal that the species of Mn(II)-oxidizing fungi impacts the size, morphology, and structure of Mn biooxides, which will likely translate to large differences in the reactivity of the Mn oxide phases.

  19. Differential reduction of reactive oxygen species by human tissue ...

    Indian Academy of Sciences (India)

    Swati Paliwal

    2017-06-24

    Jun 24, 2017 ... Keywords. Oxidative stress; reactive oxygen species; tissue-specific mesenchymal stem cells. Abbreviations: AD, adipose; AMA, Antimycin A; AU, arbitrary units; BM, bone marrow; DP, dental pulp; MFI, mean fluorescence intensity; MSC, mesenchymal stem cell; ROS, reactive oxygen species. 1. Introduction.

  20. Heterogeneous Partial (ammOxidation and Oxidative Dehydrogenation Catalysis on Mixed Metal Oxides

    Directory of Open Access Journals (Sweden)

    Jacques C. Védrine

    2016-01-01

    Full Text Available This paper presents an overview of heterogeneous partial (ammoxidation and oxidative dehydrogenation (ODH of hydrocarbons. The review has been voluntarily restricted to metal oxide-type catalysts, as the partial oxidation field is very broad and the number of catalysts is quite high. The main factors of solid catalysts for such reactions, designated by Grasselli as the “seven pillars”, and playing a determining role in catalytic properties, are considered to be, namely: isolation of active sites (known to be composed of ensembles of atoms, Me–O bond strength, crystalline structure, redox features, phase cooperation, multi-functionality and the nature of the surface oxygen species. Other important features and physical and chemical properties of solid catalysts, more or less related to the seven pillars, are also emphasized, including reaction sensitivity to metal oxide structure, epitaxial contact between an active phase and a second phase or its support, synergy effect between several phases, acid-base aspects, electron transfer ability, catalyst preparation and activation and reaction atmospheres, etc. Some examples are presented to illustrate the importance of these key factors. They include light alkanes (C1–C4 oxidation, ethane oxidation to ethylene and acetic acid on MoVTe(SbNb-O and Nb doped NiO, propene oxidation to acrolein on BiMoCoFe-O systems, propane (ammoxidation to (acrylonitrile acrylic acid on MoVTe(SbNb-O mixed oxides, butane oxidation to maleic anhydride on VPO: (VO2P2O7-based catalyst, and isobutyric acid ODH to methacrylic acid on Fe hydroxyl phosphates. It is shown that active sites are composed of ensembles of atoms whose size and chemical composition depend on the reactants to be transformed (their chemical and size features and the reaction mechanism, often of Mars and van Krevelen type. An important aspect is the fact that surface composition and surface crystalline structure vary with reaction on stream until

  1. Separation of radionuclides from water by magnesium oxide adsorption

    International Nuclear Information System (INIS)

    Tseng, Chia-Lian; Lo, Jem-Mau; Yeh, Si-Jung

    1987-01-01

    Adsorption by magnesium oxide of more than forty radionuclides in respective ionic species in water was observed. Generally, the radionuclides in di-valent and/or multi-valent cations are favorably adsorbed by magnesium oxide; but not for the those in mono-valent cations. In addition, the adsorption by magnesium oxide was not effective to most of the radionuclides in negative ionic species. From the observations, the adsorption mechanism is more prominently by the ion exchange of the di- or multi-valent cation species with the hydrous magnesium oxide. Separation of the radionuclides related to the corrosion products possibly produced in a nuclear power plant from natural seawater was attempted by the magnesium oxide adsorption method. It should be emphasized that the adsorption method was found to be practical for separating radionuclides from a large quantity of natural seawater with high recovery and high reproducibility. (author)

  2. Reactive oxygen species in health and disease : Finding the right balance

    NARCIS (Netherlands)

    van der Wijst, Monique

    2016-01-01

    When oxygen takes up an electron, reactive oxygen species are formed. These free radicals can react with important molecules in our body (DNA, proteins), just like iron rusts (oxidation). Too many reactive oxygen species, called oxidative stress, result in cellular damage causing either cell death

  3. Mechanisms of hypoxic signal transduction regulated by reactive nitrogen species.

    Science.gov (United States)

    Sumbayev, V V; Yasinska, I M

    2007-05-01

    Recent reports devoted to the field of oxygen sensing outline that signalling molecules such as nitric oxide/nitric oxide derived species as well as cytokines and other inflammatory mediators participate in hypoxic signal transduction. In the present review, we summarize the current knowledge about the role of nitric oxide and reactive nitrogen species (RNS) derived from it in hypoxic signal transduction and particularly in accumulation/de-accumulation of hypoxia inducible factor 1 alpha (HIF-1alpha) protein, which is critical not only for cellular adaptation to low oxygen availability but also for generation of inflammatory and innate immune responses. After brief description of nitric oxide and other RNS as multifunctional messengers we analyse and discuss the RNS-dependent accumulation of HIF-1alpha protein under normoxia followed by discussion of the mechanisms of nitric oxide (NO)-dependent enzyme-regulated degradation of HIF-1alpha protein under low oxygen availability.

  4. Thermochromatography study of volatile polonium species in various gas atmospheres

    CERN Document Server

    Maugeri, Emilio Andrea; Eichler, Robert; Piguet,David; Mendonça, Tania Melo; Stora, Thierry; Schumann, Dorothea

    2014-01-01

    Phenomena related to the volatilization of polonium and its compounds are critical issues for the safety assessment of the innovative lead–bismuth cooled type of nuclear reactor or accelerator driven systems. The formation and volatilization of different species of polonium and their interaction with fused silica was studied by thermochromatography using carrier gases with varied redox potential. The obtained results show that under inert and reducing conditions in the absence of moisture, elemental polonium is formed. Polonium compounds more volatile than elemental polonium can be formed if traces of moisture are present in both inert and reducing carrier gas. The use of dried oxygen as carrier gas leads to the formation of polonium oxides, which are less volatile than elemental polonium. It was also found that the volatility of polonium oxides increases with increasing oxidation state. In the presence of moisture in an oxidizing carrier gas, species are formed that are more volatile than the oxides and le...

  5. Involvement of oxygen reactive species in the cellular response of carcinoma cells to irradiation

    International Nuclear Information System (INIS)

    Tulard, A.

    2004-06-01

    After a presentation of oxygen reactive species and their sources, the author describes the enzymatic and non-enzymatic anti-oxidative defenses, the physiological roles of oxygen reactive species, the oxidative stress, the water radiolysis, the anti-oxidative enzymes and the effects of ionizing radiations. The author then reports an investigation on the contribution of oxygen reactive species in the cellular response to irradiation, and an investigation on the influence of the breathing chain on the persistence of a radio-induced oxidative stress. He also reports a research on molecular mechanisms involved in the cellular radio-sensitivity

  6. Cholesteryl ester acyl oxidation and remodeling in murine macrophages: formation of oxidized phosphatidylcholine[S

    Science.gov (United States)

    Hutchins, Patrick M.; Murphy, Robert C.

    2012-01-01

    Cholesterol is an essential component of eukaryotic cell membranes, regulating fluidity and permeability of the bilayer. Outside the membrane, cholesterol is esterified to fatty acids forming cholesterol esters (CEs). Metabolism of CEs is characterized by recurrent hydrolysis and esterification as part of the CE cycle; however, since recombinant 15-lipoxygenase (15-LO) was shown to oxidize cholesteryl linoleate of LDL, there has been interest in CE oxidation, particularly in the context atherogenesis. Studies of oxidized CE (oxCE) metabolism have focused on hydrolysis and subsequent reverse cholesterol transport with little emphasis on the fate the newly released oxidized fatty acyl component. Here, using mass spectrometry to analyze lipid oxidation products, CE metabolism in murine peritoneal macrophages was investigated. Ex vivo macrophage incubations revealed that cellular 15-LO directly oxidized multiple CE substrates from intracellular stores and from extracellular sources. Freshly harvested murine macrophages also contained 15-LO-specific oxCEs, suggesting the enzyme may act as a CE-oxidase in vivo. The metabolic fate of oxCEs, particularly the hydrolysis and remodeling of oxidized fatty acyl chains, was also examined in the macrophage. Metabolism of deuterated CE resulted in the genesis of deuterated, oxidized phosphatidylcholine (oxPC). Further experiments revealed these oxPC species were formed chiefly from the hydrolysis of oxidized CE and subsequent reacylation of the oxidized acyl components into PC. PMID:22665166

  7. Complexation of Nitrous Oxide by Frustrated Lewis Pairs

    NARCIS (Netherlands)

    Otten, Edwin; Neu, Rebecca C.; Stephan, Douglas W.

    2009-01-01

    Frustrated Lewis pairs comprised of a basic yet sterically encumbered phosphine with boron Lewis acids bind nitrous oxide to give intact PNNOB linkages. The synthesis, structure, and bonding of these species are described.

  8. Fluorescence studies on radiation oxidative damage to membranes ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Membrane oxidative damage; cellular radiosensitivity; DPH fluorescence; lipid peroxidation; liposomal membrane; thymocyte membrane permeability. 1. Introduction. Radiation damage to cells and tissues involves generation of reactive oxygen species. (ROS) followed by alterations in lipids, DNA and proteins, ...

  9. Oxidative stress inhibition and oxidant activity by fibrous clays.

    Science.gov (United States)

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Gómez-Vidales, Virginia

    2015-09-01

    Fibrous clays (sepiolite, palygorskite) are produced at 1.2m tonnes per year and have a wide range of industrial applications needing to replace long-fibre length asbestos. However, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the effect of sepiolite (Vallecas, Spain) and palygorskite (Torrejón El Rubio, Spain) on cell damage via oxidative stress (determined as the progress of lipid peroxidation, LP). The extent of LP was assessed using the Thiobarbituric Acid Reactive Substances assay. The oxidant activity by fibrous clays was quantified using Electron-Paramagnetic Resonance. Sepiolite and palygorskite inhibited LP, whereby corresponding IC50 values were 6557±1024 and 4250±289μgmL(-1). As evidenced by dose-response experiments LP inhibition by palygorskite was surface-controlled. Fibrous clay surfaces did not stabilize HO species, except for suspensions containing 5000μgmL(-1). A strong oxidant (or weak anti-oxidant) activity favours the inhibition of LP by fibrous clays. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Pyrite oxidation at circumneutral pH

    Science.gov (United States)

    Moses, Carl O.; Herman, Janet S.

    1991-02-01

    Previous studies of pyrite oxidation kinetics have concentrated primarily on the reaction at low pH, where Fe(III) has been assumed to be the dominant oxidant. Studies at circumneutral pH, necessitated by effective pH buffering in some pyrite oxidation systems, have often implicitly assumed that the dominant oxidant must be dissolved oxygen (DO), owing to the diminished solubility of Fe(III). In fact, Fe(III)(aq) is an effective pyrite oxidant at circumneutral pH, but the reaction cannot be sustained in the absence of DO. The purpose of this experimental study was to ascertain the relative roles of Fe(III) and DO in pyrite oxidation at circumneutral pH. The rate of pyrite oxidation was first-order with respect to the ratio of surface area to solution volume. Direct determinations of both Fe(II) (aq)> and Fe(III) (aq) demonstrated a dramatic loss of Fe(II) from the solution phase in excess of the loss for which oxidation alone could account. Based on rate data, we have concluded that Fe(II) is adsorbed onto the pyrite surface. Furthermore, Fe(II) is preferred as an adsorbate to Fe(III), which we attribute to both electrostatic and acid-base selectivity. We also found that the rate of pyrite oxidation by either Fe(III) (aq) or DO is reduced in the presence of aqueous Fe(II), which leads us to conclude that, under most natural conditions, neither Fe(III) (aq) nor DO directly attacks the pyrite surface. The present evidence suggests a mechanism for pyrite oxidation that involves adsorbed Fe( II ) giving up electrons to DO and the resulting Fe(III) rapidly accepting electrons from the pyrite. The adsorbed Fe is, thus, cyclically oxidized and reduced, while it acts as a conduit for electrons traveling from pyrite to DO. Oxygen is transferred from the hydration sphere of the adsorbed Fe to pyrite S. The cycle of adsorbed Fe oxidation and reduction and the successive addition of oxygen to pyrite S continues until a stable sulfoxy species dissociates from the surface. Prior

  11. Review Article: Oxidative Stress as Molecular Mechanism in ...

    African Journals Online (AJOL)

    Under normal conditions, cells have well-developed antioxidants systems that minimize the pertubations caused by reactive oxygen species (ROS). However, when ROS generations are increased to an extent that they overcome the cellular antioxidants then oxidative stress results. Oxidative stress is seen as a battle ...

  12. Kinetics and mechanism of the oxidation of some diols by ...

    Indian Academy of Sciences (India)

    Michaelis–Menten type kinetics is observed with respect to diol. Addition of benzyltrimethylammonium chloride does not affect the rate. Tribromide ion is postulated to be the reactive oxidizing species. Oxidation of [1,1,2,2-2H4] ethanediol shows the absence of a kinetic isotope effect. The reaction exhibits substantial solvent.

  13. X-ray Absorption Spectroscopy of Supported Vanadium Oxide Catalysts

    NARCIS (Netherlands)

    Keller, D.E.

    2006-01-01

    Supported vanadium oxide catalysts have been the subject of detailed investigations for many decades and a relatively large amount of information is available on their structure, however, the exact molecular structure and the way these surface species are anchored on the support oxide has not yet

  14. Evaluation Of Oxidative Stress And Apoptosis In Breast Cancer ...

    African Journals Online (AJOL)

    were positively correlated with positive progesterone receptor. In Conclusion; oxidative stress, NO and apoptosis are highly detected in breast cancer tissues especially with advanced grade and stage. Key words: Breast cancer, Reactive Oxygen Species (ROS), malondialdehyde (MDA), Nitric Oxide (NO), Total Antioxidants

  15. Oxidative Stress and Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Jie Li

    2013-12-01

    Full Text Available Living cells continually generate reactive oxygen species (ROS through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs.

  16. Fractionation of radionuclide species in the environment

    International Nuclear Information System (INIS)

    Salbu, Brit

    2009-01-01

    Naturally occurring and artificially produced radionuclides in the environment may be present in different physico-chemical forms (i.e., radionuclide species) varying in size (nominal molecular mass), charge properties and valence, oxidation state, structure and morphology, density, degree of complexation, etc. Low molecular mass (LMM) species are believed to be mobile and potentially bioavailable, while high molecular mass (HMM) species such as colloids, polymers, pseudocolloids and particles are considered inert. Due to time-dependent transformation processes such as mobilisation of radionuclide species from solid phases or interactions of mobile and reactive radionuclide species with components in soils and sediments, the original distribution of radionuclides deposited in ecosystems will change over time. To assess the environmental impact from radionuclide contamination, information on radionuclide species deposited, interactions within affected ecosystems and the time-dependent distribution of radionuclide species influencing mobility and biological uptake is essential. The development of speciation techniques to characterize radionuclide species in waters, soils and sediments should therefore be essential for improving the prediction power of impact and risk assessment models. The present paper reviews available fractionation techniques which can be utilised for radionuclide speciation purposes

  17. RNA modifications by oxidation

    DEFF Research Database (Denmark)

    Poulsen, Henrik E; Specht, Elisabeth; Broedbaek, Kasper

    2012-01-01

    to encompass various classes of novel regulatory RNAs, including, e.g., microRNAs. It is well known that DNA is constantly oxidized and repaired by complex genome maintenance mechanisms. Analogously, RNA also undergoes significant oxidation, and there are now convincing data suggesting that oxidation......, and the consequent loss of integrity of RNA, is a mechanism for disease development. Oxidized RNA is found in a large variety of diseases, and interest has been especially devoted to degenerative brain diseases such as Alzheimer disease, in which up to 50-70% of specific mRNA molecules are reported oxidized, whereas...... other RNA molecules show virtually no oxidation. The iron-storage disease hemochromatosis exhibits the most prominent general increase in RNA oxidation ever observed. Oxidation of RNA primarily leads to strand breaks and to oxidative base modifications. Oxidized mRNA is recognized by the ribosomes...

  18. Etiologies of sperm oxidative stress

    Directory of Open Access Journals (Sweden)

    Parvin Sabeti

    2016-04-01

    Full Text Available Sperm is particularly susceptible to reactive oxygen species (ROS during critical phases of spermiogenesis. However, the level of seminal ROS is restricted by seminal antioxidants which have beneficial effects on sperm parameters and developmental potentials. Mitochondria and sperm plasma membrane are two major sites of ROS generation in sperm cells. Besides, leukocytes including polymer phonuclear (PMN leukocytes and macrophages produce broad category of molecules including oxygen free radicals, non-radical species and reactive nitrogen species. Physiological role of ROS increase the intracellular cAMP which then activate protein kinase in male reproductive system. This indicates that spermatozoa need small amounts of ROS to acquire the ability of nuclear maturation regulation and condensation to fertilize the oocyte. There is a long list of intrinsic and extrinsic factors which can induce oxidative stress to interact with lipids, proteins and DNA molecules. As a result, we have lipid peroxidation, DNA fragmentation, axonemal damage, denaturation of the enzymes, over generation of superoxide in the mitochondria, lower antioxidant activity and finally abnormal spermatogenesis. If oxidative stress is considered as one of the main cause of DNA damage in the germ cells, then there should be good reason for antioxidant therapy in these conditions

  19. Birds sacrifice oxidative protection for reproduction

    NARCIS (Netherlands)

    Wiersma, P; Selman, C; Speakman, [No Value; Verhulst, S; Speakman, John R.

    2004-01-01

    Oxidative metabolism has reactive oxygen species (ROS) as unavoidable by-products, and the damage ROS inflicts on DNA, proteins and lipids is considered to be a major agent of senescence. Increasing reproductive effort accelerates senescence, but whether reproductive effort is increased at the

  20. Complex defects in the oxidation of uranium

    International Nuclear Information System (INIS)

    MacCrone, R.K.; Sankaran, S.; Shatynski, S.R.; Colmenares, C.A.

    1986-01-01

    We are reporting EPR results obtained with uranium powder samples fully oxidized in dry air, water vapor, and air/water vapor mixtures. The results reported previously are confirmed and additional paramagnetic centers, associated with chemisorbed species, have been identified. The temperature dependence of the g-value for these centers from room temperature to 10K is also reported

  1. Neuro-oxidative-nitrosative stress in sepsis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Møller, Kirsten; Bailey, Damian M

    2011-01-01

    Neuro-oxidative-nitrosative stress may prove the molecular basis underlying brain dysfunction in sepsis. In the current review, we describe how sepsis-induced reactive oxygen and nitrogen species (ROS/RNS) trigger lipid peroxidation chain reactions throughout the cerebrovasculature and surrounding...

  2. Photo-oxidation catalysts

    Science.gov (United States)

    Pitts, J Roland [Lakewood, CO; Liu, Ping [Irvine, CA; Smith, R Davis [Golden, CO

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  3. Oxidization stability of atomically precise graphene nanoribbons

    Science.gov (United States)

    Ma, Chuanxu; Xiao, Zhongcan; Puretzky, Alex A.; Baddorf, Arthur P.; Lu, Wenchang; Hong, Kunlun; Bernholc, J.; Li, An-Ping

    2018-01-01

    The stability of graphene nanoribbons (GNRs) against oxidation is critical for their practical applications. Here we study both the thermal stability and the oxidation process of the ambient-exposed armchair GNRs with a width of seven carbon atoms (7-aGNR), grown on an Au(111) surface. The atomic scale evolution of the armchair edges and the zigzag ends of the aGNRs after annealing at different temperatures are revealed by using scanning tunneling microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and first-principles calculations. We observe evidence that the zigzag ends start to be oxidized and decomposed at 180 °C, while the armchair edges are intact at 430 °C but become oxidized at 520 °C. Two different oxygen species are identified at the armchair edges, namely the hydroxyl pair and the epoxy bonding motif with one oxygen bonded to two edge carbons. These oxidization species modify the electronic properties of the pristine 7-aGNRs, with a band-gap reduction from 2.6 to 2.3 eV and 1.9 eV for the hydroxyl pair- and epoxy-terminated edges, respectively. These findings demonstrate the oxidation stability of both the zigzag and armchair edges of GNRs, and they provide an opportunity to harness the high density of edge atoms in applications such as GNR-based high-temperature oxygen sensors.

  4. [Oxidative stress in Crohn's disease].

    Science.gov (United States)

    Moret, Inés; Cerrillo, Elena; Navarro-Puche, Ana; Iborra, Marisa; Rausell, Francisco; Tortosa, Luis; Beltrán, Belén

    2014-01-01

    Crohn's disease (CD) is characterized by transmural inflammation that is most frequently located in the region of the terminal ileum. Although the physiopathological mechanisms of the disease are not yet well defined, the unregulated immune response is associated with high production of reactive oxygen species (ROS). These elements are associated with complex systems known as antioxidant defenses, whose function is ROS regulation, thereby preventing the harmful effects of these elements. However, the presence of an imbalance between ROS production and ROS elimination by antioxidants has been widely described and leads to oxidative stress. In this article, we describe the most significant findings on oxidative stress in the intestinal mucosa and peripheral blood. Copyright © 2013 Elsevier España, S.L. and AEEH y AEG. All rights reserved.

  5. Drug-Induced Oxidative Stress and Toxicity

    Directory of Open Access Journals (Sweden)

    Damian G. Deavall

    2012-01-01

    Full Text Available Reactive oxygen species (ROS are a byproduct of normal metabolism and have roles in cell signaling and homeostasis. Species include oxygen radicals and reactive nonradicals. Mechanisms exist that regulate cellular levels of ROS, as their reactive nature may otherwise cause damage to key cellular components including DNA, protein, and lipid. When the cellular antioxidant capacity is exceeded, oxidative stress can result. Pleiotropic deleterious effects of oxidative stress are observed in numerous disease states and are also implicated in a variety of drug-induced toxicities. In this paper, we examine the nature of ROS-induced damage on key cellular targets of oxidative stress. We also review evidence implicating ROS in clinically relevant, drug-related side effects including doxorubicin-induced cardiac damage, azidothymidine-induced myopathy, and cisplatin-induced ototoxicity.

  6. Eco-friendly Oxidative Iodination of Various Arenes with Sodium Percarbonate as the Oxidantâ€

    Directory of Open Access Journals (Sweden)

    Lech Skulski

    2005-10-01

    Full Text Available Six easy laboratory procedures are presented for the oxidative iodination ofvarious aromatics, mostly arenes, with either molecular iodine or potassium iodide (usedas the sources of iodinating species, I or I3 , in the presence of sodium percarbonate(SPC, a stable, cheap, easy to handle, and eco-friendly commercial oxidant.

  7. Species concept and speciation

    Directory of Open Access Journals (Sweden)

    Amal Y. Aldhebiani

    2018-03-01

    Full Text Available Defining and recognizing a species has been a controversial issue for a long time. To determine the variation and the limitation between species, many concepts have been proposed. When a taxonomist study a particular taxa, he/she must adopted a species concept and provide a species limitation to define this taxa. In this paper some of species concepts are discussed starting from the typological species concepts to the phylogenetic concept. Positive and negative aspects of these concepts are represented in addition to their application.

  8. THE INFLUENCE OF NIOBIUM ON THE ACIDITY AND STRUCTURE OF GAMMA-ALUMINA-SUPPORTED VANADIUM OXIDES

    Directory of Open Access Journals (Sweden)

    Sathler M.N.B.

    1998-01-01

    Full Text Available Gamma-alumina-supported niobium oxide was used as a support for vanadium oxides. The influence of the addition of niobium oxide was studied by looking for changes in the structure and acid-base character of superficial species. Vanadium oxide was deposited using the continuous adsorption method; niobium oxide was impregnated using the incipient wetness method. The catalysts were characterized by XPS, UV-visible and IR spectroscopy. Catalytic tests were performed using propane oxidation reaction at 400oC. For coverage below the monolayer, both vanadium and niobium oxides were observed in slightly condensed superficial species. The presence of vanadium oxide on the support was found to increase the Lewis acidity and create some Bronsted acidity. Higher catalytic activity and selectivity for propene were associated with vanadium oxides. The presence of niobium did not contribute to the modification of the chemical properties of superficial vanadium but did decrease the adsorption of vanadium on the alumina.

  9. Pairing of cholesterol with oxidized phospholipid species in lipid bilayers

    Czech Academy of Sciences Publication Activity Database

    Khandelia, H.; Loubet, B.; Olžyńska, Agnieszka; Jurkiewicz, Piotr; Hof, Martin

    2014-01-01

    Roč. 10, č. 4 (2014), s. 639-647 ISSN 1744-683X R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : MOLECULAR-DYNAMICS SIMULATIONS * MARTINI FORCE-FIELD * PHASE-SEPARATION Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.029, year: 2014

  10. The Enzymatic Oxidation of Graphene Oxide

    Science.gov (United States)

    Kotchey, Gregg P.; Allen, Brett L.; Vedala, Harindra; Yanamala, Naveena; Kapralov, Alexander A.; Tyurina, Yulia Y.; Klein-Seetharaman, Judith; Kagan, Valerian E.; Star, Alexander

    2011-01-01

    Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon – the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (~40 µM), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, UV-Vis, EPR and FT-IR spectroscopy, TEM, AFM, SDS-PAGE, and GC-MS. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Due to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors. PMID:21344859

  11. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part I Microstructural investigation

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Piotrowska, Kamila; Gudla, Visweswara Chakravarthy

    2015-01-01

    The surface treatment of aluminium alloys under steam containing KMnO4 and HNO3resulted in the formation of an oxide layer having a thickness of up to 825 nm. The use of KMnO4 and HNO3 in the steam resulted in incorporation of the respective chemical species into the oxide layer. Steam treatment...... resulting in poor coverage by the steam generated oxide layer compared to the coating formed using MnO4−ions. Further, increase in the concentration of NO3−ions in the solution retards precipitation of the steam generated aluminium hydroxide layer....

  12. Reactive oxygen species enhance insulin sensitivity

    OpenAIRE

    Loh, Kim; Deng, Haiyang; Fukushima, Atsushi; Cai, Xiaochu; Boivin, Benoit; Galic, Sandra; Bruce, Clinton; Shields, Benjamin J.; Skiba, Beata; Ooms, Lisa M.; Stepto, Nigel; Wu, Ben; Mitchell, Christina A.; Tonks, Nicholas K.; Watt, Matthew J.

    2009-01-01

    Chronic reactive oxygen species (ROS) production by mitochondria may contribute to the development of insulin resistance, a primary feature of type 2 diabetes. In recent years it has become apparent that ROS generation in response to physiological stimuli such as insulin may also facilitate signaling by reversibly oxidizing and inhibiting protein tyrosine phosphatases (PTPs). Here we report that mice lacking one of the key enzymes involved in the elimination of physiological ROS, glutathione ...

  13. Endangered Species Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of the Endangered Species Act (ESA) is to protect and recover imperiled species and the ecosystems upon which they depend. The U.S. Fish and Wildlife...

  14. Endangered Species Protection Bulletins

    Science.gov (United States)

    Endangered Species Protection Bulletins set forth geographically specific pesticide use limitations for the protection of threatened and endangered (listed) species and their designated critical habitat. Find out how to get and use Bulletins.

  15. National invasive species program

    Science.gov (United States)

    Anna Rinick

    2007-01-01

    The structure and function of the National Invasive Species Council was presented below. The names and contact information for the USDA Invasive Species coordinators as of February 2006 were presented on the next page.

  16. TP53 Modulates Oxidative Stress in Gata1+ Erythroid Cells

    Directory of Open Access Journals (Sweden)

    Ashley C. Kramer

    2017-02-01

    Full Text Available Metabolism of oxidative stress is necessary for cellular survival. We have previously utilized the zebrafish as a model of the oxidative stress response. In this study, we found that gata1-expressing erythroid cells contributed to a significant proportion of total-body oxidative stress when animals were exposed to a strong pro-oxidant. RNA-seq of zebrafish under oxidative stress revealed the induction of tp53. Zebrafish carrying tp53 with a mutation in its DNA-binding domain were acutely sensitive to pro-oxidant exposure and displayed significant reactive oxygen species (ROS and tp53-independent erythroid cell death resulting in an edematous phenotype. We found that a major contributing factor to ROS was increased basal mitochondrial respiratory rate without reserve. These data add to the concept that tp53, while classically a tumor suppressor and cell-cycle regulator, has additional roles in controlling cellular oxidative stress.

  17. Nitrous oxide emission by aquatic macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter

    2009-01-01

      A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested...... delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic...... animals is quantitatively important in nitraterich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability...

  18. Nitrous oxide emission by aquatic macrofauna

    Science.gov (United States)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter; Brix, Hans; Schramm, Andreas

    2009-01-01

    A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic animals is quantitatively important in nitrate-rich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability in tropical regions and the numeric dominance of filter- and deposit-feeders in eutrophic ecosystems. PMID:19255427

  19. Nivalenol induces oxidative stress and increases deoxynivalenol pro-oxidant effect in intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Del Regno, Marisanta; Adesso, Simona; Popolo, Ada [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy); Quaroni, Andrea [Department of Biomedical Sciences, Cornell University, Veterinary Research Tower, Cornell University, Ithaca, NY 14853–6401 (United States); Autore, Giuseppina [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy); Severino, Lorella [Department of Pathology and Animal Health, Division of Toxicology, School of Veterinary Medicine, University of Naples “Federico II”, Via Delpino 1, 80137 Naples (Italy); Marzocco, Stefania, E-mail: smarzocco@unisa.it [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy)

    2015-06-01

    Mycotoxins are secondary fungal metabolites often found as contaminants in almost all agricultural commodities worldwide, and the consumption of food or feed contaminated by mycotoxins represents a major risk for human and animal health. Reactive oxygen species are normal products of cellular metabolism. However, disproportionate generation of reactive oxygen species poses a serious problem to bodily homeostasis and causes oxidative tissue damage. In this study we analyzed the effect of two trichothecenes mycotoxins: nivalenol and deoxynivalenol, alone and in combination, on oxidative stress in the non-tumorigenic intestinal epithelial cell line IEC-6. Our results indicate the pro-oxidant nivalenol effect in IEC-6, the stronger pro-oxidant effect of nivalenol when compared to deoxynivalenol and, interestingly, that nivalenol increases deoxynivalenol pro-oxidative effects. Mechanistic studies indicate that the observed effects were mediated by NADPH oxidase, calcium homeostasis alteration, NF-kB and Nrf2 pathways activation and by iNOS and nitrotyrosine formation. The toxicological interaction by nivalenol and deoxynivalenol reported in this study in IEC-6, points out the importance of the toxic effect of these mycotoxins, mostly in combination, further highlighting the risk assessment process of these toxins that are of growing concern. - Highlights: • Nivalenol induces oxidative stress in intestinal epithelial cells (IECs). • Nivalenol increases deoxynivalenol pro-oxidant effects in IECs. • Nivalenol and deoxynivalenol trigger antioxidant response IECs. • These results indicate the importance of mycotoxins co-contamination.

  20. The Role of Oxidative Stress and Antioxidants in Liver Diseases.

    Science.gov (United States)

    Li, Sha; Tan, Hor-Yue; Wang, Ning; Zhang, Zhang-Jin; Lao, Lixing; Wong, Chi-Woon; Feng, Yibin

    2015-11-02

    A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed.

  1. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    Directory of Open Access Journals (Sweden)

    Sha Li

    2015-11-01

    Full Text Available A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed.

  2. Reactive species and pulmonary edema.

    Science.gov (United States)

    Iles, Karen E; Song, Weifeng; Miller, David W; Dickinson, Dale A; Matalon, Sadis

    2009-10-01

    Pulmonary edema occurs when fluid flux into the lung interstitium exceeds its removal, resulting in hypoxemia and even death. Noncardiogenic pulmonary edema (NPE) generally results when microvascular and alveolar permeability to plasma proteins increase, one possible etiology being oxidant injury. Reactive oxygen and nitrogen species (RONS) can modify or damage ion channels, such as epithelial sodium channels, which alters fluid balance. Experimental systems in which either RONS are increased or protective antioxidant mechanisms are decreased result in alterations of epithelial sodium channel activity and support the hypothesis that RONS are important in NPE. Both basic and clinical studies are needed to critically define the RONS-NPE connection and the capacity of antioxidant therapy (either alone or as a supplement to β-agonists) to improve patient outcome.

  3. Nitric oxide supersensitivity

    DEFF Research Database (Denmark)

    Olesen, J; Iversen, Helle Klingenberg; Thomsen, L L

    1993-01-01

    Nitroglycerin, which may be regarded as a prodrug for nitric oxide, induces a mild to moderate headache in healthy subjects. In order to study whether migraine patients are more sensitive to nitric oxide than non-migrainous subjects, four different doses of intravenous nitroglycerin were given...... previously shown a similar supersensitivity to histamine which in human cerebral arteries activates endothelial H1 receptors and causes endothelial production of nitric oxide. Migraine patients are thus supersensitive to exogenous nitric oxide from nitroglycerin as well as to endothelially produced nitric...... oxide. It is suggested that nitric oxide may be partially or completely responsible for migraine pain....

  4. Plasma and catalyst for the oxidation of NOx

    Science.gov (United States)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Raud, Jüri; Stamate, Eugen

    2018-03-01

    Efficient exhaust gas cleaning from NO x (NO and NO2) by absorption and adsorption based methods requires the oxidation of NO. The application of non-thermal plasma is considered as a promising oxidation method but the oxidation of NO by direct plasma remains limited due to the back-reaction of NO2 to NO mediated by O radicals in plasma. Indirect NO oxidation by plasma produced ozone allows to circumvent the back-reaction and further oxidize NO2 to N2O5 but the slow reaction rate for the latter process limits the efficiency of this process. Present paper gives an overview of the role of metal-oxide catalysts in the improvement of oxidation efficiency for both direct and indirect plasma oxidation of NO x . The plasma produced active oxygen species (O, O3) were shown to play an important role in the reactions taking place on the catalyst surfaces while the exact mechanism and extent of the effect were different for direct and indirect oxidation. In the case of direct plasma oxidation, both short and long lifetime oxygen species could reach the catalyst and participate in the oxidation of NO to NO2. The back-reaction in the plasma phase remained still important factor and limited the effect of catalyst. In the case of indirect oxidation, only ozone could reach the catalyst surface and improve the oxidation of NO2 to N2O5. The effect of catalyst at different experimental conditions was quantitatively described with the aid of simple global chemical kinetic models derived for the NO x oxidation either by plasma or ozone. The models allowed to compare the effect of different catalysts and to analyze the limitations for the efficiency improvement by catalyst.

  5. Dietary Modulation of Oxidative Stress in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Arjun Thapa

    2017-07-01

    Full Text Available Cells generate unpaired electrons, typically via oxygen- or nitrogen-based by-products during normal cellular respiration and under stressed situations. These pro-oxidant molecules are highly unstable and may oxidize surrounding cellular macromolecules. Under normal conditions, the reactive oxygen or nitrogen species can be beneficial to cell survival and function by destroying and degrading pathogens or antigens. However, excessive generation and accumulation of the reactive pro-oxidant species over time can damage proteins, lipids, carbohydrates, and nucleic acids. Over time, this oxidative stress can contribute to a range of aging-related degenerative diseases such as cancer, diabetes, macular degeneration, and Alzheimer’s, and Parkinson’s diseases. It is well accepted that natural compounds, including vitamins A, C, and E, β-carotene, and minerals found in fruits and vegetables are powerful anti-oxidants that offer health benefits against several different oxidative stress induced degenerative diseases, including Alzheimer’s disease (AD. There is increasing interest in developing anti-oxidative therapeutics to prevent AD. There are contradictory and inconsistent reports on the possible benefits of anti-oxidative supplements; however, fruits and vegetables enriched with multiple anti-oxidants (e.g., flavonoids and polyphenols and minerals may be highly effective in attenuating the harmful effects of oxidative stress. As the physiological activation of either protective or destructive pro-oxidant behavior remains relatively unclear, it is not straightforward to relate the efficacy of dietary anti-oxidants in disease prevention. Here, we review oxidative stress mediated toxicity associated with AD and highlight the modulatory roles of natural dietary anti-oxidants in preventing AD.

  6. Species choice, provenance and species trials among native Brazilian species

    Energy Technology Data Exchange (ETDEWEB)

    Drumond, M.A.

    1982-01-01

    Six papers from the conference are presented. Drumond, M.A., Potential of species native to the semi-arid tropics, 766-781, (Refs. 18), reports on Anadenanthera macrocarpa, Mimosa species, Schinopsis brasiliensis, Spondias tuberosa, Ziziphus joazeiro, Cnidoscolus phyllacanthus, Bursera leptophleos (leptophloeos), Tabebuia impetiginosa, Astronium urundeuva, and Mimosa caesalpinia. Monteiro, R.F.R., Speltz, R.M., Gurgel, J.T. do A.; Silvicultural performance of 24 provenances of Araucaria angustifolia in Parana, 814-824, (Refs. 8). Pires, C.L. da S., Kalil Filho, A.N., Rosa, P.R.F. da, Parente, P.R., Zanatto, A.C.S.; Provenance trials of Cordia alliodora in the State of Sao Paulo, 988-995, (Refs. 9). Nogueira, J.C.B., Siqueira, A.C.M.F., Garrido, M.A.O., Gurgel Garrido, L.M. do A., Rosa, P.R.F., Moraes, J.L. de, Zandarin, M.A., Gurgel Filho, O.A., Trials of some native species in various regions of the State of Sao Paulo, 1051-1063, (Refs. 9) describes Centrolobium tomentosum, Peltophorum dubium, Tabebuia vellosoi, Cariniana legalis, and Balfourodendron riedelianum. Batista, M.P., Borges, J.F., Franco, M.A.B.; Early growth of a native species in comparison with exotics in northeastern Para, Brazil, 1105-1110, (Refs. 3). Jacaranda copaia is compared with Gmelina arborea, Pinus caribaea various hondurensis, Eucalyptus deglupta, and E. urophylla. Lima, P.C.F., Souza, S.M. de, Drumond, M.A.; Trials of native forest species at Petrolina, Pernambuco, 1139-1148, (Refs. 8), deals with Anadenanthera macrocarpa, Piptadenia obliqua, Pithecellobium foliolosum, Astronium urundeuva, Schinopsis brasiliensis, Cassia excelsa, Caesalpinia pyramidalis, Parkia platycephala, Pseudobombax simplicifolium, Tabebuia impetiginosa, Caesalpinia ferrea, and Aspidosperma pyrifolium. 18 references.

  7. Selective propene oxidation on mixed metal oxide catalysts

    International Nuclear Information System (INIS)

    James, David William

    2002-01-01

    that of Sb 2 O 3 , which is dominated by Sb 3+ . X-ray diffraction analysis of the 'Sb 2 O 5 ' sample, together with computer modelling studies, have indicated that this sample is in fact an unusual morphology of the β-Sb 2 O 4 phase. A comparison of the reactivity between iron antimonate (Fe:Sb = 1:2) and bismuth molybdate has revealed that the latter is more effective for the selective oxidation reaction due to its higher oxygen mobility and its ability to maintain a higher average surface oxidation state, due to oxygen vacancies being transported into the bulk material. A preliminary investigation into the effect of metal cation substitution within the bulk iron antimonate composition (Fe 1-x A x SbO 4 , where A was cobalt or vanadium, and 0 ≤ x ≤ 1) showed that both the metal and its extent of substitution significantly affects the products formed during reaction. Low levels of cobalt or vanadium substitution (x = 0.2) enhance the selectivity towards acrolein, with the latter also providing a route for the direct conversion of acrolein into acrylic acid when operated within a fixed temperature regime. At high levels of substitution both metals increase the activity of the system and form undesired reaction products. A correlation between metal doping and product distributions has been proposed. Fundamental studies concerning the intermediate species involved during selective propene oxidation on iron antimonate have been carried out using inelastic neutron scattering. The identification of allyl species, by comparison of experimental spectra with those predicted from density functional theory calculations, suggests that the rate-determining step may not be the initial a-hydrogen abstraction to form the allyl, as is often assumed. (author)

  8. Oxidative Stress and Antioxidant System in Periodontitis

    Science.gov (United States)

    Wang, Yue; Andrukhov, Oleh; Rausch-Fan, Xiaohui

    2017-01-01

    Periodontitis is a common inflammatory disease, which is initiated by bacterial infection and subsequently progressed by aberrant host response. It can result in the destruction of teeth supporting tissues and have an influence on systemic health. When periodontitis occurs, reactive oxygen species, which are overproduced mostly by hyperactive neutrophils, could not be balanced by antioxidant defense system and cause tissues damage. This is characterized by increased metabolites of lipid peroxidation, DNA damage and protein damage. Local and systemic activities of antioxidants can also be influenced by periodontitis. Total antioxidant capacity, total oxidant status and oxidative stress index have been used to evaluate the oxidative stress associated with periodontitis. Studies have confirmed that inflammatory response in periodontitis is associated with an increased local and systemic oxidative stress and compromised antioxidant capacity. Our review focuses on increased oxidative stress in periodontal disease, specifically, on the relationship between the local and systemic biomarkers of oxidative stress and periodontitis and their association with the pathogenesis of periodontitis. Also, the relationship between periodontitis and systemic inflammation, and the effects of periodontal therapy on oxidative stress parameters will be discussed. PMID:29180965

  9. Monolithic graphene oxide sheets with controllable composition.

    Science.gov (United States)

    Chu, Jae Hwan; Kwak, Jinsung; Kim, Sung-Dae; Lee, Mi Jin; Kim, Jong Jin; Park, Soon-Dong; Choi, Jae-Kyung; Ryu, Gyeong Hee; Park, Kibog; Kim, Sung Youb; Kim, Ji Hyun; Lee, Zonghoon; Kim, Young-Woon; Kwon, Soon-Yong

    2014-02-28

    Graphene oxide potentially has multiple applications and is typically prepared by solution-based chemical means. To date, the synthesis of a monolithic form of graphene oxide that is crucial to the precision assembly of graphene-based devices has not been achieved. Here we report the physical approach to produce monolithic graphene oxide sheets on copper foil using solid carbon, with tunable oxygen-to-carbon composition. Experimental and theoretical studies show that the copper foil provides an effective pathway for carbon diffusion, trapping the oxygen species dissolved in copper and enabling the formation of monolithic graphene oxide sheets. Unlike chemically derived graphene oxide, the as-synthesized graphene oxide sheets are electrically active, and the oxygen-to-carbon composition can be tuned during the synthesis process. As a result, the resulting graphene oxide sheets exhibit tunable bandgap energy and electronic properties. Our solution-free, physical approach may provide a path to a new class of monolithic, two-dimensional chemically modified carbon sheets.

  10. Oxidative stress and wasting in cancer.

    Science.gov (United States)

    Laviano, Alessandro; Meguid, Michael M; Preziosa, Isabella; Rossi Fanelli, Filippo

    2007-07-01

    Cancer anorexia-cachexia syndrome is becoming a critical component in the comprehensive approach to cancer patients because it influences morbidity, mortality and quality of life. Consequently, pathogenic mechanisms have been elucidated to facilitate development of better therapies. Reported findings indicate that increased production of reactive oxygen species and reduced activity of antioxidant enzymes contribute to development of anorexia and cachexia in cancer. Systemic inflammation impairs tryptophan handling, promoting oxidative stress, which appears to mimic hypothalamic negative feedback signalling. Thus, tryptophan contributes to cancer anorexia by stimulating hypothalamic serotonergic activity and promoting oxidative stress, because neuroinflammation facilitates tryptophan degradation into free radical generators via the kynurenine pathway. Upregulation of protein degradation by increased oxidative stress has been documented in cancer. Also, hypothalamic, cytokine-mediated suppression of fatty acid oxidation reduces food intake, and triggers mitochondrial biogenesis and oxidative gene expression in skeletal muscle, thus potentially increasing oxidative stress. Increased oxidative stress contributes to cancer anorexia and cachexia. Preliminary clinical data on the efficacy of antioxidant therapy in cancer patients are encouraging, but uncertainty persists regarding the optimal dose and timing of administration. Also, better biological/genetic characterization of those cancer patients who are more likely to obtain significant clinical benefits appears necessary.

  11. Oxidative Stress and Antioxidant System in Periodontitis

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2017-11-01

    Full Text Available Periodontitis is a common inflammatory disease, which is initiated by bacterial infection and subsequently progressed by aberrant host response. It can result in the destruction of teeth supporting tissues and have an influence on systemic health. When periodontitis occurs, reactive oxygen species, which are overproduced mostly by hyperactive neutrophils, could not be balanced by antioxidant defense system and cause tissues damage. This is characterized by increased metabolites of lipid peroxidation, DNA damage and protein damage. Local and systemic activities of antioxidants can also be influenced by periodontitis. Total antioxidant capacity, total oxidant status and oxidative stress index have been used to evaluate the oxidative stress associated with periodontitis. Studies have confirmed that inflammatory response in periodontitis is associated with an increased local and systemic oxidative stress and compromised antioxidant capacity. Our review focuses on increased oxidative stress in periodontal disease, specifically, on the relationship between the local and systemic biomarkers of oxidative stress and periodontitis and their association with the pathogenesis of periodontitis. Also, the relationship between periodontitis and systemic inflammation, and the effects of periodontal therapy on oxidative stress parameters will be discussed.

  12. [Chemiluminescence assay for the investigation of reactive oxygen species generator].

    Science.gov (United States)

    Kishikawa, Naoya; Kuroda, Naotaka

    2015-01-01

    Quinones play critical roles in biological systems, but are also regarded as a class of toxins that can cause oxidative stress in living cells, and the involvement of quinone-based reactive oxygen species in oxidative stress has been reported. In biological systems, quinones are reduced to semiquinone radicals by the enzyme NADPH:quinone reductase. Next, semiquinone radicals react with dissolved oxygen to form superoxide anion, which reacts with biological molecules to cause oxidative stress. On the other hand, chemiluminescence reagents such as luminol can emit chemiluminescence after oxidation by reactive oxygen species. Therefore, chemiluminescence reagents have been used widely to investigate reactive oxygen species. We have developed a sensitive and selective assay for quantifying quinones using luminol chemiluminescence. This chemiluminescence assay is based on the generation of reactive oxygen species through the redox reaction between quinone and dithiothreitol, a reductant, followed by detection of the generated reactive oxygen by luminol. Additionally, this assay can be used to quantify the toxic herbicide, paraquat, which produces reactive oxygen species in the same manner as quinones. This review describes the development of a sensitive and selective chemiluminescence assay for investigating quinones and paraquat by utilizing their ability to generate reactive oxygen species.

  13. Oxidation of caffeine by phosphate radical anion in aqueous ...

    Indian Academy of Sciences (India)

    Unknown

    It has been reported that a number of biochemical reactions in our body generate reactive oxygen species mainly comprising free radicals and excited states, capable of damaging crucial biomolecules. The major reactive oxygen species of interest in oxidative stress and radiation damage are viz., hydroxyl radical.

  14. Oxidative Stress-Mediated Atherosclerosis: Mechanisms and Therapies

    Directory of Open Access Journals (Sweden)

    Xinyu Yang

    2017-08-01

    Full Text Available Atherogenesis, the formation of atherosclerotic plaques, is a complex process that involves several mechanisms, including endothelial dysfunction, neovascularization, vascular proliferation, apoptosis, matrix degradation, inflammation, and thrombosis. The pathogenesis and progression of atherosclerosis are explained differently by different scholars. One of the most common theories is the destruction of well-balanced homeostatic mechanisms, which incurs the oxidative stress. And oxidative stress is widely regarded as the redox status realized when an imbalance exists between antioxidant capability and activity species including reactive oxygen (ROS, nitrogen (RNS and halogen species, non-radical as well as free radical species. This occurrence results in cell injury due to direct oxidation of cellular protein, lipid, and DNA or via cell death signaling pathways responsible for accelerating atherogenesis. This paper discusses inflammation, mitochondria, autophagy, apoptosis, and epigenetics as they induce oxidative stress in atherosclerosis, as well as various treatments for antioxidative stress that may prevent atherosclerosis.

  15. Tritons and tritides as the solute and diffusing species in ceramic tritium breeders

    International Nuclear Information System (INIS)

    Fischer, A.K.; Johnson, C.E.

    1987-01-01

    Intragranular diffusion of tritium is an inherent participant in the process of releasing tritium from lithium-containing ceramics that are used to breed tritium in a fusion reactor. The nature of this transport is reviewed in terms of the understanding established for the mechanism of hydrogen migration in other oxides, namely, that the diffusing species is the proton and that it moves from oxide ion to oxide ion, thereby giving rise to apparent hydroxide migration. Analogously, the triton, transiently bonded to successive oxides and forming successive tritoxides, is taken to be the dominant migrating species in ceramic breeders. In addition, tritide becomes a significant participant at low oxygen activity. The relationship of tritons and tritides as the migrating species to the observed release of both reduced and oxidized forms can be understood in terms of the thermodynamic conditions that prevail. Mechanisms exist that can be proposed to rationalize the participation of these species

  16. Zinc oxide overdose

    Science.gov (United States)

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  17. Oxidation of Proteins in Plants-Mechanisms and Consequences

    DEFF Research Database (Denmark)

    Sweetlove, Lee J; Møller, Ian M

    2009-01-01

    The production of reactive oxygen and reactive nitrogen species in plant cells can lead to a variety of modifications of proteins through oxidation of amino acid side groups. The widespread occurrence of such modifications is becoming appreciated as new proteomic approaches allow their systematic....... A view that such modifications could have signalling ramifications is emerging. However, in many cases there is a lack of information as to the effect of oxidation on protein activity or function. Severe protein oxidation is costly to the cell since oxidatively damaged proteins need to be degraded...

  18. Laboratory Studies of Hydrocarbon Oxidation Mechanisms

    Science.gov (United States)

    Orlando, J. J.; Tyndall, G. S.; Wallington, T. J.; Burkholder, J. B.; Bertman, S. B.; Chen, W.

    2001-12-01

    The oxidation of hydrocarbon species (alkanes, alkenes, halogenated species, and oxygenates of both natural and anthropogenic origin) in the troposphere leads to the generation of numerous potentially harmful secondary pollutants, such as ozone, organic nitrates and acids, and aerosols. These oxidations proceed via the formation of alkoxy radicals, whose complex chemistry controls the ultimate product distributions obtained. Studies of hydrocarbon oxidation mechanisms are ongoing at NCAR and Ford, using environmental chamber / FTIR absorption systems. The focus of these studies is often on the product distributions obtained at low temperature; these studies not only provide data of direct relevance to the free/upper troposphere, but also allow for a more fundamental understanding of the alkoxy radical chemistry (eg., from the determination of the Arrhenius parameters for unimolecular processes, and the quantification of the extent of the involvement of chemical activation in the alkoxy radical chemistry). In this paper, data will be presented on some or all of the following topics: kinetics/mechanisms for the reactions of OH with the unsaturated species MPAN, acrolein, and crotonaldehyde; the mechanism for the oxidation of ethyl chloride and ethyl bromide; and the mechanism for the reaction of OH with acetone and acetaldehyde at low temperature. The relevance of the data to various aspects of tropospheric chemistry will be discussed.

  19. New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Daria L. [Department of Chemistry, Yale University, 225; Beltrán-Suito, Rodrigo [Department of Chemistry, Yale University, 225; Thomsen, Julianne M. [Department of Chemistry, Yale University, 225; Hashmi, Sara M. [Department of Chemical and Environmental; Materna, Kelly L. [Department of Chemistry, Yale University, 225; Sheehan, Stafford W. [Catalytic Innovations LLC, 70 Crandall; Mercado, Brandon Q. [Department of Chemistry, Yale University, 225; Brudvig, Gary W. [Department of Chemistry, Yale University, 225; Crabtree, Robert H. [Department of Chemistry, Yale University, 225

    2016-02-05

    This paper introduces IrI(CO)2(pyalc) (pyalc = (2-pyridyl)-2-propanoate) as an atom-efficient precursor for Ir-based homogeneous oxidation catalysis. This compound was chosen to simplify analysis of the water oxidation catalyst species formed by the previously reported Cp*IrIII(pyalc)OH water oxidation precatalyst. Here, we present a comparative study on the chemical and catalytic properties of these two precursors. Previous studies show that oxidative activation of Cp*Ir-based precursors with NaIO4 results in formation of a blue IrIV species. This activation is concomitant with the loss of the placeholder Cp* ligand which oxidatively degrades to form acetic acid, iodate, and other obligatory byproducts. The activation process requires substantial amounts of primary oxidant, and the degradation products complicate analysis of the resulting IrIV species. The species formed from oxidation of the Ir(CO)2(pyalc) precursor, on the other hand, lacks these degradation products (the CO ligands are easily lost upon oxidation) which allows for more detailed examination of the resulting Ir(pyalc) active species both catalytically and spectroscopically, although complete structural analysis is still elusive. Once Ir(CO)2(pyalc) is activated, the system requires acetic acid or acetate to prevent the formation of nanoparticles. Investigation of the activated bis-carbonyl complex also suggests several Ir(pyalc) isomers may exist in solution. By 1H NMR, activated Ir(CO)2(pyalc) has fewer isomers than activated Cp*Ir complexes, allowing for advanced characterization. Future research in this direction is expected to contribute to a better structural understanding of the active species. A diol crystallization agent was needed for the structure determination of 3.

  20. Structure, activity and kinetics of supported molybdenum oxide and mixed molybdenum-vanadium oxide catalysts prepared by flame spray pyrolysis for propane OHD

    DEFF Research Database (Denmark)

    Høj, Martin; Kessler, Thomas; Beato, Pablo

    2013-01-01

    reflectance UV-vis spectroscopy and evaluated as catalysts for the oxidative dehydrogenation (ODH) of propane. The results show that samples with high specific surface areas between 122 and 182 m2/g were obtained, resulting in apparent MoOx and VOx surface densities from 0.7 to 7.7 nm -2 and 1.5 to 1.9 nm-2......, respectively. Raman spectroscopy, UV-vis spectroscopy and XRD confirmed the high dispersion of molybdenum and vanadia species on γ-Al2O3 as the main crystalline phase. Only at the highest loading of 15 wt% Mo, with theoretically more than monolayer coverage, some crystalline molybdenum oxide was observed....... For the mixed molybdenum-vanadium oxide catalysts the surface species were separate molybdenum oxide and vanadium oxide monomers at low loadings of molybdenum, but with increasing molybdenum loading interactions between surface molybdenum and vanadium oxide species were observed with Raman spectroscopy...

  1. Oxidative stress in prostate hypertrophy and carcinogenesis

    Directory of Open Access Journals (Sweden)

    Waldemar M. Przybyszewski

    2009-07-01

    Full Text Available Aging, significant impairment of the oxidation/reduction balance, infection, and inflammation are recognized risk factors of benign hyperplasia and prostate cancer. Chronic symptomatic and asymptomatic prostate inflammatory processes generate significantly elevated levels of reactive oxygen and nitrogen species, and halogenated compounds. Prostate cancer patients showed significantly higher lipid peroxidation and lower antioxidant levels in peripheral blood than healthy controls, whereas patients with prostate hyperplasia did not show such symptoms. Oxidative/nitrosative/halogenative stress causes DNA modifications leading to genome instability that may initiate carcinogenesis; however, it was shown that oxidative damage alone is not sufficient to initiate this process. Peroxidation products induced by reactive oxygen and nitrogen species seem to take part in epigenetic mechanisms regulating genome activity. One of the most common changes occurring in more than 90�0of all analyzed prostate cancers is the silencing of GSTP1 gene activity. The gene encodes glutathione transferase, an enzyme participating in detoxification processes. Prostate hyperplasia is often accompanied by chronic inflammation and such a relationship was not observed in prostate cancer. The participation of infection and inflammation in the development of hyperplasia is unquestionable and these factors probably also take part in initiating the early stages of prostate carcinogenesis. Thus it seems that therapeutic strategies that prevent genome oxidative damage in situations involving oxidative/nitrosative/halogenative stress, i.e. use of antioxidants, plant steroids, antibiotics, and non-steroidal anti-inflammatory drugs, could help prevent carcinogenesis.

  2. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    OpenAIRE

    Boltz, Janika

    2011-01-01

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO2 and TiO2. In order to ach...

  3. Detection of cryptic species

    International Nuclear Information System (INIS)

    Cockburn, A.F.; Jensen, T.; Seawright, J.A.

    1998-01-01

    Morphologically similar cryptic species are common in insects. In Anopheles mosquitoes morphologically described species are complexes of cryptic species. Cryptic species are of great practical importance for two reasons: first, one or more species of the complex might not be a pest and control efforts directed at the complex as a whole would therefore be partly wasted; and second, genetic (and perhaps biological) control strategies directed against one species of the complex would not affect other species of the complex. At least one SIT effort has failed because the released sterile insect were of a different species and therefore did not mate with the wild insects being targeted. We use a multidisciplinary approach for detection of cryptic species complexes, focusing first on identifying variability in wild populations using RFLPs of mitochondrial and ribosomal RNA genes (mtDNA and rDNA); followed by confirmation using a variety of other techniques. For rapid identification of wild individuals of field collections, we use a DNA dot blot assay. DNA probes can be isolated by differential screening, however we are currently focusing on the sequencing of the rDNA extragenic spacers. These regions are repeated several hundred times per genome in mosquitoes and evolve rapidly. Molecular drive tends to keen the individual genes homogeneous within a species. (author)

  4. Oxidative Stress and Nucleic Acid Oxidation in Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Chih-Chien Sung

    2013-01-01

    Full Text Available Patients with chronic kidney disease (CKD have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate, deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies.

  5. The oxidative pulverisation of mixed oxide fuels

    International Nuclear Information System (INIS)

    Rance, Peter; Beznosyuk, Vassily

    2005-01-01

    An investigation of the oxidation of mixed uranium-plutonium oxide (MOx) fuels containing from 5-30% plutonium (heavy metal basis) in air and oxygen atmospheres has been undertaken. MOx pellets prepared by a co-precipitation process were oxidised at temperatures from 600 to 1200degC, samples were reduced back to the MO 2 state and then re-oxidised. Weight changes were monitored during each procedure and the phases present in the products from each treatment were analysed using X-ray diffraction (XRD). Samples containing up to 10% Pu were oxidised sufficiently to cause pulverisation of the fuel matrix by a single oxidation treatment at 600degC whereas samples containing higher plutonium contents required a cycle of oxidation-reduction-oxidation cause them to become fragmented. XRD data suggests the formation of plutonium-rich and plutonium-lean grains during the reduction cycle and it is suggested that the oxidation of plutonium-lean grains during re-oxidation step is responsible for the break up of the pellets during this step. (author)

  6. Effect Of Oxidation Temperature And Oxidation Time On Thickness ...

    African Journals Online (AJOL)

    Investigation has been made concerning the effect of oxidation temperature and time on the thickness of copper (I) oxides solar cells prepared by thermal oxidation method. The samples were oxidized at different oxidation temperatures and time. The different oxidation temperatures and lengths of time ware employed in ...

  7. Nitric oxide turnover in permeable river sediment

    DEFF Research Database (Denmark)

    Schreiber, Frank; Stief, Peter; Kuypers, Marcel M M

    2014-01-01

    We measured nitric oxide (NO) microprofiles in relation to oxygen (O2) and all major dissolved N-species (ammonium, nitrate, nitrite, and nitrous oxide [N2O]) in a permeable, freshwater sediment (River Weser, Germany). NO reaches peak concentrations of 0.13 μmol L-1 in the oxic zone and is consumed......-nitroso-N-acetylpenicillamine (SNAP) (1) confirmed denitrification as the main NO consumption pathway, with N2O as its major product, (2) showed that denitrification combines one free NO molecule with one NO molecule formed from nitrite to produce N2O, and (3) suggested that NO inhibits N2O reduction....

  8. Platinum Catalysts Supported on Ce, Zr, Pr - Oxides in Catalytic Wet Air Oxidation of Acetic Acid

    Czech Academy of Sciences Publication Activity Database

    Mikulová, Jana; Rossignol, S.; Barbier Jr., J.; Duprez, D.; Kappenstein, C.

    2007-01-01

    Roč. 146, č. 3 (2007), s. 1248-1253 ISSN 0304-3894 Institutional research plan: CEZ:AV0Z40720504 Keywords : platinum * cerium oxide * carbonate species Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.337, year: 2007

  9. Bystander signaling via oxidative metabolism

    Directory of Open Access Journals (Sweden)

    Sawal HA

    2017-08-01

    Full Text Available Humaira Aziz Sawal,1 Kashif Asghar,2 Matthias Bureik,3 Nasir Jalal4 1Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 2Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan; 3Health Science Platform, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China; 4Health Science Platform, Department of Molecular and Cellular Pharmacology, Tianjin University, Tianjin, China Abstract: The radiation-induced bystander effect (RIBE is the initiation of biological end points in cells (bystander cells that are not directly traversed by an incident-radiation track, but are in close proximity to cells that are receiving the radiation. RIBE has been indicted of causing DNA damage via oxidative stress, besides causing direct damage, inducing tumorigenesis, producing micronuclei, and causing apoptosis. RIBE is regulated by signaling proteins that are either endogenous or secreted by cells as a means of communication between cells, and can activate intracellular or intercellular oxidative metabolism that can further trigger signaling pathways of inflammation. Bystander signals can pass through gap junctions in attached cell lines, while the suspended cell lines transmit these signals via hormones and soluble proteins. This review provides the background information on how reactive oxygen species (ROS act as bystander signals. Although ROS have a very short half-life and have a nanometer-scale sphere of influence, the wide variety of ROS produced via various sources can exert a cumulative effect, not only in forming DNA adducts but also setting up signaling pathways of inflammation, apoptosis, cell-cycle arrest, aging, and even tumorigenesis. This review outlines the sources of the bystander effect linked to ROS in a cell, and provides methods of investigation for researchers who would like to

  10. Mo-V-Te-Nb oxides as catalysts for ethene production by oxidative dehydrogenation of ethane

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, D. [Technische Universitaet Muenchen, Garching (Germany). Dept. of Chemistry and Catalysis Research Center; Meiswinkel, A.; Thaller, C.; Bock, M.; Alvarado, L. [Linde AG, Pullach (Germany)

    2013-11-01

    The availability of ethane in shale gas, as well as the interest in valorising previously underutilized carbon feedstocks, makes the oxidative dehydrogenation (ODH) of ethane an attractive alternative to the industrially established processes for production of ethylene. Mo-V-Te-Nb mixed oxide has been chosen as catalyst for the ODH reaction in view of its outstanding ability to activate alkane molecules. Catalytic test results showed that this type of catalyst can selectively oxidize ethane to ethene at moderate temperatures (350-400 C) with minor production of CO{sub x}. The catalytic performance of Mo-V-Te-Nb mixed-oxide is mainly attributable to the crystalline phase 'M1'. Rietveld analysis of the X-Ray diffractograms allowed us to quantify the amount of MoVTeNb oxide that has crystallized as M1. In this way, it was possible to find a linear correlation of the reaction rate with the abundance of M1 in the solid. Therefore, it is clear that for improving the efficiency of MoVTeNb oxide in ODH, the amount of M1 in the catalyst should be maximized. With this purpose, several MoVTeNb oxides were subject to different thermal treatments prior to the catalytic test. Structural changes in the catalyst were monitored by in-situ XRD technique. Under oxidative atmosphere, it was observed a recrystallization of M2 and possibly, amorphous oxide, into M1 phase, leading to correspondingly more active and selective catalysts (selectivities above 95 % for ethane conversions up to 40 % under industrially relevant conditions). The active site of M1 involves V species, likely with redox properties enhanced by the proximity of Mo and Te species, while the function of the crystalline structure itself is to provide the spatial configuration that allows interaction between these species. However, ethene formation rate was observed to be independent of the V content of the samples. The vanadium species exposed at the surface were studied by LEIS and by IR spectroscopy of CO

  11. Emissions of gaseous nitrogen species from manure management

    DEFF Research Database (Denmark)

    Dämmgen, Ulrich; Hutchings, Nick

    2008-01-01

    A procedure for the assessment of emissions of nitrogen (N) species (ammonia, nitrous oxide, nitric oxide, di-nitrogen) from the manure management system is developed, which treats N pools and flows including emissions strictly according to conservation of mass criteria. As all relevant flows...... in the husbandry of mammals are depicted, the methodology is considered a Tier 3 approach in IPCC terminology or a detailed methodology in UN ECE terminology. The importance of accounting for all N species is illustrated by comparing emission estimates obtained using this approach with those obtained from...

  12. Wet oxidation of quinoline

    DEFF Research Database (Denmark)

    Thomsen, A.B.; Kilen, H.H.

    1998-01-01

    The influence of oxygen pressure (0.4 and 2 MPa). reaction time (30 and 60 min) and temperature (260 and 280 degrees C) on the wet oxidation of quinoline has been studied. The dominant parameters for the decomposition of quinoline were oxygen pressure and reaction temperature. whereas the reaction...... time was less important within the range studied. Nitrifying bacteria were used to measure the inhibition from wet oxidative-treated samples to study the effect of the (wet oxidation) reaction conditions. Wet oxidation made quinoline more toxic to Nitrosomonas. This was observed for Nitrobacter as well....... The combined wet oxidation and biological treatment of reaction products resulted in 91% oxidation of the parent compound to CO2 and water. Following combined wet oxidation and biological treatment the sample showed low toxicity towards Nitrosomonas and no toxicity towards Nitrobacter. (C) 1998 Elsevier...

  13. Cell signaling by reactive nitrogen and oxygen species in atherosclerosis

    Science.gov (United States)

    Patel, R. P.; Moellering, D.; Murphy-Ullrich, J.; Jo, H.; Beckman, J. S.; Darley-Usmar, V. M.

    2000-01-01

    The production of reactive oxygen and nitrogen species has been implicated in atherosclerosis principally as means of damaging low-density lipoprotein that in turn initiates the accumulation of cholesterol in macrophages. The diversity of novel oxidative modifications to lipids and proteins recently identified in atherosclerotic lesions has revealed surprising complexity in the mechanisms of oxidative damage and their potential role in atherosclerosis. Oxidative or nitrosative stress does not completely consume intracellular antioxidants leading to cell death as previously thought. Rather, oxidative and nitrosative stress have a more subtle impact on the atherogenic process by modulating intracellular signaling pathways in vascular tissues to affect inflammatory cell adhesion, migration, proliferation, and differentiation. Furthermore, cellular responses can affect the production of nitric oxide, which in turn can strongly influence the nature of oxidative modifications occurring in atherosclerosis. The dynamic interactions between endogenous low concentrations of oxidants or reactive nitrogen species with intracellular signaling pathways may have a general role in processes affecting wound healing to apoptosis, which can provide novel insights into the pathogenesis of atherosclerosis.

  14. Radical Oxygen Species, Exercise and Aging: An Update.

    Science.gov (United States)

    Bouzid, Mohamed Amine; Filaire, Edith; McCall, Alan; Fabre, Claudine

    2015-09-01

    It is now well established that reactive oxygen species (ROS) play a dual role as both deleterious and beneficial species. In fact, ROS act as secondary messengers in intracellular signalling cascades; however, they can also induce cellular senescence and apoptosis. Aging is an intricate phenomenon characterized by a progressive decline in physiological functions and an increase in mortality, which is often accompanied by many pathological diseases. ROS are involved in age-associated damage to macromolecules, and this may cause derangement in ROS-mediated cell signalling, resulting in stress and diseases. Moreover, the role of oxidative stress in age-related sarcopenia provides strong evidence for the important contribution of physical activity to limit this process. Regular physical activity is considered a preventive measure against oxidative stress-related diseases. The aim of this review is to summarize the currently available studies investigating the effects of chronic and/or acute physical exercise on the oxidative stress process in healthy elderly subjects. Although studies on oxidative stress and physical activity are limited, the available information shows that acute exercise increases ROS production and oxidative stress damage in older adults, whereas chronic exercise could protect elderly subjects from oxidative stress damage and reinforce their antioxidant defences. The available studies reveal that to promote beneficial effects of physical activity on oxidative stress, elderly subjects require moderate-intensity training rather than high-intensity exercise.

  15. Time-resolved method to distinguish protein/peptide oxidation during electrospray ionization mass spectrometry.

    Science.gov (United States)

    Pei, Jiying; Hsu, Cheng-Chih; Yu, Kefu; Wang, Yinghui; Huang, Guangming

    2018-06-29

    Electrospray ionization mass spectrometry (ESI-MS) is one of the most prevalent techniques used to monitor protein/peptide oxidation induced by reactive oxygen species (ROSs). However, both corona discharge (CD) and electrochemistry (EC) can also lead to protein/peptide oxidation during ESI. Because the two types of oxidation occur almost simultaneously, determining the extent to which the two pathways contribute to protein/peptide oxidation is difficult. Herein, a time-resolved method was introduced to identify and differentiate CD- and EC-induced oxidation. Using this approach, we separated the instantaneous CD-induced oxidation from the hysteretic EC-induced oxidation, and the effects of the spray voltage and flow rate of the ESI source on both oxidation types were investigated with a homemade ESI source. For angiotensin II analogue (b-DRVYVHPF-y), the dehydrogenation and oxygenation species were the detected EC-induced oxidation products, while the oxygenation species were the major CD-induced oxidation products. This time-resolved approach was also applicable to a commercial HESI source, in which both CD and EC were responsible for hemoglobin and cytochrome c oxidation with upstream grounding while CD dominated the oxidation without upstream grounding. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Electrocatalysis of the hydrogen evolution reaction by rhenium oxides electrodeposited by pulsed-current

    International Nuclear Information System (INIS)

    Vargas-Uscategui, Alejandro; Mosquera, Edgar; Chornik, Boris; Cifuentes, Luis

    2015-01-01

    Highlights: • Rhenium oxides were produced by means of pulsed current electrodeposition over ITO. • The electrocatalytic behavior of rhenium oxides electrodeposited over ITO was studied. • Electrodeposited rhenium oxides showed electrocatalytic behavior increasing the rate of the hydrogen evolution reaction. • The electrocatalysis behavior was explained considering the relative abundance of Re species on the surface of the electrodeposited material. - Abstract: Rhenium oxides are materials of interest for applications in the catalysis of reactions such as those occurring in fuel cells and photoelectrochemical cells. This research work was devoted to the production of rhenium oxide by means of pulsed current electrodeposition for the electrocatalysis of the hydrogen evolution reaction (HER). Rhenium oxides were electrodeposited over a transparent conductive oxide substrate (Indium Tin-doped Oxide – ITO) in an alkaline aqueous electrolyte. The electrodeposition process allowed the production of rhenium oxides islands (200–600 nm) with the presence of three oxidized rhenium species: Re IV associated to ReO 2 , Re VI associated to ReO 3 and Re VII associated to H(ReO 4 )H 2 O. Electrodeposited rhenium oxides showed electrocatalytic behavior over the HER and an increase of one order of magnitude of the exchange current density was observed compared to the reaction taking place on the bare substrate. The electrocatalytic behavior varied with the morphology and relative abundance of oxidized rhenium species in the electrodeposits. Finally, two mechanisms of electrocatalysis were proposed to explain experimental results.

  17. Support your local species

    DEFF Research Database (Denmark)

    Stärk, Johanna

    Nearly a quarter of all animal species within the European Union are threatened with extinction. Protecting many of these species will require the full spectrum of conservation actions from in-situ to ex-situ management. Holding an estimated 44% of EU Red Listed terrestrial vertebrates, zoos hereby...

  18. New Species of Agaricales

    Science.gov (United States)

    Kim, Yang Sup; Park, Ki Moon; Kim, Wan Gyu; Yoo, Kwan Hee; Park, In Cheol

    2009-01-01

    Clitocybe alboinfundibulliforme sp. nov. is widely distributed in Korea. Volvariella koreana sp. nov. is rarely distributed in Korea. These taxa were occasionally found together at the same place. Both of these species seem to be associated with each other. These two species are fully described and illustrated in this paper. PMID:23983550

  19. (WF n ) species

    Indian Academy of Sciences (India)

    potential, electron affinity, absolute electronegativity and chemical hardness are also evaluated which provide insights into chemical ..... η = 1/2 (IP − EA). (3). Absolute electronegativity measures the ability of species to attract electron and correlates inversely with the proton affinity. The increase in χ of WFn species with the ...

  20. Arctic species resilience

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Forchhammer, Mads C.; Jeppesen, Erik

    the predicted increase in climate variability. Whereas species may show relatively high phenological resilience to climate change per se, the resilience of systems may be more constrained by the inherent dependence through consumer-resource interactions across trophic levels. During the last 15 years...... and resources. This poster will present the conceptual framework for this project focusing on species resilience....

  1. Aquatic species and habitats

    Science.gov (United States)

    Danny C. Lee; James R. Sedell; Bruce E. Rieman; Russell F. Thurow; Jack E. Williams

    1998-01-01

    Continuing human activities threaten the highly prized aquatic resources of the interior Columbia basin. Precipitous declines in native species, particularly Pacific salmon, and a large influx of introduced species have radically altered the composition and distribution of native fishes. Fortunately, areas of relatively high aquatic integrity remain, much of it on...

  2. Chapter 16: Species Diversity

    African Journals Online (AJOL)

    zargaran

    2012-05-03

    May 3, 2012 ... In this survey, the oak gall wasps (Hymenoptera: Cynipidae: Cynipini) were collected from oak forests of West-Azerbaijan Province in six sites, from April to October. Species richness, heterogeneity, evenness and true diversity were measured. Based on the result of this study, 37 of oak gall wasps species ...

  3. Management of invasive species

    DEFF Research Database (Denmark)

    Schou, Jesper Sølver; Jensen, Frank

    In this paper, we conduct a number of cost-benefit analyses to clarify whether the establishment of invasive species should be prevented or the damage of such species should be mitigated after introduction. We use the potential establishment of ragweed in Denmark as an empirical case. The main...... of information externalities, altruistic preferences, possible catastrophic events and ethical considerations....

  4. The Origin of Species

    NARCIS (Netherlands)

    Darwin, Charles

    2005-01-01

    In The Origin of Species Darwin outlined his theory of evolution, which proposed that species had been evolving and differentiating over time under the influence of natural selection. On its publication it became hugely influential, bringing about a seismic shift in the scientific view of humanitys

  5. The effects of dietary restriction on oxidative stress in rodents

    Science.gov (United States)

    Walsh, Michael E.; Shi, Yun; Van Remmen, Holly

    2013-01-01

    Oxidative stress is observed during aging and in numerous age-related diseases. Dietary restriction (DR) is a regimen that protects against disease and extends lifespan in multiple species. However, it is unknown how DR mediates its protective effects. One prominent and consistent effect of DR in a number of systems is the ability to reduce oxidative stress and damage. The purpose of this review is to comprehensively examine the hypothesis that dietary restriction reduces oxidative stress in rodents by decreasing reactive oxygen species (ROS) production and increasing antioxidant enzyme activity, leading to an overall reduction of oxidative damage to macromolecules. The literature reveals that the effects of DR on oxidative stress are complex and likely influenced by a variety of factors, including sex, species, tissue examined, types of ROS and antioxidant enzymes examined, and duration of DR. Here we present a comprehensive review of the existing literature on the effect of DR on mitochondrial ROS generation, antioxidant enzymes and oxidative damage. In a majority of studies, dietary restriction had little effect on mitochondrial ROS production or antioxidant activity. On the other hand, DR decreased oxidative damage in the majority of cases. Although the effects of DR on endogenous antioxidants are mixed, we find that glutathione levels are the most likely antioxidant to be increased by dietary restriction, which supports the emerging redox-stress hypothesis of aging. PMID:23743291

  6. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  7. COMPARISON OF STRESS PROTEINS PARTICIPATION IN ADAPTATION MECHANISMS OF BAIKALIAN AND PALEARCTIC AMPHIPOD (AMPHIPODA; CRUSTACEA SPECIES

    Directory of Open Access Journals (Sweden)

    Timofeyev M.A

    2006-03-01

    Full Text Available The aim of the present study was a study of the influence different stressful factor on syntheses and activity of the stress proteins (HSP70, sHSP and peroxidase of freshwater organism. Six freshwater amphipod species were investigated: Eulimnogammarus cyaneus (Dyb., E verrucosus (Gerstf., E vittatus (Dyb. - endemic species from Lake Baikal which were compared with Palearctic species - Gammarus lacustris Sars., G tigrinus (Sexton, Chaetogammarus ischnus (Stebbins. It was shown expression of sHSP by heat and toxic stresses for all amphipods species. Oxidative stress induced HSP70 for Palearctic species G tigrinus and C ischnus but not for baikalian species. Heat stress did not caused the increase of HSP70 level for Baikalian species of amphipods. The activity of the peroxidase was decrease by heat and toxic stresses. Oxidative stress caused the increase of peroxidase activity for Palearctic species, and the decrease for Baikalian once.

  8. Respirometric characterization of aerobic sulfide, thiosulfate and elemental sulfur oxidation by S-oxidizing biomass.

    Science.gov (United States)

    Mora, Mabel; López, Luis R; Lafuente, Javier; Pérez, Julio; Kleerebezem, Robbert; van Loosdrecht, Mark C M; Gamisans, Xavier; Gabriel, David

    2016-02-01

    Respirometry was used to reveal the mechanisms involved in aerobic biological sulfide oxidation and to characterize the kinetics and stoichiometry of a microbial culture obtained from a desulfurizing biotrickling filter. Physical-chemical processes such as stripping and chemical oxidation of hydrogen sulfide were characterized since they contributed significantly to the conversions observed in respirometric tests. Mass transfer coefficient for hydrogen sulfide and the kinetic parameters for chemical oxidation of sulfide with oxygen were estimated. The stoichiometry of the process was determined and the different steps in the sulfide oxidation process were identified. The conversion scheme proposed includes intermediate production of elemental sulfur and thiosulfate and the subsequent oxidation of both compounds to sulfate. A kinetic model describing each of the reactions observed during sulfide oxidation was calibrated and validated. The product selectivity was found to be independent of the dissolved oxygen to hydrogen sulfide concentration ratio in the medium at sulfide concentrations ranging from 3 to 30 mg S L(-1). Sulfide was preferentially consumed (SOURmax = 49.2 mg DO g(-1) VSS min(-1)) and oxidized to elemental sulfur at dissolved oxygen concentrations above 0.8 mg DO L(-1). Substrate inhibition of sulfide oxidation was observed (K(i,S(2-))= 42.4 mg S L(-1)). Intracellular sulfur accumulation also affected negatively the sulfide oxidation rate. The maximum fraction of elemental sulfur accumulated inside cells was estimated (25.6% w/w) and a shrinking particle equation was included in the kinetic model to describe elemental sulfur oxidation. The microbial diversity obtained through pyrosequencing analysis revealed that Thiothrix sp. was the main species present in the culture (>95%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Hypochlorite-induced oxidation of thiols

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Hawkins, C L

    2000-01-01

    -, thermal- or UV light-catalysed decomposition of sulfenyl or sulfonyl chlorides which are postulated intermediates in thiol oxidation. In this study we show that thiyl radicals are generated on reaction of a number of low-molecular-weight thiols with HOCl. With sub-stoichiometric amounts of HOCl, relative...... to the thiol, thiyl radicals are the major species detected by EPR spin trapping. When the HOCl is present in excess over the thiol, additional radicals are detected with compounds which contain amine functions; these additional radicals are assigned to nitrogen-centered species. Evidence is presented...

  10. Adult neurogenesis transiently generates oxidative stress.

    Directory of Open Access Journals (Sweden)

    Noah M Walton

    Full Text Available An increasing body of evidence suggests that alterations in neurogenesis and oxidative stress are associated with a wide variety of CNS diseases, including Alzheimer's disease, schizophrenia and Parkinson's disease, as well as routine loss of function accompanying aging. Interestingly, the association between neurogenesis and the production of reactive oxidative species (ROS remains largely unexamined. The adult CNS harbors two regions of persistent lifelong neurogenesis: the subventricular zone and the dentate gyrus (DG. These regions contain populations of quiescent neural stem cells (NSCs that generate mature progeny via rapidly-dividing progenitor cells. We hypothesized that the energetic demands of highly proliferative progenitors generates localized oxidative stress that contributes to ROS-mediated damage within the neuropoietic microenvironment. In vivo examination of germinal niches in adult rodents revealed increases in oxidized DNA and lipid markers, particularly in the subgranular zone (SGZ of the dentate gyrus. To further pinpoint the cell types responsible for oxidative stress, we employed an in vitro cell culture model allowing for the synchronous terminal differentiation of primary hippocampal NSCs. Inducing differentiation in primary NSCs resulted in an immediate increase in total mitochondria number and overall ROS production, suggesting oxidative stress is generated during a transient window of elevated neurogenesis accompanying normal neurogenesis. To confirm these findings in vivo, we identified a set of oxidation-responsive genes, which respond to antioxidant administration and are significantly elevated in genetic- and exercise-induced model of hyperactive hippocampal neurogenesis. While no direct evidence exists coupling neurogenesis-associated stress to CNS disease, our data suggest that oxidative stress is produced as a result of routine adult neurogenesis.

  11. Arsenic Detoxification by Geobacter Species.

    Science.gov (United States)

    Dang, Yan; Walker, David J F; Vautour, Kaitlin E; Dixon, Steven; Holmes, Dawn E

    2017-02-15

    Insight into the mechanisms for arsenic detoxification by Geobacter species is expected to improve the understanding of global cycling of arsenic in iron-rich subsurface sedimentary environments. Analysis of 14 different Geobacter genomes showed that all of these species have genes coding for an arsenic detoxification system (ars operon), and several have genes required for arsenic respiration (arr operon) and methylation (arsM). Genes encoding four arsenic repressor-like proteins were detected in the genome of G. sulfurreducens; however, only one (ArsR1) regulated transcription of the ars operon. Elimination of arsR1 from the G. sulfurreducens chromosome resulted in enhanced transcription of genes coding for the arsenic efflux pump (Acr3) and arsenate reductase (ArsC). When the gene coding for Acr3 was deleted, cells were not able to grow in the presence of either the oxidized or reduced form of arsenic, while arsC deletion mutants could grow in the presence of arsenite but not arsenate. These studies shed light on how Geobacter influences arsenic mobility in anoxic sediments and may help us develop methods to remediate arsenic contamination in the subsurface. This study examines arsenic transformation mechanisms utilized by Geobacter, a genus of iron-reducing bacteria that are predominant in many anoxic iron-rich subsurface environments. Geobacter species play a major role in microbially mediated arsenic release from metal hydroxides in the subsurface. This release raises arsenic concentrations in drinking water to levels that are high enough to cause major health problems. Therefore, information obtained from studies of Geobacter should shed light on arsenic cycling in iron-rich subsurface sedimentary environments, which may help reduce arsenic-associated illnesses. These studies should also help in the development of biosensors that can be used to detect arsenic contaminants in anoxic subsurface environments. We examined 14 different Geobacter genomes and found

  12. Biomimetic Water-Oxidation Catalysts: Manganese Oxides.

    Science.gov (United States)

    Kurz, Philipp

    2016-01-01

    The catalytic oxidation of water to molecular oxygen is a key process for the production of solar fuels. Inspired by the biological manganese-based active site for this reaction in the enzyme Photosystem II, researchers have made impressive progress in the last decades regarding the development of synthetic manganese catalysts for water oxidation. For this, it has been especially fruitful to explore the many different types of known manganese oxides MnOx. This chapter first offers an overview of the structural, thermodynamic, and mechanistic aspects of water-oxidation catalysis by MnOx. The different test systems used for catalytic studies are then presented together with general reactivity trends. As a result, it has been possible to identify layered, mixed Mn (III/IV)-oxides as an especially promising class of bio-inspired catalysts and an attempt is made to give structure-based reasons for the good performances of these materials. In the outlook, the challenges of catalyst screenings (and hence the identification of a "best MnOx catalyst") are discussed. There is a great variety of reaction conditions which might be relevant for the application of manganese oxide catalysts in technological solar fuel-producing devices, and thus catalyst improvements are currently still addressing a very large parameter space. Nonetheless, detailed knowledge about the biological catalyst and a solid experimental basis concerning the syntheses and water-oxidation reactivities of MnOx materials have been established in the last decade and thus this research field is well positioned to make important contributions to solar fuel research in the future.

  13. Limiting the Hydrolysis and Oxidation of Maleimide-Peptide Adducts Improves Detection of Protein Thiol Oxidation.

    Science.gov (United States)

    Boyatzis, Amber E; Bringans, Scott D; Piggott, Matthew J; Duong, Marisa N; Lipscombe, Richard J; Arthur, Peter G

    2017-05-05

    Oxidative stress, caused by reactive oxygen and nitrogen species (RONS), is important in the pathophysiology of many diseases. A key target of RONS is the thiol group of protein cysteine residues. Because thiol oxidation can affect protein function, mechanistic information about how oxidative stress affects tissue function can be ascertained by identifying oxidized proteins. The probes used must be specific and sensitive, such as maleimides for the alkylation of reduced cysteine thiols. However, we find that maleimide-alkylated peptides (MAPs) are oxidized and hydrolyzed under sample preparation conditions common for proteomic studies. This can result in up to 90% of the MAP signal being converted to oxidized or hydrolyzed MAPs, decreasing the sensitivity of the analysis. A substantial portion of these modifications were accounted for by Coomassie "blue silver" staining (∼14%) of gels and proteolytic digestion buffers (∼20%). More than 40% of the MAP signal can be retained with the use of thioglycolic acid during gel electrophoresis, trichloroethanol-UV protein visualization in gels, and proteolytic digestion buffer of pH 7.0 TRIS. This work demonstrates that it is possible to decrease modifications to MAPs through changes to the sample preparation workflow, enhancing the potential usefulness of maleimide in identifying oxidized peptides.

  14. Reproductive Benefit of Oxidative Damage: An Oxidative Stress “Malevolence”?

    Directory of Open Access Journals (Sweden)

    B. Poljsak

    2011-01-01

    Full Text Available High levels of reactive oxygen species (ROS compared to antioxidant defenses are considered to play a major role in diverse chronic age-related diseases and aging. Here we present an attempt to synthesize information about proximate oxidative processes in aging (relevant to free radical or oxidative damage hypotheses of aging with an evolutionary scenario (credited here to Dawkins hypotheses involving tradeoffs between the costs and benefits of oxidative stress to reproducing organisms. Oxidative stress may be considered a biological imperfection; therefore, the Dawkins' theory of imperfect adaptation of beings to environment was applied to the role of oxidative stress in processes like famine and infectious diseases and their consequences at the molecular level such as mutations and cell signaling. Arguments are presented that oxidative damage is not necessarily an evolutionary mistake but may be beneficial for reproduction; this may prevail over its harmfulness to health and longevity in evolution. Thus, Dawkins' principle of biological “malevolence” may be an additional biological paradigm for explaining the consequences of oxidative stress.

  15. Automated sequence analysis of atmospheric oxidation pathways: SEQUENCE version 1.0

    Directory of Open Access Journals (Sweden)

    T. M. Butler

    2009-10-01

    Full Text Available An algorithm for the sequential analysis of the atmospheric oxidation of chemical species using output from a photochemical model is presented. Starting at a "root species", the algorithm traverses all possible reaction sequences which consume this species, and lead, via intermediate products, to final products. The algorithm keeps track of the effects of all of these reactions on their respective reactants and products. Upon completion, the algorithm has built a detailed picture of the effects of the oxidation of the root species on its chemical surroundings. The output of the algorithm can be used to determine product yields, radical recycling fractions, and ozone production potentials of arbitrary chemical species.

  16. Genera and species in acetic acid bacteria.

    Science.gov (United States)

    Yamada, Yuzo; Yukphan, Pattaraporn

    2008-06-30

    Taxonomic studies of acetic acid bacteria were historically surveyed. The genus Acetobacter was first introduced in 1898 with a single species, Acetobacter aceti. The genus Gluconobacter was proposed in 1935 for strains with intense oxidation of glucose to gluconic acid rather than oxidation of ethanol to acetic acid and no oxidation of acetate. The genus "Acetomonas" was described in 1954 for strains with polar flagellation and no oxidation of acetate. The proposals of the two generic names were due to confusion, and "Acetomonas" was a junior subjective synonym of Gluconobacter. The genus Acetobacter was in 1984 divided into two subgenera, Acetobacter and Gluconoacetobacter. The latter was elevated to the genus Gluconacetobacter in 1998. In the acetic acid bacteria, ten genera are presently recognized and accommodated to the family Acetobacteraceae, the Alphaproteobacteria: Acetobacteer, Gluconobacter, Acidomonas, Gluconacetobacter, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia and Granulibacter. In contrast, the genus Frateuria, strains of which were once named 'pseudacetic acid bacteria', was classified into the Gammaproteobacteria. The genus Gluconacetobacter was phylogenetically divided into two groups: the Gluconacetobacter liquefaciens group and the Gluconacetobacter xylinus group. The two groups were discussed taxonomically.

  17. Oxidative stress resistance in Porphyromonas gingivalis

    Science.gov (United States)

    Henry, Leroy G; McKenzie, Rachelle ME; Robles, Antonette; Fletcher, Hansel M

    2012-01-01

    Porphyromonas gingivalis, a black-pigmented, Gram-negative anaerobe, is an important etiologic agent of periodontal disease. The harsh inflammatory condition of the periodontal pocket implies that this organism has properties that will facilitate its ability to respond and adapt to oxidative stress. Because the stress response in the pathogen is a major determinant of its virulence, a comprehensive understanding of its oxidative stress resistance strategy is vital. We discuss multiple mechanisms and systems that clearly work in synergy to defend and protect P. gingivalis against oxidative damage caused by reactive oxygen species. The involvement of multiple hypothetical proteins and/or proteins of unknown function in this process may imply other unique mechanisms and potential therapeutic targets. PMID:22439726

  18. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system

    Directory of Open Access Journals (Sweden)

    Okada Futoshi

    2005-09-01

    Full Text Available Abstract Controlled oxidation, such as disulfide bond formation in sperm nuclei and during ovulation, plays a fundamental role in mammalian reproduction. Excess oxidation, however, causes oxidative stress, resulting in the dysfunction of the reproductive process. Antioxidation reactions that reduce the levels of reactive oxygen species are of prime importance in reproductive systems in maintaining the quality of gametes and support reproduction. While anti-oxidative enzymes, such as superoxide dismutase and peroxidase, play a central role in eliminating oxidative stress, reduction-oxidation (redox systems, comprised of mainly glutathione and thioredoxin, function to reduce the levels of oxidized molecules. Aldo-keto reductase, using NADPH as an electron donor, detoxifies carbonyl compounds resulting from the oxidation of lipids and proteins. Thus, many antioxidative and redox enzyme genes are expressed and aggressively protect gametes and embryos in reproductive systems.

  19. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    Science.gov (United States)

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  20. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry.

    Science.gov (United States)

    Guo, Zhen; Liu, Bin; Zhang, Qinghong; Deng, Weiping; Wang, Ye; Yang, Yanhui

    2014-05-21

    Oxidation catalysis not only plays a crucial role in the current chemical industry for the production of key intermediates such as alcohols, epoxides, aldehydes, ketones and organic acids, but also will contribute to the establishment of novel green and sustainable chemical processes. This review is devoted to dealing with selective oxidation reactions, which are important from the viewpoint of green and sustainable chemistry and still remain challenging. Actually, some well-known highly challenging chemical reactions involve selective oxidation reactions, such as the selective oxidation of methane by oxygen. On the other hand some important oxidation reactions, such as the aerobic oxidation of alcohols in the liquid phase and the preferential oxidation of carbon monoxide in hydrogen, have attracted much attention in recent years because of their high significance in green or energy chemistry. This article summarizes recent advances in the development of new catalytic materials or novel catalytic systems for these challenging oxidation reactions. A deep scientific understanding of the mechanisms, active species and active structures for these systems are also discussed. Furthermore, connections among these distinct catalytic oxidation systems are highlighted, to gain insight for the breakthrough in rational design of efficient catalytic systems for challenging oxidation reactions.

  1. Oxidizer Scoping Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chancellor, Christopher John [Los Alamos National Laboratory

    2016-11-07

    The purpose of this report is to present the results of the acceptable knowledge (AK) review of oxidizers present in active waste streams, provide a technical analysis of the oxidizers, and report the results of the scoping study testing. This report will determine the fastest burning oxidizer to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-002, Sorbent Scoping Studies, contains similar information for sorbents identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.

  2. Extreme exercise and oxidative DNA modification

    DEFF Research Database (Denmark)

    Poulsen, H E; Loft, S; Vistisen, K

    1996-01-01

    Extreme exercise increases oxygen uptake with a potential for increased formation of reactive oxygen species. Damage to biomolecules may occur if such an increase exceeds the protective capacity of antioxidant defence mechanisms. Vigorous exercise amounting to approximately 10 h a day for 30 days...... DNA and/or from cell turnover. Oxidative stress to DNA points to a risk for the development of cancer and premature ageing from extreme exercise....

  3. Radiation, nitric oxide and cellular death

    International Nuclear Information System (INIS)

    Dubner, D.; Perez, M.R. Del; Michelin, S.C.; Gisone, P.A.

    1997-01-01

    The mechanisms of radiation induced cellular death constitute an objective of research ever since the first biological effects of radiation were first observed. The explosion of information produced in the last 20 years calls for a careful analysis due to the apparent contradictory data related to the cellular system studied and the range of doses used. This review focuses on the role of the active oxygen species, in particular the nitric oxides, in its relevance as potential mediator of radiation induced cellular death

  4. Coccidian Infection Causes Oxidative Damage in Greenfinches

    OpenAIRE

    Sepp, Tuul; Karu, Ulvi; Blount, Jonathan D.; Sild, Elin; Männiste, Marju; Hõrak, Peeter

    2012-01-01

    The main tenet of immunoecology is that individual variation in immune responsiveness is caused by the costs of immune responses to the hosts. Oxidative damage resulting from the excessive production of reactive oxygen species during immune response is hypothesized to form one of such costs. We tested this hypothesis in experimental coccidian infection model in greenfinches Carduelis chloris. Administration of isosporan coccidians to experimental birds did not affect indices of antioxidant pr...

  5. METAL OXIDE NANOPARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  6. Aromatics Oxidation and Soot Formation in Flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J. B.; Richter, H.

    2005-03-29

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and the growth process to polycyclic aromatic hydrocarbons (PAH) of increasing size, soot and fullerenes formation in flames. The overall objective of the experimental aromatics oxidation work is to extend the set of available data by measuring concentration profiles for decomposition intermediates such as phenyl, cyclopentadienyl, phenoxy or indenyl radicals which could not be measured with molecular-beam mass spectrometry to permit further refinement and testing of benzene oxidation mechanisms. The focus includes PAH radicals which are thought to play a major role in the soot formation process while their concentrations are in many cases too low to permit measurement with conventional mass spectrometry. The radical species measurements are used in critical testing and improvement of a kinetic model describing benzene oxidation and PAH growth. Thermodynamic property data of selected species are determined computationally, for instance using density functional theory (DFT). Potential energy surfaces are explored in order to identify additional reaction pathways. The ultimate goal is to understand the conversion of high molecular weight compounds to nascent soot particles, to assess the roles of planar and curved PAH and relationships between soot and fullerenes formation. The specific aims are to characterize both the high molecular weight compounds involved in the nucleation of soot particles and the structure of soot including internal nanoscale features indicative of contributions of planar and/or curved PAH to particle inception.

  7. Molecular water oxidation catalysis

    CERN Document Server

    Llobet, Antoni

    2014-01-01

    Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most importan

  8. Fluorine compounds for doping conductive oxide thin films

    Science.gov (United States)

    Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

    2013-04-23

    Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

  9. The species in primatology.

    Science.gov (United States)

    Groves, Colin

    2014-01-01

    Biologists of the late eighteenth and early nineteenth centuries all bandied about the term "species," but very rarely actually said what they meant by it. Often, however, one can get inside their thinking by piecing together some of their remarks. One of the most nearly explicit-appropriately, for the man who wrote a book called The Origin of Species - was Charles Darwin: "Practically, when a naturalist can unite two forms together by others having intermediate characters, he treats the one as a variety of the other… He later translated this into evolutionary terms: "Hereafter, we shall be compelled to acknowledge that the only distinction between species and well-marked varieties is, that the latter are known, or believed, to be connected at the present day by intermediate gradations, whereas species were formerly thus connected"(1:484-5.) Copyright © 2014 Wiley Periodicals, Inc.

  10. Hierarchical species distribution models

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.

    2016-01-01

    Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.

  11. Endangered Species: Pesticide Restrictions

    Science.gov (United States)

    Our goal is to protect threatened and endangered species and their habitats, without placing unnecessary burden on agriculture and pesticide users. Pesticide limitations are developed to ensure safe use of pesticides in order to meet this goal.

  12. Threatened & Endangered Species Occurrences

    Data.gov (United States)

    Kansas Data Access and Support Center — The database consists of a single statewide coverage of location records for 54 species contained in the Kansas Natural Heritage Inventory database of the Kansas...

  13. Nivalenol induces oxidative stress and increases deoxynivalenol pro-oxidant effect in intestinal epithelial cells.

    Science.gov (United States)

    Del Regno, Marisanta; Adesso, Simona; Popolo, Ada; Quaroni, Andrea; Autore, Giuseppina; Severino, Lorella; Marzocco, Stefania

    2015-06-01

    Mycotoxins are secondary fungal metabolites often found as contaminants in almost all agricultural commodities worldwide, and the consumption of food or feed contaminated by mycotoxins represents a major risk for human and animal health. Reactive oxygen species are normal products of cellular metabolism. However, disproportionate generation of reactive oxygen species poses a serious problem to bodily homeostasis and causes oxidative tissue damage. In this study we analyzed the effect of two trichothecenes mycotoxins: nivalenol and deoxynivalenol, alone and in combination, on oxidative stress in the non-tumorigenic intestinal epithelial cell line IEC-6. Our results indicate the pro-oxidant nivalenol effect in IEC-6, the stronger pro-oxidant effect of nivalenol when compared to deoxynivalenol and, interestingly, that nivalenol increases deoxynivalenol pro-oxidative effects. Mechanistic studies indicate that the observed effects were mediated by NADPH oxidase, calcium homeostasis alteration, NF-kB and Nrf2 pathways activation and by iNOS and nitrotyrosine formation. The toxicological interaction by nivalenol and deoxynivalenol reported in this study in IEC-6, points out the importance of the toxic effect of these mycotoxins, mostly in combination, further highlighting the risk assessment process of these toxins that are of growing concern. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Heat stable peroxidases from Vigna species (V) | Mbassi | African ...

    African Journals Online (AJOL)

    Shoots of three landraces of a Vigna species from two climatic areas of Cameroon were evaluated for their content of heat-resistant peroxidases. The peroxidase activity in the three landraces was detected with a greater catalytic efficiency for oxidation of O-dianisidine relative to ABTS (2, 2'-azino-bis-(3- ...

  15. Formation of reactive oxygen species in rat epithelial cells upon ...

    Indian Academy of Sciences (India)

    Unknown

    < 100 nm) that contributed 31% to the particle number. In our study, we investigated the influence of fly ash on the promotion of early inflammatory reactions like the formation of reactive oxygen species (ROS) in rat lung epithelial cells (RLE-6TN). Furthermore, we determined the formation of nitric oxide (NO). The cells show a.

  16. Formation of reactive oxygen species in rat epithelial cells upon ...

    Indian Academy of Sciences (India)

    In our study, we investigated the influence of fly ash on the promotion of early inflammatory reactions like the formation of reactive oxygen species (ROS) in rat lung epithelial cells (RLE-6TN). Furthermore, we determined the formation of nitric oxide (NO). The cells show a clear dose-response relationship concerning the ...

  17. Solution species of 239Pu [V] in the environment

    International Nuclear Information System (INIS)

    Rai, D.; Serne, R.J.; Swanson, J.L.

    1978-01-01

    Information regarding the oxidation states of Pu in environmental samples is needed for estimating its migration through the geologic media. Thermodynamic data were used to develop stability fields for different Pu species. The data indicate that in the Eh-pH range of natural aqueous environments, the dominant species of Pu is likely to be Pu[V] in relatively oxidizing environments and Pu[III] in reducing environments. Because of the lack of methods of determining Pu[V] in environmental samples containing trace concentrations of Pu, Pu[V] has not been previously identified in these samples. Plutonium [VI] is generally assumed to be the dominant species in relatively oxidizing environments. However, a combination of solvent extraction and spectrophotometric techniques used in this study show that solutions (> 10 -5 4 M Pu) in equilibrium with 239 Pu[IV] hydroxide contain Pu[V], which is in agreement with the thermodynamic predictions. Although this method could not be used conclusively with the remaining solutions ( -5 4 M Pu) contacting 239 Pu[IV] hydroxide and 239 PuO 2 , the solvent extraction and Eh-pH results are similar for all the samples suggesting the strong possibility that all samples contain Pu[V]. Thus the possibility, ignored in the past, that Pu[V] may be the dominant species in relatively oxidizing environments should be considered

  18. Protective systems against active oxygen species in Spinach ...

    African Journals Online (AJOL)

    yakoub@AHMED

    The production oř superoxide radical (O. ‡) can induce lipid peroxidation and oxidation oř proteins and nucleic acids. As protection against toxic O species, chloroplasts ... cultivars accumulate anthocyanin pigments in epidermal tissue oř the mesocotyl (Orczyk ... The photosynthetic apparatus and pigments should be most.

  19. Pyrrolizidine alkaloids from Bulgarian species of the genus Senecio

    Directory of Open Access Journals (Sweden)

    NADEZHDA KOSTOVA

    2006-12-01

    Full Text Available Nine Bulgarian species from the genus Senecio were studied phytochemically and/or by GC-MS analysis. Senecivernine-N-oxide was isolated and identified by spectral data for the first time. Different types of pyrrolizidine alkaloids were tested for cytotoxicity on murine lymphocytes. At a concentration of 100 µg/ml, the alkaloid retroisosenine showed immunosuppressive effect.

  20. Wood Species Recognition System

    OpenAIRE

    Bremananth R; Nithya B; Saipriya R

    2009-01-01

    The proposed system identifies the species of the wood using the textural features present in its barks. Each species of a wood has its own unique patterns in its bark, which enabled the proposed system to identify it accurately. Automatic wood recognition system has not yet been well established mainly due to lack of research in this area and the difficulty in obtaining the wood database. In our work, a wood recognition system has been designed based on pre-processing te...

  1. Sub specie aeternitatis

    Directory of Open Access Journals (Sweden)

    Laura Gioeni

    2012-10-01

    Full Text Available Per delineare il rapporto tra etica ed estetica nell'architettura e rispondere alla domanda principale «che cosa è o dovrebbe essere un buon architetto?», il saggio discute la tesi di Wittgenstein secondo cui «l'opera d'arte è l'oggetto visto sub specie aeternitatis e la vita buona è il mondo visto sub specie aeternitatis. Questa è la connessione tra arte ed etica».

  2. Protein oxidation in aging and the removal of oxidized proteins.

    Science.gov (United States)

    Höhn, Annika; König, Jeannette; Grune, Tilman

    2013-10-30

    Reactive oxygen species (ROS) are generated constantly within cells at low concentrations even under physiological conditions. During aging the levels of ROS can increase due to a limited capacity of antioxidant systems and repair mechanisms. Proteins are among the main targets for oxidants due to their high rate constants for several reactions with ROS and their abundance in biological systems. Protein damage has an important influence on cellular viability since most protein damage is non-repairable, and has deleterious consequences on protein structure and function. In addition, damaged and modified proteins can form cross-links and provide a basis for many senescence-associated alterations and may contribute to a range of human pathologies. Two proteolytic systems are responsible to ensure the maintenance of cellular functions: the proteasomal (UPS) and the lysosomal system. Those degrading systems provide a last line of antioxidative protection, removing irreversible damaged proteins and recycling amino acids for the continuous protein synthesis. But during aging, both systems are affected and their proteolytic activity declines significantly. Here we highlight the recent advantages in the understanding of protein oxidation and the fate of these damaged proteins during aging. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Mechanism of Neonicotinoid Toxicity: Impact on Oxidative Stress and Metabolism.

    Science.gov (United States)

    Wang, Xu; Anadón, Arturo; Wu, Qinghua; Qiao, Fang; Ares, Irma; Martínez-Larrañaga, María-Rosa; Yuan, Zonghui; Martínez, María-Aránzazu

    2018-01-06

    Thousands of tons of neonicotinoids are widely used around the world as broad-spectrum systemic insecticides and veterinary drugs. Researchers originally thought that neonicotinoids exhibited low mammalian toxicity. However, following their widespread use, it became increasingly evident that neonicotinoids could have various toxic effects on vertebrates and invertebrates. The primary focus of this review is to summarize the research progress associated with oxidative stress as a plausible mechanism for neonicotinoid-induced toxicity as well as neonicotinoid metabolism. This review summarizes the research conducted over the past decade into the production of reactive oxygen species, reactive nitrogen species, and oxidative stress as aresult of neonicotinoid treatments, along with their correlation with the toxicity and metabolism of neonicotinoids. The metabolism of neonicotinoids and protection of various compounds against neonicotinoid-induced toxicity based on their antioxidative effects is also discussed. This review sheds new light on the critical roles of oxidative stress in neonicotinoid-induced toxicity to nontarget species.

  4. Influence of Acute Coffee Consumption on Postprandial Oxidative Stress

    OpenAIRE

    Bloomer, Richard J.; Trepanowski, John F.; Farney, Tyler M.

    2013-01-01

    Background Coffee has been reported to be rich in antioxidants, with both acute and chronic consumption leading to enhanced blood antioxidant capacity. High-fat feeding is known to result in excess production of reactive oxygen and nitrogen species, promoting a condition of postprandial oxidative stress. Methods We tested the hypothesis that coffee intake following a high-fat meal would attenuate the typical increase in blood oxidative stress during the acute postprandial period. On 3 differe...

  5. Isoxazole derivatives as new nitric oxide elicitors in plants

    Directory of Open Access Journals (Sweden)

    Anca Oancea

    2017-04-01

    Full Text Available Several 3,5-disubstituted isoxazoles were obtained in good yields by regiospecific 1,3-dipolar cycloaddition reactions between aromatic nitrile oxides, generated in situ from the corresponding hydroxyimidoyl chlorides, with non-symmetrical activated alkynes in the presence of catalytic amounts of copper(I iodide. Effects of 3,5-disubstituted isoxazoles on nitric oxide and reactive oxygen species generation in Arabidopsis tissues was studied using specific diaminofluoresceine dyes as fluorescence indicators.

  6. Solid oxide electrolysis: Concluding remarks.

    Science.gov (United States)

    Jun, Areum; Ju, Young-Wan; Kim, Guntae

    2015-01-01

    Renewable energy resources such as solar energy, wind energy, hydropower or geothermal energy have attracted significant attention in recent years. Renewable energy sources have to match supply with demand, therefore it is essential that energy storage devices (e.g., secondary batteries) are developed. However, secondary batteries are accompanied with critical problems such as high cost for the limited energy storage capacity and loss of charge over time. Energy storage in the form of chemical species, such as H2 or CO2, have no constraints on energy storage capacity and will also be essential. When plentiful renewable energy exists, for example, it could be used to convert H2O into hydrogen via water electrolysis. Also, renewable energy resources could be used to reduce CO2 into CO and recycle CO2 and H2O into sustainable hydrocarbon fuels in solid oxide electrolysis (SOE).

  7. Cosmological billiards and oxidation

    International Nuclear Information System (INIS)

    De Buyl, S.; Paulot, L.; Henneaux, M.; Julia, B.

    2004-01-01

    We show how the properties of the cosmological billiards provide useful information (spacetime dimension and p-form spectrum) on the oxidation endpoint of the oxidation sequence of gravitational theories. We compare this approach to the other available methods: GL(n,R) subgroups and the superalgebras of dualities. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  8. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  9. Monolithic metal oxide transistors.

    Science.gov (United States)

    Choi, Yongsuk; Park, Won-Yeong; Kang, Moon Sung; Yi, Gi-Ra; Lee, Jun-Young; Kim, Yong-Hoon; Cho, Jeong Ho

    2015-04-28

    We devised a simple transparent metal oxide thin film transistor architecture composed of only two component materials, an amorphous metal oxide and ion gel gate dielectric, which could be entirely assembled using room-temperature processes on a plastic substrate. The geometry cleverly takes advantage of the unique characteristics of the two components. An oxide layer is metallized upon exposure to plasma, leading to the formation of a monolithic source-channel-drain oxide layer, and the ion gel gate dielectric is used to gate the transistor channel effectively at low voltages through a coplanar gate. We confirmed that the method is generally applicable to a variety of sol-gel-processed amorphous metal oxides, including indium oxide, indium zinc oxide, and indium gallium zinc oxide. An inverter NOT logic device was assembled using the resulting devices as a proof of concept demonstration of the applicability of the devices to logic circuits. The favorable characteristics of these devices, including (i) the simplicity of the device structure with only two components, (ii) the benign fabrication processes at room temperature, (iii) the low-voltage operation under 2 V, and (iv) the excellent and stable electrical performances, together support the application of these devices to low-cost portable gadgets, i.e., cheap electronics.

  10. Initial stages of anodic oxidation of silver in sodium hydroxide solution studied by potential sweep voltammetry and ellipsometry

    NARCIS (Netherlands)

    Droog, J.M.M.; Alderliesten, P.T.; Bootsma, G.A.

    1979-01-01

    The first stages of the oxidation of polycrystalline silver electrodes in NaOH solutions were studied by potential sweep voltammetry and ellipsometry. Formation of bulk Ag2O was found to be preceded by dissolution of silver species and deposition of a surface oxide. The equilibrium oxide coverage

  11. Oxidation inhibits PTH receptor signaling and trafficking.

    Science.gov (United States)

    Ardura, Juan A; Alonso, Verónica; Esbrit, Pedro; Friedman, Peter A

    2017-01-22

    Reactive Oxygen Species (ROS) increase during aging, potentially affecting many tissues including brain, heart, and bone. ROS alter signaling pathways and constitute potential therapeutic targets to limit oxidative damaging effects in aging-associated diseases. Parathyroid hormone receptors (PTHR) are widely expressed and PTH is the only anabolic therapy for osteoporosis. The effects of oxidative stress on PTHR signaling and trafficking have not been elucidated. Here, we used Fluorescence Resonance Energy Transfer (FRET)-based cAMP, ERK, and calcium fluorescent biosensors to analyze the effects of ROS on PTHR signaling and trafficking by live-cell imaging. PTHR internalization and recycling were measured in HEK-293 cells stably transfected with HA-PTHR. PTH increased cAMP production, ERK phosphorylation, and elevated intracellular calcium. Pre-incubation with H 2 O 2 reduced all PTH-dependent signaling pathways. These inhibitory effects were not a result of PTH oxidation since PTH incubated with H 2 O 2 triggered similar responses. PTH promoted internalization and recycling of the PTHR. Both events were significantly reduced by H 2 O 2 pre-incubation. These findings highlight the role of oxidation on PTHR signaling and trafficking, and suggest the relevance of ROS as a putative target in diseases associated with oxidative stress such as age-related osteoporosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yosuke Kayama

    2015-10-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM. DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD, cardiac hypertrophy, and heart failure (HF. HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS. ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.

  13. Coccidian infection causes oxidative damage in greenfinches.

    Science.gov (United States)

    Sepp, Tuul; Karu, Ulvi; Blount, Jonathan D; Sild, Elin; Männiste, Marju; Hõrak, Peeter

    2012-01-01

    The main tenet of immunoecology is that individual variation in immune responsiveness is caused by the costs of immune responses to the hosts. Oxidative damage resulting from the excessive production of reactive oxygen species during immune response is hypothesized to form one of such costs. We tested this hypothesis in experimental coccidian infection model in greenfinches Carduelis chloris. Administration of isosporan coccidians to experimental birds did not affect indices of antioxidant protection (TAC and OXY), plasma triglyceride and carotenoid levels or body mass, indicating that pathological consequences of infection were generally mild. Infected birds had on average 8% higher levels of plasma malondialdehyde (MDA, a toxic end-product of lipid peroxidation) than un-infected birds. The birds that had highest MDA levels subsequent to experimental infection experienced the highest decrease in infection intensity. This observation is consistent with the idea that oxidative stress is a causative agent in the control of coccidiosis and supports the concept of oxidative costs of immune responses and parasite resistance. The finding that oxidative damage accompanies even the mild infection with a common parasite highlights the relevance of oxidative stress biology for the immunoecological research.

  14. Coccidian infection causes oxidative damage in greenfinches.

    Directory of Open Access Journals (Sweden)

    Tuul Sepp

    Full Text Available The main tenet of immunoecology is that individual variation in immune responsiveness is caused by the costs of immune responses to the hosts. Oxidative damage resulting from the excessive production of reactive oxygen species during immune response is hypothesized to form one of such costs. We tested this hypothesis in experimental coccidian infection model in greenfinches Carduelis chloris. Administration of isosporan coccidians to experimental birds did not affect indices of antioxidant protection (TAC and OXY, plasma triglyceride and carotenoid levels or body mass, indicating that pathological consequences of infection were generally mild. Infected birds had on average 8% higher levels of plasma malondialdehyde (MDA, a toxic end-product of lipid peroxidation than un-infected birds. The birds that had highest MDA levels subsequent to experimental infection experienced the highest decrease in infection intensity. This observation is consistent with the idea that oxidative stress is a causative agent in the control of coccidiosis and supports the concept of oxidative costs of immune responses and parasite resistance. The finding that oxidative damage accompanies even the mild infection with a common parasite highlights the relevance of oxidative stress biology for the immunoecological research.

  15. Trace methane oxidation studied in several Euryarchaeota under diverse conditions

    Directory of Open Access Journals (Sweden)

    James J. Moran

    2005-01-01

    Full Text Available We used 13C-labeled methane to document the extent of trace methane oxidation by Archaeoglobus fulgidus, Archaeoglobus lithotrophicus, Archaeoglobus profundus, Methanobacterium thermoautotrophicum, Methanosarcina barkeri and Methanosarcina acetivorans. The results indicate trace methane oxidation during growth varied among different species and among methanogen cultures grown on different substrates. The extent of trace methane oxidation by Mb. thermoautotrophicum (0.05 ± 0.04%, ± 2 standard deviations of the methane produced during growth was less than that by M. barkeri (0.15 ± 0.04%, grown under similar conditions with H2 and CO2. Methanosarcina acetivorans oxidized more methane during growth on trimethylamine (0.36 ± 0.05% than during growth on methanol (0.07 ± 0.03%. This may indicate that, in M. acetivorans, either a methyltransferase related to growth on trimethylamine plays a role in methane oxidation, or that methanol is an intermediate of methane oxidation. Addition of possible electron acceptors (O2, NO3–, SO22–, SO32– or H2 to the headspace did not substantially enhance or diminish methane oxidation in M. acetivorans cultures. Separate growth experiments with FAD and NAD+ showed that inclusion of these electron carriers also did not enhance methane oxidation. Our results suggest trace methane oxidized during methanogenesis cannot be coupled to the reduction of these electron acceptors in pure cultures, and that the mechanism by which methane is oxidized in methanogens is independent of H2 concentration. In contrast to the methanogens, species of the sulfate-reducing genus Archaeoglobus did not significantly oxidize methane during growth (oxidizing 0.003 ± 0.01% of the methane provided to A. fulgidus, 0.002 ± 0.009% to A. lithotrophicus and 0.003 ± 0.02% to A. profundus. Lack of observable methane oxidation in the three Archaeoglobus species examined may indicate that methyl-coenzyme M reductase, which is not present in

  16. Anticholinesterase Toxicity and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Dejan Milatovic

    2006-01-01

    Full Text Available Anticholinesterase compounds, organophosphates (OPs and carbamates (CMs are commonly used for a variety of purposes in agriculture and in human and veterinary medicine. They exert their toxicity in mammalian system primarily by virtue of acetylcholinesterase (AChE inhibition at the synapses and neuromuscular junctions, leading into the signs of hypercholinergic preponderance. However, the mechanism(s involved in brain/muscle damage appear to be linked with alteration in antioxidant and the scavenging system leading to free radical-mediated injury. OPs and CMs cause excessive formation of F2-isoprostanes and F4-neuroprostanes, in vivo biomarkers of lipid peroxidation and generation of reactive oxygen species (ROS, and of citrulline, a marker of NO/NOS and reactive nitrogen species (RNS generation. In addition, during the course of these excitatory processes and inhibition of AChE, a high rate of ATP consumption, coupled with the inhibition of oxidative phosphorylation, compromise the cell's ability to maintain its energy levels and excessive amounts of ROS and RNS may be generated. Pretreatment with N-methyl D-aspartate (NMDA receptor antagonist memantine, in combination with atropine sulfate, provides significant protection against inhibition of AChE, increases of ROS/RNS, and depletion of high-energy phosphates induced by DFP/carbofuran. Similar antioxidative effects are observed with a spin trapping agent, phenyl-N-tert-butylnitrone (PBN or chain breaking antioxidant vitamin E. This review describes the mechanisms involved in anticholinesterase-induced oxidative/nitrosative injury in target organs of OPs/CMs, and protection by various agents.

  17. Transformation of a Cp*-iridium(III) precatalyst for water oxidation when exposed to oxidative stress.

    Science.gov (United States)

    Zuccaccia, Cristiano; Bellachioma, Gianfranco; Bortolini, Olga; Bucci, Alberto; Savini, Arianna; Macchioni, Alceo

    2014-03-17

    The reaction of [Cp*Ir(bzpy)NO3 ] (1; bzpy=2-benzoylpyridine, Cp*=pentamethylcyclopentadienyl anion), a competent water-oxidation catalyst, with several oxidants (H2 O2 , NaIO4 , cerium ammonium nitrate (CAN)) was studied to intercept and characterize possible intermediates of the oxidative transformation. NMR spectroscopy and ESI-MS techniques provided evidence for the formation of many species that all had the intact Ir-bzpy moiety and a gradually more oxidized Cp* ligand. Initially, an oxygen atom is trapped in between two carbon atoms of Cp* and iridium, which gives an oxygen-Ir coordinated epoxide, whereas the remaining three carbon atoms of Cp* are involved in a η(3) interaction with iridium (2 a). Formal addition of H2 O to 2 a or H2 O2 to 1 leads to 2 b, in which a double MeCOH functionalization of Cp* is present with one MeCOH engaged in an interaction with iridium. The structure of 2 b was unambiguously determined in the solid state and in solution by X-ray single-crystal diffractometry and advanced NMR spectroscopic techniques, respectively. Further oxidation led to the opening of Cp* and transformation of the diol into a diketone with one carbonyl coordinated at the metal (2 c). A η(3) interaction between the three non-oxygenated carbons of "ex-Cp*" and iridium is also present in both 2 b and 2 c. Isolated 2 b and mixtures of 2 a-c species were tested in water-oxidation catalysis by using CAN as sacrificial oxidant. They showed substantially the same activity than 1 (turnover frequency values ranged from 9 to 14 min(-1) ). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Oxidative Stress in Cystinosis Patients

    Directory of Open Access Journals (Sweden)

    Maria Helena Vaisbich

    2011-09-01

    Full Text Available Background/Aims: Nephropathic cystinosis (NC is a severe systemic disease and cysteamine improves its prognosis. Lysosomal cystine accumulation is the hallmark of cystinosis and is regarded as the primary defect due to mutations in the CTNS gene. However, there is great evidence that cystine accumulation itself is not responsible for all abnormalities observed in NC. Studies have demonstrated altered ATP metabolism, increased apoptosis, and cell oxidation. An increased number of autophagosomes and autophagic vacuoles have been observed in cystinotic fibroblasts and renal epithelial cells, suggesting that altered autophagy plays a role in NC, leading to increased production of reactive oxygen species. Therefore, cystinosis patients can be more susceptible to oxidative stress (OS and it can contribute to the progression of the renal disease. Our goal was to evaluate a marker of OS (serum TBARS in NC children, and to compare the results with those observed in healthy controls and correlated with renal function parameters. Methods: The study included patients aged under 18 years, with good adherence to the treatment and out of renal replacement therapy. The following parameters were evaluated: serum creatinine, BUN, creatinine clearance estimated by stature and serum TBARS levels. Results: We selected 20 patients aged 8.0 ±3.6 years and observed serum TBARS levels of 4.03 ±1.02 nmol/ml. Serum TBARS levels in the 43 healthy controls, aged 7.4 ±1.1 years, were 1.60 ±0.04 nmol/ml. There was a significant difference between the plasma TBARS levels among the 2 groups (p Conclusion: An increased level of serum TBARS in patients with NC was observed and this abnormality was not correlated with the renal function status degree. This is the first report that shows increased oxidative stress in serum of NC patients.

  19. Death from Nitrous Oxide.

    Science.gov (United States)

    Bäckström, Björn; Johansson, Bengt; Eriksson, Anders

    2015-11-01

    Nitrous oxide is an inflammable gas that gives no smell or taste. It has a history of abuse as long as its clinical use, and deaths, although rare, have been reported. We describe two cases of accidental deaths related to voluntary inhalation of nitrous oxide, both found dead with a gas mask covering the face. In an attempt to find an explanation to why the victims did not react properly to oncoming hypoxia, we performed experiments where a test person was allowed to breath in a closed system, with or without nitrous oxide added. Vital signs and gas concentrations as well as subjective symptoms were recorded. The experiments indicated that the explanation to the fact that neither of the descendents had reacted to oncoming hypoxia and hypercapnia was due to the inhalation of nitrous oxide. This study raises the question whether nitrous oxide really should be easily, commercially available. © 2015 American Academy of Forensic Sciences.

  20. Diabetes mellitus and oxidative stress—A concise review

    Directory of Open Access Journals (Sweden)

    Asmat Ullah

    2016-09-01

    Full Text Available Human body is continuously exposed to different types of agents that results in the production of reactive species called as free radicals (ROS/RNS which by the transfer of their free unpaired electron causes the oxidation of cellular machinery. In order to encounter the deleterious effects of such species, body has got endogenous antioxidant systems or it obtains exogenous antioxidants from diet that neutralizes such species and keeps the homeostasis of body. Any imbalance between the RS and antioxidants leads to produce a condition known as “oxidative stress” that results in the development of pathological condition among which one is diabetes. Most of the studies reveal the inference of oxidative stress in diabetes pathogenesis by the alteration in enzymatic systems, lipid peroxidation, impaired Glutathione metabolism and decreased Vitamin C levels. Lipids, proteins, DNA damage, Glutathione, catalane and superoxide dismutase are various biomarkers of oxidative stress in diabetes mellitus. Oxidative stress induced complications of diabetes may include stroke, neuropathy, retinopathy and nephropathy. The basic aim of this review was to summarize the basics of oxidative stress in diabetes mellitus.

  1. Oxidative Stress and Antioxidant Potential of One Hundred Medicinal Plants.

    Science.gov (United States)

    Hassan, Waseem; Noreen, Hamsa; Rehman, Shakila; Gul, Shehnaz; Kamal, Mohammad Amjad; Kamdem, Jean Paul; Zaman, Bakht; da Rocha, Joao B T

    2017-01-01

    Reactive species are produced in biological system because of redox reactions. The imbalance in pro-oxidant and antioxidant homeostasis leads to the production of toxic reactive oxygen and nitrogen species like hydrogen peroxide, organic peroxides, hydroxyl radicals, superoxide anion and nitric oxide. Inactivation of metabolic enzymes, oxidation of biomolecules and cellular damage are some of the prominent characteristics of reactive species. Similarly, oxidative stress has been associated with more than one hundred (100) pathologies such as atherosclerosis, diabetes, cardiovascular diseases, pancreatic and liver diseases, joint disorders, cardiac fibrosis, acute respiratory distress syndrome, neurological diseases (amyotrophic lateral sclerosis, Huntington's disorder, Parkinson's disease and Alzheimer's disease), ageing and cancer etc. The toxicity of reactive species is balanced by the integrated antioxidant systems, which include enzymatic and non-enzymatic antioxidants. Antioxidant therapies or defenses protect the biological sites by removing or quenching the free radicals (prooxidants). Medicinal plants can not only protect the oxidative damage, but also play a vital role in health maintenance and prevention of chronic degenerative diseases. This review will provide a valuable discussion of one hundred (100) well known medicinal plants, which may add to the optimization of antioxidants rank. Besides, some of the antioxidant evaluation techniques or mechanisms via which medicinal plants act as antioxidants are also described. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Oxidative stress promotes benign prostatic hyperplasia.

    Science.gov (United States)

    Vital, Paz; Castro, Patricia; Ittmann, Michael

    2016-01-01

    Benign prostatic hyperplasia (BPH) is characterized by increased tissue mass in the transition zone of the prostate, which leads to obstruction of urine outflow and significant morbidity in the majority of older men. Plasma markers of oxidative stress are increased in men with BPH but it is unclear whether oxidative stress and/or oxidative DNA damage are causal in the pathogenesis of BPH. Levels of 8-OH deoxyguanosine (8-OH dG), a marker of oxidative stress, were measured in prostate tissues from normal transition zone and BPH by ELISA. 8-OH dG was also detected in tissues by immunohistochemistry and staining quantitated by image analysis. Nox4 promotes the formation of reactive oxygen species. We therefore created and characterized transgenic mice with prostate specific expression of Nox4 under the control of the prostate specific ARR2PB promoter. Human BPH tissues contained significantly higher levels of 8-OH dG than control transition zone tissues and the levels of 8-OH dG were correlated with prostate weight. Cells with 8-OH dG staining were predominantly in the epithelium and were present in a patchy distribution. The total fraction of epithelial staining with 8-OH dG was significantly increased in BPH tissues by image analysis. The ARR2PB-Nox4 mice had increased oxidative DNA damage in the prostate, increased prostate weight, increased epithelial proliferation, and histological changes including epithelial proliferation, stromal thickening, and fibrosis when compared to wild type controls. Oxidative stress and oxidative DNA damage are important in the pathogenesis of BPH. © 2015 Wiley Periodicals, Inc.

  3. Thermochromatography study of volatile tellurium species in various gas atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Maugeri, Emilio Andrea; Neuhausen, Jörg, E-mail: joerg.neuhausen@psi.ch; Eichler, Robert; Piguet, David; Schumann, Dorothea

    2014-09-15

    The adsorption interaction of tellurium species with fused silica was studied by thermochromatography. Trace amounts of tellurium were obtained by irradiating elemental tin with α-particles. Different tellurium species were obtained using carrier gases with varied redox potential. Adsorption enthalpies of the obtained species were calculated allowing for the identification of some species. Elemental tellurium or SnTe was deposited in thermochromatography experiments when using both dried and deoxygenated He and H{sub 2} as carrier gases. Tellurium dioxide was deposited in thermochromatography experiments when using dry oxygen as carrier gas. Tellurium dioxide was found to be significantly less volatile compared to elemental Te or SnTe. The deposition of a species with still lower volatility occurring under less oxidizing conditions was tentatively assigned to tellurium monoxide, TeO. Species more volatile than elemental tellurium or SnTe, most likely Te-hydroxides, were detected in experiments using moist H{sub 2} as carrier gas. In moist oxidizing gas, species more volatile than TeO{sub 2} were found, most likely Te-oxyhydroxides. The obtained results provide valuable input to design experiments for studying the volatility of tellurium’s heavier homologue polonium and its compounds, which represent one of the major radiological concerns for the use of lead–bismuth-eutectic as coolant and target material for innovative accelerator-driven systems or spallation sources.

  4. Thermochromatography study of volatile tellurium species in various gas atmospheres

    Science.gov (United States)

    Maugeri, Emilio Andrea; Neuhausen, Jörg; Eichler, Robert; Piguet, David; Schumann, Dorothea

    2014-09-01

    The adsorption interaction of tellurium species with fused silica was studied by thermochromatography. Trace amounts of tellurium were obtained by irradiating elemental tin with α-particles. Different tellurium species were obtained using carrier gases with varied redox potential. Adsorption enthalpies of the obtained species were calculated allowing for the identification of some species. Elemental tellurium or SnTe was deposited in thermochromatography experiments when using both dried and deoxygenated He and H2 as carrier gases. Tellurium dioxide was deposited in thermochromatography experiments when using dry oxygen as carrier gas. Tellurium dioxide was found to be significantly less volatile compared to elemental Te or SnTe. The deposition of a species with still lower volatility occurring under less oxidizing conditions was tentatively assigned to tellurium monoxide, TeO. Species more volatile than elemental tellurium or SnTe, most likely Te-hydroxides, were detected in experiments using moist H2 as carrier gas. In moist oxidizing gas, species more volatile than TeO2 were found, most likely Te-oxyhydroxides. The obtained results provide valuable input to design experiments for studying the volatility of tellurium's heavier homologue polonium and its compounds, which represent one of the major radiological concerns for the use of lead-bismuth-eutectic as coolant and target material for innovative accelerator-driven systems or spallation sources.

  5. Oxide Protective Coats for Ir/Re Rocket Combustion Chambers

    Science.gov (United States)

    Fortini, Arthur; Tuffias, Robert H.

    2003-01-01

    An improved material system has been developed for rocket engine combustion chambers for burning oxygen/ hydrogen mixtures or novel monopropellants, which are highly oxidizing at operating temperatures. The baseline for developing the improved material system is a prior iridium/rhenium system for chambers burning nitrogen tetroxide/monomethyl hydrazine mixtures, which are less oxidizing. The baseline combustion chamber comprises an outer layer of rhenium that provides structural support, plus an inner layer of iridium that acts as a barrier to oxidation of the rhenium. In the improved material system, the layer of iridium is thin and is coated with a thermal fatigue-resistant refractory oxide (specifically, hafnium oxide) that serves partly as a thermal barrier to decrease the temperature and thus the rate of oxidation of the rhenium. The oxide layer also acts as a barrier against the transport of oxidizing species to the surface of the iridium. Tests in which various oxygen/hydrogen mixtures were burned in iridium/rhenium combustion chambers lined with hafnium oxide showed that the operational lifetimes of combustion chambers of the improved material system are an order of magnitude greater than those of the baseline combustion chambers.

  6. Oxidation of multiple methionine residues impairs rapid sodium channel inactivation

    Science.gov (United States)

    Kassmann, Mario; Hansel, Alfred; Leipold, Enrico; Birkenbeil, Jan; Lu, Song-Qing; Hoshi, Toshinori; Heinemann, Stefan H.

    2010-01-01

    Reactive oxygen species (ROS) readily oxidize the sulfur-containing amino acids cysteine and methionine (Met). The impact of Met oxidation on the fast inactivation of the skeletal muscle sodium channel NaV1.4 expressed in human embryonic kidney cells was studied by applying the Met-preferring oxidant chloramine-T (ChT) or by irradiating the ROS-producing dye Lucifer Yellow in the patch pipettes. Both interventions dramatically slowed down inactivation of the sodium channels. Replacement of Met in the Ile-Phe-Met inactivation motif with Leu (M1305L) strongly attenuated the oxidizing effect on inactivation but did not eliminate it completely. Mutagenesis of conserved Met residues in the intracellular linkers connecting the membrane-spanning segments of the channel (M1469L and M1470L) also markedly diminished the oxidation sensitivity of the channel, while that of other conserved Met residues (442, 1139, 1154, 1316) were without any noticeable effect. The results of mutagenesis of results, assays of other NaV channel isoforms (NaV1.2, NaV1.5, NaV1.7) and the kinetics of the oxidation-induced removal of inactivation collectively indicate that multiple Met target residues need to be oxidized to completely impair inactivation. This arrangement using multiple Met residues confers a finely graded oxidative modulation of NaV channels and allows organisms to adapt to a variety of oxidative stress conditions, such as ischemic reperfusion. PMID:18369661

  7. [The role of reactive oxygen species (ROS) in arrhythmogenesis].

    Science.gov (United States)

    Tytman, Karol; Kaczmarek, Krzysztof; Lipińska, Stanisława; Wranicz, Jerzy K

    2016-01-01

    Reactive oxygen species (ROS) are the molecular oxygen derivatives that have at least one unpaired electron. Thus, ROS easily react with a number of cell structures causing a change in their functions. ROS produced in small quantities positively affect many cellular mechanisms, but in excess are responsible for the formation of oxidative stress. Oxidative stress is considered a major cause of many diseases, including cardiovascular disease. Abolition of the adverse effects of ROS on organisms in order to maintain redox homeostasis is possible thanks to antioxidants. The research conducted mainly in recent years shows that the formation of arrhythmias may also be related to the phenomenon of oxidative stress. Oxidative damage to cell membranes in particular are causing changes in ion channel activity, which proper functioning is the basis for the formation of normal heart rhythm. Antioxidants seem to play a protective role against the formation of arrhythmias. © 2016 MEDPRESS.

  8. Reactive oxygen species-activated nanomaterials as theranostic agents.

    Science.gov (United States)

    Kim, Kye S; Lee, Dongwon; Song, Chul Gyu; Kang, Peter M

    2015-01-01

    Reactive oxygen species (ROS) are generated from the endogenous oxidative metabolism or from exogenous pro-oxidant exposure. Oxidative stress occurs when there is excessive production of ROS, outweighing the antioxidant defense mechanisms which may lead to disease states. Hydrogen peroxide (H2O2) is one of the most abundant and stable forms of ROS, implicated in inflammation, cellular dysfunction and apoptosis, which ultimately lead to tissue and organ damage. This review is an overview of the role of ROS in different diseases. We will also examine ROS-activated nanomaterials with emphasis on hydrogen peroxide, and their potential medical implications. Further development of the biocompatible, stimuli-activated agent responding to disease causing oxidative stress, may lead to a promising clinical use.

  9. Species Coexistence in Nitrifying Chemostats: A Model of Microbial Interactions

    Directory of Open Access Journals (Sweden)

    Maxime Dumont

    2016-12-01

    Full Text Available In a previous study, the two nitrifying functions (ammonia oxidizing bacteria (AOB or nitrite-oxidizing bacteria (NOB of a nitrification reactor—operated continuously over 525 days with varying inputs—were assigned using a mathematical modeling approach together with the monitoring of bacterial phylotypes. Based on these theoretical identifications, we develop here a chemostat model that does not explicitly include only the resources’ dynamics (different forms of soluble nitrogen but also explicitly takes into account microbial inter- and intra-species interactions for the four dominant phylotypes detected in the chemostat. A comparison of the models obtained with and without interactions has shown that such interactions permit the coexistence of two competing ammonium-oxidizing bacteria and two competing nitrite-oxidizing bacteria in competition for ammonium and nitrite, respectively. These interactions are analyzed and discussed.

  10. Bacterial Electrocatalysis of K4[Fe(CN)6] Oxidation

    DEFF Research Database (Denmark)

    Zheng, Zhiyong; Xiao, Yong; Wu, Ranran

    Shewanella oneidensis MR-1 (MR-1), a model strain of electrochemically active bacteria, can transfer electrons from cell to extracellular electron acceptors including Fe(III) (hydro)oxides. It has been reported that several redox species such as cytochromes in membranes and flavins assist...... in the electron transport (ET) processes. However, the oxidization of metal compounds was barely described. Here we report electrocatalysis of K4[Fe(CN)6] oxidation by MR-1. K4[Fe(CN)6] is a redox inorganic compound and shows a reversible redox process on bare glassy carbon (GCE). This is reflected by a pair...

  11. Pro-oxidant natural products as anticancer agents.

    Science.gov (United States)

    Martin-Cordero, Carmen; Leon-Gonzalez, Antonio Jose; Calderon-Montano, Jose Manuel; Burgos-Moron, Estefania; Lopez-Lazaro, Miguel

    2012-07-01

    Cancer cells produce high levels of reactive oxygen species (ROS) that lead to a state of increased basal oxidative stress. Since this state of oxidative stress makes cancer cells vulnerable to agents that further augment ROS levels, the use of pro-oxidant agents is emerging as an exciting strategy to selectively target tumor cells. Natural products have provided a significant contribution to the development of several drugs currently used in cancer chemotherapy. Although many natural products are known to affect the redox state of the cell, most studies on these compounds have focused on their antioxidant activity instead of on their pro-oxidant properties. This article provides an overview of natural products with pro-oxidant and anticancer activities, with special focus on plant secondary metabolites, and discusses their possible use as cancer chemotherapeutic agents.

  12. Biochemistry and pathology of radical-mediated protein oxidation

    DEFF Research Database (Denmark)

    Dean, R T; Fu, S; Stocker, R

    1997-01-01

    Radical-mediated damage to proteins may be initiated by electron leakage, metal-ion-dependent reactions and autoxidation of lipids and sugars. The consequent protein oxidation is O2-dependent, and involves several propagating radicals, notably alkoxyl radicals. Its products include several......-metal ions and thereby facilitate their reaction with hydroperoxides; and aldehydes may participate in Schiff-base formation and other reactions. Cells can detoxify some of the reactive species, e.g. by reducing protein hydroperoxides to unreactive hydroxides. Oxidized proteins are often functionally...... inactive and their unfolding is associated with enhanced susceptibility to proteinases. Thus cells can generally remove oxidized proteins by proteolysis. However, certain oxidized proteins are poorly handled by cells, and together with possible alterations in the rate of production of oxidized proteins...

  13. Barrier and porous anodic oxides on InSb

    Energy Technology Data Exchange (ETDEWEB)

    Suleiman, A.; Hashimoto, T. [Corrosion and Protection Centre, School of Materials, University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom); Skeldon, P. [Corrosion and Protection Centre, School of Materials, University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom)], E-mail: peter.skeldon@manchester.ac.uk; Thompson, G.E. [Corrosion and Protection Centre, School of Materials, University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom); Echeverria, F. [Dpto de Ing. Metalurgica y de Materiales, Universidad de Antioquia, Oficina 18-240, Calle 67 No. 53-108, A.A. 1226, Medellin (Colombia); Graham, M.J.; Sproule, G.I.; Moisa, S. [Institute for Microstructural Sciences, National Research Council of Canada, Montreal Road, Ottawa, K1A 0R6 (Canada); Habazaki, H. [Graduate Engineering School, Hokkaido University, N13 W8, Kita-ku, Sapporo 060-8628 (Japan); Bailey, P.; Noakes, T.C.Q. [Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom)

    2008-05-15

    Anodizing of InSb at 5 mA cm{sup -2} in sodium tungstate electrolyte is shown to produce barrier-type amorphous oxide at relatively low voltages, to about 40 V, and porous-type amorphous oxide at increased voltages. The barrier-type amorphous oxide, consisting of units of In{sub 2}O{sub 3} and Sb{sub 2}O{sub 3}, distributed relatively uniformly throughout the film, develops at a formation ratio of 2.2 {+-} 0.2 nm V{sup -1}. The outer 15-20% of the film also contains tungsten species. The relatively high efficiency of barrier film growth reduces significantly with transition to porous oxide, which is associated additionally with generation of oxygen at the film surface. The final oxide, at 65 V, comprises pores, of typical diameter 80 nm, orientated approximately normal to the substrate and extending from a barrier region to the film surface.

  14. Rapid heterogeneous oxidation of organic coatings on submicron aerosols

    Science.gov (United States)

    Lim, C. Y.; Browne, E. C.; Sugrue, R. A.; Kroll, J. H.

    2017-03-01

    Laboratory studies have found that heterogeneous oxidation can affect the composition and loading of atmospheric organic aerosol particles over time scales of several days, but most studies have examined pure organic particles only. In this study, in order to probe the reactivity of organic species confined near the particle surface, the rates and products of the OH-initiated oxidation of pure squalane particles are compared to oxidation of thin coatings of squalane on ammonium sulfate particles. The squalane reaction rate constant shows a linear dependence on the organic surface area-to-volume ratio, with rate constants for coated particles up to 10 times larger than for pure particles. Changes in the carbon oxidation state and fraction of particulate carbon remaining show similar enhancements, implying that heterogeneous oxidation may exhibit a stronger effect on the loadings and properties of organic aerosol than previously estimated from laboratory studies.

  15. Oxidative stress can alter the antigenicity of immunodominant peptides

    DEFF Research Database (Denmark)

    Weiskopf, Daniela; Schwanninger, Angelika; Weinberger, Birgit

    2010-01-01

    APCs operate frequently under oxidative stress induced by aging, tissue damage, pathogens, or inflammatory responses. Phagocytic cells produce peroxides and free-radical species that facilitate pathogen clearance and can in the case of APCs, also lead to oxidative modifications of antigenic...... proteins and peptides. Little information is available presently about the consequences of such modifications on the immune response. To model oxidative modification of an immunodominant antigenic peptide, we oxidized the methionine residue of the human CMV pp65(495-503) (NLVPMVATV) peptide...... of antigenic peptides may affect T cell responses severely by binding T cell clones with different affinity. This may lead to an altered immune response against infectious agents as well as against tumor or autoantigens under oxidative stress conditions....

  16. Detection and Measurement of Methionine Oxidation in Proteins.

    Science.gov (United States)

    Sen, K Ilker; Hepler, Robert; Nanda, Hirsh

    2017-02-02

    Methionine oxidation is a prevalent modification found in proteins both in biological settings and in the manufacturing of biotherapeutic molecules. In cells, the oxidation of specific methionine sites can modulate protein function or promote interactions that trigger signaling pathways. In biotherapeutic development, the formation of oxidative species could be detrimental to the efficacy or safety of the drug product. Thus, methionine oxidation is a critical quality attribute that needs to be monitored throughout development. Here we describe a method using LC/MS/MS to identify site-specific methionine modifications in proteins. Antibodies are stressed with hydrogen peroxide, and the level of Met oxidation is compared to that of reference molecules. The protocols presented here are not specific to methionine and can be used more generally to identify other PTM risk sites in molecules after various types of treatments. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  17. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us?

    Directory of Open Access Journals (Sweden)

    Tarique Hussain

    2016-01-01

    Full Text Available Oxidative stress is viewed as an imbalance between the production of reactive oxygen species (ROS and their elimination by protective mechanisms, which can lead to chronic inflammation. Oxidative stress can activate a variety of transcription factors, which lead to the differential expression of some genes involved in inflammatory pathways. The inflammation triggered by oxidative stress is the cause of many chronic diseases. Polyphenols have been proposed to be useful as adjuvant therapy for their potential anti-inflammatory effect, associated with antioxidant activity, and inhibition of enzymes involved in the production of eicosanoids. This review aims at exploring the properties of polyphenols in anti-inflammation and oxidation and the mechanisms of polyphenols inhibiting molecular signaling pathways which are activated by oxidative stress, as well as the possible roles of polyphenols in inflammation-mediated chronic disorders. Such data can be helpful for the development of future antioxidant therapeutics and new anti-inflammatory drugs.

  18. DNA damage in Fabry patients: An investigation of oxidative damage and repair.

    Science.gov (United States)

    Biancini, Giovana Brondani; Moura, Dinara Jaqueline; Manini, Paula Regina; Faverzani, Jéssica Lamberty; Netto, Cristina Brinckmann Oliveira; Deon, Marion; Giugliani, Roberto; Saffi, Jenifer; Vargas, Carmen Regla

    2015-06-01

    Fabry disease (FD) is a lysosomal storage disorder associated with loss of activity of the enzyme α-galactosidase A. In addition to accumulation of α-galactosidase A substrates, other mechanisms may be involved in FD pathophysiology, such as inflammation and oxidative stress. Higher levels of oxidative damage to proteins and lipids in Fabry patients were previously reported. However, DNA damage by oxidative species in FD has not yet been studied. We investigated basal DNA damage, oxidative DNA damage, DNA repair capacity, and reactive species generation in Fabry patients and controls. To measure oxidative damage to purines and pyrimidines, the alkaline version of the comet assay was used with two endonucleases, formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (EndoIII). To evaluate DNA repair, a challenge assay with hydrogen peroxide was performed. Patients presented significantly higher levels of basal DNA damage and oxidative damage to purines. Oxidative DNA damage was induced in both DNA bases by H2O2 in patients. Fabry patients presented efficient DNA repair in both assays (with and without endonucleases) as well as significantly higher levels of oxidative species (measured by dichlorofluorescein content). Even if DNA repair be induced in Fabry patients (as a consequence of continuous exposure to oxidative species), the repair is not sufficient to reduce DNA damage to control levels. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. CO and Soot Oxidation over Ce-Zr-Pr Oxide Catalysts.

    Science.gov (United States)

    Andana, Tahrizi; Piumetti, Marco; Bensaid, Samir; Russo, Nunzio; Fino, Debora; Pirone, Raffaele

    2016-12-01

    A set of ceria, ceria-zirconia (Ce 80 at.%, Zr 20 at.%), ceria-praseodymia (Ce 80 at.%, Pr 20 at.%) and ceria-zirconia-praseodymia (Ce 80 at.%, Zr 10 at.% and Pr 10 at.%) catalysts has been prepared by the solution combustion synthesis (SCS). The effects of Zr and Pr as dopants on ceria have been studied in CO and soot oxidation reactions. All the prepared catalysts have been characterized by complementary techniques, including XRD, FESEM, N2 physisorption at -196 °C, H2-temperature-programmed reduction, and X-ray photoelectron spectroscopy to investigate the relationships between the structure and composition of materials and their catalytic performance. Better results for CO oxidation have been obtained with mixed oxides (performance scale, Ce80Zr10Pr10 > Ce80Zr20 > Ce80Pr20) rather than pure ceria, thus confirming the beneficial role of multicomponent catalysts for this prototypical reaction. Since CO oxidation occurs via a Mars-van Krevelen (MvK)-type mechanism over ceria-based catalysts, it appears that the presence of both Zr and Pr species into the ceria framework improves the oxidation activity, via collective properties, such as electrical conductivity and surface or bulk oxygen anion mobility. On the other hand, this positive effect becomes less prominent in soot oxidation, since the effect of catalyst morphology prevails.

  20. On the Extreme Oxidation States of Iridium.

    Science.gov (United States)

    Pyykkö, Pekka; Xu, Wen-Hua

    2015-06-22

    It has recently been suggested that the oxidation states of Ir run from the putative -III in the synthesized solid Na3 [Ir(CO)3 ] to the well-documented +IX in the species IrO4 (+) . Furthermore, [Ir(CO)3 ](3-) was identified as an 18-electron species. A closer DFT study now finds support for this picture: The orbitals spanned by the 6s,6p,5d orbitals of the iridium are all occupied. Although some have considerable ligand character, the deviations from 18 e leave the orbital symmetries unchanged. The isoelectronic systems from Os(-IV) to Au(-I) behave similarly, suggesting further possible species. To paraphrase Richard P. Feynmann "there is plenty of room at the bottom". © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Protection of naturally occurring antioxidants against oxidative damages to protein

    International Nuclear Information System (INIS)

    Zhu Hongping; Zhang Zhaoxia; Hao Shumei; Wang Wenfeng; Yao Side

    2006-01-01

    One of the most compelling theories explaining age-related deterioration is the free radical theory of aging. It has been shown that reactive oxygen species are involved in oxidative damages to biomolecules and this is related to a number of diseases. Proteins, the second most abundant components of cells (next to water by weight), are now increasingly recognized as major biological targets of oxidative damages. Convincing evidences have indicated that damages to protein have been implicated in Alzheimer's disease, Parkinson's disease, cancer, and aging. Antioxidant has been the subject of great attention because they are known to lower the risk of cardiovascular and other diseases. Hydroxycinnamic acid derivatives (HCAs) are antioxidants abundant in tea, red wine, fruits, beverages and various medicinal plants. Results showed that they exhibit remarkable activity for scavenging oxidizing radicals and triplet states. The protective effects of four kinds of HCAs on oxidative damages to lysozyme were investigated in our lab. Protein damages induced by two different paradigms: riboflavin-sensitized photooxidation and hydroxyl ( . OH)-mediated oxidation, were investigated using polyacrylamide gel electrophoresis. HCAs were found to inhibit the cross-linking of protein induced by riboflavin-mediated photooxidation. HCAs also exhibited protection effect on lysozyme damage induced by γ-ray irradiation. The rate constants for quenching triplet state of riboflavin by lysozyme and HCAs were obtained using laser flash photolysis. The protective mechanism was proposed based on the dynamic study. HCAs were found to protect protein against oxidation by scavenging oxidizing species and repairing the damaged protein. (authors)

  2. Genomic definition of species

    Energy Technology Data Exchange (ETDEWEB)

    Crkvenjakov, R.; Drmanac, R.

    1991-07-01

    The subject of this paper is the definition of species based on the assumption that genome is the fundamental level for the origin and maintenance of biological diversity. For this view to be logically consistent it is necessary to assume the existence and operation of the new law which we call genome law. For this reason the genome law is included in the explanation of species phenomenon presented here even if its precise formulation and elaboration are left for the future. The intellectual underpinnings of this definition can be traced to Goldschmidt. We wish to explore some philosophical aspects of the definition of species in terms of the genome. The point of proposing the definition on these grounds is that any real advance in evolutionary theory has to be correct in both its philosophy and its science.

  3. Bounding species distribution models

    Directory of Open Access Journals (Sweden)

    Thomas J. STOHLGREN, Catherine S. JARNEVICH, Wayne E. ESAIAS,Jeffrey T. MORISETTE

    2011-10-01

    Full Text Available Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for “clamping” model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART and maximum entropy (Maxent models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5: 642–647, 2011].

  4. Bounding Species Distribution Models

    Science.gov (United States)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  5. Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species

    International Nuclear Information System (INIS)

    Wells, Peter G.; Bhuller, Yadvinder; Chen, Connie S.; Jeng, Winnie; Kasapinovic, Sonja; Kennedy, Julia C.; Kim, Perry M.; Laposa, Rebecca R.; McCallum, Gordon P.; Nicol, Christopher J.; Parman, Toufan; Wiley, Michael J.; Wong, Andrea W.

    2005-01-01

    Developmental pathologies may result from endogenous or xenobiotic-enhanced formation of reactive oxygen species (ROS), which oxidatively damage cellular macromolecules and/or alter signal transduction. This minireview focuses upon several model drugs (phenytoin, thalidomide, methamphetamine), environmental chemicals (benzo[a]pyrene) and gamma irradiation to examine this hypothesis in vivo and in embryo culture using mouse, rat and rabbit models. Embryonic prostaglandin H synthases (PHSs) and lipoxygenases bioactivate xenobiotics to free radical intermediates that initiate ROS formation, resulting in oxidation of proteins, lipids and DNA. Oxidative DNA damage and embryopathies are reduced in PHS knockout mice, and in mice treated with PHS inhibitors, antioxidative enzymes, antioxidants and free radical trapping agents. Thalidomide causes embryonic DNA oxidation in susceptible (rabbit) but not resistant (mouse) species. Embryopathies are increased in mutant mice deficient in the antioxidative enzyme glucose-6-phosphate dehydrogenase (G6PD), or by glutathione (GSH) depletion, or inhibition of GSH peroxidase or GSH reductase. Inducible nitric oxide synthase knockout mice are partially protected. Inhibition of Ras or NF-kB pathways reduces embryopathies, implicating ROS-mediated signal transduction. Atm and p53 knockout mice deficient in DNA damage response/repair are more susceptible to xenobiotic or radiation embryopathies, suggesting a teratological role for DNA damage, consistent with enhanced susceptibility to methamphetamine in ogg1 knockout mice with deficient repair of oxidative DNA damage. Even endogenous embryonic oxidative stress carries a risk, since untreated G6PD- or ATM-deficient mice have increased embryopathies. Thus, embryonic processes regulating the balance of ROS formation, oxidative DNA damage and repair, and ROS-mediated signal transduction may be important determinants of teratological risk

  6. Oxide Nanocrystal Model Catalysts.

    Science.gov (United States)

    Huang, Weixin

    2016-03-15

    Model catalysts with uniform and well-defined surface structures have been extensively employed to explore structure-property relationships of powder catalysts. Traditional oxide model catalysts are based on oxide single crystals and single crystal thin films, and the surface chemistry and catalysis are studied under ultrahigh-vacuum conditions. However, the acquired fundamental understandings often suffer from the "materials gap" and "pressure gap" when they are extended to the real world of powder catalysts working at atmospheric or higher pressures. Recent advances in colloidal synthesis have realized controlled synthesis of catalytic oxide nanocrystals with uniform and well-defined morphologies. These oxide nanocrystals consist of a novel type of oxide model catalyst whose surface chemistry and catalysis can be studied under the same conditions as working oxide catalysts. In this Account, the emerging concept of oxide nanocrystal model catalysts is demonstrated using our investigations of surface chemistry and catalysis of uniform and well-defined cuprous oxide nanocrystals and ceria nanocrystals. Cu2O cubes enclosed with the {100} crystal planes, Cu2O octahedra enclosed with the {111} crystal planes, and Cu2O rhombic dodecahedra enclosed with the {110} crystal planes exhibit distinct morphology-dependent surface reactivities and catalytic properties that can be well correlated with the surface compositions and structures of exposed crystal planes. Among these types of Cu2O nanocrystals, the octahedra are most reactive and catalytically active due to the presence of coordination-unsaturated (1-fold-coordinated) Cu on the exposed {111} crystal planes. The crystal-plane-controlled surface restructuring and catalytic activity of Cu2O nanocrystals were observed in CO oxidation with excess oxygen. In the propylene oxidation reaction with O2, 1-fold-coordinated Cu on Cu2O(111), 3-fold-coordinated O on Cu2O(110), and 2-fold-coordinated O on Cu2O(100) were identified

  7. Oxidants for uranium leaching

    International Nuclear Information System (INIS)

    Ho, E.; Ring, B.

    2007-01-01

    Most uranium ores are leached with sulfuric acid under oxidising conditions. This paper reviews the oxidants that have been traditionally used in uranium leaching and discusses their merits in the context of overall flow sheet considerations. Options for alternative oxidants are also discussed. In acid leaching, ferric ion in solution oxidises insoluble uranium(IV) to soluble uranium (VI). Though ferric ion may be added directly, usually an oxidant is added to the circuit to convert ferrous ion to ferric ion in the liquor so that leaching can continue. The most common oxidants are pyrolusite and sodium chlorate. Pyrolusite is relatively cheap but introduces manganese ions into the liquor and consumes twice as much acid as sodium chlorate. Sodium chlorate is a slow reacting oxidant at low temperatures and acidities, and introduces chloride into the leach liquor. Caro's acid, is a non-polluting reagent that was used successfully at the Nabarlek uranium mine, and provided very good control of oxidising conditions. Other oxidants that are now being considered to overcome the disadvantages of pyrolusite and sodium chlorate are oxygen, hydrogen peroxide and SO 2 /O 2 . Some performance data for these oxidants are presented

  8. Prices and species diversity

    DEFF Research Database (Denmark)

    Sauer, Johannes

    . Based on a biologically defined species diver-sity index we incorporate biodiversity either as a desirable output or biodiversity loss as a detrimental input. Beside quantitative shadow price measures the main contribu-tion of the work is the evidence that parametric scores of environmental efficiency...... of biodiversity and the appropriate incorporation in stochastic fron-tier models to achieve more realistic measures of production efficiency. We use the empirical example of tobacco production drawing from as well as affecting species diversity in the surrounding forests. We apply a shadow profit distance...

  9. Graphite Oxidation Simulation in HTR Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed

    2012-10-19

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  10. 17O NMR investigation of oxidative degradation in polymers under γ-irradiation

    International Nuclear Information System (INIS)

    ALAM, TODD M.; CELINA, MATHIAS C.; ASSINK, ROGER A.; CLOUGH, ROGER LEE; GILLEN, KENNETH T.

    2000-01-01

    The γ-irradiated-oxidation of pentacontane (C 50 H 102 ) and the polymer polyisoprene was investigated as a function of oxidation level using 17 O nuclear magnetic resonance (NMR) spectroscopy. It is demonstrated that by using 17 O labeled O 2 gas during the γ-irradiation process, details about the oxidative degradation mechanisms can be directly obtained from the analysis of the 17 O NMR spectra. Production of carboxylic acids is the primary oxygen-containing functionality during the oxidation of pentacontane, while ethers and alcohols are the dominant oxidation product observed for polyisoprene. The formation of ester species during the oxidation process is very minor for both materials, with water also being produced in significant amounts during the radiolytic oxidation of polyisoprene. The ability to focus on the oxidative component of the degradation process using 17 O NMR spectroscopy demonstrates the selectivity of this technique over more conventional approaches

  11. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    Science.gov (United States)

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Glancing angle x-ray studies of oxide films

    International Nuclear Information System (INIS)

    Davenport, A.J.; Isaacs, H.S.

    1989-01-01

    High brightness synchrotron radiation incident at glancing angles has been used to study inhibiting species present in low concentrations in oxide films on aluminum. Glancing incident angle fluorescence measurements give surface-sensitive information on the valence state of elements from the shape of the x-ray absorption edge. Angle-resolved measurements show the depth distribution of the species present. 15 refs., 4 figs

  13. Tuning the Synthesis of Manganese Oxides Nanoparticles for Efficient Oxidation of Benzyl Alcohol

    Science.gov (United States)

    Fei, Jingyuan; Sun, Lixian; Zhou, Cuifeng; Ling, Huajuan; Yan, Feng; Zhong, Xia; Lu, Yuxiang; Shi, Jeffrey; Huang, Jun; Liu, Zongwen

    2017-01-01

    The liquid phase oxidation of benzyl alcohol is an important reaction for generating benzaldehyde and benzoic acid that are largely required in the perfumery and pharmaceutical industries. The current production systems suffer from either low conversion or over oxidation. From the viewpoint of economy efficiency and environmental demand, we are aiming to develop new high-performance and cost-effective catalysts based on manganese oxides that can allow the green aerobic oxidation of benzyl alcohol under mild conditions. It was found that the composition of the precursors has significant influence on the structure formation and surface property of the manganese oxide nanoparticles. In addition, the crystallinity of the resulting manganese nanoparticles was gradually improved upon increasing the calcination temperature; however, the specific surface area decreased obviously due to pore structure damage at higher calcination temperature. The sample calcined at the optimal temperature of 600 °C from the precursors without porogen was a Mn3O4-rich material with a small amount of Mn2O3, which could generate a significant amount of {O}_2- species on the surface that contributed to the high catalytic activity in the oxidation. Adding porogen with precursors during the synthesis, the obtained catalysts were mainly Mn2O3 crystalline, which showed relatively low activity in the oxidation. All prepared samples showed high selectivity for benzaldehyde and benzoic acid. The obtained catalysts are comparable to the commercial OMS-2 catalyst. The synthesis-structure-catalysis interaction has been addressed, which will help for the design of new high-performance selective oxidation catalysts.

  14. Translating Dyslexia across Species

    Science.gov (United States)

    Gabel, Lisa A.; Manglani, Monica; Escalona, Nicholas; Cysner, Jessica; Hamilton, Rachel; Pfaffmann, Jeffrey; Johnson, Evelyn

    2016-01-01

    Direct relationships between induced mutation in the "DCDC2" candidate dyslexia susceptibility gene in mice and changes in behavioral measures of visual spatial learning have been reported. We were interested in determining whether performance on a visual-spatial learning and memory task could be translated across species (study 1) and…

  15. on candida species

    African Journals Online (AJOL)

    Abstract. Background: Candida species (sp) is implicated in causing opportunistic disseminated mycotic complications in stage II. HIV patients. Cleistopholis patens is a West African medicinal tree reported to have significant antifungal activity against C. albicans. Objectives: This study aimed to determine the anti-candidal ...

  16. Species Distribution Modelling

    DEFF Research Database (Denmark)

    Gomes, Vitor H. F.; Ijff, Stephanie D.; Raes, Niels

    2018-01-01

    Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SD...

  17. Chapter 16: Species Diversity

    African Journals Online (AJOL)

    zargaran

    2012-05-03

    May 3, 2012 ... 2008; Zargaran et al., 2008), the oak cynipid gall wasps diversity is yet to be studied. Nazemi et al. (2008) reported species richness of oak gall wasps from. Kurdistan, Ilam and Kermanshah provinces of Iran. Reducing the oak gall wasps diversity will be as an alarm for environmental health of oak forests.

  18. Man as a Species.

    Science.gov (United States)

    Solem, Alan; And Others

    Written in 1964, the document represents experimental material of the Anthropology Curriculum Study Project. The objectives of the project were to discuss the evolution of man as distinguished from the evolution of other species and as related to culture, and to emphasize human diversity. Three brief essays are presented. The first, "The…

  19. Reactive Oxygen Species

    DEFF Research Database (Denmark)

    Franchina, Davide G.; Dostert, Catherine; Brenner, Dirk

    2018-01-01

    oxygen species (ROS), which have long been known to trigger cell death. However, there is now evidence that ROS also act as intracellular signaling molecules both in steady-state and upon antigen recognition. The levels and localization of ROS contribute to the redox modeling of effector proteins...

  20. Mitochondrial reactive oxygen species production and elimination.

    Science.gov (United States)

    Nickel, Alexander; Kohlhaas, Michael; Maack, Christoph

    2014-08-01

    Reactive oxygen species (ROS) play an important role in cardiovascular diseases, and one important source for ROS are mitochondria. Emission of ROS from mitochondria is the net result of ROS production at the electron transport chain (ETC) and their elimination by antioxidative enzymes. Both of these processes are highly dependent on the mitochondrial redox state, which is dynamically altered under different physiological and pathological conditions. The concept of "redox-optimized ROS balance" integrates these aspects and implies that oxidative stress occurs when the optimal equilibrium of an intermediate redox state is disturbed towards either strong oxidation or reduction. Furthermore, mitochondria integrate ROS signals from other cellular sources, presumably through a process termed "ROS-induced ROS release" that involves mitochondrial ion channels. Here, we attempt to integrate these recent advances in our understanding of the control of mitochondrial ROS emission and develop a concept of how in heart failure, defects in ion handling can lead to mitochondrial oxidative stress. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System". Copyright © 2014 Elsevier Ltd. All rights reserved.